WorldWideScience

Sample records for volcano east mediterranean

  1. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea).

    Science.gov (United States)

    Pachiadaki, Maria G; Lykousis, Vasilios; Stefanou, Euripides G; Kormas, Konstantinos A

    2010-06-01

    We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.

  2. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    Science.gov (United States)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  3. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2013-04-01

    In response to the EC call ENV.2012.6.4-2 (Long-term monitoring experiments in geologically active regions of Europe prone to natural hazards: the Supersite concept - FP7-ENV-2012-two-stage) a wide community of volcanological institutions proposed the project Mediterranean Supersite Volcanoes (MED-SUV), which is in the negotiation phase at the time of writing. The Consortium is composed by 18 European University and research institutes, four Small or Medium Enterprises (SME) and two non-European University and research institutes. MED-SUV will improve the consortium capacity of assessment of volcanic hazards in Supersites of Southern Italy by optimising and integrating existing and new observation/monitoring systems, by a breakthrough in understanding of volcanic processes and by increasing the effectiveness of the coordination between the scientific and end-user communities. More than 3 million of people are exposed to potential volcanic hazards in a large region in the Mediterranean Sea, where two among the largest European volcanic areas are located: Mt. Etna and Campi Flegrei/Vesuvius. This project will fully exploit the unique detailed long-term in-situ monitoring data sets available for these volcanoes and integrate with Earth Observation (EO) data, setting the basic tools for a significant step ahead in the discrimination of pre-, syn- and post-eruptive phases. The wide range of styles and intensities of volcanic phenomena observed on these volcanoes, which can be assumed as archetypes of 'closed conduit ' and 'open conduit' volcano, together with the long-term multidisciplinary data sets give an exceptional opportunity to improve the understanding of a very wide spectrum of geo-hazards, as well as implementing and testing a large variety of innovative models of ground deformation and motion. Important impacts on the European industrial sector are expected, arising from a partnership integrating the scientific community and SMEs to implement together new

  4. Microtremor study of Gunung Anyar mud volcano, Surabaya, East Java

    Science.gov (United States)

    Syaifuddin, Firman; Bahri, Ayi Syaeful; Lestari, Wien; Pandu, Juan

    2016-05-01

    The existence of mud volcano system in East Java is known from the ancient period, especially in Surabaya. Gunung Anyar mud volcano is one of the mud volcano system manifestation was appeared close to the residence. Because of this phenomenon we have to learn about the impact of this mud volcano manifestation to the neighbourhood. The microtremor study was conducted to evaluate the possible influence effect of the mud volcano to the environment and get more information about the subsurface condition in this area. Microtremor is one of the geophysical methods which measure the natural tremor or vibration of the earth, the dominant frequency of the tremor represent thickness of the soft sediment layer overlay above the bed rock or harder rock layer beneath our feet. In this study 90 stations was measured to record the natural tremor. The result from this study shows the direct influenced area of this small mud volcano system is close to 50m from the centre of the mud volcano and bed rock of this area is range between 66 to 140 meter.

  5. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit ' and 'open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are

  6. The MEDiterranean SUpersite Volcanoes (MED-SUV) project

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The MEDiterranean SUpersite Volcanoes (MED-SUV) project aims at gaining new insights in the knowledge of the processes on the base of the volcanic phenomena observable at the surface by using the broad inventory of multidisciplinary data available for Mt. Etna and Campi Flegrei/Vesuvius. These active volcanic areas, which have been here considered as a cluster of supersites, represent test cases since they embrace the main characteristics typical of both "opened- and closed-conduit" volcanic systems. For the purpose, MED-SUV objectives focus on the (i) development of novel monitoring instrumentations and data collection methods, (ii) implementation of the current observation infrastructures, (iii) better constraint of crucial volcanic parameters by integration of in-situ and satellite data, and (iv) the development of an e-infrastructure for data sharing. In this framework, MED-SUV is a great opportunity for scientific collaboration among diverse research institutions and industrial sectors. MED-SUV aims to use the achieved results to gain robust sets of multi-parametric observations using the most advanced analytic data processing techniques and volcanic process and hazard modelling methods. These will provide new insights in the current and past eruptive activity of the three test case volcanoes that will increase our technical-scientific ability of tracking volcanic-related hazards in the targeted areas, and of communicating with the proper decision-maker bodies. The implementation of an e-infrastructure compliant with EPOS and the other two supersite projects, MARsite and FUTUREVOLC, will contribute to the GEO/GEOSS interoperability principles and to the GEO 2012-15 work plan.

  7. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean

    NARCIS (Netherlands)

    López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G.J.; Martínez-Ruíz, F; Comas, M.; Sinninghe Damsté, J.S.

    2014-01-01

    Mud volcanoes (MVs) are the most prominentindicators of active methane/hydrocarbon venting at theseafloor on both passive and active continental margins.Their occurrence in the western Mediterranean is patent attheWest Alboran Basin, where numerous MVs develop overlayinga major sedimentary depocentr

  8. Thermal history and petroleum systems of the east Mediterranean realm

    Science.gov (United States)

    Daher, Samer Bou; Nader, Fadi H.; Littke, Ralf

    2016-04-01

    The eastern Mediterranean Levant basin is a frontier basin that has gained a lot of industrial and academic interest in the last decade due to the huge gas discoveries that have been reported in its southern part. The reported gas in Miocene reservoirs has been assumed to be derived from biogenic sources, although little data has been published so far. The thickness of the sedimentary column and the presence of direct hydrocarbon indicators (DHI) observed in the seismic data suggest the presence of promising prospective thermogenic petroleum systems in deeper intervals in the Levant Basin and along its margins. The east Mediterranean contains several structural elements dividing the area into different realms that reacted differently to the successive tectonic events that have shaped the area and thus resulted in different thermal and burial histories. We will present source rock data collected within the last few years from several organic matter rich intervals in the east Mediterranean and discuss their depositional environment and petroleum generation potential, as well as the potential petroleum systems in each compartment of the study area. This is based on numerical thermal and burial history models of several east Mediterranean realms including the Levant basin, its eastern and western margins, and the Eratosthenes Seamount. Additionally, we will present some results of sensitivity analysis in the poorly calibrated parts of the study area.

  9. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea.

    Science.gov (United States)

    Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A

    2015-06-15

    Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes.

  10. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin

    Science.gov (United States)

    Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone

    2000-10-01

    Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.

  11. Thessaloniki Mud Volcano, the Shallowest Gas Hydrate-Bearing Mud Volcano in the Anaximander Mountains, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Perissoratis

    2011-01-01

    Full Text Available A detailed multibeam survey and the subsequent gravity coring carried out in the Anaximander Mountains, Eastern Mediterranean, detected a new active gas hydrate-bearing mud volcano (MV that was named Thessaloniki. It is outlined by the 1315 m bathymetric contour, is 1.67 km2 in area, and has a summit depth of 1260 m. The sea bottom water temperature is 13.7∘C. The gas hydrate crystals generally have the form of flakes or rice, some larger aggregates of them are up to 2 cm across. A pressure core taken at the site contained 3.1 lt. of hydrocarbon gases composed of methane, nearly devoid of propane and butane. The sediment had a gas hydrate occupancy of 0.7% of the core volume. These characteristics place the gas hydrate field at Thessaloniki MV at the upper boundary of the gas hydrate stability zone, prone to dissociation with the slightest increase in sea water temperature, decrease in hydrostatic pressure, or change in the temperature of the advecting fluids.

  12. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  13. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    Science.gov (United States)

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  14. The Paleo-Anthropocene in the East Mediterranean

    Science.gov (United States)

    Ackermann, Oren; Frumin, Suembikya; Kolska Horwitz, Liora; Maeir, Aren M.; Weiss, Ehud; Zhevelev, Helena M.

    2015-04-01

    The East Mediterranean region is located in a transition zone between the sub-humid Mediterranean climate and the semi-arid and arid climates. During the last few Millennia, this area has witnessed human activities at various levels of intensity that have affected the landscape system evolution. For this reason, the given region is an excellent example of an anthropogenic landscape that has been shaped since the Paleo-Anthropocene and until today. The lecture will present a few milestones that demonstrate the ancient anthropogenic impact on various landscape components including physical structure and vegetation and fauna composition and patterns. Physical structure Site density increased dramatically from prehistoric times through to the Byzantine period, when it reached more than 5 sites/km2. Agricultural terraces cover more than 50% of the slopes in the main ridge slope. Vegetation patterns and composition Ancient activities that altered the physical structure had an impact on vegetation patterns that remain visible today. Human land use over history changed the vegetation composition, as revealed in archaeobotanical finds and pollen analysis. For example, changes in conditions during the Neolithic period, at the beginning of agriculture, can be seen by the appearance of weeds. In later periods, the planting of olive trees changed the vegetation composition which has an effect until today. The area also underwent human transitions, as many cultures appeared and inhabited the area. These cultures at times brought with them plants associated specifically with these cultures (e.g. the Philistines). Fauna extinction and invasion There are a few example of species extinction that occurred in the past as a result of mass hunting and killing; for example, the extinction of the Gazella subgutturosa in North Syria. In addition, there is evidence that ancient cultures brought animal species with them. For example, the Philistines that came to the area during the early

  15. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    Science.gov (United States)

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.

  16. Gouge marks on deep-sea mud volcanoes in the eastern Mediterranean: Caused by Cuvier's beaked whales?

    Science.gov (United States)

    Woodside, J. M.; David, L.; Frantzis, A.; Hooker, S. K.

    2006-11-01

    Enigmatic seafloor gouge marks at depths of 1700-2100 m have been observed from submersible during geological survey work studying mud volcanoes in the eastern Mediterranean Sea. The marks consist of a central groove (about 10 cm deep and 1-2 m long), superimposed on a broader bowl-shaped depression (1-2 m long by about 50 cm wide) with raised rims (up to 10 cm high) to either side of the central groove. We discuss the potential biological causes of these marks, and conclude that they are probably created by Cuvier's beaked whales ( Ziphius cavirostris) during foraging dives to these depths. The mud volcanoes have a comparatively rich and diverse benthic ecology associated with methane-rich fluid seeps and thus could be the base of food chains that reach top predators like the deep-diving whales. The characteristic high acoustic backscatter of the mud volcanoes would facilitate their detection by the echolocation system of these whales.

  17. Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes

    Science.gov (United States)

    Olu-Le Roy, Karine; Sibuet, Myriam; Fiala-Médioni, Aline; Gofas, Serge; Salas, Carmen; Mariotti, André; Foucher, Jean-Paul; Woodside, John

    2004-12-01

    Two mud volcano fields were explored during the French-Dutch MEDINAUT cruise (1998) with the submersible NAUTILE, one south of Crete along the Mediteranean Ridge at about 2000 m depth (Olimpi mud field) and the other south of Turkey between 1700 and 2000 m depth (Anaximander mud field) where high methane concentrations were measured. Chemosynthetic communities were observed and sampled on six mud volcanoes and along a fault scarp. The communities were dominated by bivalves of particularly small size, belonging to families commonly found at seeps (Mytilidae, Vesicomyidae, Thyasiridae) and to Lucinidae mostly encountered in littoral sulfide-rich sediments and at the shallowest seeps. Siboglinid polychaetes including a large vestimentiferan Lamellibrachia sp. were also associated. At least four bivalve species and one siboglinid are associated with symbiotic chemoautotrophic bacteria, as evidenced by Transmission Electronic Microscopy and isotopic ratio measurements. Among the bivalves, a mytilid harbors both methanotrophic and sulfide-oxidizing bacteria. Video spatial analysis of the community distribution on three volcanoes shows that dense bivalve shell accumulations (mainly lucinids) spread over large areas, from 10% to 38% of the explored areas (2500-15000 m 2) on the different volcanoes. Lamellibrachia sp. had different spatial distribution and variable density in the two mud volcano fields, apparently related with higher methane fluxes in the Anaximander volcanoes and maybe with the instability due to brines in the Olimpi area. The abundance and richness of the observed chemosynthetic fauna and the size of some of the species contrast with the poverty of the deep eastern Mediterranean. The presence of a specialized fauna, with some mollusk genera and species shared with other reduced environments of the Mediterranean, but not dominated by the large bivalves usually found at seeps, is discussed.

  18. RRS "Charles Darwin" Cruise 178, 14 Mar - 11 Apr 2006. 3D seismic acquisition over mud volcanoes in the Gulf of Cadiz and submarine landslides in the Eivissa Channel, western Mediterranean Sea

    OpenAIRE

    Masson, D. G.; C. Berndt

    2006-01-01

    The major aims of Charles Darwin Cruise 178 were to obtain (i) 3D seismic imagery, video transects and swath bathymetry maps of mud volcanoes in the southern Gulf of Cadiz, (ii) video transects across suspected cold water coral reefs in the Alboran Sea and (iii) 3D seismic imagery of submarine landslides in the Eivissa Channel, immediately east of the Balearic Islands in the western Mediterranean Sea. The cruise was in support of the EU Framework 6 ‘HERMES’ project (Hotspot Ecosystem Research...

  19. MEditerranean Supersite Volcanoes (MED-SUV) project: from objectives to results

    Science.gov (United States)

    Puglisi, Giuseppe; Spampinato, Letizia

    2017-04-01

    The MEditerranean Supersite Volcanoes (MED-SUV) was a FP7 3-year lasting project aimed at improving the assessment of volcanic hazards at two of the most active European volcanic areas - Campi Flegrei/Vesuvius and Mt. Etna. More than 3 million people are exposed to potential hazards in the two areas, and the geographic location of the volcanoes increases the number of people extending the impact to a wider region. MED-SUV worked on the (1) optimisation and integration of the existing and new monitoring systems, (2) understanding of volcanic processes, and on the (3) relationship between the scientific and end-user communities. MED-SUV fully exploited the unique multidisciplinary long-term in-situ datasets available for these volcanoes and integrated them with Earth observations. Technological developments and implemented algorithms allowed better constraint of pre-, sin- and post-eruptive phases. The wide range of styles and intensities of the volcanic phenomena observed at the targeted volcanoes - archetypes of 'closed' and 'open' conduit systems - observed by using the long-term multidisciplinary datasets, exceptionally upgraded the understanding of a variety of geo-hazards. Proper experiments and studies were carried out to advance the understanding of the volcanoes' internal structure and processes, and to recognise signals related to impending unrest/eruptive phases. Indeed, the hazard quantitative assessment benefitted from the outcomes of these studies and from their integration with cutting edge monitoring approaches, thus leading to step-changes in hazard awareness and preparedness, and leveraging the close relationship between scientists, SMEs, and end-users. Among the MED-SUV achievements, we can list the (i) implementation of a data policy compliant with the GEO Open Data Principles for ruling the exploitation and shared use of the project outcomes; (ii) MED-SUV e-infrastructure creation as test bed for designing an interoperable infrastructure to

  20. The 2007 eruption of Kelut volcano (East Java, Indonesia): Phenomenology, crisis management and social response

    Science.gov (United States)

    De Bélizal, Édouard; Lavigne, Franck; Gaillard, J. C.; Grancher, Delphine; Pratomo, Indyo; Komorowski, Jean-Christophe

    2012-01-01

    We focus in this paper on the processes and consequences of an unusual volcanic eruption at Kelut volcano, East Java. In November 2007, after two months of worrying precursor signs, Kelut volcano erupted. But neither explosions nor the usual hazards observed during the historic eruptions happened (e.g. ash falls, volcanic bombs and pyroclastic flows). Instead of an explosive eruption, the 2007 eruption was extrusive. Given than such an eruption could not be predicted, the authorities had to manage a new situation. We conducted interviews with nine stakeholders of the crisis management team, and undertook a questionnaire-based survey in the settlement nearest to the crater, in order to understand how the authorities managed the crisis, and how people reacted. Inquiries and questionnaires were carried out shortly after the end of the evacuation process, when the volcano was still under surveillance for fear of an explosive phase. The results display a real gap in what it takes to manage a crisis or live through a crisis. This suggests that the "unusual" eruption pattern of Kelut volcano was not the only factor of the misunderstanding between the authorities and the population. These problems stem from more structural causes such as the lack of communication and information when there is a need to adapt to a new scenario. In such a situation, the inability of the crisis management system to take decisions underscored the intrinsic vulnerability of the population despite a hierarchical and strategic top-down crisis management approach.

  1. Volcanoes

    Science.gov (United States)

    ... or more from a volcano. Before a Volcanic Eruption The following are things you can do to ... in case of an emergency. During a Volcanic Eruption Follow the evacuation order issued by authorities and ...

  2. The Geothermal System of the Arjuno-Welirang Volcano (East Java, Indonesia)

    Science.gov (United States)

    Inguaggiato, S.; Mazzini, A.; Vita, F.

    2015-12-01

    Arjuno-Welirang is a twin strato-volcano system located in the East of Java (Indonesia). It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 by the NW part of the Gunung Welirang. This strato-volcano is characterized by a solfataric area, with high T-vent fumarole at least up to 220°C, located mainly in the Welirang crater zone where sulphur deposits are abundant. In addition, several hot springs vent from the flanks of the volcano, indicating the presence of a large hydrothermal system During July 2015 we carried out a geochemical field campaign on the Arjuno-Welirang volcano-hydrothermal system area sampling water and dissolved gases from the thermal and cold springs located on the flanks of the volcano and from two high-T fumaroles located on the summit area of Welirang. Hydrothermal springs reveal temperatures up to 53°C and pH between 6.2 and 8.2. The hydrothermal springs show a volatile content (mainly CO2 and He) that is several order of magnitude higher than the Air Saturated Waters values (ASW) indicating a strong gas/water interaction processes between waters of meteoric origin and deep volatiles of volcanic origin. The hydrothermal springs have dissolved helium isotopic values with clear magmatic signature (R/Ra around 7) that is remarkably close to the helium isotope values from the fumaroles (R/Ra= 7.30).

  3. Seamount physiography and biology in North-East Atlantic and Mediterranean Sea

    OpenAIRE

    Morato, T.; K. Ø. Kvile; Taranto, G. H.; F. Tempera; Narayanaswamy, B.E.; Hebbeln, D.; Menezes, G.; Wienberg, C.; SANTOS, R. S.; T. J. Pitcher

    2012-01-01

    This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (North-East Atlantic Ocean) and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in-situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (North-East Atlantic) and in Mediterran...

  4. Seamount physiography and biology in the north-east Atlantic and Mediterranean Sea

    OpenAIRE

    Morato, T.; K. Ø. Kvile; Taranto, G. H.; F. Tempera; Narayanaswamy, B.E.; Hebbeln, D.; Menezes, G. M.; Wienberg, C.; SANTOS, R. S.; T. J. Pitcher

    2013-01-01

    This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (north-east Atlantic Ocean) and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (north-east Atlantic)...

  5. Population and development scenarios for EU neighbor countries in the South and East Mediterranean region

    NARCIS (Netherlands)

    Groenewold, W.G.F.; de Beer, J.A.A.

    2014-01-01

    This paper presents four population and development scenarios for 11 South and East Mediterranean countries (SEMC) for the period 2010-2050. Focus of analysis of scenario results is on working age population prospects, economic consequences, migration pressure in four migrant-sending SEMCs (Algeria,

  6. Seamount physiography and biology in the north-east Atlantic and Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    T. Morato

    2013-05-01

    Full Text Available This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (north-east Atlantic Ocean and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (north-east Atlantic and in the Mediterranean Sea is large with around 557 and 101 seamount-like features, respectively. Similarly, seamounts occupy large areas of about 616 000 km2 in the OSPAR region and of about 89 500 km2 in the Mediterranean Sea. The presence of seamounts in the north-east Atlantic has been known since the late 19th century, but overall knowledge regarding seamount ecology and geology is still relatively poor. Only 37 seamounts in the OSPAR area (3.5% of all seamounts in the region, 22 in the Mediterranean Sea (9.2% of all seamounts in the region and 25 in the north-east Atlantic south of the OSPAR area have in situ information. Seamounts mapped in both areas are in general very heterogeneous, showing diverse geophysical characteristics. These differences will likely affect the biological diversity and production of resident and associated organisms.

  7. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  8. MEDiterranean Supersite Volcanoes (MED-SUV) project: state of the art and main achievements after the first 18 months

    Science.gov (United States)

    Puglisi, Giuseppe; Spampinato, Letizia; Allard, Patrick; Baills, Audrey; Briole, Pierre; D'Auria, Luca; Dingwell, Donald; Martini, Marcello; Kueppers, Ulrich; Marzocchi, Warner; Minet, Christian; Vagner, Amélie

    2015-04-01

    of the interoperable architecture of the e-Infrastructure of the project, preliminary results of the geophysical and geochemical campaigns carried out at Campi Flegrei and Vesuvius volcanoes, TOMO-ETNA seismic experiment, and multidisciplinary campaigns at Mt. Etna's North-East crater. Beside these results, key achievements were the definition of the guidelines for the consortium data policy, MED-SUV website and facebook webpage, MED-SUV video in cooperation with INGV and ESA, and educational activities in selected schools of countries involved in the project.

  9. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    Science.gov (United States)

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Periodic gas release from the LUSI mud volcano (East Java, Indonesia)

    Science.gov (United States)

    Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E.; Smekens, J.

    2012-12-01

    The LUSI mud volcano has been erupting since May 2006 in a densely populated district of the Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industries, farmlands, and 10,000 homes. Peak mud extrusion rates of 180,000 m3/d were measured in the first few months of the eruption, which have decreased to water, is erupted at temperatures close to boiling. Gases are periodically released by the bursting of bubbles approximately 3 m in diameter, triggering mud fountains ~20 m in height. No appreciable gas seepage was detected in the quiescent intervals between bubble bursts. Absorption spectrometry in the infrared spectrum reveals that the gas released during explosions consists of 98.5% water vapor, 1% carbon dioxide, and 0.3% methane. On rare occasions, minor amounts of ammonia were also detected. Using simplified plume geometries based on observations, we estimate that LUSI releases approximately 1,500 T/yr of methane, which is equivalent to 0.5% of the yearly methane production from the 2.7 million heads of cattle in the East Java province. We observed explosion periods from 1 to 3 minutes with a median period of 100 s. Two conceptual models for the periodic behavior are assessed: 1) decompressional boiling of water as fluids ascend a pathway to the surface suggests that bubbles form 10s of meters below the surface and continue to expand as they rise; periodicity results from the time to reheat the fluid in the vicinity of bubble formation and 2) gas bubbles are seeded at much greater depths where carbon dioxide exsolves from solution and coalesce in a manner similar to that of slug flow.

  11. Regionalizing East Mediterranean Gas: Energy Security, Stability, and the U.S. Role

    Science.gov (United States)

    2014-12-01

    principle not as dangerous a target as already travel- ing oil transport freighters in the East Mediterranean, offer a highly symbolic target for...October 11, 2011. 51. For a background to Turkey’s own political turmoil in 2013, see Jim Zanotti, “Turkey: Background and U.S. Relations,” CSR Report...January 9, 2014. 76. Jeremy M. Sharp, “Jordan: Background and U.S. Rela- tions,” CSR Report for Congress, Washington, DC: CRS, January 27, 2014

  12. Some new trends in Mediterranean labour migration: the Middle East connection.

    Science.gov (United States)

    Seccombe, I J; Lawless, R J

    1985-03-01

    Changes in international labor migration in the Mediterranean region since the European economic recession of the early 1970s are examined. The authors note that labor migration to the oil-producing countries of the Middle East has increased and that this migration has differed from the previous movements to Europe, in that the migrants involved have been employed by contractors from their countries of origin or by other foreign companies. The probable future decline of this migration as infrastructure projects are completed is discussed, and the consequences are examined.

  13. Epidemiology of burn injuries in the East Mediterranean Region: a systematic review

    Directory of Open Access Journals (Sweden)

    Kendrick Denise

    2010-02-01

    Full Text Available Abstract Background Burn injuries remain one of the leading causes of injury morbidity and mortality in the World Health Organization's East Mediterranean Region. To provide an overview on the epidemiology of burn injuries in this region, a systematic review was undertaken. Methods Medline, Embase and CINAHL were searched for publications on burns in this region published between 01/01/1997 and 16/4/2007. Data were extracted to a standard spreadsheet and synthesised using a narrative synthesis. No attempt has been made to quantitatively synthesise the data due to the large degree of clinical heterogeneity between study populations. Results Seventy one studies were included in the review, from 12 countries. Burn injuries were found to be one of the leading causes of injury morbidity and mortality. The reported incidence of burns ranged from 112 to 518 per 100,000 per year. Burn victims were more frequently young and approximately one third of the victims were children aged 0-5 years. Hospital mortality ranged from 5 to 37%, but was commonly above 20%. Intentional self-harm burns particularly involving women were common in some countries of the region and were associated with a very high mortality of up to 79%. Conclusion Burn injuries remain an important public health issue in the East Mediterranean Region therefore further research is required to investigate the problem and assess the effectiveness of intervention programmes.

  14. North East Atlantic vs. Mediterranean Marine Protected Areas as Fisheries Management Tool

    Directory of Open Access Journals (Sweden)

    Angel Pérez-Ruzafa

    2017-08-01

    Full Text Available The effectiveness of management initiatives implemented in the context of the European Common Fisheries Policy has been questioned, especially with regard to the Mediterranean. Some of the analyses made to compare the fishing activity and management measures carried out in the North East Atlantic and in the Mediterranean do not take into account some of the differentiating peculiarities of each of these regions. At the same time, they resort to traditional fisheries management measures and do not discuss the role of marine protected areas as a complementary management tool. In this respect, the apparent failure of marine protected areas in the North-East Atlantic compared with the same in the Mediterranean is challenging European fishery scientists. Application of the classical holistic view of ecological succession to the functioning of fishery closures and no-use areas highlights the importance of combining both management regimes to fully satisfy both fishery- and biodiversity-oriented goals. We advocate that an optimal management strategy for designing an MPA to protect biodiversity and sustain fishing yields consists of combining a network of no-use areas (close to their mature state with fish boxes (buffer zones maintained by fishing disturbance in a relatively early successional stage, where productivity is higher, under a multi-zoning scheme. In this framework, the importance of no-use areas for fisheries is based on several observations: (1 They preserve biological diversity at regional scale, at all levels—specific, habitat/seascape, and also genetic diversity and the structure of populations, allowing natural selection to operate. (2 They permit the natural variability of the system to be differentiated from the effects of regulation and to be integrated in appropriate sampling schemes as controls. (3 They maintain the natural size and age structure of the populations, hence maximizing potential fecundity, allowing biomass export to

  15. Solar Forcing of climate fluctuations in East Africa recorded in southeastern Mediterranean sediments

    Science.gov (United States)

    Hamann, Y.; Dulski, P.; Hajdas, I.; Ehrmann, W. U.; Schmiedl, G. H.; Haug, G. H.

    2010-12-01

    The proportions of terrigenous components in Mediterranean sediments derived from the atmosphere and rivers strongly depend on climate conditions in the source areas. The rainfall regimes of the northern and central part of the African continent are controlled by an interplay between global climate patterns and the regional hydrological balance. High-resolution XRF element records of a marine sediment core of the southeastern Levantine Sea (Mediterranean Sea; GeoTü SL112, 32° 44.52 N, 34° 39.02 E, water depth: 892 m) indicate distinctive changes in the sediment supply to the southeastern Mediterranean by the Nile River as well as the influx of aeolian dust from the Saharan desert. We observe minima in the concentration of the element iron (Fe), which we interpret as minima in dust input, during the well-known solar minima Oort, Wolf, Spoerer, Maunder, and Dalton. Wavelet analyses reveals a close correspondence in the periodicity in Fe input with the typical frequencies of solar cycles of about 90 and 210 years during the last 1400 years. Furthermore, the Fe record from the Levantine Sea sediments shows a remarkable similarity with the lake level record of Lake Naivasha in the eastern branch of the East African Rift and the pre-colonial drought history of Lake Malawi in the southern part of the African Rift Valley. Enhanced Saharan dust flux as indicated by high Fe content in the Levantine Sea core coincides with well-known droughts in equatorial east Africa as indicated by Lake Naivasha lowstands.

  16. Puhimau thermal area: a window into the upper east rift zone of Kilauea Volcano, Hawaii?

    Science.gov (United States)

    McGee, K.A.; Sutton, A.J.; Elias, T.; Doukas, M.P.; Gerlach, T.M.

    2006-01-01

    We report the results of two soil CO2 efflux surveys by the closed chamber circulation method at the Puhimau thermal area in the upper East Rift Zone (ERZ) of Kilauea volcano, Hawaii. The surveys were undertaken in 1996 and 1998 to constrain how much CO2 might be reaching the ERZ after degassing beneath the summit caldera and whether the Puhimau thermal area might be a significant contributor to the overall CO2 budget of Kilauea. The area was revisited in 2001 to determine the effects of surface disturbance on efflux values by the collar emplacement technique utilized in the earlier surveys. Utilizing a cutoff value of 50 g m−2 d−1 for the surrounding forest background efflux, the CO2 emission rates for the anomaly at Puhimau thermal area were 27 t d−1 in 1996 and 17 t d−1 in 1998. Water vapor was removed before analysis in all cases in order to obtain CO2 values on a dry air basis and mitigate the effect of water vapor dilution on the measurements. It is clear that Puhimau thermal area is not a significant contributor to Kilauea's CO2 output and that most of Kilauea's CO2 (8500 t d−1) is degassed at the summit, leaving only magma with its remaining stored volatiles, such as SO2, for injection down the ERZ. Because of the low CO2 emission rate and the presence of a shallow water table in the upper ERZ that effectively scrubs SO2 and other acid gases, Puhimau thermal area currently does not appear to be generally well suited for observing temporal changes in degassing at Kilauea.

  17. The implementation of the Open Access paradigm to the EC-FP7 MED-SUV (Mediterranean Supersite Volcanoes) project

    Science.gov (United States)

    Puglisi, Giuseppe; Brito, Fabrice; Caumont, Hervé; D'Auria, Luca; Fernandez, José; Mazzetti, Paolo; Mathieu, Pierre Philippe; Nativi, Stefano; Papeschi, Fabrizio; Pepe, Antonio; Reitano, Danilo; Sangianantoni, Agata; Scarpato, Giovanni; Spampinato, Letizia

    2016-04-01

    The overall goal of the EC-FP7 Mediterranean Supersite Volcanoes (MED-SUV) project is to apply the rationale of the Supersites GEO initiative to Campi Flegrei/Vesuvius and Mt. Etna to reduce the volcanic risk, by improving the understanding of the underlying geophysical processes, through the integration and sharing of the in-situ and Earth Observation (EO) data sets and the implementation of new instruments and monitoring systems. The project involves 24 EU and no-EU partners, including research and academic institutions, space agencies and SMEs. In this framework, the application of the Open Access paradigm has offered the opportunity to study and apply practical solutions concerning the data management (i.e. data polices, foreground exploitation and sustainability), intellectual property rights (i.e., ownership, licences, agreements) and technical issues (i.e., design and implementation of an interoperability e-infrastructure, access systems, etc.). This contribution presents pro and cons encountered in the project, as well as the main outcomes of the implementation of the Open Access to the Italian Supersites. This experience will be exploited in the building of international research infrastructures, such as EPOS, and the outcomes of the project will contribute to foster the Open Access to the research data in a wide context, as the GEO-GEOSS framework.

  18. Lahar at Kali Konto after the 2014 Eruption of Kelud Volcano, East Java: Impacts and Risk

    OpenAIRE

    2015-01-01

    Five days after the Kelud Volcano eruption of 13 February 2014, lahar occurred in several channels of the Volcano. Rainfall with intensity of 26 mm/hour mobilized pyroclastic material from the upper slopes of Kelud Volcano down the channel during 3.5 hour. Using this eruption as a case study, the aims of this paper are (1) to study the geomorphic impact of lahars and (2) to study future hazards and risks due to the potential of lahar source material and lahar repose area. To reach these two g...

  19. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    Science.gov (United States)

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  20. Exposure to Air Pollution and Pregnancy Outcomes in the East Mediterranean Region: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Yousef Khader

    2016-01-01

    Full Text Available The East Mediterranean region suffers from high levels of air pollution which has a negative impact on pregnancy outcomes. This work systematically reviews the epidemiological evidence on maternal exposure to air pollution and adverse pregnancy outcomes in the region. Relevant papers and reports published between 2000 and 2014 were searched. Combinations of search terms including countries, exposures, and pregnancy outcomes were used to search for the relevant literature. Twelve articles from 6 countries met the inclusion criteria. There was a pattern of an association between outdoor air pollution and preterm birth and spontaneous abortion; indoor wood fuel smoke and birth weight; and second-hand smoke and birth weight, preterm birth, and spontaneous abortion.The quality of evidence on the impact of air pollution on pregnancy outcomes in the EMR is inadequate to form a base for future adaptation strategies and action plans. Therefore, more quality research is needed to portrait the actual situation in the region

  1. Automated inter-station phase velocity measurements across the eastern Mediterranean and Middle East

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Soomro, Riaz; Lebedev, Sergi; Meier, Thomas

    2016-04-01

    The structure of the lithosphere in northeastern Africa, eastern Mediterranean and the Middle East is highly variable. It ranges from young oceanic lithosphere in the Red Sea to what is considered the oldest oceanic lithosphere on Earth in the Mediterranean Sea north of Libya, and from highly deformed continental lithosphere at the east-Mediterranean margins to more stable continental lithosphere of Phanerozoic origin and to cratonic lithosphere beneath the Arabian Peninsula. Details of the lithospheric structure are, however, poorly known. Surface waves are ideally suited for studies of the lithosphere and the sublithospheric mantle. Our goal is to better define the 3D lithospheric shear-wave velocity structure within this region by surface wave tomography. Using regional to teleseismic Rayleigh and Love waves that traverse the area we can obtain information about its seismic structure by examining phase velocities as a function of frequency. A newly developed algorithm for automated inter-station phase velocity measurements (Soomro et al. 2016) is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 3800 regional and teleseismic earthquakes recorded by more than 1850 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, is also included in the analysis. For each station pair approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the weighted cross correlation functions. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. Parameters tests and preliminary results of automatically measured phase velocities are

  2. Preliminary insights into the chemical composition and emissions of urban VOCs in the East Mediterranean

    Science.gov (United States)

    Sauvage, S.; Borbon, A.; Afif, C.; Bechara, J.; Leonardis, T.; Fronval, I.; Waked, A.; Brioude, J.; Locoge, N.

    2011-12-01

    The Mediterranean region is an area where polluted air masses coming from Eastern and Central Europe increase air pollution, particularly during stagnation periods, together with intense solar radiation. It was demonstrated that the eastern coast of the Mediterranean Sea suffers from this kind of phenomena. Favorable weather conditions, remote sources, high urban and biogenic emissions lead to the formation of secondary pollutants (ozone and secondary organic aerosols, SOA), which may have significant impacts on health and climate. However, data are sparse in this region. The ECOCEM (Emission and Chemistry of Organic Carbon in the East Mediterranean - Beirut) project aims to improve our understanding of air pollution in this area by studying the composition of the gaseous and particulate phases in Beirut (Lebanon). Beirut is located on the eastern border of the Mediterranean basin. The goal of the project, which is taking place over two intensive field campaigns (July 2011 and February 2012), is to provide valuable observations on the composition and the temporal evolution of organics (summer versus winter),to identify and quantify the relative importance of sources of volatile organic compounds (VOCs) and aerosols (SOA) and to study the role of VOCs in the first oxidation steps of SOA formation. For that purpose, a large suite of primary and secondary VOCs (>60) were measured during the summertime campaign (July 2nd to July 17th 2011) at one suburban site in Beirut. Techniques encompass off-line sampling on carbonaceous sorbent tubes (2-hour time resolution) and liquid coil scrubbing (1-hour time resolution), an on-line GCFID (1-hour time resolution) and a PTR-MS (4-min time resolution). We will discuss here the atmospheric composition of VOCs in relation with their emissions. In particular, these data provide useful constraints to evaluate the first temporally and spatially resolved national emission inventory that was built for the year 2010. Preliminary results

  3. East African climate fluctuations over the last 1400 years recorded in southeastern Mediterranean sediments

    Science.gov (United States)

    Hamann, Y.; Dulski, P.; Ehrmann, W.; Schmiedl, G.; Haug, G.

    2008-12-01

    The southeastern Mediterranean Sea sedimentary history of the late Holocene was influenced by distinctive changes in Nile River sediment discharge and Saharan dust influx. We present high-resolution XRF element data of a marine sediment core of the southeastern Levantine Sea (GeoTü SL112, 32° 44.52´ N, 34° 39.02´ E, water depth: 892 m) spanning the last 1400 years. We suggest a strong relationship between humidity changes in east Africa and the corresponding sedimentological response in the Levantine Sea. The Fe record of our Levantine Sea sediment record shows a remarkable similarity with the lake level record of Lake Naivasha (Kenya) (Verschuren et al., Nature, 2000) and the pre-colonial drought history of Lake Malawi (east Africa). Several intervals of enhanced Saharan dust flux as indicated by high Fe values in the Levantine Sea core coincide with well-known droughts in equatorial east Africa and Lake Naivasha lowstands. Frequency analysis suggests that solar variability has been a major influence in these climate fluctuations. The Fe record of our core, which we interpret as Saharan dust influx to the southeast Levantine Sea, is dominated by cyclicities of approximately 90 and 200 years, known as the Gleissberg and Suess cycles. The most pronounced periods of decreased dust accumulation in the southeast Levantine Sea occurred at about 1.1 kyr BP, 0.7 kyr BP, 0.55 kyr BP, 0.3 kyr BP and 0.1 kyr BP, coincident with the solar minima of Oort, Wolf, Spoerer, Maunder and Dalton.

  4. Organic chemical composition of mud from the LUSI mud volcano, Sidoarjo, East Java, Indonesia

    Science.gov (United States)

    Rosenbauer, R. J.; Campbell, P.; Lam, A.

    2009-12-01

    Sidoarjo, East Java, Indonesia is the site of LUSI, a terrestrial mud volcano that has been erupting since May 29, 2006. In response to a U.S. Department of State request, the U.S. Geological Survey has been assisting the Indonesian Government to describe the geological and geochemical aspects and potential health risk of the mud eruption. We report here on the organic chemical composition of the mud. Organic chemical analyses were carried out by gas chromatography/mass spectroscopy following organic extraction by microwave-assisted solvent extraction and compound fractionation by adsorption chromatography. There is a petroliferous component in the mud that is fresh, immature, and nonbiodegraded. There is a complete suite of n-alkanes with a bell-shaped pattern typical of fresh petroleum with a Cmax around C20. The alkane content ranges from 0.12 to 1.01 mg/kg dry mud. The presence of certain hopanes (i.e. 17 α,21β(H)-30-norhopane and 17α,21β(H)-hopane) is also indicative of the presence of oil. The proportions of other biomarker compounds (pristane/phytane = 2.4) and the dominance of the C27 sterane (5α(H),14α(H),17α(H)-chlolestane) suggest that oil formed under oxic conditions and has a likely coastal marine or terrigenous source. The presence of oleanane indicates a Cretaceous or younger age for the petrogenic material. These geochemical parameters are consistent with Indonesian oil derived from Tertiary marlstone source rocks that contained kerogen deposited under oxic conditions, probably the upper Miocene Klasafet Formation. Polycyclic aromatic hydrocarbons (PAHs) are present and range in content from 0.1 to 2.2 mg/kg dry mud. The low molecular weight (LMW) PAHs, in particular, naphthalene and methyl-naphthalene are dominant except for perylene which is ubiquitous in the environment. The presence of both parent and higher homologue PAHs indicate a petrogenic rather than combustion source. PAHs are known carcinogens but toxicity data in sediments are

  5. The East Asian shore crab Hemigrapsus sanguineus (Brachyura: Varunidae in the Mediterranean Sea: an independent human-mediated introduction

    Directory of Open Access Journals (Sweden)

    Christoph D. Schubart

    2003-06-01

    Full Text Available A single adult male specimen of the East Asian crab Hemigrapsus sanguineus (de Haan, 1835 was collected in August 2001 in the northern Adriatic Sea along the northwest coast of the peninsula of Istra. This is the first record of this genus and species from the Mediterranean Sea. Previously, Hemigrapsus sanguineus had been reported to invade the Atlantic coasts of North America and of western France, while the congeneric East Asian species, Hemigrapsus penicillatus (de Haan, 1835, has established breeding populations along the Atlantic coast of Europe. The current absence of Hemigrapsus sanguineus in southern Europe and the western Mediterranean suggests an independent human-mediated introduction of the Croatian specimen. Preliminary genetic analyses reveal that specimens from Istra, North America, and Japan have identical DNA haplotypes corresponding to the mitochondrial large subunit rRNA gene (16S mtDNA, while the homologous sequence from a specimen of Taiwan differs in two out of 525 nucleotides.

  6. Calculating the Middle Ages? The Project "Complexities and Networks in the Medieval Mediterranean and Near East" (COMMED)

    OpenAIRE

    Johannes Preiser-Kapeller

    2015-01-01

    The project "Complexities and networks in the Medieval Mediterranean and Near East" (COMMED) at the Division for Byzantine Research of the Institute for Medieval Research (IMAFO) of the Austrian Academy of Sciences focuses on the adaptation and development of concepts and tools of network theory and complexity sciences for the analysis of societies, polities and regions in the medieval world in a comparative perspective. Key elements of its methodological and technological toolkit are applied...

  7. Reconnaissance gas measurements on the East Rift Zone of Kilauea Volcano, Hawai'i by Fourier transform infrared spectroscopy

    Science.gov (United States)

    McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.

    2005-01-01

    We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1

  8. Lahar at Kali Konto after the 2014 Eruption of Kelud Volcano, East Java: Impacts and Risk

    Directory of Open Access Journals (Sweden)

    Suprapto Dibyosaputro

    2015-08-01

    Full Text Available Five days after the Kelud Volcano eruption of 13 February 2014, lahar occurred in several channels of the Volcano. Rainfall with intensity of 26 mm/hour mobilized pyroclastic material from the upper slopes of Kelud Volcano down the channel during 3.5 hour. Using this eruption as a case study, the aims of this paper are (1 to study the geomorphic impact of lahars and (2 to study future hazards and risks due to the potential of lahar source material and lahar repose area. To reach these two goals, we use both primary and secondary data. The primary data comprises an integration of remote sensing, GIS approach, and fieldwork control, in order to investigate the geomorphic impacts of lahars. Secondary data were collected through interviews and statistical approach in villages, in order to determine their perception to the risk of lahar. Morphogenic processes such as riverbank erosion, channel-widening and riverbed downcutting took an important role in generating the impact of lahar in Kali Konto. The medial and distal areas were affected more largely affected than the proximal area. This major impacts have been river widening and buried crop field inside of the channel. This result allowed us to provide recommendation to population living along those areas at risk, in order to be prepared against the eventuality of potentially large and destructive lahars.

  9. Stray animal populations and public health in the South Mediterranean and the Middle East regions.

    Science.gov (United States)

    Seimenis, Aristarhos; Tabbaa, Darem

    2014-01-01

    Uncontrolled urban growth in South Mediterranean and the Middle East regions involves city dwellers and stray animals (mainly dogs and cats) creating a dense and downgraded environment, in which irregular street garbage collection disposes sufficient food for survival and proliferation of stray animals. Under such conditions serious public health hazards are expected due to the increase of animal bites, the multiplication of insects and rodents vectors of different viral, bacterial, fungal and parasitic agents to which humans are exposed. Traditional national stray animal eradication programs and occasional small animals' humane elimination campaigns are insufficient to avert human and veterinary health risks when not coupled with modern technologies. In such environments, multiple foci of emerging and re-emerging zoonoses easily spread, i.e. rabies, hydatidosis, leishmaniasis and toxoplasmosis. Upgrading urban and peri-urban situations requires integrated/coordinated management programmes, in which public and animal health services as well as municipalities have a crucial role. Control and upgrading programmes should be flexible and able to adapt to the specific conditions of the given country/region. In this context, intersectoral/interprofessional collaborations and community participation are crucial for any national and regional development strategies. In this respect, a global approach considering both public health and socio-economic problems shows to be extremely adequate and effective.

  10. Stray animal populations and public health in the South Mediterranean and the Middle East regions

    Directory of Open Access Journals (Sweden)

    Aristarhos Seimenis

    2014-06-01

    Full Text Available Uncontrolled urban growth in South Mediterranean and the Middle East regions involves city dwellers and stray animals (mainly dogs and cats creating a dense and downgraded environment, in which irregular street garbage collection disposes sufficient food for survival and proliferation of stray animals. Under such conditions serious public health hazards are expected due to the increase of animal bites, the multiplication of insects and rodents vectors of different viral, bacterial, fungal and parasitic agents to which humans are exposed. Traditional national stray animal eradication programs and occasional small animals' humane elimination campaigns are insufficient to avert human and veterinary health risks when not coupled with modern technologies. In such environments, multiple foci of emerging and re‑emerging zoonoses easily spread, i.e. rabies, hydatidosis, leishmaniasis and toxoplasmosis. Upgrading urban and peri-urban situations requires integrated/coordinated management programmes, in which public and animal health services as well as municipalities have a crucial role. Control and upgrading programmes should be flexible and able to adapt to the specific conditions of the given country/region. In this context, intersectoral/interprofessional collaborations and community participation are crucial for any national and regional development strategies. In this respect, a global approach considering both public health and socio-economic problems shows to be extremely adequate and effective.

  11. Effect of volcano ash additions on nutrient concentrations, bloom dynamics and community metabolism in a short-term experiment in the NW Mediterranean Sea

    Science.gov (United States)

    Weinbauer, Markus

    2016-04-01

    Volcano ash deposition is now considered as an important source of inorganic bioavailable iron which can relieve Fe-limitation in the ocean. As volcano ash also releases PO4, a experiment was performed in the NW Mediterranean Sea to test whether volcano ash deposition can affect nutrient dynamics and bloom development in a P-limited system. In a 54h experiment, it was shown that the development of a phytoplankton bloom was not enhanced or even repressed by ash additions of 2 and 20 mg l-1, whereas higher ash concentrations (200 mg l-1) induced a phytoplankton bloom as indicated by elevated Chlorophyll-a levels. Concurrently, net community production (NCP) and gross primary production (GPP) were enhanced at T24h at the highest ash additions. The metabolic balance was roughly neutral at low or no ash additions, but shifted towards phototrophy at the highest ash additions. The data on inorganic nutrient development and release estimates from ash material assays suggest relieving of P-limitation concomitant with NO3 and silicate use from ash. The concentration of TEP increased with increasing ash levels. The abundances of the heterotrophic compartment (bacteria, viruses and ciliates) also indicated dose-dependent responses. Our data suggest that heterotrophs won the competition for inorganic nutrients at ash levels of 2 and 20 mg l-1, whereas phytoplankton won at levels of 200 mg l-1. Overall, our experiments point to a strong potential of volcano ash deposition as forcing factor for nutrient dynamics and the activity of microbial plankton in a P-limited system.

  12. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    Science.gov (United States)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary

  13. Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz

    Science.gov (United States)

    Mascle, Jean; Mary, Flore; Praeg, Daniel; Brosolo, Laetitia; Camera, Laurent; Ceramicola, Silvia; Dupré, Stéphanie

    2014-06-01

    Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.

  14. Decoding recent mud-volcano activity in the westernmost Mediterranean: Evidence from sediment/porewater data and geochemical modeling

    Science.gov (United States)

    López-Rodríguez, Carmina; Martínez-Ruíz, Francisca; Mogollón, José M.; Comas, Menchu; Nieto, Fernando; Böning, Philipp; Pahnke, Katharina; Sapart, Célia; De Lange, Gert J.

    2017-04-01

    Recent studies have demonstrated the occurrence of active mud volcanism in the West Alboran Basin. Though most of the mud volcanoes (MVs) discovered in this region are dormant, a few structures evidence active hydrocarbon venting, as Carmen MV. This study focuses on sedimentological and geochemical investigations on one piston core, GP05PC, recovered from the summit of Carmen MV during the Gasalb-Pelagia cruise (2011). Although the full core consists of mud breccia sediments, a dramatic change occurs between enhanced methane concentrations in its lowermost and dissolved SO42- in its uppermost sediments. At the boundary of 150 cm, methane is oxidized and sulphate reduced. In the lowermost interval, the depletion of major elements (i.e., Ca2+ and Mg2+), the enrichment of trace species (i.e., Li+ and B) and the radiogenic 87Sr all point to a deep fluid source. The δ18Opw and δDpw compositions of pore water (5.7‰ and -10‰ VSMOW, respectively) together with the mineralogical results (presence of randomly insterstrafied (R0) illite-smectite minerals (I/S) to more illitic (>50% I) and ordered ones (R1-R3)) indicate smectite to illite transformation at greater depth and support smectite dehydration as the main porewater freshening mechanism. Water formation temperatures calculated through the application of empirical geo-thermometers (K-Na, K-Mg and K-Ca) together with the presence from I/S mixed layers (R3) suggest that fluids were generated at temperatures 100-200°C. This temperature indicates that, under a regional geothermal gradient, the fluid source originates from 8 km depth. From an adjacent borehole it is known that sedimentary units of Early to Middle Miocene age occur at that depth (Jurado and Comas et al., 1992). The δ13Cmethane and δDmethane composition of methane (-59‰ VPDB and -184‰ VSMOW, respectively) of the deepest sample also may be associated to a thermogenic origin. The absence of hemipelagic sediment draping, the distinctive seawater

  15. Observations of alkylamines at a costal site in the East Mediterranean

    Science.gov (United States)

    Tzitzikalaki, Evaggelia; Kieloaho, Antti-Jussi; Hellén, Heidi; Hakola, Hannele; Kalivitis, Nikolaos; Kouvarakis, Giorgos; Kerminen, Veli-Matti; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-04-01

    Amines are reactive volatile base in the atmosphere and play a key role in new particle formation. Due to their height reactivity, concentration measurements are scare and mostly concentrated within short period of time. The present study provided the first long- term measurements of alkylamines in the Eastern Mediterranean. Measurements took place at a remote coastal site on the north east side of the island of Crete at the Finokalia monitoring station of the University of Crete (finokalia.chemistry.uoc.gr; 35°20΄N, 25°40΄E, 250m a.s.l.) from January 2013 to December 2015. The samples were collected in glass fiber filters impregnated with phosphoric acid that trap gas-phase amines as salt. Samples were subsequently transported to the lab where they were stored in refrigeration until the analysis that took place in a Liquid Chromatography Triple Quadrupole Mass Spectrometer (TSQ Quantum, Thermo Finnigan). The alkylamines that were detected were ethylamine (EA), dimethylamine (DMA), trimethylamine (TMA), propylamine (PA), diethylamine (DEA) and triethylamine (TEA). DMA & EA and TMA & PA were handled as pairs as they couldn't be separated. The most abundant amines were found to be DMA & EA, whereas BA and TMA were under the detection limits. The highest concentrations for DMA & EA and DEA were observed during summer, while for TMA & PA no clear annual cycle was found. The results are analyzed together with observations of new particle formation at the Finokalia station to estimate possible links of alkylamines to the formation of atmospheric particles in the area. This work has been partially supported by the European FP7 collaborative project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding).

  16. Premarital screening test results for β-thalassemia and sickle cell anemia trait in east Mediterranean region of Turkey.

    Science.gov (United States)

    Guler, Ekrem; Garipardic, Mesut; Dalkiran, Tahir; Davutoglu, Mehmet

    2010-11-01

    Hemoglobinopathies are common diseases in Mediterranean region of Turkey. In this study, the results of a 3-year premarital screening program are reported in Kahramanmaras province, which is located in East Mediterranean region. A total of 48,126 persons were screened in this program. Hematological analyses and electrophoresis were done to identify carriers. The prevalence of β-thalassemia trait and of sickle cell anemia trait, which were 2.1% and 0.5% in Turkey, were found to be 2.8% and 0.4%, respectively, in our study. Of the carriers of the β-thalassemia trait, 82% had high hemoglobin A₂, 34% had high hemoglobin F, and 18% had both high hemoglobin F and hemoglobin A₂. β-Thalassemia trait in Kahramanmaras is slightly higher than the average rate in Turkey. However, sickle cell anemia trait is similar to Turkey's averages.

  17. Paleo-geomorphic evolution of the Ciomadul volcano (East Carpathians, Romania) using integrated volcanological, stratigraphical and radiometric data

    Science.gov (United States)

    Karátson, Dávid; Wulf, Sabine; Veres, Daniel; Gertisser, Ralf; Telbisz, Tamás; Magyari, Enikö

    2016-04-01

    Ciomadul volcano is the youngest eruptive center of the Carpatho-Pannonian Region (CPR), located at the southernmost end of the Intra-Carpathian Volcanic Range, and within this, the Harghita Mountains in the East Carpathians. As a result of multi-disciplinary, ongoing studies (Karátson et al. 2013 and in review; Magyari et al. 2014; Veres et al. in prep.; Wulf et al. in review), we have obtained a number of constraints on the paleo-geomorphic evolution of the volcano. Our studies clarified that this volcano, a lava dome complex with a twin-crater (i.e. the older Mohos peat bog and the younger St. Ana lake), produced frequent explosive eruptions between 50 and 29 ky. As a result, a set of superimposed volcanic landforms were created, the chronology of which in some cases can be well constrained, in other cases further studies are required to infer their timing. Ciomadul evolved as a moderately explosive dacitic dome complex possibly for several hundred ka (see controversial chronology in Karátson et al. 2013, Harangi et al. 2015 and Szakács et al. 2015), resulting in a set of adjoining lava domes and a central complex. There is no evidence for crater-forming eruptions during that time, although the possibility of moderate explosions cannot be ruled out. Field relations show that the first exposive products are phreatomagmatic tuff series, called Turia type, dated at ca. 50 ka. These tephra units could be linked to the formation of a "Paleo-Mohos" crater, and possibly to the northern half-caldera rim which consists of massive lava dome rock and hosts Ciomadul Mare, the highest point of the volcano (1300 m). After this first explosive activity, volcanism seems to have migrated toward the W, at the site of the later St. Ana crater. Following plinian eruption(s) at ca. 47-43 ka, the explosive activity went dormant, and a lava dome might have grown up in a possibly small "Proto-St. Ana" crater. At 31-32 ka, a succession of violent magmatic explosive eruptions occurred

  18. Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea.

    Science.gov (United States)

    Heijs, Sander K; Damsté, Jaap S Sinninghe; Forney, Larry J

    2005-09-01

    A white, filamentous microbial mat at the Milano mud volcano in the Eastern Mediterranean Sea was sampled during the Medinaut cruise of the R/V Nadir in 1998. The composition of the mat community was characterized using a combination of phylogenetic and lipid biomarker methods. The mat sample was filtered through 0.2 and 5-microm filters to coarsely separate unicellular and filamentous bacteria. Analyses of 16S rRNA gene sequences amplified from the total community DNA from these fractions showed that similar archaeal populations were present in both fractions. However, the bacterial populations in the fractions differed from one another, and were more diverse than the archaeal ones. Lipid analysis showed that bacteria were the dominant members of the mat microbial community and the relatively low delta(13)C carbon isotope values of bulk bacterial lipids suggested the occurrence of methane- and sulfide-based chemo(auto)trophy. Consistent with this, the bacterial populations in the fractions were related to Alpha-, Gamma- and Epsilonproteobacteria, most of which were chemoautotrophic bacteria that utilize hydrogen sulfide (or reduced sulfur compounds) and/or methane. The most common archaeal 16S rRNA gene sequences were related to those of previously identified Archaea capable of anaerobic methane oxidation. Although the filamentous organisms observed in the mat were not conclusively identified, our results indicated that the Eastern Mediterranean deep-sea microbial mat community might be sustained on a combination of methane- and sulfide-driven chemotrophy.

  19. Preliminary Analytical Results for a Mud Sample Collected from the LUSI Mud Volcano, Sidoarjo, East Java, Indonesia

    Science.gov (United States)

    Plumlee, Geoffrey S.; Casadevall, Thomas J.; Wibowo, Handoko T.; Rosenbauer, Robert J.; Johnson, Craig A.; Breit, George N.; Lowers, Heather; Wolf, Ruth E.; Hageman, Philip L.; Goldstein, Harland L.; Anthony, Michael W.; Berry, Cyrus J.; Fey, David L.; Meeker, Gregory P.; Morman, Suzette A.

    2008-01-01

    On May 29, 2006, mud and gases began erupting unexpectedly from a vent 150 meters away from a hydrocarbon exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI (Lumpur 'mud'-Sidoarjo) mud volcano, has continued since then at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This report presents initial characterization results of a sample of the mud collected on September 22, 2007, as well as inerpretive findings based on the analytical results. The focus is on characteristics of the mud sample (including the solid and water components of the mud) that may be of potential environmental or human health concern. Characteristics that provide insights into the possible origins of the mud and its contained solids and waters have also been evaluated.

  20. Hydrological and Vegetation Variability from Mediterranean Leaf Wax Biomarkers Before and After the Rise of East African C4 Grasslands

    Science.gov (United States)

    Meyers, C.; deMenocal, P. B.; Tierney, J. E.; Polissar, P. J.

    2012-12-01

    Terrestrial and marine paleoclimate records and changes in African fossil mammal taxa indicate that a transition towards more open, C4-dominated grasslands occurred in East Africa near 2 Ma. In contrast, the Mediterranean sapropel record documents pervasive precession-paced wet/dry cycles in the strength of the African monsoon and Nile runoff since at least the late Miocene. This study investigates whether the East African vegetation shift after 2 Ma was accompanied by a change in the monsoonal wet/dry cycle response to orbital precession forcing. We sampled eastern Mediterranean ODP Site 967 at 2-3 ka resolution in two 200 kyr intervals near 3.0 and 1.7 Ma. Nearly identical orbital configurations in these intervals allow us to compare mean conditions and orbital-paced variations before and after the 2 Ma transition. We used leaf wax biomarker concentrations and δD and δ13C compositions as proxies for monsoonal strength and vegetation type, and the δ18O composition of G. ruber as a proxy for Nile River runoff. Leaf wax biomarker concentrations varied over three orders of magnitude, with much higher concentrations in sapropels. During sapropel intervals, large-amplitude negative excursions occur in δDwax, δ13Cwax, and δ18Oruber, corresponding to a strengthened monsoon and less abundant C4 plants. Carbonate-rich intervals have positive isotope excursions indicating a weakened monsoon and more abundant C4 plants. The mean and variance of δDwax and δ13Cwax values are not significantly different between the 3.0 Ma and 1.7 Ma intervals indicating Northern Africa did not experience the vegetation and climate shifts observed in East Africa. While surprising, our finding suggests that the average monsoonal response to precession forcing, and corresponding vegetation variability, did not substantially change across the 2 Ma transition. This implies that North and East Africa exhibited different climate and vegetation behavior since 3 Ma.

  1. Trace elements records from vermetids aragonite as millennial paleo-oceanographic archives in the South-East Mediterranean

    Science.gov (United States)

    Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo

    2017-04-01

    The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative

  2. Long term dynamic of real exchange rate, trade liberalization and financial integration: The case of south-east Mediterranean countries

    Directory of Open Access Journals (Sweden)

    Amor Hadj Thouraya

    2009-01-01

    Full Text Available The purpose of this paper is to estimate the effects of the trade liberalization and of the international financial integration on the long-term behavior of Real Exchange Rate (RER for the South East Mediterranean countries. So the following question: how does the new trade and financial context affect the Equilibrium RER? We refer to the econometric technique of time series analysis, (the unit root tests of Dickey-Fuller (1979 and we apply the cointegration test of Engle and Granger (1987 of single equation for six South East Mediterranean countries (Algeria, Egypt, Lebanon, Morocco, Tunisia and Turkey over the period of 1979-2004. Our estimates suggest that, for the six countries, long-term RER behavior depends essentially on economic specificity of each country and in particular on their degree of financial integration and trade opening. Our results also show that the evolution of the RER misalignment during our sample period, seem to be for some countries persistant and recurrent, but with decrease.

  3. Microcnemum coralloides (Chenopodiaceae- Salicornioideae: an example of intraspecific East-West disjunctions in the Mediterranean region

    Directory of Open Access Journals (Sweden)

    Kadereit, Gudrun

    2008-12-01

    Full Text Available Microcnemum is a monotypic genus of Salicornioideae comprising rare, annual, hygrohalophytic herbs growing in hypersaline inland lagoons and salt pans. Microcnemum coralloides shows an East-West disjunction in the Mediterranean region: M. coralloides subsp. coralloides occurs in central and eastern Spain while M. coralloides subsp. anatolicum grows in Turkey, Syria, Armenia and Iran. We studied the phylogeny, biogeography and morphological differentiation of M. coralloides. Molecular analyses, using five western and eight eastern accessions of the species, were based on three different markers (nuclear ITS and plastid atpB-rbcL spacer and trnT/F region analysed with Maximum Parsimony and Maximum Likelihood. Estimates of divergence times were calculated using a Likelihood Ratio Test (LRT and the Penalized Likelihood (PL method. The two subspecies can be clearly distinguished by their different seed testa surface. Other diagnostic characters were not found. The molecular data (ITS and ML analysis of the trnT/F region indicate that M. coralloides subsp. coralloides originated from within M. coralloides subsp. anatolicum which implies an East Mediterranean origin and subsequent westward dispersal. Age estimates for the split of the two subspecies range from 2.8–0.5 million years ago. Considering the relatively low genetic differentiation and the low crown group age (0.7–0.1 mya of M. coralloides subsp. coralloides in comparison to M. coralloides subsp. anatolicum we favour the hypothesis that the Iberian part of the species range was established during cold periods of the Early Pleistocene and that the range of the species was fragmented during a warmer period soon after its arrival in Iberia.Microcnemum es un género monotípico de Salicornioideae que consiste en hierbas higrohalófilas, anuales, raras, que crecen en cuencas endorréicas hipersalinas del interior y salares. Microcnemum coralloides muestran una disyunción Este

  4. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Werne, J.P.; Zitter, T.; Haese, R.R.; Aloisi, G.; Bouloubassi, I.; Heijs, S.; Fiala-Medioni, A.; Pancost, R.D.; Lange, G.J. de; Gottschal, J.; Foucher, J.-P.; Mascle, J.; Woodside, J.

    2004-01-01

    Recent field observations have identified the widespread occurrence of fluid seepage through the eastern Mediterranean Sea floor in association with mud volcanism or along deep faults. Gas hydrates and methane seeps are frequently found in cold seep areas and were anticipated targets of the MEDINAUT

  5. Life at cold seeps : a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Werne, JP; Haese, RR; Zitter, T; Aloisi, G; Bouloubassi, L; Heijs, S; Fiala-Medioni, A; Pancost, RD; Damste, JSS; de Lange, G; Forney, LJ; Gottschal, JC; Foucher, JP; Mascle, J; Woodside, J

    2004-01-01

    Recent field observations have identified the widespread occurrence of fluid seepage through the eastern Mediterranean Sea floor in association with mud volcanism or along deep faults. Gas hydrates and methane seeps are frequently found in cold seep areas and were anticipated targets of the MEDINAUT

  6. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Werne, J.P.; Zitter, T.; Haese, R.R.; Aloisi, G.; Bouloubassi, I.; Heijs, S.; Fiala-Medioni, A.; Pancost, R.D.; Lange, G.J. de; Gottschal, J.; Foucher, J.-P.; Mascle, J.; Woodside, J.

    2004-01-01

    Recent field observations have identified the widespread occurrence of fluid seepage through the eastern Mediterranean Sea floor in association with mud volcanism or along deep faults. Gas hydrates and methane seeps are frequently found in cold seep areas and were anticipated targets of the

  7. Life at cold seeps : a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Werne, JP; Haese, RR; Zitter, T; Aloisi, G; Bouloubassi, L; Heijs, S; Fiala-Medioni, A; Pancost, RD; Damste, JSS; de Lange, G; Forney, LJ; Gottschal, JC; Foucher, JP; Mascle, J; Woodside, J

    2004-01-01

    Recent field observations have identified the widespread occurrence of fluid seepage through the eastern Mediterranean Sea floor in association with mud volcanism or along deep faults. Gas hydrates and methane seeps are frequently found in cold seep areas and were anticipated targets of the

  8. Life at cold seeps : a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Werne, JP; Haese, RR; Zitter, T; Aloisi, G; Bouloubassi, L; Heijs, S; Fiala-Medioni, A; Pancost, RD; Damste, JSS; de Lange, G; Forney, LJ; Gottschal, JC; Foucher, JP; Mascle, J; Woodside, J

    2004-01-01

    Recent field observations have identified the widespread occurrence of fluid seepage through the eastern Mediterranean Sea floor in association with mud volcanism or along deep faults. Gas hydrates and methane seeps are frequently found in cold seep areas and were anticipated targets of the MEDINAUT

  9. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Werne, J.P.; Zitter, T.; Haese, R.R.; Aloisi, G.; Bouloubassi, I.; Heijs, S.; Fiala-Medioni, A.; Pancost, R.D.; Lange, G.J. de; Gottschal, J.; Foucher, J.-P.; Mascle, J.; Woodside, J.

    2004-01-01

    Recent field observations have identified the widespread occurrence of fluid seepage through the eastern Mediterranean Sea floor in association with mud volcanism or along deep faults. Gas hydrates and methane seeps are frequently found in cold seep areas and were anticipated targets of the MEDINAUT

  10. High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Caudron, Corentin; van Hinsberg, Vincent J.; Hilley, George E.

    2016-08-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake's thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface ("skin") temperatures at high spatial (˜32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ˜21 to 33 °C. At two locations, apparent skin temperatures were ˜4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  11. The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus

    NARCIS (Netherlands)

    d'Udekem d'Acoz, C.

    1996-01-01

    The genus Hippolyte Leach in the East Atlantic and the Mediterranean is revised and a list of the world species is given. Eleven species occur in the area studied: H. coerulescens (Fabricius), H. garciarasoi spec. nov., H. inermis Leach, H. lagarderei d'Udekem d'Acoz, H. leptocerus (Heller), H.

  12. Calculating the Middle Ages? The Project "Complexities and Networks in the Medieval Mediterranean and Near East" (COMMED)

    CERN Document Server

    Preiser-Kapeller, Johannes

    2016-01-01

    The project "Complexities and networks in the Medieval Mediterranean and Near East" (COMMED) at the Division for Byzantine Research of the Institute for Medieval Research (IMAFO) of the Austrian Academy of Sciences focuses on the adaptation and development of concepts and tools of network theory and complexity sciences for the analysis of societies, polities and regions in the medieval world in a comparative perspective. Key elements of its methodological and technological toolkit are applied, for instance, in the new project "Mapping medieval conflicts: a digital approach towards political dynamics in the pre-modern period" (MEDCON), which analyses political networks and conflict among power elites across medieval Europe with five case studies from the 12th to 15th century. For one of these case studies on 14th century Byzantium, the explanatory value of this approach is presented in greater detail. The presented results are integrated in a wider comparison of five late medieval polities across Afro-Eurasia ...

  13. Paralysis at the Top of a Roaring Volcano: Israel and the Schooling of Palestinians in East Jerusalem

    Science.gov (United States)

    Yair, Gad; Alayan, Samira

    2009-01-01

    Conflicts over East Jerusalem are often thought to reflect larger conflicts in the Middle East. In this article, the authors focus on schooling in East Jerusalem in order to provide a better appreciation of the protracted conflict in the area. This close examination of schooling in East Jerusalem can illuminate reasons for the political paralysis…

  14. Paralysis at the Top of a Roaring Volcano: Israel and the Schooling of Palestinians in East Jerusalem

    Science.gov (United States)

    Yair, Gad; Alayan, Samira

    2009-01-01

    Conflicts over East Jerusalem are often thought to reflect larger conflicts in the Middle East. In this article, the authors focus on schooling in East Jerusalem in order to provide a better appreciation of the protracted conflict in the area. This close examination of schooling in East Jerusalem can illuminate reasons for the political paralysis…

  15. Carbon isotopic changes: a stratigraphic tool for the last 350 ka in the East Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Glacon, G.; Vergnaud, C.; Grazzini

    1986-12-07

    High resolution biostratigraphy of Late Pleistocene Mediterranean cores allows to identify the disturbed sequences of the sedimentary records. For those sequences of the cores which are not disturbed, changes in the /sup 13/C//sup 12/C ratios recorded by planktonic foraminifera are stratigraphically correlatable. Combined to the changes in /sup 18/O//sup 16/O ratios they allow to date microfaunal events with a precision better than 7,000 years. This precision will be improved in the future.

  16. Torrential precipitations on the Spanish east coast: The role of the Mediterranean sea surface temperature

    Science.gov (United States)

    Millán, M.; Estrela, M. J.; Caselles, V.

    Floods constitute one of the most important natural risks on the Spanish Mediterranean coast. Although it is very difficult to avoid them, a correct understanding of their principal cause, which is torrential rain, can facilitate their prediction and in this way avoid, at least partially, their catastrophic effects (both loss of human lives and material damage). The work presented here is part of a more extensive study underway in the CEAM (Centro de Estudios Ambientales del Mediterráneo). Its objective is the analysis of the conditions that produce torrential precipitations. These can be explained by the hypothesis of the Back Door Front, a mechanism which on its own permits the development of a potentially unstable mass above the Mediterranean sea. Among the different factors that are valued in this hypothesis, the Sea Surface Temperature is considered to play an important role. It is studied by means of satellite images since this is the only technique that permits a synoptic view of this parameter. NOAH satellite images have been used, applying the split-window operative technique. This work presents initial results that confirm the importance of the Sea Surface Temperature (SST) as a moisture source in the Mediterranean cyclogenesis.

  17. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  18. Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015

    Science.gov (United States)

    Solomos, Stavros; Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Binietoglou, Ioannis; Patlakas, Platon; Marinou, Eleni; Amiridis, Vassilis

    2017-03-01

    The extreme dust storm that affected the Middle East and the eastern Mediterranean in September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth exceeding 5.0 at 550 nm. We analyse this event using profiles from the European Aerosol Research Lidar Network (EARLINET) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), geostationary observations from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and high-resolution simulations from the Regional Atmospheric Modeling System (RAMS). The analysis of modelling and remote sensing data reveals the main mechanisms that resulted in the generation and persistence of the dust cloud over the Middle East and Cyprus. A combination of meteorological and surface processes is found, including (a) the development of a thermal low in the area of Syria that results in unstable atmospheric conditions and dust mobilization in this area, (b) the convective activity over northern Iraq that triggers the formation of westward-moving haboobs that merge with the previously elevated dust layer, and (c) the changes in land use due to war in the areas of northern Iraq and Syria that enhance dust erodibility.

  19. Development of integrative bioethics in the Mediterranean area of South-East Europe.

    Science.gov (United States)

    Kukoč, Mislav

    2012-11-01

    With regards to its origin, foundation and development, bioethics is a relatively new discipline, scientific and theoretical field, where different and even contradicting definition models and methodological patterns of its formation and application meet. In some philosophical orientations, bioethics is considered to be a sub-discipline of applied ethics as a traditional philosophical discipline. Yet in biomedical and other sciences, bioethics is designated as a specialist scientific discipline, or a sort of a new medical ethics. The concept of integrative bioethics as an interdisciplinary scholarly and pluriperspectivistic area goes beyond such one-sided determinations, both philosophical and scientistic, and intends to integrate the philosophical approach to bioethics with its particular scientific contents, as well as different cultural dimensions and perspectives. This concept of integrative bioethics has gradually developed at philosophical and interdisciplinary conferences and institutions on the "bioethical islands" of the Croatian Mediterranean. In this paper, the author follows the formation, development and prospects of integrative bioethics in the wider region of the Mediterranean and Southeast Europe.

  20. Variability of mineral dust deposition in the western Mediterranean basin and South-East of France

    Directory of Open Access Journals (Sweden)

    J. Vincent

    2015-12-01

    Full Text Available Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than one year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA ("Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie" in French have been deployed in the western Mediterranean region during one to three years depending on the station. The sites include, from South to North, Lampedusa Isl., Mallorca Isl., Corsica Isl., Frioul Isl. and Le Casset (South of French Alps. Deposition measurements are performed on a common weekly period at the 5 sites. The mean Saharan dust deposition fluxes are higher close to the North African coasts and decrease following a South to North gradient, with values from 7.4 g m−2 yr−1 in Lampedusa (35°31' N–12°37' E to 1 g m−2 yr−1 in Le Casset (44°59' N–6°28' E. The maximum deposition flux recorded is of 3.2 g m−2 wk−1 in Mallorca with only 2 other events showing more than 1 g m−2 wk−1 in Lampedusa, and a maximum of 0.5 g m−2 wk−1 in Corsica. The maximum value of 2.1 g m−2 yr−1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11–14 g m−2 yr−1. From the 537 available samples, ninety eight major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations. Despite the large size of African dust plumes detected by satellites, more than eighty percent of the major dust

  1. Natural and anthropogenic aerosols in the Eastern Mediterranean and Middle East: possible impacts.

    Science.gov (United States)

    Kallos, G; Solomos, S; Kushta, J; Mitsakou, C; Spyrou, C; Bartsotas, N; Kalogeri, C

    2014-08-01

    The physical and chemical properties of airborne particles have significant implications on the microphysical cloud processes. Maritime clouds have different properties than polluted ones and the final amounts and types of precipitation are different. Mixed phase aerosols that contain soluble matter are efficient cloud condensation nuclei (CCN) and enhance the liquid condensate spectrum in warm and mixed phase clouds. Insoluble particles such as mineral dust and black carbon are also important because of their ability to act as efficient ice nuclei (IN) through heterogeneous ice nucleation mechanisms. The relative contribution of aerosol concentrations, size distributions and chemical compositions on cloud structure and precipitation is discussed in the framework of RAMS/ICLAMS model. Analysis of model results and comparison with measurements reveals the complexity of the above links. Taking into account anthropogenic emissions and all available aerosol-cloud interactions the model precipitation bias was reduced by 50% for a storm simulation over eastern Mediterranean.

  2. Geoelectric studies on the east rift, Kilauea volcano, Hawaii Island. Geothermal resources exploration in Hawaii: Number 3

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G.V.; Skokan, C.K.; Skokan, J.J.; Daniels, J.; Kauahikaua, J.P.; Klein, D.P.; Zablocki, C.J.

    1977-12-01

    Three geophysical research organizations, working together under the auspices of the Hawaii Geothermal Project, have used several electrical and electromagnetic exploration techniques on Kilauea volcano, Hawaii to assess its geothermal resources. This volume contains four papers detailing their methods and conclusions. Separate abstracts were prepared for each paper. (MHR)

  3. Faecal near-IR spectroscopy to determine the nutritional value of diets consumed by beef cattle in east Mediterranean rangelands.

    Science.gov (United States)

    Landau, S Y; Dvash, L; Roudman, M; Muklada, H; Barkai, D; Yehuda, Y; Ungar, E D

    2016-02-01

    Rapid assessment of the nutritional quality of diets ingested by grazing animals is pivotal for successful cow-calf management in east Mediterranean rangelands, which receive unpredictable rainfall and are subject to hot-spells. Clipped vegetation samples are seldom representative of diets consumed, as cows locate and graze selectively. In contrast, faeces are easily sampled and their near-IR spectra contain information about nutrients and their utilization. However, a pre-requisite for successful faecal near-infrared reflectance spectroscopy (FNIRS) is that the calibration database encompass the spectral variability of samples to be analyzed. Using confined beef cows in Northern and Southern Israel, we calibrated prediction equations based on individual pairs of known dietary attributes and the NIR spectra of associated faeces (n=125). Diets were composed of fresh-cut green fodder of monocots (wheat and barley), dicots (safflower and garden pea) and natural pasture collected at various phenological states over 2 consecutive years, and, optionally, supplements of barley grain and dried poultry litter. A total of 48 additional pairs of faeces and diets sourced from cows fed six complete mixed rations covering a wide range of energy and CP concentrations. Precision (linearity of calibration, R2cal, and of cross-validation, R2cv) and accuracy (standard error of cross-validation, SEcv) were criteria for calibration quality. The calibrations for dietary ash, CP, NDF and in vitro dry matter digestibility yielded R2cal values >0.87, R2cv of 0.81 to 0.89 and SEcv values of 16, 13, 39 and 31 g/kg dry matter, respectively. Equations for nutrient intake were of low quality, with the exception of CP. Evaluation of FNIRS predictions was carried out with grazing animals supplemented or not with poultry litter, and implementation of the method in one herd over 2 years is presented. The potential usefulness of equations was also established by calculating the Mahalanobis (H

  4. Expression of Multiple Sexual Signals by Fathers and Sons in the East-Mediterranean Barn Swallow: Are Advertising Strategies Heritable?

    Science.gov (United States)

    Vortman, Yoni; Safran, Rebecca J.; Reiner Brodetzki, Tali; Dor, Roi; Lotem, Arnon

    2015-01-01

    The level of expression of sexually selected traits is generally determined by genes, environment and their interaction. In species that use multiple sexual signals which may be costly to produce, investing in the expression of one sexual signal may limit the expression of the other, favoring the evolution of a strategy for resource allocation among signals. As a result, even when the expression of sexual signals is condition dependent, the relative level of expression of each signal may be heritable. We tested this hypothesis in the East-Mediterranean barn swallow (Hirundo rustica transitiva), in which males have been shown to express two uncorrelated sexual signals: red-brown ventral coloration, and long tail streamers. We show that variation in both signals may partially be explained by age, as well as by paternal origin (genetic father-son regressions), but that the strongest similarity between fathers and sons is the relative allocation towards one trait or the other (relative expression index), rather than the expression of the traits themselves. These results suggest that the expression of one signal is not independent of the other, and that genetic strategies for resource allocation among sexual signals may be selected for during the evolution of multiple sexual signals. PMID:25679206

  5. Expression of multiple sexual signals by fathers and sons in the East-Mediterranean barn swallow: are advertising strategies heritable?

    Directory of Open Access Journals (Sweden)

    Yoni Vortman

    Full Text Available The level of expression of sexually selected traits is generally determined by genes, environment and their interaction. In species that use multiple sexual signals which may be costly to produce, investing in the expression of one sexual signal may limit the expression of the other, favoring the evolution of a strategy for resource allocation among signals. As a result, even when the expression of sexual signals is condition dependent, the relative level of expression of each signal may be heritable. We tested this hypothesis in the East-Mediterranean barn swallow (Hirundo rustica transitiva, in which males have been shown to express two uncorrelated sexual signals: red-brown ventral coloration, and long tail streamers. We show that variation in both signals may partially be explained by age, as well as by paternal origin (genetic father-son regressions, but that the strongest similarity between fathers and sons is the relative allocation towards one trait or the other (relative expression index, rather than the expression of the traits themselves. These results suggest that the expression of one signal is not independent of the other, and that genetic strategies for resource allocation among sexual signals may be selected for during the evolution of multiple sexual signals.

  6. Late-Pleistocene evolution of the East Mediterranean shallow continental shelf of north-central Israel

    Science.gov (United States)

    Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Bookman, Revital; Roskin, Joel; Bialik, Or; Golan, Arik; Sivan, Dorit

    2016-04-01

    Sea-level fluctuations are a dominant and dynamic mechanism that control coastal environmental through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on an integrated high-resolution marine and terrestrial litho-stratigraphic and geophysical framework of the north-central Mediterranean coastal zone of Israel. The interpretation enabled the reconstruction of the coastal evolution over the last ˜130 ka. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, detailed lithological borehole data-sets, a dense 110 km long sub-bottom geophysical survey and seven continuous boreholes sediment records. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. Meanwhile, the chronostratigraphy of the terrestrial side was constructed through integration of magnetic susceptibility, sedimentological and geochemical analysis with 17 new OSL ages. The seismic units were correlated with the available terrestrial borehole data and then associated to the retrieved terrestrial chronostratigraphy to produce a 4D reconstruction model of the paleo-landscape. The entire unconsolidated sequence overlies a calcareous aeolianite (locally named Kurkar unit) dated from ˜131 - ˜104 ka, which represents the top of the last interglacial cycle dune sediments. The lower unconsolidated unit consists of a red silty loam dated to ˜71 ka. This Red-Paleosol unit is overlaid by a dark brown clayey silty loam This Brown-Paleosol unit dates to ˜58 - ˜36 ka and is overlaid by a dark silty clay wetland deposit dated to ˜21 - ˜10 ka. The wetland unit is topped by a quartz sand dated to ˜6.6 - 0.1 ka

  7. Causes of unrest at silicic calderas in the East African Rift: New constraints from InSAR and soil-gas chemistry at Aluto volcano, Ethiopia

    Science.gov (United States)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin A.; Pyle, David M.; Lewi, Elias; Yirgu, Gezahegn; Caliro, Stefano; Chiodini, Giovanni; Clor, Laura E.; Fischer, Tobias P.

    2016-08-01

    Restless silicic calderas present major geological hazards, and yet many also host significant untapped geothermal resources. In East Africa, this poses a major challenge, although the calderas are largely unmonitored their geothermal resources could provide substantial economic benefits to the region. Understanding what causes unrest at these volcanoes is vital for weighing up the opportunities against the potential risks. Here we bring together new field and remote sensing observations to evaluate causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER). Interferometric Synthetic Aperture Radar (InSAR) data reveal the temporal and spatial characteristics of a ground deformation episode that took place between 2008 and 2010. Deformation time series reveal pulses of accelerating uplift that transition to gradual long-term subsidence, and analytical models support inflation source depths of ˜5 km. Gases escaping along the major fault zone of Aluto show high CO2 flux, and a clear magmatic carbon signature (CO2-δ13C of -4.2‰ to -4.5‰). This provides compelling evidence that the magmatic and hydrothermal reservoirs of the complex are physically connected. We suggest that a coupled magmatic-hydrothermal system can explain the uplift-subsidence signals. We hypothesize that magmatic fluid injection and/or intrusion in the cap of the magmatic reservoir drives edifice-wide inflation while subsequent deflation is related to magmatic degassing and depressurization of the hydrothermal system. These new constraints on the plumbing of Aluto yield important insights into the behavior of rift volcanic systems and will be crucial for interpreting future patterns of unrest.

  8. Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2007-08-01

    Full Text Available Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG. The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold. It seems from the data presented here that the clouds' response to the aerosol loading is very short.

  9. Is rainfall erosivity influenced by climate change?. A case study in a Mediterranean Climate area of North East Spain

    Science.gov (United States)

    Ramos, Maria C.

    2014-05-01

    One of the main characteristics of the Mediterranean climate is the high intensity rainfall events usually recorded in autumn and spring. Those events usually concentrate a high percentage of annual rainfall. Different studies carried out in the Mediterranean countries suggest that notable changes in seasonal precipitation regimes have occurred during the second half of the 20th century. In addition, precipitation extremes seem to increase in association with global warming, which may favour erosion processes. Under this hypothesis one question arise: is the rainfall erosivity increasing influenced by climate change? In this work rainfall erosivity and its variability in the last two decades was analysed in an area located NE Spain, where erosion processes of high magnitude are recorded. The main land use in that area is grape vines, which due to the scarce soil cover is usually associated with the highest erosion rates. The study area was located in the Penedès depression (North East Spain). Hourly data from four observatories Els Hostalets de Pierola (UTM X: 400664, Y: 4598608m, elv: 326m ), La Granada ( X:393758; Y:4580393), Sant Martí Sarroca (X: 385556; Y:4581486, elv: 257m) and Font_Rubi (X: 385118, Y:4587935. elev: 415 m ) belonging to the period 1997-2013 were used in the analysis together with a tipping bucket rainfall series recorded at one minute intervals (10 years within the period 1996-2012). Rainfall erosivity was quantified by the index rainfall kinetic energy multiplied by the maximum intensity in 30minute periods (E*Imax30). The Imax30 was estimated from the relationship between hourly and 30 minute data obtained for the tipping bucket series using the Marquard algoritme. In order to analsye changes in rainfall erosivity, the annual and monthly number of erosive events were analysed for each observatory and in each year, the events were classified into intervals according to their erosivity. The intervals used were: 0-100; 100-200; 200-300; 300

  10. Forecasting database for the tsunami warning center for the western Mediterranean and North-East Atlantic basins

    Science.gov (United States)

    Gailler, A.; Hebert, H.; Loevenbruck, A.; Hernandez, B.

    2011-12-01

    Improvements in the availability of sea-level observations and advances in numerical modeling techniques are increasing the potential for tsunami warnings to be based on numerical model forecasts. Numerical tsunami propagation and inundation models are well developed, but they present a challenge to run in real-time, partly due to computational limitations and also to a lack of detailed knowledge on the earthquake rupture parameters. A first generation model-based tsunami prediction system is being developed as part of the French Tsunami Warning Center that will be operational by mid 2012. It involves a pre-computed unit source functions database (i.e., a number of tsunami model runs that are calculated ahead of time and stored) corresponding to tsunami scenarios generated by a source of seismic moment 1.75E+19 N.m with a rectangular fault 25 km by 20 km in size and 1 m in slip. The faults of the unit functions are placed adjacent to each other, following the discretization of the main seismogenic faults bounding the western Mediterranean and North-East Atlantic basins. An authomatized composite scenarios calculation tool is implemented to allow the simulation of any tsunami propagation scenario (i.e., of any seismic moment). The strategy is based on linear combinations and scaling of a finite number of pre-computed unit source functions. The number of unit functions involved varies with the magnitude of the wanted composite solution and the combined wave heights are multiplied by a given scaling factor to produce the new arbitrary scenario. Uncertainty on the magnitude of the detected event and inaccuracy on the epicenter location are taken into account in the composite scenarios calculation. For one tsunamigenic event, the tool produces finally 3 warning maps (i.e., most likely, minimum and maximum scenarios) together with the rough decision matrix representation. A no-dimension code representation is chosen to show zones in the main axis of energy at the basin

  11. The flight of Arcadia: spatial CO2/SO2 variations in a cross section above the Nord East crater of Etna volcano

    Science.gov (United States)

    Giuffrida, Giovanni; Calabrese, Sergio; Bobrowski, Nicole; Finkenzeller, Henning; Pecoraino, Giovannella; Scaglione, Sarah

    2015-04-01

    The CO2/SO2 ratio in volcanic plumes of open conduit volcanoes can provide useful information about the magma depth inside a conduit and the possible occurrence of an eruptive event. Moreover, the same CO2 measurement when combined with a SO2 flux measurement, commonly carried out at many volcanoes nowadays, is used to contribute to an improved estimate of global volcanic CO2 budget. Today worldwide at 13 volcanoes automated in-situ instruments (known as Multi-GAS stations) are applied to continuously determine CO2/SO2 ratios and to use this signal as additional parameter for volcanic monitoring. Usually these instruments carry out measurements of half an hour 4 - 6 times/day and thus provide continuous CO2/SO2 values and their variability. The stations are located at crater rims in a position that according to the prevailing winds is invested by the plume. Obviously, although the stations are carefully positioned, it is inevitable that other sources than the plume itself, e.g. soil degassing and surrounding fumaroles, contribute and will be measured as well, covering the 'real' values. Between July and September 2014 experiments were carried out on the North East crater (NEC) of Mount Etna, installing a self-made cable car that crossed the crater from one side to the other. The basket, called "Arcadia", was equipped with an automated standard Multi-GAS station and a GPS, which acquired at high frequency (0.5 Hz) the following parameters : CO2, SO2, H2S, Rh, T, P and geo-coordinates. The choice of NEC of the volcano Etna was based on its accessibility, the relative small diameter (about 230 m) and the presence of a relatively constant and rather concentrated plume. Actually, NEC belongs also to the monitoring network EtnaPlume (managed by the INGV of Palermo). The aim of these experiments was to observe variations of each parameter, in particular the fluctuation of the CO2/SO2 ratio within the plume, moving from the edge to the center of the crater. The gained

  12. An evaluation of eco-friendly naturally coloured cottons regarding seed cotton yield, yield components and major lint quality traits under conditions of East Mediterranean region of Turkey.

    Science.gov (United States)

    Efe, Lale; Killi, Fatih; Mustafayev, Sefer A

    2009-10-15

    In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.

  13. Volcano Preparedness

    Science.gov (United States)

    ... You might feel better to learn that an ‘active’ volcano is one that has erupted in the past ... miles away. If you live near a known volcano, active or dormant, following these tips will help you ...

  14. Perlites from East Mediterranean region: a comparative study of perlite quality characteristics and their utilization in the construction industry

    Science.gov (United States)

    Anastasatou, Marianthi; Stamatakis, Michael; Ipsilanti, Elena

    2014-05-01

    A comparative study of perlite deposits of the East Mediterranean Region is performed, in order to identify the factors that control their expansion capacity, and hence their suitability for certain industrial and environmental applications. Perlite deposits are methodically studied worldwide because of the unique characteristics each particular deposit has and the impact that perlite has to the global economy of industrial minerals. More than 100 perlite-based products exist in the Market. Perlite is a volcanic glass-rich rock, mainly used in its expanded state. It is characterized as a lightweight aggregate with significant thermal and acoustic insulation properties. For the purposes of our study, perlite bulk samples originated from quarries in Milos Island, Greece, Sardinia Island, Italy, Kardjali region, Bulgaria, and Bergama region, Turkey were characterized and tested. The geological age of the deposits varies from Oligocene (Kardjali and Bergama) through Plio-Pleistocene (Milos). From the locations above, fourteen representative bulk samples of 10kg each were studied: Mineralogically by light microscopy [LM], XRD and SEM analysis, and TG/DTA analysis. Chemically (major and trace elements analysis) by XRF and ICP-MS methods. In addition, moisture, Loss on Ignition [LOI], pH and soluble substances (Na, K, Cl) were measured. The XRD analysis revealed that the main phase in all samples is the volcanic glass, distinguished by the broad hump at 19-26 degrees in the XRD pattern. However, some glasses contain embryonic opal-CT phase. Other mineral phases identified are feldspars, quartz and mafic minerals. LM studies revealed that the Kardjali perlite has de-vitrification texture, whereas Milos perlite is almost fresh. Milos samples are richer in Si, Ca, Na, Li and poorer in Th, U, K, Rb and LOI than the other samples. Furthermore, Sardinia samples are richer in REE than the rest of the samples. Tests on the expansion capacity of perlite grains 0.5-1.2mm in size

  15. The east-west-north colonization history of the Mediterranean and Europe by the coastal plant Carex extensa (Cyperaceae)

    NARCIS (Netherlands)

    Escudero, M.; Vargas, P.; Arens, P.; Ouborg, N.J.; Luceno, M.

    2010-01-01

    Coastal plants are ideal models for studying the colonization routes of species because of the simple linear distributions of these species. Carex extensa occurs mainly in salt marshes along the Mediterranean and European coasts. Variation in cpDNA sequences, amplified fragment length polymorphisms

  16. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise (Invited)

    Science.gov (United States)

    Ballmer, M. D.; Conrad, C. P.; Smith, E. I.; Harmon, N.

    2013-12-01

    While most oceanic volcanism is associated with the passive rise of hot mantle beneath the spreading axes of mid-ocean ridges (MOR), volcanism occurring off-axis reflects intraplate upper-mantle dynamics and composition, yet is poorly understood. Close to the East Pacific Rise (EPR), active magmatism propagated towards the spreading center to create a series of parallel volcanic ridges on the Pacific Plate ( ~3500 km in length for the Pukapuka, and ~500 km for the Sojourn, and Hotu-Matua ridges). Propagation of this volcanism by ~20 cm/a, as well as asymmetry in a variety of geophysical observables across the EPR, indicates strong lateral eastward pressure-driven flow in the asthenosphere; likely driven by upwelling beneath the South Pacific Superswell [1]. Although this pattern of large-scale mantle flow can account for the propagation of intraplate magmatism towards the EPR, it does not explain decompression melting itself. We hypothesize that shear-driven upwelling sustains off-axis volcanism. Unlike e.g. mantle plumes, shear-driven upwelling is a mechanism for mantle decompression that does not require lateral density heterogeneity to drive upwelling. For example, in the presence of shear across the asthenosphere, vertical flow emerges at the edges of viscosity heterogeneity [2]. These ingredients are present in the SE Pacific, where (1) shear across the asthenosphere is inferred to be greatest worldwide [2], and (2) lateral heterogeneity in mantle viscosity is indicated by geoid lineations that are associated with anomalies in seismic tomography [3]. Eastward pressure-driven flow from the South Pacific Superswell may separate into low-viscosity fingers thus providing viscosity heterogeneity [3]. Our three-dimensional numerical models [4] show that asthenospheric shear can excite upwelling and decompression melting at the tip of low-viscosity fingers that are propelled eastward by vigorous asthenospheric flow. This shear-driven upwelling is able to sustain

  17. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    going to be, when we know the record of specific earthquakes and the routes they have followed towards the East. For example, to foresee an earthquake in the Mediterranean region, we take starting point earthquakes to Latin America (0°-40°).The aforementioned elements will reach Italy in an average time period of 49 days and Greece in 53 days. The most reliable preceding phenomenon to determine the epicenter of an earthquake is the rise of the crust's temperature at the area where a large quantity of elements is concentrated, among other phenomena that can be detected either by instruments or by our senses. When there is an active volcano along the route between the area where the "starting-point" earthquake occurred and the area where we expect the same elements to cause a new earthquake, it is possible these elements will escape through the volcano's crater, carrying lava with them. We could contribute to that end, nullifying earthquakes that might be triggered by these elements further to the east, by using manmade resources, like adequate quantities of explosives at the right moment.

  18. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  19. Inventory and new records of polychaete species from the Cap Bon Peninsula, north-east coast of Tunisia, Western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. ZAABI

    2012-12-01

    Full Text Available An inventory of Polychaete species is recorded from the North east coast of Tunisia with an historic review of the previous literature from Tunisian coasts. Altogether 40 families, 146 genera, and 238 species are currently known from the area in which 86 taxa, 4 families (Chrysopetalidae, Pilargidae, Protodrilidae and Saccocirridae and 40 genera (Saccocirrus, Protodrilus, Parathelepus, Thelepus, Petta, Isolda, Brada, Tharyx, Paraprionospio, Jasmineira, Hypsicomus, Euchone, Pseudobranchiomma, Laonome, Galathowenia, Lugia, Pseudomystides, Protomystides, Pirakia, Mysta, Eurysyllis, Parapionosyllis, Streptosyllis, Paraehlersia, Sigambra, Ancistrosyllis, Kefersteinia, Chrysopetalum, Bhawania, Fimbriosthenelais, Subadyte, Panthalis, Dorvillea, Scalibregma, Paradoneis, Cirrophorus, Metasychis, Websterinereis, Euniphysa and Mastobranchus are new additions to the Polychaete fauna of Tunisia. The list, which provides a synthesis of the regional taxonomica work, including coastal areas from Sidi Daoud to the area of Menzel Hurr (Cap Bon Peninsula, Western Mediterranean Sea, can serve as a baseline survey for future studies.

  20. Inventory and new records of polychaete species from the Cap Bon Peninsula, north-east coast of Tunisia, Western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. ZAABI

    2012-02-01

    Full Text Available An inventory of Polychaete species is recorded from the North east coast of Tunisia with an historic review of the previous literature from Tunisian coasts. Altogether 40 families, 146 genera, and 238 species are currently known from the area in which 86 taxa, 4 families (Chrysopetalidae, Pilargidae, Protodrilidae and Saccocirridae and 40 genera (Saccocirrus, Protodrilus, Parathelepus, Thelepus, Petta, Isolda, Brada, Tharyx, Paraprionospio, Jasmineira, Hypsicomus, Euchone, Pseudobranchiomma, Laonome, Galathowenia, Lugia, Pseudomystides, Protomystides, Pirakia, Mysta, Eurysyllis, Parapionosyllis, Streptosyllis, Paraehlersia, Sigambra, Ancistrosyllis, Kefersteinia, Chrysopetalum, Bhawania, Fimbriosthenelais, Subadyte, Panthalis, Dorvillea, Scalibregma, Paradoneis, Cirrophorus, Metasychis, Websterinereis, Euniphysa and Mastobranchus are new additions to the Polychaete fauna of Tunisia. The list, which provides a synthesis of the regional taxonomica work, including coastal areas from Sidi Daoud to the area of Menzel Hurr (Cap Bon Peninsula, Western Mediterranean Sea, can serve as a baseline survey for future studies.

  1. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise

    Science.gov (United States)

    Ballmer, Maxim D.; Conrad, Clinton P.; Harmon, Nicholas; Smith, Eugene I.

    2013-04-01

    While most oceanic volcanism is associated with the passive rise of hot mantle beneath the spreading axes of mid-ocean ridges (MOR), volcanism occurring off-axis reflects intraplate upper-mantle dynamics and composition, yet is poorly understood. Close to the East Pacific Rise (EPR), active magmatism propagated towards the spreading center to create a series of parallel volcanic ridges on the Pacific Plate (of length ~3500 km for the Pukapuka, and ~500 km for the Sojourn, and Hotu-Matua ridges). Propagation of this volcanism by ~20 cm/a, as well as asymmetry in a variety of geophysical observables across the EPR, indicates strong lateral eastward pressure-driven flow in the asthenosphere that is driven by upwelling beneath the South Pacific Superswell [1]. Although this pattern of large-scale mantle flow can account for the propagation of intraplate melting towards the EPR, it does not explain decompression melting itself. We hypothesize that shear-driven upwelling sustains off-axis volcanism. Shear-driven upwelling is a mechanism for mantle decompression that does not require lateral density heterogeneity to drive upwelling. For example, vertical flow emerges at the edges of viscosity anomalies, if the asthenosphere is sheared horizontally [2]. These two ingredients are present in the SE Pacific, where (1) shear across the asthenosphere is inferred to be greatest worldwide [2], and (2) lateral variability in mantle viscosity is indicated by geoid lineations and anomalies in seismic tomography [3]. Eastward pressure-driven flow from the South Pacific Superswell has been suggested to break up into fingers thus providing this variability in viscosity [3]. Our three-dimensional numerical models [4] show that asthenospheric shear can excite upwelling and decompression melting at the tip of low-viscosity fingers that are propelled by vigorous sublithospheric flow. This shear-driven upwelling is able to sustain intraplate volcanism that progresses towards the MOR

  2. The East Asian shore crab Hemigrapsus sanguineus (Brachyura: Varunidae) in the Mediterranean Sea: an independent human-mediated introduction

    National Research Council Canada - National Science Library

    Schubart, Christoph D

    2003-01-01

    A single adult male specimen of the East Asian crab Hemigrapsus sanguineus (de Haan, 1835) was collected in August 2001 in the northern Adriatic Sea along the northwest coast of the peninsula of Istra...

  3. Chemical, mineralogical, and isotopic characteristics of mud from the LUSI mud volcano, Sidoarjo, East Java, Indonesia: implications for the environment, public health, and eruption processes

    Science.gov (United States)

    Plumlee, G. S.; Casadevall, T. J.; Wibowo, H. T.; Rosenbauer, R. J.; Johnson, C. A.; Breit, G. N.; Hageman, P. L.; Wolf, R. E.; Morman, S. A.

    2009-12-01

    On May 29, 2006, mud and gases began erupting from a vent 150 meters away from a gas exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI mud volcano, has continued at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This paper will present analytical results of mud samples collected in Sept. 2007 and Nov. 2008, and interpretive findings based on the analytical results. The 2007 mud sample contains high proportions of particles that could be ingestible by hand-mouth transmission (~98 vol % petroleum source rocks. Although the 2007 mud sample contains several percent iron sulfides, net acid production tests indicate that enough carbonate material is also present to prevent the mud from becoming acid-generating due to weathering and sulfide oxidation in the near-surface environment. Water derived from settling mud deposits may have the potential to adversely affect the quality of surface- or groundwater sources for drinking water, due to high levels of fluoride, nitrate, iron, manganese, aluminum, sulfate, chloride, and total dissolved solids. The very high nitrate levels in the waters contained within the mud may present a source of nutrients that could enhance algal blooms and resulting adverse impacts such as hypoxia in fresh-water and marine ecosystems into which some of the mud is being discharged. In agreement with previous studies, water separated from the 2007 mud sample is compositionally and isotopically compatible with an origin as sedimentary formation water. The iron disulfide fraction of the mud sample is isotopically light, and likely formed by bacterial sulfate reduction during diagenesis of clay-rich rocks from which the mud was derived. A smaller, isotopically heavy monosulfide fraction likely formed later by

  4. Low planktic foraminiferal diversity and abundance observed in a spring 2013 west-east Mediterranean Sea plankton tow transect

    Science.gov (United States)

    Mallo, Miguel; Ziveri, Patrizia; Mortyn, P. Graham; Schiebel, Ralf; Grelaud, Michael

    2017-05-01

    Planktic foraminifera were collected with 150 µm BONGO nets from the upper 200 m water depth at 20 stations across the Mediterranean Sea between 2 May and 2 June 2013. The main aim is to characterize the species distribution and test the covariance between foraminiferal area density (ρA) and seawater carbonate chemistry in a biogeochemical gradient including ultraoligotrophic conditions. Average foraminifera abundances are 1.42 ± 1.43 ind. 10 m-3 (ranging from 0.11 to 5.20 ind. 10 m-3), including 12 morphospecies. Large differences in species assemblages and total abundances are observed between the different Mediterranean sub-basins, with an overall dominance of spinose, symbiont-bearing species indicating oligotrophic conditions. The highest values in absolute abundance are found in the Strait of Gibraltar and the Alboran Sea. The western basin is dominated by Globorotalia inflata and Globigerina bulloides at slightly lower standing stocks than in the eastern basin. In contrast, the planktic foraminiferal assemblage in the warmer, saltier, and more nutrient-limited eastern basin is dominated by Globigerinoides ruber (white). These new results, when combined with previous findings, suggest that temperature-induced surface water stratification and food availability are the main factors controlling foraminiferal distribution. In the oligotrophic and highly alkaline and supersaturated with respect to calcite and aragonite Mediterranean surface water, standing stocks and ρA of G. ruber (white) and G. bulloides are affected by both food availability and seawater carbonate chemistry. Rapid warming increased surface ocean stratification impacting food availability and changes in trophic conditions could be the causes of reduced foraminiferal abundance, diversity, and species-specific changes in planktic foraminiferal calcification.

  5. Phylogeny and genetic structure of Erophaca (Leguminosae), a East-West Mediterranean disjunct genus from the Tertiary.

    Science.gov (United States)

    Casimiro-Soriguer, Ramón; Talavera, María; Balao, Francisco; Terrab, Anass; Herrera, Javier; Talavera, Salvador

    2010-07-01

    The genus Erophaca comprises a single herbaceous perennial species with two subspecies distributed at opposite ends of the Mediterranean region. We used nrDNA ITS to investigate the phylogeny of the genus, and AFLP markers (9 primers, 20 populations) to establish the genetic relationship between subspecies, and among populations at each side of the Gibraltar Strait. According to nrDNA ITS, Erophaca is monophyletic, old (Miocene), and sister to the Astragalean clade. Life form attributes and molecular clock estimates suggest that Erophaca is one of the many Tertiary relicts that form part of the present Mediterranean flora. Within the occidental subspecies, European plants are clearly derived from North-African populations (Morocco) which, despite being rare on a regional scale, present the highest genetic diversity (as estimated by private and rare fragment numbers). In general, genetic diversity decreased with increasing distance from Morocco. AFLP and nrDNA ITS markers evidenced that the Eastern and the Western subspecies are genetically distinct. Possible causes for their disjunct distribution are discussed.

  6. Vanishing Volcano

    Institute of Scientific and Technical Information of China (English)

    杨树仁

    1995-01-01

    Mauna Loa, the world’s largest active volcano,is sinking into the Pacific Ocean——and it’s taking the main island of Hawaii with it! The problem:The mighty volcano has gained too much weight, says Peter Lipman of the U. S. Geological Survey.

  7. Global change impact on oxidative potential and toxicity of atmospheric particles from the East Mediterranean basin: the ARCHIMEDES initiative

    Science.gov (United States)

    Alleman, Laurent; Anthérieu, Sébastien; Baeza-Squiban, Armelle; Garçon, Guillaume; Lo Guidice, Jean-Marc; Hamonou, Eric; Öztürk, Fatma; Perdrix, Esperanza; Rudich, Yinon; Sciare, Jean; Sauvage, Stéphane

    2017-04-01

    Climate change (CC) has important social, economical and health implications, notably in accordance with variation in air pollution or microbiome modification and its related toxicity mechanisms. CC will have a strong influence on meteorology, inducing dryer and warmer conditions in some regions. The Mediterranean basin is foreseen as a hotspot for regional climate warming, favoring larger dust episodes, wild fire events, vegetation emissions and changes in air pollution physic-chemical characteristics due to enhanced photochemical reactivity. Increasing concentrations of biogenic volatile organic compounds (VOCs), ozone, and radicals will be associated with rising concentrations of secondary organic aerosols (SOA) and other oxidized aerosols. These expected changes in aerosol composition are currently studied within the international ChArMEx (Chemistry-aerosol Mediterranean Experiment) program, part of the interdisciplinary MISTRALS metaprogramme (Mediterranean Integrated STudies at Regional And Local Scales). According to the LIFE/MED-PARTICLES (LIFE) project, this might result in more adverse effects on health. However, toxicologists are far from having a detailed mechanistic knowledge of the quantitative causal relations between particles (PM) and health effects suggested by epidemiological evidences. Detailed toxicological studies looking at contrasted PM origins and chemical compositions are highly needed, particularly on strongly aged SOA suspected to increase the oxidative potential (OP) and to enhance the toxicity of airborne particles. Intensive researches onto the underlying mechanisms of inflammation started to describe the outlines of the intricate relationship between oxidative stress and inflammation. It is therefore, of great importance to better determine the OP of PM from contrasted surroundings, its relationship with CC through PM's physical, chemical and microbial characteristics, and its toxicological consequences within the lungs. Recently

  8. Calculating the Middle Ages? The Project »Complexities and Networks in the Medieval Mediterranean and Near East« (COMMED). Medieval Worlds|Empires: Elements of Cohesion and Signs of Decay medieval worlds Volume 2015.2|

    OpenAIRE

    Preiser-Kapeller, Johannes

    2015-01-01

    The project »Complexities and networks in the Medieval Mediterranean and Near East« (COMMED) at the Division for Byzantine Research of the Institute for Medieval Research (IMAFO) of the Austrian Academy of Sciences focuses on the adaptation and development of concepts and tools of network theory and complexity sciences for the analysis of societies, polities and regions in the medieval world in a comparative perspective. Key elements of its methodological and technological toolkit are applied...

  9. The Agia Marina Xyliatou Observatory: A remote supersite in Cyprus to monitor changes in the atmospheric composition of the Eastern Mediterranean and the Middle East

    Science.gov (United States)

    Sciare, Jean

    2016-04-01

    The Eastern Mediterranean and Middle East (EMME) region has been identified as one of the hot spot region in the world strongly influenced by climate changes impacts. This region is characterized by rapidly growing population with contrasting economic development, strong environmental gradients and climate extremes. However, long-term observations of the atmospheric constituents (gaseous and particulate) of the atmosphere at a remote site representative of EMME is still missing making difficult to assess current and future impacts on air quality, water resources and climate. In collaboration with the Department of Labour Inspection and in the frame of French research programs (ChArMEx and ENVI-Med "CyAr") and the EU H2020 "ACTRIS-2" (2015-2019) project, CyI and CNRS are putting unprecedented efforts to implement at a rural site of Cyprus (Agia Marina Xyliatou) a unique infrastructure to monitor key atmospheric species relevant to air quality and climate. A large set of real-time instrumentations is currently deployed to characterize reactive gases (incl. O3, CO, NOx, SO2, VOC), in-situ aerosol properties (mass, size distribution, light scatt./absorption/extinction coef. and chemistry) and as well as integrated optical properties (sunphotomer, solar flux). Through Transnational access (H2020 ACTRIS2), this station is offering to (non-)EU partners (Research, SMEs) a new atmospheric facility to monitor long range transported clean/polluted air masses from 3 different continents (Europe, Africa, Middle East) and investigate aerosol-cloud interactions through the use of UAV and a mountain site (Troodos, 1900m asl). We will present here an overview of this new research infrastructure and provide a first glance of key features observed from gas/aerosol measurements obtained in 2015

  10. Structural Relationship Between Piton des Neiges and Piton de la Fournaise Volcanoes: New K-Ar Data and Geomorphological Study of the Takamaka Region (East Reunion Island, Indian Ocean)

    Science.gov (United States)

    Salvany, T.; Lahitte, P.; Gillot, P.; Kluska, J.

    2007-12-01

    could have built Ilet Patience and Massif du Cratere (600-400 ka) which both are juxtaposed in relief inversion to the Morne de l'Etang. As a result, PFv seems to have a wider areal extention in the eastern part of Reunion island than previously thought, and the limits between the two volcanoes correspond clearly to the Marsouins River. Geochronological datas coupled to the geomophological analysis show that this region is characterised by many relief inversions, younger and younger from East to West e.g. Morne du Bras des Lianes (about 1 Ma), Coteau Mazerin (340-220 ka), and Plaine de Bebour (140-30 ka). This sector seems to have always been submitted to intense erosion rates which have controlled the later emplacement of lavas filling the successive Cirques cut in the structure. We show here that erosion is a major process in the morphostructural evolution of Reunion Island and most particularly in the Takamaka region, where eroded volume have the same order of magnitude (10 to 100 km3) than those involved in flank collapses identified on PFv. Finally, our new data allow the elaboration of first detailed model investigating the relationships and morphological evolution between the two PNv and PFv on the eastern sector of the island.

  11. Atmospheric Dispersion of Radioactivity from Nuclear Power Plant Accidents: Global Assessment and Case Study for the Eastern Mediterranean and Middle East

    Directory of Open Access Journals (Sweden)

    Theodoros Christoudias

    2014-12-01

    Full Text Available We estimate the contamination risks from the atmospheric dispersion of radionuclides released by severe nuclear power plant accidents using the ECHAM/Modular Earth Submodel System (MESSy atmospheric chemistry (EMAC atmospheric chemistry-general circulation model at high resolution (50 km. We present an overview of global risks and also a case study of nuclear power plants that are currently under construction, planned and proposed in the Eastern Mediterranean and Middle East, a region prone to earthquakes. We implemented continuous emissions from each location, making the simplifying assumption that all potential accidents release the same amount of radioactivity. We simulated atmospheric transport and decay, focusing on 137Cs and 131I as proxies for particulate and gaseous radionuclides, respectively. We present risk maps for potential surface layer concentrations, deposition and doses to humans from the inhalation exposure of 131I. The estimated risks exhibit seasonal variability, with the highest surface level concentrations of gaseous radionuclides in the Northern Hemisphere during winter.

  12. The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants.

    Science.gov (United States)

    Cui, Hongying; Guo, Litao; Wang, Shaoli; Xie, Wen; Jiao, Xiaoguo; Wu, Qingjun; Zhang, Youjun

    2017-08-01

    The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1; formerly the "B" biotype) than Mediterranean (MED; formerly the "Q" biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1-infested cabbage compared with MED-infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH-glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME-glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS-related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.

  13. Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. & Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the east Mediterranean ecosystem.

    Science.gov (United States)

    Ozturk, Munir; Dogan, Yunus; Sakcali, M Serdal; Doulis, Andreas; Karam, Fadi

    2010-01-01

    The objective was to examine the adaptation strategies of four maquis species to drought prone environments; typical of the east Mediterranean area in degraded and healthy sites in Turkey. A comparison made between sites for Pistacia lentiscus and Quercus coccifera shows higher net daily photosynthesis in the degraded site, when compared with the healthy site; but Ceratonia siliqua and Olea oleaster exhibited no difference in their photosynthetic activity in environmentally contrasting conditions. The pattern of daily transpiration shows higher values in the degraded site in the case of P. lentiscus and Q. coccifera, while no site effect was observed for C. siliqua and O. oleaster. In the case of Q. coccifera, a behavior similar to C. siliqua was observed. A comparison made between C. siliqua and O. oleaster to observe seasonal differences in daily patterns of net photosynthesis and transpiration reveals that Q. coccifera had the highest water use efficiency (slope= 2.88; r2 = 0.61), followed by C. siliqua (slope = 2.74; r2 = 0.7), P. lentiscus (slope = 2.56; r2 = 0.52) and O. oleaster (slope = 2.40; r2 = 0.78). Olea oleaster and P. lentiscus performed as a drought tolerant species, being more resistant to aridity and thus indicative of the degradation state of the site. Ceratonia siliqua and Q. coccifera were found avoiding drought by adopting first a water-spending strategy, and then a water-saving strategy.

  14. Remote Sensing of Shrubland Drying in the South-East Mediterranean, 1995–2010: Water-Use-Efficiency-Based Mapping of Biomass Change

    Directory of Open Access Journals (Sweden)

    Maxim Shoshany

    2015-02-01

    Full Text Available Recent climate studies of the South-Eastern Mediterranean indicate an increase in drought frequencies and decreasing water resources since the turn of the century. A four-phase methodology was developed for assessing above-ground biomass changes in shrublands caused by these recent trends. Firstly, we generalized the function SB = 0.008MAP1.54 describing the shrublands above-ground biomass (SB dependence on mean annual precipitation (MAP for areas of full shrub cover. Secondly, relationships between MAP and NDVI were formalized, allowing an estimation of precipitation levels from observed NDVI values (MAPNDVI. Thirdly, relative water-use efficiency (RWUE was defined as the ratio between MAPNDVI and MAP. Finally, the function SBRWUE = 0.008MAP0.54 + RWUE was formalized, utilizing RWUE in estimating shrublands biomass. This methodology was implemented using Landsat TM images (1994 to 2011 for an area between the Judean Mountains and the deserts bordering them to the east and south. More than 50% of the study area revealed low biomass change (±0.2 kg/m2, compared with 30% of the woodlands of the Jerusalem Mountains, where biomass increased between 0.2 and 1.4 kg/m2 and with 50% of the semi-arid shrublands, where it decreased between 0.2 and 1.4 kg/m2. These results suggest that aridity lines in southern Israel are migrating northwards.

  15. Surface signature of Mediterranean water eddies in the North-East Atlantic: effect of the upper ocean stratification

    Directory of Open Access Journals (Sweden)

    I. Bashmachnikov

    2012-07-01

    Full Text Available Meddies, intra-thermocline eddies of Mediterranean water, are often visible at the sea surface as positive sea-level anomalies. Here we study the surface signature of several meddies tracked with RAFOS floats and AVISO altimetry. Then, theoretical estimates of the surface signature of a meddy are derived, based on geostrophy and potential vorticity balance. The intensity of the surface signature is proportional to the meddy core radius and to the Coriolis parameter, and inversely proportional to the core depth and buoyancy frequency. This indicates that surface signature of a meddy may be strongly reduced by the upper ocean stratification. Estimates suggest that the southernmost limit for detection in altimetry of small meddies (with radii on the order of 15 km should lie in the northern subtropics, while large meddies (with radii of 25–30 km could be detected as far south as the northern tropics. During the initial period of meddy acceleration after meddy formation or a stagnation stage, a cyclonic signal also is generated at the sea-surface, but mostly the anticyclonic surface signal follows the meddy.

  16. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  17. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  18. The French Tsunami warning center for the Mediterranean and North-East Atlantic (CENtre d'ALerte aux Tsunamis, CENALT)

    Science.gov (United States)

    Schindelé, F.; Bossu, R.; Alabrune, N.; Arnoul, P.; Duperray, P.; Gailler, A.; Guilbert, J.; Hébert, H.; Hernandez, B.; Loevenbruck, A.; Roudil, P.

    2012-04-01

    ready to act as Candidate Watch Provider covering Western Mediterranean by July 2012.

  19. The formation of lacustrine dolomites: an example from the Tortonian-Messinian sequence at the East Mediterranean margins (northern Israel)

    Science.gov (United States)

    Shaked Gelband, Dotan; Starinsky, Abraham; Stein, Mordechai

    2017-04-01

    precipitations. 2. Calcite minerals precipitated due to evaporation, forming carbonate sediment at the bottom of the lake. 3. Precipitation of calcite raised the Mg/Ca ratio in the lake's waters. 4. High Mg/Ca ratio initiated dolomitization. The process terminated when replacement of the original carbonate sediments was complete. Thus, dolomites of the studied sequence are climate indicators. The alternate appearance of limestones and dolomites indicates climate changes through time. An additional dolomitization mechanism is suggested for the upper part of the sequence. This part is synchronous to the Messinian Salinity Crisis (MSC), in which evaporate sediments were deposited in the Mediterranean basin as a result of the sea desiccation. As mentioned above, there is a decrease of δ13C in both dolomites and limestones, explained by organic activity in a swampy environment (Bacterial Sulfate Reduction (BSR): 2CH2O + SO4 → 2HCO3- + H2S). During BSR, biogenic HCO3- ions are supplied and SO42- ions, which considered as inhibitores for dolomite growth, are consumes, enabling dolomite precipitatation.

  20. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean.

    Science.gov (United States)

    Kennedy, C B; Scott, S D; Ferris, F G

    2003-03-01

    Iron oxides from the caldera of Axial Volcano, a site of hydrothermal vent activity along the Juan de Fuca Ridge, were found to consist predominantly of microbial structures in hydrated whole mounts examined using an environmental scanning electron microscope. Novel observations were made of the iron oxides revealing the spatial relationships of the bacteria within to be more consistent with microbial mats than mineral precipitates. The bacterial structures are attributed to the sheaths of Leptothrix ochracea, the stalks of Gallionella ferruginea, and the filaments of a novel iron oxidizing PV-1 strain, based on the distinctive morphological characteristics of these three bacteria. Energy dispersive X-ray spectroscopy revealed the presence and distribution of Fe, Si, and Cl on the bacterial sheaths, stalks and filaments. The iron oxides were identified by X-ray diffraction to be two-line ferrihydrite, a poorly ordered iron oxyhydroxide. Adsorption of Si in particular to two-line ferrihydrite likely contributes to its stability on the seafloor, and might also be a preservation mechanism creating microfossils of the bacterial structures encrusted with ferrihydrite. Presumptive evidence of the sub-seafloor presence of L. ochracea, G. ferruginea and PV-1 at Axial Volcano was obtained from the presence of these bacteria on a trap that had been placed within an active vent, and also in a vent fluid sample. If indeed these bacteria are present in the sub-seafloor, it may be an indication that the surface expression of iron oxide deposits at Axial Volcano is minimal in comparison to what exists beneath the seafloor.

  1. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  2. Re-assessing the last 3,000 years of archaeological and biological sea-level data from Israel and Greece to identify East Mediterranean trends.

    Science.gov (United States)

    Sivan, Dorit; Dean, Silas; Sisma-Ventura, Guy; Bechor, Benny; Evelpidou, Niki; Baika, Kalliopi; Theodoulou, Theotokis A.

    2016-04-01

    The last 3,000 years of relative sea level (RSL) in Israel are derived primarily from archaeological indicators with additional bio-construction indicators (Dendropoma petraeum reefs at the edge of the abrasion platform along the Israeli coast). The current study examines whether sea-level fluctuations (above and mainly below present-day MSL) observed along the coast of Israel can also be observed in other East Mediterranean areas like Greece so that better evaluations can be made of local and regional driving mechanisms. There are three objectives for achieving this goal: 1) Identify new and already published archaeological and biological RSL indicators from this period in Israel and Greece; 2) Assess the reliability of both existing and new indicators using consistent standards to determine which types most accurately indicate ancient RSL and with what degree of uncertainty; 3) Correct the data for isostatic and tectonic effects. The survey collected nearly 140 archaeological indicators from Israel and about 120 from Greece. Of the Israeli indicators, some 120 were deemed reliable enough for reconstructions, whereas in Greece only 40 were, and not all of these from tectonically stable areas. The Israeli data includes 31 dates obtained from Dendropoma reefs in Israel. The higher reliability of the Israeli dataset may stem from a smaller coastline and more focused SL research over the past few decades. In Greece, many measurements were taken before precise surveying methods were available, and published without sufficient metadata. The two regional datasets reveal chronological gaps and disparities: Israel has a strong set of many indicators from the Roman Period (~2000BP) to present, but fewer from 3000-2000BP, while Greek indicators are strongly clustered in the Classical to Hellenistic Periods (2500-2000BP). On-going research is focusing now also on the last Millennial Greek sea levels (mainly the 'Venetian' period). Results however suggest some correspondence

  3. Santorini Volcano

    Science.gov (United States)

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  4. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  5. Mediterranean, our sea

    Science.gov (United States)

    Markaki, Foteini

    2017-04-01

    My school (1o EPAL Ymittos -Athens, Greece) is a technical school of secondary education and throughout this school year being drafted a program of environmental education. The main theme is the Mediterranean Sea, the biggest closed sea extending between three continents. Topics studied: 1. Biodiversity and the risks threat. 2. The geophysics that characterize (earthquakes, volcanoes explosions, etc). 3. The Mediterranean Sea as environment anthropogenesis, a mosaic of other cultures and even place current notions of social phenomena (refugees). Pedagogical Objectives: Cognitive/Enviromental: 1. To investigate and understand the biodiversity of the Mediterranean Sea and the risks to threaten and phenomena that characterize. 2. To understand the position of the Mediterranean Sea in the land and the role of the historical, cultural and social human environment. 3. To come in contact with texts literary, social, articles on the Mediterranean. Psychomotor: 1. To work together and collect information for the Mediterranean Sea. 2. Experiential approach to the natural environment. 3. Develop critical thinking. 4. Undertake responsibilities for the presentation of the program. Emotional: 1. To feel joy from participation in the program. 2. Being sensitized and configure attitudes and actions of respect towards the environment. Methodology implementation: Teamwork. Interdisciplinary - holistic to dissemination of program recordings to courses curriculum. Study in the field. Gathering information from newspapers, magazines, internet, maps, and photographs. Experiential method- Project. Assessment methods and self-assessment. Fields of courses: Greek language- History- Biology- Chemistry- Technology Dissemination of results: Make a page of social media (facebook), a blog, enhancing environmental awareness via video, make an electronic poster.

  6. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  7. Βιβλιοκρισία του: T. C. LOUNGHIS,Byzantium in the Eastern Mediterranean: Safeguarding East Roman Identity (407 – 1204, Nicosia (Cyprus Research Centre. Texts and Studies in the History of Cyprus, LXIII 2010

    Directory of Open Access Journals (Sweden)

    Salvatore COSENTINO

    2012-09-01

    Full Text Available Βιβλιοκρισία του: T. C. LOUNGHIS, Byzantium in the Eastern Mediterranean: Safeguarding East Roman Identity (407 – 1204, Nicosia 2010 (Cyprus Research Centre. Texts and Studies in the History of Cyprus, LXIII, pp. IX-XXXIV, 1-220, ISBN: 978-9963-0-8118-9.

  8. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  9. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano.

    Science.gov (United States)

    Pachiadaki, Maria G; Kallionaki, Argyri; Dählmann, Anke; De Lange, Gert J; Kormas, Konstantinos Ar

    2011-10-01

    We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon-Wiener diversity index H was higher for Bacteria (1.92-4.03) than for Archaea (0.99-1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.

  10. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  11. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  12. Global security in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Elvira Sánchez Mateos

    2002-06-01

    Full Text Available In the last decade, the WEU, NATO and specially the European Union (in the framework of the Barcelona process initiated security dialogues with countries East and South of the Mediterranean Basin. Those processes are far to achieve significant progress. Some arguments help to explain the present situation: on the one hand, European countries and organizations lack clear strategic goals and consistent policies. On the other, difficulties to create a security dialogue in the Mediterranean, which is a precondition to generateboth a common language and security culture, are the result of differences between the European and the Arab security cultures. Nevertheless, the geopolitical environment, the Euro-Mediterranean process itself and the development of the European Union demanda strategic revision on how to implement the objectives of the Barcelona Declaration, reformulating the idea of Euro-Mediterranean Partnership towards a new concept of shared security that integrates Southern interests and concerns.

  13. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  14. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  15. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  16. Euro-Mediterranean Partnership

    DEFF Research Database (Denmark)

    Brach, Juliane

    2007-01-01

    The EU and 12 countries of the Middle East and North Africa (MENA) engaged in 1995 in the Euro-Mediterranean Partnership (EMP) in political, economic and cultural matters with the aim to foster cooperation, stability and prosperity around the Mediterranean Basin. The Economic and Financial...... Partnership (EFP) plays a central role in the EMP design and implementation, which is centered on economic and trade integration as a starting point for and an anchor of socio-economic development in the MENA region. Against this background, this paper reviews the situation in the MENA partner countries...... and the past performance of the EFP. It analyses the association agreements, economic cooperation and financial assistance, discusses the major obstacles, and outlines the potential of the EFP to shape the European Neighborhood Policy....

  17. Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete

    Science.gov (United States)

    Koutroulis, A. G.; Grillakis, M. G.; Daliakopoulos, I. N.; Tsanis, I. K.; Jacob, D.

    2016-01-01

    Ensemble pan-European projections under a 2 °C global warming relative to the preindustrial period reveal a more intense warming in south Eastern Europe by up to +3 °C, thus indicating that impacts of climate change will be disproportionately high for certain regions. The Mediterranean is projected as one of the most vulnerable areas to climatic and anthropogenic changes with decreasing rainfall trends and a continuous gradual warming causing a progressive decline of average stream flow. Many Mediterranean regions are currently experiencing high to severe water stress induced by human and climate drivers. Changes in average climate conditions will increase this stress notably because of a 10-30% decline in freshwater resources. For small island states, where accessibility to freshwater resources is limited the impact will be more pronounced. Here we use a generalized cross-sectoral framework to assess the impact of climatic and socioeconomic futures on the water resources of an Eastern Mediterranean island. A set of representative regional climate models simulations from the EURO-CORDEX initiative driven by different RCP2.6, RCP4.5, and RCP8.5 GCMs are used to form a comparable set of results and a useful basis for the assessment of uncertainties related to impacts of 2° warming and above. A generalized framework of a cross-sectoral water resources analysis was developed in collaboration with the local water authority exploring and costing adaptation measures associated with a set of socioeconomic pathways (SSPs). Transient hydrological modeling was performed to describe the projected hydro-climatological regime and water availability for each warming level. The robust signal of less precipitation and higher temperatures that is projected by climate simulations results to a severe decrease of local water resources which can be mitigated by a number of actions. Awareness of the practical implications of plausible hydro-climatic and socio-economic scenarios in the

  18. Groundwater Contamination Due to Activities of an Intensive Hog Farming Operation Located on a Geologic Fault in East Mediterranean: A Study on COD, BOD₅ and Microbial Load.

    Science.gov (United States)

    Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Liodakis, Stylianos

    2016-02-01

    The application of treated animal wastewater produced in intensive fog farming operations (IHFOs) on surface soil, leads to groundwater contamination. In this study, the contamination of a Mediterranean aquifer caused by long-term application of treated wastewater, produced by an IHFO, on a plot with a geologic fault within the IHFO boundaries, was investigated. Groundwater samples were taken from monitoring wells close to the IHFO. A significant increase of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total viable count (TVC) and total coliform (TC) concentrations was found in wells, compared to control monitoring well, which were mainly affected by the subsurface flow of contaminated water, due to the presence of the geologic fault. During the winter, significant increases in concentrations of COD, BOD5, TVC and TC were noted and attributed to increased precipitation, which assisted in the accelerated transport of organic compounds and microbial load, through geologic fault, to groundwater.

  19. Effects of an intensive hog farming operation on groundwater in east Mediterranean (I): a study on electrical conductivity, as well as nitrogen and sulfur nutrients.

    Science.gov (United States)

    Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Liodakis, Stylianos

    2014-12-01

    The discharge of treated animal wastewater produced in concentrated animal feeding operations (CAFOs) on surface soil (within CAFOs borders) leads to groundwater degradation. In this research, groundwater degradation effects of an intensive hog farming operation, located in a Mediterranean area, were investigated. Treated animal wastewater was discharged on a small plot (~10.8 ha) with a geologic fault. Groundwater samples were taken from seven groundwater monitoring wells close to the farm. These wells were affected by the subsurface flow of waters, due to the presence of the geologic fault. In the summer, a significant increase of electrical conductivity values was noted in and attributed to falling water table levels. During the winter, significant increases in concentrations of ammonium nitrogen, nitrate nitrogen, and sulfate were noted and attributed to high precipitation, which assisted in the leaching of nitrogen and sulfur to groundwater.

  20. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  1. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  2. Foci of Volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, I.

    1974-01-01

    One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.

  3. Response of the Nile and its catchment to millennial-scale climatic change since the LGM from Sr isotopes and major elements of East Mediterranean sediments

    Science.gov (United States)

    Box, M. R.; Krom, M. D.; Cliff, R. A.; Bar-Matthews, M.; Almogi-Labin, A.; Ayalon, A.; Paterne, M.

    2011-02-01

    Changes in 87Sr/ 86Sr and major element geochemistry, from two sediment cores (9509 and 9501) in the Eastern Mediterranean (EM), were used to resolve changes in sediment provenance and, hence, determine climate changes in the Nile catchment and Eastern Sahara desert over the past 25 ka. The sediment was described by a three end-member system comprising Blue Nile (BN; 87Sr/ 86Sr = 0.7506; Sr = 210 ppm), White Nile (WN; 87Sr/ 86Sr = 0.7094; Sr = 72.5 ppm) and Saharan dust (SD; 87Sr/ 86Sr = 0.7183; Sr = 99 ppm). The sedimentary record of these cores represents the suspended load carried down the Nile river and discharged into the S.E. Levantine basin and thus records palaeoclimatically controlled changes in erosion and transport in the catchment. During arid periods (0-5 ka BP) and prior to 11 ka BP, fluxes of BN sediment at 9509 (˜6 g/cm 2/yr & 10-12 g/cm 2/yr, respectively) were greater than during the peak of the African Humid Period (AHP) from 5 to 11 ka BP (15 g/cm 2/yr. In the Ethiopian Highlands (BN catchment) increases in the amount and duration of the monsoon during the AHP caused more vegetation to grow resulting in less soil erosion. In the WN catchment increased rainfall caused more catchment erosion and higher sediment flux through the Sudd marshes. The sedimentation rate in core 9509 increased during the AHP because of the greater importance of the WN sediment flux relative to the BN sediment flux. Saharan dust flux also decreased during the AHP reaching a minimum at ˜6 ka BP (core 9509) due to 'greening' of the Sahara desert. At the onset of S-1, the changes in Nile flow as determined by 87Sr/ 86Sr and climatic changes in the EM basin determined by δ 18O of planktonic foraminifera were simultaneous, confirming that such isotopic tracers cannot be used directly to determine the cause of the circulation changes in the EM at this time. The increase in the proportion of BN sediment at 9509 with a somewhat higher grain size during the H-1 period (15-17 ka

  4. Food extracts consumed in Mediterranean countries and East Asia reduce protein concentrations of androgen receptor, phospho-protein kinase B, and phospho-cytosolic phospholipase A(2)alpha in human prostate cancer cells.

    Science.gov (United States)

    Singh, Jaskirat; Xie, Chanlu; Yao, Mu; Hua, Sheng; Vignarajan, Soma; Jardine, Greg; Hambly, Brett D; Sved, Paul; Dong, Qihan

    2010-04-01

    Active surveillance is an emerging management option for the rising number of men with low-grade, clinically localized prostate cancer. However, 30-40% of men on active surveillance will progress to high-grade disease over 5 y. With the ultimate aim of developing a food-based chemoprevention strategy to retard cancer progression in these otherwise healthy men, we have developed a blend of food extracts commonly consumed in Mediterranean countries and East Asia. The effect of the food extracts known as Blueberry Punch (BBP) on prostate cancer cell growth and key signaling pathways were examined in vitro and in vivo. BBP reduced prostate cancer cell growth in a dose-dependent manner (0.08-2.5%) at 72 h in vitro due to the reduction in cell proliferation and viability. Prostate cancer cell xenograft-bearing mice, administered 10% BBP in drinking water for 2 wk, had a 25% reduction in tumor volume compared with the control (water only). In vitro, BBP reduced protein concentrations in 3 signaling pathways necessary for the proliferation and survival of prostate cancer cells, namely androgen receptor, phospho-protein kinase B/protein kinase B, and phospho-cytosolic phospholipase A(2)alpha. The downstream effectors of these pathways, including prostate-specific antigen and glycogen synthase kinase 3beta, were also reduced. Thus, this palatable food supplement is a potential candidate for testing in clinical trials and may ultimately prove effective in retarding the progression of low-grade, early-stage prostate cancer in men managed by active surveillance.

  5. The Mediterranean

    Science.gov (United States)

    Suryawanshi, Vandana

    2017-04-01

    Learning is always a joyful experience for any human being and must always remain so. Children are happiest when they learn through play. The philosophy of my life is to keep encouraging children to think beyond they could achieve easily. I understand children are adaptive to change and take things with an open mind. They are ready to experiment new things and dare to dream big. I am fortunate to be a teacher by profession and thus I always attempt experimenting, observing and participating with other children and adults. Education is not about moulding children the way you think they should be. It is about organizing the natural longing in a human being to know. From birth children are active participants in building their own understanding. I always prepare the environment to help each child build on what they already know. It is such a great pleasure to observe every young kid become excited and curious to know when we teach them. Std 8 Geography the students are very excited to learn about this continent, with the help of Videos and a wall map the Political map of Europe with its countries shown I introduced the topic by asking 'If given a chance which place they would like to visit in Europe' , students are familiar with the countries of their favourite football players and happily pointed out their destination. The Mediterranean Region is a paradise the scenic beauty, the climate, the food along with a variety of fruits which are totally different from Asia increased the curiosity among the students. With the help of case study of the Mediterranean Sea the students were able to research and present the history, the adventure sports the aquatic life and the twenty three beautiful islands located in the Mediterranean Sea. Photos and videos helped me to explain the Mediterranean Sea The Formation of the Mediterranean Sea ( Youtube Video) which is otherwise completely enclosed by land. (The evaporating Mediterranean Sea - BBC (Video) Gibraltar Breach.mov . The

  6. Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east-central Europe, from combined U-Th/He and U-Th zircon geochronology

    Science.gov (United States)

    Harangi, S.; Lukács, R.; Schmitt, A. K.; Dunkl, I.; Molnár, K.; Kiss, B.; Seghedi, I.; Novothny, Á.; Molnár, M.

    2015-08-01

    High-spatial resolution zircon geochronology was applied to constrain the timescales of volcanic eruptions of the youngest, mostly explosive volcanic phase of Ciomadul volcano (Carpathian-Pannonian region, Romania). Combined U-Th and (U-Th)/He zircon dating demonstrates that intermittent volcanic eruptions occurred in a time range of 56-32 ka. The reliability of the eruption dates is supported by concordant ages obtained from different dating techniques, such as zircon geochronology, radiocarbon analysis, and infrared stimulated luminescence dating for the same deposits. The new geochronological data suggest that volcanism at Ciomadul is much younger (volcanic phase occurred after an apparent lull in volcanism that lasted for several 10's of ka, after a period of lava dome extrusion that defines the onset of the known volcanism at Ciomadul. At least four major eruptive episodes can be distinguished within the 56-32 ka period. Among them, relatively large (sub-plinian to plinian) explosive eruptions produced distal tephra covering extended areas mostly southeast from the volcano. The 38.9 ka tephra overlaps the age of the Campanian Ignimbrite eruption and has an overlapping dispersion axis towards the Black Sea region. The wide range of U-Th model ages of the studied zircons indicates prolonged existence of a low-temperature (volcanism. Even the youngest U-Th model ages obtained for the outermost 4 μm rim of individual zircon crystals predate the eruption by several 10's of ka. The zircon age distributions suggest re-heating above zircon saturation temperatures via injection of hot mafic magmas prior to eruption. Intermittent intrusions of fresh magma could play a significant role in keeping the intrusive silicic magmatic reservoir in a partially melted for prolonged period. The previous history of Ciomadul suggests that melt-bearing crystal mush resided beneath the volcano, and was rapidly remobilized after a protracted (several 10's of ka) lull in volcanism to

  7. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  8. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  9. Global air pollution crossroads over the Mediterranean

    NARCIS (Netherlands)

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-01-01

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. A

  10. Global air pollution crossroads over the Mediterranean

    NARCIS (Netherlands)

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-01-01

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. A

  11. Scenarios in the development of Mediterranean cyclones

    Directory of Open Access Journals (Sweden)

    M. Romem

    2007-07-01

    Full Text Available The Mediterranean is one of the most cyclogenetic regions in the world. The cyclones are concentrated along its northern coasts and their tracks are oriented more or less west-east, with several secondary tracks connecting them to Europe and to North Africa. The aim of this study is to examine scenarios in the development of Mediterranean cyclones, based on five selected winter seasons (October–March. We detected the cyclones subjectively using 6-hourly Sea-Level Pressure maps, based on the NCAR/NCEP reanalysis archive.

    HMSO (1962 has shown that most Mediterranean cyclones (58% enter the Mediterranean from the Atlantic Ocean (through Biscay and Gibraltar, and from the south-west, the Sahara Desert, while the rest are formed in the Mediterranean Basin itself. Our study revealed that only 13% of the cyclones entered the Mediterranean, while 87% were generated in the Mediterranean Basin. The entering cyclones originate in three different regions: the Sahara Desert (6%, the Atlantic Ocean (4%, and Western Europe (3%.

    The cyclones formed within the Mediterranean Basin were found to generate under the influence of external cyclonic systems, i.e. as "daughter cyclones" to "parent cyclones" or troughs. These parent systems are located in three regions: Europe (61%, North Africa and the Red Sea (34.5% and the Mediterranean Basin itself (4.5%. The study presents scenarios in the development of Mediterranean cyclones during the winter season, emphasizing the cyclogenesis under the influence of various external forcing.

    The large difference with respect to the findings of HMSO (1962 is partly explained by the dominance of spring cyclones generating in the Sahara Desert, especially in April and May that were not included in our study period.

  12. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  13. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  14. TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods

    Science.gov (United States)

    Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten

    2017-04-01

    The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible

  15. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  16. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  17. The East Mediterranean Triangle at Crossroads

    Science.gov (United States)

    2016-03-01

    but also in other sectors such as tourism, culture , education and trade. Prior to the Papandreou visit of 2010, there were around 150,000 Israeli...supportive of a partnership with Turkey was because he had lived in Istanbul and was a great admirer of the first president of Turkey, Mustafa

  18. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  19. Handbook for Forecasters in the Mediterranean. Part 2. Regional Forecasting Aids for the Mediterranean Basin.

    Science.gov (United States)

    1980-12-01

    D day plus 1. Metaxas, D. A., 1978: Strong cold outbreaks in the east Mediterranean. A synoptic study. Rivista di Meteorologia Aeronautics, Vol...ROOM ?35 DIRECTOR 6010 EXECUTIVE BLVD JFK INTERNATIONAL AIRPORT RIVISTA DI METEOROLOGIA AEPONATUICAROCKVILLE, MO 20852 JAMAICA, NY 1143D PALAZZO DELLA

  20. Santa Maria Volcano, Guatemala

    Science.gov (United States)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  1. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  2. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  3. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  4. Familial Mediterranean fever

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000363.htm Familial Mediterranean fever To use the sharing features on this page, please enable JavaScript. Familial Mediterranean fever (FMF) is a rare disorder passed down through ...

  5. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  6. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  7. Consensus Document on Intermittent Claudication from the Central European Vascular Forum (C.E.V.F.)-3rd revision (2013) with the sharing of the Mediterranean League of Angiology and Vascular Surgery, and the North Africa and Middle East Chapter of International Union of Angiology.

    Science.gov (United States)

    Andreozzi, G M; Kalodiki, E; L Gašpar, L; Martini, R; Minar, E; Angelides, N; Nicolaides, A N; Novo, S; Visonà, A; Prior, M; Arosio, E; Hussein, E A; Poredos, P; Antignani, P L; Avram, R; Roztocil, K; Stvrtinova, V; Kozak, M; Vacula, I

    2014-08-01

    This paper is the review of the Consensus Document on Intermittent Claudication of the Central European Vascular Forum (CEVF), published in 2008, and and shared with the North Africa and Middle East Chapter of International Union of Angiology and the Mediterranean League of Angiology and Vascular Surgery. The Document presents suggestions for general practitioners and vascular specialists for more precise and appropriate management of PAD, particularly of intermittent claudication, and underlines the investigations that should be required by GPs and what the GP should expect from the vascular specialist (angiologist, vascular surgeon). The idea of the Faculty is to produce a short document, which is an easy reference in daily clinical practice, both for the GPs and vascular specialists.

  8. The diversity of mud volcanoes in the landscape of Azerbaijan

    Science.gov (United States)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  9. Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean

    NARCIS (Netherlands)

    Heijs, Sander K.; Laverman, Anniet M.; Forney, Larry J.; Hardoim, Pablo R.; van Elsas, Jan Dirk

    Bacterial and archaeal communities in sediments obtained from three geographically-distant mud volcanoes, a control site and a microbial mat in the Eastern Mediterranean deep-sea were characterized using direct 16S rRNA gene analyses. The data were thus in relation to the chemical characteristics of

  10. A Historical, Cultural and Geoscientific approach of the Mediterranean Sea

    Science.gov (United States)

    Varouta, Panagiota

    2017-04-01

    Students' knowledge about geosciences is often limited to their country's geographical elements. The way geosciences are connected to their everyday lives, their history and their culture is something that they do not easily grasp. Thus, the development of a Project-Based Learning activity where 11 year-olds are asked to explore the Mediterranean Sea came as a result. The title of the activity is "An enclosed sea, an open mind, an amazing journey in STEAM". The main purpose of choosing the module of "The Mediterranean" is for the students to become aware of the special natural and cultural features of the Mediterranean region and to be able to connect the Mediterranean's geographical position and characteristics with its historical and social value. The activity aims to develop scientific skills and attitudes, to practice the students' scientific and critical thought, to foster the co-operative spirit among them and to make them aware of how the geography of the Mediterranean affects the relationships that form around it. In this activity, students study geological features (e.g. Orogenesis, Corinthian Rift, Islands, earthquakes, volcanoes), they experiment about the water flow and they examine the Mediterranean field and climate. In Odysseus' footsteps, they navigate using GPS, they research about the culture and the history of the people around the Mediterranean Sea and they present their findings. They focus on the historical, geological, geographical, cultural and environmental aspects of the Mediterranean Sea. On this poster, there will be a presentation of the goals, the methodology, the series of activities and the evaluation of the program. Key Words Mediterranean, Project-Based Learning, Geosciences, Culture

  11. Reproduction ecology of Pinus halepensis : a monoecious, wind-pollinated and partially serotinous Mediterranean pine tree

    NARCIS (Netherlands)

    Goubitz, Shirrinka

    2002-01-01

    Fire is an important factor in the evolution and ecology of Mediterranean plant species. The fire frequency has increased in the 20st century. Pines are the most important tree species in the area. Pinus halepensis is the only natural pine in parts of the east Mediterranean basin, such as Israel and

  12. Reproduction ecology of Pinus halepensis : a monoecious, wind-pollinated and partially serotinous Mediterranean pine tree

    NARCIS (Netherlands)

    Goubitz, Shirrinka

    2001-01-01

    Fire is an important factor in the evolution and ecology of Mediterranean plant species. The fire frequency has increased in the 20st century. Pines are the most important tree species in the area. Pinus halepensis is the only natural pine in parts of the east Mediterranean basin, such as Israel and

  13. Eastern Mediterranean Natural Gas: Analyzing Turkey's Stance

    Directory of Open Access Journals (Sweden)

    Abdullah Tanriverdi

    2016-02-01

    Full Text Available Recent large-scale natural gas discoveries in East Mediterranean have drawn attention to the region. The discoveries caused both hope and tension in the region. As stated, the new resources may serve as a new hope for all relevant parties as well as the region if managed in a collaborative and conciliatory way. Energy may be a remedy to Cyprus' financial predicament, initiate a process for resolving differences between Turkey and Cyprus, normalize Israel-Turkey relations and so on. On the contrary, adopting unilateral and uncooperative approach may aggravate the tension and undermine regional stability and security. In this sense, the role of energy in generating hope or tension is dependent on the approaches of related parties. The article will analyze Turkey's attitude in East Mediterranean case in terms of possible negative and positive implications for Turkey in the energy field. The article examines Turkey's position and the reasons behind its stance in the East Mediterranean case. Considering Turkey's energy profile and energy policy goals, the article argues that the newly found hydrocarbons may bring in more stakes for Turkey if Turkey adopts a cooperative approach in this case.

  14. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons

    1998-01-01

    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  15. Italian Volcano Supersites

    Science.gov (United States)

    Puglisi, G.

    2011-12-01

    Volcanic eruptions are among the geohazards that may have a substantial economic and social impact, even at worldwide scale. Large populated regions are prone to volcanic hazards worldwide. Even local phenomena may affect largely populated areas and in some cases even megacities, producing severe economic losses. On a regional or global perspective, large volcanic eruptions may affect the climate for years with potentially huge economic impacts, but even relatively small eruptions may inject large amounts of volcanic ash in the atmosphere and severely affect air traffic over entire continents. One of main challenges of the volcanological community is to continuously monitor and understand the internal processes leading to an eruption, in order to give substantial contributions to the risk reduction. Italian active volcanoes constitute natural laboratories and ideal sites where to apply the cutting-edge volcano observation systems, implement new monitoring systems and to test and improve the most advanced models and methods for investigate the volcanic processes. That's because of the long tradition of volcanological studies resulting into long-term data sets, both in-situ and from satellite systems, among the most complete and accurate worldwide, and the large spectrum of the threatening volcanic phenomena producing high local/regional/continental risks. This contribution aims at presenting the compound monitoring systems operating on the Italian active volcanoes, the main improvements achieved during the recent studies direct toward volcanic hazard forecast and risk reductions and the guidelines for a wide coordinated project aimed at applying the ideas of the GEO Supersites Initiative at Mt. Etna and Campi Flegrei / Vesuvius areas.

  16. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  17. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  18. Influence of chemosynthetic ecosystems on nematode community structure and biomass in the deep eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    N. Lampadariou

    2013-08-01

    Full Text Available Mud volcanoes are a~special type of cold seeps where life is based on chemoautotrophic processes. They are considered to be extreme environments and are characterized by unique megafaunal and macrofaunal communities. However, very few studies on mud volcanoes taking into account the smaller meiobenthic communities have been carried out. Two mud volcanoes were explored during the MEDECO (MEditerranean Deep-sea ECOsystems cruise (2007 with the remotely operated vehicle (ROV Victor-6000: Amsterdam, located south of Turkey between 1700 and 2000 m depth (Anaximander mud field; and Napoli, south of Crete, located along the Mediterranean Ridge at about 2000 m depth (Olimpi mud field. The major aim of this study was to describe distributional patterns of meiofaunal communities and nematode assemblages from different seep microhabitats. Meiofaunal taxa and nematode assemblages at both mud volcanoes differed significantly from other Mediterranean sites in terms of standing stocks, dominance and species diversity. Density and biomass values were significantly higher at the seep sites, particularly at Amsterdam. Patterns of nematode diversity, the dominant meiofaunal taxon, varied, displaying both very high or very low species richness and dominance, depending on the microhabitat studied. The periphery of the Lamellibrachia and bivalve shell microhabitats of Napoli exhibited the highest species richness, while the reduced sediments of Amsterdam yielded a species-poor nematode community dominated by two successful species, one belonging to the genus Aponema and the other to the genus Sabatieria. Analysis of β-diversity showed that microhabitat heterogeneity of mud volcanoes contributed substantially to the total nematode species richness in the eastern Mediterranean Sea. These observations indicate a strong influence of mud volcanoes and cold-seep ecosystems on the meiofaunal communities and nematode assemblages.

  19. Pipeline contribution to the Middle East oil trades

    Energy Technology Data Exchange (ETDEWEB)

    Khoja, B.A.

    1979-02-01

    The pipelines that physically exist in the Middle East are described. There are 7 pipelines in the Middle East that end in Mediterranean terminals with a total present capacity of 235 million tons annually. Three of the pipelines are out of service, three are being utilized only partially, and one is operating at full capacity. (MCW)

  20. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  1. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  2. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  3. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  4. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  5. Reevaluation of tsunami formation by debris avalanche at Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, C.F.

    2000-01-01

    Debris avalanches entering the sea at Augustine Volcano, Alaska have been proposed as a mechanism for generating tsunamis. Historical accounts of the 1883 eruption of the volcano describe 6- to 9-meter-high waves that struck the coastline at English Bay (Nanwalek), Alaska about 80 kilometers east of Augustine Island. These accounts are often cited as proof that volcanigenic tsunamis from Augustine Volcano are significant hazards to the coastal zone of lower Cook Inlet. This claim is disputed because deposits of unequivocal tsunami origin are not evident at more than 50 sites along the lower Cook Inlet coastline where they might be preserved. Shallow water (Augustine Island, in the run-out zone for debris avalanches, limits the size of an avalanche-caused wave. If the two most recent debris avalanches, Burr Point (A.D. 1883) and West Island (Augustine Volcano appears minor, unless a very large debris avalanche occurs at high tide.

  6. Topography and Volcanology of the Huangtsuishan Volcano Subgroup, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai

    2010-01-01

    Full Text Available Combining the shaded relief topography model and the slope map from the Digital Terrain Model (DTM images, toporaphical map, field occurrences and petrography, the volcanic sequences of the Huangtsuishan Volcano Subgroup (HVS can be constructed. Two types of volcanic centers can be identified in this area. One is the Tachienhou volcanic dome, which may be located in the center of an older caldera. The other is the Huangtsui composite volcano, which is composed of interbedding lava flows and pyroclastic deposits with a volcanic crater named the Huangtsui pond at the summit. Eight lava plateaus radiated from Mts. Huangtsui and Tachienhou to the north and the east can be distinguished based on the DTM images. The volcanic deposits are comprised of four lithofacies, the lava flows, pyroclastic breccias, tuffs and lahars on the base of field occurrences. At least thirteen layers of lava flow, named the H1 to H13 can be recognized in the HVS and can be reconstructed and categorized into four stages. An old and large volcano erupted lava flows to form the products of stages one and two, then collapsed to form a caldera with a dome for the third stage. The latest stage of lava flow was poured out from the Huangtsui volcano, which formed a crater at the summit.

  7. Deep structure and origin of active volcanoes in China

    Institute of Scientific and Technical Information of China (English)

    Dapeng Zhao; Lucy Liu

    2010-01-01

    We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate).The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.

  8. Deep structure and origin of active volcanoes in China

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    2010-10-01

    Full Text Available We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi are caused by hot upwelling in the big mantle wedge (BMW above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate. The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab–plume interactions.

  9. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, W.A.; Tilling, R.I.; Canul, R.

    1984-01-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent

  10. Multibeam Bathymetry of Haleakala Volcano, Maui

    Science.gov (United States)

    Eakins, B. W.; Robinson, J.

    2002-12-01

    The submarine northeast flank of Haleakala Volcano, Maui was mapped in detail during the summers of 2001 and 2002 by a joint team from the Japan Marine Science and Technology Center (JAMSTEC), Tokyo Institute of Technology, University of Hawaii, and the U.S. Geological Survey. JAMSTEC instruments used included SeaBeam 2112 hull-mounted multibeam sonar (bathymetry and sidescan imagery), manned submersible Shinkai 6500 and ROV Kaiko (bottom video, photographs and sampling of Hana Ridge), gravimeter, magnetometer, and single-channel seismic system. Hana Ridge, Haleakala's submarine east rift zone, is capped by coral-reef terraces for much of its length, which are flexurally tilted towards the axis of the Hawaiian Ridge and delineate former shorelines. Its deeper, more distal portion exhibits a pair of parallel, linear crests, studded with volcanic cones, that suggest lateral migration of the rift zone during its growth. The northern face of the arcuate ridge terminus is a landslide scar in one of these crests, while its southwestern prong is a small, constructional ridge. The Hana slump, a series of basins and ridges analogous to the Laupahoehoe slump off Kohala Volcano, Hawaii, lies north of Hana Ridge and extends down to the Hawaiian moat. Northwest of this slump region a small, dual-crested ridge strikes toward the Hawaiian moat and is inferred to represent a fossil rift zone, perhaps of East Molokai Volcano. A sediment chute along its southern flank has built a large submarine fan with a staircase of contour-parallel folds on its surface that are probably derived from slow creep of sediments down into the moat. Sediments infill the basins of the Hana slump [Moore et al., 1989], whose lowermost layers have been variously back-tilted by block rotation during slumping and flexural loading of the Hawaiian Ridge; the ridges define the outer edges of those down-dropped blocks, which may have subsided several kilometers. An apron of volcaniclastic debris shed from

  11. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  12. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    Science.gov (United States)

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  13. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  14. Development of volcano monitoring technique using repeating earthquakes observed by the Volcano Observation Network of NIED

    Science.gov (United States)

    Kohno, Y.; Ueda, H.; Kimura, H.; Nagai, M.; Miyagi, Y.; Fujita, E.; Kozono, T.; Tanada, T.

    2012-12-01

    After the Grate East Japan Earthquake (M9.0) on March 11, 2011, the M6.4 earthquake occurred beneath Mt. Fuji on March 15, 2011. Although the hypocenter seemed to be very close to an assumed magma chamber of Fuji volcano, no anomalies in volcanic activity have been observed until August 2012. As an example, after the M6.1 earthquake occurred in 1998 at southwest of Iwate volcano, a change of seismic velocity structure (e.g. Nishimura et al., 2000) was observed as well as active seismicity and crustal deformation. It had affected waveforms of repeating earthquakes occurring at a plate subduction zone, that is, the waveform similarities were reduced just after the earthquake due to upwelling of magma. In this study, first we analyzed for Mt. Fuji where such changes are expected by the occurrence of the earthquake to try to develop a tool for monitoring active volcanoes using the Volcano Observation network (V-net) data. We used seismic waveform data of repeating earthquakes observed by short period seismometers of V-net and the High Sensitivity Seismograph Network Japan (Hi-net) stations near Fuji volcano after 2007. The seismic data were recorded with a sampling rate of 100 Hz, and we applied 4-8 Hz band pass filter to reduce noise. The repeating earthquakes occurred at the plate subduction zone and their catalog is compiled by Hi-net data (Kimura et al., 2006). We extracted repeating earthquake groups that include earthquakes before and after the M6.4 earthquake on March 15, 2011. A waveform of the first event of the group and waveforms of the other events are compared and calculated cross-correlation coefficients. We adjusted P wave arrivals of each event and calculate the coefficients and lag times of the latter part of the seismic waves with the time window of 1.25 s. We searched the best fit maximizing the cross-correlation coefficients with 0.1 s shift time at each time window. As a result we found three remarkable points at this time. [1] Comparing lag times

  15. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  16. Megaturbidite triggered by the ad 365 Cretan earthquake in the Mediterranean Sea

    Science.gov (United States)

    Polonia, Alina; Bonatti, Enrico; Camerlenghi, Angelo; Gasperini, Luca; Lucchi, Renata; Panieri, Giuliana

    2013-04-01

    Destructive earthquakes/tsunamis have affected repeatedly the circum Mediterranean highly populated coastal regions. A record of these past events can be provided by large-volume turbidites or megaturbidites, detected in the marine sedimentary record (Polonia et al., 2012). Megaturbidites have been identified in the Ionian basin (central Mediterranean) that is located between two tectonically active subduction zones (i.e. the Calabrin Arc to the North and the Hellenic Arc to the East). The uppermost megabed, has been named "Homogenite" (Kastens and Cita, 1981) or "Augias turbidite" (Hieke, 1984). Its well defined stratigraphic position, above the regional marker sapropel bed S1, has been interpreted as evidence that it was deposited in a single, basin-wide event capable to put into suspension simultaneously sediment at a basin-wide scale. Absence of absolute dating of the megabed and of a detailed chronostratigraphy of the deposits above and below the turbidite, have allowed a number of different correlations of this megaturbidite with the 3500 yr BP Minoan eruption of Santorini and related tsunamis in the Aegean Sea (Kastens and Cita, 1981), to the 7.600 ± 130 yr B.P. collapse of a flank of the Etna Volcano (Pareschi et al., 2006) or to the 365 earthquake in the Mediterranean (Vigliotti, 2008). Based on studies of sediment cores we collected from the Ionian seafloor (mineralogy, micropaleontology, elemental and isotopic geochemistry and radiocarbon dating), we show that the Homogenite/Augias turbidite (HAT), up to 20-25 m thick, was related to multi-source turbidity flows triggered by the 365 AD tsunami. We were able to reconstruct the different units deposited in response to the 365 AD Cretan earthquake/tsunami and the results confirm that the HAT is a unique instance of deep sea tsunami deposit. Backwash flows and related gravity-driven processes are the primary means of downslope sediment transport. An older similar deep sea megaturbidite was deposited in the

  17. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  18. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  19. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  20. Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone

    KAUST Repository

    Varela-Álvarez, Elena

    2015-01-11

    Knowledge of spatial patterns of genetic differentiation between populations is key to understanding processes in evolutionary history of biological species. Caulerpa is a genus of marine green algae, which has attracted much public attention, mainly because of the impacts of invasive species in the Mediterranean. However, very little is known about the ecological and evolutionary history of the Mediterranean native Caulerpa prolifera, a species which is currently found at sites distributed worldwide. C. prolifera provides a good model to explore the patterns of genetic diversity at different scales across the Mediterranean and Atlantic area. This study aims to investigate the biogeographical patterns of diversity and differentiation of C. prolifera in the Mediterranean, with special focus on the Mediterranean/Atlantic transition zone. We used two nuclear (ITS rDNA and the hypervariable microsatellite locus CaPr_J2) and one chloroplast (tufA) DNA markers on samples of C. prolifera from its entire range. Analyses of 51 sequences of the cpDNA tufA of C. prolifera, 87 ITS2 sequences and genotypes of 788 ramets of C. prolifera for the locus CaPr_J2 revealed three different biogeographical areas: West Atlantic, East Atlantic and a larger area representing the Mediterranean, the Mediterranean/Atlantic transition zone and a Pacific site (Bali). It was found out that the Mediterranean/Atlantic transition zone is a biogeographical boundary for C. prolifera. A lack of connectivity was revealed between Atlantic and Mediterranean types, and identical sequences found in the Mediterranean and Indo-Pacific suggest either recent gene flow along the Red Sea connection or a possible ancient Indo-Pacific origin.

  1. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  2. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  3. Mediterranean “regionalism"

    DEFF Research Database (Denmark)

    Pace, Michelle

    2017-01-01

    The concept of the Mediterranean ‘region’ has been contested both theoretically and empirically time and again. But, what are its current meanings if any? What do the never-ending internal divisions between and within countries in this imagined space tell us about the state of the Mediterranean t...

  4. Geochemical evolution of Bolshaya Udina, Malaya Udina, and Gorny Zub Volcanoes, Klyuchevskaya Group (Kamchatka)

    Science.gov (United States)

    Churikova, Tatiana; Gordeychik, Boris; Wörner, Gerhard; Flerov, Gleb; Hartmann, Gerald; Simon, Klaus

    2017-04-01

    The Klyuchevskaya group of volcanoes (KGV) located in the northern part of Kamchatka has the highest magma production rate for any arc worldwide and several of its volcanoes have been studied in considerable detail [e.g. Kersting & Arculus, 1995; Pineau et al., 1999; Dorendorf et al., 2000; Ozerov, 2000; Churikova et al., 2001, 2012, 2015; Mironov et al., 2001; Portnyagin et al., 2007, 2015; Turner et al., 2007]. However, some volcanoes of the KGV including Late-Pleistocene volcanoes Bolshaya Udina, Malaya Udina, Ostraya Zimina, Ovalnaya Zimina, and Gorny Zub were studied only on a reconnaissance basis [Timerbaeva, 1967; Ermakov, 1977] and the modern geochemical studies have not been carried out at all. Among the volcanoes of KGV these volcanoes are closest to the arc trench and may hold information on geochemical zonation with respect to across arc source variations. We present the first major and trace element data on rocks from these volcanoes as well as on their basement. All rocks are medium-calc-alkaline basaltic andesites to dacites except few low-Mg basalts from Malaya Udina volcano. Phenocrysts are mainly olivine, pyroxene, plagioclase and magnetite, Hb-bearing andesites and dacites are rarely found only in subvolcanic intrusions at Bolshaya Udina volcano. Lavas are geochemically similar to the active Bezymianny volcano, however, individual variations for each volcano exist in both major and trace elements. Trace element geochemistry is typical of island arc volcanism. Compared to KGV lavas all studied rocks form very narrow trends in all major element diagrams, which almost do not overlap with the fields of other KGV volcanoes. The lavas are relatively poor in alkalis, TiO2, P2O5, FeO, Ni, Zr, and enriched in SiO2 compared to other KGV volcanics and show greater geochemical and petrological evidence of magmatic differentiation during shallow crustal processing. Basement samples of the Udinskoe plateau lavas to the east of Bolshaya Udina volcano have

  5. Evaluation of volcanic risk management in Merapi and Bromo Volcanoes

    Science.gov (United States)

    Bachri, S.; Stöetter, J.; Sartohadi, J.; Setiawan, M. A.

    2012-04-01

    Merapi (Central Java Province) and Bromo (East Java Province) volcanoes have human-environmental systems with unique characteristics, thus causing specific consequences on their risk management. Various efforts have been carried out by many parties (institutional government, scientists, and non-governmental organizations) to reduce the risk in these areas. However, it is likely that most of the actions have been done for temporary and partial purposes, leading to overlapping work and finally to a non-integrated scheme of volcanic risk management. This study, therefore, aims to identify and evaluate actions of risk and disaster reduction in Merapi and Bromo Volcanoes. To achieve this aims, a thorough literature review was carried out to identify earlier studies in both areas. Afterward, the basic concept of risk management cycle, consisting of risk assessment, risk reduction, event management and regeneration, is used to map those earlier studies and already implemented risk management actions in Merapi and Bromo. The results show that risk studies in Merapi have been developed predominantly on physical aspects of volcanic eruptions, i.e. models of lahar flows, hazard maps as well as other geophysical modeling. Furthermore, after the 2006 eruption of Merapi, research such on risk communication, social vulnerability, cultural vulnerability have appeared on the social side of risk management research. Apart from that, disaster risk management activities in the Bromo area were emphasizing on physical process and historical religious aspects. This overview of both study areas provides information on how risk studies have been used for managing the volcano disaster. This result confirms that most of earlier studies emphasize on the risk assessment and only few of them consider the risk reduction phase. Further investigation in this field work in the near future will accomplish the findings and contribute to formulate integrated volcanic risk management cycles for both

  6. An oceanic box model of the Miocene Mediterranean Sea with emphasis on the effects of closure of the eastern gateway

    NARCIS (Netherlands)

    Karami, M.P.; Meijer, P.Th.; Dijkstra, H.A.; Wortel, M.J.R.

    2009-01-01

    The early Miocene Mediterranean Sea had two gateways toward the open ocean: the Indian Ocean in the east and the Atlantic Ocean in the west. Closure of the eastern connection during the middle Miocene had important effects on the water properties and circulation of the Mediterranean Sea. To gain ins

  7. Space Radar Image of Karisoke & Virunga Volcanoes

    Science.gov (United States)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  8. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  9. High genetic diversity detected in olives beyond the boundaries of the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Mehdi Hosseini-Mazinani

    Full Text Available BACKGROUND: Olive trees (Olea europaea subsp. europaea var. europaea naturally grow in areas spanning the Mediterranean basin and towards the East, including the Middle East. In the Iranian plateau, the presence of olives has been documented since very ancient times, though the early history of the crop in this area is shrouded in uncertainty. METHODS: The varieties presently cultivated in Iran and trees of an unknown cultivation status, surviving under extreme climate and soil conditions, were sampled from different provinces and compared with a set of Mediterranean cultivars. All samples were analyzed using SSR and chloroplast markers to establish the relationships between Iranian olives and Mediterranean varieties, to shed light on the origins of Iranian olives and to verify their contribution to the development of the current global olive variation. RESULTS: Iranian cultivars and ecotypes, when analyzed using SSR markers, clustered separately from Mediterranean cultivars and showed a high number of private alleles, on the contrary, they shared the same single chlorotype with the most widespread varieties cultivated in the Mediterranean. CONCLUSION: We hypothesized that Iranian and Mediterranean olive trees may have had a common origin from a unique center in the Near East region, possibly including the western Iranian area. The present pattern of variation may have derived from different environmental conditions, distinct levels and selection criteria, and divergent breeding opportunities found by Mediterranean and Iranian olives.These unexpected findings emphasize the importance of studying the Iranian olive germplasm as a promising but endangered source of variation.

  10. Geometry and structure of the andesitic volcano-detritic deposits: The Merapi case

    Science.gov (United States)

    Selles, A.; Deffontaines, B.; Hendrayana, H.; Violette, S.

    2013-12-01

    Several geological studies have been performed on the volcano-detritic deposits but finally the global overview of the geometry of those is still poorly known. The quick alteration enhances the high heterogeneity of these formations, especially under tropical climate. Better knowledge of the structure of the volcano-sedimentary edifices is capital to understand:i) the geomorphological impacts, as landslides ii) or the hydrogeological processes. The Merapi Mount is an andesitic strato-volcano, located in Central Java and is one of the most active volcanoes in Indonesia. About 500,000 people live in the immediate vicinity of the volcano and are directly subject, not only to the volcanic eruptions but also to the landslide hazards. The East flank of the Merapi presents a complex history and has been relatively spared by the recent volcanic activity; thus, the geomorphology and the structure of the deposit have been driven by the erosion and remobilization processes under equatorial climate. This work contributes to understand the processes of construction, destruction and sedimentation of a complex active strato-volcano and shed light to its geological and geomorphological history. Based on field observations and literature, the specific deposits have been identified. The lithological facies have been described and several cross sections have been done to precise the distinct phases of building edifice, due to old eruptions. Recent field surveys allowed characterizing the dismantling steps and processes of the volcano by erosion and the local to distal sedimentation associated. The East flank has been split in four zones where each formation presents a lateral facies variation depending on the distance from the summit and the age of deposits. Based on the collected data, the size and the three dimensional extension of each deposits has been delimitated. The geological and geomorphological interpretation is proposed through a conceptual model.

  11. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano.

    Science.gov (United States)

    Finn, C A; Sisson, T W; Deszcz-Pan, M

    2001-02-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  12. Seismic signature of a phreatic explosion: Hydrofracturing damage at Karthala volcano, Grande Comore Island, Indian Ocean

    Science.gov (United States)

    Savin, C.; Grasso, J.-R.; Bachelery, P.

    2005-01-01

    Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995. ?? Springer-Verlag 2005.

  13. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  14. Response of arid ecosystems to the Holocene climate variability along west and central Mediterranean gradients.

    Science.gov (United States)

    Jaouadi, Sahbi; Combourieu Nebout, Nathalie; Azuara, Julien; Lebreton, Vincent

    2017-04-01

    Decadal to millennial climate variability is a common feature recorded by environmental series. However interconnections between climate forcing (i.e. insolation, thermohaline circulation) and large atmospheric circulation patterns (i.e. North Atlantic Oscillation, Mediterranean Oscillation, Monsoon) still remain poorly understood considering their respective impacts on the global climate mechanisms. In the Mediterranean area, joint climatic influences from high temperate and low subtropical latitudes result in a high sensitivity of ecosystems to climate changes and especially to extreme events. Several vegetation records illustrate millennial changes in Mediterranean. Nevertheless notable discrepancies in the environmental response arise between Mediterranean edges (east vs west, north vs south). The new paleoenvironmental record from Sebkha Boujmel (33°N, southern Tunisia) covers the last 8kyr and exhibits eight humid/arid fluctuations with cyclic expansion of the desert, related to Middle and Late Holocene rapid climate changes (RCC) occurring at a centennial scale. Sebkha Boujmel record is replaced in the wider context of west Mediterranean and northern hemisphere. Asynchronies and disparity of the Mediterranean RCC occurrence documents north-south and west-east climate gradients in the west Mediterranean and pinpoint Sebkha Boujmel as the single vegetation record tracing as many climate events during the last 8kyr. Indeed the high sensitivity of arid environments triggers the prompt reaction of the southern Tunisian vegetation to Holocene RCC however tenuous. Pattern of RCC geographical occurrence in west and central Mediterranean is interpreted in the light of climate forcings involved for the Holocene centennial variability.

  15. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  16. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  17. Mediterranean semi-arid systems-sensitivity and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Lavee, H.; Sarah, P.

    2009-07-01

    The semi-arid areas of the Mediterranean are sensitive to climate change as they are located. In many cases, between two different systems, the arid system and the Mediterranean sub-humid system. A number of quick response ecogeomorphological variables were monitored along a climatic transect in Israel, running from west to east, covering an annual rainfall range of 700-100mm. The relationships of climatic conditions-available water soil properties overland flow erosion, were investigates. Soil samples were taken from open areas between shrubs and overland flow was monitored in posts of 7, 14 and 21 m in length (3m width). (Author)

  18. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  19. History of the volcanology in the former Netherlands East Indies

    NARCIS (Netherlands)

    Neumann van Padang, M.

    1983-01-01

    The description of the volcanoes in the former Netherlands East Indies are analysed in order of their publication, grouping them into three parts. The first group consists of information from old Javanese sources and incidental communications in travel accounts and the like, dating from the 16th, 17

  20. Familial Mediterranean Fever

    Science.gov (United States)

    ... don't use genetic tests as the sole method of diagnosing familial Mediterranean fever. There's no cure ... may be options, though these treatments are considered experimental. Other medications include rilonacept (Arcalyst) and anakinra (Kineret). ...

  1. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  2. Climbing in the high volcanoes of central Mexico

    Science.gov (United States)

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  3. Improving sea level simulation in Mediterranean regional climate models

    Science.gov (United States)

    Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge

    2017-08-01

    For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not

  4. GUIDE POUR L'INTERPRÉTATION DES ÉCAILLES ET L'ESTIMATION DE L'ÂGE CHEZ LES ALOSES (ALOSA SPP. DE LA FAÇADE ATLANTIQUE-EST ET DE LA MÉDITERRANÉE-OUEST. A GUIDE TO SCALE INTERPRETATION AND AGE ESTIMATION FOR THE EAST-ATLANTIC AND WEST-MEDITERRANEAN SHADS (ALOSA SPP..

    Directory of Open Access Journals (Sweden)

    BAGLINIÈRE J. L.

    2008-05-01

    Full Text Available L'objectif général de ce guide est de fournir un manuel d'utilisation et d'interprétation des écailles pour l'estimation de l'âge chez les aloses de l'Atlantique-Est et de Méditerranée-Ouest (Grande Alose, Alose feinte atlantique et méditerranéenne. Après un présentation rapide des espèces, populations et fleuves analysés, les écailles d'aloses et les méthodes de récolte, de préparation et de montage les concernant sont décrites en détail. Des définitions et un système de notation de l'âge standards sont donnés. La grande majorité des difficultés rencontrées pour l'interprétation des écailles sont analysées en proposant des solutions et en donnant certaines recommandations. L'ensemble de ce guide est largement illustré à l'aide d'exemples d'écailles typiques et atypiques choisis chez tous les taxons des différentes populations étudiées. The general objective of this guide is to provide a practical manual for interpreting scales and the estimation of age of Alosa from the East Atlantic and West-Mediterranean (Allis shad, Atlantic and Mediterranean shad. Following a brief presentation of the species, populations and rivers studied, the scales, sampling methods and their preparation for reading are described in detail. Definitions and a standard system of notating age are given. The majority of the difficulties encountered in the interpretation of scales are analysed, solutions proposed and some recommendations given. The whole guide is largely illustrative using examples of typical and atypical scales from the various taxons of the different populations studied.

  5. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  6. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    Science.gov (United States)

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  7. New Mediterranean Biodiversity Records (October 2015

    Directory of Open Access Journals (Sweden)

    F. CROCETTA

    2015-11-01

    Full Text Available The Collective Article “New Mediterranean Biodiversity Records” of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided per countries, listed according to a Mediterranean west-east geographic position. New biodiversity data are reported for 7 different countries, although one species hereby reported from Malta is overall new for the entire Mediterranean basin, and is presumably present also in Israel and Lebanon (see below in Malta. Italy: the rare native fish Gobius kolombatovici is first reported from the Ionian Sea, whilst the alien jellyfish Rhopilema nomadica and the alien fish Oplegnathus fasciatus are first reported from the entire country. The presence of O. fasciatus from Trieste is concomitantly the first for the entire Adriatic Sea. Finally, the alien bivalve Arcuatula senhousia is hereby first reported from Campania (Tyrrhenian Sea. Tunisia: a bloom of the alien crab Portunus segnis is first reported from the Gulf of Gabes, from where it was considered as casual. Malta: the alien flatworm Maritigrella fuscopunctata is first recorded from the Mediterranean Sea on the basis of 25 specimens. At the same time, web researches held possible unpublished records from Israel and Lebanon. The alien crab P. segnis, already mentioned above, is first formally reported from Malta based on specimens collected in 1972. Concomitantly, the presence of Callinectes sapidus in Maltese waters is excluded since based on misidentifications. Greece: the Atlantic northern brown shrimp Penaeus atzecus, previously known from the Ionian Sea from sporadic records only, is now well established in Greek and international Ionian waters. The alien sea urchin Diadema setosum is reported from the second time from Greece, and its first record date from the country is backdated to 2010 in Rhodes Island. The alien lionfish Pterois miles is first reported from Greece and

  8. New Mediterranean Biodiversity Records (October 2015

    Directory of Open Access Journals (Sweden)

    F. CROCETTA

    2015-11-01

    Full Text Available The Collective Article “New Mediterranean Biodiversity Records” of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided per countries, listed according to a Mediterranean west-east geographic position. New biodiversity data are reported for 7 different countries, although one species hereby reported from Malta is overall new for the entire Mediterranean basin, and is presumably present also in Israel and Lebanon (see below in Malta. Italy: the rare native fish Gobius kolombatovici is first reported from the Ionian Sea, whilst the alien jellyfish Rhopilema nomadica and the alien fish Oplegnathus fasciatus are first reported from the entire country. The presence of O. fasciatus from Trieste is concomitantly the first for the entire Adriatic Sea. Finally, the alien bivalve Arcuatula senhousia is hereby first reported from Campania (Tyrrhenian Sea. Tunisia: a bloom of the alien crab Portunus segnis is first reported from the Gulf of Gabes, from where it was considered as casual. Malta: the alien flatworm Maritigrella fuscopunctata is first recorded from the Mediterranean Sea on the basis of 25 specimens. At the same time, web researches held possible unpublished records from Israel and Lebanon. The alien crab P. segnis, already mentioned above, is first formally reported from Malta based on specimens collected in 1972. Concomitantly, the presence of Callinectes sapidus in Maltese waters is excluded since based on misidentifications. Greece: the Atlantic northern brown shrimp Penaeus atzecus, previously known from the Ionian Sea from sporadic records only, is now well established in Greek and international Ionian waters. The alien sea urchin Diadema setosum is reported from the second time from Greece, and its first record date from the country is backdated to 2010 in Rhodes Island. The alien lionfish Pterois miles is first reported from Greece and

  9. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    Full Text Available The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly

  10. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    Science.gov (United States)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  11. Interrogating the Mediterranean 'Migration Crisis'

    NARCIS (Netherlands)

    Pallister-Wilkins, P.

    2016-01-01

    This Forum aims to uncover the socio-politics of the ‘migration crisis’ in the Mediterranean. The contributions explore the idea of the ‘migration crisis’ or ‘refugee crisis’ in the Mediterranean from the starting point that as scholars of the Mediterranean we can do two things: one, we can look at

  12. Interconnectivity vs. isolation of prokaryotic communities in European deep-sea mud volcanoes

    Directory of Open Access Journals (Sweden)

    M. G. Pachiadaki

    2012-12-01

    Full Text Available By exploiting the available data on 16S rRNA gene sequences – spanning over a sampling period of more than 10 yr – retrieved from sediments of the Haakon Mosby mud volcano (HMMV, Gulf of Cadiz (GoC and eastern Mediterranean (Amsterdam and Kazan mud volcanoes; AMSMV, KZNMV mud volcanoes/pockmarks, we investigated whether these systems are characterized by high (interconnectivity or low (isolation connection degree based on shared bacterial and archaeal phylotypes. We found only two archaeal and two bacterial phylotypes to occur in all three sites and a few more that were found in two of the three sites. Although the number of shared species depends a lot on the analysis depth of each sample, the majority of the common phylotypes were related mostly to cold seep deep-sea habitats, while for some of them their relative abundance was high enough to be considered as key-species for the habitat they were found. As new tools, like next generation sequencing platforms, are more appropriate for revealing greater depth of diversity but also allow sample replication and uniform sampling protocols, and gain wider recognition and usage, future attempts are more realistic now for fully elucidating the degree of specificity in deep-sea mud volcanoes and pockmarks microbial communities.

  13. Biogeography of Mediterranean Invasions

    Science.gov (United States)

    Groves, R. H.; di Castri, F.

    The Mediterranean basin, California, Chile, the western Cape of South Africa, and southern Australia share a Mediterranean climate characterized by cool, wet winters and hot, dry summers. These five regions have differing patterns of human settlement, but similarities in natural vegetation and some faunal assemblages. These likenesses are enhanced with time by an increasing level of biotic exchange among the regions. An initiative of a subcommittee of SCOPE (Scientific Committee on Problems of the Environment), which realized that the integrity of many natural ecosystems is being threatened by the ingress of invasive species, this book uniquely documents the introduced floras and faunas, especially plants, buds, and mammals, in these five regions of Mediterranean climate, and aims to increase our understanding of the ecology of biological invasions. In doing so, it points a way to more effectively manage the biota of these regions.

  14. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep

    NARCIS (Netherlands)

    Heijs, Sander K.; Haese, Ralf R.; van der Wielen, Paul W. J. J.; Forney, Larry J.; van Elsas, Jan Dirk

    2007-01-01

    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbia

  15. Deception and the Mediterranean Campaigns of 1943-1944

    Science.gov (United States)

    1986-03-31

    contemporary military operations. -: Vr .4 4 l! IliiII I/ i l i ACKNOWLEDGEMENTS This military study project was produced under the sponsorship of the US Army...of dummy landing craft in that area. "A" Force formed a committee consisting of Srepresentatives of the Medit rranean Air Command, CINC Mediterranean...turning both flanks - on the east from the land and on the west from the sea- and, to hold strategic reserves in the Eastern Mediter - ranean and the

  16. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    Directory of Open Access Journals (Sweden)

    H. Mahadeva Iyer

    1994-06-01

    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  17. Long-Period seismic events at Ubinas Volcano (Peru): their implications and potentiality as monitoring tool

    Science.gov (United States)

    Zandomeneghi, D.; Inza, A.; Metaxian, J.-P.; Macedo, O.

    2012-04-01

    Ubinas volcano (Southern Peru) is an active andesitic stratovolcano, located 75 km East of Arequipa City, with an average occurrence of 6-7 eruptions per century and persistent fumarolic and phreatic activity. The most recent eruption, accompanied by explosions and by the extrusion of a lava dome, started on March 2006 with an increase of seismicity and observed fumarole occurrence followed in April by more intense explosions, recorded until May 2009. To monitor the volcanic activity, the Geophysical Institute of Peru and the Institut de Recherche pour le Développment (France), built up a seismic network around the volcano, installing 4 permanent stations and deploying 8 supplementary temporary broadband seismometers. In addition, in the period May to July 2009, a seismic experiment was carried out on the volcano flanks with 2 cross-shaped dense antennas with broadband seismometers. As the seismic activity was characterized by recurring low-frequency waveforms, we identify their pattern of occurrence through waveform cross-correlation technique, with respect to major eruptive phases and other observations (as volcano ground deformation from tiltmeters, volcanic product composition, etc). Once established their likely association with the eruptive sequence, we utilize both local network and dense-array data and analyze their location, changes in location, spectral content variations and possible physical explanation. The final aim is to introduce this kind of analysis as quantitative tool to understand ongoing eruptive phases at andesitic volcanoes and possibly to forecast magma/fluid significant movements.

  18. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  19. Eastern Mediterranean Natural Gas: Analyzing Turkey’s Stance

    Directory of Open Access Journals (Sweden)

    Abdullah Tanrıverdi

    2013-10-01

    Full Text Available Recent large-scale natural gas discoveries in East Mediterranean have drawn attention to the region. The discoveries caused both hope and tension in the region. As stated, the new resources may serve as a new hope for all relevant parties as well as the region if managed in a collaborative and conciliatory way. Energy may be a remedy to Cyprus’ financial predicament, initiate a process for resolving differences between Turkey and Cyprus, normalize Israel-Turkey relations and so on. On the contrary, adopting unilateral and uncooperative approach may aggravate the tension and undermine regional stability and security. In this sense, the role of energy in generating hope or tension is dependent on the approaches of related parties. The article will analyze Turkey’s attitude in East Mediterranean case in terms of possible negative and positive implications for Turkey in the energy field. The article examines Turkey’s position and the reasons behind its stance in the East Mediterranean case. Considering Turkey’s energy profile and energy policy goals, the article argues that the newly found hydrocarbons may bring in more stakes for Turkey if Turkey adopts a cooperative approach in this case.

  20. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  1. Modeling eruptions of Karymsky volcano

    OpenAIRE

    Ozerov, A.; Ispolatov, I.; Lees, J.

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of...

  2. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  3. Mediterranean Outflow Mixing Dynamics

    Science.gov (United States)

    1993-02-01

    tugal. G. Parrnlla is at Instituto EspaWol Oceanografia , Fig. 2A. [Adapted from (36)] (C) The maximum observed velocity of outflow currents in the eastern...its sur- Oceanografia Fisica del Estrecho de Gibraltar, J. of Mediterranean water that we observed at the roundings (34) and retains its chemical L

  4. The Mediterranean basin

    DEFF Research Database (Denmark)

    Tomas, Carmen; Sanchez Sanchez, Juan Jose; Barbaro, A.;

    2008-01-01

    The X-chromosome has valuable characteristics for population genetic studies. In order to investigate the genetics of the human Mediterranean populations further, we developed a 25 X-chromosome SNP-multiplex typing system. The system was based on PCR multiplex amplification and subsequent multipl...

  5. Continuous monitoring of Hawaiian volcanoes using thermal cameras

    Science.gov (United States)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with

  6. Campgrounds in Hawaii Volcanoes National Park

    Data.gov (United States)

    National Park Service, Department of the Interior — This dataset provides campground locations in Hawaii Volcanoes National Park. Information about facilities, water availability, permit requirements and type of...

  7. TERENO-MED: Terrestrial Environmental Observatories in the Mediterranean Region

    Science.gov (United States)

    Krueger, Elisabeth; Friesen, Jan; Kallioras, Andreas; Bogena, Heye; Devaraju, Anusuriya; Vereecken, Harry; Teutsch, Georg

    2013-04-01

    The Mediterranean region is one of the most imperilled regions in the world concerning present and future water scarcity. The region is delicately positioned at the crossroads between East and West, interlinking Europe, Asia and Africa. Societal and economic changes causing population growth, industrialisation and urbanisation lead to significant increases in food, water and energy demand. Hence, natural resources, such as water and soils, as well as ecosystems are put under pressure and water availability and quality will be severely affected in the future. At the same time, climate and extreme event projections from climate models for the Mediterranean are, unlike for most regions worldwide, consistent in their trends based on various scenarios. This consistency in the model predictions shows that the Mediterranean will face some of the most severe increases in dryness worldwide (based on consecutive dry days and soil moisture), and indicate a decrease of up to 50 % in available water resources within the next 50-100 years. These developments are accentuated by the fact that in many of the Mediterranean countries, natural renewable water resources are fully exploited or over-exploited already today, mainly due to agricultural irrigation, but also touristic activities. At the same time, the Mediterranean region is a global hot spot of freshwater biodiversity, with a high proportion of endemic and endangered species. While trend projections for water availability and climate change derived from global studies are consistent, regional patterns and heterogeneities, as well as local adaptation measures will largely determine the functioning of societies and the health of ecosystems. However, a lack of environmental data prohibits the development of sustainable adaptation measures to water scarcity on a scientific basis. Building on the experiences gained in the national TERENO network, a Mediterranean observatory network will be set-up, coordinated by two Helmholtz

  8. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  9. Glacial cycles and the growth and destruction of Alaska volcanoes

    Science.gov (United States)

    Coombs, M. L.; Calvert, A. T.; Bacon, C. R.

    2014-12-01

    -avalanche deposit from Spurr directly overlies bedrock, suggesting that edifice collapse closely followed MIS 2. The geologic history of Veniaminof suggests possible massive edifice collapse following MIS 6. A stack of westward-dipping lavas and breccias on the east flank of Redoubt Volcano erupted during MIS 6, and may have also failed during the major deglaciation of MIS 5.5.

  10. Explore Mediterranean in classroom

    Science.gov (United States)

    Balesevic, Ivana

    2017-04-01

    I am a science teacher at a primary school and my students are very interested in science. Through this year I will work with my students, organizing several workshops and or results will be presented on poster. I will work with several groups (4-6) students 8th grade. In this poster all activities will be presented, showing how science is easy to learn even in a classroom. 1. Workshop > Chemical characteristic of sea water Using school laboratory each group of students will analyze the physical and chemical characteristic of sea water and they have to explain the results to younger student's 5th and 6th grade. The final result will be presented on poster. 2. Workshop> Meet the Mediterranean life During this workshop students will work in different groups. The aim of the workshop is to meet lots of species that we can find in Mediterranean using movies, phone applications, internet explorer, science books and school collections of invertebrates … 3. Workshop>Stop the pollution Several groups of students have to debate about causes of pollution and possibilities for prevention. At the end of workshop we will organize a quiz. Student's answers and suggestions will be shown on the poster. 4. Workshop> How we see the Mediterranean During this workshop students will make models of Mediterranean in 2d and 3d perspective, using different materials. They can show on models parts of Mediterranean area, country, sea... After making models students need to visit 5th and 6th grade classes, to show them and explain the final results. Few models will be presented on poster

  11. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  12. There are many Mediterranean diets.

    Science.gov (United States)

    Noah, A; Truswell, A S

    2001-01-01

    Interest in Mediterranean diet began 30 years ago, when Ancel Keys published the results of the famous Seven Countries Study, Since 1945, almost 1.3 million people have come to Australia from Mediterranean countries as new settlers. There are 18 countries with coasts on the Mediterranean sea: Spain, southern France, Italy, Malta, Croatia, Bosnia, Albania, Greece, Cyprus, Turkey, Syria, Lebanon, Egypt, Libya, Malta, Tunisia, Algeria and Morocco. This study from which this report derives aims to investigate the influence of the food habits of immigrants from Mediterranean countries on Australian food intake. Here we look at the 'traditional' food habits of the above Mediterranean countries as told by 102 people we interviewed in Sydney, who came from 18 Mediterranean countries to Sydney. Most of the informants were women, their age ranged from 35 to 55 years. The interview was open-ended and held in the informant's home. It usually lasted around 1 1/2 hours. The interview had three parts. Personal information was obtained, questions relating to the food habits of these people back in their original Mediterranean countries and how their food intake and habits have changed in Australia were also asked. From the interviews, we have obtained a broad picture of 'traditional' food habits in different Mediterranean countries. The interview data was checked with books of recipes for the different countries. While there were similarities between the countries, there are also important differences in the food habits of the Mediterranean countries. Neighbouring countries' food habits are closer than those on opposite sides of the Mediterranean Sea. We suggest that these food habits can be put into four groups. The data here refer to food habits in Mediterranean countries 20 or 30 years ago, as they were recovering from the Second World War. There is no single ideal Mediterranean diet. Nutritionists who use the concept should qualify the individual country and the time in

  13. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    Science.gov (United States)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  14. Dynamics of degassing at Kilauea Volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Vergniolle, S.; Jaupart, C. (Univ. Paris 7 (France))

    1990-03-10

    In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The bubbles in the foam deform under the action of buoyancy. If the critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, suface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna Ulu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km{sup 2}. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 10{sup 3} kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  15. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  16. Genetics Home Reference: familial Mediterranean fever

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions familial Mediterranean fever familial Mediterranean fever Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Familial Mediterranean fever is an inherited condition characterized by recurrent episodes ...

  17. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  18. Sulphur dioxide from Nyiragongo volcano measured from UV camera

    Science.gov (United States)

    Brenot, Hugues; Theys, Nicolas; Minani, Abel; d'Oreye, Nicolas; Yalire Mapendano, Mathieu; Syauswa, Muhindo; Celli, Gilles; Kervyn, François; Van Roozendael, Michel

    2017-04-01

    Nyiragongo and Nyamuragira, DR Congo, are the most active African volcanoes, and pose a direct threat to local populations. The Remote Sensing and In Situ Detection and Tracking of Geohazards project (RESIST; http://resist.africamuseum.be) aims at a more in-depth understanding of the source mechanisms driving volcanic eruptions and landslides in the Kivu region. A key objective of RESIST is to combine complementary data sets from ground-based instrument networks (seismic, infrasound, GNSS), field surveys and Earth Observation techniques (SAR, DOAS, TRMM) to obtain added value information. This study focuses on retrieving the emission of sulphur dioxide from Nyiragongo, using a ground-based fast sampling UV camera (Envicam3) providing insight on emissions changes, at different temporal scales. This camera has been installed in December 2015 at Rusayo site, located 8 km on the south-east side of Nyiragongo volcano. The view of the camera is generally perpendicular to the mean direction of the wind in this area (NW-SE) giving an opportunity for estimating the SO2 flux emitted from this volcano. However the Kivu region is a tricky area for operating such an instrument (societal and meteorological reasons). The ideal cloud free conditions are extremely rare in this place and usually restricted to some early morning or the late afternoon time windows. The technique to retrieve SO2 emission from the UV images requires some knowledge about the background in order to apply the necessary correction. The camera is operating automatically from a fixed point. No clear sky data can be measured on a daily routine. The only way to obtain the background correction is to implement a synthetic background. An automatized strategy to obtain such background will be presented and illustrated with the analysis of one year of data.

  19. Newberry Volcano's youngest lava flows

    Science.gov (United States)

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    Most of Newberry Volcano's youngest lava flows are found within the Newberry National Volcanic Monument in central Oregon. Established November 5, 1990, the monument is managed by the U.S. Forest Service as part of the Deschutes National Forest. Since 2011, a series of aerial surveys over the monument collected elevation data using lidar (light detection and ranging) technology, which uses lasers to directly measure the ground surface. These data record previously unseen detail in the volcano’s numerous lava flows and vents. On average, a laser return was collected from the ground’s surface every 2.17 feet (ft) with ±1.3 inches vertical precision.

  20. Carbon storage of Mediterranean grasslands

    OpenAIRE

    Corona, Piermaria; Badalamenti, Emilio; Pasta, Salvatore; La Mantia, Tommaso

    2016-01-01

    Secondary grasslands are one of the most common vegetation types worldwide. In Europe, and in the Mediterranean basin, human activities have transformed many woodlands into secondary grasslands. Despite their recognized role in the global carbon cycle, very few data are available for estimating the biomass of Mediterranean grasslands. We developed linear regression models in order to predict the biomass of two native Mediterranean grasses (Ampelodesmos mauritanicus and Hyparrhenia hirta) and ...

  1. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    Science.gov (United States)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  2. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    accessibility and good exposure of lavas, combined with physical and petrologic evidence for multiple and varied mafic inputs, has created an unusual opportunity to understand the workings of this large magmatic system. A combined total of more than 25 intrusive and extrusive events are indicated for late Holocene time. Plutonic inclusions, some with ages as young as Holocene, were also brought to the surface in five of the eruptions. All eruptions took place along northwest- to northeast-trending alignments of vents, reflecting the overall east-west extensional tectonic environment. The interaction of tectonism and volcanism is a dominant influence at this subduction-related volcano, located where the west edge of the extensional Basin and Range Province impinges on the Cascades arc. Ongoing subsidence focused at the central caldera has been documented along with geophysical evidence for a small magma body. This evidence, combined with the frequency of eruptive and intrusive activity in late Holocene time, an active geothermal system, and intermittent long-period seismic events indicate that the volcano is likely to erupt again.

  3. Plume composition and volatile flux from Nyamulagira volcano

    Science.gov (United States)

    Calabrese, Sergio; Bobrowski, Nicole; Giuffrida, Giovanni Bruno; Scaglione, Sarah; Liotta, Marcello; Brusca, Lorenzo; D'Alessandro, Walter; Arellano, Santiago; Yalire, Matiew; Galle, Bo; Tedesco, Dario

    2015-04-01

    Nyamulagira, in the Virunga volcanic province (VVP), Democratic Republic of Congo, is one of the most active volcanoes in Africa. The volcano is located about 25 km north-northwest of Lake Kivu in the Western Branch of the East African Rift System (EARS). The activity is characterized by frequent eruptions (on average, one eruption every 2-4 years) which occur both from the summit crater and from the flanks (31 flank eruptions over the last 110 years). Due to the peculiar low viscosity of its lava and its location in the floor of the rift, Nyamulagira morphology is characterized by a wide lava field that covers over 1100 km2 and contains more than 100 flank cones. Indeed, Nyamulagira is a SiO2- undersaturated and alkali-rich basaltic shield volcano with a 3058 m high summit caldera with an extension of about 2 km in diameter. In November 2014 a field expedition was carried out at Nyamulagira volcano and we report here the first assessment of the plume composition and volatile flux from Nyamulagira volcano. Helicopter flights and field observations allowed us to recognize the presence of lava fountains inside an about 350-meter wide pit crater. The lava fountains originated from an extended area of about 20 to 40 m2, in the northeast sector of the central caldera. A second smaller source, close to the previous described one, was clearly visible with vigorous spattering activity. There was no evidence of a lave lake but the persistence of intense activity and the geometry of the bottom of the caldera might evolve in a new lava lake. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles, halogens and trace elements. We deployed a portable MultiGAS station at the rim of Nyamulagira crater, measuring (at 0.5 Hz for about 3 hours) the concentrations of major volcanogenic gas species in the plume (H2O, CO2, SO2, H2S). Simultaneously, scanning differential optical absorption spectroscopy instruments were

  4. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  5. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  6. Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae.

    Science.gov (United States)

    Olive, Graham; Rodrigues, Clara F; Cunha, Marina R

    2011-01-01

    The chemosymbiotic bivalves collected from the mud volcanoes of the Gulf of Cadiz are reviewed. Of the thirteen species closely associated with chemosynthetic settings two Solemyidae, Solemya (Petrasma) elarraichensissp. n. and Acharax gadiraesp. n., one Lucinidae, Lucinoma asapheussp. n., and one Vesicomyidae, Isorropodon megadesmussp. n. are described and compared to close relatives of their respective families. The biodiversity and distribution of the chemosymbiotic bivalves in the Gulf of Cadiz are discussed and compared to the available information from other cold seeps in the Eastern Atlantic and Mediterranean. Although there is considerable similarity at the genus level between seep/mud volcano fields in the Eastern Atlantic and Mediterranean, there is little overlap at the species level. This indicates a high degree of endemism within chemosymbiotic bivalve assemblages.

  7. Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae

    Directory of Open Access Journals (Sweden)

    Graham Oliver

    2011-06-01

    Full Text Available The chemosymbiotic bivalves collected from the mud volcanoes of the Gulf of Cadiz are reviewed. Of the thirteen species closely associated with chemosynthetic settings two Solemyidae, Solemya (Petrasma elarraichensis sp. n. and Acharax gadirae sp. n., one Lucinidae, Lucinoma asapheus sp. n., and one Vesicomyidae, Isorropodon megadesmus sp. n. are described and compared to close relatives of their respective families. The biodiversity and distribution of the chemosymbiotic bivalves in the Gulf of Cadiz is discussed and compared to the available information from other cold seeps in the Eastern Atlantic and Mediterranean. Although there is considerable similarity at the genus level between seep/mud volcano fields in the Eastern Atlantic and Mediterranean, there is little overlap at the species level. This indicates a high degree of endemism within chemosymbiotic bivalve assemblages.

  8. Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany

    Science.gov (United States)

    Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina

    2015-07-01

    The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.

  9. New Mediterranean Biodiversity Records (July 2015

    Directory of Open Access Journals (Sweden)

    K. TSIAMIS

    2015-07-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of native and alien species respectively. The new records of native species include: the neon flying squid Ommastrephes bartramii in Capri Island, Thyrrenian Sea; the bigeye thresher shark Alopias superciliosus in the Adriatic Sea; a juvenile basking shark Cetorhinus maximus caught off Piran (northern Adriatic; the deep-sea Messina rockfish Scorpaenodes arenai in the National Marine Park of Zakynthos (East Ionian Sea, Greece; and the oceanic puffer Lagocephalus lagocephalus in the Adriatic Sea.The new records of alien species include: the red algae Antithamnionella elegans and Palisada maris-rubri, found for the first time in Israel and Greece respectively; the green alga Codium parvulum reported from Turkey (Aegean Sea; the first record of the alien sea urchin Diadema setosum in Greece; the nudibranch Goniobranchus annulatus reported from South-Eastern Aegean Sea (Greece; the opisthobranch Melibe viridis found in Lebanon; the new records of the blue spotted cornetfish Fistularia commersonii in the Alicante coast (Eastern Spain; the alien fish Siganus luridus and Siganus rivulatus in Lipsi Island, Dodecanese (Greece; the first record of Stephanolepis diaspros from the Egadi Islands Marine Protected Area (western Sicily; a northward expansion of the alien pufferfish Torquigener flavimaculosus along the southeastern Aegean coasts of Turkey; and data on the occurrence of the Lessepsian immigrants Alepes djedaba, Lagocephalus sceleratus and Fistularia commersonii in Zakynthos Island (SE Ionian Sea, Greece.

  10. What shapes amino acid and sugar composition in Mediterranean floral nectars?

    NARCIS (Netherlands)

    Petanidou, T.; Van Laere, A.; Ellis, W.; Smets, E.

    2006-01-01

    We studied the amino acid (AA) composition of the floral nectars of 73 plant species occurring in a phryganic (East Mediterranean garrigue) community and investigated whether AA and sugar composition is shaped by evolutionary (plant phylogeny), ecological (flowering time as a direct effect of summer

  11. Patterns in planktonic metabolism in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    A. Regaudie-de-Gioux

    2009-12-01

    Full Text Available Planktonic gross community production (GPP, net community production (NCP and community respiration (CR across the Mediterranean Sea was examined in two cruises, Thresholds 2006 and 2007, each crossing the Mediterranean from West to East to test for consistent variation along this longitudinal gradient in late spring to early summer. GPP averaged 2.4±0.4 mmol O2 m−3 d−1, CR averaged 3.8±0.5 mmol O2 m−3 d−1, and NCP averaged – 0.8±0.6 mmol O2 m−3 d−1 across the studied sections, indicative of a tendency for a net heterotrophic metabolism in late spring to early summer, prevalent across studied sections of the Mediterranean Sea as reflected in 70% of negative NCP estimates. The median P/R ratio was 0.6, also indicating a strong prevalence of heterotrophic communities (P/R<1 along the studied sections of the Mediterranean Sea. The communities tended to be net heterotrophic (i.e. P/R<1 at GPP less than 2.8 mmol O2 m−3 d−1. The Western Mediterranean tended to support a higher gross primary production and community respiration than the Eastern basin did, but these differences were not statistically significant (t-test, p>0.05. The net heterotrophy of the studied sections of the Mediterranean Sea indicates that allochthonous carbon should be important to subsidise planktonic metabolism during the late spring.

  12. SMED - Sulphur MEditerranean Dispersion

    Science.gov (United States)

    Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro

    2016-04-01

    Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model

  13. Sprite Climatology in the Eastern Mediterranean Region

    Science.gov (United States)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.

  14. Space-time variability of alkalinity in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Cossarini

    2014-09-01

    Full Text Available The paper provides a basin assessment of the spatial distribution of ocean alkalinity in the Mediterranean Sea. The assessment is made using a 3-D transport-biogeochemical-carbonate model to integrate the available experimental findings, which also constrains model output. The results indicate that the Mediterranean Sea shows alkalinity values that are much higher than those observed in the Atlantic Ocean on a basin-wide scale. A marked west-to-east surface gradient of alkalinity is reproduced as a response to the terrestrial discharges, the mixing effect with the Atlantic water entering from the Gibraltar Strait and the Black Sea water from Dardanelles, and the surface flux of evaporation minus precipitation. Dense water production in marginal seas (Adriatic and Aegean Seas, where alkaline inputs are relevant, and the Mediterranean thermohaline circulation sustains the west-to-east gradient along the entire water column. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1 that is driven both by physical and biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships. In regions of freshwater influence, the two measures are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open seas. Alkalinity always is much higher than in the Atlantic waters, which might indicate a higher than usual buffering capacity towards ocean acidification, even at high concentrations of dissolved inorganic carbon.

  15. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  16. Indications of low macrobenthic activity in the deep sediments of the eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Daniela Basso

    2004-12-01

    Full Text Available The fluxes and budget of organic matter from the oligotrophic surface waters of the eastern Mediterranean to the deep waters are poorly known, and little information is available on past and present macrobenthic activity on the sea floor. Evidence of macrobenthic activity can be direct, through recovery of living organisms or their autochthonous skeletal remains, or indirect, through bioturbation and trace fossils. The evidence of biological activity in deep eastern Mediterranean sediments has been evaluated and compared through 210Pb profiles from box-cores and study of dredge samples from sites on Medina Rise (1374 m water depth, the Messina Abyssal Plain (4135 m and several sites along the Mediterranean Ridge, SW and S of Crete (1783 to 3655 m. All these sites are remote from the continental shelves, so the biological benthic activity is expected to depend primarily on primary production from surface waters. The results show that present-day macrobenthos and trace fossils are generally scarce, especially at depths > 2500 m. This observation is supported by surface sediment 210Pb excess distributions that show a surface mixed layer (SML 2500 m. The historical layer of some box-cores and the Pleistocene hardgrounds collected in the Cleft area (Mediterranean Ridge do, however, record a macrobenthic activity that is apparently more intense than at present, which may be related to higher primary production of the Pleistocene glacial intervals. In contrast with most areas of the present-day deep eastern Mediterranean which depend on surface primary production based on photosynthesis, a relatively dense and diversified macrobenthic community based on chemosynthesis has been recognised at depths > 1100 m on the Napoli Dome mud volcano in the Olimpi area, and on the Kazan and other mud volcanoes in the Anaximander Mountains.

  17. Mediterranean basin-wide correlations between Saharan dust deposition and ocean chlorophyll concentration

    Directory of Open Access Journals (Sweden)

    R. Gallisai

    2012-07-01

    Full Text Available The fertilizing potential of atmospheric deposition on ocean production in the Mediterranean is a matter of debate. In this study, eight years (from 2000 to 2007 of weekly chlorophyll concentration data derived from SeaWiFS satellite observations and dust deposition data provided by the BSC-DREAM8b model are investigated in a basin-wide scale in the Mediterranean Sea to describe the geographical distribution and dynamics of both variables and to find potential relationships between them.

    In all analyses the largest positive cross correlation values are found with a time lag of 0 8-d periods. The coupling between annual cycles of chlorophyll and dust deposition may on average explain an 11.5% in chlorophyll variation in a large part of the Mediterranean. The Eastern Mediterranean shows the largest annual correlations, while the responsiveness to large events is small. The contrary is true for the Western and Northwestern Mediterranean where, if anything, only large events may add to the chlorophyll variability. The Central Mediterranean shows the highest responsiveness of chlorophyll to mineral dust deposition with annual contributions from seasonal variability as well as stimulations owing to large events.

    These results highlight the importance of dust deposition from African and Middle East origin in the potential stimulation of phytoplankton production in the nutrient depleted surface layers of the Mediterranean Sea.

  18. Sustainable management for the eastern Mediterranean coast of Turkey.

    Science.gov (United States)

    Berberoglu, Süha

    2003-03-01

    The objective of this article is to propose a program for the integrated coastal zone management that is required to stimulate and guide sustainable development of the Mediterranean coastal zone of Turkey. Improved data collection, quality control, analysis, and data management will provide a firm basis for future scientific understanding of the East Mediterranean coast of Turkey and will support long-term management. Various innovative procedures were proposed for a promising ecosystem-based approach to manage coastal wetlands in the Mediterranean: remote data acquisition with new technologies; environmental quality monitoring program that will provide a baseline for monitoring; linking a Geographic Information System (GIS) with natural resource management decision routines in the context of operational wetlands, fisheries, tourism management system; environmental sensitivity analysis to ensure that permitted developments are environmentally sustainable; and use of natural species to restore the wetlands and coastal dunes and sustain the system processes. The proposed management scheme will benefit the scientific community in the Mediterranean and the management/planning community in Eastern Turkey.

  19. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  20. 2003 Eruption of Chikurachki Volcano, Paramushir Island, Northern Kuriles, Russia

    Science.gov (United States)

    Schneider, D. J.; Girina, O. A.; Neal, C. A.; Kotenko, L.; Terentiev, N. S.; Izbekov, P.; Belousov, I.; Senyukov, S.; Ovsyannikov, A. A.

    2003-12-01

    Chikurachki Volcano in the northern Kurile Islands erupted for the second time in two years in mid-April 2003. Although the Kamchatka Volcanic Eruptions Response Team (KVERT) received word of a possible eruption from residents of Paramushir Island on April 17, poor weather precluded confirmation of volcanic activity, and the exact start date is uncertain. On April 18, during routine satellite image analysis, the Alaska Volcano Observatory (AVO) detected an ash cloud from Chikurachki in GMS data and immediately notified the Federal Aviation Administration (FAA), National Weather Service, and other agencies. Subsequent formal alerts were issued through aviation and meteorological channels as outlined in the Alaska Interagency Operating Plan for Volcanic Ash Episodes. Thermal infrared imagery and trajectory models suggested the initial cloud was relatively low-level (below 25,000 ft ASL), however this height was not well constrained. Over the next several months, activity at Chikurachki consisted largely of strombolian bursts producing intermittent ash clouds reaching heights of generally less than 10-13,000 ft. ASL. Ash fall was noted as far as 60 km downwind. The last confirmed eruptive activity was June 16, 2003. During the eruption, AVHRR, MODIS, and GMS satellites captured images of the ash cloud as far as 300 km generally east and southeast of the volcano in the region heavily traveled North Pacific air routes. The propagation of volcanic clouds was monitored using visual and infrared channels and included a routine split-window analysis. Weak thermal anomalies were detected in AVHRR images suggesting minimal effusive activity near the central vent. Over the course of the eruption, aviation and meteorological authorities in Russia, the U.S., and Japan issued official notices regarding the eruption and the position and estimated height of the ash plume. Impacts to aviation were minor due to the low-level and intermittent nature of the eruption. Chikurachki is a

  1. Augustine Volcano, Cook Inlet, Alaska (January 31, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. In the last week, volcanic flows have been seen on the volcano's flanks. An ASTER thermal image was acquired at night at 22:50 AST on January 31, 2006, during an eruptive phase of Augustine. The image shows three volcanic flows down the north flank of Augustine as white (hot) areas. The eruption plume spreads out to the east in a cone shape: it appears dark blue over the summit because it is cold and water ice dominates the composition; further downwind a change to orange color indicates that the plume is thinning and the signal is dominated by the presence of ash. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion

  2. Analysis of Vulnerability Around The Colima Volcano, MEXICO

    Science.gov (United States)

    Carlos, S. P.

    2001-12-01

    agriculture and forestry, mainly in the east hillslope of the volcano is another factor that generate remoulded material that in the event of an extraordinary rainsfall during an explosive events, could increase the size of the lahar or generate flows of mud that may affect the towns, villages (like Atenquique, which has been affected in 1957 by a large lahar), and could generate strong damages to the communication lines affecting distant places as Guadalajara city and the Port of Manzanillo.

  3. Reviving the Mediterranean Olive Community

    Science.gov (United States)

    Zaferatos, Nicholas C.

    2011-01-01

    This article presents the findings of a collaborative investigation by six nongovernment organisations (NGOs) from five European-Mediterranean countries to identify a framework for reversing rural marginalisation in Mediterranean communities through sustainable forms of community-based agricultural development. The project brought together…

  4. Reexamination of the ancient literature on activities of Kuju volcano, central Kyushu, Japan; Kuju kazan no rekishi jidai no katsudo kiroku no saikento

    Energy Technology Data Exchange (ETDEWEB)

    Imura, R.; Kamata, H. [Geological Survey of Japan, Tsukuba (Japan)

    1996-04-25

    In order to identify activities of Kuju Volcano in historic times, reviews were given on records with reference to original literature of historical documents. Kuju Volcano has erupted in October 1995, and rows of craters lying from east to west were created near the place called Mt. Iou on a hillside of the volcano. The smoke from the craters reached as high as 1000 meters in the air, and the ash fall was observed in the city of Kumamoto which is 60 km away from the volcano. Many of what has been recorded conventionally as eruption records of Kuju Volcano are surmised to have described explosions of eruptive gases on the surface area or events of gas bursts. They are not thought to be describing such eruptions as ones gushing a great amount of volcanic ash. Therefore, the activity in 1995 of Kuju Volcano that has created new rows of craters in points several hundred meters away from the eruptive gas area, and caused ash fall that accumulated thinly in surround area has a possibility that the eruption was the one much greater than those written in the records that have been known to date, rather than the one first in 257 years. Activities of Kuju Volcano in historic times must be evaluated quantitatively by continuing excavation of new historic materials and geological verifications. 25 refs.

  5. Volcanoes

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  6. Redoubt Volcano: 2009 Eruption Overview

    Science.gov (United States)

    Bull, K. F.

    2009-12-01

    Redoubt Volcano is a 3110-m glaciated stratovolcano located 170 km SW of Anchorage, Alaska, on the W side of Cook Inlet. The edifice comprises a oil production in Cook Inlet was halted for nearly five months. Unrest began in August, 2008 with reports of H2S odor. In late September, the Alaska Volcano Observatory (AVO)’s seismic network recorded periods of volcanic tremor. Throughout the fall, AVO noted increased fumarolic emissions and accompanying ice- and snow-melt on and around the 1990 dome, and gas measurements showed elevated H2S and CO2 emissions. On January 23, seismometers recorded 48 hrs of intermittent tremor and discrete, low-frequency to hybrid events. Over the next 6 weeks, seismicity waxed and waned, an estimated 5-6 million m3 of ice were lost due to melting, volcanic gas emissions increased, and debris flows emerged repeatedly from recently formed ice holes near the 1990 dome, located on the crater’s N (“Drift”) side. On March 15, a phreatic explosion deposited non-juvenile ash from a new vent in the summit ice cap just S of the 1990 dome. Ash from the explosion rose to ~4500 m above sea level (asl). The plume was accompanied by weak seismicity. The first magmatic explosion occurred on March 22. Over the next two weeks, more than 19 explosions destroyed at least two lava domes and produced ash plumes that reached 6-18 km asl. Tephra was deposited along variable azimuths including trace to minor amounts on Anchorage and Kenai Peninsula communities, and reached Fairbanks, ~800 km to the N. Several lahars were produced by explosive disruption and melting of the “Drift” glacier. The largest lahars followed explosions on March 23 and April 4 and inundated the Drift River valley to the coast, causing temporary evacuation of the Drift River Oil Terminal, ~40 km from the vent. Time-lapse images captured pyroclastic flows and lahars in the “Drift” glacier valley during several of the explosions. Ballistics and pyroclastic flow deposits were

  7. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  8. Familial Mediterranean Fever (FMF

    Directory of Open Access Journals (Sweden)

    Onur Albayrak

    2009-08-01

    Full Text Available Familial Mediterranean Fever (FMF is an autosomal recessive genetic disease that affects males and females. FMF gene is on the short arm of chromosome 16. It is most often found in Jews, Arabs, Turks, and Armenians. Amyloidosis is charecterized by the deposition of a particular protein between the cells in the tissue. It is a potentially serious complication of FMF. The kidney is a prime target for the amyloid. [Archives Medical Review Journal 2009; 18(4.000: 260-267

  9. Dynamics of degassing at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Vergniolle, Sylvie; Jaupart, Claude

    1990-03-01

    At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield

  10. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  11. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  12. The Volcano Disaster Assistance Program (VDAP) - Past and Future

    Science.gov (United States)

    Ewert, J. W.; Pallister, J. S.

    2010-12-01

    For 24 years the U.S. Geological Survey and USAID’s Office of Foreign Disaster Assistance have supported a small team of scientists and the monitoring equipment required to respond to volcanic crises at short notice anywhere in the world. This VDAP team was founded following the 1985 tragedy at Nevado del Ruiz, where 23,000 perished following an eruption-triggered lahar that swept through the town of Armero, Colombia. Through its first two decades, VDAP has deployed teams and equipment to assist host-country counterparts in responding to volcanic eruptions and unrest at numerous volcanoes in Central and South America, the Caribbean, the Western Pacific and Africa and the Middle East. VDAP and the larger USGS Volcano Hazards Program (VHP) have a synergistic relationship. VDAP contributes to domestic eruption responses (e.g., Anatahan, Commonwealth of the Marianas Islands (2003-05), Mount St. Helens (2004) and several Alaskan eruptions). In turn, when VDAP lacks sufficient capability, the larger USGS Volcano Hazards Program provides a “backstop” of staff and expertise to support its international work. Between crises, VDAP conducts capacity-building projects, including construction of volcano-monitoring networks and education programs in monitoring, hazard assessment and eruption forecasting. Major capacity-building projects have focused on Central and South America (1998-present), Papua New Guinea (1998-2000) and Indonesia (2004-present). In all cases, VDAP scientists work in the background, providing support to counterpart agencies and representing the U.S. Government as scientist-diplomats. All VDAP monitoring equipment (whether used in crisis response or in capacity building) is donated to counterpart agencies as a form of U.S. foreign aid. Over the years, VDAP has helped build and sustain volcano observatories and monitoring programs in more than a dozen countries. As observatories, monitoring networks, and the science of volcanology and forecasting have

  13. Local Sustainability and Cooperation Actions in the Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Tiberio Daddi

    2014-05-01

    Full Text Available The populations of the Middle East and Africa are increasing rapidly, contributing to rapid urban growth. This paper describes a two-year action research process involving diverse public, private, and community stakeholders. The actions aimed to develop and strengthen the capabilities of three Mediterranean cities (Marrakech, Morocco; Sin el Fil, Lebanon; and Bodrum, Turkey in managing and promoting local sustainable development. The needs and priorities of each Mediterranean partner were identified and pilot actions were elaborated to promote urban sustainability, the exploitation of local resources, and the enhancement of local tangible and intangible assets. The paper describes the outputs of pilot actions carried out in these cities, highlighting how these experiences contribute to the current debate on urban sustainability. Broad implications for policy and practice are discussed.

  14. Abrupt climate shift in the Western Mediterranean Sea

    Science.gov (United States)

    Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.

    2016-03-01

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.

  15. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  16. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  17. Radial anisotropy ambient noise tomography of volcanoes

    Science.gov (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  18. A field guide to Newberry Volcano, Oregon

    Science.gov (United States)

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  19. Mediterranean Way of Competitiveness

    Directory of Open Access Journals (Sweden)

    Art Kovacic

    2010-12-01

    Full Text Available The Mediterranean area have a special concept of competitiveness topic. Normally is that region not so industrial and knowledge based oriented as a North Europe.That countries can't reach the same development level as the north one. Lisbon's and Goethenburg's strategies create the main framework of development programme. Mediterranean programme is such a case. European internal market has forced the EU countries to increase competitiveness. The economic prosperity of countries is associated with their ability to generate or attract economic activities which are able to increase income by performing well on themarket. Financial crisis in the EU has changed the look on the competitiveness research. Economy in the main countries has to find way of recovery. Former giants of the financial world have found themselves suddenly facing bankruptcy.Inevitably, the crisis is also having an effect on households and businesses - economic growth has slowed sharply and in some EU countries unemployment has begun to increase for the first time in several years. Form that perspective we have to find the right solution of European competitiveness.

  20. Time dependent deformation of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Montgomery-Brown, Emily Kvietka Desmarais

    In 1997 the continuous Global Positioning System (GPS) network was completed on Kilauea, providing the first network of daily position measurements during eruptions and earthquakes on Kilauea. Kilauea has been studied for many decades with continuous seismic and tilt instruments. Other geodetic data (e.g., campaign GPS, leveling, electronic distance measurements) are also available although they contain only sparse data. Data analysis methods used here include inverting multiple data sets for optimal source parameters and the spatio-temporal distribution of magma volume and fault slip, and combining GPS and seismic observations to understand flank tectonics. The field area for this study, Kilauea Volcano, was chosen because of its frequent activity and potential hazards. The 1997 East Rift Zone eruption (Episode 54) was the first major event to occur after the completion of the continuous GPS network. The event lasted 2 days, but transient deformation continued for six months. This long-duration transient allowed the first spatio-temporal study of transient dike deformation on Kilauea from daily GPS positions. Slow-slip events were discovered on Kilauea during which the southern flank of the volcano would accelerate seaward for approximately 2 days. The discovery was made possible because of the continuously operating GPS network. These slip events were also observed to correlate with small swarms of microearthquakes found to follow temporal pattern consistent with them being co- and aftershocks of the slow-slip event (Segall, 2006). Half-space models of geodetic data favor a shallow fault plane (˜ 5 km), which is much too shallow to have increased the Coulomb stress at the depths of the co- and aftershocks. However, optimizations for the slow-slip source parameters including a layered elastic structure and a topographic correction favor deeper models within the range of the co- and aftershocks. Additionally, the spatial distribution of seaward fault slip, fixed

  1. Intraplate volcanism and mantle dynamics in East Asia: Big mantle wedge (BMW) model (Invited)

    Science.gov (United States)

    Zhao, D.

    2009-12-01

    In the East Asia continent there are many Cenozoic volcanoes, but only a few are still active now, such as the Changbai, Wudalianchi, and Tengchong volcanoes which have erupted several times in the past 1000 years. Although many studies have been made by using various approaches, the origin of the intraplate volcanoes in East Asia is still not very clear. Recently we used regional and global seismic tomography to determine high-resolution 3-D mantle structure under Western Pacific to East Asia (Zhao, 2004; Huang and Zhao, 2006; Zhao et al., 2009). Our results show prominent low-velocity anomalies from the surface down to 410 km depth beneath the intraplate volcanoes and a broad high-velocity anomaly in the mantle transition zone under East Asia. Focal-mechanism solutions of deep earthquakes indicate that the subducting Pacific slab under the Japan Sea and the East Asia margin is subject to compressive stress regime. These results suggest that the Pacific slab meets strong resistance at the 660-km discontinuity and so it becomes stagnant in the mantle transition zone under East Asia. The Philippine Sea slab has also subducted down to the mantle transition zone under western Japan and the Ryukyu back-arc region. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topography and gravity boundary in East China, which is located approximately 1800 km west of the trenches. The upper mantle under East Asia has formed a big mantle wedge (BMW) above the stagnant slab. The BMW exhibits low seismic-velocity and high electrical-conductivity, which is hot and wet because of the deep dehydration reactions of the stagnant slab and the convective circulation process in the BMW. These processes lead to the upwelling of hot and wet asthenospheric materials and thinning and fracturing of the continental lithosphere, leading to the formation of the active intraplate volcanoes in East

  2. Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael P.

    2012-01-01

    Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.

  3. Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)

    Science.gov (United States)

    Gencalioglu-Kuscu, Gonca

    2011-11-01

    Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an "orogenic" fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts ( sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb-Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the "alkaline" basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts ( sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts ( sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source

  4. Towards a model-based understanding of the Mediterranean circulation during the Messinian Salinity Crisis

    Science.gov (United States)

    Simon, Dirk; Meijer, Paul

    2016-04-01

    Today, the Atlantic-Mediterranean gateway (the Strait of Gibraltar) and the strong evaporative loss in the east let the Mediterranean Sea attain a salinity of 2-3 g/l higher than the Atlantic Ocean. During the winter months, strong cooling of surface waters in the north forms deep water, which mixes the Mediterranean, while during summer the water column is stratified. During the Messinian Salinity Crisis (MSC, 5.97-5.33Ma) the salt concentration was high enough to reach the saturation of gypsum (~130-160 g/l) and halite (~350 g/l). This caused large deposits of these evaporites all over the basin, capturing 6% of the World Ocean salt within the Mediterranean at the time. Although several mechanisms have been proposed as to how the Mediterranean circulation might have functioned, these mechanisms have yet to be rooted in physics and tested quantitatively. Understanding circulation during the MSC becomes particularly important when comparing Mediterranean marginal to deep basins. On the one hand, many of the marginal basins in the Mediterranean are well studied, like the Sorbas basin (Spain) or the Vena del Gesso basin (Italy). On the other hand, the deep Mediterranean is less well studied, as no full record of the whole deep sequence exists. This makes it very complicated to correlate marginal and deep basin records. Here we are presenting the first steps in working towards a physics-based understanding of the mixing and stratification bahaviour of the Mediterranean Sea during the MSC. The final goal is to identify the physical mechanism needed to form such a salt brine and to understand how it differs from today's situation. We are hoping to compare our results to, and learn from, the much smaller but best available analog to the MSC, the Dead Sea, where recent overturning has been documented.

  5. Hydrogeochemical exploration of the Tecuamburro Volcano region, Guatemala

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Truesdell, A.H.; Janik, C.J.; Adams, A.; Roldan-M, A.; Meeker, K. (Los Alamos National Lab., NM (USA); Geological Survey, Menlo Park, CA (USA); Los Alamos National Lab., NM (USA); Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico; Los Alamos National Lab., NM (USA))

    1989-01-01

    Approximately 100 thermal and nonthermal water samples and 20 gas samples from springs and fumaroles have been chemically and isotopically analyzed to help evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Thermal waters of the acid- sulfate, steam condensate, and neutral-chloride types generally occur in restricted hydrogeologic areas: Tecuamburro-Laguna Ixpaco (acid- sulfate); andesite highland north of Tecuamburro (steam-condensate); Rio Los Esclavos (neutral-chloride). One small area of neutral-chloride springs east of the village of Los Esclavos has no relation to the Tecuamburro geothermal system. Neutral-chloride springs on the Rio Los Esclavos east and southeast of Tecuamburro show mixing with various types of groundwaters and display a maximum oxygen-18 enrichment compared to the world meteoric line of only about 1.5 parts per thousand. Maximum estimated subsurface temperatures are {le}200{degree}C. In contrast, maximum estimated subsurface temperatures based on gas compositions in the Laguna Ixpaco area are about 300{degree}C. The relation of neutral-chloride waters to the overall Tecuamburro geothermal system is not entirely resolved but we have suggested two system models. Regardless of model, we believe that a first exploration drill hole should be sited within 0.5 km of Laguna Ixpaco to tap the main geothermal reservoir or its adjacent, main upflow zone. 9 refs., 4 figs., 3 tabs.

  6. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  7. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    National Research Council Canada - National Science Library

    Giuseppe Suaria; Carlo G Avio; Annabella Mineo; Gwendolyn L Lattin; Marcello G Magaldi; Genuario Belmonte; Charles J Moore; Francesco Regoli; Stefano Aliani

    2016-01-01

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown...

  8. Travelling in the eastern Mediterranean with landscape character assessment

    Science.gov (United States)

    Abu Jaber, N.; Abunnasr, Y.; Abu Yahya, A.; Boulad, N.; Christou, O.; Dimitropoulos, G.; Dimopoulos, T.; Gkoltsiou, K.; Khreis, N.; Manolaki, P.; Michael, K.; Odeh, T.; Papatheodoulou, A.; Sorotou, A.; Sinno, S.; Suliman, O.; Symons, N.; Terkenli, T.; Trigkas, Vassilis; Trovato, M. G.; Victora, M.; Zomeni, M.; Vogiatzakis, I. N.

    2015-06-01

    Following its application in Northern Europe, Landscape Character Assessment has also been implemented in Euro-Mediterranean countries as a tool for classifying, describing and assessing landscapes. Many landscape classifications employed in the Euro-Mediterranean area are similar in philosophy and application to the ones developed in Northern Europe. However, many aspects of landform, climate, land-use and ecology, as well as socio-economic context are distinctive of Mediterranean landscapes. The paper discusses the conceptual and methodological issues faced during landscape mapping and characterisation in four East-Mediterranean countries (within the MEDSCAPES project): Cyprus, Greece, Jordan and Lebanon. The major hurdles to overcome during the first phase of methodology development include variation in availability, quality, scale and coverage of spatial datasets between countries and also terminology semantics around landscapes. For example, the concept of landscape - a well-defined term in Greek and English - did not exist in Arabic. Another issue is the use of relative terms like 'high mountains,' `uplands' `lowlands' or ' hills'. Such terms, which are regularly used in landscape description, were perceived slightly differently in the four participating countries. In addition differences exist in nomenclature and classification systems used by each country for the dominant landscape-forming factors i.e. geology, soils and land use- but also in the cultural processes shaping the landscapes - compared both to each other and to the Northern-European norms. This paper argues for the development of consistent, regionally adapted, relevant and standardised methodologies if the results and application of LCA in the eastern Mediterranean region are to be transferable and comparable between countries.

  9. What is a Volcano? How planetary volcanism has changed our definition

    Science.gov (United States)

    Lopes, R. M.; Mitchell, K. L.; Williams, D. A.; Mitri, G.; Gregg, T. K.

    2009-12-01

    The discovery of numerous extra-terrestrial volcanoes, including active ones, has stretched our traditional definition of what is a volcano. We now know that the nature of volcanism is highly variable over the Solar System, and the traditional definition of a volcano as defined for Earth needs to be modified and expanded to include processes such as cryovolcanism, in which aqueous mixtures are erupted from the interior to the surface. Plate tectonics, which largely controls the location and types of volcanoes on Earth, has not been identified on any other planetary body. Volcanic and tectonic structures on other bodies may have different origins from their terrestrial morphological counterparts. For example, calderas on Io are associated with effusive rather than explosive eruptions. Lava lakes on Io may be more similar to the Earth’s East Pacific Rise eruptions that give rise to temporary lava lakes rather than to terrestrial lava lakes where there is a shallow magma chamber. Volcanic features on Io, and also Titan, appear to be randomly distributed on the surface and not associated with a global tectonic control or with the locations of mountains. Cryovolcanism on Titan, which may still be active, is likely made possible by bottom crevasses opening in the icy crust and formation of ammonia-water pockets in the ice shell. Large scale tectonic stress (tides, global volume changes and/or topography) may promote resurfacing. Mountains on Titan may be the result of long-term cooling of the interior causing global volume contraction (Mitri et al. 2009, JGR submitted). This paper will focus on active volcanic features on Io, cryovolcanism on Titan, and how these phenomena have led us to suggest the following definition that encompasses the different forms of volcanic activity seen in other worlds: A volcano is an opening on a planet or moon’s surface from which magma, as defined for that body, and/or magmatic gas is erupted.

  10. Pre-, Syn- and Post Eruptive Seismicity of the 2011 Eruption of Nabro Volcano, Eritrea

    Science.gov (United States)

    Goitom, Berhe; Hammond, James; Kendall, Michael; Nowacky, Andy; Keir, Derek; Oppenheimer, Clive; Ogubazghi, Ghebrebrhan; Ayele, Atalay; Ibrahim, Said; Jacques, Eric

    2014-05-01

    Nabro volcano, located in south-east Eritrea, East Africa, lies at the eastern margin of the Afar Rift and the Danakil Depression. Its tectonic behaviour is controlled by the divergence of the Arabian, Nubian and Somali plates. Nabro volcano was thought to be seismically quiet until it erupted in June 2011 with limited warning. The volcano erupted on June 12, 2011 around 20:32 UTC, following a series of earthquakes on that day that reached a maximum magnitude of 5.8. It is the first recorded eruption of Nabro volcano and only the second in Eritrea, following the Dubbi eruption in 1861. A lava flow emerged from the caldera and travelled about 20 km from the vent and buried settlements in the area. At the time of this eruption there was no seismic network in Eritrea, and hence the volcano was not monitored. In this study we use ten Ethiopian, one Yemeni and one Djibouti stations to investigate the seismicity of the area before, during and after the eruption. Four Eritrean seismic stations deployed in June 2011, four days after the eruption, are also included in the dataset. Travel time picks supplied by colleagues from Djibouti were also incorporated into the dataset. Our analysis covers roughly three months before and after the eruption and shows that Nabro was seismically quiet before the eruption (nine events), with the exception of one major earthquake (4.8 magnitude) that occurred on March 31, 2011. In contrast, the region shows continued seismic activity after the eruption (92 events). During the eruption seismicity levels are high (123 events), with two days particularly active, June 12 and June 17 with 85 and 28 discrete events, respectively. Maximum magnitudes of 5.8 and 5.9 were recorded on these two days. The two days of increased seismicity are consistent with satellite observations of the eruption which show two distinct phases of the eruption. The period between these two phases was dominated by volcanic tremor. The tremor signal lasted for almost one

  11. Peralkaline volcanism in a continental collisional setting: Mount Nemrut volcano, Eastern Anatolia

    Science.gov (United States)

    Çubukçu, H. E.; Ulusoy, I.; Aydar, E.; Sen, E.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    Quaternary Mount Nemrut is an active volcano in the Eastern Anatolia which culminates at 2948 m and having an elliptic summit caldera with 8.5 x 7 km diameter. The volcano is situated on the east of the deformed and dissected remnant of the Muş-Van ramp basin located at the northern foot of the Bitlis-Zagros suture zone. The suture zone is the southern margin of the continental collision between Arabian and Anatolian plates. The continental collision along the Bitlis-Zagros suture zone commenced in the Middle Miocene following the closure of the southern segment of Neo-Tethys ocean and the subduction of northern margin of Arabian plate beneath Anatolian plate. Upon the collision and the uplift of the region, widespread volcanism, which exhibits varying eruption styles and geochemical characteristics, affected most of the Eastern Anatolia. The intracontinental convergence and N - S directed compressional - contractional tectonic regime remained till the end of Late Miocene. However, compressional - extensional regime became dominant in the Early-Late Pliocene. Following the slab break off, asthenosphere beneath the Arabian Foreland probably have migrated towards the slab window, which was opened during the detachment, and invaded the mantle wedge beneath East Anatolian Collision zone. Volcanism is still active in the region, represented by major Quaternary volcanic centers. The magmatic characteristics of Nemrut volcano is appealingly distinct compared to the other Quaternary volcanic centers in the region. The overall geochemical and mineralogical affinity of Nemrut volcanism exhibits strong similarities with the well-known sites of continental intra-plate extension. The volcano has distinguishing features of a typical silica oversaturated peralkaline (molecular ratio (Na + K / Al)>1) suite: (a) The volcanic products vary from transitional olivine basalt to peralkaline rhyolite (abundant comendite and scarce pantellerite) (b) Predominance by erupted volume of

  12. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  13. The seismicity of Marapi volcano, West Sumatra.

    Science.gov (United States)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of

  14. THE MEDITERRANEAN TOURISTIC PHENOMEN

    Directory of Open Access Journals (Sweden)

    Anca Gabriela Turtureanu

    2008-05-01

    Full Text Available At the beggining of the XXI century has started to record a series of tedentiangs în the planof Spanish touristic sector, translated trough the reduction of tourism participating în PIB including of thecontribution of international tourism. This changes from the plan of the demand and offer from the last decade iscoincideing with a scenario where the touristic offer is seeing marked more and more by the accelerated processof urbanizeing from the Mediterranean area, Blaeares and Canaris. The natural and cultural enviorment qualityis essentialy the main atraction of this areas. The itinerarys are wishing to offer a exclusive alternating to thelocals of valorification of the turistic potential of the regions and to offer new turistic products.

  15. Patterns of Orientation in the Megalithic Tombs of the Western Mediterranean

    Science.gov (United States)

    Hoskin, Michael

    Nearly all the Neolithic communal tombs of western Europe and the western Mediterranean have a well-defined orientation. In the west of Iberia, the great majority faced within the range of sunrise (and moonrise), while in Iberia as a whole and the west of France nearly all faced either sunrise or the sun when it had risen and was climbing in the sky. By contrast, at Fontvieille near Arles, tombs faced sunset, and along the French Mediterranean region to both east and west of Fontvieille, tombs faced either sunset or the sun when it was declining in the sky. In Sardinia, tombs faced southeasterly; by contrast, on Menorca, tombs faced southwesterly.

  16. The wind power potential of the eastern Mediterranean region of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Besir; Bilgili, Mehmet; Akilli, Huseyin [Mechanical Engineering Department, Faculty of Engineering and Arhitecture, & amp; Ccedil; ukurova University, 01330 Adana (Turkey)

    2005-02-01

    The wind energy potential in the eastern Mediterranean region has been investigated using hourly wind data taken from seven stations during 1992-2001 periods by the Turkish Meteorological Service. The present work suggests that in the east Mediterranean Sea coast of Turkey, wind energy sources are convenient for electricity generation. The mean power density was determined as 500W/m{sup 2} in many areas of this region at 25m from the ground level. The most promising locations in terms of wind power generation are identified. The contours of constant wind speed and power potential could lead the private power developers to decide the locations of appropriate wind farms.

  17. Fauna of the Mediterranean Hydrozoa.

    Directory of Open Access Journals (Sweden)

    Jean Bouillon

    2004-10-01

    Full Text Available This study provides a systematic account of the hydrozoan species collected up to now in the Mediterranean Sea. All species are described, illustrated and information on morphology and distribution is given for all of them. This work is the most complete fauna of hydrozoans made in the Mediterranean. The fauna includes planktonic hydromedusae, benthic polyps stages and the siphonophores. The Hydrozoa are taken as an example of inconspicuous taxa whose knowledge has greatly progressed in the last decades due to the scientific research of some specialists in the Mediterranean area. The number of species recorded in the Mediterranean almost doubled in the last thirty years and the number of new records is still increasing. The 457 species recorded in this study represents the 12% of the world known species. The fauna is completed with classification keys and a glossary of terms with the main purpose of facilitating the identification of all Meditrranean hydrozoan species

  18. Transplantation experiments with Mediterranean gorgonians

    NARCIS (Netherlands)

    Weinberg, Steven

    1979-01-01

    Branches of gorgonians belonging to four different Mediterranean species (Eunicella singularis (Esper), Paramuricea clavata (Risso), Corallium rubrum (Linnaeus) and Lophogorgia ceratophyta (Linnaeus)) were transplanted to different habitats by means of three different methods, and survival and growt

  19. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    Science.gov (United States)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector

  20. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    Science.gov (United States)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    below sea level), the high velocities are sharply truncated to the south. However, at greater depths, the anomalously high velocities extend another 20 km into the submarine flank, distinguishing this feature as a once extensive rift zone. The presence of dense, coherent intrusive rock may have anchored Mauna Loa's southeastern flank, such that much of the volcano's recent deformation has occurred along the west flank of Mauna Loa. This massive rift zone may also impede the propagation of Kilauea's southwest rift zone, accounting for its lesser development relative to Kilauea's east rift zone. The velocity highs beneath Kilauea's submarine flank likely represent buried seamounts that might obstruct the seaward migration of volcano's south flank, causing the bench uplift at the toe of flank. These new observations lead us to propose that previously unrecognized intrusive complexes within Mauna Loa and Kilauea have significantly affected the past evolution of these volcanoes in the Island of Hawaii, and are likely responsible for the present patterns of deformation on these active volcanoes.

  1. The Massive Compound Cofre de Perote Shield Volcano: a Volcanological Oddity in the Eastern Mexican Volcanic Belt

    Science.gov (United States)

    Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.

    2007-12-01

    Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the

  2. Geologic field-trip guide to Mount Shasta Volcano, northern California

    Science.gov (United States)

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  3. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    The Ceboruco Volcano (21° 7.688 N, 104° 30.773 W) is located in the northwestern part of the Tepic-Zacoalco graben. Its volcanic activity can be divided in four eruptive cycles differentiated by their VEI and chemical variations as well. As a result of andesitic effusive activity, the "paleo-Ceboruco" edifice was constructed during the first cycle. The end of this cycle is defined by a plinian eruption (VEI between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome built up in the interior of the caldera. The dome collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by the andesitic lava flows of the nineteenth century located in the southwestern flank of the volcano. Actually, moderate fumarolic activity occurs in the upper part of the volcano showing temperatures ranging between 20° and 120°C. Some volcanic high frequency tremors have also been registered near the edifice. Shows the updating of the volcanic hazard maps published in 1998, where we identify with SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east sides of the Ceboruco volcano. The population inhabiting the area is 70,224 people in 2010, concentrated in 107 localities and growing at an annual rate of 0.37%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by highway, high road, railroad, and the construction of new highway to Puerto Vallarta, which is built in the southeast sector of the volcano and electrical infrastructure that connect the Cajon and Yesca Dams to Guadalajara city. The most important economic activity in the area is agriculture, with crops of sugar cane (Saccharum officinarum), corn, and jamaica

  4. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    Science.gov (United States)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    in the central Sunda Arc from Java to central Flores. We focus on this section because of the complicating influences of the Great Sumatran Fault, further to the west, and the collision between the arc and Australian continental lithosphere, to the east of central Flores. Volcano distribution in the central Sunda Arc is best described as linear segments, rather than as small circles. We conclude that the stress field in the Sunda Arc lithosphere is the primary control on the distribution of its volcanoes. Changes in the location and petrographic/geochemical characteristics in magmatism from initiation, in the late-Plio-Pleistocene, until the present day can also be attributed to the evolving stress in the upper plate.

  5. Historic and pre-historic tsunamis in the Mediterranean and its connected seas: a review on documentation, geological signatures, generation mechanisms and coastal impacts

    Science.gov (United States)

    Papadopoulos, Gerassimos; Gràcia, Eulàlia; Urgeles, Roger; Sallares, Valenti; De Martini, Paolo Marco; Pantosti, Daniela; González, Mauricio; Yalciner, Ahmet C.; Mascle, Jean; Sakellariou, Dimitris; Salamon, Amos; Tinti, Stefano; Fokaefs, Anna; Camerlenghi, Angelo; Novikova, Tatyana; Papageorgiou, Antonia

    2013-04-01

    The origin of tsunamis in the Mediterranean region and its connected seas is reviewed. A variety of historical documentary sources combined with evidence from on-shore and off-shore geological signatures, geomorphological imprints, observations from selected coastal archaeological sites, as well as from instrumental records, clearly indicate that seismic and non-seismic (e.g. volcanism, landslides) tsunami sources can be found in all the seas of the region. Local, regional and basin-wide tsunamis have been documented. An improved map of 22 tsunamigenic zones and their relative potential for tsunami generation is presented. From west to east, the most tsunamigenic zones are situated offshore SW Iberia, in North Algeria, in the Tyrrhenian Calabria and Messina Straits, in the western and eastern segments of the Hellenic Arc, in Corinth Gulf (Central Greece), in the Levantine Sea off-shore the Dead Sea Transform Fault and in the eastern Marmara Sea. The mean recurrence of large (intensity≥8) tsunamis in the entire region is ~90 yrs and in the Mediterranean basin ~102 yrs. However, for most of the historical events it is still doubtful which one was the causative seismic fault and if the tsunami was caused by co-seismic fault dislocation or by earthquake-triggered submarine landslides or by a combined source mechanism (e.g. Lisbon 1755). Instrumentally recorded seismic tsunamis (e.g. Messina 1908, S. Aegean 1956) are still with debatable sources. Calculation of seismic slip slowness factor does not indicate that the 1908 and 1956 events were "tsunami earthquakes". In pre-historical times large tsunamis were caused by volcanic processes in Thera and Etna. A tsunami was supposedly generated in the Holocene by the so-called BIG'95 large submarine landslide in W. Mediterranean. The AD 1650 eruption of the submarine Columbo volcano, off-shore Thera, caused an important tsunami but very little is known about its source mechanism. We concluded that investigating further the

  6. A series of transient slip events on Kilauea volcano, Hawaii.

    Science.gov (United States)

    Desmarais, E. K.; Segall, P.; Miklius, A.; Cervelli, P.

    2005-12-01

    Deformation on Kilauea volcano, Hawaii is monitored by a network of continuously recording GPS stations, among other methds. Since its installation in 1996, the GPS network has detected four spatially coherent accelerations on Kilauea's south flank that are not caused by either intrusions or earthquakes. These events, each lasting several hours to two days, occurred in September 1998, November 2000, July 2003, and January 2005. Previously, Cervelli et al., (Nature, 2002) interpreted the 2000 event as a silent earthquake due to slip on a sub-horizontal fault beneath Kilauea's south flank. We inverted the cumulative displacements ( less than 2 cm) using a simulated annealing algorithm for each event and found similarly sized, near horizontal, uniform slip source locations for all four events at depths of ~6 km. The estimated slip magnitudes are between 9 and 15 cm, with the upper block moving seaward. The 2005 event is the largest detected to date. Volcano-tectonic (VT) earthquakes on the south flank of Kilauea are typically restricted to the volume between the East Rift Zone and the Hilina and Poliokeawe Palis. Seismicity in this volume increased significantly during the silent events at depths of 5-10 km. However, all of the VT earthquakes were small ( less than M3) and their cumulative moment does not account for the moment released during the silent slip events. We are currently examining seismic waveform data for evidence of other signals, such as non-volcanic tremor, that might be associated with the slip events. To determine the exact onset and duration of the silent earthquakes, we invert for slip as a function of time directly from raw GPS phase and pseudorange observations. The November 2000 silent earthquake was preceded 9 days earlier by nearly 1 m of rainfall, which was speculated in Cervelli et al., (Nature, 2002) to have reduced fault stability through surface loading or pore pressure increase. In contrast, both the 2003 and 2005 events occurred

  7. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  8. Climate model calculations of the effects of volcanoes on global climate

    Science.gov (United States)

    Robock, Alan

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  9. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  10. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  11. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  12. Contrasting biogeographic and diversification patterns in two Mediterranean-type ecosystems.

    Science.gov (United States)

    Buerki, Sven; Jose, Sarah; Yadav, Shrirang R; Goldblatt, Peter; Manning, John C; Forest, Félix

    2012-01-01

    The five Mediterranean regions of the world comprise almost 50,000 plant species (ca 20% of the known vascular plants) despite accounting for less than 5% of the world's land surface. The ecology and evolutionary history of two of these regions, the Cape Floristic Region and the Mediterranean Basin, have been extensively investigated, but there have been few studies aimed at understanding the historical relationships between them. Here, we examine the biogeographic and diversification processes that shaped the evolution of plant diversity in the Cape and the Mediterranean Basin using a large plastid data set for the geophyte family Hyacinthaceae (comprising ca. 25% of the total diversity of the group), a group found mainly throughout Africa and Eurasia. Hyacinthaceae is a predominant group in the Cape and the Mediterranean Basin both in terms of number of species and their morphological and ecological variability. Using state-of-the-art methods in biogeography and diversification, we found that the Old World members of the family originated in sub-Saharan Africa at the Paleocene-Eocene boundary and that the two Mediterranean regions both have high diversification rates, but contrasting biogeographic histories. While the Cape diversity has been greatly influenced by its relationship with sub-Saharan Africa throughout the history of the family, the Mediterranean Basin had no connection with the latter after the onset of the Mediterranean climate in the region and the aridification of the Sahara. The Mediterranean Basin subsequently contributed significantly to the diversity of neighbouring areas, especially Northern Europe and the Middle East, whereas the Cape can be seen as a biogeographical cul-de-sac, with only a few dispersals toward sub-Saharan Africa. The understanding of the evolutionary history of these two important repositories of biodiversity would benefit from the application of the framework developed here to other groups of plants present in the two

  13. Contrasting biogeographic and diversification patterns in two Mediterranean-type ecosystems.

    Directory of Open Access Journals (Sweden)

    Sven Buerki

    Full Text Available The five Mediterranean regions of the world comprise almost 50,000 plant species (ca 20% of the known vascular plants despite accounting for less than 5% of the world's land surface. The ecology and evolutionary history of two of these regions, the Cape Floristic Region and the Mediterranean Basin, have been extensively investigated, but there have been few studies aimed at understanding the historical relationships between them. Here, we examine the biogeographic and diversification processes that shaped the evolution of plant diversity in the Cape and the Mediterranean Basin using a large plastid data set for the geophyte family Hyacinthaceae (comprising ca. 25% of the total diversity of the group, a group found mainly throughout Africa and Eurasia. Hyacinthaceae is a predominant group in the Cape and the Mediterranean Basin both in terms of number of species and their morphological and ecological variability. Using state-of-the-art methods in biogeography and diversification, we found that the Old World members of the family originated in sub-Saharan Africa at the Paleocene-Eocene boundary and that the two Mediterranean regions both have high diversification rates, but contrasting biogeographic histories. While the Cape diversity has been greatly influenced by its relationship with sub-Saharan Africa throughout the history of the family, the Mediterranean Basin had no connection with the latter after the onset of the Mediterranean climate in the region and the aridification of the Sahara. The Mediterranean Basin subsequently contributed significantly to the diversity of neighbouring areas, especially Northern Europe and the Middle East, whereas the Cape can be seen as a biogeographical cul-de-sac, with only a few dispersals toward sub-Saharan Africa. The understanding of the evolutionary history of these two important repositories of biodiversity would benefit from the application of the framework developed here to other groups of plants

  14. Links of the significant wave height distribution in the Mediterranean sea with the Northern Hemisphere teleconnection patterns

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2008-06-01

    Full Text Available This study analyzes the link between the SWH (Significant Wave Height distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure teleconnection patterns.

    The SWH distribution is computed using the WAM (WAve Model forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958–2001. The time series of mid-latitude teleconnection patterns are downloaded from the NOAA web site. This study shows that several mid-latitude patterns are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic Pattern (EA, Scandinavian Pattern (SCA, North Atlantic Oscillation (NAO, East Atlantic/West Russia Pattern (EA/WR and East Pacific/ North Pacific Pattern (EP/NP. Though the East Atlantic pattern exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other patterns. Some link results from possibly spurious structures. Patterns which have a very different global structure are associated to similar spatial features of the wave variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection patterns.

  15. A new volcano-structural map of the Virunga Volcanic Province, D.R.Congo and Rwanda

    Science.gov (United States)

    Poppe, Sam; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2013-04-01

    The Virunga Volcanic Province (VVP) is situated within the Western branch of the East African Rift system at the boundary of D.R.Congo, Rwanda and Uganda. The Western VVP comprises two active volcanoes, Nyamulagira and Nyiragongo. Six supposedly historically inactive volcanoes are present in the Central and Eastern VVP. Nyamulagira is recently the most active volcano on the African continent, with 30 eruptions since 1900, while Nyiragongo hosts a semi-permanent lava lake in its crater and fed a catastrophic lava flow in 2002. Additionally, numerous volcanic vents, fissures and cones are scattered on and around the main edifices. Except for geological maps from the colonial times and limited studies of historical eruptions, little is known about the volcano-tectonic structure and long term volcanic history of the VVP. A new Digital Elevation Model (TanDEM-X) with a resolution of 5 m, combined with SPOT and SAR images served as a base for the development of a new volcano-structural map for the entire VVP. A GIS data base was developed including the location of eruptive cones and fissures and the distribution of lava flows. The boundaries of historic and pre-historic lava flows and pyroclastic cones were traced from from interpretation of topographic and multispectral remote sensing data and re-analysis of ancient geological maps.Larger-scale lineaments interpreted as potential volcano-tectonic structures were also systematically mapped. All previously geochemically analyzed samples were localized. This GIS-based volcano-structural map will serve as a base for the quantitative characterization of recent and historic volcanic eruption products, such as pyroclastic cones and lava flows, of Nyamulagira and Nyiragongo, as well as for the assessment of potential Holocene activity in the Central and Eastern VVP. The orientation of feeder dykes inferred from cone alignments and morphology is used to identify the main volcanic structures and infer the locally dominant stress

  16. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  17. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  18. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  19. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  20. The big crossing: illegal boat migrants in the Mediterranean.

    Science.gov (United States)

    Kassar, Hassène; Dourgnon, Paul

    2014-08-01

    This article explores illegal migration routes and groups across North Africa to Europe. We describe sub-Saharan and cross-Mediterranean routes, and how they changed during the years. We propose an analytical framework for the main factors for these migrations, from local to international and regulatory context. We then describe sea-migrants' nationalities and socio-economic and demographic characteristics, from studies undertook in Tunisia and Morocco. While boat migration represents only a fraction of illegal migration to Europe, it raises humanitarian as well as ethical issues for European and North African (NA) countries, as a non-negligible amount of them end up in death tolls of shipwrecks in the Mediterranean Sea. Moreover, existing statistics show that illegal trans-Mediterranean migration is growing exponentially. Ongoing crises in Africa and the Middle East are likely to prompt even larger outflows of refugees in the near future. This should induce NA countries to share closer public policy concerns with European countries.

  1. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  2. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  3. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  4. Portuguese Man-of-War (Physalia physalis) in the Mediterranean: A permanent invasion or a casual appearance?

    Science.gov (United States)

    Prieto, L.; Macías, D.; Peliz, A.; Ruiz, J.

    2015-06-01

    In 2010, the Mediterranean basin experienced Portuguese Man-of-War (Physalia physalis) swarms that had dramatic consequences, including the region’s first recorded human fatality attributed to a jellyfish sting. Despite the impact of jellyfish on coastal economic activity and the importance of the tourism industry for the Mediterranean region (accounting for 15% of global tourism), no scientific consensus has been achieved regarding the causes of this episode. Here, we analyse the meteorological and oceanographic conditions of the North-East Atlantic Ocean during the months previous to the appearance of P. physalis in the Mediterranean. We simulate the probable drift of Atlantic populations into the Mediterranean basin with a numerical model and compare model results with available observations. We conclude that the summer 2010 P. Physalis swarm was the result of an unusual combination of meteorological and oceanographic conditions during the previous winter and not a permanent invasion favoured by climatic changes.

  5. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  6. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  7. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  8. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    Science.gov (United States)

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into

  9. Adaptive radiation in mediterranean cistus (cistaceae)

    National Research Council Canada - National Science Library

    Guzmán, Beatriz; Lledó, María Dolores; Vargas, Pablo

    2009-01-01

    Adaptive radiation in Mediterranean plants is poorly understood. The white-flowered Cistus lineage consists of 12 species primarily distributed in Mediterranean habitats and is herein subject to analysis...

  10. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    Science.gov (United States)

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  11. European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium

    Science.gov (United States)

    Rao, M. P.; Cook, B. I.; Cook, E. R.; D'Arrigo, R. D.; Krusic, P. J.; Anchukaitis, K. J.; LeGrande, A. N.; Buckley, B. M.; Davi, N. K.; Leland, C.; Griffin, K. L.

    2017-05-01

    Volcanic eruptions have global climate impacts, but their effect on the hydrologic cycle is poorly understood. We use a modified version of superposed epoch analysis, an eruption year list collated from multiple data sets, and seasonal paleoclimate reconstructions (soil moisture, precipitation, geopotential heights, and temperature) to investigate volcanic forcing of spring and summer hydroclimate over Europe and the Mediterranean over the last millennium. In the western Mediterranean, wet conditions occur in the eruption year and the following 3 years. Conversely, northwestern Europe and the British Isles experience dry conditions in response to volcanic eruptions, with the largest moisture deficits in posteruption years 2 and 3. The precipitation response occurs primarily in late spring and early summer (April-July), a pattern that strongly resembles the negative phase of the East Atlantic Pattern. Modulated by this mode of climate variability, eruptions force significant, widespread, and heterogeneous hydroclimate responses across Europe and the Mediterranean.

  12. Turbulent mixing in the eddy transport of Western Mediterranean Intermediate Water to the Alboran Sea

    Science.gov (United States)

    Forryan, A.; Allen, J. T.; Edhouse, E.; Silburn, B.; Reeve, K.; Tesi, E.

    2012-09-01

    Western Mediterranean Intermediate Water (WIW) is formed in winter in the North-Western Mediterranean. WIW, identifiable as a distinct temperature minimum layer between Atlantic-Mediterranean Interface waters and the denser Levantine Intermediate Water, is carried down the east coast of Spain in anticyclonic mode water eddies, or “weddies” eventually reaching the Alboran sea. A previous detailed analysis of a weddy in the vicinity of the Almeria-Oran front indicated that it could have accounted for 10% of a winter's production of WIW, but this analysis was unable to consider turbulent dissipation. In this study we present microstructure measurements across a similar observation of WIW in the vicinity of the Almeria-Oran front and show that this figure could be conservative by 15-50% due to the turbulent dissipation associated with a weddy.

  13. Diffuse degassing at Longonot volcano, Kenya: Implications for CO2 flux in continental rifts

    Science.gov (United States)

    Robertson, Elspeth; Biggs, Juliet; Edmonds, Marie; Clor, Laura; Fischer, Tobias P.; Vye-Brown, Charlotte; Kianji, Gladys; Koros, Wesley; Kandie, Risper

    2016-11-01

    Magma movement, fault structures and hydrothermal systems influence volatile emissions at rift volcanoes. Longonot is a Quaternary caldera volcano located in the southern Kenyan Rift, where regional extension controls recent shallow magma ascent. Here we report the results of a soil carbon dioxide (CO2) survey in the vicinity of Longonot volcano, as well as fumarolic gas compositions and carbon isotope data. The total non-biogenic CO2 degassing is estimated at < 300 kg d- 1, and is largely controlled by crater faults and fractures close to the summit. Thus, recent volcanic structures, rather than regional tectonics, control fluid pathways and degassing. Fumarolic gases are characterised by a narrow range in carbon isotope ratios (δ13C), from - 4.7‰ to - 6.4‰ (vs. PDB) suggesting a magmatic origin with minor contributions from biogenic CO2. Comparison with other degassing measurements in the East African Rift shows that records of historical eruptions or unrest do not correspond directly to the magnitude of CO2 flux from volcanic centres, which may instead reflect the current size and characteristics of the subsurface magma reservoir. Interestingly, the integrated CO2 flux from faulted rift basins is reported to be an order of magnitude higher than that from any of the volcanic centres for which CO2 surveys have so far been reported.

  14. Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy

    Science.gov (United States)

    Johnson, Jessica H.; Swanson, Donald; Roman, Diana C.; Poland, Michael P.; Thelen, Weston A.

    2015-01-01

    Seismic anisotropy, measured through shear wave splitting (SWS) analysis, can be indicative of the state of stress in Earth's crust. Changes in SWS at Kīlauea Volcano, Hawai‘i, associated with the onset of summit eruptive activity in 2008 hint at the potential of the technique for tracking volcanic activity. To use SWS observations as a monitoring tool, however, it is important to understand the cause of seismic anisotropy at the volcano throughout the eruptive cycle. To address this need, we analyzed SWS results from across Kīlauea in combination with macroscopic surface structures (mapped fractures, faults, and fissures) and stress orientations inferred from fault plane solutions. Seismic anisotropy seems to be due to pervasive aligned structures in most regions of the volcano. The upper East and Southwest Rift Zones, however, show a bimodality in stress and SWS, suggesting a stress discontinuity with depth, perhaps related to magma conduits that trend obliquely to the dominant structure. Other areas in and around Kīlauea Caldera display principal stresses of similar magnitudes, indicating that small stress perturbations can rotate the maximum horizontal compressive stress direction by up to 90°. In these locations, static structures generally control SWS, but dynamic conditions due to magmatic activity can override the structural control. Monitoring of SWS may therefore provide important signs of impending volcanism.

  15. A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano.

    Science.gov (United States)

    Girnth, Anne-Christin; Grünke, Stefanie; Lichtschlag, Anna; Felden, Janine; Knittel, Katrin; Wenzhöfer, Frank; de Beer, Dirk; Boetius, Antje

    2011-02-01

    A mat-forming population of the giant sulfur bacterium Thiomargarita was discovered at the flank of the mud volcano Amon on the Nile Deep Sea Fan in the Eastern Mediterranean Sea. All cells were of a spherical and vacuolated phenotype and internally stored globules of elemental sulfur. With a diameter of 24-65 µm, Thiomargarita cells from the Eastern Mediterranean were substantially smaller than cells of previously described populations. A 16S rRNA gene fragment was amplified and could be assigned to the Thiomargarita-resembling cells by fluorescence in situ hybridization. This sequence is monophyletic with published Thiomargarita sequences but sequence similarities are only about 94%, indicating a distinct diversification. In the investigated habitat, highly dynamic conditions favour Thiomargarita species over other sulfur-oxidizing bacteria. In contrast to Thiomargarita namibiensis populations, which rely on periodic resuspension from sulfidic sediment into the oxygenated water column, Thiomargarita cells at the Amon mud volcano seem to remain stationary at the sediment surface while environmental conditions change around them due to periodic brine flow.

  16. Volcano shapes, entropies, and eruption probabilities

    Science.gov (United States)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  17. From failure to value: economic valuation for a selected set of products and services from Mediterranean forests

    Directory of Open Access Journals (Sweden)

    Davide Pettenella

    2016-04-01

    Full Text Available Aim of study: the paper estimates the economic value of a selected range of forest products and services, i.e. roundwood, non-wood forest products (NWFPs, and carbon-related services.Area of study: the research covers 21 Mediterranean countries, distinguished into four sub-regions.Material and methods: data have been gathered from official statistical sources (e.g. FAOSTAT, scientific literature and technical reports. Different estimation approaches based on market-price have been used for different products/services.Main results: the estimated value ranges between €10,512 and €11,158 million (M. Wood products represent more than 85% of the total value. Within them, industrial timber is the most relevant component (65%. Figures for NWFPs are likely to be underestimated because data are available only for some products and countries. When using alternative estimates for pine nuts, pine resin and cork, figures show a €36.8-572 M increase. In geographical terms, the economic value of Mediterranean forests is highly concentrated: North-West Mediterranean countries account for 70%, and nearly 90% is in just four countries (France, Spain, Turkey and Italy.Research highlights: enhancing the offer of Mediterranean forest products and increasing their role in the rural economy could help to reduce the costs of forest protection: a well-structured forest economy ensuring stable flows of incomes can provide a fundamental set of public non-market services and social values to both local people and the whole community. Understanding the true value of natural resources, then, is an essential step for promoting their protection and sustainable use.Abbreviations: Bln: billion; CUM: cubic meter; EM: East Mediterranean; FAO: Food and Agriculture Organisation of the United Nations; FRA: Forest Resource Assessment; ha: hectare; M: million; NEM: North-East Mediterranean; NWFP: non-wood forest product; NWM: North-West Mediterranean; SM: South Mediterranean

  18. [Endemic zoonosis in Mediterranean area].

    Science.gov (United States)

    Fenga, Concettina; Pugliese, Michela

    2013-01-01

    The Mediterranean is historically considered an area of high concentration of zoonoses. Mediterranean countries socio-economic features have favoured, over time, the onset of different types of zoonosis. Many of these may affect many occupational categories, first of all farmers, people working in abattoirs and processing products of animal origin. New farming activities and technologies have generated new occupational and zoonotic risks. These changes have influenced zoonosis epidemiology and have led to a gradual decrease in the number of diseases and to a reduction of some biological risks. However, brucellosis, Q fever, bovine tuberculosis cystic echinococcosis remain a strong example of zoonosis and a real risk, in the Mediterranean area especially. Therefore, an interdisciplinary collaboration between Veterinary Service, Public Health and Occupational medicine is necessary in order to plan territorial prevention.

  19. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  20. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  1. The reawakening of Alaska's Augustine volcano

    Science.gov (United States)

    Power, John A.; Nye, Christopher J.; Coombs, Michelle L.; Wessels, Rick L.; Cervelli, Peter F.; Dehn, Jon; Wallace, Kristi L.; Freymueller, Jeffrey T.; Doukas, Michael P.

    2006-01-01

    Augustine volcano, in south central Alaska, ended a 20-year period of repose on 11 January 2006 with 13 explosive eruptions in 20 days. Explosive activity shifted to a quieter effusion of lava in early February, forming a new summit lava dome and two short, blocky lava flows by late March (Figure 1).

  2. Volcano hazards at Fuego and Acatenango, Guatemala

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  3. New volcanoes discovered in southeast Australia

    Science.gov (United States)

    Wendel, JoAnna

    2014-07-01

    Scientists have discovered three new active volcanoes in the Newer Volcanics Province (NVP) in southeast Australia. Researchers from Monash University in Melbourne describe in the Australian Journal of Earth Sciences how they used a combination of satellite photographs, detailed topography models from NASA, the distribution of magnetic minerals in the rocks, and site visits to analyze the region.

  4. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  5. Degassing and differentiation in subglacial volcanoes, Iceland

    Science.gov (United States)

    Moore, J.G.; Calk, L.C.

    1991-01-01

    Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60??C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation. ?? 1991.

  6. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    von Aulock, Felix W.; Lavallée, Yan; Hornby, Adrian J.; Lamb, Oliver D.; Andrews, Benjamin J.; Kendrick, Jackie E.

    2016-04-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of A.) The active vent of Caliente and B.) The flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These were supported by still frames from the video recording. Video footage of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: A.) - A new breach opened on the east side of the crater rim, possibly during the collapse in November 2015. - The active lava dome is now almost completely covered with ash, only leaving the largest blocks and faults exposed in times without gas venting - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, rather than arcuate or ring faults, with a later, separate, and more ash-laden burst occurring from an off-centre fracture, however, other explosions during the observation period were seen to persist along the ring fault system observed on the lava dome since at least 2007 - suggesting a diversification of explosive activity. B.) - The lava flow fronts did

  7. Characteristics and management of the 2006-2008 volcanic crisis at the Ubinas volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Mariño, Jersy; Berolatti, Rossemary; Fuentes, José

    2010-12-01

    Ubinas volcano is located 75 km East of Arequipa and ca. 5000 people are living within 12 km from the summit. This composite cone is considered the most active volcano in southern Peru owing to its 24 low to moderate magnitude (VEI 1-3) eruptions in the past 500 years. The onset of the most recent eruptive episode occurred on 27 March 2006, following 8 months of heightened fumarolic activity. Vulcanian explosions occurred between 14 April 2006 and September 2007, at a time ejecting blocks up to 40 cm in diameter to distances of 2 km. Ash columns commonly rose to 3.5 km above the caldera rim and dispersed fine ash and aerosols to distances of 80 km between April 2006 and April 2007. Until April 2007, the total volume of ash was estimated at 0.004 km 3, suggesting that the volume of fresh magma was small. Ash fallout has affected residents, livestock, water supplies, and crop cultivation within an area of ca. 100 km 2 around the volcano. Continuous degassing and intermittent mild vulcanian explosions lasted until the end of 2008. Shortly after the initial explosions on mid April 2006 that spread ash fallout within 7 km of the volcano, an integrated Scientific Committee including three Peruvian institutes affiliated to the Regional Committee of Civil Defense for Moquegua, aided by members of the international cooperation, worked together to: i) elaborate and publish volcanic hazard maps; ii) inform and educate the population; and iii) advise regional authorities in regard to the management of the volcanic crisis and the preparation of contingency plans. Although the 2006-2008 volcanic crisis has been moderate, its management has been a difficult task even though less than 5000 people now live around the Ubinas volcano. However, the successful management has provided experience and skills to the scientific community. This volcanic crisis was not the first one that Peru has experienced but the 2006-2008 experience is the first long-lasting crisis that the Peruvian civil

  8. The structure of western Sicily, central Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, R.; Sulli, A. [Universita di Palermo, Dip. di Geologia e Geodesia, Palermo (Italy); Merlini, S. [ENI-Divisione AGIP, San Donato Milanese (Italy)

    2002-07-01

    Western Sicily is part of the Sicilian chain, a sector of the SE-verging Alpine orogenic belt in the central Mediterranean. Interpretation of seismic reflection profiles, boreholes and recent inland geological data, have enabled us to assess the deep structural grain. A wedge of flat-lying Mesozoic-Miocene carbonate and terrigenous rocks (pre-Panormide nappes) is superimposed on NW-trending, 7-8 km thick, Mesozoic-Paleogene carbonate thrust ramps (Trapanese units), arranged in two structural levels extending from the Tyrrhenian coast to western offshore Sicily. Upper Miocene to Pleistocene terrigenous strata, often deformed, fill syntectonic basins above the thrust pile. The main tectonic transport of the thrust pile, developing from Early Miocene to Early-Middle Pleistocene times, was towards the east and southeast. Initial stacking and deformation of the pre-Panormide allochthon is bracketed between Early and Late Miocene. The Late Miocene-Early Pleistocene underthrusting of the Trapanese-Saccense units, that acted through more recent deep-seated thrusts in the carbonate platform layer, induced late stage refolding and further shortening in the early emplaced pre-Panormide nappe. Previously formed structures appear to have been dissected or reactivated by a right oblique transpression during the Late Pliocene-Pleistocene. The geometry of the carbonate bodies opens new potential perspectives on the existence of structural traps, but the uncertainties of source rock occurrence remain. (Author)

  9. Coastal response to climate change: Mediterranean shorelines during the Last Interglacial (MIS 5)

    Science.gov (United States)

    Mauz, Barbara; Fanelli, Fabio; Elmejdoub, Noureddine; Barbieri, Roberto

    2012-10-01

    The response of shorelines to climate change is controlled by fall and rise of the sea level and by the alteration of the coastal environment due to changing fluvial discharge and biological activity. In the Mediterranean this response is complicated by the geographic proximity of the North Atlantic and the African Monsoon climate systems, by a time and space specific interaction of eustatic and water-load components of sea level and by the mid-latitudinal time lag between orbital forcing and terrestrial response. Here, six Mediterranean coastal records are presented which contribute to our understanding of how mid-latitudinal coasts respond to orbital forcing. The sediment sequences show sharp switches between siliciclastic- and carbonate-dominated nearshore environments where carbonate-rich sediments are composed of oolitic grainstones. From modern analogues it is deduced that the oolitic sediments represent a period of relatively high annual sea-surface temperature and lack of fluvial discharge. The warm-arid period was recorded at ˜114 ka on the southeast Iberian coast, at ˜113 ka on the Levant coast, at ˜110 ka on the coast west of the Nile delta and at ˜83 ka on the north Saharan coast. It lasted 10-20 ka in east (Levant coast) and west (Iberian coast) and lasted 40 ka or more in the central-south of the east Mediterranean. Timing and duration of the coastal proxy allow inferring instantaneous and dominant response to external forcing in the east and west and delayed and prolonged response due to dominant regional forcing in the centre of the East Mediterranean. A 9 m eustatic sea-level highstand during MIS 5e is suggested with a start of the subsequent sea-level fall at ˜118 ka while evidence for multiple MIS 5e highstand and a highstand during MIS 5a remain elusive.

  10. 3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland

    Science.gov (United States)

    Obermann, Anne; Lupi, Matteo; Mordret, Aurélien; Jakobsdóttir, Steinunn S.; Miller, Stephen A.

    2016-05-01

    From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6 km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8 s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6 km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5 km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5 km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5 km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.

  11. Lake sediments provide the first eruptive history for Corbetti, a high-risk Main Ethiopian Rift volcano

    Science.gov (United States)

    Martin-Jones, Catherine M.; Lane, Christine S.; Pearce, Nicholas J. G.; Smith, Victoria C.; Lamb, Henry F.; Schaebitz, Frank; Viehberg, Finn; Brown, Maxwell C.; Frank, Ute; Asrat, Asfawossen

    2017-04-01

    A recent World Bank report found that 49 of Ethiopia's 65 known Holocene volcanoes pose a high-risk to the surrounding population. One of these volcanoes, Corbetti, located in the densely populated Main Ethiopian Rift (MER), has only one documented Holocene eruption. Any risk assessment for Corbetti is therefore highly uncertain. Reliable hazard forecasting is dependent on the completeness of volcanic records. In the case of Ethiopian Rift volcanoes complete records are hindered by frequently poorly exposed, buried and inaccessible proximal outcrops. Lake sediments can yield comprehensive, stratigraphically-resolved dossiers of past volcanism. Here we use volcanic ash (tephra) layers preserved in sediments from three MER lakes to provide the first record of Holocene volcanism for Corbetti. It shows that Corbetti has erupted explosively throughout the Holocene at an average return period of 800 years. Based on the thickness and dispersal of the tephras, at least six eruptions were of a large magnitude, and there were four eruptions in the past 2000 years. Future explosive eruptions are likely and these could have significant societal impacts, they could blanket nearby Awassa and Shashamene, home to 260,000 people, with pumice deposits. Our data indicate that the threat posed by Corbetti has been significantly underestimated. These data can be used to refine regional volcano monitoring and develop evacuation plans. This lake sediment-tephrostratigraphic approach shows significant potential for application throughout the East African Rift system, and is essential to understanding volcanic hazards in this rapidly developing region.

  12. A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: Implications for hazard assessment

    Science.gov (United States)

    Carrasco-Núñez, Gerardo; Vallance, James W.; Rose, William I.

    1993-12-01

    During the late Pleistocene the ancestral edifice of Citlaltépetl volcano (also known as Pico de Orizaba) collapsed to form a clay-rich deposit that extends 85 km from its source, has a volume of 1.8 km 3, and covers an area of 143 km 2 east of the volcano. The deposit has clay content ranging from 10 to 16% and contains secondary alteration minerals such as smectite and kaolinite. The deposit's features suggest that it had an origin as a sector collapse of hydrothermally altered rock that transformed from a debris avalanche to a cohesive lahar very close to its source. The presence of glacier ice and a hydrothermal system during late Pleistocene times apparently provided a source of pore water which enhanced the hydrothermal alteration of the summit of Citlaltépetl and was the origin of most of the water for the lahar. This deposit and several others suggest that glaciated volcanoes are sites where hydrothermal alteration and resulting cohesive lahars are most likely. Although cohesive lahars and debris avalanches both have origins as sector collapses, cohesive lahars are more mobile than similar-sized debris avalanches. Thus potential hazard of edifice collapse at glaciated volcanoes, especially those with large volumes of hydrothermally altered rock, includes the possibility of large-volume cohesive lahars.

  13. Interconnectivity vs. isolation of prokaryotic communities in European deep-sea mud volcanoes

    Directory of Open Access Journals (Sweden)

    M. G. Pachiadaki

    2013-05-01

    Full Text Available During the past two decades, European cold seep ecosystems have attracted the scientific interest and to date there are several studies which have investigated the community structure and biodiversity of individual sites. In order to gain a better insight into the biology, biodiversity, and biogeography of seep-associated microbial communities along Europe's continental margins, a comparative approach was applied in the present work. By exploiting the publicly available data on 16S rRNA gene sequences retrieved from sediments of the Håkon Mosby mud volcano, Gulf of Cádiz and the eastern Mediterranean mud volcanoes/pockmarks (Anaximander area and Nile Fan, we investigated the prokaryotic biological components connecting these geographically isolated systems. The construction of interaction networks for both archaeal and bacterial shared operational taxonomic units (OTUs among the different sites, revealed the presence of persistent OTUs, which can be considered as "key-players". One archaeal OTU (HQ588641 belonging to the ANME-3 group and one δ-Proteobacteria (HQ588562 were found in all five investigated areas. Other Archaea OTUs shared between four sites or less, belonged to the ANME-2c, -2a, MBG-D, -B and Thaumarchaeota. All other shared Bacteria belonged to the δ- and γ-Proteobacteria, with the exception of one JS1 affiliate OTU. The distribution of the majority of the shared OTUs seems to be restricted in cold seeps, mud volcanoes and other marine methane-rich environments. Although the investigated sites were connected through a small number of OTUs, these microorganisms hold central ecophysiological roles in these sediments, namely methane- and sulfur-mediated mineralization.

  14. Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California

    Science.gov (United States)

    Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet

    2017-08-15

    The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.

  15. The geological evolution of Merapi volcano, Central Java, Indonesia

    Science.gov (United States)

    Gertisser, Ralf; Charbonnier, Sylvain J.; Keller, Jörg; Quidelleur, Xavier

    2012-07-01

    Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K-40Ar and 40Ar-39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170 ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109 ± 60 ka), a small basaltic andesite volcanic structure on Merapi's north-east flank, and Gunung Turgo and Gunung Plawangan (138 ± 3 ka; 135 ± 3 ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30 ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8 ± 1.5 ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792 ± 90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an

  16. 3D geophysical insights into the Ciomadu volcano

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2017-04-01

    RATIONALE Located at the south easternmost end of the Neogene to Quaternary volcanic chain of East Carpathians, the Ciomadu volcano (last erupted approx 30 ka ago) seems to represent the latest volcanic manifestation within the Carpatho-Pannonian region. Based on the interpretation of some large-scale electromagnetic and seismological surveys, the hypothesis of the in depth (8 -15 km) existence of a magma reservoir raises the volcanic hazard in the region. The close neighbourhood of the Vrancea active geodynamic zone, where intermediate-depth seismicity occurs within full intra-continental environment makes the study of the Ciomadu volcano of higher interest. METHOD During the time numerous geological investigations have been conducted in the area, but except for the previously mentioned large-scale electromagnetic and seismological approaches geophysical tools have been less employed. Relatively recent, within the frame of the INSTEC project, funded through a CNCS-UEFISCDI (Romanian Science Foundation) grant, the area has been subject to an integrated gravity and geomagnetic survey accompanied by outcrops sampling and lab determinations on rock physics. Field data have been highly processed and models of their sources have been constructed through 3D inversion techniques. RESULTS Overall, the potential fields have revealed a large gravity low covering the whole volcano area associating a residual geomagnetic anomaly with local effects mainly bordering the gravity anomaly. 3D inversion of the gravity data provided an intriguing image on the mass distribution within the volcanic structure, with underground densities much bellow the figures provided by the lab determinations on rock samples collected at the surface. The geometry of the revealed gravity source clearly suggests an andesitic/dacitic intrusion acceding to the surface along a deep fault that seems to belong to the alpine overthrust system of East Carpathians. Attempts to interpret the low value densities

  17. P-wave scattering and the distribution of heterogeneity around Etna volcano

    Directory of Open Access Journals (Sweden)

    Toni Zieger

    2016-09-01

    Full Text Available Volcanoes and fault zones are areas of increased heterogeneity in the Earth crust that leads to strong scattering of seismic waves. For the understanding of the volcanic structure and the role of attenuation and scattering processes it is important to investigate the distribution of heterogeneity. We used the signals of air-gun shots to investigate the distribution of heterogeneity around Mount Etna. We devise a new methodology that is based on the coda energy ratio which we define as the ratio between the energy of the direct P-wave and the energy in a later coda window. This is based on the basic assumption that scattering caused by heterogeneity removes energy from the direct P-waves. We show that measurements of the energy ratio are stable with respect to changes of the details of the time windows definitions. As an independent proxy of the scattering strength along the ray path we measure the peak delay time of the direct P-wave. The peak delay time is well correlated with the coda energy ratio. We project the observation in the directions of the incident rays at the stations. Most notably is an area with increased wave scattering in the volcano and east of it. The strong heterogeneity found supports earlier observations and confirms the possibility to use P-wave sources for the determination of scattering properties. We interpret the extension of the highly heterogeneous zone towards the east as a potential signature of inelastic deformation processes induced by the eastward sliding of flank of the volcano.

  18. East Asia Rolls On

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The economic recovery in East Asia remains unchanged on its upward trajectory despite the earthquake and devastating tsunami in Japan on March 11.Growth in East Asia slowed after a sharp rebound from the global financial crisis but is improving nonetheless.The World Bank’s East Asia and Pacific Economic Update issued on March 21 projects real GDP growth in East Asia will be smaller than that of 2010 in the following two years.Besides future East Asian economic trends,the report also discusses the impact of the Japanese catastrophe.Edited excerpts follow:

  19. Hydraulic modeling for lahar hazards at cascades volcanoes

    Science.gov (United States)

    Costa, J.E.

    1997-01-01

    The National Weather Service flood routing model DAMBRK is able to closely replicate field-documented stages of historic and prehistoric lahars from Mt. Rainier, Washington, and Mt. Hood, Oregon. Modeled time-of-travel of flow waves are generally consistent with documented lahar travel-times from other volcanoes around the world. The model adequately replicates a range of lahars and debris flows, including the 230 million km3 Electron lahar from Mt. Rainier, as well as a 10 m3 debris flow generated in a large outdoor experimental flume. The model is used to simulate a hypothetical lahar with a volume of 50 million m3 down the East Fork Hood River from Mt. Hood, Oregon. Although a flow such as this is thought to be possible in the Hood River valley, no field evidence exists on which to base a hazards assessment. DAMBRK seems likely to be usable in many volcanic settings to estimate discharge, velocity, and inundation areas of lahars when input hydrographs and energy-loss coefficients can be reasonably estimated.

  20. Volcanic Processes and Geology of Augustine Volcano, Alaska

    Science.gov (United States)

    Waitt, Richard B.; Beget, James E.

    2009-01-01

    recently in A.D. 1883. The decapitated summit after the 1883 eruption, replaced by andesite domes of six eruptions since, shows a general process: collapse of steep summit domes, then the summit regrown by later dome eruptions. The island's stratigraphy is based on six or seven coarse-pumice tephra 'marker beds'. In upward succession they are layers G (2,100 yr B.P.), I (1,700 yr B.P.), H (1,400 yr B.P.), C (1,200-1,000 yr B.P.), M (750 yr B.P.), and B (390 yr B.P.). A coarse, hummocky debris-avalanche deposit older than about 2,100 yr B.P. - or perhaps a stack of three of them - lies along the east coast, the oldest exposed such bouldery diamicts on Augustine Island. Two large debris avalanches swept east and southeast into the sea between about 2,100 and 1,800 yr B.P. A large debris avalanche shed east and east-northeast into the sea between 1,700 and 14,00 yr B.P. Between about 1,400 and 1,100 yr B.P. debris avalanches swept into the sea on the volcano's south, southwest, and north-northwest. Pumiceous pyroclastic fans spread to the southeast and southwest, lithic pyroclastic flows and lahars (?) to the south and southeast. Pyroclastic flows, pyroclastic surges, and lahars swept down the west and south flanks between about 1,000 and 750 yr B.P. A debris avalanche swept into the sea on the west, and a small one on the south-southeast, between about 750 and 400 yr B.P. Large lithic pyroclastic flows shed to the southeast; smaller ones descended existing swales on the southwest and south. Between about 400 yr B.P. and historical time (late 1770s), three debris avalanches swept into the sea on the west-northwest, north-northwest, and north flanks. One of them (West Island) was large and fast: most of it rode to sea far beyond a former sea cliff, and its surface includes geomorphic evidence of having initiating a tsunami. Augustine's only conspicuous lava flow erupted on the north flank. During this prehistoric period numerous domes grew at th

  1. The coalescence and organization of lahars at Semeru volcano, Indonesia

    Science.gov (United States)

    Doyle, E. E.; Cronin, S. J.; Cole, S. E.; Thouret, J.-C.

    2010-10-01

    We present multi-parameter geophysical measurements of rainfall-induced lahars at Semeru Volcano, East Java, using two observation sites 510 m apart, 11.5 km from the summit. Our study site in the Curah Lengkong channel is composed of a 30-m wide box-valley, with a base of gravel and lava bedrock, representing an ideal geometry for high density measurements of active lahars. Instrumentation included pore-pressure sensors (stage), a broad-band seismograph (arrival times, vibrational energy, and turbulence), video footage, and direct bucket sampling. A total of 8 rainfall-induced lahars were recorded, with durations of 1-3 h, heights 0.5-2 m, and peak velocities 3-6 m/s. Flow types ranged from dilute to dense hyperconcentrated flows. These recorded flows were commonly composed of partly coalesced, discrete and unsteady gravity current packets, represented by multiple peaks within each lahar. These packets most likely originate from multiple lahar sources, and can be traced between instrument sites. Those with the highest concentrations and greatest wetted areas were often located mid-lahar at our measured reach, accelerating towards the flow front. As these lahars travel downstream, the individual packets thus coalesce and the flow develops a more organised structure. Observations of different degrees of coalescence between these discrete flow packets illustrate that a single mature debris flow may have formed from multiple dynamically independent lahars, each with different origins.

  2. Microbial communities at deep-sea mud volcanoes in the Eastern Mediterranean

    NARCIS (Netherlands)

    Heijs, Sander Károly Heijs

    2005-01-01

    Circa 20 jaar geleden werden moddervulkanen ontdekt in verschillende diepzee milieus (Atlantische Oceaan, Grote Oceaan en de Zwarte en Middellandse Zee) en onderzoek heeft aangetoond dat deze moddervulkanen grote hoeveelheden modder en water uitspuwen die hoge concentraties methaan en

  3. Postfire chaparral regeneration under mediterranean and non-mediterranean climates

    Science.gov (United States)

    Keeley, Jon E.; Fotheringham, Connie J.; Rundel, Philip W.

    2012-01-01

    This study compares postfire regeneration and diversity patterns in fire-prone chaparral shrublands from mediterranean (California) and non-mediterranean-type climates (Arizona). Vegetation sampling was conducted in tenth hectare plots with nested subplots for the first two years after fire. Floras in the two regions were compared with Jaccard's Index and importance of families and genera compared with dominance-diversity curves. Although there were 44 families in common between the two regions, the dominant families differed; Poaceae and Fabaceae in Arizona and Hydrophyllaceae and Rosaceae in California. Dominance diversity curves indicated in the first year a more equable distribution of families in Arizona than in California. Woody plants were much more dominant in the mediterranean climate and herbaceous plants more dominant in the bimodal rainfall climate. Species diversity was comparable in both regions at the lowest spatial scales but not at the tenth hectare scale. Due to the double growing season in the non-mediterranean region, the diversity for the first year comprised two different herbaceous floras in the fall and spring growing seasons. The Mediterranean climate in California, in contrast, had only a spring growing season and thus the total diversity for the first year was significantly greater in Arizona than in California for both annuals and herbaceous perennials. Chaparral in these two climate regimes share many dominant shrub species but the postfire communities are very different. Arizona chaparral has both a spring and fall growing season and these produce two very different postfire floras. When combined, the total annual diversity was substantially greater in Arizona chaparral.

  4. Mediterranean diet and diabetes: prevention and treatment.

    Science.gov (United States)

    Georgoulis, Michael; Kontogianni, Meropi D; Yiannakouris, Nikos

    2014-04-04

    The aim of the present review is to examine current scientific knowledge on the association between the Mediterranean diet and diabetes mellitus (mostly type 2 diabetes). A definition of the Mediterranean diet and the tools widely used to evaluate adherence to this traditional diet (Mediterranean diet indices) are briefly presented. The review focuses on epidemiological data linking adherence to the Mediterranean diet with the risk of diabetes development, as well as evidence from interventional studies assessing the effect of the Mediterranean diet on diabetes control and the management of diabetes-related complications. The above mentioned data are explored on the basis of evaluating the Mediterranean diet as a whole dietary pattern, rather than focusing on the effect of its individual components. Possible protective mechanisms of the Mediterranean diet against diabetes are also briefly discussed.

  5. Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile

    Science.gov (United States)

    Castruccio, Angelo; Clavero, Jorge; Rivera, Andrés

    2010-02-01

    The Villarrica and Calbuco volcanoes, of the Andean Southern Volcanic Zone, are two of the most active volcanoes in Chile and have erupted several times in the XX century. The 1961 eruption at Calbuco volcano generated lahars on the North, East and Southern flanks, while the 1971 eruption at Villarrica volcano generated lahars in almost all the drainages towards the north, west and south of the volcano. The deposits from these eruptions in the Voipir and Chaillupén River (Villarrica) and the Tepú River (Calbuco) are studied. The 1971 lahar deposits on Villarrica volcano show a great number of internal structures such as lamination, lenses, grading of larger clasts and a great abundance of large floating blocks on top of the deposits. The granulometry can be unimodal or bimodal with less than 5% by weight of silt + clay material. SEM images reveal a great variety of forms and compositions of clasts. The 1961 lahar deposits on Calbuco volcano have a scarce number of internal structures, steeper margins and features of hot emplacement such as semi-carbonized vegetal rests, segregation pipes and a more consolidated matrix. The granulometry usually is bimodal with great quantities of silt + clay material (> 10% by weight). SEM images show a uniformity of composition and forms of clasts. Differences on deposits reveal different dynamics on both lahars. The Villarrica lahar was generated by sudden melt of ice and snow during the paroxysmal phase of the 1971 eruption, when a high fountain of lava was formed. The melted water flowed down on the flanks of the volcano and incorporated sediments to become transition flows, highly energetic and were emplaced incrementally. Dilution of the flows occurs when the lahars reached unconfined and flatter areas. In cases where the lahar flow found large water streams, dilution is enhanced. The Calbuco lahars were generated by the dilution of block and ash pyroclastic flows by flowing over the ice or snow or by entering active rivers

  6. Interannual variability of Mediterranean evaporation and its relation to regional climate

    Energy Technology Data Exchange (ETDEWEB)

    Zveryaev, Igor I. [Moscow State University, P.P. Shirshov Institute of Oceanology, RAS and Faculty of Geography, Moscow (Russian Federation); Hannachi, Abdel A. [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2012-02-15

    Gridded monthly evaporation data for 1958-2006 from the Woods Hole Oceanographic Institution data set are used to investigate interannual variability of Mediterranean evaporation during cold and hot seasons and its relation to regional atmospheric dynamics, sea surface temperature and atmospheric elements of the hydrological cycle. The first EOF mode of Mediterranean evaporation, explaining more than 50% of its total variance, is characterized by the monopole pattern both in winter and summer. However, despite structural similarity, the EOF-1 of Mediterranean evaporation is affected by different climate signals in cold and hot seasons. During winter the EOF-1 is associated with the East Atlantic teleconnection pattern. In summer, there is indication of tropical influence on the EOF-1 of Mediterranean evaporation (presumably from Asian monsoon). Both in winter and summer, principal components of EOF-1 demonstrate clear interdecadal signals (with a stronger signature in summer) associated with large sea surface temperature anomalies. The results of a sensitivity analysis suggest that in winter both the meridional wind and the vertical gradient of saturation specific humidity (GSSH) near the sea surface contribute to the interdecadal evaporation signal. In summer, however, it is likely that the signal is more related to GSSH. Our analysis did not reveal significant links between the Mediterranean evaporation and the North Atlantic Oscillation in any season. The EOF-2 of evaporation accounts for 20% (11%) of its total variance in winter (in summer). Both in winter and summer the EOF-2 is characterized by a zonal dipole with opposite variations of evaporation in western and eastern parts of the Mediterranean Sea. This mode is associated presumably with smaller scale (i.e., local) effects of atmospheric dynamics. Seasonality of the leading modes of the Mediterranean evaporation is also clearly seen in the character of their links to atmospheric elements of the regional

  7. PON1 and Mediterranean Diet

    Science.gov (United States)

    Lou-Bonafonte, José M.; Gabás-Rivera, Clara; Navarro, María A.; Osada, Jesús

    2015-01-01

    The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity. PMID:26024295

  8. PON1 and Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    José M. Lou-Bonafonte

    2015-05-01

    Full Text Available The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1 has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.

  9. [Mediterranean diet: not only food].

    Science.gov (United States)

    da Vico, Letizia; Agostini, Susanna; Brazzo, Silvia; Biffi, Barbara; Masini, Maria Luisa

    2012-09-01

    The proposal of a Mediterranean way of life is much more than advise how to eat. The Mediterranean Diet, a model of Sustainable Diet, is an example of how to combine personal choices, economic, social and cultural rights, protective of human health and the ecosystem. There is in fact fundamental interdependence between dietary requirements, nutritional recommendations, production and consumption of food. In literature studies and nutritional and epidemiological monitoring activities at national and international level have found a lack of adherence to this lifestyle, due to the spread of the economy, lifestyles of the Western type and globalization of the production and consumption. To encourage the spread of a culture and a constant practice of the Mediterranean Diet, there are some tools that are presented in this article. The Mediterranean Diet Pyramid in addition to the recommendations on the frequency and portions of food, focuses on the choice of how to cook and eat food. The "Double Food Pyramid" encourages conscious food choices based on "healthy eating and sustainability. All the nutrition professionals and dietitians in particular should be constantly striving to encourage the adoption of a sustainable and balanced nutrition.

  10. PON1 and Mediterranean Diet.

    Science.gov (United States)

    Lou-Bonafonte, José M; Gabás-Rivera, Clara; Navarro, María A; Osada, Jesús

    2015-05-27

    The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.

  11. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  12. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  13. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    Science.gov (United States)

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  14. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans

    Directory of Open Access Journals (Sweden)

    Ben Dhiab Mohamed

    2008-02-01

    Full Text Available Abstract Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1 a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2 the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

  15. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  16. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  17. Vulcan's fury: Man against the volcano

    Science.gov (United States)

    Varekamp, Johan C.

    I read this book on an 11-hour flight back from a field trip in the Andes, where I got first-hand insight into how people live with a volcano that now and then explodes. Appropriate reading, I felt, especially as the fascination of the human world with volcanoes and eruptive disasters is indeed long standing. This book is a recent addition to a list of titles in this genre (e.g., the new book by Sigurdsson to be reviewed in Eos shortly). The scope of the book is summarized in the introductory sentence of the preface: “This book is about an unequal contest. It describes human reactions to volcanic eruptions.” This is the perspective of the book's descriptions of 16 large and not-so-large eruptions over the last two millennia.

  18. Uzon-Geysernaya volcano-tectonic depression: geodynamics phenomena last years

    Science.gov (United States)

    Kugaenko, Yulia

    2010-05-01

    (swarm) type. - The majority of earthquakes are connected with areas of hydrothermal activity in western slop of Kikhpinych volcanic massif. - Seismicity is located in part of caldera displacement, discovered by INSAR data. - By our mind, the seismicity and Uzon caldera inflation (as a result of activation of magma chamber or hydrothermal system) effected and destructed the caldera slop by activation of fissures and by change of pore-fracture configuration. Summarizing data about the tectonics, the raising of east slope of depression, the landsliding and local seismicity, we can suppose that all these phenomena are connected with the deep processes under Uzon-Geysernaya depression and Kikhpinuch volcano are the reason of all these events. It is the indication of the renewal of the dynamics within eastern part of the calderas. References: Belousov, V. I., E. N. Grib, and V. L. Leonov (1984), The geological setting of the hydrothermal systems in the Geysers Valley and Uzon caldera, Volcanol. Seismol., 5, 67-81. Kugaenko, Yu. (2008), Geodynamic processes as the risk factor of June 3, 2007 landslide in the Valley of the Geysers (Kamchatka, Russia), Proceedings of the First World Landslide Forum. 18-21 November 2008, Tokio, Japan, 333-336. Leonov, V. L., E. N. Grib, G. A. Karpov, V. M. Sugrobov, N. G. Sugrobova, and Z. I. Zubin (1991). Uzon caldera and Valley of Geysers, in Active Volcanoes of Kamchatka, edited by S. A. Fedotov and Y. P. Masurenkov, Nauka, Moscow, 92- 141. Leonov, V.L. (2007) Valley of the Geysers struck by large destructive landslide and related flood. Bulletin of the Global Volcanism Network (BGVN 32:07). 07/2007. Lundgren, P., Lu, Zh. (2006) Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations. Geophysical Research Letters. 33, L06301, doi:10.1029/2005GL025181

  19. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  20. On the morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  1. Buried caldera of mauna kea volcano, hawaii.

    Science.gov (United States)

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  2. Publications of the Volcano Hazards Program 2014

    Science.gov (United States)

    Nathenson, Manuel

    2016-04-08

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Natural Hazards activity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaiʻi Mānoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions.

  3. Controls on the location of arc volcanoes: an Andean study

    Science.gov (United States)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  4. Shallow resistivity structure of Asama Volcano and its implications for magma ascent process in the 2004 eruption

    Science.gov (United States)

    Aizawa, Koki; Ogawa, Yasuo; Hashimoto, Takeshi; Koyama, Takao; Kanda, Wataru; Yamaya, Yusuke; Mishina, Masaaki; Kagiyama, Tsuneomi

    2008-06-01

    Asama volcano is an active volcano with many historical records of Vulcanian eruptions. Its most recent eruptions occurred in 2004 at the summit crater. In this paper, we argue the resistivity structure shallower than 3 km obtained by a dense magnetotelluric survey. The magnetotelluric data were obtained at 74 measurement sites mainly along the four survey lines across the volcano. The resistivity profiles obtained by two-dimensional inversions are characterized by a resistive surface layer and an underlying conductive layer. The dominant feature of the profiles is the existence of resistive bodies at a depth range of a few hundred meters to a few kilometers surrounded by a highly conductive region. Considering that the location of resistive bodies correspond to the old eruption centers (one corresponds to the 24 ka collapse caldera and the other to the 21 ka lava dome), the resistive bodies imply zones of old and solidified intrusive magma with low porosity. Because geothermal activities exist near the resistive bodies, the enclosing highly conductive regions are interpreted as a hydrothermal system driven by the heat from the old solidified magma. Beneath the resistive body under the collapsed caldera, intrusion of magma is inferred from the studies of volcano-tectonic earthquakes and continuous global positioning system (GPS) observation, implying the structural control of magma activity within the volcano. In this study, we propose that the magma ascent was impeded by the old and solidified remnant magma and partly migrated horizontally to the east and finally ascended to the summit, resulting in the 2004 eruptions.

  5. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  6. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  7. Seismic and infrasound monitoring at Cotopaxi volcano

    Science.gov (United States)

    Ruiz, M.; Yepes, H.; Palacios, P.; Troncoso, L.; Mothes, P.; Kumagai, H.

    2012-04-01

    Cotopaxi is an active ice-capped volcano (5967m) located 60 km SE from Quito and is one of the largest and more hazardous volcanoes in the Northern Andes. Monitoring of Cotopaxi, using seismic and infrasound techniques has improving significantly since 1976, when three short-period stations were deployed temporarily in response to an increase of fumarolic activity. Later in May 1977, a short-period vertical seismometer was installed on the NW flank at 7 km from the crater. Since 1986 a short-period seismic station is working at the northern flank of Cotopaxi and transmitting analog data to the Instituto Geofisico. In 1993 a network of 4 short-period seismic stations were installed on all flanks of the volcano. Between March 1996 and June 1997 a temporal network of 16 stations were deployed for several months in order to study local seismicity and internal structure (Metaxian et al., 1999). Since 2006, a network of five broad band stations (0.02-60 s) and low-frequency infrasound sensors (0.01-10 s) were installed through a JICA Cooperation Project (Kumagai et al., 2007). Data is transmitted to the Instituto Geofisico via a digital radio system. Through this network, LP and VLP events have been recorded and analyzed (Molina et al., 2008). VLP events were located beneath the north and north-eastern flank using waveform inversion and amplitude distribution methods (Kumagai et al., 2010).

  8. Detecting Blackholes and Volcanoes in Directed Networks

    CERN Document Server

    Li, Zhongmou; Liu, Yanchi

    2010-01-01

    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  9. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  10. The Scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranean

    NARCIS (Netherlands)

    Galil, B.S.; Spanier, E.; Ferguson, W.W.

    1990-01-01

    Seven species of Scyphomedusae are reported from the Mediterranean coast of Israel. Two of these, Rhopilema nomadica spec. nov. and Phyllorhiza punctata von Lendenfeld, 1884, are Lessepsian migrants new to the Mediterranean.

  11. Citizen empowerment in volcano monitoring, communication and decision-making at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Bartel, B. A.; Mothes, P. A.

    2013-12-01

    Trained citizen volunteers called vigías have worked to help monitor and communicate warnings about Tungurahua volcano, in Ecuador, since the volcano reawoke in 1999. The network, organized by the scientists of Ecuador's Instituto Geofísico de la Escuela Politécnica Nacional (Geophysical Institute) and the personnel from the Secretaría Nacional de Gestión de Riesgos (Risk Management, initially the Civil Defense), has grown to more than 20 observers living around the volcano who communicate regularly via handheld two-way radios. Interviews with participants conducted in 2010 indicate that the network enables direct communication between communities and authorities; engenders trust in scientists and emergency response personnel; builds community; and empowers communities to make decisions in times of crisis.

  12. Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity

    Science.gov (United States)

    Wynn, Jeff

    2014-01-01

    Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the

  13. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  14. Metazoan parasites in the head region of the bullet tuna Auxis rochei (Osteichthyes: Scombridae) from the western Mediterranean Sea.

    Science.gov (United States)

    Mele, S; Saber, S; Gómez-Vives, M J; Garippa, G; Alemany, F; Macías, D; Merella, P

    2015-11-01

    The head region of 72 bullet tuna Auxis rochei from the western Mediterranean Sea (south-east Spain and the Strait of Gibraltar) was examined for parasites. Seven metazoan species were found in the fish from south-east Spain: three monogeneans, two trematodes and two copepods, whereas only three species were isolated in the fish from the Strait of Gibraltar. A comparison of the levels of infection of the parasites according to fish size in south-east Spain showed that the prevalence of Didymozoon auxis and the mean abundance of Allopseudaxine macrova were higher in the larger hosts (range of fork length = 38-44 cm) than in the smaller ones (33-37 cm). A comparison of the parasite infections according to geographical region showed that the mean abundances of Nematobothriinae gen. sp. and Caligus bonito were higher in fish from south-east Spain than in those from the Strait of Gibraltar. A comparison of the parasite fauna of A. rochei from the Mediterranean Sea with the published data on Auxis spp. from the Atlantic, Indian and Pacific Oceans revealed the closest similarity between the Mediterranean A. rochei and the Atlantic A. thazard.

  15. July 1973 ground survey of active Central American volcanoes

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  16. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  17. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along

  18. Historical volcanism and the state of stress in the East African Rift System

    Science.gov (United States)

    Wadge, Geoffrey; Biggs, Juliet; Lloyd, Ryan; Kendall, Michael

    2016-09-01

    Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking

  19. Persistent Acacia savannas replace Mediterranean sclerophyllous forests in South America

    NARCIS (Netherlands)

    Wouw, van de P.; Echeverria, C.; Rey-Benayas, J.M.; Holmgren, M.

    2011-01-01

    Mediterranean ecosystems are global hotspots of biodiversity threaten by human disturbances. Growing evidence indicates that regeneration of Mediterranean forests can be halted under certain circumstances and that successional stages can become notoriously persistent. The Mediterranean sclerophyllou

  20. Persistent Acacia savannas replace Mediterranean sclerophyllous forests in South America

    NARCIS (Netherlands)

    Wouw, van de P.; Echeverria, C.; Rey-Benayas, J.M.; Holmgren, M.

    2011-01-01

    Mediterranean ecosystems are global hotspots of biodiversity threaten by human disturbances. Growing evidence indicates that regeneration of Mediterranean forests can be halted under certain circumstances and that successional stages can become notoriously persistent. The Mediterranean

  1. Persistent Acacia savannas replace Mediterranean sclerophyllous forests in South America

    NARCIS (Netherlands)

    Wouw, van de P.; Echeverria, C.; Rey-Benayas, J.M.; Holmgren, M.

    2011-01-01

    Mediterranean ecosystems are global hotspots of biodiversity threaten by human disturbances. Growing evidence indicates that regeneration of Mediterranean forests can be halted under certain circumstances and that successional stages can become notoriously persistent. The Mediterranean sclerophyllou

  2. Characteristic of geothermal fluid at East Manggarai, Flores, East Nusa Tenggara

    Science.gov (United States)

    Iqbal, Mochamad; Herdianita, Niniek Rina; Risdianto, Dikdik

    2016-09-01

    The research area is located in East Manggarai and its surrounding area, Flores. In the study area there are two geothermal systems, i.e. Mapos geothermal system which is associated with Anak Ranakah volcano and Rana Masak geothermal systems which is associated with Watuweri volcano. The difference within these systems is shown by the relative content of conservative elements of Cl, Li and B. Geothermal surface manifestations in Mapos include 4 hot springs having temperatures of 34,3-51,4°C and bicarbonate and sulphate-bicarbonate waters; the discharge area in Rana Masak consist of 3 hot springs with temperatures of 38-46,6°C and chloride and chloride-bicarbonate water. Stable isotopes δ18O and δD analyses showed that the geothermal fluid derived from meteoric water. The Mapos geothermal system is a high temperature system having reservoir temperature of 250-270°C with natural heat loss of 230 kW. The Rana Masak geothermal system is a low temperature system having reservoir temperature of 120-140°C with natural heat loss of 120 kW.

  3. Virunga Volcanoes Supersite: a collaborative initiative to improve Geohazards Assessment and Monitoring of Active Volcanoes in a highly populated region

    Science.gov (United States)

    Balagizi, Charles M.; Mahinda, Celestin K.; Yalire, Mathieu M.; Ciraba, Honoré M.; Mavonga, Georges T.

    2017-04-01

    Located within the western branch of the East African Rift System (EARS), the Virunga Volcanic Province is a young highly volcanically and seismically active region. It provides a unique opportunity to study deep mantle upwelling through the crust. Several Geohazards are encountered in this highly populated region, and include volcanic hazards (lava flows, volcanic gases and ash, …), earthquake hazard; landslide, mud flows and floods hazards. In addition, the overturn of Lake Kivu (which lies in the Kivu Graben, western branch of the EARS) could release huge CO2 and CH4 into the atmosphere. A few days after the January 17, 2002 Nyiragongo eruption whose lava flows devastated Goma city, destroying the houses of ˜120,000 people, forced a mass self-evacuation of ˜300,000 people of Goma (of estimated ˜400,000 inhabitants), and killed ˜140 people; the international scientific community deployed a "dream scientific team" to evaluate the state of Geohazards in the Virunga region. Particularly, the team had to check whether the stability of Lake Kivu that dissolves ˜300 and ˜60 km3 of CO2 and CH4 (at 0˚ C and 1 atm.) in its deep water was not disturbed due to Nyiragongo lava that entered the lake. Since 2002 several projects were funded with the main goal of accompanying the local scientific team to set up a more professional team to assess and continuous monitor Geohazards in the Virunga. For the time being, while Nyiragongo volcano solely threatens ˜1.5 million inhabitants of Goma (DR Congo) and Gisenyi (Rwanda) cities in addition to people living in the surrounding villages, and Lake Kivu threatening ˜3 million inhabitants of its catchment, the local scientists remain less qualified and equipped. Here we show that collaboration between Virunga local scientists and international scientists through the Geohazards Supersites network could be a most efficient pathway to improve Geohazards assessment and monitoring in the Virunga, and hence yield Disaster Risk

  4. The Mediterranean is getting saltier

    Directory of Open Access Journals (Sweden)

    M. Borghini

    2014-02-01

    Full Text Available The deep waters of the Mediterranean Sea have been getting saltier and warmer for at least the past 40 yr at rates of about 0.015 and 0.04 °C per decade. Here we show that two processes contribute to these increases in temperature and salinity. On interannual time scales, deep water formation events in severe winters transmit increasingly salty intermediate waters into the deep water. The second process is a steady downward flux of heat and salt through the halocline-thermocline that connects the Levantine Intermediate Water with the deep water. We illustrate these two processes with observations from repeat surveys of the western Mediterranean basin we have made over the past 10 yr.

  5. New insights on Panarea volcano from terrestrial, marine and airborne data

    Science.gov (United States)

    Anzidei, Marco

    2010-05-01

    The Panarea volcano belongs to the Aeolian arc system and its activity, which recently produced impacts on the environment as well as on human settlements, is known since historical times. This volcano, which includes Panarea island and its archipelago, is the emergent portion of submarine stratovolcano more than 2000 m high and 20 Km across. In November 2002 a submarine gas eruption started offshore 3 Km east of Panarea on top of a shallow rise of 2.3 km2 surrounded by the islets of Lisca Bianca, Bottaro and Lisca Nera. This event has posed new concern on a volcano generally considered extinct. Soon after the submarine eruption, this area has been surveyed under multidisciplinary programs funded by the Italian Department of the Civil Protection and INGV. Monitoring programs included subaerial and sea bottom DEM of Panarea volcano by merging aerial digital photogrammetry, aerial laser scanning and multibeam bathymetry. A GPS ground deformation network (PANANET) was designed, set up and measured during time span December 2002 - October 2007. GPS data show rates of motion and strain values typical of volcanic areas which are in agreement with the NE-SW and NW-SE tectonic systems. The latter coincide with the main pathways for the upwelling of hydrothermal fluids. GPS data inferred a pre-event uplift followed by a general subsidence and shortening across the area that could be interpreted as the response to the surface of the inflation and deflation of the hydrothermal system reservoir which is progressively reducing its pressure after the 2002 gas eruption. Magnetic and gravimetric data depict the deep and shallow structure of the volcano. From geochemical surveys were calculated energetic conditions at craters. Data were coupled with the computed physic-chemical state of the fluids at the level of the deep reservoir and provided the boundary conditions of the occurred event, and suggesting that a low-energy explosion was responsible for producing the craters at the

  6. Unusual ice diamicts emplaced during the December 15, 1989 eruption of redoubt volcano, Alaska

    Science.gov (United States)

    Waitt, R. B.; Gardner, C. A.; Pierson, T. C.; Major, J. J.; Neal, C. A.

    1994-08-01

    Ice diamict comprising clasts of glacier ice and subordinate rock debris in a matrix of ice (snow) grains, coarse ash, and frozen pore water was deposited during the eruption of Redoubt Volcano on December 15, 1989. Rounded clasts of glacier ice and snowpack are as large as 2.5 m, clasts of Redoubt andesite and basement crystalline rocks reach 1 m, and tabular clasts of entrained snowpack are as long as 10 m. Ice diamict was deposited on both the north and south volcano flanks. On Redoubt's north flank along the east side of Drift piedmont glacier and outwash valley, ice diamict accumulated as at least 3 units, each 1-5 m thick. Two ice-diamict layers underlie a pumice-lithic fall tephra that accumulated on December 15 from 10:15 to 11:45 AST. A third ice diamict overlies the pumiceous tephra. Some of the ice diamicts have a basal 'ice-sandstone' layer. The north side icy flows reached as far as 14 km laterally over an altitude drop of 2.3 km and covered an area of about 5.7 km 2. On Crescent Glacier on the south volcano flank, a composite ice diamict is locally as thick as 20 m. It travelled 4.3 km over an altitude drop of 1.7 km, covering about 1 km 2. The much higher mobility of the northside flows was influenced by their much higher water contents than the southside flow(s). Erupting hot juvenile andesite triggered and turbulently mixed with snow avalanches at snow-covered glacier heads. These flows rapidly entrained more snow, firn, and ice blocks from the crevassed glacier. On the north flank, a trailing watery phase of each ice-diamict flow swept over and terraced the new icy deposits. The last (and perhaps each) flood reworked valley-floor snowpack and swept 35 km downvalley to the sea. Ice diamict did not form during eruptions after December 15 despite intervening snowfalls. These later pyroclastic flows swept mainly over glacier ice rather than snowpack and generated laharic floods rather than snowflows. Similar flows of mixed ice grains and pyroclastic

  7. Unusual ice diamicts emplaced during the December 15, 1989 eruption of redoubt volcano, Alaska

    Science.gov (United States)

    Waitt, R.B.; Gardner, C.A.; Pierson, T.C.; Major, J.J.; Neal, C.A.

    1994-01-01

    Ice diamict comprising clasts of glacier ice and subordinate rock debris in a matrix of ice (snow) grains, coarse ash, and frozen pore water was deposited during the eruption of Redoubt Volcano on December 15, 1989. Rounded clasts of glacier ice and snowpack are as large as 2.5 m, clasts of Redoubt andesite and basement crystalline rocks reach 1 m, and tabular clasts of entrained snowpack are as long as 10 m. Ice diamict was deposited on both the north and south volcano flanks. On Redoubt's north flank along the east side of Drift piedmont glacier and outwash valley, ice diamict accumulated as at least 3 units, each 1-5 m thick. Two ice-diamict layers underlie a pumice-lithic fall tephra that accumulated on December 15 from 10:15 to 11:45 AST. A third ice diamict overlies the pumiceous tephra. Some of the ice diamicts have a basal 'ice-sandstone' layer. The north side icy flows reached as far as 14 km laterally over an altitude drop of 2.3 km and covered an area of about 5.7 km2. On Crescent Glacier on the south volcano flank, a composite ice diamict is locally as thick as 20 m. It travelled 4.3 km over an altitude drop of 1.7 km, covering about 1 km2. The much higher mobility of the northside flows was influenced by their much higher water contents than the southside flow(s). Erupting hot juvenile andesite triggered and turbulently mixed with snow avalanches at snow-covered glacier heads. These flows rapidly entrained more snow, firn, and ice blocks from the crevassed glacier. On the north flank, a trailing watery phase of each ice-diamict flow swept over and terraced the new icy deposits. The last (and perhaps each) flood reworked valley-floor snowpack and swept 35 km downvalley to the sea. Ice diamict did not form during eruptions after December 15 despite intervening snowfalls. These later pyroclastic flows swept mainly over glacier ice rather than snowpack and generated laharic floods rather than snowflows. Similar flows of mixed ice grains and pyroclastic

  8. Long-term multi-hazard assessment for El Misti volcano (Peru)

    Science.gov (United States)

    Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto

    2014-02-01

    We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study

  9. Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i2.159The Volcano-Tectonic (VT earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.

  10. The petrological relationship between Kamen volcano and adjacent volcanoes of Klyuchevskaya group

    Science.gov (United States)

    Churikova, Tatiana; Gordeychik, Boris; Wörner, Gerhard; Ivanov, Boris; Maximov, Alexander; Lebedev, Igor; Griban, Andrey

    2010-05-01

    The Klyuchevskaya Group (KG) of volcanoes has the highest magma production rate across the Kamchatka arc and in fact for any arc worldwide. However, modern geochemical studies of Kamen volcano, which is located between Klyuchevskoy, Bezymianny and Ploskie Sopky volcanoes, were not carried out and its relation and petrogenesis in comparison to other KG volcanoes is unknown. Space-time proximity of KG volcanoes and the common zone of seismicity below them may suggest a common source and genetic relationship. However, the lavas of neighboring volcanoes are rather different: high-Mg and high-Al basalts occur at Klyuchevskoy volcano, Hbl-bearing andesites and dаcites dominate at Bezymianny and medium-high-K subalkaline rocks at Ploskie Sopky volcano. Moreover, previously it was shown that distinct fluid signatures were observed in different KG volcanoes. In this report we present geological, petrographical, mineralogical and petrochemical data on the rocks of Kamen volcano in comparison with other KG volcanoes. Three consecutive periods of volcano activity were recognized in geological history of Kamen volcano: stratovolcano formation, development of a dike complex and formation of numerous cinder and cinder-lava monogenetic cones. The rock series of volcano are divided into four groups: olivine-bearing (Ol-2Px and Ol-Cpx), olivine-free (2Px-Pl, Cpx-Pl and abundant Pl), Hb-bearing and subaphyric rocks. While olivine-bearing rocks are observed in all volcanic stages, olivine-free lavas are presented only in the stratovolcano edifice. Lavas of the monogenetic cones are presented by olivine-bearing and subaphyric rocks. Dikes are olivine-bearing and hornblende-bearing rocks. Olivines of the Kamen stratovolcano and dikes vary from Fo60 to Fo83, clinopyroxenes are augites in composition and plagioclases have a bimodal distribution with maximum modes at An50 and An86. Oxides are represented by high-Al spinel, magnetite and titaniferous magnetite. Mineral compositions of the

  11. Involutina farinacciae Bronnimann & Koehn-Zaninetti 1969, a marker for the Middle Liassic in basinal and some platform facies of Mediterranean and near east areas: The discussion concerning the paleogeography of Montenegro-Albania border region (the Scutari-Peć lineament

    Directory of Open Access Journals (Sweden)

    Radoičić Rajka

    2011-01-01

    Full Text Available Foraminiferal species Involutina farinacciae BRONNIMANN & KOEHN-ZANINETTI, is a marker of Middle Liassic basinal and transitional platform bassin facies widely distributed in Mediterranean area (Umbria-Marche, Pindos, Budva, Sicilia and the Inner Dinarides basin, also in Iraqi Kurdistan (“Avroman” Basin. In the Dinaric Carbonate Platform (DCP it indicates intramarginal and intraplatform depressions. Paleogeography of the Montenegro-Albania border area formed by the inherited prealpine paleogeographic scenario that resulted in a different arrangement of the paleogeographic units westward and eastward of the paleostructure (Scutari-Peć Lineament which controlled the geological history of the region. This transverse paleostructure was a coincident with the paleogeographic front of the DCP, and b the westward limit of the overtrusted Mirdita Zone. The difference in the paleogeographic features in the prolongation from the DCP througout Albania, controlled by paleostructure, are the source of seizmicity, rotation and deviation (SE to NW, into NE of the Complex Mirdita Zone.

  12. SSA 02-1 SALT AND HYPERTENSION IN MIDDLE EAST.

    Science.gov (United States)

    Arici, Mustafa

    2016-09-01

    Middle East and Eastern Mediterranean Region (EMR) is a transcontinental region centered on Western Asia, east of the Mediterranean Sea and the Egypt. The whole area has almost 20 countries with an approximate population of 400 million with different ethnicities. The whole area has basically a hot and dry climate. In some parts of the Middle East, there is a desert climate.Cardiovascular diseases were the leading causes of death in the Middle East, similar to the many other territories of the World. Beyond that, the World Health Organization (WHO) has recognized this region as a hotspot for cardiovascular disease, where disease projections will exceed those of other regions. The major reason for this is the great epidemiological transition in these countries. There is a great prevalence of smoking, increasing obesity, and a change in dietary patterns, as well, from traditional to ones higher in calories and processed foods.Diets high in salt increase blood pressure levels that are the leading contributor to cardiovascular disease mortality. Hypertension is very prevalent in the EMR and the Middle East. The average hypertension prevalence in this territory is around 30% and unawareness, untreated and uncontrolled hypertension rates were very high. Middle East ranks on the top levels for high salt intake compared to many other territories. The global salt consumption analysis showed that average sodium intake ranges from 3.74 to 4.12 grams of sodium per day in the Middle East. This corresponds to 9.35 to 10.3 grams of salt per day. This amount was nearly twice the WHO recommended limit of 5 g/day. Estimated intakes in Middle East countries were also diverse, ranging from 7,8 grams of salt per day in Lebanon to 15 grams of salt per day in Turkey.It is well known that decreasing dietary salt intake from 10 grams to 5 grams per day could reduce cardiovascular diseases rate by 17% worldwide. Several analyses have also showed that salt reduction strategies will be cost

  13. Clowning, Location, and Mediterranean Drama

    OpenAIRE

    Publicover, Laurence

    2015-01-01

    This essay explores the ways in which early modern clowns disturb both spatial and generic decorum within early modern drama, and examines the ideological implications of these disturbances. With a particular focus on plays set in the Mediterranean, it demonstrates how clown-figures, through a variety of techniques, refocus attention on the performance space even at moments when plays seem most concerned with the real geographical locations they present. The essay ends by considering the impa...

  14. Characterization of Mediterranean Magnetotactic Bacteria

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea. A remarkable diversity of morphotypes was observed, including muiticellular types that seemed to differ from those previously found in North and South America. Another interesting organism was one with magnetosomes arranged in a six-stranded bundle which occupied one third of the cell width. The magnetosome bundle was evident even under optic microscopy. These cells were connected together and swam as a linear entire unit. Magnetosomes did not always align up to form a straight linear chain. A chain composed of rectangle magnetosomes bent at a position with an oval crystal. High resolution transmission electron microscopy analysis of the crystal at the pivotal position suggested uncompleted formation of the crystal. This is the first report of Mediterranean magnetotactic bacteria, which should be useful for studies of biogeochemical cycling and geohistory of the Mediterranean Sea.

  15. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  16. High-resolution digital elevation dataset for Newberry Volcano and vicinity, Oregon, based on lidar survey of August-September, 2010 and bathymetric survey of June, 2001

    Science.gov (United States)

    Bard, Joseph A.; Ramsey, David W.

    2016-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km above sea level. It is the product of deposits from thousands of eruptions, including at least 25 in (approximately) the last 12,000 years (the Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history together with recent activity suggests that Newberry Volcano is likely to erupt in the future. This DEM (digital elevation model) of Newberry Volcano contributes to natural hazard monitoring efforts, the study of regional geology, volcanic landforms, and landscape modification during and after future volcanic eruptions, both at Newberry Volcano or elsewhere globally. In collaboration with the USGS, the Oregon Department of Geology and Mineral Industries-led Oregon Lidar Consortium contracted Watershed Sciences to collect 500 square miles of high-precision airborne lidar (Light Detection and Ranging) data. These data provide a digital map of the ground surface beneath forest cover. The lidar-derived DEM is amended to include bathymetric surveys of East Lake and Paulina Lake. The bathymetric surveys were performed in June, 2001 by Bob Reynolds of Central Oregon Community College, Bend, Oregon. The bathymetry is mosaicked into the DEM in place of the lidar derived lake surfaces. This release is comprised of a DEM dataset accompanied by a hillshade raster, each divided into eighteen tiles. Each tile’s bounding rectangle is identical to the extent of the USGS 7.5 minute topographic quadrangles covering the same area. The names of the DEM tiles are eleven characters long (e.g., dem_xxxxxx) with the prefix, "dem", indicating the file is a DEM and the last seven characters corresponding to the map reference code of the

  17. Headless Debris Flows From Mount Spurr Volcano, Alaska

    Science.gov (United States)

    McGimsey, R. G.; Neal, C. A.; Waythomas, C. F.; Wessels, R.; Coombs, M. L.; Wallace, K. L.

    2004-12-01

    Sometime between June 20 and July 15, 2004-and contemporaneous with an increase of seismicity beneath the volcano, and elevated gas emissions-a sudden release of impounded water from the summit area of Mt. Spurr volcano produced about a dozen separate debris flow lobes emanating from crevasses and bergschrunds in the surface ice several hundred meters down the east-southeast flank from the summit. These debris flows were first observed by AVO staff on a July 15 overflight and appeared to represent a single flooding event; subsequent snow cover and limited accessibility have prevented direct investigation of these deposits. Observed from the air, they are dark, elongate lobate deposits, up to several hundred meters long and tens of meters wide, draping the steep (up to ~45 degree) slopes and cascading over and into crevasses. A water-rich phase from the flows continued down slope of the termini of several lobate deposits, eroding linear rills into the snow and ice down slope. We infer that the dark material composing these flows is likely remobilized coarse lapilli from the June 1992 tephra fall produced by an eruption of Crater Peak, a satellite vent of Mt. Spurr located 3.5 km to the south. Between 1 and 2 meters of basaltic andesite tephra fell directly on the Spurr summit during the 1992 eruption. The exact mechanism for sudden release of water-laden remobilized tephra flows from the summit basin is not clear. However, observations in early August, 2004, of an 80 m x 110-m-wide pit in the summit area snow and ice suggest the possibility of a partial roof collapse of a summit meltwater basin, likely associated with subglacial melting due to recent heat flux. Such a collapse could have led to the hydraulic surge of meltwater, and rapid mixing with tephra to produce slurries. These slurries traveled down slope beneath the ice surface to emerge through existing crevasses and other easy points of exit on the steep inclines. Mount Spurr is an ice- and snow covered

  18. An overview of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Buurman, Helena

    2013-06-01

    In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional

  19. The Middle East.

    Science.gov (United States)

    Blouin, Virginia; And Others

    This sixth grade resource unit focuses on Middle East culture as seen through five areas of the social sciences: anthropology-sociology, geography, history, economics, and political science. Among objectives that the student is expected to achieve are the following: 1) given general information on the Middle East through the use of film, visuals,…

  20. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  1. Recovery in the East

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As robust as the economic recovery in East Asia has been in recent months,attention must now be turned to managing emerging risks challenging macroeconomic stability,said World Bank’s latest East Asia and Pacific Economic Update released on October 19.Edited excerpts follow

  2. Vertical diffusion processes in the Eastern Mediterranean - Black Sea System

    Science.gov (United States)

    Kioroglou, Sotiris; Tragou, Elina; Zervakis, Vassilis; Georgopoulos, Dimitris; Herut, Barak; Gertman, Isaak; Kovacevic, Vedrana; Özsoy, Emin; Tutsak, Ersin

    2014-07-01

    The identification and examination of ‘complete' potential density overturns in CTD profiles, within the framework of SESAME project, are employed to assess vertical eddy diffusivities, mostly in the top 100 m of the water column, for a broad area covering the East Mediterranean, the Turkish Straits and the Black Sea. The implementation of this method shows that, mixing induced by mechanical turbulence is enhanced in frontal areas, in the proximity of straits and inside anticyclones; furthermore, that mechanical turbulence is insignificant, down to the scale of CTD resolution, within areas of double diffusive staircases, encountered in deep layers of the water column. Consequently, only laminar theories about double diffusion are applied for assessing diffusivities therein. Susceptibility to different types of double diffusion seems to be related to the interaction of different types of water masses.

  3. Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments

    Science.gov (United States)

    Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.

    2015-04-01

    Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different

  4. Gaia and the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Kenneth J. Hsü

    2001-12-01

    Full Text Available The Earth is a self-organizing system liking a living organism. Lovelock proposed Gaia as a metaphor to designate the check and balance ofterrestrial temperatures: the Earth is never too hot so that the ocean could boil, and the Earth is never too cold that the ocean could freeze from top to bottom. Hsü proposed that Gaia is endothermic because the life on Earth has been alternate successions of air-conditioners and heaters which evolved and deactivate or reinforce the terrestial greenhouse of carbon dioxide in atmosphere. When Earth was heating up too much, the air-conditioneers, such as anaerobic bacteria, cyanobacteria, skeletal organisms and trees, and finally calcareous plankton, went to work to bring the terrestrial temperature down. When the Earth was freezing at times of continental glaciation, heaters went to work, such as methanogenic bacteria, Ediacaran faunas, tundra and desert plants, and now Homo sapiens. Gaia has to have other organs to keep the self-organizing system vital. This paper presents a postulate that the Miocene Mediterranean Sea acted as Gaia´s kidney. The steady influx of dissolved ions and debris into the ocean causes inevitable increase of ocean´s salinity. The fossil and geochemicl records indicate that the ocean has never been too saline nor too brackish for the survival of normal marine organisms: the salinity ranged from about 32 to 36 pro mil during the last billion years. Ocean-drilling cruises to the Mediterranean discovered a very large salt formation, deposited during some 5 million years ago when the Mediterranean dried up. A study of the geochemical balance of the oceans indicates that the deposition of very large salt bodies in isolated basins such as the Miocene Mediterranean every 100 million years or so. The saline giants have the function of Gaia´s kidney. With periodical removals of the salt ions and the heavy metals from seawater, the world´s ocean have been rendered forever habitable. Gaia

  5. A Strategy for Conflict Prevention and Management in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Abdelwahad Biad

    1997-09-01

    Full Text Available The author states that the conflicts in the Mediterranean are put down to interrelated factors –frontier disputes, ethnic-cultural rivalries, low-intensity violence– that make them appear to be “intractable conflicts”, specific to the area, and to which it cannot be automatically applied the model of conflict prevention and management that marked East-West relations during the Cold War. But the author’s analysis goes farther: Biad argues that the initiatives of conflict prevention and management have not done well because of the inadequate definition of objectives (Euro-Arab Dialogue, CSCM,Mediterranean Forum, as well as for the discrimination against some of the southern members and the lack of clearly identified principles and rules for a security dialogue (WEU, NATO, and the OSCE. The Barcelona Process appears to offer a much broader framework as it does underline the need for common action in the prevention of conflicts based on the principles of transparency and sufficiency. Nevertheless, after an analysis of both which focuses on the military dimension of security, the author reminds us that the Barcelona Declaration does not include institutional mechanisms for the application of these principles.

  6. Worldwide epidemiology of liver hydatidosis including the Mediterranean area

    Institute of Scientific and Technical Information of China (English)

    Giuseppe Grosso; Salvatore Gruttadauria; Antonio Biondi; Stefano Marventano; Antonio Mistretta

    2012-01-01

    The worldwide incidence and prevalence of cystic echinococcosis have fallen dramatically over the past several decades.Nonetheless,infection with Echinococcus granulosus (E.granulosus) remains a major public health issue in several countries and regions,even in places where it was previously at low levels,as a result of a reduction of control programmes due to economic problems and lack of resources.Geographic distribution differs by country and region depending on the presence in that country of large numbers of nomadic or semi-nomadic sheep and goat flocks that represent the intermediate host of the parasite,and their close contact with the final host,the dog,which mostly provides the transmission of infection to humans.The greatest prevalence of cystic echinococcosis in human and animal hosts is found in countries of the temperate zones,including several parts of Eurasia (the Mediterranean regions,southern and central parts of Russia,central Asia,China),Australia,some parts of America (especially South America) and north and east Africa.Echinococcosis is currently considered an endemic zoonotic disease in the Mediterranean region.The most frequent strain associated with human cystic echinococcosis appears to be the common sheep strain (G1).This strain appears to be widely distributed in all continents.The purpose of this review is to examine the distribution of E.granulosus and the epidemiology of a re-emerging disease such as cystic echinococcosis.

  7. Wavell’s Campaigns in the Middle East: An Analysis of Operational Art and the Implications for Today

    Science.gov (United States)

    1994-05-01

    defense of Egypt and our other interests in the Middle East. but such measures of offense as mill enable us and our Allies to dominate the Mediterranean at...Churchill, as he tried to decide which country, to favor, was like a " puppy in a fire-hydrant factory.Ŗ 8 Finally on 31 January Churchill proposed an

  8. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Hawaiian volcanoes build long rift zones and some of the largest volcanic edifices on Earth. For the active volcanoes on the Island of Hawai‘i, the growth of these rift zones is upward and seaward and occurs through a repetitive process of decades-long buildup of a magma-system head along the rift zones, followed by rapid large-scale displacement of the seaward flank in seconds to minutes. This large-scale flank movement, which may be rapid enough to generate a large earthquake and tsunami, always causes subsidence along the coast, opening of the rift zone, and collapse of the magma-system head. If magma continues to flow into the conduit and out into the rift system, then the cycle of growth and collapse begins again. This pattern characterizes currently active Kīlauea Volcano, where periods of upward and seaward growth along rift zones were punctuated by large (>10 m) and rapid flank displacements in 1823, 1868, 1924, and 1975. At the much larger Mauna Loa volcano, rapid flank movements have occurred only twice in the past 200 years, in 1868 and 1951.

  9. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Aleutian arc volcanoes. Tephra deposits from typical VEI 2 historical eruptions are not well preserved on the island so tephra-fall frequency estimated from stratigraphic studies is underestimated. Akutan Island is home to the largest seafood processing plant in North America and has a workforce of more than one thousand people. Other infrastructure consists of a recently constructed paved airfield on neighboring Akun Island (25 km east of the active vent) and a new boat harbor at the head of Akutan Harbor. Plans to develop greenhouses, tourism, and increased cold storage capacity on Akutan and Akun Islands also are evolving. To support the power demands of the development efforts, The City of Akutan is considering the utilization of geothermal resources on the island that are located in Hot Springs Bay valley northwest of the city. All of the existing and planned infrastructure, water supply, and residential areas are about 12 km downwind (east) of the volcano and are at risk from ash-producing eruptions. The historical eruptive history suggests that VEI 2 eruptions are plausible in the near future and the Holocene tephra-fall record indicates that large eruptions (VEI 4 or larger) occur about every few thousand years. Numerical modeling of tephra fallout based on the record of ash-producing eruptions will be used to improve tephra-fall hazard assessments for the area.

  10. Influence of the substrate on maar-diatreme volcanoes — An example of a mixed setting from the Pali Aike volcanic field, Argentina

    Science.gov (United States)

    Ross, Pierre-Simon; Delpit, Séverine; Haller, Miguel J.; Németh, Károly; Corbella, Hugo

    2011-04-01

    The morphologic parameters, pyroclastic deposits and evolution of maar-diatreme volcanoes are affected by the type of environment in which they are emplaced. End-member cases are a hard substrate (rocks) and a soft substrate (unconsolidated volcaniclastic or sedimentary deposits). In this paper, we present an example of a volcanic complex emplaced in a mixed hard-soft setting from the Pali Aike volcanic field (PAVF) near the Argentina-Chile border. The Plio-Pleistocene PAVF is an alkaline, mafic, back-arc monogenetic field which contains over 100 phreatomagmatic volcanoes. The studied volcanic complex contains two large coalescent maars overlain by scoria and spatter. The 1.4 × 1.3 km East Maar has better exposures than the shallower, 1.9 km-wide West Maar and seems to have been less modified by post-eruptive processes. The tephra rim of the East Maar was studied in detail and we infer it was produced mostly by base surges from phreatomagmatic eruption columns, with rare instances of intercalated scoria fall layers. Based on regional information, the general pre-maar stratigraphy is dominated by sedimentary and volcaniclastic rocks of the Magallanes Basin, including a thick poorly consolidated upper unit dating from the Miocene. These are overlain by Plio-Pleistocene fluvio-glacial deposits and PAVF lavas, some of which are exposed in the East Maar just below the phreatomagmatic deposits. All of these units are represented as lithic clasts in the tephra rim of the East Maar, the most abundant being the clasts from the earlier basaltic lavas and rock fragments derived from the glacial deposits. There is no specific evidence for a deep diatreme under the East Maar, and in this particular case, the mixed environment seems to have produced a maar-diatreme volcano typical of a soft substrate.

  11. Valanginian ammonites in East Greenland

    DEFF Research Database (Denmark)

    Alsen, Peter

    2001-01-01

    ammonites, Boreal, Tethys, bed-by-bed collection, Valanginian, Wollaston Forland, East Greenland......ammonites, Boreal, Tethys, bed-by-bed collection, Valanginian, Wollaston Forland, East Greenland...

  12. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  13. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    Science.gov (United States)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt

  14. The diet of Great Tit Parus major nestlings in a Mediterranean Iberian forest: the important role of spiders

    Directory of Open Access Journals (Sweden)

    Pagani–Núñez, E.

    2011-12-01

    Full Text Available The diet of the Great Tit Parus major when rearing chicks has been described in many studies. However, data from the Mediterranean area is scarce. Here we describe the diet of nestlings in a population of Great Tits in a Mediterranean forest in Barcelona (north–east Spain during two breeding seasons using two methods: neck–collars and video recording. The main prey were caterpillars (44% from neck–collar data and 62% from video–recorded data, but in our latitudes spiders also seemed to be an important food resource (24% from neck–collar data and 42% from video–recorded data. We did not find any significant differences in the quantity of spiders collected by parents in relation to stage of chick development, main vegetation surrounding nest boxes, size of the brood, or year. Our results stress the importance of spiders as a food source in Mediterranean habitats.

  15. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  16. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Sorensen, O. E.; Rose, W. I.; Jaya, D.

    2003-04-01

    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  17. Evaluating and adapting the Mediterranean diet for non-Mediterranean populations: a critical appraisal.

    Science.gov (United States)

    Hoffman, Richard; Gerber, Mariette

    2013-09-01

    This review outlines the limitations of current techniques for evaluating the Mediterranean diet in Mediterranean versus non-Mediterranean populations. Differences between the two populations with regard to the foods that are available, food processing and preparation techniques, and eating and lifestyle habits may influence the implementation and effects of a Mediterranean diet in non-Mediterranean regions. For example, the composition of food groups may vary significantly, due to differences in the specific foods within a food group and to differences in aspects of food production and preparation. Notable differences between the diets of Mediterranean versus non-Mediterranean populations include the source of monounsaturated fatty acids (olive oil versus meat), the amount of vegetables consumed and their manner of preparation, the source of alcohol (wine versus other) and the pattern of intake, and the types of meat and dairy products consumed. Lifestyle factors such as meal patterns and exposure to sunlight may also act as confounding factors when the overall benefits of a Mediterranean diet are assessed. Improving the calculation of Mediterranean diet scores and measuring plasma nutrient levels may help mitigate the effects of confounders. These considerations could have important health implications when a Mediterranean diet is implemented by non-Mediterranean populations.

  18. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park....

  19. A Probabilistic Approach for Real-Time Volcano Surveillance

    Science.gov (United States)

    Cannavo, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Maronno, P.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Gambino, S.; Coltelli, M.

    2016-12-01

    Continuous evaluation of the state of potentially dangerous volcanos plays a key role for civil protection purposes. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The model consists of a Bayesian network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is an estimation of the probability distribution of the feasible volcano states. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.

  20. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  1. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  2. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  3. VALVE: Volcano Analysis and Visualization Environment

    Science.gov (United States)

    Cervelli, D. P.; Cervelli, P.; Miklius, A.; Krug, R.; Lisowski, M.

    2002-12-01

    Modern volcano observatories collect data using a wide variety of instruments. Visualizing these disparate data on a common time base is critical to interpreting and reacting to geophysical changes. With this in mind, the Hawaiian Volcano Observatory (HVO) created Valve, the Volcano Analysis and Visualization Environment. Valve integrates a wide range of both continuous and discontinuous data sources into a common, internet web-browser based interface that allows scientists to interactively select and visualize these data on a common time base and, if appropriate, in three dimensions. Advances in modern internet browser technology allow for a truly interactive user-interface experience that could previously only be found in stand-alone applications--all while maintaining client platform independence and network portability. This system aids more traditional in-depth analysis by providing a common front-end to retrieving raw data. In most cases, the raw data are being served from an SQL database, a system that lends itself to quickly retrieving, logically arranging, and safely storing data. Beyond Valve's visualization capabilities, the system also provides a variety of tools for time series analysis and source modeling. For example, a user could load several tilt and GPS time series, estimate co-seismic or co-intrusive deformation, and then model the event with an elastic point source or dislocation. From the source model, Coulomb stress changes could be calculated and compared to pre- and post-event hypocenter distribution. Employing a heavily object-oriented design, Valve is easily extensible, modular, portable, and remarkably cost efficient. Quickly visualizing arbitrary data is a trivial matter, while implementing methods for permanent, continuous data streams requires only minimal programming. Portability is ensured by using software that is readily available on a wide variety of operating systems; cost efficiency is achieved by using software that is open

  4. Mechanical coupling between earthquakes, volcanos and landslides

    Science.gov (United States)

    Feigl, K. L.; Retina Team

    2003-04-01

    "The eruption began as a large earthquake that triggered a massive landslide that culminated in a violent lateral explosion" [Malone et al., USGS 1981]. The 1980 eruption of Mount St. Helens taught a very powerful lesson -- that one natural hazard can trigger another. For example, earthquakes have triggered landslides in Papua New Guinea. Similarly, eruptions of Vesuvius are mechanically coupled to earthquakes in the Appenines, just as an inflating magma chamber can trigger earthquakes near Hengill volcano in SW Iceland and on the Izu Peninsula in Japan. The Luzon earthquake may have triggered the eruption of Mount Pinatubo. In many of these cases, the second triggered event caused more damage than the initial one. If we can better understand the mechanical coupling underlying the temporal and spatial correlation of such events, we will improve our assessments of the hazards they pose. The RETINA project has been funded by the European Commission's 5th Framework to study couplings between three classes of natural hazards: earthquakes, landslides, and volcanoes. These three phenomena are linked to and by the stress field in the crust. If the stress increases enough, the material will fail catastrophically. For example, magma injection beneath a volcano can trigger an earthquake by increasing stress on a fault. Increasing shear stress on unconsolidated materials on steep slopes can trigger landslides. Such stress change triggers may also be tectonic (from plate driving forces), hydrological (from heavy rain), or volcanic (magmatic injection). Any of these events can perturb the stress field enough to trigger another event. Indeed, stress changes as small as 0.1 bar (0.01 MPa) suffice to trigger an earthquake. If the medium is close to failure, this small change can increase the Coulomb stress beyond the yield threshold, breaking the material. This quantity is the primary means we will use for describing mechanical coupling. In this paper, we will review several case

  5. Ceboruco Volcano Seismicity Study using a 3D Single Digital Station

    Science.gov (United States)

    Rodriguez-Uribe, M. C.; Nunez-Cornu, F. J.; Nava Pichardo, F. A.; Suarez-Plascencia, C.; Escudero Ayala, C. R.

    2011-12-01

    The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacític composition lava flows along the southeast side. We use data recorded from March 2003 to July 2008 at the CEBN triaxial short period digital station located at the southwest side of the volcano. Our final data set consist of 139 volcanic earthquakes. We classified them according waveform characteristics of the east-west horizontal component. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, the hypocenters are below the volcanic building within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. The epicenters show similar directions as the tectonic structures of the area (Tepic-Zacoalco Graben and regional faults). Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the risk that represent to the surrounding communities and economic activities.

  6. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, J.E.; Stolper, E.M. (California Institute of Technology, Pasadena (USA)); Clague, D.A. (Geological Survey, Menlo Park, CA (USA))

    1991-05-01

    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas along the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).

  7. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  8. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  9. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-03-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  10. Volcano deformation and subdaily GPS products

    Science.gov (United States)

    Grapenthin, Ronni

    Volcanic unrest is often accompanied by hours to months of deformation of the ground that is measurable with high-precision GPS. Although GPS receivers are capable of near continuous operation, positions are generally estimated for daily intervals, which I use to infer characteristics of a volcano’s plumbing system. However, GPS based volcano geodesy will not be useful in early warning scenarios unless positions are estimated at high rates and in real time. Visualization and analysis of dynamic and static deformation during the 2011 Tohokuoki earthquake in Japan motivates the application of high-rate GPS from a GPS seismology perspective. I give examples of dynamic seismic signals and their evolution to the final static offset in 30 s and 1 s intervals, which demonstrates the enhancement of subtle rupture dynamics through increased temporal resolution. This stresses the importance of processing data at recording intervals to minimize signal loss. Deformation during the 2009 eruption of Redoubt Volcano, Alaska, suggested net deflation by 0.05 km³ in three distinct phases. Mid-crustal aseismic precursory inflation began in May 2008 and was detected by a single continuous GPS station about 28 km NE of Redoubt. Deflation during the explosive and effusive phases was sourced from a vertical ellipsoidal reservoir at about 7-11.5 km. From this I infer a model for the temporal evolution of a complex plumbing system of at least 2 sources during the eruption. Using subdaily GPS positioning solutions I demonstrate that plumes can be detected and localized by utilizing information on phase residuals. The GPS network at Bezymianny Volcano, Kamchatka, records network wide subsidence at rapid rates between 8 and 12 mm/yr from 2005-2010. I hypothesize this to be caused by continuous deflation of a ˜30 km deep sill under Kluchevskoy Volcano. Interestingly, 1-2 explosive events per year cause little to no deformation at any site other than the summit site closest to the vent. I

  11. Magmatic gas scrubbing: Implications for volcano monitoring

    Science.gov (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  12. Slow slip event at Kilauea Volcano

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  13. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2007-02-01

    Full Text Available Vertical ozone profiles measured in the period 1996–2002 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft for flights connecting Central Europe to the Eastern Mediterranean basin (Heraklion, Rhodes; Antalya were analysed in order to evaluate the high rural ozone levels recorded in the Mediterranean area during summertime. The 77 flights during summer (JJAS showed significantly (10–12 ppb, 20–40% enhanced ozone mixing ratios in the lower troposphere over the Eastern Mediterranean frequently exceeding the 60 ppb, 8-h EU air quality standard, whereas ozone between 700 hPa and 400 hPa was only slightly (3–5 ppb, 5–10% higher than over central Europe. Analysis of composite weather maps for the high and low ozone cases, as well as back-trajectories and vertical profiles of carbon monoxide, suggest that the main factor leading to high tropospheric ozone values in the area is anticyclonic influence, in combination with a persistent northerly flow in the lower troposphere during summertime over the Aegean. On the other hand the lowest ozone levels are associated with low-pressure systems, especially the extension of the Middle East low over the Eastern Mediterranean area.

  14. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2007-07-01

    Full Text Available Vertical ozone profiles measured in the period 1996–2002 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft for flights connecting Central Europe to the Eastern Mediterranean basin (Heraklion, Rhodes, Antalya were analysed in order to evaluate the high rural ozone levels recorded in the Mediterranean area during summertime. The 77 flights during summer (JJAS showed substantially (10–12 ppb, 20–40% enhanced ozone mixing ratios in the lower troposphere over the Eastern Mediterranean frequently exceeding the 60 ppb, 8-h EU air quality standard, whereas ozone between 700 hPa and 400 hPa was only slightly (3–5 ppb, 5–10% higher than over Central Europe. Analysis of composite weather maps for the high and low ozone cases, as well as back-trajectories and vertical profiles of carbon monoxide, suggest that the main factor leading to high tropospheric ozone values in the area is anticyclonic influence, in combination with a persistent northerly flow in the lower troposphere during summertime over the Aegean. On the other hand the lowest ozone levels are associated with low-pressure systems, especially the extension of the Middle East low over the Eastern Mediterranean area.

  15. Trends in Mediterranean gridded temperature extremes and large-scale circulation influences

    Directory of Open Access Journals (Sweden)

    D. Efthymiadis

    2011-08-01

    Full Text Available Two recently-available daily gridded datasets are used to investigate trends in Mediterranean temperature extremes since the mid-20th century. The underlying trends are found to be generally consistent with global trends of temperature and their extremes: cold extremes decrease and warm/hot extremes increase. This consistency is better manifested in the western part of the Mediterranean where changes are most pronounced since the mid-1970s. In the eastern part, a cooling is observed, with a near reversal in the last two decades. This inter-basin discrepancy is clearer in winter, while in summer changes are more uniform and the west-east difference is restricted to the rate of increase of warm/hot extremes, which is higher in central and eastern parts of the Mediterranean over recent decades. Linear regression and correlation analysis reveals some influence of major large-scale atmospheric circulation patterns on the occurrence of these extremes – both in terms of trend and interannual variability. These relationships are not, however, able to account for the most striking features of the observations – in particular the intensification of the increasing trend in warm/hot extremes, which is most evident over the last 15–20 yr in the Central and Eastern Mediterranean.

  16. Deep-sea tsunami deposits triggered by the explosion of Santorini (3500 y BP), eastern Mediterranean

    Science.gov (United States)

    Cita, M. B.; Aloisi, G.

    2000-09-01

    The collapse of the Santorini caldera after the catastrophic eruption of the Bronze Age, 3500 y BP, caused a tsunami wave that had catastrophic effects in the Ionian basin, including its deepest parts. Pelagic turbidites of local origin were deposited on the bottom of small perched basins of the Southern Calabrian, Western and Central Mediterranean Ridges (type A homogenite) whereas a megaturbidite of distal origin, presumably triggered by the tsunami wave hitting the shoreline of the Sirte Gulf, was deposited on the Ionian and Sirte Abyssal Plains, extending eastwards as far as the Western Herodotous Trough depositing a thick, acoustically transparent layer (type B homogenite). Three core transects crossing the deformation front of the Mediterranean Ridge are presented and discussed. A fourth transect of giant piston cores was collected on the abyssal plains located to the south of the Mediterranean Ridge. All those to the west of the collision zone contain the Holocene homogenite with a thickness in excess of 20 m, whereas the cores taken from the Herodotous Abyssal Plain east of the collision zone are devoid of the homogenite. Sedimentological analyses were performed on the only giant core that penetrated the sandy base of the homogenite and the underlying pelagic sediments of late Pleistocene (last glacial) age. The African provenance of this typical type B homogenite is corroborated by shallow-water fauna derived from the North African shelf. No sedimentological characteristics peculiar to tsunamiites are observed in the deep-sea homogenite of the eastern Mediterranean.

  17. Large Scale Moisture Fluxes that are related to dry and wet conditions over Mediterranean Basin

    Science.gov (United States)

    Sahin, Sinan; Luterbacher, Juerg; Xoplaki, Elena; Turkes, Murat

    2016-04-01

    Large scale moisture flux analysis was carried out for the Mediterranean Basin in order to investigate the large scale atmospheric controls on moisture flux convergence that are related to dry and wet conditions. The seasonal moisture budget (precipitation minus evaporation) was calculated using the National Centers for Environmental Prediction - National Center for Atmospheric Research reanalysis data for the period 1949-2014. We focus on winter and summer circulation patterns for explaining the changes in dry and wet conditions rather than spring and autumn, as the transitional nature and characterization of these seasons are more uncertain in the Mediterranean basin. The driest and wettest years were chosen according to Standardized Precipitation Index (SPI) and the differences between those years and average conditions were compared statistically and graphically. According to results, large scale climate changes over Mediterranean Region are linked to significant changes of the moisture fluxes in the Gulf of Mexico region and partially in the US East coast especially for wet years. Therefore the climatic role of the Gulf Stream for extreme climate conditions over Mediterranean region should be investigated.

  18. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  19. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  20. Water in volcanoes: evolution, storage and rapid release during landslides.

    Science.gov (United States)

    Delcamp, Audray; Roberti, Gioachino; van Wyk de Vries, Benjamin

    2016-12-01

    Volcanoes can store and drain water that is used as a valuable resource by populations living on their slopes. The water drainage and storage pattern depend on the volcano lithologies and structure, as well as the geological and hydrometric settings. The drainage and storage pattern will change according to the hydrometric conditions, the vegetation cover, the eruptive activity and the long- and short-term volcano deformation. Inspired by our field observations and based on geology and structure of volcanic edifices, on hydrogeological studies, and modelling of water flow in opening fractures, we develop a model of water storage and drainage linked with volcano evolution. This paper offers a first-order general model of water evolution in volcanoes.

  1. Plate tectonics of the Mediterranean region.

    Science.gov (United States)

    McKenzie, D P

    1970-04-18

    The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.

  2. From desert to deluge in the Mediterranean

    NARCIS (Netherlands)

    McKenzie, Judith A.

    2002-01-01

    Some time between five and six million years ago, the Mediterranean Sea became isolated from the Atlantic Ocean. In consequence some areas dried out -- hence the title of Kenneth Hsü’s book The Mediterranean was a Desert 1 -- and large salty lakes recharged by rivers flowing through deep canyons rep

  3. Improving evapotranspiration estimates in Mediterranean drylands

    DEFF Research Database (Denmark)

    Morillas, Laura; Leuning, Ray; Villagarcia, Luis

    2013-01-01

    measurements from eddy covariance systems located in two functionally different sparsely vegetated drylands sites: a littoral Mediterranean semiarid steppe and a dry-subhumid Mediterranean montane site. The method providing the best results in both areas was fdrying (mean absolute error of 0.17 mm day−1) which...

  4. Microplastic sampling in the Mediterranean Sea

    DEFF Research Database (Denmark)

    Biginagwa, Fares; Sosthenes, Bahati; Syberg, Kristian

    The extent of microplastic pollution in the Southwestern Mediterranean Sea is not yet known, although on Northwestern part has been previously studied. Plastic samples were collected at 7 transects during a 10 day expedition from Sicily (Italy) to Malaga (Spain) in September 2014. A 330 µM mesh....... This is the first study to assess plastic pollution levels in SW Mediterranean Sea....

  5. The Mediterranean Basin and Southern Europe in a warmer world: what can we learn from the past?

    Directory of Open Access Journals (Sweden)

    Joel eGuiot

    2015-06-01

    Full Text Available Since the late-nineteenth century, surface temperatures have non-uniformly increased worldwide. The repercussion of the global warming in drylands, such as in the Mediterranean, may become a main source of concern in a near future, as it is often accompanied by increased droughts, that will severely degrade water supply and quality. History shows that access to water resources has always presented a challenge for societies around the Mediterranean throughout the Holocene (roughly the last 10,000 years. Repeatedly, adverse climate shifts seem to have interacted with social, economic and political variables, exacerbating vulnerabilities in drier regions. We present a reconstruction of the Holocene climate in the Mediterranean Basin using an innovative method based on pollen data and vegetation modeling. The method consists in calculating the inputs of the vegetation model so that the outputs fit the pollen data, using a Bayesian framework. This model inversion is particularly suited to deal with increasing dissimilarities between past millennia and the last century, especially due to a direct effect of CO2 on vegetation. The comparison of fardistant past and last century shows that the intensity of century-scale precipitation fall, amplified by higher temperatures and then evapotranspiration, appears to be unmatched over the last 10,000 years and the comparison between west and east precipitation anomalies show a clear see-saw effect through all the Holocene, in particular during the dry episodes of Near and Middle East. As a consequence that Tthe recent climatic change seems thento have been unprecedented during the last 10,000 years in the Mediterranean Basin,.over the next few decades, Mediterranean societies will likely be more critically vulnerable to climate change, than at any dry period of the past. We show also that adverse climate shifts are often correlated with the decline or collapse of Mediterranean civiliszations, particularly