WorldWideScience

Sample records for volcano chile continues

  1. The Unexpected Awakening of Chaitén Volcano, Chile

    Science.gov (United States)

    Carn, Simon A.; Zogorski, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-01-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  2. The Unexpected Awakening of Chaitén Volcano, Chile

    Science.gov (United States)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  3. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tarraga, Marta [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain)], E-mail: martat@mncn.csic.es; Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine, Via Cotonificio 114, 33100 Udine (Italy)], E-mail: roberto.carniel@uniud.it; Ortiz, Ramon; Garcia, Alicia [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Moreno, Hugo [Observatorio Volcanologico de los Andes del Sur (OVDAS), Servicio Nacional de Geologia y Mineria de Chile (SERNAGEOMIN), Temuco, IX Region (Chile)

    2008-09-15

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano.

  4. Dense Local Seismic Network at Villarrica Volcano (Southern Chile)

    Science.gov (United States)

    Mora-Stock, C.; Thorwart, M.; Dzieran, L.; Rabbel, W.

    2013-12-01

    Villarrica volcano is one of the most active volcanoes in the Southern Andes. It has been presenting constant fumarole activity and seismicity since its last eruption in 1984-85. A local network was installed at Villarrica volcano (Southern Chile) during the first two weeks of March, 2012. In total, 75 DSS-Cube short-period stations (30 3-Component, 45 1-Component) were deployed at and around the volcano area, covering approx. 63 km x 55 km. The average station spacing is 1.5 km for stations inside the perimeter of the volcanic edifice, and 5km outside this perimeter. The network recorded ca. 94 volcano tectonic (VT) events located SSW, SSE and North of the crater, with clear P- and S-wave arrivals. Many others, ca.73 events, could be classified as 'hybrid' events (HB), which present high frequencies at the beginning of the signal, and a sharp and notorious S-wave at the crater stations, but a strong scattering, lower frequency content, and elongated coda on the stations along the volcanic edifice. This strong scattering effect is probably caused by the heterogeneous ash layers on the edifice structure. Few long period events (LP), with main frequencies between 2-4 Hz, were observed. From the tectonic regional events, three sets of events can be distinguished. One coming from the southern end of the focal plane of the Maule earthquake (2010), with S-P wave travel time difference of ca. 30 s or more. Another closer group with S-P wave travel time difference between 10 s and 20 s, and the last group with S-P wave travel time difference of 10 s or less. A cross-correlation analysis to the travel times of the regional events and a teleseismic event from Argentina was applied in order to determine the average velocity structure of the volcano, and obtained an average P-wave velocity of 3.6 km/s for the volcanic edifice inside a radius of 6.5 km, and 4.1 km/s for the surrounding area outside this radius. This model serves as a starting point for local earthquake

  5. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    Science.gov (United States)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt

  6. Observations of rapid-fire event tremor at Lascar volcano, Chile

    Directory of Open Access Journals (Sweden)

    H. Rademacher

    1996-06-01

    Full Text Available During the Proyecto de Investigaciòn Sismològica de la Cordillera Occidental (PISCO '94 in the Atacama desert of Northern Chile, a continuously recording broadband seismic station was installed to the NW of the currently active volcano, Lascar. For the month of April, 1994, an additional network of three, short period, three-component stations was deployed around the volcano to help discriminate its seismic signals from other local seismicity. During the deployment, the volcanic activity at Lascar appeared to be limited mainly to the emission of steam and SO2. Tremor from Lascar is a random, «rapid-fire» series of events with a wide range of amplitudes and a quasi-fractal structure. The tremor is generated by an ensemble of independent elementary sources clustered in the volcanic edifice. In the short-term, the excitation of the sources fluctuates strongly, while the long-term power spectrum is very stationary.

  7. Observations of rapid-fire event tremor at Lascar volcano, Chile

    Science.gov (United States)

    Asch, Guenter; Wylegalla, K.; Hellweg, M.; Seidl, D.; Rademacher, H.

    1996-01-01

    During the Proyecto de Investigacio??n Sismolo??gica de la Cordillera Occidental (PISCO '94) in the Atacama desert of Northern Chile, a continuously recording broadband seismic station was installed to the NW of the currently active volcano, Lascar. For the month of April, 1994, an additional network of three, short period, three-component stations was deployed around the volcano to help discriminate its seismic signals from other local seismicity. During the deployment, the volcanic activity at Lascar appeared to be limited mainly to the emission of steam and SO2. Tremor from Lascar is a random, ??rapid-fire?? series of events with a wide range of amplitudes and a quasi-fractal structure. The tremor is generated by an ensemble of independent elementary sources clustered in the volcanic edifice. In the short-term, the excitation of the sources fluctuates strongly, while the long-term power spectrum is very stationary.

  8. Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies

    Science.gov (United States)

    Higgins, Michael D.; Voos, Stéphanie; Vander Auwera, Jacqueline

    2015-12-01

    Quizapu is part of a linear system of active volcanos in central Chile. The volcanic petrology and geology have been used to infer the plumbing system beneath the volcano. The 1846-1847 eruption (~5 km3) started with small flows of dacite, then changed to a range of andesite-dacite compositions and finally terminated with large flows of dacite. Andesitic enclaves (feed the system—first mixed magmas, then back to dacites. The eruption then terminated until 1932 when renewed injection of andesite into the system created a conduit that tapped an undegassed dacite chamber and resulted in a strong explosive eruption. The whole story is one of continual andesite magmatism, modulated by storage, degassing and mixing.

  9. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  10. Evolution of Irruputuncu volcano, Central Andes, northern Chile

    Science.gov (United States)

    Rodríguez, I.; Roche, O.; Moune, S.; Aguilera, F.; Campos, E.; Pizarro, M.

    2015-11-01

    The Irruputuncu is an active volcano located in northern Chile within the Central Andean Volcanic Zone (CAVZ) and that has produced andesitic to trachy-andesitic magmas over the last ˜258 ± 49 ka. We report petrographical and geochemical data, new geochronological ages and for the first time a detailed geological map representing the eruptive products generated by the Irruputuncu volcano. The detailed study on the volcanic products allows us to establish a temporal evolution of the edifice. We propose that the Irruputuncu volcanic history can be divided in two stages, both dominated by effusive activity: Irruputuncu I and II. The oldest identified products that mark the beginning of Irruputuncu I are small-volume pyroclastic flow deposits generated during an explosive phase that may have been triggered by magma injection as suggested by mingling features in the clasts. This event was followed by generation of large lava flows and the edifice grew until destabilization of its SW flank through the generation of a debris avalanche, which ended Irruputuncu I. New effusive activity generated lavas flows to the NW at the beginning of Irruputuncu II. In the meantime, lava domes that grew in the summit were destabilized, as shown by two well-preserved block-and-ash flow deposits. The first phase of dome collapse, in particular, generated highly mobile pyroclastic flows that propagated up to ˜8 km from their source on gentle slopes as low as 11° in distal areas. The actual activity is characterized by deposition of sulfur and permanent gas emissions, producing a gas plume that reaches 200 m above the crater. The maximum volume of this volcanic system is of ˜4 km3, being one of the smallest active volcano of Central Andes.

  11. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  12. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  13. Intense Seismic Activity at Chiles and Cerro Negro Volcanoes on the Colombia-Ecuador Border

    Science.gov (United States)

    Torres, R. A.; Cadena, O.; Gomez, D.; Ruiz, M. C.; Prejean, S. G.; Lyons, J. J.; White, R. A.

    2015-12-01

    The region of Chiles and Cerro Negro volcanoes, located on the Colombian-Ecuadorian border, has experienced an ongoing seismic swarm beginning in Aug. 2013. Based on concern for local residents and authorities, a cooperative broadband monitoring network was installed by the Servicio Geológico Colombiano in Colombia and the Instituto Geofísico of the Escuela Politécnica Nacional in Ecuador. Since November 2013 more than 538,000 earthquakes were recorded; although since May 2015 the seismicity has decreased significantly to an average of 70 events per day. Three large earthquake swarms with increasing energy occurred in Aug.-Oct. 2013, March-May 2014, and Sept.-Dec. 2014. By the end of 2014, roughly 400 earthquakes greater than M 3 had occurred with a maximum rate of 8000 earthquakes per day. The largest earthquake was a 5.6 ML on Oct. 20, 2014. This event produced an InSAR coseismic deformation of ~23 cm (S. Ebmeier, personal communication). Most events are typical brittle failure volcano-tectonic (VT) earthquakes that are located in a cluster beneath the southern flank of Chiles volcano, with depths between 1.5 and 10 km. Although the great majority of earthquakes are VT, some low-frequency (LF, ~0.5 Hz) and very-low-frequency (VLF) events have occurred. Particle motion analysis suggests that the VLF source migrated with time. While a VLF on Oct. 15, 2014 was located south of Chiles volcano, near the InSAR source, the VLF registered on Feb. 14, 2015 was likely located very close to Chiles Volcano. We infer that magma intrusion and resulting fluid exsolution at depths greater than 5 km are driving seismicity in the Chiles-Cerro Negro region. However earthquakes are failing in a manner consistent with regional tectonics. Relative relocations reveal a structure consistent with mapped regional faults. Thus seismicity is likely controlled by an interaction of magmatic and tectonic processes. Because the regional stress field is highly compressional and the volcanoes

  14. Interdisciplinary studies of eruption at Chaitén volcano, Chile

    Science.gov (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-01-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  15. Shallow earthquake inhibits unrest near Chiles-Cerro Negro volcanoes, Ecuador-Colombian border

    Science.gov (United States)

    Ebmeier, Susanna K.; Elliott, John R.; Nocquet, Jean-Mathieu; Biggs, Juliet; Mothes, Patricia; Jarrín, Paúl; Yépez, Marco; Aguaiza, Santiago; Lundgren, Paul; Samsonov, Sergey V.

    2016-09-01

    Magma movement or reservoir pressurisation can drive swarms of low-magnitude volcano-tectonic earthquakes, as well as occasional larger earthquakes (>M5) on local tectonic faults. Earthquakes >M5 near volcanoes are challenging to interpret in terms of evolving volcanic hazard, but are often associated with eruptions, and in some cases enhance the ascent of magma. We present geodetic observations from the first episode of unrest known to have occurred near Chiles and Cerro Negro de Mayasquer volcanoes on the Ecuador-Colombian border. A swarm of volcano-tectonic seismicity in October 2014 culminated in a Mw 5.6 earthquake south of the volcanoes. Satellite radar data spanning this earthquake detect displacements that are consistent with dextral oblique slip on a reverse fault at depths of 1.4-3.4 km within a SSW-NNE trending fault zone that last ruptured in 1886. GPS station measurements capture ∼20 days of uplift before the earthquake, probably originating from a pressure source ∼10-15 km south of Volcán Chiles, at depths exceeding 13 km. After the Mw 5.6 earthquake, uplift ceased and the rate of seismicity began to decrease. Potential mechanisms for this decline in activity include a decrease in the rate of movement of magma into the shallow crust, possibly caused by the restriction of fluid pathways. Our observations demonstrate that an earthquake triggered during volcanic unrest can inhibit magmatic processes, and have implications for the hazard interpretation of the interactions between earthquakes and volcanoes.

  16. Volcano ecology at Chaiten, Chile: geophysical processes interact with forest ecosystems

    Science.gov (United States)

    Swanson, F. J.; Crisafulli, C.; Jones, J. A.; Lara, A.

    2010-12-01

    The May 2008 eruption of Chaiten Volcano (Chile) offers many insights into volcano ecology -ecological responses to volcanic and associated hydrologic processes and ecosystem development in post-eruption landscapes. Varied intensities of pyroclastic density currents (PDC) and thickness of tephra fall deposits (to 50+ cm) created strong gradients of disturbance in several hundred square kilometers of native forest in a sector north to southeast from the volcano. A gradient from tree removal to toppled forest to standing, scorched forest extends 1.5 km northward from the caldera rim along the trajectory of a PDC. Close to the vent (e.g., 2 km NE from rim) a rain of ca. 10 cm of gravel tephra stripped foliage and twigs from tree canopies; farther away (23 km SE) 10 cm of fine tephra loaded the canopy, causing extensive fall of limbs >8 cm diameter. Even in the severely disturbed, north-flank PDC zone, surviving bamboo, ferns, and other herbs sprouted from pre-eruption soil and other refugia; sprouts of new foliage appeared on the boles and major limbs of several species of toppled and scorched, standing trees; animals including vertebrates (rodents and amphibians) and terrestrial invertebrates (e.g., insects and arachnids) either survived or quickly recolonized; and a diverse fungal community began decomposing the vast dead wood resource. During the second growing season we documented the presence of some plant species that had colonized by seed. Within two years after the eruption secondary ecological disturbances resulting from channel change and overbank deposition of fluvially transported tephra created new patches of damaged forest in riparian zones of streams draining the north flank and along the Rio Rayas and Rio Chaiten. These features parallel observations in the intensively-studied, post-1980-eruption landscape of Mount St. Helens over a similar time period. However, several aspects of ecological response to the two eruptions differ because of differences

  17. Iron-bearing minerals in ashes emanated from Osorno volcano, in Chile

    Science.gov (United States)

    Silva, Alexandre Christófaro; Escudey, Mauricio; Förster, Juan Enrique; Pizarro, Carmen; Ardisson, José Domingos; Barral, Uidemar Morais; Pereira, Márcio César; Fabris, José Domingos

    2014-01-01

    A sample of volcanic ashes emanated from the Osorno volcano, southern Chile, was characterized with X-ray fluorescence, X-ray diffraction and 57Fe Mössbauer spectroscopy, in an attempt to identify the iron-bearing minerals of that geologically recent magmatic deposit. X-ray patterns indicated that the sample is mainly constituted of anorthite, Fe-diopside-type and Ca-magnetite. The crystallographic structures of these dominant iron minerals are proposed on basis of their chemical composition and corresponding Mössbauer data to support models refined by fitting powder X-ray diffraction data with the Rietveld algorithm.

  18. Use of remote imagery to analyse spatial impacts of the Chaitén volcano eruption (Chile) in fluvial systems

    Science.gov (United States)

    Ulloa, Héctor; Iroumé, Andrés; Picco, Lorenzo; Mao, Luca; Lenzi, Mario

    2015-04-01

    The processes associated with the 2008 eruption of the Chaitén Volcano (south of Chile) generated morphological, ecological, and social disturbances. These disturbances were changes in the channel widths, vegetated islands and riparian forests. Changes in the river systems continued to occur years after the eruption due to hydrological processes induced indirectly by the volcanic eruption. This study analyzes the morphological changes in a river segment of three basins (Blanco, El Amarillo and Rayas) located near the Chaiten volcano, through an analysis of a sequence of remote images. The three watersheds were subjected to different disturbance intensities, depending on the type of dominant volcanic processes. In addition, changes were analysed by comparing two study periods, the first associated to the effusive and explosive period of the eruption, and the second after this period. In the first period mean channel widths increased by 91% (38 m/year), 6% (7 m/year) and 3% (11 m/year) for the Blanco, El Amarillo and Rayas rivers, respectively. In the second period, the variations of the mean channel widths were 19% (4 m/year), 2% (2 m/year) and 4% (5 m/year) for same rivers. On the other hand, the number of islands decreased annually by 15 and 16% on the Blanco River, 4 and 3%, in the El Amarillo River and 9 and 12% in the Rayas, in the first and second periods, respectively. The magnitude of active channel changes reflects the scale of the dominant volcanic processes in each watershed. While in the second study period strong changes continue to occur mainly at the level of the islands. This research is being developed within the framework of Project FONDECYT 1141064.

  19. Causes, Dynamics and Impacts of Lahar Mass Flows due to the April 2015 Eruption of Calbuco Volcano, Chile

    Science.gov (United States)

    Dussaillant, Alejandro; Russell, Andy; Meier, Claudio; Rivera, Andres; Mella, Mauricio; Garrido, Natalia; Hernandez, Jorge; Napoleoni, Felipe; Gonzalez, Cristian

    2016-04-01

    Calbuco is a 2015m high, glacier capped, stratovolcano in the heavily populated Los Lagos region of southern Chile with a history of large volcanic eruptions in 1893-95, 1906-7, 1911-12, 1917, 1932, 1945, 1961 and 1972. Calbuco volcano experienced a powerful 90 minute eruption at 18:04h on 22 April, 2015 followed by additional major eruptions at 01:00h and 13:10h on 23 & 30 April, respectively, resulting in the evacuation of 6500 people and the imposition of a 20 km radius exclusion zone. Pyroclastic flows descended into several river catchments radiating from the volcano with lahars travelling distances of up to 14 km, reaching populated areas. We present findings from detailed field observations from April and July 2015, and January 2016, regarding the causes, dynamics and impacts of lahars generated by the April 2015 eruption, supported by satellite imagery, LiDAR and detailed rtkGPS & TLS surveys, as well as sediment sampling. Pyroclastic flows melted glacier ice and snow generating the largest lahars in the Rio Este and Rio Blanco Sur on the southern flanks of the volcano. Lahar deposits in the Rio Blanco Norte were buried by pyroclastic flow deposits with measured temperatures of up to 282°C three months after emplacement. Lahar erosional impacts included bedrock erosion, alluvial channel incision, erosion of surficial deposits and the felling of large areas of forest. Depositional landforms included boulder run-ups on the outsides of channel bends, boulder clusters and large woody debris jams. Lahars deposited up to 8m of sediment within distal reaches. Deposits on the southern flanks of Calbuco indicate the passage of multiple pulses of contrasting rheology. Lahar occurrence and magnitude was controlled by the pre-eruption distribution of snow and ice on the volcano. Pre-existing lahar channels controlled flows to lower piedmont zones where routing was determined by palaeo-lahar geomorphology. Ongoing erosion of proximal pyroclastic flow and lahar deposits

  20. Outline of recent research on ice-volcano interactions in Southern Chile

    Science.gov (United States)

    Rivera, A.; Bown, F.; Brock, B. W.; Burger, F.; Carrión, D.; Cisternas, S.; Gacitúa, G.; Oberreuter, J.; Silva, R.; Uribe, J. A.; Wendt, A.; Zamora, R.

    2013-05-01

    Glaciers in Southern Chile (34 - 46°S) are mainly located on top of active volcanoes. The majority of these glaciers have only recently been inventoried and their areal and frontal changes are only partially documented. Most of these glaciers have receded and shrank in recent decades. The main driving factor explaining the glacier retreat is thought to be atmospheric changes, however in some cases the cause is the impact of the volcanic activity. In order to understand better the different driving mechanisms and responses, several surveying campaigns have been conducted to a selected group of ice-capped volcanoes, including the use of an airborne Light Detection and Ranging (LIDAR) system, equipped with visible and thermal infrared cameras, and the use of a helicopter borne radio echo sounding system (Radar). The LIDAR system measured the surface topography of the glaciers at sub metric accuracy, allowing the orthorectification of the simultaneously collected aerial photographs. The radar system has been able to penetrate the total thickness of the ice, mapping the bedrock topography as well as the bed power reflection. The 25 active ice-capped volcanoes analyzed in this work have a total ice area in year 2011 of 500 km2, and despite local differences, generalized area shrinkage and frontal retreats were detected with a total ice area lost of almost 200 km2 in the last 35 years. Among these volcanoes, most of the surveys have been conducted at Volcanes Palomo (34.61°S/70.29°W), Hudson (45.90°S/72.97°W) and Villarrica (39.41°S/71.93°W), where digital elevation models (DEMs) were generated as well as high resolution visible and thermal infrared mosaics. The DEMs comparisons have allowed the estimation of mean ice thinning rates up to 2 m/yr at the glacier ablation areas. A maximum ice thickness of 190 m was measured at Volcán Villarrica, where a total volume of water equivalent of 1.45 km3 was estimated. The strongest volcanic activity impact on glaciers was

  1. Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal

    Science.gov (United States)

    Lara, Luis E.; Cordova, Loreto

    2017-04-01

    volcanism (the so-called Red Nacional de Vigilancia Volcánica at Sernageomin) and tectonics (Centro Sismólogico Nacional at Universidad de Chile) allow a good complement with space-borne data (e.g., we observed deformation by GPS and InSAR at Villarrica volcano related to the March 3, 2015 eruption) in order to promote basic and applied research for a successful national strategy of disaster risk reduction. In addition, at least 3 active national research grants focus in this area and a number of young scientists are working there. Thus, we propose the Copahue-Lanín (37.5-39.5°S) segment of the Southern Volcanic Zone as a Geohazards Supersite and look forward for an enhanced engagement of the scientific community in this area.

  2. Stress controlled magma-earthquake interaction during unrest at Chiles-Cerro Negro Volcanoes (Ecuador-Colombian border)

    Science.gov (United States)

    Ebmeier, S. K.; Elliott, J. R.; Nocquet, J. M.; Biggs, J.; Mothes, P. A.; Lundgren, P.; Samsonov, S. V.; Jarrin, P.; Yepez, M.; Aguaiza, S.

    2015-12-01

    The movement of fluids beneath a volcano can cause deformation, and therefore changes to the subsurface stress field that manifest in swarms of low magnitude (Chiles-Cerro Negro volcanoes on the Ecuador-Colombian border. These volcanoes were previously considered to be historically inactive, but between 2013 and early 2015 there were three episodes of unrest characterised by VT swarms of increasing energy and duration. GPS measurements at two stations near Volcán Chiles show inflation over a time period of approximately twenty days prior to the 20th October, consistent with the intrusion of magma at half space depths >13 km. This inflation took place during a swarm of VT seismicity with thousands of low magnitude events per day and culminated in a M 5.6 earthquake on the 20th October, when inflation abruptly ceased. We measure coseismic displacements from the M 5.6 earthquake with data from three independent InSAR platforms and find that they are consistent with shallow slip of 1.2 m on an oblique reverse fault. This fault plane would have experienced positive Coulomb stress changes from some of the range of potential sources consistent with the inflation. Magmatic intrusion could therefore have contributed to the loading on the fault directly through stress changes caused by pressurisation, and indirectly through the decrease in effective friction coefficient due to elevated pore fluid pressure. The cessation of inflation immediately after the moderate earthquake suggests a link between the two events. We expect slip on the fault plane identified from the InSAR data to have resulted in compression in the shallow crust south of Volcán Chiles, above the source that had previously been inflating. This would have inhibited further ascent of magma. The Chiles-Cerro Nego unrest provides rare observations of interaction between magmatic intrusion and a moderate earthquake during volcanic unrest.

  3. Continuous monitoring of Hawaiian volcanoes using thermal cameras

    Science.gov (United States)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with

  4. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  5. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    Science.gov (United States)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  6. Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile

    Science.gov (United States)

    Moussallam, Yves; Bani, Philipson; Curtis, Aaron; Barnie, Talfan; Moussallam, Manuel; Peters, Nial; Schipper, C. Ian; Aiuppa, Alessandro; Giudice, Gaetano; Amigo, Álvaro; Velasquez, Gabriela; Cardona, Carlos

    2016-11-01

    Active lava lakes - as the exposed upper part of magmatic columns - are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake in order to determine the mechanism sustaining its activity. We found that while fluctuations are apparent in all datasets, none shows a stable periodic behaviour. These observations suggest a continuous influx of volatiles and magma to the Villarrica lava lake. We suggest that ascending volatile-rich and descending degassed magmas are efficiently mixed within the volcanic conduit, resulting in no clear periodic oscillations in the plume composition and flux. We compare our findings to those of other lava lakes where equivalent gas emission time-series have been acquired, and suggest that gas flux, magma viscosity and conduit geometry are key parameters determining which flow mechanism operates in a given volcanic conduit. The range of conduit flow regimes inferred from the few studied lava lakes gives a glimpse of the potentially wide spectrum of conduit flow dynamics operating at active volcanoes.

  7. Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile

    Science.gov (United States)

    Castruccio, Angelo; Clavero, Jorge; Rivera, Andrés

    2010-02-01

    The Villarrica and Calbuco volcanoes, of the Andean Southern Volcanic Zone, are two of the most active volcanoes in Chile and have erupted several times in the XX century. The 1961 eruption at Calbuco volcano generated lahars on the North, East and Southern flanks, while the 1971 eruption at Villarrica volcano generated lahars in almost all the drainages towards the north, west and south of the volcano. The deposits from these eruptions in the Voipir and Chaillupén River (Villarrica) and the Tepú River (Calbuco) are studied. The 1971 lahar deposits on Villarrica volcano show a great number of internal structures such as lamination, lenses, grading of larger clasts and a great abundance of large floating blocks on top of the deposits. The granulometry can be unimodal or bimodal with less than 5% by weight of silt + clay material. SEM images reveal a great variety of forms and compositions of clasts. The 1961 lahar deposits on Calbuco volcano have a scarce number of internal structures, steeper margins and features of hot emplacement such as semi-carbonized vegetal rests, segregation pipes and a more consolidated matrix. The granulometry usually is bimodal with great quantities of silt + clay material (> 10% by weight). SEM images show a uniformity of composition and forms of clasts. Differences on deposits reveal different dynamics on both lahars. The Villarrica lahar was generated by sudden melt of ice and snow during the paroxysmal phase of the 1971 eruption, when a high fountain of lava was formed. The melted water flowed down on the flanks of the volcano and incorporated sediments to become transition flows, highly energetic and were emplaced incrementally. Dilution of the flows occurs when the lahars reached unconfined and flatter areas. In cases where the lahar flow found large water streams, dilution is enhanced. The Calbuco lahars were generated by the dilution of block and ash pyroclastic flows by flowing over the ice or snow or by entering active rivers

  8. The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.

    Science.gov (United States)

    Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob

    2011-10-19

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  9. Volcanoes

    Science.gov (United States)

    ... or more from a volcano. Before a Volcanic Eruption The following are things you can do to ... in case of an emergency. During a Volcanic Eruption Follow the evacuation order issued by authorities and ...

  10. Varying seismic‐acoustic properties of the fluctuating lava lake at Villarrica volcano, Chile

    National Research Council Canada - National Science Library

    Richardson, Joshua P; Waite, Gregory P; Palma, José Luis

    2014-01-01

    Villarrica volcano outgasses through an open lava lake, with bubbles ranging in size from submillimeter to several meters, the largest of which produce strombolian bursting events that are visible from the crater rim...

  11. A study of SO2 emissions and ground surface displacements at Lastarria volcano, Antofagasta Region, Northern Chile

    Science.gov (United States)

    Krewcun, Lucie G.

    Lastarria volcano (Chile) is located at the North-West margin of the 'Lazufre' ground inflation signal (37x45 km2), constantly uplifting at a rate of ˜2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO 2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

  12. SO2-flux measurements and BrO/SO2 ratios at Guallatiri volcano, Altiplano, northern Chile

    Science.gov (United States)

    Gliss, Jonas; Stebel, Kerstin; Thomas, Helen

    2015-04-01

    Sulphur dioxide (SO2) fluxes were measured recently at Guallatiri volcano using two UV SO2-cameras and one IR SO2-camera. Furthermore, measurements of reactive halogens (e.g. BrO, OClO) were investigated using a high performance DOAS (Differential Optical Absorption Spectroscopy) instrument. Guallatiri (18° 25' 00″ S, 69° 5' 30″ W, 6.071 m a.s.l.) is situated in the Altiplano in northern Chile, close to the Bolivian border. The last known eruption of Guallatiri was in 1960. The measurements were performed during a short-term field trip on three days in November 2014 (20.11.-22.11.2014). During that time, the volcano showed a quiescent degassing behaviour from the summit crater and from a fumarolic field on the southern flank. A preliminary evaluation of the spectra recorded with the DOAS instruments showed SO2 column amounts (SCDs) up to 3 - 1017 molec/cm2 and BrO-SCDs of the order of several 1013 molec/cm2. This corresponds to BrO/SO2-ratios of the order of 10-4 which is a typical order of magnitude for volcanic emissions. We will present SO2-flux estimates for Guallatiri volcano during these three days as well as BrO/SO2-ratio estimates in dependence of different plume ages. Furthermore, we will compare the results retrieved with the two UV-cameras with the data recorded simultaneously with the IR-camera.

  13. Chile.

    Science.gov (United States)

    1992-05-01

    The background notes on Chile provide a statistical summary of the population, geography, government, and the economy, and more descriptive text on the history, population, government, economy, defense, and foreign relations. In brief, Chile has 13.3 million Spanish Indian (Mestizos), European, and Indian inhabitants and an annual growth rate of 1.6%. 96% are literate. Infant mortality is 18/1000. 34% of the population are involved in industry and commerce, 30% in services, 19% in agriculture and forestry and fishing, 7% in construction, and 2% in mining. The major city is Santiago. The government, which gained independence in 1810, is a republic with executive, legislative, and judicial branches. There are 12 regions. There are 6 major political parties. Suffrage is universal at 18 years. Gross domestic product (GDP) is $29.2 billion. The annual growth rate is 5% and inflation is 19%. Copper, timber, fish, iron ore, nitrates, precious metals, and molybdenum are its natural resources. Agricultural products are 9% of GDP and include wheat, potatoes, corn, sugar beets, onions, beans, fruits, and livestock. Industry is 21% of GDP and includes mineral refining, metal manufacturing, food and fish processing, paper and wood products, and finished textiles. $8.3 billion is the value of exports and $7 billion of imports. Export markets are in Japan, the US, Germany, Brazil, and the United Kingdom. Chile received $3.5 billion in economic aid between 1949-85, but little in recent years. 83% live in urban centers, principally around Santiago. Congressional representation is made on the basis of elections by a unique binomial majority system. Principal government officials are identified. Chile has a diversified free market economy and is almost self-sufficient in food production. The US is a primary trading partner. 49% of Chile's exports are minerals. Chile maintains diplomatic relations with 70 countries, however, relations are strained with Argentina and Bolivia. Relations

  14. Chile.

    Science.gov (United States)

    1988-09-01

    Chile is a long (2650 miles), narrow (250 miles at widest point) country sandwiched between the Andes mountains and the Pacific. The northern desert is rich in copper and nitrates; the temperate middle region is agricultural and supports the major cities, including Santiago, the capital, and the port of Valparaiso; and the southern region is a cold and damp area of forests, grasslands, lakes, and fjords. The country is divided into 12 administrative regions. Chile's population of 12.5 million are mainly of Spanish or Indian descent or mestizos. Literacy is 92.3%, and the national language is Spanish. Infant mortality is 18.1/1000, and life expectancy is 68.2 years. 82% of the people are urban, and most are Roman Catholics. Chile was settled by the Spanish in 1541 and attached to the Viceroyalty of Peru. Independence was won in 1818 under the leadership of Bernardo O'Higgins. In the 1880s Chile extended its sovereignty over the Strait of Magellan in the south and areas of southern Peru and Bolivia in the north. An officially parliamentary government, elected by universal suffrage, drifted into oligarchy and finally into a military dictatorship under Carlos Ibanez in 1924. Constitutional government was restored in 1932. The Christian Democratic government of Eduardo Frei (1964-70) inaugurated major reforms, including land redistribution, education, and far-reaching social and economic policies. A Marxist government under Salvador Allende lasted from 1970 to 1973 when the present military government of General Pinochet Ugarte took power, overthrew Allende, abolished the Congress, and banned political parties. It has moved the country in the direction of a free market economy but at the cost of systematic violations of human rights. A new constitution was promulgated in 1981, and congressional elections have been scheduled for October, 1989. A "National Accord for Transition to Full Democracy" was mediated by the Catholic Church in 1985. The social reforms of the

  15. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile

    Science.gov (United States)

    Rawson, Harriet; Mather, Tamsin A.; Pyle, David M.; Smith, Victoria C.; Fontijn, Karen; Lachowycz, Stefan; Naranjo, José A.; Watt, Sebastian F. L.

    2016-04-01

    Volcanism exerts a major influence on Earth's atmosphere and surface environments. Understanding feedbacks between climate and long-term changes in rates or styles of volcanism is important, but unresolved. For example, it has been proposed that a pulse of activity at once-glaciated volcanoes contributed to increasing atmospheric carbon dioxide accelerating early Holocene climate change. In plate-tectonic settings where magmatism is driven by decompression melting there is convincing evidence that activity is modulated by changes in ice- or water-loading across glacial/interglacial cycles. The response of subduction-related volcanoes, where the crust is typically thicker and mantle melting is dominated by flux melting, remains unclear. Since arc volcanoes account for 90% of subaerial eruptions, they are the most significant sources of volcanic gases and tephra directly to the atmosphere. Testing the response of arc volcanoes to deglaciation requires careful work to piece together eruption archives. Records of effusive eruptions from long-lived, arc stratovolcanoes are challenging to obtain and date; while deposits from the explosive eruptions, which dominate arc records, are prone to erosion and reworking. Our new high-resolution post-glacial (Phase 3), eruptive fluxes have been elevated, and dominated by explosive eruptions of intermediate magmas. We propose that this time-varying behaviour reflects changes in crustal plumbing systems, and magma storage timescales. During glaciations, magmas stall in the crust and differentiate to form large, evolved melt reservoirs. After the ice load is removed, much of this stored magma erupts (Phase 1). Subsequently, less-differentiated melts infiltrate the shallow crust (Phase 2). Then, as storage timescales increase, volcanism returns towards more evolved compositions (Phase 3). We suggest that on these short timescales, these observed variations are unlikely to reflect changes in mantle melt flux. Instead, the phenomena are

  16. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  17. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile

    Science.gov (United States)

    Major, Jon J.; Bertin, Daniel; Pierson, Thomas C.; Amigo, Alvaro; Iroume, Andres; Ulloa, Hector; Castro, Jonathan M.

    2016-01-01

    The 10 day explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, draped adjacent watersheds with a few cm to >1 m of tephra. Subsequent lava-dome collapses generated pyroclastic flows that delivered additional sediment. During the waning phase of explosive activity, modest rainfall triggered an extraordinary sediment flush which swiftly aggraded multiple channels by many meters. Ten kilometer from the volcano, Chaitén River channel aggraded 7 m and the river avulsed through a coastal town. That aggradation and delta growth below the abandoned and avulsed channels allow estimates of postdisturbance traction-load transport rate. On the basis of preeruption bathymetry and remotely sensed measurements of delta-surface growth, we derived a time series of delta volume. The initial flush from 11 to 14 May 2008 deposited 0.5–1.5 × 106 m3 of sediment at the mouth of Chaitén River. By 26 May, after channel avulsion, a second delta amassed about 2 × 106 m3 of sediment; by late 2011 it amassed about 11 × 106 m3. Accumulated sediment consists of low-density vesicular pumice and lithic rhyolite sand. Rates of channel aggradation and delta growth, channel width, and an assumed deposit bulk density of 1100–1500 kg m−3 indicate mean traction-load transport rate just before and shortly after avulsion (∼14–15 May) was very high, possibly as great as several tens of kg s−1 m−1. From October 2008 to December 2011, mean traction-load transport rate declined from about 7 to 0.4 kg−1 m−1. Despite extraordinary sediment delivery, disturbed channels recovered rapidly (a few years).

  18. Extraordinary sediment delivery and rapid geomorphic response following the 2008-2009 eruption of Chaitén Volcano, Chile

    Science.gov (United States)

    Major, Jon J.; Bertin, Daniel; Pierson, Thomas C.; Amigo, Álvaro; Iroumé, Andrés.; Ulloa, Héctor; Castro, Jonathan

    2016-07-01

    The 10 day explosive phase of the 2008-2009 eruption of Chaitén volcano, Chile, draped adjacent watersheds with a few cm to >1 m of tephra. Subsequent lava-dome collapses generated pyroclastic flows that delivered additional sediment. During the waning phase of explosive activity, modest rainfall triggered an extraordinary sediment flush which swiftly aggraded multiple channels by many meters. Ten kilometer from the volcano, Chaitén River channel aggraded 7 m and the river avulsed through a coastal town. That aggradation and delta growth below the abandoned and avulsed channels allow estimates of postdisturbance traction-load transport rate. On the basis of preeruption bathymetry and remotely sensed measurements of delta-surface growth, we derived a time series of delta volume. The initial flush from 11 to 14 May 2008 deposited 0.5-1.5 × 106 m3 of sediment at the mouth of Chaitén River. By 26 May, after channel avulsion, a second delta amassed about 2 × 106 m3 of sediment; by late 2011 it amassed about 11 × 106 m3. Accumulated sediment consists of low-density vesicular pumice and lithic rhyolite sand. Rates of channel aggradation and delta growth, channel width, and an assumed deposit bulk density of 1100-1500 kg m-3 indicate mean traction-load transport rate just before and shortly after avulsion (˜14-15 May) was very high, possibly as great as several tens of kg s-1 m-1. From October 2008 to December 2011, mean traction-load transport rate declined from about 7 to 0.4 kg-1 m-1. Despite extraordinary sediment delivery, disturbed channels recovered rapidly (a few years).

  19. Paleomagnetic study of an historical lava flow from the Llaima volcano, Chile

    Science.gov (United States)

    Di Chiara, A.; Moncinhatto, T.; Hernandez Moreno, C.; Pavón-Carrasco, F. J.; Trindade, R. I. F.

    2017-08-01

    The understanding of the paleosecular variations (PSV) of the geomagnetic field in South America is still biased by the scarcity of data. Especially, the recent geomagnetic PSV is characterized by the large growth of the South Atlantic Magnetic Anomaly (SAMA) during the last centuries, first documented by the geomagnetic model gufm1 (Jackson et al., 2000). A large amount of data is required to understand the time and geographic distribution of this primary feature, and the Andean Pleistocene and Holocene volcanoes are an excellent recorder of instant local changes in SV. Here we present a preliminary study from 18 paleomagnetic samples collected during 2015 on what it was supposed to be the 1750 or the 1957-58 AD lava flow on the Llaima Volcano (38.692° S; 71.729° W), one of the most active centers of the Chilean Andes, in the Southern Volcanic Zone. A detailed paleomagnetic study was performed in order to recover the Declination and Inclination of the geomagnetic field, obtain the paleointensity and define the magnetic mineralogy. AF demagnetization until 1 T yielded an average vector at Dec/Inc 2.3°/-33.1° with α95 of 2.4°. This direction is carried by titanomagnetite grains with 40-45% ulvospinel as revealed by thermomagnetic curves. Paleointensity estimates were obtained following the IZZI-Thellier protocol. Seven specimens from 5 samples provided reliable results (success rate of 35%), giving an average paleointensity for these specimens of 30.88 ± 2.39 μT. The full magnetic vector obtained here was compared to archaeomagnetic reference curves and the IGRF suggest that the lava flow has the age of 1957-58 AD.

  20. Late Pleistocene to Holocene tephrostratigraphy of the Lonquimay Volcano, South Central Chile

    Science.gov (United States)

    Gilbert, D.; Freundt, A.; Kutterolf, S.; Burkert, C.

    2010-12-01

    The Lonquimay Volcanic Complex (LVC) in South Central Chile (38.38°S, 71.58°W) is part of the Southern Volcanic Zone of the Andes, which formed in response to the subduction of the Nazca Plate beneath the South American Plate. During the course of its magmatic evolution, the LVC produced explosive eruptions documented in the succession of widespread tephra deposits, as well as large lava flows that originated from the main edifice and several adjacent minor eruptive centers. The last eruptive phase in Lonquimays volcanic evolution occurred from 1988-1990. It led to the formation of the Navidad cinder cone with its associated 10.2 km long lava flow, and a widely distributed tephra blanket of andesitic composition (Moreno and Gardeweg, 1989). During recent field work we reinvestigated and complemented the LVC tephrostratigraphy as originally established by Polanco (1998)by detailed logging of 22 outcrops and collecting 126 stratigraphically controlled samples that were analyzed for their matrix glass, mineral and bulk rock compositions. This data set allows us to verify and extend the field-based correlations, and to establish a tephrostratigraphy for the LVC that comprises 15 stratigraphic units (LQA-LQO) and provides a framework for ongoing investigations of the petrogenetic evolution of the LVC. The stratigraphic record identifies at least 13 explosive eruptions of VEI > 3 that occurred since the last glaciation period (17150 a BP, McCulloch et al. 2000). Magmatic compositions of the tephra deposits range from basaltic scoriae (51wt% SiO2) to evolved dacitic pumice lapilli layers (67wt% SiO2), and thus have a wider compositional range than the chemically distinct andesitic lavas (57-63wt%) of the LVC. The vertical succession of tephra compositions reflects four periods of progressive magmatic differentiation, each successively tapped by several eruptions. The maximum degree of fractionation reached during these periods increases to younger ages. The

  1. Scoria Fallout Modeling and the 3 March 2015 VEI-2 Eruption of Villarica Volcano, Chile

    Science.gov (United States)

    Anderson, J.; Johnson, J. B.; Bowman, D. C.; Ronan, T.; Brand, B. D.

    2015-12-01

    In March 2015, Villarrica volcano erupted a spectacular 1.5 km lava fountain and 6-8 km plume, depositing a thin (several mm or cm) layer of scoria tens of km toward the east and southeast. We show results of numeric models (the advection-diffusion equation solver Tephra2, and particle-tracking models) informed by NOMADS atmospheric data used to model this fallout. Models show strong winds (up to 25 m/s) toward the east and southeast concentrating the narrow deposit in those directions, and the vertical variation of wind direction predicts particle sorting along the wind-transverse direction. Both of these were observed in the field. We discuss the challenges faced by fallout models of scoria: because of its irregular shapes, high and variable porosity, and propensity to break apart on impact, aerodynamic properties are difficult to assess by physical observations. This introduces ambiguity when comparing models to observations. Finally, we demonstrate how short-term hazard predictions can benefit from the integration of fallout models with weather forecasts up to several days in advance, and how hazard communication to the public can benefit from snapshots and animations showing zones subject to tephra fall and time delays from eruption to impact.

  2. Contribution of volcanic ashes to the regional geochemical balance: the 2008 eruption of Chaitén volcano, Southern Chile.

    Science.gov (United States)

    Ruggieri, F; Fernandez-Turiel, J L; Saavedra, J; Gimeno, D; Polanco, E; Amigo, A; Galindo, G; Caselli, A

    2012-05-15

    The environmental geochemical behaviour of the rhyolitic ashes from the 2008 eruption of Chaitén volcano, Southern Chile, has been studied. After the bulk characterisation, the potential contribution to the regional geochemical fluxes was examined using: i) single batch leaching tests to provide a rapid screening of the implied major and trace elements; and ii) column experiments to evaluate the temporal mobility of leached elements. The environmental concerns of these ashes are related to the fine grained component present in each sample (independent of distance from the source), in particular the presence of cristobalite, and the geochemical hazards posed by ash-water interaction. Leaching experiments show the fast dissolution of surface salts and aerosols, which dominate over glass dissolution during the first steps of the ash-water interaction. Chaitén ashes could transfer to the environment more than 1×10(10)g or 10,000 metric tonnes (mt) of Cl, S, Ca, Na, Si, and K; between 1000 and 10,000 mt of F, Mg, and Al; between 100 and 1000 mt of As, Pb, P, Fe, Sr, Zn, Mn, and Br; between 10 and 100 mt of Ba, Li, Ti, Ni, Nb, Cu, Rb, Zr, V, Mo, Co, and Sc; and less than 10 mt of Cr, Sb, Ce, Ga, Cs, and Y. These results show the fertilising potential of the ashes (e.g., providing Ca and Fe) but also the input of potentially toxic trace elements (e.g., F and As) in the regional geochemical mass balance. The Chaitén results evidence lower potentials for poisoning and fertilising than low silica ashes due to the lower contents released of practically all elements.

  3. ["Revista Médica de Chile":120 years of continuous publication].

    Science.gov (United States)

    Goic, A

    1992-12-01

    Revista Médica de Chile has been published monthly since its foundation in 1872. With the present issue, volume 120 is completed. It is the oldest medical journal in South America and the second in antiquity published in Spanish, after the Gaceta de México. It is ranked among the 28 older journals in the world, that were founded in the last century. The multiple aspects of Chilean medicine development are present in its pages. Revista Médica de Chile has been able to adapt to changes in medicine, improving its printing and design, adopting international regulations for periodic medical publications and, above all, making a strict selection of submitted papers using expert peer reviewers. The continuity in management and editorial policies has favored its progress and enhanced its educational role.

  4. Spatial analysis of the impacts of the Chaitén volcano eruption (Chile) in three fluvial systems

    Science.gov (United States)

    Ulloa, H.; Iroumé, A.; Picco, L.; Mohr, C. H.; Mazzorana, B.; Lenzi, M. A.; Mao, L.

    2016-08-01

    The eruption of the Chaitén volcano in May 2008 generated morphological and ecological disturbances in adjacent river basins, and the magnitude of these disturbances depended on the type of dominant volcanic process affecting each of them. The aim of this study is to analyse the morphological changes in different periods in river segments of the Blanco, El Amarillo and Rayas river basins located near the Chaitén volcano. These basins suffered disturbances of different intensity and spatial distribution caused by tephra fall, dome collapses and pyroclastic density currents that damaged hillslope forests, widened channels and destroyed island and floodplain vegetation. Changes continued to occur in the fluvial systems in the years following the eruption, as a consequence of the geomorphic processes indirectly induced by the eruption. Channel changes were analyzed by comparing remote images of pre and post-eruption conditions. Two periods were considered: the first from 2008 to 2009-2010 associated with the explosive and effusive phases of the eruption and the second that correspond to the post-eruption stage from 2009-2010 to 2013. Following the first phases channel segments widened 91% (38 m/yr), 6% (7 m/yr) and 7% (22 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively, compared to pre-eruption condition. In the second period, channel segments additionally widened 42% (8 m/yr), 2% (2 m/yr) and 5% (4 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively. In the Blanco River 62 and 82% of the islands disappeared in the first and second period, respectively, which is 6-8 times higher than in the El Amarillo approximately twice the Rayas. Sinuosity increased after the eruption only in the Blanco River but the three study channels showed a high braiding intensity mainly during the first post-eruption period. The major disturbances occurred during the eruptive and effusive phases of Chaitén volcano, and the intensity of these disturbances reflects the

  5. Continuous monitoring of diffuse CO2 degassing at Taal volcano, Philippines

    Science.gov (United States)

    Padron, E.; Hernandez Perez, P. A.; Arcilla, C. A.; Lagmay, A. M. A.; Perez, N. M.; Quina, G.; Padilla, G.; Barrancos, J.; Cótchico, M. A.; Melián, G.

    2016-12-01

    Observing changes in the composition and discharge rates of volcanic gases is an important part of volcanic monitoring programs, because some gases released by progressive depressurization of magma during ascent are highly mobile and reach the surface well before their parental magma. Among volcanic gases, CO2 is widely used in volcano studies and monitoring because it is one of the earliest released gas species from ascending magma, and it is considered conservative. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front (facing the subduction zone along the Manila Trench) and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. In the period from 2010-2011, during a period of volcanic unrest, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). In the light of the excellent results obtained through diffuse degassing studies, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall

  6. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile.

    Science.gov (United States)

    Tuffen, Hugh; James, Mike R; Castro, Jonathan M; Schipper, C Ian

    2013-01-01

    The emplacement mechanisms of rhyolitic lava flows are enigmatic and, despite high lava viscosities and low inferred effusion rates, can result in remarkably, laterally extensive (>30 km) flow fields. Here we present the first observations of an active, extensive rhyolitic lava flow field from the 2011-2012 eruption at Cordón Caulle, Chile. We combine high-resolution four-dimensional flow front models, created using automated photo reconstruction techniques, with sequential satellite imagery. Late-stage evolution greatly extended the compound lava flow field, with localized extrusion from stalled, ~35 m-thick flow margins creating >80 breakout lobes. In January 2013, flow front advance continued ~3.6 km from the vent, despite detectable lava supply ceasing 6-8 months earlier. This illustrates how efficient thermal insulation by the lava carapace promotes prolonged within-flow horizontal lava transport, boosting the extent of the flow. The unexpected similarities with compound basaltic lava flow fields point towards a unifying model of lava emplacement.

  7. Volcano Monitoring in Ecuador: Three Decades of Continuous Progress of the Instituto Geofisico - Escuela Politecnica Nacional

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.

    2014-12-01

    In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced

  8. Continuous measurements of volcanic gases from Popocatepetl volcano by thermal emission spectroscopy

    Science.gov (United States)

    Taquet, Noemie; Stremme, Wolfgang; Meza, Israel; Grutter, Michel

    2016-04-01

    Passive volcanic gas emissions have been poorly studied despite their impact on the atmospheric chemistry with important consequences on its geochemical cycles and climate change on regional and global scale. Therefore, long-term monitoring of volcanic gas plumes and their composition are of prime importance for climatic models and the estimation of the volcanic contribution to climate change. We present a new measurement and analysis strategy based on remote thermal emission spectroscopy which can provide continuous (day and night) information of the composition of the volcanic plume. In this study we show results from the Popocatepetl volcano in Mexico with measurements performed during the year 2015 from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 masl). This site, which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks, is located north of the crater of this active volcano at 12 km distance. Emission spectra were recorded with an FTIR spectrometer (OPAG22, Bruker) at 0.5 cm-1 spectral resolution and processed using the SFIT4 radiative transfer and profile retrieval code, based on the Optimal Estimation method (Rodgers, 1976; 1990; 2000). This newly improved methodology is intercompared to a former retrieval strategy using measurements from 2008 and recent results of the variability of the SiF4/SO2 composition ratio during 2015 is presented. A discussion of how the new measurements improve the understating of the impact of volcanic gas emissions on the atmosphere on global and regional scale is included.

  9. The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile

    Science.gov (United States)

    Wicks, C.; De La, Llera; Lara, L.E.; Lowenstern, J.

    2011-01-01

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile’s southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  10. Heat and mass flux measurements using Landsat images from the 2000-2004 period, Lascar volcano, northern Chile

    Science.gov (United States)

    González, C.; Inostroza, M.; Aguilera, F.; González, R.; Viramonte, J.; Menzies, A.

    2015-08-01

    A qualitative and quantitative analysis of 13 Landsat TM and ETM + images of Lascar volcano for the 2000-2004 period was performed by applying the three bands and three components method to determine heat and mass flux and understand the magma circulation process in a passive degassing volcano related to permanent fumarolic activity. The behavior and evolution of spectral radiance during the study period suggest that prior to low-to-moderate magnitude eruptions these values reach their localized temporal minimum levels, corresponding to 1.9-4.38 mW/cm2srμm in July 2000 and 4.38-7.11 mW/cm2srμm in December 2003 eruptions, respectively. Similar behavior is observed for anomaly area, heat and mass fluxes. During the 2000-2004 period the heat flux was estimated to vary from 75.46 and 10,527 MW, while mass flux ranged between 131 and 18,469 kg s- 1. A magma circulation model is proposed to explain these variations, where the thermal anomaly is related to the presence of a fumarolic field and fluids movement from a magma chamber located at ~ 10-17 km depth.

  11. Landslide and tsunami hazard at Yate volcano, Chile as an example of edifice destruction on strike-slip fault zones

    Science.gov (United States)

    Watt, Sebastian F. L.; Pyle, David M.; Naranjo, José A.; Mather, Tamsin A.

    2009-07-01

    The edifice of Yate volcano, a dissected stratocone in the Andean Southern Volcanic Zone, has experienced multiple summit collapses throughout postglacial time restricted to sectors NE and SW of the summit. The largest such historic event occurred on 19th February 1965 when ˜6.1-10 × 106 m3 of rock and ice detached from 2,000-m elevation to the SW of the summit and transformed into a debris flow. In the upper part of the flow path, velocities are estimated to have reached 40 m s-1. After travelling 7,500 m and descending 1,490 m, the flow entered an intermontane lake, Lago Cabrera. A wavemaker of estimated volume 9 ± 3 × 106 m3 generated a tsunami with an estimated amplitude of 25 m and a run-up of ˜60 m at the west end of the lake where a settlement disappeared with the loss of 27 lives. The landslide followed 15 days of unusually heavy summer rain, which may have caused failure by increasing pore water pressure in rock mechanically weathered through glacial action. The preferential collapse directions at Yate result from the volcano’s construction on the dextral strike-slip Liquiñe-Ofqui fault zone. Movement on the fault during the lifetime of the volcano is thought to have generated internal instabilities in the observed failure orientations, at ˜10° to the fault zone in the Riedel shear direction. This mechanically weakened rock may have led to preferentially orientated glacial valleys, generating a feedback mechanism with collapse followed by rapid glacial erosion, accelerating the rate of incision into the edifice through repeated landslides. Debris flows with magnitudes similar to the 1965 event are likely to recur at Yate, with repeat times of the order of 102 years. With a warming climate, increased glacial meltwater due to snowline retreat and increasing rain, at the expense of snow, may accelerate rates of edifice collapse, with implications for landslide hazard and risk at glaciated volcanoes, in particular those in strike-slip tectonic

  12. Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile

    Science.gov (United States)

    Dzierma, Yvonne; Wehrmann, Heidi

    2010-06-01

    Probabilistic forecasting of volcanic eruptions is a central issue of applied volcanology with regard to mitigating consequences of volcanic hazards. Recent years have seen great advances in the techniques of statistical analysis of volcanic eruption time series, which constitutes an essential component of a multi-discipline volcanic hazard assessment. Here, two of the currently most active volcanoes of South America, Villarrica and Llaima, are subjected to an established statistical procedure, with the aim to provide predictions for the likelihood of future eruptions within a given time interval. In the eruptive history of both Villarrica and Llaima Volcanoes, time independence of eruptions provides consistency with Poissonian behaviour. A moving-average test, helping to assess whether the distribution of repose times between eruptions changes in response to the time interval considered, validates stationarity for at least the younger eruption record. For the earlier time period, stationarity is not entirely confirmed, which may artificially result from incompleteness of the eruption record, but can also reveal fluctuations in the eruptive regime. To take both possibilities into account, several different distribution functions are fit to the eruption time series, and the fits are evaluated for their quality and compared. The exponential, Weibull and log-logistic distributions are shown to fit the repose times sufficiently well. The probability of future eruptions within defined time periods is therefore estimated from all three distribution functions, as well as from a mixture of exponential distribution (MOED) for the different eruption regimes and from a Bayesian approach. Both the MOED and Bayesian estimates intrinsically predict lower eruption probabilities than the exponential distribution function, while the Weibull distributions have increasing hazard rates, hence giving the highest eruption probability forecasts. This study provides one of the first

  13. Massive biomass flushing despite modest channel response in the Rayas River following the 2008 eruption of Chaitén volcano, Chile

    Science.gov (United States)

    Ulloa, Héctor; Iroumé, Andrés; Picco, Lorenzo; Korup, Oliver; Lenzi, Mario Aristide; Mao, Luca; Ravazzolo, Diego

    2015-12-01

    The 2008 eruption of Chaitén volcano in southern Chile severely impacted several densely forested river catchments by supplying excess pyroclastic sediment to the channel networks. Our aim is to substantiate whether and how channel geometry and forest stands changed in the Rayas River following the sudden input of pyroclastic sediment. We measured the resulting changes to channel geometry and riparian forest stands along 17.6 km of the impacted gravel-bed Rayas River (294 km2) from multiple high-resolution satellite images, aerial photographs, and fieldwork to quantify yield volume characteristics of the forest stands. Limited channel changes during the last 60 years before the eruption reflect a dynamic equilibrium condition of the river corridor, despite the high annual precipitation and the sediment supply from Chaitén and Michinmahuida volcanoes in the headwaters. Images taken in 1945, 2004, and 2005 show that total size of the vegetated channel islands nearly doubled between 1945 and 2004 and remained unchanged between 2004 and 2005. Pyroclastic sediment entering the Rayas River after the 2008 eruption caused only minor average channel widening (7%), but killed all island vegetation in the study reach. Substantial shifts in the size distribution of in-channel vegetation patches reflect losses in total island area of 46% from 2005 to 2009 and an additional 34% from 2009 to 2012. The estimated pulsed release of organic carbon into the channel, mainly in the form of large wood from obliterated island and floodplain forests, was 78-400 tC/km/y and surpasses most documented yields from small mountainous catchments with similar rainfall, forest cover, and disturbance history, while making up between 20% and 60% of the annual carbon burial rate of fluvial sediments in the northern Patagonian fjords. We conclude that the carbon footprint of the 2008 Chaitén eruption on the Rayas River was more significant than the measured geomorphic impacts on channel geometry for

  14. Acute sedimentation response to rainfall following the explosive phase of the 2008-2009 eruption of Chaitén volcano, Chile

    Science.gov (United States)

    Pierson, Thomas C.; Major, Jon J.; Amigo, Álvaro; Moreno, Hugo

    2013-01-01

    The 10-day explosive phase at the start of the 2008–2009 eruption of Chaitén volcano in southern Chile (42.83°S, 72.65°W) blanketed the steep, rain-forest-cloaked, 77-km2 Chaitén River drainage basin with 3 to >100 cm of tephra; predominantly fine to extremely fine rhyolitic ash fell during the latter half of the explosive phase. Rain falling on this ash blanket within days of cessation of major explosive activity generated a hyperconcentrated-flow lahar, followed closely by a complex, multi-day, muddy flood (streamflow bordering on dilute hyperconcentrated flow). Sediment mobilized in this lahar-flood event filled the Chaitén River channel with up to 7 m of sediment, buried the town of Chaitén (10 km downstream of the volcano) in up to 3 m of sediment, and caused the lower 3 km of the channel to avulse through the town. Although neither the nature nor rate of the sedimentation response is unprecedented, they are unusual in several ways: (1) Nearly 70 percent of the aggradation (almost 5 m) in the 50–70-m-wide Chaitén River channel was caused by a lahar, triggered by an estimated 20 mm of rainfall over a span of about 24 h. An additional 2 m of aggradation occurred in the next 24–36 h. (2) Direct damage to the town was accomplished by the sediment-laden water-flood phase of the lahar-flood event, not the lahar phase. (3) The volume of sediment eroded from hillslopes and delivered to the Chaitén River channel was at least 3–8 × 106 m3—roughly 15–40 % of the minimum tephra volume that mantled the Chaitén River drainage basin. (4) The acute sedimentation response to rainfall appears to have been due to the thickness and fineness of the ash blanket (inhibiting infiltration of rain) and the steepness of the basin’s hillslopes. Other possible factors such as the prior formation of an ash crust, development of a hydrophobic surface layer, or large-scale destruction of rain-intercepting vegetation did not play a role.

  15. The impact of rapid recharge events on the evolution of magma chambers: Case studies of Santorini Volcano (Greece) and Volcan Quizapu (Chile)

    Science.gov (United States)

    Degruyter, Wim; Huber, Christian; Bachmann, Olivier; Cooper, Kari; Kent, Adam

    2016-04-01

    Magma reservoirs in the crust are thought to be dominantly formed by episodic recharge events at rates that are much larger than the long-term average magma inflow rates. Hence, a better understanding of the evolution of a magma reservoir requires elucidating the mass change, pressurization, heating, deformation and the potential for an eruption associated with different recharge scenarios. Most importantly, the bifurcation in behavior between a recharge event that leads to eruption and one that will grow the chamber requires quantification for better volcanic hazard assessment. We use a numerical model to determine the change in pressure, temperature and volume of a magma chamber as it is exposed to a recharge event. The model is applied to the well-studied volcanic systems of Santorini Volcano (Greece) and Volcan Quizapu (Chile). We establish the rates and the duration of magma recharge events that will lead to an eruption. In doing so, we demonstrate the importance of the state of the magma chamber prior to the recharge event, i.e. its size and exsolved volatile content, on the subsequent evolution of the reservoir. In the case of Santorini, the model successfully reproduces the main features of the Minoan eruption and Nea Kameni activity, providing volume estimates for the active part of the current subvolcanic reservoir as well as information regarding the presence of exsolved volatiles. For Quizapu, we suggest that the change in eruptive style, from an effusive outpouring of lava in 1846-1847 to an explosive Plinian eruption in 1932, was controlled by a shift in the state of the magma chamber induced by the first eruption. These case studies show that thermo-mechanical models offer a new framework to integrate the historic eruption record with geodetic measurements and provide a context to understand the past, present and future of active volcanic centers.

  16. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    Science.gov (United States)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  17. Location and wavefield attributes of long-period signals at Villarrica volcano (Chile) determined by array and polarization-moveout analysis

    Science.gov (United States)

    Lehr, Johanna; Thorwart, Martin; Rabbel, Wolfgang

    2016-04-01

    Villarrica Volcano is the most active volcano in Chile whose latest eruption occurred in March 2015. Increasing the knowledge on its processes, structure and behavior is thus crucial to an effective monitoring and hazard assessment. In this context, long-period volcanic signals (LP) are considered to be a key to the understanding of fluid dynamics and volcanic plumbing systems, accessible by seismological observations. However, standard seismological location tools usually fail due to the emergent onset of the signal and its serious distortion caused by attenuation and scattering in a complex geology. Therefore, alternative methods are needed. In March 2012, a dense seismic network was installed at Villarrica for two weeks with 50 stations covering the volcanic edifice including 6 subarrays. About 400 LP events were identified. LP-events recorded on crater stations look similar to typical earthquakes arrivals with distinguishable P- and S-wave onsets indicating a source near the crater. But with increasing source distance waveforms gradually change into typical LP-events. To investigate how to locate these LP-events we tested two approaches at the basis of a show-case event. In a first trial, records of the subarrays were used to determine backazimuths and slowness by beamforming in the time domain. The analysis was performed in a moving window, using semblance to measure the beam quality. The epicenter was derived by intersecting azimuthal rays. It locates ca. 1 km southeast of the summit crater. Slownesses range from 0.5 s/km up to 2.0 s/km. At frequencies above 2 Hz, additional maxima appear in the semblance distribution of near-summit arrays which can be interpreted as side-scattered signals. Since the crossing points of the backazimuth rays showed some scattering we tested polarization analysis (applied to the subset of 3-component stations) as an alternative location method. Although the direct interpretation of the backazimuths was unreliable, we identified

  18. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake

    Science.gov (United States)

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul; Samsonov, Sergey

    2014-01-01

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  19. SO2 degassing at Tungurahua volcano (Ecuador) between 2007 and 2013: Transition from continuous to episodic activity

    Science.gov (United States)

    Hidalgo, Silvana; Battaglia, Jean; Arellano, Santiago; Steele, Alexander; Bernard, Benjamin; Bourquin, Julie; Galle, Bo; Arrais, Santiago; Vásconez, Freddy

    2015-06-01

    We present continuous SO2 measurements performed at Tungurahua volcano with a permanent network of 4 scanning DOAS instruments between 2007 and 2013. The volcano has been erupting since September 1999, but on the contrary to the first years of eruption when the activity was quasi-continuous, the activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. During our study period we distinguish 11 phases lasting from 17 to 527 days separated by quiescence periods of 26 to 184 days. We propose a new routine to quantify the SO2 emissions when data from a dense DOAS monitoring network are available. This routine consists in summing all the highest validated SO2 measurements among all stations during the 10 h of daily working-time to obtain a daily observed SO2 mass. Since measurement time is constant at Tungurahua the "observed" amounts can be expressed in tons per 10 h and can easily be converted to a daily average flux or mass per day. Our results provide time series having an improved correlation on a long time scale with the eruptive phases and with quiescence periods. A total of 1.25 Mt (1.25 × 109 kg) of SO2 has been released by Tungurahua during the study period, with 95% of these emissions occurring during phases of activity and only 5% during quiescence. This shows a contrast with previous volcanic behaviour when passive degassing dominated the total SO2 emissions. SO2 average daily mass emission rates are of 73 ± 56 t/d during quiescent periods, 735 ± 969 t/d during long-lasting phases and 1424 ± 1224 t/d during short-lasting phases. Degassing during the different eruptive phases displays variable patterns. However, two contrasting behaviours can be distinguished for the onset of eruptive phases with both sudden and progressive onsets being observed. The first is characterised by violent opening of the conduit by high energy Vulcanian explosions; and the second by a progressive, in crescendo

  20. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  1. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    Science.gov (United States)

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.

    2015-01-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  2. A New, Continuous 5400 Yr-long Paleotsunami Record from Lake Huelde, Chiloe Island, South Central Chile.

    Science.gov (United States)

    Kempf, P.; Moernaut, J.; Vandoorne, W.; Van Daele, M. E.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    After the last decade of extreme tsunami events with catastrophic damage to infrastructure and a horrendous amount of casualties, it is clear that more and better paleotsunami records are needed to improve our understanding of the recurrence intervals and intensities of large-scale tsunamis. Coastal lakes (e.g. Bradley Lake, Cascadia; Kelsey et al., 2005) have the potential to contain long and continuous sedimentary records, which is an important asset in view of the centennial- to millennial-scale recurrence times of great tsunami-triggering earthquakes. Lake Huelde on Chiloé Island (42.5°S), Chile, is a coastal lake located in the middle of the Valdivia segment, which is known for having produced the strongest ever instrumentally recorded earthquake in 1960 AD (MW: 9.5), and other large earthquakes prior to that: i.e. 1837 AD, 1737 AD (no report of a tsunami) and 1575 AD (Lomnitz, 1970, 2004, Cisternas et al., 2005). We present a new 5400 yr-long paleotsunami record with a Bayesian age-depth model based on 23 radiocarbon dates that exceeds all previous paleotsunami records from the Valdivia segment, both in terms of length and of continuity. 18 events are described and a semi-quantitative measure of the event intensity at the study area is given, revealing at least two predecessors of the 1960 AD event in the mid to late Holocene that are equal in intensity. The resulting implications from the age-depth model and from the semi-quantitative intensity reconstruction are discussed in this contribution.

  3. Methods for analyzing surface texture effects of volcanoes with Plinian and subplinian eruptions types: Cases of study Lascar (23 S) and Chaiten (42 S), Chile

    CERN Document Server

    Fernandez, L; Salinas, R

    2016-01-01

    This paper presents a new methodology that provides the analysis of surface texture changes in areas adjacent to the volcano and its impact product of volcanic activity. To do this, algorithms from digital image processing such as the co-occurrence matrix and the wavelet transform are used. These methods are working on images taken by the Landsat satellite platform sensor 5 TM and Landsat 7 ETM + sensor, and implemented with the purpose of evaluating superficial changes that can warn of surface movements of the volcano. The results were evaluated by similarity metrics for grayscale images, and validated in two different scenarios that have the same type of eruption, but differ, essentially, in climate and vegetation. Finally, the proposed algorithm is presented, setting the parameters and constraints for implementation and use.

  4. Preserving Chile

    OpenAIRE

    Brennand, Charlotte P.

    2010-01-01

    The best way to preserve chile depends on how you plan to use it and your available storage space. Frozen or canned chile is best for chile rellenos and salsas. Stews can use frozen, canned or dried chile. Dried chile has minimal storage requirements and is light-weight for taking on camping trips. Pickled chiles can be used on a relish plate or as an ingredient in other dishes.

  5. The influence of effusion rate and rheology on lava flow dynamics and morphology: A case study from the 1971 and 1988-1990 eruptions at Villarrica and Lonquimay volcanoes, Southern Andes of Chile

    Science.gov (United States)

    Castruccio, Angelo; Contreras, María Angélica

    2016-11-01

    We analyzed two historical lava flows from the Southern Andes of Chile: The lava flows from the 1971 Villarrica volcano eruption and the 1988-1990 Lonquimay volcano eruption. The 1971 lava flow has a volume of 2.3 × 107 m3, a maximum length of 16.5 km and was emplaced in two days, with maximum effusion rates of 800 m3/s. The lava has a mean width of 150 m and thicknesses that decrease from 10 to 12 m at 5 km from the vent to 5-8 m at the flow front. The morphology is mainly 'a'ā. The 1988-1990 lava flow has a volume of 2.3 × 108 m3, a maximum length of 10.2 km and was emplaced in 330 days, with peak effusion rates of 80 m3/s. The flow has a mean width of 600 m and thicknesses that increase from 10 to 15 m near the vent to > 50 m at the front. The morphology varies from 'a'ā in proximal sectors to blocky in the rest of the flow. We modelled the advance rate and thickness of these flows assuming two possible dynamical regimes: An internal rheology regime modelled as a Herschel-Bulkley (HB) fluid and a Yield Strength in the Crust (YSC) regime. We compared our results with the widely used Newtonian and Bingham rheologies. Our results indicate that the 1971 flow can be modelled either by the HB, Bingham or Newtonian rheologies using a single temperature, while the 1988-1990 flow was controlled by the YSC regime. Our analysis and comparison of models shows that care should be taken when modelling a lava flow, as different rheologies and assumptions can reach the same results in terms of advance rate and flow thickness. These examples suggest that the crustal strength should be taken into account in any model of lava flow advance.

  6. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo

    2013-01-01

    Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related

  7. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  8. The 2008 eruption of the Chaitén Volcano, Chile: a preliminary report La erupción 2008 del volcán Chaitén, Chile: informe preliminar

    Directory of Open Access Journals (Sweden)

    Luis E Lara

    2009-01-01

    Full Text Available On May 2, 2008 a Plinian eruption began on Chaiten volcano. Dome growing stage would have started on May 10-12 and extensive lahars and floods affected Chaiten town (ca. 5,000 inhabitants on May 12. A volume up to ca. 4 km³ (non DRE of rhyolitic magma would be extruded mostly during the explosive phase. Eruptive activity has not completely finished by the end of November. Because of the wide impact of this type of volcanism, this eruption poses a series of questions regarding explosive volcanism that should be addressed in the near future.El 2 de mayo se inició una erupción pliniana en el volcán Chaitén. Entre el 10 y el 12 de mayo, se habría iniciado la construcción de un domo y el día 12 de mayo lahares e inundaciones afectaron la ciudad de Chaitén (ca. 5.000 habitantes. Aproximadamente hasta 4 km³ de magma riolítico (no ERD habría sido evacuado principalmente durante la fase explosiva. Hacia fines de noviembre, la actividad eruptiva no había terminado por completo. Esta erupción plantea una serie de interrogantes científicas que deberían ser enfrentadas en un futuro cercano dado el amplio impacto que este tipo de volcanismo representa.

  9. Volcano Preparedness

    Science.gov (United States)

    ... You might feel better to learn that an ‘active’ volcano is one that has erupted in the past ... miles away. If you live near a known volcano, active or dormant, following these tips will help you ...

  10. Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile

    Science.gov (United States)

    Morgado, E.; Parada, M. A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L. E.

    2015-11-01

    Most of the small eruptive centers of the Andean Southern Volcanic Zone are built over the Liquiñe-Ofqui Fault Zone (LOFZ), a NS strike-slip (> 1000 km length) major structure, and close to large stratovolcanoes. This contribution compares textural features, compositional parameters, and pre- and syn-eruptive P,T conditions, between basaltic lavas of the Caburgua-Huelemolle Small Eruptive Centers (CHSEC) and the 1971 basaltic andesite lava of the Villarrica Volcano located 10 km south of the CHSEC. Olivines and clinopyroxenes occur as phenocrysts and forming crystal clots of the studied lavas. They do not markedly show compositional differences, except for the more scattered composition of the CHSEC clinopyroxenes. Plagioclase in CHSEC lavas mainly occur as phenocrysts or as microlites in a glass-free matrix. Two groups of plagioclase phenocrysts were identified in the 1971 Villarrica lava based on crystal size, disequilibrium features and zonation patterns. Most of the CHSEC samples exhibit higher LaN/YbN and more scattered Sr-Nd values than 1971 Villarrica lava samples, which are clustered at higher 143Nd/144Nd values. Pre-eruptive temperatures of the CHSEC-type reservoir between 1162 and 1165 ± 6 °C and pressures between 10.8 and 11.4 ± 1.7 kb consistent with a deep-seated reservoir were obtained from olivine-augite phenocrysts. Conversely, olivine-augite phenocrysts of 1971 Villarrica lava samples record pre-eruptive conditions of two stages or pauses in the magma ascent to the surface: 1208 ± 6 °C and 6.3-8.1 kb ± 1.7 kb (deep-seated reservoir) and 1164-1175 ± 6 °C and ≤ 1.4 kb (shallow reservoir). At shallow reservoir conditions a magma heating prior to the 1971 Villarrica eruption is recorded in plagioclase phenocrysts. Syn-eruptive temperatures of 1081-1133 ± 6 °C and 1123-1148 ± 6 °C were obtained in CHSEC and 1971 Villarrica lava, respectively using equilibrium olivine-augite microlite pairs. The LOFZ could facilitate a direct transport to

  11. Fluvial response to sudden input of pyroclastic sediments during the 2008-2009 eruption of the Chaitén Volcano (Chile): The role of logjams

    Science.gov (United States)

    Umazano, Aldo M.; Melchor, Ricardo N.; Bedatou, Emilio; Bellosi, Eduardo S.; Krause, Javier M.

    2014-10-01

    The rhyolitic Plinian eruption of the Chilean Chaitén Volcano, initiated on May 2, 2008, suddenly introduced abundant pyroclastic sediments in the Blanco River catchment area, which experienced important modifications. Before May 2, the river was characterised by gravelly and moderate to low-sinuosity channels crossing a vegetated and locally urbanised (Chaitén City) floodplain. This river, limited by steep and densely forested highlands, was connected with the Pacific Ocean via a tidally-influenced delta plain. After heavy rains in May 11-20, the river discharge increased and triggered several responses including logjam formation and breakage, crevassing, avulsion (and channel abandonment), changes in the pattern and dimensions of channels, and construction of a new delta plain area. In this context, the goals of this contribution were: i) to document the sedimentological processes within a detailed geomorphic framework and ii) to understand the influence of logjams on fluvial dynamics. Upstream of the logjam zone, the deposits are mostly composed of ash and lapilli with abundant palaeovolcanic (epiclastic) sediments, which were produced by dilute currents and debris flows. Downstream of the logjam zone, deposits are composed by ash and lapilli, both pumice-rich and lacking important participation of older (epiclastic) sediments. The abandoned and filled palaeochannel, and the proximal part of crevasse splays experienced transient dilute flows with variable sediment concentration and, subordinately, hyperconcentrated flows. The distal sectors of crevasse splays mostly record settling from suspension. At the delta plain, tephra transported by the Blanco River was mixed with older sediments by tide and wave action (dilute flows). We conclude that immediately after eruption, both geomorphic and sedimentary processes of the river were mainly controlled by a combination of high availability of incoherent pyroclastic sediments on steep slopes, abundant rains, large

  12. Monitoring for volcano-hydrothermal activity using continuous gravity and local ground acceleration measurements: New deployments at Inferno Crater, Waimangu and White Island, New Zealand

    Science.gov (United States)

    Jolly, Arthur; Fournier, Nico; Cole-Baker, Jeremy; Miller, Craig

    2010-05-01

    Volcanoes with crater lakes are often characterised by shallow hydrothermal systems which display cyclic behaviour (temperature, lake level, chemistry, etc.) and shallow seismic tremor. Present monitoring programmes in New Zealand include routine collection of these observables, but the associated shallow sub-surface processes are still inadequately modelled and poorly understood. Models would be better constrained with the incorporation of additional geophysical parameters. To this end, we have established a new test programme to continuously monitor for micro-gravity variations at New Zealand volcanoes. We utilise a Micro-g-LaCoste gPhone relative gravity meter having 1 Hz sample rate and a measurement precision of 1 microgal to test the viability of gravity monitoring for volcano-hydrothermal systems. We have initially tested the new sensor in a short term deployment (~2 months) at Inferno Crater, Waimangu, New Zealand. Inferno shows dramatic variations in crater lake level (> 7 m range), temperature (>40o C range) and hydrothermally derived tremor, all over a period of ~5 weeks. The amplitude and period of these observables are ideal for testing gravity variations associated with a cycling hydrothermal system because several cycles can be obtained in a relatively short campaign. We have deployed the gravity sensor into a buried vault having a stable concrete base to minimise local environmental influences. This vault is located ~20 meters from Inferno Lake edge (at high stand) and offers sufficient noise reduction to measure the gravitational effects associated with lake level changes. We will show results for the new gravity meter including raw relative gravity measurements and first order corrections (earth-tide, ocean loading, sensor level, temperature, and barometric pressure) to obtain both residual gravity and overprinted local ground accelerations (earthquakes and local tremor). To examine the effects of local ground vibrations on the gravity meter, we

  13. Insights into shallow magmatic processes at Kīlauea Volcano, Hawaiʻi, from a multiyear continuous gravity time series

    Science.gov (United States)

    Poland, Michael P.; Carbone, Daniele

    2016-01-01

    Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea's summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.

  14. Continuous Gravity Monitoring in South America with Superconducting and Absolute Gravimeters: More than 12 years time series at station TIGO/Concepcion (Chile)

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Hase, Hayo; Armin, Böer; Andreas, Güntner; Rongjiang, Wang

    2016-04-01

    As part of the Transportable Integrated Geodetic Observatory (TIGO) of BKG, the superconducting gravimeter SG 038 was set up in December 2002 at station Concepcion / Chile to record temporal gravity variations with highest precision. Since May 2006 the time series was supported by weekly observations with the absolute gravimeter FG5-227, proving the large seasonal variations of up to 30 μGal and establishing a gravity reference station in South America. With the move of the whole observatory to the new location near to La Plata / Argentina the series was terminated. Results of almost continuously monitoring gravity variations for more than 12 years are presented. Seasonal variations are interpreted with respect of global and local water storage changes and the impact of the 8.8 Maule Earthquake in February 2010 is discussed.

  15. Vanishing Volcano

    Institute of Scientific and Technical Information of China (English)

    杨树仁

    1995-01-01

    Mauna Loa, the world’s largest active volcano,is sinking into the Pacific Ocean——and it’s taking the main island of Hawaii with it! The problem:The mighty volcano has gained too much weight, says Peter Lipman of the U. S. Geological Survey.

  16. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  17. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  18. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  19. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  20. Decoupling of soil development and plant succession along a 60000 years chronosequence in Llaima Volcano, Chile Desacoplamiento del desarrollo del suelo y la sucesión vegetal a lo largo de una cronosecuencia de 60 mil años en el volcán Llaima, Chile

    Directory of Open Access Journals (Sweden)

    MARÍA-BELÉN GALLARDO

    2012-09-01

    Full Text Available Few studies have investigated the long-term evolution of nutrient limitation in ecosystems developed on volcanic soils. To approach the problem, we used "space for time substitution" to compare sites with the same state factors, except for the time elapsed since disturbance. Forests of Conguillio National Park in southern of Chile occur on volcanic soils that developed from lava flows and ash deposits of different ages originated from the activity of Llaima volcano. In this study we evaluate the patterns of change in carbon, nitrogen and phosphorus in soils and leaves, as well as changes in tree diversity and basal area along a chronosequence of volcanic substrates from 50 to 60,000 years AP (eight sites. We assessed the evolution of N and P limitation in plants by comparing foliar N/P ratios and the efficiency in the use of nutrients through foliar C/P and C/N ratios. Values of total C, N and P in surface soils were low in the first 250 years of succession, increasing up to a maximum concentration at intermediate stages of succession (300-700 yr, to decline in later successional stages, a pattern also observed in a volcanic chronosequence from Hawaii. We found a decrease in basal area and an increase in diversity of woody species in advanced stages of the chronosequence. Foliar N and P concentrations slightly increased through the chronosequence in both evergreen and deciduous tree species. The foliar N/P ratio did not change along the chronosequence in both deciduous and evergreen species, but differed between evergreen and deciduous trees. The successional increase in tree diversity is explicated by a greater proportion of evergreen angiosperms with efficient P use. Despite the retrogression phase documented by more the decrease in the total contents of N and P in soils, we did not detect a similar decline in the foliar contents of N and P, which suggests that plant and soil nutrient contents are decoupled.Existen pocos estudios que describan

  1. Santorini Volcano

    Science.gov (United States)

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  2. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  3. Continuous thermal infrared monitoring at Campi Flegrei and Vesuvius (Italy) by automated data processing: an effective surveillance tool of active volcanoes

    Science.gov (United States)

    Sansivero, Fabio; Vilardo, Giuseppe

    2014-05-01

    processed by a fully automated in-house developed software which performs the following automated tasks for every station: a) it identifies low quality IR scenes by using a statistical approach and removes them from the analysis; b) it calculates maximum temperature values in a selected area of the IR scenes; c) it corrects the temperature values using a procedure aimed to remove seasonal effects; d) it exports the results into a proper format in order to be plotted and displayed at the Osservatorio Vesuviano Surveillance Room. All the FLIR Stations can also be remotely controlled and can acquire IR scenes if requested for surveillance needs. Results of thermal IR images analysis give a detailed picture of the evolution of surface temperatures in the monitored areas. The time behaviour of the extracted thermal parameters fully agrees with ground deformation (GPS) and CO2 flux trends, this confirming continuous thermal infrared image acquisition as a useful tool for volcano monitoring.

  4. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  5. Italian Volcano Supersites

    Science.gov (United States)

    Puglisi, G.

    2011-12-01

    Volcanic eruptions are among the geohazards that may have a substantial economic and social impact, even at worldwide scale. Large populated regions are prone to volcanic hazards worldwide. Even local phenomena may affect largely populated areas and in some cases even megacities, producing severe economic losses. On a regional or global perspective, large volcanic eruptions may affect the climate for years with potentially huge economic impacts, but even relatively small eruptions may inject large amounts of volcanic ash in the atmosphere and severely affect air traffic over entire continents. One of main challenges of the volcanological community is to continuously monitor and understand the internal processes leading to an eruption, in order to give substantial contributions to the risk reduction. Italian active volcanoes constitute natural laboratories and ideal sites where to apply the cutting-edge volcano observation systems, implement new monitoring systems and to test and improve the most advanced models and methods for investigate the volcanic processes. That's because of the long tradition of volcanological studies resulting into long-term data sets, both in-situ and from satellite systems, among the most complete and accurate worldwide, and the large spectrum of the threatening volcanic phenomena producing high local/regional/continental risks. This contribution aims at presenting the compound monitoring systems operating on the Italian active volcanoes, the main improvements achieved during the recent studies direct toward volcanic hazard forecast and risk reductions and the guidelines for a wide coordinated project aimed at applying the ideas of the GEO Supersites Initiative at Mt. Etna and Campi Flegrei / Vesuvius areas.

  6. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  7. Chile Energy Policy Review 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-22

    Since 1990, Chile has been the fastest growing economy in Latin America thanks to sound economic management and integration into the global economy. Chile can also be proud of its energy policy achievements. The pioneering privatisation and liberalisation of its electricity sector in the 1980s was the foundation for a competitive energy sector, which has sustained the rapid growth of the Chilean economy over the past two decades. Nonetheless, Chile faces the continuing challenge of finding additional energy supplies to fuel economic growth. Chile has limited fossil energy resources and depends on imports to meet three-quarters of its energy needs. The country's electricity sector has faced three periods of significant stress over the past decade. The last episode took place in 2007/2008, when the loss of natural gas imports from Argentina was further exacerbated by a drought in the central system, where hydropower normally accounts for over half of electricity generation. Drawing on the experience of IEA member countries, the Review assesses Chile's major energy challenges and provides recommendations. Six main themes emerge: the successful liberalisation of the power sector in the 1980s; the essential role played by the state in ensuring energy security; the re-formulation of Chile's long-term energy policy; the proposed reorganisation of the institutional framework; greater independence for the system operators; and the need for a clear framework of regulation so that long-term investment decisions integrate social and environmental costs. This publication is essential reading for all who are interested in Chilean energy issues and in learning about the important role sound energy policy can play in developing a nation's economic and social welfare.

  8. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  9. Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile Geología, petrología y geoquímica de los domos volcánicos del volcán Huequi, Chile meridional

    Directory of Open Access Journals (Sweden)

    Sebastian F.L Watt

    2011-07-01

    Full Text Available Huequi, a little-known volcano in the southern part of the Andean southern volcanic zone (SSVZ, shows a regionally unusual eruption style, mineralogy and geochemistry. The volcano comprises multiple highly-eroded lava domes. Past eruptions were accompanied by relatively minor explosive activity, most recently from 1890-1920. The rocks erupted by Huequi range from basaltic andesite to dacite, and are highly distinctive when compared to other volcanoes of the SSVZ, being K-poor and Al-rich, and containing euhedral hornblende phenocrysts. Overall compositions suggest a notably water-rich magma source, evolving through high levels of fractionation and subsequent degassing to produce highly porphyritic dome-forming andesites. The ultimate causes of water-rich magmas at this point in the arc remain unclear.El volcán Huequi es poco conocido, que se ubica en la provincia sur de la zona Volcánica Sur de los Andes (ZVSS. Sus tipos de erupción y características mineralógicas y geoquímicas son poco comunes a nivel regional. El volcán presenta múltiples domos poco erosionados. Las erupciones estuvieron acompañadas por una actividad explosiva secundaria, siendo las más recientes las ocurridas entre los años 1890 y 1920. Los magmas del Huequi son de composición andesítico-basáltica a dacítica. Si se las compara con rocas eruptadas por otros centros volcánicos de la ZVSS de los Andes, las del Huequi se caracterizan por ser pobres en K, ricas en Al y por presentar fenocristales euhedrales de anfíbola. Las composiciones totales sugieren una fuente magmática rica en H2O, que se desarrolla a través de niveles de cristalización fraccionada y desgasificación subsecuente, que producen domos volcánicos andesíticos altamente porfíricos. Sin embargo, la causa última que genera magmas ricos en H2O, en esta parte de los Andes, sigue aún sin explicación.

  10. Robotics research in Chile

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  11. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  12. Seismic-induced accelerations detected by two parallel gravity meters in continuous recording with a high sampling rate at Etna volcano

    Directory of Open Access Journals (Sweden)

    P. Stefanelli

    2008-06-01

    Full Text Available We analyse a microgravity data set acquired from two spring LaCoste & Romberg gravity meters operated in parallel at the same site on Etna volcano (Italy for about two months (August – September 2005. The high sampling rate acquisition (2Hz allowed the correlation of short-lasting gravity fluctuations with seismic events. After characterizing the oscillation behavior of the meters, through the study of spectral content and the background noise level of both sequences, we recognized fluctuations in the gravity data, spanning a range of periods from 1 second to about 30 seconds dominated by components with a period of about 15 ÷ 25 seconds, during time intervals encompassing both local seismic events and large worldwide earthquakes. The data analyses demonstrate that observed earthquake-induced gravity fluctuations have some differences due to diverse spectral content of the earthquakes. When local seismic events which present high frequency content excite the meters, the correlation between the two gravity signals is poor (factor < 0.3. Vice versa, when large worldwide earthquakes occur and low frequency seismic waves dominate the ensuing seismic wavefield, the resonance frequencies of the meters are excited and they react according to more common features. In the latter case, the signals from the two instruments are strongly correlated to each other (up to 0.9. In this paper the behaviors of spring gravimeters in the frequency range of the disturbances produced by local and large worldwide earthquakes are presented and discussed.

  13. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  14. Paleosecular variation for understanding young volcanoes of the Holocen

    Science.gov (United States)

    Di Chiara, A.

    2015-12-01

    The paleosecular variation of the geomagnetic field had been increasingly recognized as a powerful tool for understating volcanic processes. Based on the assumption that every volcanic unit record instantaneously the local magnetic field while cooling down is implied that the paleomagnetic directions from different and uncorrelated units can be correlated. Moreover, volcanic successions well-constrained in ages represent an invaluable tool for understanding the variations of the geomagnetic field across the time quasi-continuously. When a reference curve describing in detail the paleosecular variations of directions and intensities is available for a given region, the curves can be safely used to constrain the age of uncorrelated volcanic deposits such as lava cooling units, pyroclastic deposits, and ignimbrites. I present here an overview of examples where I used paleomagnetism as a correlating and dating tool: from the Azores Archipelago (Faial and Terceira), to the Trindade Island (Brazil) and Chile. At the Faial island, a Holocene volcanic cone field history was entirely reconstructed by an extensive paleomagnetic investigation, while at Terceira the last historical eruptive event was successfully correlated and reinterpreted. At the remote Trindade Island, paleomagnetic directions helped to propose an age to the more recent Volcano of the island. Finally in the Chilean volcano of LLaima, the directions obtained from one historical flow are compared with expected values from the global models with interesting insights. In the two examples from the Azores Archipelago, the statistical comparison of the mean paleomagnetic full vector values from the studied deposit with the fluctuations of the geomagnetic field described in the reference curve provided a very good tool for age constraints.

  15. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  16. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  17. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  18. United States-Chile binational exchange for volcanic risk reduction, 2015—Activities and benefits

    Science.gov (United States)

    Pierson, Thomas C.; Mangan, Margaret T.; Lara Pulgar, Luis E.; Ramos Amigo, Álvaro

    2017-07-25

    In 2015, representatives from the United States and Chile exchanged visits to discuss and share their expertise and experiences dealing with volcano hazards. Communities in both countries are at risk from various volcano hazards. Risks to lives and property posed by these hazards are a function not only of the type and size of future eruptions but also of distances from volcanoes, structural integrity of volcanic edifices, landscape changes imposed by recent past eruptions, exposure of people and resources to harm, and any mitigative measures taken (or not taken) to reduce risk. Thus, effective risk-reduction efforts require the knowledge and consideration of many factors, and firsthand experience with past volcano crises provides a tremendous advantage for this work. However, most scientists monitoring volcanoes and most officials delegated with the responsibility for emergency response and management in volcanic areas have little or no firsthand experience with eruptions or volcano hazards. The reality is that eruptions are infrequent in most regions, and individual volcanoes may have dormant periods lasting hundreds to thousands of years. Knowledge may be lacking about how to best plan for and manage future volcanic crises, and much can be learned from the sharing of insights and experiences among counterpart specialists who have had direct, recent, or different experiences in dealing with restless volcanoes and threatened populations. The sharing of information and best practices can help all volcano scientists and officials to better prepare for future eruptions or noneruptive volcano hazards, such as large volcanic mudflows (lahars), which could affect their communities.

  19. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  20. 7 CFR 319.56-23 - Apricots, nectarines, peaches, plumcot, and plums from Chile.

    Science.gov (United States)

    2010-01-01

    ... Chile. 319.56-23 Section 319.56-23 Agriculture Regulations of the Department of Agriculture (Continued... and Vegetables § 319.56-23 Apricots, nectarines, peaches, plumcot, and plums from Chile. (a... from Chile in accordance with this section and all other applicable provisions of this subpart. 3 3...

  1. Foci of Volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, I.

    1974-01-01

    One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.

  2. Chile: Its Conventional Threats

    Science.gov (United States)

    2005-03-18

    Bolivia’s gas to Mexico and North America. Chile’s President Lagos likewise invited Bolivia to construct a plant in Chile to facilitate gas production at...tdf.htm>. Internet. Accessed 30 October 2004. 20 21 BIBLIOGRAPHY Barros, Van Buren Mario. Historia Diplomatica de Chile . Santiago: Editorial Andres

  3. Eso's Situation in Chile

    Science.gov (United States)

    1995-02-01

    ESO, the European Southern Observatory, in reply to questions raised by the international media, as well as an ongoing debate about the so-called "Paranal case" in Chilean newspapers, would like to make a number of related observations concerning its status and continued operation in that country [1]. THE ESO OBSERVATORY SITES IN CHILE The European Southern Observatory, an international organisation established and supported by eight European countries, has been operating more than 30 years in the Republic of Chile. Here ESO maintains one of the world's prime astronomical observatories on the La Silla mountain in the southern part of the Atacama desert. This location is in the Fourth Chilean Region, some 600 km north of Santiago de Chile. In order to protect the La Silla site against dust and light pollution from possible future mining industries, roads and settlements, ESO early acquired the territory around this site. It totals about 825 sq. km and has effectively contributed to the preservation of its continued, excellent "astronomical" quality. Each year, more than 500 astronomers from European countries, Chile and elsewhere profit from this when they come to La Silla to observe with one or more of the 15 telescopes now located there. In 1987, the ESO Council [2] decided to embark upon one of the most prestigious and technologically advanced projects ever conceived in astronomy, the Very Large Telescope (VLT). It will consist of four interconnected 8.2-metre telescopes and will become the largest optical telescope in the world when it is ready. It is safe to predict that many exciting discoveries will be made with this instrument, and it will undoubtedly play a very important role in our exploration of the distant universe and its many mysteries during the coming decades. THE VLT AND PARANAL In order to find the best site for the VLT, ESO performed a thorough investigation of many possible mountain tops, both near La Silla and in Northern Chile. They showed

  4. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from six years of continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    Science.gov (United States)

    Geirsson, Halldor; d'Oreye, Nicolas; Mashagiro, Niche; Syauswa, Muhindo; Celli, Gilles; Kadufu, Benjamin; Smets, Benoît; Kervyn, François

    2017-10-01

    We present an overview of the installation, operation, and initial results of the 15-station KivuGNet (Kivu Geodetic Network) in the Kivu Region, Central Africa. The network serves primarily as a research and monitoring tool for active volcanic, earthquake, and plate boundary processes in the region. Continuous operation of in-situ measurement networks in naturally and politically harsh environments is challenging, but has proven fruitful in this case. During the operation of the network since 2009, KivuGNet has captured: co-eruptive deformation from two eruptions of Nyamulagira (in 2010 and 2011-2012); inter-eruptive deformation, which we interpret as a combination of plate motion across the Western - East Africa Rift, and decreasing deep-seated magma accumulation under the Nyiragongo-Nyamulagira region; co-seismic deformation from the Mw5.8 August 7, 2015 Lwiro earthquake at the western border of Lake Kivu. We hope that this study will serve as a motivation for further implementation of in-situ geodetic networks in under-monitored and under-studied sections of the East African Rift.

  5. Continuous measurements of SiF4 and SO2 by thermal emission spectroscopy: Insight from a 6-month survey at the Popocatépetl volcano

    Science.gov (United States)

    Taquet, N.; Meza Hernández, I.; Stremme, W.; Bezanilla, A.; Grutter, M.; Campion, R.; Palm, M.; Boulesteix, T.

    2017-07-01

    The processes linked with the emplacement and growth/destruction of a lava dome are of prime importance to understand the stability of such extrusions and assess the associated risks for local populations. During the last couple of decades, ground and space-based spectroscopic techniques have been developed to monitor such processes from a safe distance. Such approaches significantly improved our knowledge about the relationship between the chemical composition of the volcanic gas plumes and both the deep and shallow volcanic processes leading to the different types of explosive activity. The potential of the ground-based thermal emission Fourier Transform Infrared spectroscopy (FTIR) remained under-exploited due to the difficulty to properly handle the radiative-transfer phenomena. Despite the drawbacks in the complex analytical requirements, this method enables to continuously monitor (day and night) with a high temporal resolution (1 meas/3 min), relevant gas species such as SO2 and SiF4 in the volcanic plumes. Previous studies have related the temporal variations of the SiF4/SO2 ratio in volcanic plumes to the onset of vulcanian explosions. This study reports a 6-month SO2, SiF4, and SiF4/SO2 time series (from January to June 2015) of the Popocatepetl's gas plume obtained from FTIR thermal emission spectroscopic measurements. The infrared spectra were analyzed using the SFIT4 radiative transfer and inverse model, which we have adapted for this application. We obtained highly variable SiF4/SO2 ratios with a mean value of 3.6 × 10- 4, with the highest values (around 3 × 10- 3) measured during the final phase of a lava dome growth (February-March 2015). The rapid SiF4/SO2 variations were more carefully explored and compared for the first time with the seismic activity. A remarkable coincidence between sharp SiF4/SO2 rises and the seismic events are evidenced here.

  6. Upward trend for Chile; Andenstaat im Aufwind

    Energy Technology Data Exchange (ETDEWEB)

    Korneffel, Peter

    2010-03-15

    After an economic boom of 20 years, Chile may soon experience a change of paradigm in an economy based on renewable energy sources. Wind power is booming, and hydroelectric power is going strong as well. It will depend on the new government to see that the process of change continues. (orig.)

  7. The seismicity of Marapi volcano, West Sumatra.

    Science.gov (United States)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of

  8. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  9. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  10. Stronger Ties With Chile

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chile was the first South American country to establish diplomatic relations with China. It was also the first Latin American country to support China’s entry into the WTO,recognize China’s full market

  11. A DRONE FLIGHT OVER PARANAL, CHILE

    CERN Document Server

    2016-01-01

    Aerial clip (shot using a drone and a Go pro) describing ESO's astronomical observatory facilities in the Atacama desert, Northern Chile. Locations covered by the drone flight include Cerro Paranal, with the Residencia (external and internal views) and the Very Large Telescope facility on Cerro Paranal, from above and with a peek into Unit Telescope 1 and its 8,2 m diameter mirror; final image on Cerro Armazones, the site chosen for building ESO's next telescope, the E-ELT (European Extremely Large Telescope). With a 39-metre main mirror, it will be the largest optical/near-infrared telescope in the world. The Argentinian Codillera with the Llullaillaco volcano are visible in the background.

  12. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  13. A Probabilistic Approach for Real-Time Volcano Surveillance

    Science.gov (United States)

    Cannavo, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Maronno, P.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Gambino, S.; Coltelli, M.

    2016-12-01

    Continuous evaluation of the state of potentially dangerous volcanos plays a key role for civil protection purposes. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The model consists of a Bayesian network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is an estimation of the probability distribution of the feasible volcano states. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.

  14. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  15. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  16. Improving Quality and Child Outcomes in Early Childhood Education by Redefining the Role Afforded to Teachers in Professional Development: A Continuous Quality Improvement Learning Collaborative among Public Preschools in Chile

    Science.gov (United States)

    Arbour, MaryCatherine; Yoshikawa, Hirokazu; Atwood, Sid; Duran Mellado, Francis Romina; Godoy Ossa, Felipe; Trevino Villareal, Ernesto; Snow, Catherine E.

    2016-01-01

    Based on evidence derived from studies conducted mostly in the United States, many low- and middle-income countries are investing in early childhood education (ECE), with high expectations that it will improve academic outcomes, increase human capital, promote economic growth and reduce economic inequality. In Chile, there has been a great…

  17. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  18. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  19. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  20. Deformation Study of Papandayan Volcano using GPS Survey Method and Its Correlation with Seismic Data Observation

    Directory of Open Access Journals (Sweden)

    Dina A. Sarsito

    2006-11-01

    Full Text Available Papandayan volcano located in the southern part of Garut regency, around 70 km away from Bandung city, West Java. Many methods carried out to monitoring the activities of volcano, both continuously or periodically, one of the monitoring method is periodically GPS survey. Basically those surveys are carried out to understand the pattern and velocity of displacement which occurred in the volcano body, both horizontally and vertically, and also others deformation elements such as; translation, rotation and dilatation. The Mogi modeling was also used to determine the location and volume of the pressure source which caused deformation of volcano body. By comparing seismic activity and the deformation reveal from GPS measurement, before, during and after eruption, it could be understood there is a correlation between the seismicity and its deformation. These studies is hoping that GPS measurement in Papandayan volcano could be one of supported method to determine the volcano activities, at least in Papandayan volcano.

  1. Turtles to Terabytes: The Ongoing Revolution in Volcano Geodesy

    Science.gov (United States)

    Dzurisin, D.

    2015-12-01

    Volcano geodesy is in the midst of a revolution. GPS and InSAR, together with extensive ground-based sensor networks, have enabled major advances in understanding how and why volcanoes deform. Surveying techniques that produced a few bytes of information per benchmark per year have been replaced by continuously operating deformation networks and imaging radar satellites that generate terabytes of data at resolutions unattainable only a few decades ago. These developments have enabled more detailed assessments of volcano hazards, more accurate forecasts of volcanic activity, and better insights into how volcanoes behave over a variety of spatial and temporal scales. Forty years ago, repeated leveling surveys showed that the floor of the Yellowstone caldera had risen more than 70 cm in the past 5 decades. Today a network of GPS stations tracks surface movements continuously with millimeter-scale accuracy and the entire deformation field is imaged frequently by a growing number of SAR satellites, revealing a far more complex style of deformation than was recognized previously. At Mount St. Helens, the 1980-1986 eruption taught us that a seemingly quiescent volcano can suddenly become overtly restless, and that accurate eruption predictions are possible at least in some limited circumstances given sufficient observations. The lessons were revisited during the volcano's 2004-2008 eruption, during which a new generation of geodetic sensors and methods detected a range of co-eruptive changes that enabled new insights into the volcano's magma storage and transport system. These examples highlight volcano deformation styles and scales that were unknown just a few decades ago but now have been revealed by a growing number of data types and modeling methods. The rapid evolution that volcano geodesy is currently experiencing provides an ongoing challenge for geodesists, while also demonstrating that geodetic unrest is common, widespread, and illuminating. Vive la révolution!

  2. Volcano shapes, entropies, and eruption probabilities

    Science.gov (United States)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  3. Santa Maria Volcano, Guatemala

    Science.gov (United States)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  4. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  5. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  6. Chile's Madam President

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    After becoming the first female to win a presidential election in the socially conservative country, Chilean President-elect Michelle Bachelet created history again when unveiling a cabinet that was absolutely gender-balanced on January 30. Following similar breakthroughs of women politicians in Liberia and Germany, what happened in Chile is considered another case of women gaining power worldwide.

  7. Volby v Chile 2009

    OpenAIRE

    2010-01-01

    Twenty years has passed from dissolution of authoritarian regime of Augusto Pinochet and in the presidential election 2009/2010 in Chile the right-wing candidate won. The era of continuous government of centre-leftist coalition, that administrated country from the period of transition, was ended off. The thesis focuses on the analysis of presidential and parliamentary elections, in the first place on the question what was the matter of triumph of the opposite candidate in the presidential ele...

  8. Party Change in Chile in Comparative Perspective

    Directory of Open Access Journals (Sweden)

    Alan Angell

    2003-01-01

    Full Text Available Abstract This article looks at the changes in party systems generally in modern democracies, and argues that many trends observed internationally - growing mistrust of parties, growing electoral de-alignment - are also observed in Chile. Hence any analysis of party change in Chile has to take into account what is happening in other countries with well-established party systems. The article argues that the comparison with the past tends to be limited to the exceptional 1964-1973 period and that a more extended analysis points to many continuities in the Chilean party system. Competing arguments over whether there is new party cleavage in Chile based on the opposition between support for authoritarianism or support for democracy are also examined*.Resumen Este artículo estudia los cambios generales en los sistemas de partidos en las democracias modernas y argumenta que muchas de las tendencias que se observan internacionalmente -como el aumento en la desconfianza en los partidos, o desalineaciones electorales cada vez mayores- también se observan en Chile. De esta forma, cualquier análisis de cambios en el sistema de partidos de Chile tiene que considerar lo que está sucediendo en otros países con sistemas de partidos bien establecidos. El artículo postula que la comparación del sistema de partidos chileno con el pasado reciente tiende a estar limitado al período excepcional 1964-1973 y que un análisis más extendido implicaría muchas más continuidades de las esperadas. También se cuestiona las nuevas discusiones sobre si existe o no una nueva fisura partidaria, basada en la oposición entre el apoyo y rechazo al sistema autoritario, o el apoyo a la democracia.

  9. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  10. ESO and Chile: 10 Years of Productive Scientific Collaboration

    Science.gov (United States)

    2006-06-01

    ESO and the Government of Chile launched today the book "10 Years Exploring the Universe", written by the beneficiaries of the ESO-Chile Joint Committee. This annual fund provides grants for individual Chilean scientists, research infrastructures, scientific congresses, workshops for science teachers and astronomy outreach programmes for the public. In a ceremony held in Santiago on 19 June 2006, the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Chilean Ministry of Foreign Affairs marked the 10th Anniversary of the Supplementary Agreement, which granted to Chilean astronomers up to 10 percent of the total observing time on ESO telescopes. This agreement also established an annual fund for the development of astronomy, managed by the so-called "ESO-Chile Joint Committee". ESO PR Photo 21/06 ESO PR Photo 21/06 Ten Years ESO-Chile Agreement Ceremony The celebration event was hosted by ESO Director General, Dr. Catherine Cesarsky, and the Director of Special Policy for the Chilean Ministry of Foreign Affairs, Ambassador Luis Winter. "ESO's commitment is, and always will be, to promote astronomy and scientific knowledge in the country hosting our observatories", said ESO Director General, Dr. Catherine Cesarsky. "We hope Chile and Europe will continue with great achievements in this fascinating joint adventure, the exploration of the universe." On behalf of the Government of Chile, Ambassador Luis Winter outlined the historical importance of the Supplementary Agreement, ratified by the Chilean Congress in 1996. "Such is the magnitude of ESO-Chile Joint Committee that, only in 2005, this annual fund represented 8 percent of all financing sources for Chilean astronomy, including those from Government and universities", Ambassador Winter said. The ESO Representative and Head of Science in Chile, Dr. Felix Mirabel, and the appointed Chilean astronomer for the ESO-Chile Joint Committee, Dr. Leonardo Bronfman, also took part in the

  11. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  12. Single-station monitoring of volcanoes using seismic ambient noise

    Science.gov (United States)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  13. [Euthanasia in Chile].

    Science.gov (United States)

    Carrasco M, Víctor Hugo; Crispi, Francisca

    2016-12-01

    Euthanasia is a complex medical procedure. Even though end of life decisions are common situations in health practice, there is a lack of consensus about their terminology. In this manuscript, the main concepts about this issue are defined and delimited; including active and passive euthanasia and limitation of therapeutic effort. Then, a revision is made about the international experience on euthanasia, to then go through the Chile’s history in euthanasia and the population’s opinion. In Chile, euthanasia is an act that has been removed from the social dialogue and legislation. In order to have an open discussion in our population about the issue, the debate has to be opened to the citizens, accompanied by clear medical information about the procedure.

  14. Chile exploits LNG

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    Simultaneously with its exploitation of offshore hydrocarbon reservoirs Chile is developing the production and selling of LNG. Chile produces a large quantity of associated gas from its reservoirs at Megallanes and processes it at the Manantiales, Cullen and Posesion plants recovering propane, butane and natural gas liguids. The stripped gas is reinjected for pressure maintenance operations. With the completion of the LNG program full use of the gas will be achieved. It will totally meet the needs of combustible liquids for the central and northern parts of the country, a volume of 2200 million cu m/yr. For its treatment natural gas is sent through gas pipelines to the LNG plant at Cabo Negro. By means of a cooling process, the gas is cooled to -160 C where it becomes a liquid and its volume is reduced by a factor of 600. It is then stored in tanks at atmospheric pressure.

  15. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  16. Identidad Docente en Chile

    Directory of Open Access Journals (Sweden)

    Claudia González Castro

    2016-07-01

    Full Text Available Este ensayo invita a pensar el discurso identitario docente en Chile, desde la perspectiva de la tropología, entendida como ejes textuales sobre los cuales se figura la realidad y que son efecto de la interacción comunicativa entre integrantes de un colectivo social, que comparten una enciclopedia o repertorio de experiencias comunes que permiten asignar sentido a un mensaje.

  17. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  18. Electrical conductivity of intermediate magmas from Uturuncu Volcano (Bolivia)

    Science.gov (United States)

    Laumonier, Mickael; Gaillard, Fabrice; Sifre, David

    2015-04-01

    Magmas erupted at Uturuncu volcano (South Bolivia) comes from the Altiplano-Puna Magma Body (APMB, Chile-Bolivia), a crustal massive body of 80 km long by 10 km thick located at ~ 35 km depth named. Recent magneto telluric surveys reveal a resistivity lower than 1 ohm.m due to the presence of melt which could result in the reactivation of the volcano. In order to better constrain the resistivity profiles and thus the conditions of magma storage of the APMB, we have performed in situ electrical measurements on natural dacites and andesites from Uturuncu with a 4-wire set up in a piston cylinder and internally heated pressure vessel. The range of temperature (500 to 1300°C), pressure (0.3 to 2 Gpa), and the various water contents covers the respective ranges occurring at natural conditions. The results show that the conductivity increases with the temperature and the water content but slightly decreases with the pressure. Then a model was built from these results so as to help in (i) interpreting the electrical signature of natural magmas, (ii) constraining their conditions (chemical composition, temperature, pressure, water content, melt fraction) from the source to the storage location and (iii) providing information on the interior structure of a volcano and its reservoir.

  19. Chile: segundo tiempo Chile: Half-time

    Directory of Open Access Journals (Sweden)

    ROBERT L FUNK

    2009-01-01

    Full Text Available El artículo examina el año político chileno, ofreciendo un análisis crítico del concepto de 'segundo tiempo' autoimpuesto por la presidenta Michelle Bachelet a comienzos del 2008. Resumiendo algunas de las políticas implementadas, el trabajo cuestiona si se logró marcar una linea y dejar atrás los dos primeros y difíciles años del cuarto gobierno de la Concertación. Analizando las medidas tomadas y las encuestas de opinión pública, se encuentra que el reenfoque de las prioridades del gobierno y una complicada coyuntura externa ayudó a levantar los niveles de apoyo de la presidenta y su gobierno.The article examines the political year in Chile, offering a critical analysis of the concept of 'Second Period' which President Michelle Bachelet defined at the beginning of 2008. Summarising some of the policies implemented, the piece asks whether the government was able to draw a line, leaving behind the first, difficult two years of the Concertación s fourth government. Analyzing the measures taken and public opinion polls, the paper finds that a re-focussing of the government's priorities together with a complicated external environment helped to raise support for the president as well as her government.

  20. 2010 Chile Earthquake Aftershock Response

    Science.gov (United States)

    Barientos, Sergio

    2010-05-01

    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  1. Primary Medical Care in Chile

    DEFF Research Database (Denmark)

    Scarpaci, Joseph L.

    Primary medical care in Chile: accessibility under military rule [Front Cover] [Front Matter] [Title Page] Contents Tables Figures Preface Chapter 1: Introduction Chapter 2: The Restructuring of Medical Care Financing in Chile Chapter 3: Inflation and Medical Care Accessibility Chapter 4: Help...

  2. Rule of Repression in Chile.

    Science.gov (United States)

    American Indian Journal, 1979

    1979-01-01

    This report on the current condition of the Mapuche Indians of Chile is edited from a document on the "Situation of Human Rights in Chile" and details the repressive and inhumane treatment of the largest indigenous ethnic minority in the country. (Author/RTS)

  3. Primary Medical Care in Chile

    DEFF Research Database (Denmark)

    Scarpaci, Joseph L.

    Primary medical care in Chile: accessibility under military rule [Front Cover] [Front Matter] [Title Page] Contents Tables Figures Preface Chapter 1: Introduction Chapter 2: The Restructuring of Medical Care Financing in Chile Chapter 3: Inflation and Medical Care Accessibility Chapter 4: Help......-Seeking Behavior of the Urban Poor Chapter 5: Spatial Organization and Medical Care Accessibility Chapter 6: Conclusion...

  4. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Hawaiian volcanoes build long rift zones and some of the largest volcanic edifices on Earth. For the active volcanoes on the Island of Hawai‘i, the growth of these rift zones is upward and seaward and occurs through a repetitive process of decades-long buildup of a magma-system head along the rift zones, followed by rapid large-scale displacement of the seaward flank in seconds to minutes. This large-scale flank movement, which may be rapid enough to generate a large earthquake and tsunami, always causes subsidence along the coast, opening of the rift zone, and collapse of the magma-system head. If magma continues to flow into the conduit and out into the rift system, then the cycle of growth and collapse begins again. This pattern characterizes currently active Kīlauea Volcano, where periods of upward and seaward growth along rift zones were punctuated by large (>10 m) and rapid flank displacements in 1823, 1868, 1924, and 1975. At the much larger Mauna Loa volcano, rapid flank movements have occurred only twice in the past 200 years, in 1868 and 1951.

  5. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  6. [Eugenic abortion could explain the lower infant mortality in Cuba compared to that in Chile].

    Science.gov (United States)

    Donoso S, Enrique; Carvajal C, Jorge A

    2012-08-01

    Cuba and Chile have the lower infant mortality rates of Latin America. Infant mortality rate in Cuba is similar to that of developed countries. Chilean infant mortality rate is slightly higher than that of Cuba. To investigate if the lower infant mortality rate in Cuba, compared to Chile, could be explained by eugenic abortion, considering that abortion is legal in Cuba but not in Chile. We compared total and congenital abnormalities related infant mortality in Cuba and Chile during 2008, based on vital statistics of both countries. In 2008, infant mortality rates in Chile were significantly higher than those of Cuba (7.8 vs. 4.7 per 1,000 live born respectively, odds ratio (OR) 1.67; 95% confidence intervals (Cl) 1.52-1.83). Congenital abnormalities accounted for 33.8 and 19.2% of infant deaths in Chile and Cuba, respectively. Discarding infant deaths related to congenital abnormalities, infant mortality rate continued to be higher in Chile than in Cuba (5.19 vs. 3.82 per 1000 live born respectively, OR 1.36; 95%CI 1.221.52). Considering that antenatal diagnosis is widely available in both countries, but abortion is legal in Cuba but not in Chile, we conclude that eugenic abortion may partially explain the lower infant mortality rate observed in Cuba compared to that observed in Chile.

  7. Chile rural electrification cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The author describes a joint program to use renewables for rural electrification projects in Chile. The initial focus was in a limited part of the country, involving wind mapping, pilot project planning, training, and development of methodologies for comparative evaluations of resources. To this point three wind hybrid systems have been installed in one region, as a part of the regional private utility, and three additional projects are being designed. Additional resource assessment and training is ongoing. The author points out the difficulties in working with utilities, the importance of signed documentation, and the need to look at these programs as long term because of the time involved in introducing such new technologies.

  8. Biomasa en Chile

    OpenAIRE

    Nilsson Cifuentes, Gabriel; Rodríguez Monroy, Carlos

    2012-01-01

    El artículo presenta el desarrollo de la biomasa en Chile, dentro del complejo marco energético existente en el país, el cual, aún no logra potenciar e incentivar el desarrollo de energías renovables y depende fuertemente de los combustibles fósiles, acrecentando el riesgo latente de sufrir una crisis energética, en el mediano plazo, producto de la paulatina incorporación de nuevas centrales generadoras de energías, que satisfagan la creciente demanda energética pronosticada. Este ar...

  9. Chile: Transantiago recargado Chile: Transantiago Reloaded

    Directory of Open Access Journals (Sweden)

    RODRIGO MARDONES Z

    2008-01-01

    Full Text Available El 2007 fue el segundo año del gobierno de Michelle Bachelet. Se trató de un año sin elecciones; con un buen desempeño económico, a pesar de una inflación creciente en los últimos meses; y marcado por la discusión sobre escándalos de corrupción. Sin embargo, lo que más afectó al Gobierno fue la desastrosa puesta en marcha de la reforma al sistema de transporte público de la capital: Transantiago. Este puso un velo sobre los importantes avances en materias previsionales y educacionales, cuestionando no sólo la capacidad ejecutiva del Gobierno, sino que profundizando un flanco de indisciplina al interior de la coalición oficialista (Concertación; síntoma de su desgaste después de 17 años ocupando la Presidencia de Chile.The year 2007 was the second in Michelle Bachelet’s presidencial term. It was a year free of elections, exhibiting a fairly good economic performance, despite the high rate of inflation shown during the last months. Public discussion on corruption escandals was frequent; however, the most important issue was the disestrous beginning of the reform on the public transportation system of the country’s capital: Transantiago. This has placed a veil over the important achievements on the pension system and education, questioning not only the government’s capacity, but also opening and edge of indiscipline within the ruling coalition (Concertación, which is a symtom of its erosion after 17 years in the presidential office.

  10. 27 CFR 9.154 - Chiles Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Chiles Valley. 9.154... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Chiles...

  11. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  12. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  13. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  14. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  15. Slow slip event at Kilauea Volcano

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  16. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    Science.gov (United States)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  17. Globalization, Inequality, and Transnational Activism: A Case Study on Chile

    Directory of Open Access Journals (Sweden)

    Moctezuma Garcia

    2013-09-01

    Full Text Available Globalization has transformed how states are governed through a neoliberal economic approach that reinforces an unregulated capitalist market. An emphasis on Chile is important because it was the first state in Latin America to apply neoliberalism and has been hailed as a prime example for other developing states to integrate similar strategies to strengthen the local economy. However, inequality continues to persist despite economic gains. A combination of historical struggles affecting victims of the Pinochet era and present struggles with poverty, have resulted in a constant conflict between the power elite and the rest of society. Social movements in Chile have played a pivotal role in raising international awareness and pressuring the local government to protect the rights of highly vulnerable populations. A focus on transnational activism provides an effective medium for local and international advocates to work together toward holding Chile accountable for addressing social disparities.

  18. Country watch: Chile.

    Science.gov (United States)

    Calvin, M E

    1998-01-01

    The Evangelical Lutheran Church of Chile's Program for Health Education (EPES) has developed HIV/AIDS and reproductive health education seminars for residents of working class neighborhoods in Santiago and Concepcion. A 1996 seminar on violence and AIDS, organized by EPES in collaboration with a network of area schools, health centers, and nongovernmental organizations, was attended by 250 women. Subsequent workshops have addressed homosexuality and lesbianism, women and AIDS, sex workers and AIDS, sex education, domestic violence, and child sex abuse. These workshops have included skills-building sessions on safer sex, prevention of domestic violence, stress management, women's self-defense, and AIDS education techniques. Workshop participants are urged to distribute AIDS educational materials and help the network organize exhibits at public events. In the future, EPES plans to conduct outreach to men as well as women.

  19. Fires in Chile

    Science.gov (United States)

    2002-01-01

    On February 5, 2002, the dense smoke from numerous forest fires stretched out over the Pacific Ocean about 400 miles south of Santiago, Chile. This true-color Moderate-resolution Imaging Spectroradiometer (MODIS) image shows the fires, which are located near the city of Temuco. The fires are indicated with red dots (boxes in the high-resolution imagery). The fires were burning near several national parks and nature reserves in an area of the Chilean Andes where tourism is very popular. Southeast of the fires, the vegetation along the banks of the Rio Negro in Argentina stands out in dark green. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  20. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  1. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  2. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  3. The Patricia Zn–Pb–Ag epithermal ore deposit: An uncommon type of mineralization in northeastern Chile

    OpenAIRE

    Chinchilla, Darío; Ortega, L.; Piña, Rubén; Merinero, R.; Moncada, D.; Bodnar, Robert J.; Quesada, Cecilio; Valverde, Antonio; Lunar, Rosario

    2015-01-01

    The Patricia ore deposit represents an unusual example of economic Zn–Pb–Ag mineralization at the northernmost end of the Late Eocene–Oligocene metallogenic belt in Chile. It is hosted by volcano-sedimentary units, which are typically tuffaceous and andesitic breccias. The ore body consists of a set of subvertical E-W vein systems developed under a sinistral strike-slip regime that included transtensive domains with generalized extensional structures where the ores were deposited. The deposit...

  4. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  5. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    Science.gov (United States)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  6. Volcano deformation and subdaily GPS products

    Science.gov (United States)

    Grapenthin, Ronni

    Volcanic unrest is often accompanied by hours to months of deformation of the ground that is measurable with high-precision GPS. Although GPS receivers are capable of near continuous operation, positions are generally estimated for daily intervals, which I use to infer characteristics of a volcano’s plumbing system. However, GPS based volcano geodesy will not be useful in early warning scenarios unless positions are estimated at high rates and in real time. Visualization and analysis of dynamic and static deformation during the 2011 Tohokuoki earthquake in Japan motivates the application of high-rate GPS from a GPS seismology perspective. I give examples of dynamic seismic signals and their evolution to the final static offset in 30 s and 1 s intervals, which demonstrates the enhancement of subtle rupture dynamics through increased temporal resolution. This stresses the importance of processing data at recording intervals to minimize signal loss. Deformation during the 2009 eruption of Redoubt Volcano, Alaska, suggested net deflation by 0.05 km³ in three distinct phases. Mid-crustal aseismic precursory inflation began in May 2008 and was detected by a single continuous GPS station about 28 km NE of Redoubt. Deflation during the explosive and effusive phases was sourced from a vertical ellipsoidal reservoir at about 7-11.5 km. From this I infer a model for the temporal evolution of a complex plumbing system of at least 2 sources during the eruption. Using subdaily GPS positioning solutions I demonstrate that plumes can be detected and localized by utilizing information on phase residuals. The GPS network at Bezymianny Volcano, Kamchatka, records network wide subsidence at rapid rates between 8 and 12 mm/yr from 2005-2010. I hypothesize this to be caused by continuous deflation of a ˜30 km deep sill under Kluchevskoy Volcano. Interestingly, 1-2 explosive events per year cause little to no deformation at any site other than the summit site closest to the vent. I

  7. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  8. VALVE: Volcano Analysis and Visualization Environment

    Science.gov (United States)

    Cervelli, D. P.; Cervelli, P.; Miklius, A.; Krug, R.; Lisowski, M.

    2002-12-01

    Modern volcano observatories collect data using a wide variety of instruments. Visualizing these disparate data on a common time base is critical to interpreting and reacting to geophysical changes. With this in mind, the Hawaiian Volcano Observatory (HVO) created Valve, the Volcano Analysis and Visualization Environment. Valve integrates a wide range of both continuous and discontinuous data sources into a common, internet web-browser based interface that allows scientists to interactively select and visualize these data on a common time base and, if appropriate, in three dimensions. Advances in modern internet browser technology allow for a truly interactive user-interface experience that could previously only be found in stand-alone applications--all while maintaining client platform independence and network portability. This system aids more traditional in-depth analysis by providing a common front-end to retrieving raw data. In most cases, the raw data are being served from an SQL database, a system that lends itself to quickly retrieving, logically arranging, and safely storing data. Beyond Valve's visualization capabilities, the system also provides a variety of tools for time series analysis and source modeling. For example, a user could load several tilt and GPS time series, estimate co-seismic or co-intrusive deformation, and then model the event with an elastic point source or dislocation. From the source model, Coulomb stress changes could be calculated and compared to pre- and post-event hypocenter distribution. Employing a heavily object-oriented design, Valve is easily extensible, modular, portable, and remarkably cost efficient. Quickly visualizing arbitrary data is a trivial matter, while implementing methods for permanent, continuous data streams requires only minimal programming. Portability is ensured by using software that is readily available on a wide variety of operating systems; cost efficiency is achieved by using software that is open

  9. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from multi-year InSAR time series analysis and continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    Science.gov (United States)

    Geirsson, Halldor; D'Oreye, Nicolas; Smets, Benoît; Nobile, Adriano; Samsonov, Sergey; De Rauw, Dominique; Mashagiro, Niche; Kervyn, Francois

    2016-04-01

    The Kivu Region in Central Africa is a topographic dome cut by the depression of the western branch of the East African Rift, where the Nubia plate and the Victoria micro-plate are diverging by approximately 2-3 mm/yr (Stamps et al. 2008). Two closely spaced and frequently active volcanoes, Nyiragongo and Nyamulagira, are located at the plate boundary. Here, deformation signals from transient deformation events (i.e. earthquakes, eruptions, rifting episodes, intrusions or other subsurface mass movements) are intertwined with the more perpetual nature of inter-seismic strain accumulation and gradual magma accumulation. Here, we present deformation results from six years of operation of the 15- station KivuGNet (Kivu Geodetic Network) in the Kivu Region and multi-year InSAR time series of the region using the MSBAS approach (Samsonov & d'Oreye, 2012). Since 2009, KivuGNet has captured transient deformation from a) the 2010 eruption of Nyamulagira, b) the 2011-2012 eruption of Nyamulagira c) the Mw5.8 August 7, 2015 Katana earthquake at the western border of Lake Kivu. Importantly, the GPS data also show an ongoing deformation signal, which is most readily explained by long-term magma accumulation under the volcanic region. We use the GPS and InSAR deformation signals to constrain and compare source parameters of simplistic elastic models for the different time periods. Although not well constrained, most of the time periods indicate the presence of a deep (~15-30 km) magmatic source centered approximately under Nyamulagira or to the southeast of Nyamulagira, that inflates between eruptions and deflates during eruptions.

  10. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation

    Science.gov (United States)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2016-04-01

    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  11. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  12. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Sorensen, O. E.; Rose, W. I.; Jaya, D.

    2003-04-01

    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  13. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  14. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    Science.gov (United States)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  15. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    Science.gov (United States)

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  16. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  17. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    Science.gov (United States)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  18. Stratigraphy, sedimentology, and geothermal reservoir potential of the volcaniclastic Cura-Mallín succession at Lonquimay, Chile

    Science.gov (United States)

    Pedroza, Viviana; Le Roux, Jacobus P.; Gutiérrez, Néstor M.; Vicencio, Vladimir E.

    2017-08-01

    The Tolhuaca Volcano near Lonquimay in south-central Chile has been the subject of several studies due to its geothermal manifestations, but little is known about the stratigraphy and reservoir potential of the Cura-Mallín Formation forming its basement. Field work and U-Pb dating of detrital zircons allow us to redefine this succession as the Cura-Mallín Group, consisting of the volcano-sedimentary Guapitrío Formation, sedimentary Río Pedregoso Formation, and volcano-sedimentary Mitrauquén Formation. The Río Pedregoso Formation can be subdivided into three formal units, namely the Quilmahue Member, Rucañanco Member, and Bío-Bío Member. The base of the Quilmahue Member interfingers laterally with the base of the Guapitrío Formation, for which a previous K/Ar date of 22.0 ± 0.9 Ma was apparently discarded by the original authors. However, this date is consistent with the stratigraphic position of the Quilmahue Member and new zircon dates from the overlying units, also coinciding with the initiation of an extensional phase in the Bíobío-Aluminé Basin. Deposition of the Quilmahue Member continued throughout the early Miocene, as confirmed by dates of 17.5 Ma reported by previous authors and 16.5 Ma obtained in this study. The Rucañanco Member was deposited during the Serravalian around 12.6 Ma, whereas the Bío-Bío Member was dated at the Serravalian-Tortonian limit (11.6 Ma). Although all three members were deposited in a fluvio-lacustrine environment, they were dominated respectively by flood plains with crevasse splays, lake margins with distributary mouth bars and Gilbert-type deltas, and distal braided and meandering rivers. Whereas the Quilmahue Member was deposited during basin extension, the Rucañanco Member was formed during a period of basin inversion and compression. Temporary tectonic quiescence during deposition of the Bío-Bío Member allowed denudation of the landscape, but around 9.5 Ma tectonism was renewed again during deposition of

  19. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  20. HIV ISSUES AND MAPUCHES IN CHILE

    Science.gov (United States)

    Cianelli, Rosina; Ferrer, Lilian; Cabieses, Báltica; Araya, Alejandra; Matsumoto, Cristina; Miner, Sarah

    2015-01-01

    Chile is a country with an incipient HIV epidemic. Just as in other countries, disadvantaged groups in Chile are contributing to the increased incidence of the disease. The Mapuche indigenous population is one such group that has been affected by the spread of HIV. However, no prevention programs are tailored to the culturally specific needs of this community. In recognition of this discrepancy, an academic-community partnership was formed to develop an HIV educational module for a Mapuche community. The module was developed for use as part of an already established health-related program. The aims of the module were to identify perceptions about HIV among Mapuches and present information specific to HIV and its prevention. Focus was placed on cultural sensitivity. The module was carried out in connection with a first-aid course in an attempt to increase effectiveness of the intervention by working jointly with an established community program. Sixteen (16) Mapuches participated voluntarily and demonstrated some knowledge regarding HIV, but they lacked an overall understanding as to how it is transmitted and why prevention strategies are affective. Participants correctly identified sexual contact as a means of transmission, but when asked why, one person stated, “I just know it, I read it.” There were significant barriers to communication within the group, secondary to cultural practices related to age and gender. Major obstacles in controlling HIV are the lack of prevention strategies targeted to disadvantaged groups. The module developed for this intervention was the first effort of the Academic Community Partnership established between the Pontificia Universidad Católica de Chile and the Mapuche group around HIV prevention. Continued collaboration between academia and affected communities as well as incorporating HIV information into established programs are effective strategies for delivering prevention information to disadvantaged populations and for

  1. [Chile: Standing up again].

    Science.gov (United States)

    Reyes B, Humberto

    2010-03-01

    One of the biggest earthquakes recorded in human history has recently devastated a large part of the Chilean territory and, followed by a Tsunami, destroyed cities, seaports, fishermen's coves, bridges, and countryside houses. This cataclysm affected a large proportion of our population, leaving homeless families, no working tools for work places, hospitals, schools, public buildings, museums. However, the loss of human Uves was small compared to similar disasters. It destroyed part of the national heritage as well as damaged people's living conditions. A national movement started immediately to help and recover, and international resources, both human and technological were also set in motion. As after previous earthquakes in Chile, young M.D.'s and medical students were organized in voluntary groups backed by institutions or by their own organizations and went from large cities as Santiago and others to provide medical and psychological care to those in most need. Young members and students of other health professions (nurses, physical therapists, etc.) were included in these groups or worked in their own ones. National and international experience indicates that the forthcoming months require special care of psychological reactions and sequel (posttraumatic stress symptoms) and health consequences after water pollution, restrictions in housing and deteriorated sanitary conditions. Nevertheless, our country will stand up once more.

  2. Country watch: Chile.

    Science.gov (United States)

    Montoya Leiva, M

    1996-01-01

    Servicio Paz y Justicia (SERPAJ) is a nongovernmental organization (NGO) established in Chile in 1977. It supports fundamental human dignity and rights by fighting discrimination and exclusion based upon individual differences. SERPAJ promotes training, organization, and the political participation of community members as part of the democratic process, working mainly with the at risk women, street children, and youth of Santiago's working-class neighborhoods. Groups participate in workshops and training courses on human rights and development, civic education, and methods of non-violent community action. In 1987, SERPAJ-Sur Oriente began to include the topic of sexuality and AIDS/STDs in courses training working-class women as community human rights agents. The NGO is therefore one of the first mainstream Chilean human rights organizations to incorporate HIV/AIDS issues. A basic facts brochure was developed, followed by a pilot education project developed in one neighborhood which was then systematically replicated in other neighborhoods. The comments of some people who have participated in SERPAJ workshops are presented.

  3. complejidad en Chile

    Directory of Open Access Journals (Sweden)

    Miguel Alejandro Bustamante-Ubilla

    2015-01-01

    Full Text Available El presente estudio tiene por objetivo caracterizar el clima organizacional al interior de 2 hospitales dealta complejidad de Chile, determinando las dimensiones más y menos influyentes. Para su desarrollose aplicó un cuestionario que consta de 71 variables agrupadas en 14 dimensiones a una muestra de561 funcionarios. La interpretación de los resultados se realizó a través del análisis del valor prome-dio estandarizado y su confiabilidad ratificada mediante el alfa de Cronbach. A partir de lo anterior, sedeterminó que las dimensiones que influyen por encima del promedio fueron: identidad, motivaciónlaboral y responsabilidad; en tanto que las dimensiones que muestran un nivel de impacto por debajodel promedio resultaron ser: equipo y distribución de personas y material, administración del conflictoy comunicación.© 2015 Universidad ICESI. Publicado por Elsevier España, S.L.U. Este es un artículo Open Access bajo lalicencia CC BY (http://creativecommons.org/licenses/by/4.0/.

  4. It Pays to Invest in Chile

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2011-01-01

    @@ Chile is the first country to establish coopera-tive relations with China in South America, and also the first one to support China's ac-cession to the World Trade Organization.In 2005, Chile and China signed a free trade agreement.After that, China has become Chile's largest trad-ing partner, and Chile become China's second largest partner in South America.

  5. Modernitet og forbrugskultur i Chile

    DEFF Research Database (Denmark)

    Cristoffanini, Pablo Rolando

    2012-01-01

    I de sidste årtier er Chile blevet et egentligt forbrugersamfund. Udbredelsen af forbrugskulturen og forbrugerismen er centrale fænomener i chilenernes dagligliv og har nået et omfang, som har konsekvenser for de borgere, der ikke kan deltage fuldt ud heri, noget som er typisk for et samfund med en...... ujævn økonomisk udvikling og med store sociale forskelle. Denne proces er ikke et produkt af en stille, fredelig og naturlig samfundsudvikling, således som magteliten og de toneangivende intellektuelle i Chile har fremstillet det. Som jeg vil vise, er skabelsen af et egentlig forbrugssamfund knyttet til...... til i dag. Ifølge disse er Chile blevet et moderne samfund netop i kraft af, at Chile er et ægte forbrugersamfund med alt, hvad dette indebærer, såvel materielt som symbolsk. For det tredje er billedet af Chile som en ”supermoderne” nation i den latinamerikanske kontekst en udbredt forestilling hos...

  6. Modernitet og forbrugskultur i Chile

    DEFF Research Database (Denmark)

    Cristoffanini, Pablo Rolando

    2012-01-01

    I de sidste årtier er Chile blevet et egentligt forbrugersamfund. Udbredelsen af forbrugskulturen og forbrugerismen er centrale fænomener i chilenernes dagligliv og har nået et omfang, som har konsekvenser for de borgere, der ikke kan deltage fuldt ud heri, noget som er typisk for et samfund med en...... ujævn økonomisk udvikling og med store sociale forskelle. Denne proces er ikke et produkt af en stille, fredelig og naturlig samfundsudvikling, således som magteliten og de toneangivende intellektuelle i Chile har fremstillet det. Som jeg vil vise, er skabelsen af et egentlig forbrugssamfund knyttet til...... til i dag. Ifølge disse er Chile blevet et moderne samfund netop i kraft af, at Chile er et ægte forbrugersamfund med alt, hvad dette indebærer, såvel materielt som symbolsk. For det tredje er billedet af Chile som en ”supermoderne” nation i den latinamerikanske kontekst en udbredt forestilling hos...

  7. China and Chile Signing Free Trade Agreement

    Institute of Scientific and Technical Information of China (English)

    Shen; Danyang

    2005-01-01

      Mr. Bo Xilai, Minister of Commerce of China, and Mr.Walker, Foreign Minister of Chile, signed the China-Chile FTA on behalf of their respective government on November 18, 2005. Chinese President Hu Jintao and Chile President Lagos attended the signing ceremony, according to a press release on the website of Network Center of MOFCOM.……

  8. China and Chile Signing Free Trade Agreement

    Institute of Scientific and Technical Information of China (English)

    Shen Danyang

    2005-01-01

    @@ Mr. Bo Xilai, Minister of Commerce of China, and Mr.Walker, Foreign Minister of Chile, signed the China-Chile FTA on behalf of their respective government on November 18, 2005. Chinese President Hu Jintao and Chile President Lagos attended the signing ceremony, according to a press release on the website of Network Center of MOFCOM.

  9. Interactive Volcano Studies and Education Using Virtual Globes

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  10. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  11. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  12. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  13. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  14. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, W.A.; Tilling, R.I.; Canul, R.

    1984-01-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent

  15. Wildfires in Chile: A review

    Science.gov (United States)

    Úbeda, Xavier; Sarricolea, Pablo

    2016-11-01

    This paper reviews the literature examining the wildfire phenomenon in Chile. Since ancient times, Chile's wildfires have shaped the country's landscape, but today, as in many other parts of the world, the fire regime - pattern, frequency and intensity - has grown at an alarming rate. In 2014, > 8000 fires were responsible for burning c. 130,000 ha, making it the worst year in Chile's recent history. The reasons for this increase appear to be the increment in the area planted with flammable species; the rejection of these landscape modifications on the part of local communities that target these plantations in arson attacks; and, the adoption of intensive forest management practices resulting in the accumulation of a high fuel load. These trends have left many native species in a precarious situation and forest plantation companies under considerable financial pressure. An additional problem is posed by fires at the wildland urban interface (WUI), threatening those inhabitants that live in Chile's most heavily populated cities. The prevalence of natural fires in Chile; the relationship between certain plant species and fire in terms of seed germination strategies and plant adaptation; the relationship between fire and invasive species; and, the need for fire prevention systems and territorial plans that include fire risk assessments are some of the key aspects discussed in this article. Several of the questions raised will require further research, including just how fire-dependent the ecosystems in Chile are, how the forest at the WUI can be better managed to prevent human and material damage, and how best to address the social controversy that pits the Mapuche population against the timber companies.

  16. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  17. Late Quaternary Tephrostratigraphy of South-Central Chile (~ 38 - 40 °S)

    Science.gov (United States)

    Fontijn, K.; Rawson, H. L.; Van Daele, M. E.; Moernaut, J.; Abarzúa, A. M.; Pyle, D. M.; Mather, T. A.; De Batist, M. A. O.; Moreno-Roa, H.; Naranjo, J. A.

    2014-12-01

    The volcanoes of the Siete Lagos region ("Lake District") in South-Central Chile form part of the Southern Volcanic Zone of the Andes and include some of the most active volcanoes in South America, i.e. Villarrica and Llaima. The Late Quaternary (~ last 15 ka) regional tephrostratigraphic record for this region is however still poorly developed. We combine detailed stratigraphic logging of terrestrial sections in the vicinity of Llaima, Sollipulli, Villarrica, Quetrupillan, Mocho-Choshuenco and Puyehue-Cordón Caulle volcanoes with petrological, whole-rock and glass geochemical data, and 14C dating on charcoal entrained in volcanic deposits, and correlate the on-land sequences with tephra layers in existing 14C-dated lacustrine records of Laguna Las Ranas and Lagos Villarrica, Calafquén and Riñihue. The combined record includes previously described major eruptions, e.g. Llaima Pumice (Llaima) and Alpehue Pumice (Sollipulli), which help to constrain the relative timing of events. These correlations suggest that several widespread volcanic units are several hundreds to thousands of years older than previously thought. The record also includes newly described pumice-producing events, e.g. for the poorly studied Quetrupillan volcano, and provides new insights into the post-glacial eruptive frequency in the Southern Volcanic Zone. The newly updated stratigraphy with high-quality geochemical data also contributes to the regional tephrochronological framework which helps to significantly improve age models for lacustrine palaeoseismological and palaeoenvironmental archives.

  18. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  19. Complexity in Size, Recurrence and Source of Historical Earthquakes and Tsunamis in Central Chile

    Science.gov (United States)

    Cisternas, M.

    2013-05-01

    Central Chile has a 470-year-long written earthquake history, the longest of any part of the country. Thanks to the early and continuous Spanish settlement of this part of Chile (32°- 35° S), records document destructive earthquakes and tsunamis in 1575, 1647, 1730, 1822, 1906 and 1985. This sequence has promoted the idea that central Chile's large subduction inter-plate earthquakes recur at regular intervals of about 80 years. The last of these earthquakes, in 1985, was even forecast as filling a seismic gap on the thrust boundary between the subducting Nazca Plate and the overriding South America Plate. Following this logic, the next large earthquake in metropolitan Chile will not occur until late in the 21st century. However, here I challenge this conclusion by reporting recently discovered historical evidence in Spain, Japan, Peru, and Chile. This new evidence augments the historical catalog in central Chile, strongly suggests that one of these earthquakes previously assumed to occur on the inter-plate interface in fact occurred elsewhere, and forces the conclusion that another of these earthquakes (and its accompanying tsunami) dwarfed the others. These findings complicate the task of assessing the hazard of future earthquakes in Chile's most populated region.

  20. Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico.

    Science.gov (United States)

    Kraft, Kraig H; de Jesús Luna-Ruíz, José; Gepts, Paul

    2010-12-01

    Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico. The process of selecting and saving seed is the most basic and oldest of agricultural practices. In today's modern and highly capital-intensive agriculture, seeds are often treated like another chemical input. This study sought to examine seed selection and saving practices among chile farmers in Aguascalientes, Mexico, where both industrial and traditional agriculture are practiced. We observed a clear division among farmers who plant chile peppers commercially. Sixty-eight chile pepper farmers were surveyed in order to document seed selection and saving practices. Fifteen respondents (22%) planted chile peppers destined for the fresh market and all utilized purchased commercial seed of F1 hybrid varieties. Fifty-three farmers (78%) planted chiles to be dried and either saved their own or purchased seeds that others had saved and selected. Farmers who saved their own seed sought to maintain an ideotype, rather than directionally select for certain traits, much like Cleveland et al. (2000) chronicled in central Mexican maize farmers. Farmers would benefit from a participatory plant-breeding program in order to maintain productive seed stock for the continued cultivation of dried chile pepper in the state.

  1. [Health research and health technology assessment in Chile].

    Science.gov (United States)

    Espinoza, Manuel Antonio; Cabieses, Báltica; Paraje, Guillermo

    2014-01-01

    Health research is considered an essential element for the improvement of population health and it has been recommended that a share of the national health budget should be allocated to develop this field. Chile has undertaken efforts in the last decades in order to improve the governmental structure created to promote the development of health research, which has increased human resources and funding opportunities. On the other hand, the sustained economic growth of Chile in the last decades suggests that the health expenditure will maintain its increasing trend in the following years. This additional funding could be used to improve coverage of current activities performed in the health system, but also to address the incorporation of new strategies. More recently, health technology assessment (HTA) has been proposed as a process to support decisions about allocation of resources based on scientific evidence. This paper examines the relationship between the development of health research and the HTA process. First, it presents a brief diagnosis of the situation of health research in Chile. Second, it reviews the conceptual basis and the methods that account for the relationship between a HTA process and the development of health research. In particular, it emphasizes the relevance of identifying information gaps where funding additional research can be considered a good use of public resources. Finally, it discusses the challenges and possible courses of action that Chile could take in order to guarantee the continuous improvement of an articulated structure for health research and HTA.

  2. Regional metallogenic structure based on aeromagnetic data in northern Chile

    Science.gov (United States)

    Zhu, Xiao-San; Lu, Min-Jie

    2016-12-01

    Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic-magmatic activities that migrate eastward and the types of mineral resources. In this paper, we processed and interpreted aeromagnetic data from northern Chile using reduction to pole, upward field continuation, the second derivative calculation in the vertical direction, inclination angle calculation, and analytical signal amplitude analysis. We revealed the locations and planar distribution characteristics of the regional deep faults along the NNE and NS directions. Furthermore, we observed that the major reasons for the formation of the tectonic-magmatic rocks belts were the nearly parallel deep faults distributed from west to east and multiple magmatic activities along these faults. We ascertained the locations of volcanic mechanisms and the relationships between them using these regional deep faults. We deduced the spatial distributions of the basic-intermediate, basic, and acidic igneous rocks, intrusive rocks, and sedimentary sequences. We showed the linear positive magnetic anomalies and magnetic anomaly gradient zones by slowly varying the background, negative magnetic anomaly field, which indicated the presence of strong magmatic activities in these regional deep faults; it also revealed the favorable areas of copper and polymetallic mineralization. This study provides some basic information for further research on the geology, structural characteristics, and mineral resource prospecting in northern Chile.

  3. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  4. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  5. Women and Politics in Chile.

    Science.gov (United States)

    Kirkwood, Julieta

    1983-01-01

    Political parties in Chile of both the left and right have focused more on drawing women into their ideologies than on considering what political issues mean to women. A look at feminist thought shows how political life for women includes not only the traditional political arena but also domestic life. (IS)

  6. The biomethane potential in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, M.; Miranda, J.A. [Institute for Energy and Environment gGmbH, German Biomass Research Centre, Torgauer Strasse 116, 04347 Leipzig (Germany); Kaltschmitt, M. [Institute for Energy and Environment gGmbH, German Biomass Research Centre, Torgauer Strasse 116, 04347 Leipzig (Germany); Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Eissendorfer Strasse 40, D-21073 Hamburg (Germany)

    2009-04-15

    Within the last decade natural gas gained considerable importance in Chile. The contribution of natural gas within the energy system will increase in the future by predicted 3.6% annually until the year 2015. Due to limited resources within its own country, the energy system of Chile depends on natural gas imports preferential from Argentina. Therefore, the aim of several stakeholders from policy and industry is to reduce the share of imported primary energy within the overall energy system. In order to reach this goal, the use of domestic resources and particularly the utilisation of biomass as one of the most important renewable sources of energy in Chile could play an important role. Against this background, the goal of this paper is the analysis of the technical potentials of biomethane as a substitute for natural gas. For the production of biomethane the anaerobic or bio-chemical (i.e. Biogas) as well as the thermo-chemical conversion pathways (i.e. Bio-SNG) are considered. The results of this analysis show that biomass converted to biomethane is a promising energy provision option for Chile and it contributes to the reduction of greenhouse gas emissions. (author)

  7. Women and Politics in Chile.

    Science.gov (United States)

    Kirkwood, Julieta

    1983-01-01

    Political parties in Chile of both the left and right have focused more on drawing women into their ideologies than on considering what political issues mean to women. A look at feminist thought shows how political life for women includes not only the traditional political arena but also domestic life. (IS)

  8. Towards Developing Systematics for Using Periodic Studies of the Hydrothermal Manifestations as Effective Tool for Monitoring Largely 'inaccessible' Volcanoes

    Science.gov (United States)

    Alam, M.

    2010-12-01

    The San José and Tupungatito volcanoes, located near Santiago (Chile), are the potential hazards, given their geological and historical record of explosive eruptions with pyroclastic flows, most recently in 1960 and 1987 respectively (Global Volcanism Program, Smithsonian Institution). What aggravates the potential risk of these very high (>5290m elevation) snow- and ice-covered volcanoes is their location at the source of relatively narrow mountain drainage systems that feed into the Maipo River, flowing through the southern outskirts of Santiago. Sector-collapse and debris-flow, as a result of volcano-ice/snow interaction, can form lahars causing immense destruction to the life and property in the Maipo Valley (Cajón del Maipo). These lahars can cause submergence and burial of vast downstream areas under several meters thick sediment, as in the case of 1980 eruption of Mount St. Helens, USA. In the event of a major eruption, Santiago city will be at peril, with all the drinking water supply installations either destroyed or contaminated to the extent of being abandoned. Besides, ash and tephra will halt the air traffic in the region, particularly in Santiago-Mendoza sector between Chile and Argentina. In a proposed research project (for which funding is awaited from CONICYT, Chile under its Initiation into Research Funding Competition), hydrothermal systems associated with the aforementioned volcanoes will be periodically studied to monitor these volcanoes, in order to develop a Systematics for using the peripheral hydrothermal manifestations, together with nearby surface water bodies, as means for monitoring the activities of the volcano(es). Basic premise of this proposal is to use the relationship between volcanic and hydrothermal activities. Although this association has been observed at many volcanic centers, no attempt has been made to use this relation effectively as a tool for monitoring the volcanoes. Before an eruption or even with increased

  9. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  10. Two public buildings basically made of earth in Chile

    OpenAIRE

    Pereira, Hugo

    1986-01-01

    Two works in Chile are reported: The House of the Culture in La Florida (Santiago) and the Botalcura Concentred School in the Vlllth Zone. Both constructions have as common characteristic to be built with adobe and wooden girders, to present a certain continuity in the adapted criteria of desing -both from Architect Hugo Pereira- and to be newly constructed buildings, even partialy in construction. The fact that there are spaces with appropriate light and height for public use, so as the c...

  11. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    Science.gov (United States)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  12. Overview of the 2004 to 2006, and continuing, eruption of Mount St. Helens, Washington: Chapter 1 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Scott, William E.; Sherrod, David R.; Gardner, Cynthia A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Rapid onset of unrest at Mount St. Helens on September 23, 2004, initiated an uninterrupted lava-dome-building eruption that continues to the time of writing this overview (spring 2006) for a volume of papers focused on this eruption. About three weeks of intense seismic unrest and localized surface uplift, punctuated by four brief explosions, constituted a ventclearing phase, during which there was a frenzy of media attention and considerable uncertainty regarding the likely course of the eruption. The third week exhibited lessened seismicity and only minor venting of steam and ash, but rapid growth of the uplift, or welt, south of the 1980-86 lava dome proceeded as magma continued to push upward. Crystalrich dacite (~65 weight percent SiO2) lava first appeared at the surface on October 11, 2004, beginning the growth of a complex lava dome of uniform chemical composition accompanied by persistent but low levels of seismicity, rare explosions, low gas emissions, and frequent rockfalls. Petrologic studies suggest that the dome lava is chiefly of 1980s vintage, but with an admixed portion of new dacite. Alternatively, it may derive from a part of the magma chamber not tapped by 1980s eruptions. Regardless, detailed investigations of crystal chemistry, melt inclusions, and isotopes reveal a complex magmatic history. Largely episodic extrusion between 1980 and 1986 produced a relatively symmetrical lava dome composed of stubby lobes. In contrast, continuous extrusion at mean rates of about 5 m3/s in autumn 2004 to 3/s in early 2006 has produced an east-west ridge of three mounds with total volume about equal to that of the old dome. During much of late 2004 to summer 2005, a succession of spines, two recumbent and one steeply sloping and each mantled by striated gouge, grew to nearly 500 m in length in the southeastern sector of the 1980 crater and later disintegrated into two mounds. Since then, growth has been concentrated in the southwestern sector, producing a

  13. Influence of substrate tectonic heritage on the evolution of composite volcanoes: Predicting sites of flank eruption, lateral collapse, and erosion

    Science.gov (United States)

    Tibaldi, Alessandro; Corazzato, Claudia; Kozhurin, Andrey; Lagmay, Alfredo F. M.; Pasquarè, Federico A.; Ponomareva, Vera V.; Rust, Derek; Tormey, Daniel; Vezzoli, Luigina

    2008-04-01

    This paper aims to aid understanding of the complicated interplay between construction and destruction of volcanoes, with an emphasis on the role of substrate tectonic heritage in controlling magma conduit geometry, lateral collapse, landslides, and preferential erosion pathways. The influence of basement structure on the development of six composite volcanoes located in different geodynamic/geological environments is described: Stromboli (Italy), in an island arc extensional tectonic setting, Ollagüe (Bolivia-Chile) in a cordilleran extensional setting, Kizimen (Russia) in a transtensional setting, Pinatubo (Philippines) in a transcurrent setting, Planchon (Chile) in a compressional cordilleran setting, and Mt. Etna (Italy) in a complex tectonic boundary setting. Analogue and numerical modelling results are used to enhance understanding of processes exemplified by these volcanic centres. We provide a comprehensive overview of this topic by considering a great deal of relevant, recently published studies and combine these with the presentation of new results, in order to contribute to the discussion on substrate tectonics and its control on volcano evolution. The results show that magma conduits in volcanic rift zones can be geometrically controlled by the regional tectonic stress field. Rift zones produce a lateral magma push that controls the direction of lateral collapse and can also trigger collapse. Once lateral collapse occurs, the resulting debuttressing produces a reorganization of the shallow-level magma migration pathways towards the collapse depression. Subsequent landslides and erosion tend to localize along rift zones. If a zone of weakness underlies a volcano, long-term creep can occur, deforming a large sector of the cone. This deformation can trigger landslides that propagate along the destabilized flank axis. In the absence of a rift zone, normal and transcurrent faults propagating from the substrate through the volcano can induce flank

  14. Acuicultura Insostenible en Chile (Unsustainable aquaculture in Chile

    Directory of Open Access Journals (Sweden)

    Sommer, Marcos

    2009-03-01

    Full Text Available ResumenLa acuicultura en Chile sólo será alternativa a la pesca si se consigue llevar su producción a parámetros de sostenibilidad, no solamente económica sino, fundamentalmente, ambiental. Con un esfuerzo dirigido hacia medidas legislativas y de control, e investigación aplicada, podríamos acercarnos a una acuicultura ambientalmente sostenible.

  15. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012

    Science.gov (United States)

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Haney, Matthew M.; Parker, Tom; Searcy, Cheryl; Prejean, Stephanie

    2013-01-01

    Between January 1 and December 31, 2012, the Alaska Volcano Observatory located 4,787 earthquakes, of which 4,211 occurred within 20 kilometers of the 33 volcanoes monitored by a seismograph network. There was significant seismic activity at Iliamna, Kanaga, and Little Sitkin volcanoes in 2012. Instrumentation highlights for this year include the implementation of the Advanced National Seismic System Quake Monitoring System hardware and software in February 2012 and the continuation of the American Recovery and Reinvestment Act work in the summer of 2012. The operational highlight was the removal of Mount Wrangell from the list of monitored volcanoes. This catalog includes hypocenters, magnitudes, and statistics of the earthquakes located in 2012 with the station parameters, velocity models, and other files used to locate these earthquakes.

  16. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  17. Unrest of Chiles - Cerro Negro volcanic complex: A binational Ecuador - Colombia effort

    Science.gov (United States)

    Ruiz, M. C.; Gomez, D.; Torres, R.; Cadena, O.; Mothes, P. A.; Anzieta, J. C.; Pacheco, D. A.; Bernard, B.; Acero, W.; Hidalgo, S.; Enriquez, W.; Cordova, A.

    2014-12-01

    The increasing seismic activity at the area of Chiles - Cerro Negro volcanic complex, located at the Ecuador-Colombian border, has been jointly monitored by the Instituto Geofisico - Ecuador and the Observatorio Vulcanologico y Sismologico de Pasto OVSP, a division of the Servicio Geologico Colombiano. Since April 2013, three seismic swarms have been detected in this area and more than 100.000 events are recorded since November 2013. The largest and more recent swarm has a daily average of 676 events between March and June 2014. Currently a seismic network of 8 seismic stations (5 in the Colombian and 3 in Ecuadorean side) are deployed in this area. Epicenters of more than 315 seismic events with magnitudes Ml>2.0 and 10 or more phases are located in an area 1-4 km south of Chiles volcano with shallow depths (up to 14 km). Most of events have magnitudes between 1.0 to 4.0. Nine events have magnitudes larger than 4.0 and the largest event occurred on April 30. 2014 with a local magnitude of 4.7 and inverse-transcurrent component focal mechanism. Waveforms and spectral patterns define these events as volcano-tectonic. Events with large magnitudes (above 3.0) show a very long-period component. Hot spring and deformation measurements also show signals of volcanic unrest.

  18. Secular variation of the Earth's magnetic field and application to paleomagnetic dating of historical lava flows in Chile

    Science.gov (United States)

    Roperch, Pierrick; Chauvin, Annick; Lara, Luis E.; Moreno, Hugo

    2015-05-01

    The recent geomagnetic secular variation is mainly characterized by the large growth of the South Atlantic Magnetic Anomaly during the last three centuries, first documented by the geomagnetic model gufm1 (Jackson et al., 2000). We report new paleomagnetic results (directions and paleointensities) from several sites in two well dated lava flows in Chile, the 1835 AD eruption of the Osorno volcano and the 1751 AD eruption of the Llaima volcano. In addition, paleointensities were obtained on 14 samples from bricks of shelters built along the main road across the Andes from Santiago (Chile) to Mendoza (Argentina) in 1770 ± 5 AD. The results confirm the high reliability of the global geomagnetic model gufm1 for the last three centuries with a large amplitude of the secular variation in inclination (∼20°) and intensity (∼25 μT). Results from three 14C dated volcanic units in the time interval 1400-1750 AD indicate that more paleomagnetic results in well dated lava flows are necessary to improve the robustness of existing global geomagnetic models. At this stage, precise paleomagnetic or archeomagnetic dating in South America using global models should be restricted to the last 3 centuries. To illustrate the potential of paleomagnetic dating in region and time interval with very large geomagnetic secular variation, we report paleomagnetic data from several sites in historical lava flows (1700-1900 AD) from the Antuco, Llaima and Villarrica volcanoes that permit to refine the ages of the major historical effusive volcanic events.

  19. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  20. Modeling eruptions of Karymsky volcano

    OpenAIRE

    Ozerov, A.; Ispolatov, I.; Lees, J.

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of...

  1. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  2. The western Aeolian Islands volcanoes (South Tyrrhenian Sea): highlight on their eruptive history based on K-Ar dating.

    Science.gov (United States)

    Leocat, E.; Gillot, P.-Y.; Peccerillo, A.

    2012-04-01

    The Aeolian Islands volcanoes are located in southern Tyrrhenian Sea on the northern continental margin of the Calabro-Peloritan basement. The Stromboli, Panarea and Vulcano volcanoes of the half eastern sector are well studied as they are still active and they represent high volcanic hazard. While stratigraphic studies were carried out on volcanoes of the western sector, radiometric ages are lacking to well understand their eruptive history. Therefore, new geochronological and geochemical data were obtained for Alicudi, Filicudi, Salina and Lipari western volcanoes. The aim is to establish a complete time framework of the volcanism and to study possible time-related variations of magma compositions. The 37 new ages were obtained using K-Ar Cassignol-Gillot technique that is suitable for dating Quaternary volcanic rocks. The new geochemical data consist of whole rock major and trace elements analysis on dated samples. Our new sets of data give evidence that the Aeolian Islands are young volcanoes emplaced within the last 300 ka. The oldest products outcrop at Filicudi, Salina and Lipari. Te first emerged activity of Alicudi volcano occurred 120 ka ago. While quiescence activity of at least 50 ka is recognized at Filicudi and Lipari, and potentially at Salina, the volcanic activity of Alicudi would have been relatively continuous. These whole volcanoes were active within the last 30 ka which has to be considered for volcanic hazard assessment. At the scale of each volcano, the degree of differentiation increase roughly through time, except at Filicudi where the ultimate products correspond to mafic magma. At the scale of the archipelago, this process increases from western Alicudi and Filicudi volcanoes, where andesitic magmas are the most evolved magmas, to central Salina and Lipari volcanoes, where rhyolitic magmas are emitted during explosive eruption. Moreover, pulses of magmatic activity would have occurred around 30-40 and 110-120 ka when the four volcanoes

  3. Socialisme i Chile efter Pinochet

    DEFF Research Database (Denmark)

    Cristoffanini, Pablo Rolando

    2008-01-01

    Chile bliver ofte præsenteret som et paradigme for resten af det latinamerikanske kontinent: Et land med høj økonomisk vækst og politisk stabilitet. Landet har endda haft to socialistiske præsidenter siden 2000, den sidste den første kvindelige præsident. Succeshistorien har en bagside: De...... socialistiske regeringer har accepteret et begrænset demokrati og videreført en nyliberal økonomisk politik, der har bragt dem på konfrontationskurs med massebevægelserne og isoleret Chile fra de andre lande i regionen, der søger integration og gensidig støøte. Udgivelsesdato: Februar...

  4. Socialisme i Chile efter Pinochet

    DEFF Research Database (Denmark)

    Cristoffanini, Pablo Rolando

    2008-01-01

    Chile bliver ofte præsenteret som et paradigme for resten af det latinamerikanske kontinent: Et land med høj økonomisk vækst og politisk stabilitet. Landet har endda haft to socialistiske præsidenter siden 2000, den sidste den første kvindelige præsident. Succeshistorien har en bagside: De...... socialistiske regeringer har accepteret et begrænset demokrati og videreført en nyliberal økonomisk politik, der har bragt dem på konfrontationskurs med massebevægelserne og isoleret Chile fra de andre lande i regionen, der søger integration og gensidig støøte. Udgivelsesdato: Februar...

  5. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  6. [Chile: social protection in health].

    Science.gov (United States)

    Urriola, Rafael

    2006-10-01

    This piece begins with a brief discussion of the concepts leading to the social right to health protection. Special emphasis is placed on the principle of social cohesion, which has influenced social health protection in European countries. Chile's experience in this field from the 1990s to the present is described, as exemplified in three dimensions. In the first place, social security coverage is presented as a means to achieve universal (horizontal) coverage. A discussion follows on vertical coverage, where the author identifies health problems for which insured persons have guaranteed rights of access to medical care. This section describes available emergency care, primary health care, and the special plan for Universal Access to Explicit Guarantees (Acceso Universal de Garantías Explícitas de salud, or AUGE). Thirdly, the discussion covers the funding sources supporting the Chilean health care system: Government subsidies, contributions to social security, and out-of-pocket disbursements for private care. Chile's public health system has various special programs. One of them is catastrophic insurance, which covers 100% of the care needed for complex and very costly treatments. Older persons (over 65) have coverage for 100% of the cost of eyeglasses and hearing aids, and for 50% of the cost of home care. If life expectancy is an appropriate indicator of health system results, it is worth noting that Chile and the United States of America have both achieved a life expectancy of 77 years, even though Chile spends only 5.9% of its gross domestic product on health care, as compared to the 15% spent by the United States.

  7. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  8. Campgrounds in Hawaii Volcanoes National Park

    Data.gov (United States)

    National Park Service, Department of the Interior — This dataset provides campground locations in Hawaii Volcanoes National Park. Information about facilities, water availability, permit requirements and type of...

  9. Uplift of Kelud Volcano Prior to the November 2007 Eruption as Observed by L-Band Insar

    Directory of Open Access Journals (Sweden)

    Ashar Muda Lubis

    2014-09-01

    Full Text Available Kelud volcano, a stratovolcano with summit elevation of 1731 m above sea level, is considered to be one of the most dangerous volcanoes in Java, Indonesia. Kelud volcano erupts frequently, with the most recent eruption occurred on November 3, 2007. Therefore, volcano monitoring, especially detecting precursory signals prior to an eruption, is important for hazard mitigation for Kelud volcano. Interferometric Synthetic Aperture Radar (InSAR has been proven to bea powerful tool for investigating earth-surface deformation. Hence, we applied D-InSAR (differential InSAR in an effort to identify pre-eruptive deformation of Kelud volcano before November 2007 eruption. SAR images, L band ALOS-PALSAR, were used to construct 3 coherent interferograms between January to May 2007. We used the D-InSAR technique to remove topographic effects from interferometry images. During the interval observation, we detected a continuous inflation with a maximum line-of-sight (LOS displacement of 11cm. Uplift of Kelud volcano was also observed by the tiltmeter 1-2 months prior to the November 2007 eruption. We interpret this inflation as a manifestation of increased volume of magmatic material in the shallow reservoir and magmatic migration towards the surface, indicating an imminent eruption. This study confirms that InSAR technique is a valuable tool for monitoring volcano towards better hazard mitigations.

  10. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  11. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  12. Short-term seismic quiescence immediately preceding explosions during the 2011 eruption of Telica Volcano, Nicaragua

    Science.gov (United States)

    Rodgers, M.; Roman, D. C.; Geirsson, H.; La Femina, P. C.; Muñoz, A.; Tenorio, V.

    2013-12-01

    Telica Volcano, Nicaragua, experienced a VEI 2 eruptive episode from March-June 2011. The eruption consisted of numerous small to moderate ash explosions, many of which were observed visually and recorded by a local broadband seismic network (the TESAND network). Seismicity at Telica during both background and eruptive periods is characterized by generally high and variable rates of low-magnitude volcano-seismic events. Explosions at Telica are also detected seismically and distinguished from volcanic earthquakes by the length of the seismic signal, their emergent nature and 'cigar-shaped' envelope, and broadband spectral content. During the month of May 2011, we identified 16 explosion events on a seismometer located 0.5 km from the crater vent, some of which correlate with visually observed explosions. From May 1-12, ten explosions are apparent in continuous seismic data. During this period, the rate of volcano-seismic events is relatively low (0-20 events/hour with an average of 4 events per hour). Prior to eight of the 10 explosions, there were no detected seismic events within one hour of the explosion. From May 13-31, seven explosions were identified in the continuous seismic data. During this period, the rate of volcano-seismic events is relatively high (0-48 events per hour, with an average of 18 events per hour). In the hour preceding all seven explosions, there were no detected volcano-seismic events. Visual inspection of the continuous seismic data confirms that a strong decrease in the number of volcano-seismic events immediately preceded most of the 2011 explosions at Telica Volcano. We suggest that the apparent short-term decrease in seismicity before explosions at Telica is related to a cycle of pressure buildup and release in the shallow magmatic-hydrothermal system, with an increase in pressure prior to the explosions both resulting from and reflecting constriction of gas pathways.

  13. Rising Expectations in Brazil and Chile

    Science.gov (United States)

    Elacqua, Gregory; Alves, Fatima

    2014-01-01

    Two themes connect Brazil and Chile: one is economic success; the other is social unrest. Protests rocked cities across Brazil in June 2013, and in Chile, recent student protests turned violent. Yet living conditions in both nations are better now than they've ever been. Successful economic and social reforms over the last two decades have…

  14. Rising Expectations in Brazil and Chile

    Science.gov (United States)

    Elacqua, Gregory; Alves, Fatima

    2014-01-01

    Two themes connect Brazil and Chile: one is economic success; the other is social unrest. Protests rocked cities across Brazil in June 2013, and in Chile, recent student protests turned violent. Yet living conditions in both nations are better now than they've ever been. Successful economic and social reforms over the last two decades have led to…

  15. Rising Expectations in Brazil and Chile

    Science.gov (United States)

    Elacqua, Gregory; Alves, Fatima

    2014-01-01

    Two themes connect Brazil and Chile: one is economic success; the other is social unrest. Protests rocked cities across Brazil in June 2013, and in Chile, recent student protests turned violent. Yet living conditions in both nations are better now than they've ever been. Successful economic and social reforms over the last two decades have led to…

  16. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    Science.gov (United States)

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  17. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  18. Newberry Volcano's youngest lava flows

    Science.gov (United States)

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    Most of Newberry Volcano's youngest lava flows are found within the Newberry National Volcanic Monument in central Oregon. Established November 5, 1990, the monument is managed by the U.S. Forest Service as part of the Deschutes National Forest. Since 2011, a series of aerial surveys over the monument collected elevation data using lidar (light detection and ranging) technology, which uses lasers to directly measure the ground surface. These data record previously unseen detail in the volcano’s numerous lava flows and vents. On average, a laser return was collected from the ground’s surface every 2.17 feet (ft) with ±1.3 inches vertical precision.

  19. Permanent Infrasound Monitoring of Active Volcanoes in Ecuador

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Steele, A.; Segovia, M.; Vaca, S.; Cordova, A.; Enriquez, W.; Vaca, M.; Ramos, C.; Arrais, S.; Tapa, I.; Mejia, F.; Macias, C.

    2013-12-01

    Since 2006, infrasound monitoring has become a permanent tool for observing, analyzing and understanding volcanic activity in Ecuador. Within the framework of a cooperative project between the Japanese International Cooperation Agency (JICA) and the Instituto Geofísico to enhance volcano monitoring capabilities within the country, 10 infrasound sensors were deployed in conjunction with broadband seismic stations at Cotopaxi and Tungurahua volcanoes. Each station comprises 1 ACO microphone (model 7144) and an amplifier with a flat response down to 0.1 Hz. At Tungurahua, between July 2006 and July 2013, the network recorded more than 5,500 explosion events with peak-to-peak pressure amplitudes larger than 45 Pa at station Mason (BMAS) which is located ~ 5.5 km from the active crater. This includes 3 explosions with pressure amplitudes larger than 1,000 Pa and which all have exhibited clear shock wave components. Two seismic and infrasound arrays were also installed in 2006 under the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, used in volcano monitoring at Tungurahua, Sangay, and Reventador. This venture was led by the Geological Survey of Canada and the University of Hawaii. Through the SENESCYT-IGEPN project, the Instituto Geofísico is currently installing a regional network of MB2005 microbarometers with the aim to enhance monitoring of active and potentially active volcanoes that include Reventador, Guagua Pichincha, Chimborazo, Antisana, Sangay, and Volcán Chico in the Galapagos Islands. Through the infrasound monitoring station at Volcán Chico it is also possible to extend observations to any activity initiated from Sierra Negra, Fernandina, Cerro Azul, and Alcedo volcanoes. During the past decade, a series of temporary acoustic arrays have also been deployed around Ecuador's most active volcanoes, helping to aid in short term volcanic monitoring and/or used in a series of research projects aimed at better understanding volcanic systems

  20. Controlling Light Pollution in Chile A Status Report.

    Science.gov (United States)

    Smith, Malcolm G.; Sanhueza, P.; Schwarz, H. E.; Walker, A. R.

    2006-12-01

    In 1999, after 6 years of intense work wirh Chilean authoritie Eduardo Frei Ruiz-Tagle, the then President of Chile signed into law Supreme Decree 686, the environmentally-linked "Norma Luminica". This, in effect, required that lighting in the three astronomically-sensitive Regions of Northern Chile (II Paranal,Armazones III Las Campanas IV La Silla, Tololo, Pachon) be directed downwards instead of into the sky. Various grace periods up to a maximum of five years were specified for different types of lighting. Street lighting was due to be fully compliant by 1st October, 2005. 70% of the street lighting in these 3 Regions now meets specifications and work continues towards full compliance. More sophisticated draft legislation is under consideration with several Chilean national authorities. This may include international lighting norms, energy-saving caps and measures to address energy-saving, environmental and human-health issues. With vigilance, these measures are likely to extend the useful life of all existing and major planned observatories in Chile by several decades.

  1. Teenage sexuality and rights in Chile: from denial to punishment.

    Science.gov (United States)

    Casas, Lidia; Ahumada, Claudia

    2009-11-01

    While Chile sees itself as a country that has fully restored human rights since its return to democratic rule in 1990, the rights of teenagers to comprehensive sexuality education are still not being met. This paper reviews the recent history of sexuality education in Chile and related legislation, policies and programmes. It also reports a 2008 review of the bylaws of 189 randomly selected Chilean schools, which found that although such bylaws are mandatory, the absence of bylaws to prevent discrimination on grounds of pregnancy, HIV and sexuality was common. In relation to how sexual behaviour and discipline were addressed, bylaws that were non-compliant with the law were very common. Opposition to sexuality education in schools in Chile is predicated on the denial of teenage sexuality, and many schools punish sexual behaviour where transgression is perceived to have taken place. While the wider Chilean society has been moving towards greater recognition of individual autonomy and sexual diversity, this cultural shift has yet to be reflected in the government's political agenda, in spite of good intentions. Given this state of affairs, the Chilean polity needs to recognise its youth as having human rights, or will continue to fail in its commitment to them.

  2. [Antimicrobial susceptibility in Chile 2012].

    Science.gov (United States)

    Cifuentes-D, Marcela; Silva, Francisco; García, Patricia; Bello, Helia; Briceño, Isabel; Calvo-A, Mario; Labarca, Jaime

    2014-04-01

    Bacteria antimicrobial resistance is an uncontrolled public health problem that progressively increases its magnitude and complexity. The Grupo Colaborativo de Resistencia, formed by a join of experts that represent 39 Chilean health institutions has been concerned with bacteria antimicrobial susceptibility in our country since 2008. In this document we present in vitro bacterial susceptibility accumulated during year 2012 belonging to 28 national health institutions that represent about 36% of hospital discharges in Chile. We consider of major importance to report periodically bacteria susceptibility so to keep the medical community updated to achieve target the empirical antimicrobial therapies and the control measures and prevention of the dissemination of multiresistant strains.

  3. Seismic event classification and precursor identification at Fuego Volcano, Guatemala

    Science.gov (United States)

    Brill, K. A.; Waite, G. P.; Rodriguez, K.

    2013-12-01

    Understanding the nature and origins of seismic signals generated by volcanic activity can greatly aid in hazard mitigation efforts. Systematic identification and detailed cataloging of explosive events provide a first step for this understanding, and can be even more valuable when the events span longer time periods. Beyond simply being a more useful monitoring tool, the detailed classification of events can illuminate the processes behind different conduit flow phenomena such as rheological sealing or piston-style chugging. Fuego volcano, Guatemala, is a basaltic-andesite stratovolcano that has been continually active since 1999. Activity is characterized by small-scale explosive eruptions and intermittent lava flows. In this study, we categorize different events recorded with a 10 station temporary seismic array at Fuego volcano in Guatemala in January 2012 that included infrasound and tilt sensors. Waveform analysis, along with visual and thermal characteristics captured by cameras allow us to identify precursory activity in different bandwidths that precedes some of the event types. We investigate the physical mechanisms behind these precursors to explain why some event types exhibit them while others may not, and how these mechanisms influence our conceptual models of explosion dynamics at Fuego. Finally, we compare events recorded in 2012 with other studies conducted at Fuego volcano in previous years to identify changes in the signal characteristics and their potential influences on activity styles observed during different field campaigns to highlight the importance of longitudinal studies at persistently active volcanic systems.

  4. The potential for synthesizing multi-sensor remote sensing data for global volcano monitoring

    Science.gov (United States)

    Furtney, M.; Pritchard, M. E.; Carn, S. A.; McCormick, B.; Ebmeier, S. K.; Jay, J.

    2015-12-01

    Volcanoes exhibit variable eruption frequencies and styles, from near-continuous eruptions of effusive lavas to more intermittent, explosive eruptions. The monitoring frequency necessary to capture precursory signals at any volcano remains uncertain, as some warnings allot hours for evacuation. Likewise, no precursory signal appears deterministic for each volcano. Volcanic activity manifests in a variety of ways (i.e. tremor, deformation), thus requiring multiple monitoring mechanisms (i.e. geodetic, geochemical, geothermal). We are developing databases to compare relationships among remotely sensed volcanic unrest signals and eruptions. Satellite remote sensing utilizes frequent temporal measurements (daily to bi-weekly), an essential component of worldwide volcano monitoring. Remote sensing methods are also capable of detecting diverse precursory signals such as ground deformation from satellite interferometric synthetic aperture radar—InSAR— (multiple space agencies), degassing from satellite spectroscopy (i.e. OMI SO2 from NASA), and hot spots from thermal infrared (i.e. MODIS from NASA). We present preliminary results from seven SAR satellites and two thermal infrared satellites for 24 volcanoes with prominent SO2 emissions. We find near-continuous emissions at Ibu (Indonesia) since 2008 corresponded with hotspots and 10 cm of subsidence, with degassing and comparable subsidence observed at Pagan (Marianas). A newcomer to volcano monitoring, remote sensing data are only beginning to be utilized on a global scale, let alone as a synthesized dataset for monitoring developing eruptions. We foresee a searchable tool for rapidly accessing basic volcanic unrest characteristics for different types of volcanoes and whether or not they resulted in eruption. By including data from multiple satellite sensors in our database we hope to develop quantitative assessments for calculating the likelihood of eruption from individual events.

  5. Gas geochemistry of the Cordon Caulle geothermal system, Southern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, Fabian [SGGES, University of Auckland, Private Bag 92019, Auckland (New Zealand); Lahsen, Alfredo [Department of Geology, University of Chile, P.O. Box 13518 (21), Santiago (Chile); Powell, Thomas [Mighty River Power, P.O. Box 445, Hamilton (New Zealand)

    2007-10-15

    The Cordon Caulle geothermal system is located in a NW-trending volcano-tectonic depression of the Southern Andean Volcanic Zone of Chile. Outflows of low chloride water were previously interpreted as the surface expression of a shallow steam-heated aquifer, with subsurface temperatures of 150-170 C. Gas data from fumaroles and hot springs have been used to assess the nature and temperature of the deeper, underlying geothermal reservoir. Fumaroles at the northeastern border of Cordon Caulle have {sup 3}He/{sup 4}He ratios typical of subduction margins (6-7 R{sub A}) and N{sub 2}/Ar ratios of about 40, indicating deep convection of air-saturated groundwater. Fumaroles at the southwestern border have N{sub 2}/Ar ratios >300, suggesting the presence of a deep volcanic component. Gas ratios of fumarole discharges yield equilibration temperatures >300 C, whereas those of hot spring waters suggest temperatures of about 160 C. Based on these data, and comparisons with well documented liquid and vapor-dominated geothermal systems, a model is proposed of a boiling liquid-dominated geothermal system overlain by a secondary steam-heated aquifer. (author)

  6. President of Chile at CERN

    CERN Multimedia

    2007-01-01

    The President of Chile, Michelle Bachelet, in the ATLAS cavern with, from left to right, Peter Jenni, ATLAS Spokesman, Vivian Heyl, CONICYT President, and Robert Aymar, CERN Director-General. Robert Aymar, CERN Director-General, and Vivian Heyl, CONICYT President, signing a cooperation agreement between CERN and Chile’s Comisión Nacional de Investigación Científica y Tecnológica (CONICYT).The President of Chile, Michelle Bachelet, paid a visit to CERN during her three-day tour of Switzerland. The charismatic Michelle Bachelet and her large delegation were greeted by the CERN Director-General and then taken to see the ATLAS experiment and the LHC. She also took time to meet the Chilean community working at CERN, comprising several physicists in the Theory Group and the ATLAS experiment. The meeting was followed by the signing of a cooperation agreement between CERN and Chile’s Comisión Nacional de Investigación Científi...

  7. EL RACISMO AMBIENTAL EN CHILE

    Directory of Open Access Journals (Sweden)

    MATÍAS MEZA-LOPEHANDÍA

    2011-06-01

    Full Text Available El problema de la desigualdad en Chile ha sido abordado desde diferentes puntos de vista como la cuestión de la distribución de la riqueza o el acceso a los derechos sociales. Es este trabajo se observa el mismo problema pero desde la perspectiva recientemente esbozada por los movimientos sociales: la del racismo ambiental o la desigual distribución de los deshechos del desarrollo y el consumo. De esta manera se revisan sucintamente los principales conflictos que han surgido en el último tiempo a lo largo del país entre empresas públicas y privadas y comunidades locales y originarias. Así mismo se examinan las formas de organización que estas últimas han asumido y el estado actual de articulación entre ellas. De la revisión de la situación se concluye que estamos ante el surgimiento de un actor de nuevo tipo, que surge de las contradicciones del Chile neoliberal y que se diferencia del movimiento ecologista por vincular sus reivindicaciones a la defensa del territorio y al derecho a la autodeterminación de los pueblos.

  8. Miedo y represionpolitica en Chile

    Directory of Open Access Journals (Sweden)

    Amado M. Padilla

    1987-01-01

    Full Text Available This paper describes a human rights fact-finding mission to Chile concerned with the use of psychological techniques employed in offlcia- Uy sactioned torture and repressíon, Meetings and interviews were conducted with representatives of many organízatíons working with víctima of governrnental repression including the Chílean Psychological Assocíation. Fear and repression wene found to be widespread among all socioeconomic segments of the population. Physical and psychological abuses directed at individuals are díscussed, Psychological techníques used in the control of social groups such as intimidation, control of information, and community destabilization are also described. It is concluded that violations of human rigths are a reality in Chile. Ways to support the work of Chilean psychologists must be sought sínce the damaging eonsequences of officially sanctioned repressíon are wid.espread, and resources are minimal.

  9. Glacial cycles and the growth and destruction of Alaska volcanoes

    Science.gov (United States)

    Coombs, M. L.; Calvert, A. T.; Bacon, C. R.

    2014-12-01

    Glaciers have affected profoundly the growth, collapse, preservation, and possibly, eruptive behavior of Quaternary stratovolcanoes in Alaska. Holocene alpine glaciers have acted as effective agents of erosion on volcanoes north of ~55 °N and especially north of 60 °N. Cook Inlet volcanoes are particularly vulnerable as they sit atop rugged intrusive basement as high as 3000 m asl. Holocene glaciers have swept away or covered most of the deposits and dome lavas of frequently active Redoubt (60.5 °N); carved through the flanks of Spurr's active vent, Crater Peak (61.3 °N); and all but obscured the edifice of Hayes (61.6 °N), whose Holocene eruptive history is known almost exclusively though far-traveled tephra and flowage deposits. Relationships between Pleistocene eruptive histories, determined by high-precision Ar-Ar dating of lava flows, and marine oxygen isotope stages (MIS) 2-8 (Bassinot et al., 1994, EPSL, v. 126, p. 91­-108) vary with a volcano's latitude, size, and elevation. At Spurr, 26 ages cluster in interglacial periods. At Redoubt, 28 ages show a more continual eruptive pattern from the end of MIS 8 to the present, with a slight apparent increase in output following MIS 6, and almost no preservation before 220 ka. Veniaminof (56.2 °N) and Emmons (55.5°N), large, broad volcanoes with bases near sea level, had voluminous eruptive episodes during the profound deglaciations after MIS 8 and MIS 6. At Akutan (54.1 °N), many late Pleistocene lavas show evidence for ice contact; ongoing dating will be able to pinpoint ice thicknesses. Furthest south and west, away from thick Pleistocene ice on the Alaska Peninsula and mainland, the Tanaga volcanic cluster (51.9 °N) has a relatively continuous eruptive record for the last 200 k.y. that shows no clear-cut correlation with glacial cycles, except a possible hiatus during MIS 6. Finally, significant edifice collapse features have been temporally linked with deglaciations. A ~10-km3 debris

  10. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  11. Chronology and impact of the 2011 Puyehue-Cordón Caulle eruption, Chile

    Science.gov (United States)

    Elissondo, M.; Baumann, V.; Bonadonna, C.; Pistolesi, M.; Cioni, R.; Bertagnini, A.; Biass, S.; Herrero, J. C.; Gonzalez, R.

    2015-09-01

    We present a detailed chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows) are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture, and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (Particulate Matter ≤ 10 μm) was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analysis of atmospheric and eruptive conditions have shown that the main direction of dispersal is directly towards east of the volcano and that the climactic phase of the eruption, dispersed toward south-east, has a probability of occurrence within 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson, and Chaitén volcanoes). This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation with the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding). This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  12. Chronology and impact of the 2011 Puyehue-Cordón Caulle eruption, Chile

    Directory of Open Access Journals (Sweden)

    M. Elissondo

    2015-09-01

    Full Text Available We present a detailed chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture, and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (Particulate Matter ≤ 10 μm was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analysis of atmospheric and eruptive conditions have shown that the main direction of dispersal is directly towards east of the volcano and that the climactic phase of the eruption, dispersed toward south-east, has a probability of occurrence within 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson, and Chaitén volcanoes. This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation with the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding. This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  13. Secular variation of the Earth magnetic field recorded in Holocene lava flows from Chile

    Science.gov (United States)

    Roperch, Pierrick; Chauvin, Annick; Lara, Luis; Moreno, Hugo

    2014-05-01

    The recent secular variation of the Earth's magnetic field is mainly characterized by the large growth of the South Atlantic Magnetic Anomaly during the last three centuries, first documented in the geomagnetic field model GUFM (Jackson et al., 2000). This present-day magnetic anomaly is characterized in Chile by low magnetic inclinations and low intensities of the geomagnetic field (-40° and 25.7µT at 40°S). In order to better describe the secular variation during the Holocene, we sampled 21 dated lava flows or pyroclastic flows from several Chilean volcanoes (Lonquimay, Llaima, Solipulli, Villarrica, Mocho-Choshuenco, Osorno, Calbuco). Juvenile clasts from basaltic-andesitic pyroclastic flow deposits provide reliable paleomagnetic results (Roperch et al, 2014). We also sampled 56 sites in Holocene lava flows with only relative ages with respect of the dated units. Paleomagnetic results were obtained from several sites in two well-dated historic lava flows; 9 sites and 11 paleointensity results (PI) from the 1835AD eruption of the Osorno volcano and 8 sites and 23 PIs from the 1751AD eruption of the Llaima volcano. In addition, 14 PIs were obtained in bricks from shelters built along the main path across the Andes from Santiago (Chile) to Mendoza (Argentina) in 1768AD. These results confirm the high reliability of the global geomagnetic model GUFM for the last three centuries. At Villarrica, results from 10 sites in lava flows (calibrated age 1440AD±30) provide paleomagnetic directions that are different from the CALS3k.4 model (Korte et al., 2011) indicating that more paleomagnetic results in well dated lava flows are necessary to improve the robustness of global geomagnetic models prior to 1700AD. The steepest inclination of the geomagnetic field (-71.6°) and the highest intensity (70µT±5) are found in the time range 850-900AD. This observation is made from paleomagnetic results from a pyroclastic flow from the Osorno volcano (calibrated age range of 782

  14. Dendroecological analysis of a Fitzroya cupressoides and a Nothofagus nitida stand in the Cordillera Pelada, Chile

    Science.gov (United States)

    Margaret S. Devall; Bernard R. Parresol; Juan J. Armesto

    1998-01-01

    Lumbering of Fitzroya cupressoides in Chile began in 1599 and continued until 1976, when the species was declared a national monument and cutting of live trees was prohibited. Today, F. cupressoides is threatened; many of the remaining stands in the coastal range appear to be declining, with a predominance of standing dead stems and patchy, sparse regeneration. The...

  15. Volcanoes

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  16. Chile. A model mining country?; Chile. Ein Bergbau-Musterland?

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Sven [Projektbuero der Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR) und des chilenischen Geologie und Bergbaudienstes SERNAGEOMIN, Santiago de Chile (Chile). Projekt ' Grundlagen der Sanierung von Bergbaualtlasten in Chile' ; Dalheimer, Manfred [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany). Abt. Internationale Zusammenarbeit Amerika

    2009-03-19

    Chile is characterised economically and culturally by mining. The copper industry is highly important. In 2007 two thirds of export proceeds were generated solely by copper, copper concentrate and other minerals. With the increase in the price of raw materials since 2004 the state income rose considerably with the result that the national debt was offset. However, this increase was barely noticeable among the wider public. Further reasons for doubt with regards to the mining industry are that a new mining project generally not only creates jobs, but also changes local structures, competes with water utilisation and usually leaves contaminated sites. The responsible politicians and mining authorities are aware of these relationships and are drawing up corresponding laws and decrees. These include the Environmental Act, the bills for mine closures and the systematic redevelopment of old mining sites. At least voluntary commitments for current large-scale mining are in force until the bills are passed. (orig.)

  17. Redoubt Volcano: 2009 Eruption Overview

    Science.gov (United States)

    Bull, K. F.

    2009-12-01

    Redoubt Volcano is a 3110-m glaciated stratovolcano located 170 km SW of Anchorage, Alaska, on the W side of Cook Inlet. The edifice comprises a oil production in Cook Inlet was halted for nearly five months. Unrest began in August, 2008 with reports of H2S odor. In late September, the Alaska Volcano Observatory (AVO)’s seismic network recorded periods of volcanic tremor. Throughout the fall, AVO noted increased fumarolic emissions and accompanying ice- and snow-melt on and around the 1990 dome, and gas measurements showed elevated H2S and CO2 emissions. On January 23, seismometers recorded 48 hrs of intermittent tremor and discrete, low-frequency to hybrid events. Over the next 6 weeks, seismicity waxed and waned, an estimated 5-6 million m3 of ice were lost due to melting, volcanic gas emissions increased, and debris flows emerged repeatedly from recently formed ice holes near the 1990 dome, located on the crater’s N (“Drift”) side. On March 15, a phreatic explosion deposited non-juvenile ash from a new vent in the summit ice cap just S of the 1990 dome. Ash from the explosion rose to ~4500 m above sea level (asl). The plume was accompanied by weak seismicity. The first magmatic explosion occurred on March 22. Over the next two weeks, more than 19 explosions destroyed at least two lava domes and produced ash plumes that reached 6-18 km asl. Tephra was deposited along variable azimuths including trace to minor amounts on Anchorage and Kenai Peninsula communities, and reached Fairbanks, ~800 km to the N. Several lahars were produced by explosive disruption and melting of the “Drift” glacier. The largest lahars followed explosions on March 23 and April 4 and inundated the Drift River valley to the coast, causing temporary evacuation of the Drift River Oil Terminal, ~40 km from the vent. Time-lapse images captured pyroclastic flows and lahars in the “Drift” glacier valley during several of the explosions. Ballistics and pyroclastic flow deposits were

  18. Is Mining Still the Wage of Chile?

    Directory of Open Access Journals (Sweden)

    Luis Valenzuela

    2004-04-01

    Full Text Available – Historia de la minería del hierro en Chile, by Augusto Millán. Santiago: Editorial Universitaria, 1999. – Capital transnacional y trabajo. El desarrollo minero en Chile, by Rafael Agacino, Cristián González and Jorge Rojas. Santiago: Lom Ediciones, 1998. – Dilemas y debates en torno al cobre, by Patricio Meller. Santiago: Dolmen, 2002. – Royalty. Regalía o renta minera. Lo que solo Chile no cobra, by Jorge Lavandero Illanes. Santiago: Ediciones Lafken, 2003.

  19. Volcano Deformation and Eruption Forecasting using Data Assimilation: Case of Grimsvötn volcano in Iceland

    Science.gov (United States)

    Bato, Mary Grace; Pinel, Virginie; Yan, Yajing

    2016-04-01

    The recent advances in Interferometric Synthetic Aperture Radar (InSAR) imaging and the increasing number of continuous Global Positioning System (GPS) networks recorded on volcanoes provide continuous and spatially extensive evolution of surface displacements during inter-eruptive periods. For basaltic volcanoes, these measurements combined with simple dynamical models (Lengliné et al. 2008 [1], Pinel et al, 2010 [2], Reverso et al, 2014 [3]) can be exploited to characterise and constrain parameters of one or several magmatic reservoirs using inversion methods. On the other hand, data assimilation-a time-stepping process that best combines models and observations, sometimes a priori information based on error statistics to predict the state of a dynamical system-has gained popularity in various fields of geoscience (e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this work, we aim to first test the applicability and benefit of data assimilation, in particular the Ensemble Kalman Filter [4], in the field of volcanology. We predict the temporal behaviors of the overpressures and deformations by applying the two-magma chamber model of Reverso et. al., 2014 [3] and by using synthetic deformation data in order to establish our forecasting strategy. GPS time-series data of the recent eruptions at Grimsvötn volcano is used for the real case applicability of the method. [1] Lengliné, O., D Marsan, J Got, V. Pinel, V. Ferrazzini, P. Obuko, Seismicity and deformation induced by magma accumulation at three basaltic volcanoes, J. Geophys. Res., 113, B12305, 2008. [2] V. Pinel, C. Jaupart and F. Albino, On the relationship between cycles of eruptive activity and volcanic edifice growth, J. Volc. Geotherm. Res, 194, 150-164, 2010 [3] T. Reverso, J. Vandemeulebrouck, F. Jouanne, V. Pinel, T. Villemin, E. Sturkell, A two-magma chamber as a source of deformation at Grimsvötn volcano, Iceland, JGR, 2014 [4] Evensen, G., The Ensemble Kalman

  20. Geopolitics representation: Chile and Argentina in southern ice fields

    Directory of Open Access Journals (Sweden)

    Karen Isabel Manzano Itura

    2015-11-01

    Full Text Available Geopolitics, from concept named in 1917 by Rudolf Kjellén has been in continuous evolution until today. Since the incorporation of the representations, the first concept has been of vital importance in different territorial conflicts’ analysis. By means of a geopolitical analysis, the present article intends to understand the geopolitical representations in the area of southern ice fields, the last boundaries issue that still remains in abeyance between Chile and Argentina and how is that both countries have discussed the problem on a basis of representations, in which maps have been the image of each one facing the other, favoring in this way competition between states.

  1. Geochemical characterization of the Nirano Mud Volcano Field

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Ricci, Tullio; Conventi, Marzia

    2016-04-01

    Mud volcanoes, among fluid venting structures, are the most important phenomena related to natural seepage from the Earth's surface. The occurrence of mud volcanoes is controlled by several factors, such as tectonic activity and continuous hydrocarbon accumulation in a reservoir. Mud volcanoes in Italy occur along the external compressive margin of the Apennine chain. These mud volcanoes are usually small and unspectacular, when compared to other world examples. They rarely exhibit the periodic explosions, which is often related to important seismic activity. The Nirano Mud Volcano Field (NMVF) is located in the western sector of the Modena Apennine margin (Italy), which belongs to the Northern Apennines. The NMVF occurs over the crest of a thrust anticline associated with the main Pede-Apennine thrust and represents a good example of an onshore relationship between a mud volcano caldera structure and active thrust deformation, even if the fluid pathways are still not well understood at depth. The mud volcanoes are distributed along an area of about 10 ha, inside of the wider Natural Reserve, and are situated at the bottom of a wide sub-circular depression. The NMVF is currently formed by four main vents composed of a number of individual active cones (or gryphons) defining structural alignments trending ENE-WSW. A geochemical soil gas survey of 230 CO2 and CH4 fluxes and 150 CO2, CH4, Rn, He, H2 concentration measurements has been carried out inside the NMVF. Moreover, the fluid emissions from 4 active cones located in different sectors of NMVF have been sampled for chemical and isotopical analysis of water and free gas. The distribution of pathfinder elements as 222Rn, He e H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between reservoir and surface. Soil gas data highlight two zones characterized by higher values, localized in the WSW and ENE of the NMVF area. In

  2. Chile: los mapuches y el Bicentenario Chile: Mapuches e do Bicentenario Chile: Mapuche and the Bicentennial

    Directory of Open Access Journals (Sweden)

    José Bengoa

    2011-12-01

    Full Text Available El Bicentenario de la República de Chile se conmemoró en el mes de septiembre del año 2010. Además de marcar un importante hito histórico, coincidió con un cambio político en el Gobierno del país, el que pasó de la Concertación de Partidos por la Democracia a la Alianza de partidos formada por la derecha chilena. Se cumplieron por tanto 20 años desde que en el año 1990 cambiara el Gobierno militar presidido por el general Pinochet. Ese largo tiempo, dos décadas, coincide con un período de políticas que el Estado ha implementado hacia los Pueblos Indígenas. El Proyecto “Conmemoraciones y Memorias Subalternas” ha realizado durante el año 2010 un conjunto de investigaciones de terreno y documentales tendientes a comprender del modo más objetivo y científico lo ocurrido en el período y por tanto la situación actual de las sociedades mapuches en sus complejas relaciones con la chilena.O Bicentenario da República do Chile comemorou-se no mês de Setembro do ano 2010. Junto com transformar-se num marco histórico, coincidiu com uma mudança política no Governo do país, que passou da Concertação de Partidos pela Democracia (centro-esquerda à Aliança de partidos formada pela direita chilena. Cumpriram-se por tanto 20 anos desde que em 1990 mudasse o Governo militar presidido pelo general Pinochet. Esse longo tempo, duas décadas, coincide com um período de políticas que o Estado implementou para com os Povos Indígenas. O Projeto “Comemorações e Memórias Subalternas” realizou durante o ano 2010 um conjunto de pesquisas de campo e documentais tendentes a compreender do modo mais objetivo e científico o ocorrido no período e, por tanto, a situação atual das sociedades mapuches em suas complexas relações com a chilena.The conmeration of the 200 years of the Independence of Chile was in September 2010. This year was also the political change from the Concertación de Partidos por la Democracia to the right

  3. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  4. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  5. Crecimiento pro pobre en Chile

    Directory of Open Access Journals (Sweden)

    Dante Contreras

    2008-01-01

    Full Text Available Con datos de panel para el periodo 1996-2001 y datos de corte transversal para 1990 y 2003, este artículo evalúa si el crecimiento en Chile ha sido “pro pobre”. Se emplean dos metodos: i se estima la “curva de incidencia del crecimiento” y luego se estima paramétrica y no paramétricamente la relación entre el ingreso per capita de los hogares en 1996 y el cambio en el ingreso de 1996-2001. Los resultados indican que el crecimiento ha incidido significativamente en la reducción de pobreza. Por otra parte, existe evidencia de convergencia para la mitad más pobre de la distribución de ingresos.

  6. Village microgrids: The Chile project

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.

    1997-12-01

    This paper describes a village application in Chile. The objective was to demonstrate the technical, economic and institutional viability of renewable energy for rural electrification, as well as to allow local partners to gain experience with hybrid/renewable technology, resource assessment, system siting and operation. A micro-grid system is viewed as a small village system, up to 1200 kWh/day load with a 50 kW peak load. It can consist of components of wind, photovoltaic, batteries, and conventional generators. It is usually associated with a single generator source, and uses batteries to cover light day time loads. This paper looks at the experiences learned from this project with regard to all of the facets of planning and installing this project.

  7. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  8. Surface Observations from Punta Arenas, Chile

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Observations from Punta Arenas, in extreme southern Chile. WMO station ID 85934. Period of record 1896-1954. The original forms were scanned at the Museo...

  9. Barriers restricting postpartum depression treatment in Chile

    National Research Council Canada - National Science Library

    Rojas, Graciela; Santelices, María Pía; Martínez, Pablo; Tomicic, Alemka; Reinel, Mahaira; Olhaberry, Marcia; Krause, Mariane

    2015-01-01

    In Chile, postpartum depression is a prevalent and disabling condition. Universal screening is available but has not been translated into better treatment rates, suggesting the existence of access barriers...

  10. 1960 Puerto Montt, Valdivia, Chile Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — On May 22, 1960, a Mw 9.5 earthquake, the largest earthquake ever instrumentally recorded, occurred in southern Chile. The series of earthquakes that followed...

  11. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  12. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  13. Radial anisotropy ambient noise tomography of volcanoes

    Science.gov (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  14. A field guide to Newberry Volcano, Oregon

    Science.gov (United States)

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  15. Dynamics of degassing at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Vergniolle, Sylvie; Jaupart, Claude

    1990-03-01

    At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield

  16. Area Handbook Series: Chile: A Country Study

    Science.gov (United States)

    1982-05-01

    Source: Based on information from Chile, Instituto Nacionrd de Estadisticas , Cornpendio Estadifstico, 1,981, Santiago, 1981, p. 68. Figure 6 Population by... Estadisticas . The journal Colecci6n Estu- dios CIEPLAN, from Santiago, offers well-researched articles that are often critical of government policies. (For...Source: Based on information from Chile, Instituto Nacional de Estadisticas , Compendio Estad istico, 1981, Santiago, 1981, pp. 38-39. Table 3. Labor

  17. Dynamics of degassing at Kilauea Volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Vergniolle, S.; Jaupart, C. (Univ. Paris 7 (France))

    1990-03-10

    In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The bubbles in the foam deform under the action of buoyancy. If the critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, suface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna Ulu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km{sup 2}. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 10{sup 3} kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  18. Ambient seismic noise tomography of the Colima Volcano Complex

    Science.gov (United States)

    Escudero, Christian R.; Bandy, William L.

    2017-02-01

    The Colima Volcanic Complex (CVC) located in the western sector of the Trans-Mexican Volcanic Belt contains the most active Mexican volcano, Volcan Colima. The CVC is located within the Colima Rift, a regional north south striking extensional structure. We used ambient seismic noise recorded by stations deployed in western Mexico during the Mapping the Rivera Subduction Zone (MARS) and the Colima Volcano Deep Seismic Experiment (CODEX). We computed the cross-correlations of the vertical component of continuous records of ambient noise data to extract empirical Greens functions. These functions provide detailed images of Rayleigh wave group velocity for different periods. Using the arrival travel time of these waves for a given period, estimates can be obtained of the lateral variations in velocity for a given period using 2D tomography. The study aims to better understand the geometry and the seismic surface wave velocity structure of the CVC and relate it to the volcanoes' structure and the geologic setting of the region. Source of low velocity anomaly over CVC is distributed fairly continuously with depth in the subsurface, which indicates magma rising along fractures. The progressive increasing toward the south in the size of low velocity anomalies indicates migration towards the south of the melting that correlates with the trend of the stratovolcanoes that form the CVC. The zone of magma generation presently fully developed under Volcan de Fuego might be starting to shift towards south to the area NW of Armería where a new void in the tear zone may be starting to form.

  19. Active volcanoes observed through Art: the contribution offered by the social networks

    Science.gov (United States)

    Neri, Marco; Neri, Emilia

    2015-04-01

    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  20. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    Science.gov (United States)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  1. Volcano-ice interaction as a microbial habitat on Earth and Mars.

    Science.gov (United States)

    Cousins, Claire R; Crawford, Ian A

    2011-09-01

    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  2. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  3. Diversidad de la familia Carabidae (Coleoptera en Chile Diversity of the family Carabidae (Coleoptera in Chile

    Directory of Open Access Journals (Sweden)

    SERGIO ROIG-JUÑENT

    2001-09-01

    Full Text Available Carabidae constituye dentro de los coléopteros chilenos, la cuarta familia en importancia por su cantidad de especies. El presente trabajo incluye una breve compilación acerca de la historia de la familia y de las primeras expediciones realizadas en Chile. También se realizan comparaciones de la diversidad de carábidos chilenos con respecto a otros países y el Neotrópico. Para Chile, se conocen 21 tribus, con 95 géneros y 365 especies, que representan el 38,8, 28,8 y 7,9 % de la fauna del Neotrópico, respectivamente. Chile posee un bajo número de tribus comparado con otros países, sin embargo, constituye un área importante por la presencia de seis tribus relictuales, principalmente pangeicas o gondwánicas. Chile posee 18 géneros endémicos (18,5 % de su fauna de Carabidae, 28 cuya distribución está restringida a Chile y Argentina y seis restringidos a Chile, Argentina y Uruguay. La cantidad de especies presentes en Chile es inferior a la que poseen otros países de América del Sur, pero la cantidad de especies endémicas es muy alta (204 y representa el 55,8 % de su fauna de carábidos. El alto grado de endemismo que posee Chile con respecto a otros países de América del Sur puede deberse a su condición de aislamiento, siendo las barreras más importantes la región desértica del norte y la cordillera de Los Andes. Este hecho también se vislumbra por la ausencia de importantes tribus neotropicales como Galeritini, Scaritini y Brachinini. También se incluyen en este trabajo claves para la identificación de todas las tribus y géneros presentes en Chile, como así también una breve descripción acerca de la diversidad y ambientes en los que se encuentra cada géneroThe family Carabidae is the fourth largest Coleoptera family in Chile. The present work includes a brief compilation on the taxonomic history of the family and the first expeditions to Chile. In addition, knowledge of carabid diversity in Chile is compared with

  4. Monitoring the northern Chile megathrust with the Integrated Plate boundary Observatory Chile (IPOC)

    Science.gov (United States)

    Schurr, Bernd; Asch, Günter; Cailleau, Beatrice; Diaz, Guillermo Chong; Barrientos, Sergio; Vilotte, Jean-Pierre; Oncken, Onno

    2010-05-01

    The oceanic Nazca plate subducts beneath the continental South American plate by recurrent rupture of large segments of its interface. The resulting earthquakes are among the largest and most frequent on Earth. Along the Chilean and southern Peruvian margin, all sizeable segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.5 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the south and north broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake intruded into the southern part of the seismic gap in 2007 between Antofagasto and Tocopilla. This makes northern Chile a unique natural laboratory to observe a subduction megathrust at various stages of its seismic cycle. For that purpose, installation of long-term observatories started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (France), and the GFZ German research Centre for Geosciences (Germany). Currently we are operating 17 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. Continuous GPS, tilt, creep, climate and magnetotellurics measurements are complementing the seismological part. A majority of the sites provide data near real-time. We will present results of seismic monitoring including analysis of the 2007 M7.7 Tocopilla earthquake sequence that was recorded during the installation stage of the observatory. We relocated the mainshock and about a one

  5. Eruption parameters elicitation for volcanoes in Ethiopia and Kenya Informing a World Bank GFDRR project on volcanic threat in sub-Saharan Africa

    Science.gov (United States)

    Jenkins, Susanna; Lark, Murray; Loughlin, Sue; Fontijn, Karen; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahegn; Vye-Brown, Charlotte; Sparks, Steve

    2016-04-01

    Despite large numbers of very visible active volcanoes in sub-Saharan Africa, data about eruptions are limited compared to elsewhere in the world. We present the method and findings from elicitations carried out to characterise likely future eruptions in the region as part of a World Bank GFDRR risk profiling project for sub-Saharan Africa. The purpose of the elicitations was to better understand the characteristics and frequencies of explosive eruptions at volcanoes in Ethiopia and Kenya. The elicitations will provide source parameters for tephra fall modelling at select volcanoes in Ethiopia (Aluto, Corbetti, Fentale) and Kenya (Menegai, Longonot, Suswa). There were two stages of elicitation: 1) a 'sanity check' of initial assumptions around likely eruption style, magnitude and frequency for the six selected volcanoes; 2) a formal SHELF (SHeffield ELicitation Framework) elicitation that centred round establishing frequency-magnitude relationships for the volcanoes. The elicitation suggested that explosive eruptions at Aluto and Corbetti were less likely than at the other volcanoes, although the uncertainty was significant. Menengai and Rungwe volcano in Tanzania (elicited as an analogue for Fentale, Longonot and Suswa volcanoes) were characterised by approximately similar probabilities of eruption. However, Rungwe was considered more likely to produce larger explosive (VEI ≥ 4) eruptions than Menengai. Elicitation discussions highlighted the knowledge and data gaps for African volcanoes and raised important questions around whether gaps in the eruption record were real and related to changing regimes at the volcanoes over time or if they were a function of under-recording or lack of preservation. Further investigation is therefore needed to validate the findings of the elicitation. It is hoped that continued collaboration with local partners and studies within the ongoing NERC-funded RiftVolc project will address these issues and help to improve our knowledge

  6. Where Do Mexico and Chile Stand on Inclusive Education? Short Title: Inclusion in Mexico and Chile

    Science.gov (United States)

    García-Cedillo, Ismael; Romero-Contreras, Silvia; Ramos-Abadie, Liliana

    2015-01-01

    This paper discusses the background, current situation and challenges of educational integration and inclusive education in Mexico and Chile. These countries obtained similar low results on the academic achievement of their students (Mexico last and Chile second last) among OECD countries; and above average scores, among Latin-American countries.…

  7. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  8. Contiuous gas monitoring at the volcano Galeras, Colombia

    Science.gov (United States)

    Faber, E.; Morán, C.; Poggenburg, J.; Garzón, G.; Teschner, M.; Weinlich, F. H.

    2003-04-01

    (1) Federal Institute for Geosciences and Natural Resources, Hannover, Germany (e.faber@bgr.de), (2) Instituto de Investigación en Geocientifica, Mineroambiental y Nuclear - INGEOMINAS, San Juan de Pasto, Colombia (3) Instituto de Investigación en Geocientifica, Mineroambiental y Nuclear - INGEOMINAS, Manizales, Colombia A gas monitoring system has been installed on the volcano Galeras in Colombia as part of a multi-parameter station. Gases are extracted from the fumarolic vapour through a short pipe. After the water has been condensed the gas passes over sensors for carbon dioxide, sulphur dioxide and radon. Other parameters measured are temperature of the fumarolic vapour, fumarolic pressure, temperature of the ambient air and the ambient atmospheric pressure. The signals of the sensors are digitised in the electronics. The digital data are transmitted every 6 seconds by a telemetry system to the observatory down in the city of Pasto via a repeater station at the rim of the Galeras. The system at the volcano is powered by batteries connected to solar panels. Data are stored in the observatory, they are plotted and compared with all the other information of the multi-parameter station. Although the various compounds of the gas system are well preserved for the very aggressive environment close to the fumarole some problems still remain: Sulphur often plugs the pipe to the sensors and requires maintenance more often than desired. As the volcano is most of the time in clouds the installed solar power system (about 400 Watts maximum power) does not enable to run the system at the fumarole (consumption about 15 Watts) continuously during all nights. Despite these still existing problems some results have been obtained encouraging us to continue the operation of the system, to further develop the technical quality and to increase the number of fumaroles included into a growing monitoring network. In March 2000 seismic activity in the crater increased accompanied by a

  9. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  10. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    Science.gov (United States)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  11. Temporal Evolution of a Seismic Swarm at Chiles - Cerro Negro volcanic complex

    Science.gov (United States)

    Ruiz, Mario

    2015-04-01

    The increasing seismic activity in the area of the Chiles - Cerro Negro volcanic complex, located on the Ecuador-Colombian border, has been jointly monitored by the Instituto Geofisico - Ecuador and the Observatorio Vulcanologico y Sismologico de Pasto (OVSP), a division of the Servicio Geologico Colombiano. Since April 2013, three seismic swarms have been detected in this area, and more than 400.000 events have been recorded since November 2013. The largest and most recent swarm has a daily average of 3894 events between March and the 12th of December 2014. Currently a seismic network of 13 short- and broad-band stations (5 Colombian, 8 Ecuadorian) was deployed in this area. High quality epicenters of seismic events with magnitudes Ml>2.0, RMSChiles volcano with shallow depths (up to 14 km). Most events have magnitudes between 1.0 to 4.0. Fifteen events have magnitudes larger than 4.0 including an event that occurred on October 20, 2014. This event had a local magnitude of 5.7 and an oblique (strike-slip with some thrusting) focal mechanism. Waveforms and spectral patterns define these events as volcano-tectonic. However, events with moderate to large magnitudes (above 3.0) contain pronounced very-long-period components. Position time series recorded by a dual-frequency GPS receiver at the SE flank of Chiles show a slight departure from the normal tectonic trend beginning with the appearance of the last seismic swarm on or around September 30, 2014. This trend is subsequently punctuated by a sharp deformation transient related to the coseismic displacement of the October 20 event. After more than a year of very anomalous seismic activity and concurrent minor deformation, no evidence of surficial volcanic activity has been documented.

  12. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  13. [Papillomavirus and cervical cancer in Chile].

    Science.gov (United States)

    O'Ryan, Miguel; Valenzuela, María Teresa

    2008-11-01

    Molecular, clinical and epidemiological studies have established beyond doubt that human papiloma viruses (HPV) cause cervical cancer. The virus is also associated with genital warts and other less common cancers in oropharynx, vulva, vagina and penis. Worldwide, VPH genotypes 16 and 18 are the most common high risk genotypes, detected in near 70% of women with cervical cancer. The discovery of a cause-effect relationship between several carcinogenic microorganisms and cancer open avenues for new diagnostic, treatment and prevention strategies. In this issue of Revista Médica de Chile, two papers on HPV are presented. Guzman and colleagues demonstrate that HPV can be detected in 66% to 77% of healthy male adolescents bypolymerase chain reaction and that positivity depends on the site of the penis that is sampled. These results support the role of male to female transmission of high risk HPVs in Chile and should lead to even more active educational campaigns. The second paper provides recommendations for HPV vaccine use in Chile, generated by the Immunization Advisory Committee of the Chilean Infectious Disease Society. To issue these recommendations, the Committee analyzes the epidemiological information available on HPV infection and cervical cancer in Chile, vaccine safety and effectiveness data, and describes cost-effectiveness studies. Taking into account that universal vaccination is controversial, the Committee favors vaccine use in Chile and it's incorporation into a national program. However, there is an indication that the country requires the implementation of an integrated surveillance approach including cross matching of data obtained from HPV genotype surveillance, monitoring of vaccination coverage, and surveillance of cervical cancer. The final decision of universal vaccine use in Chile should be based on a through analysis of information.ev Mid Chile

  14. Ecología trófica del jabalí europeo (Sus scrofa silvestre en Chile Trophic ecology of the wild boar (Sus scrofa in Chile

    Directory of Open Access Journals (Sweden)

    ÓSCAR SKEWES

    2007-09-01

    Full Text Available Documentamos la dieta del jabalí silvestre en el centro-sur de Chile basados en el examen de 20 estómagos colectados en los faldeos de volcán Mocho-Choshuenco (39°54' S, 72°02' O y en el Parque Nacional Vicente Pérez Rosales (41°03' S, 71°54' O. La dieta está representada por animales, vegetales y hongos. Entre los vegetales y hongos son consumidas tanto las partes epígeas como hipógeas, lo mismo que frutos y semillas. Hongos y rizomas de Gunnera tinctoria constituyen ítemes vegetales cuantitativamente importantes en la alimentación. El jabalí forrajea en general en ambiente boscoso, pero las especies vegetales más frecuentes en la dieta se encuentran en espacios abiertos o fuera del bosque. El ambiente dominado por Chusquea spp. constituye un importante sitio de alimentación. Los roedores de la familia Muridae dominan entre los animales determinados en la dieta del jabalí. Esta situación, sin embargo, parece obedecer a la ocurrencia de una ratada producto de la semillación masiva de Chusquea spp. durante la época de muestreo. Las aves de la familia Rhinocryptidae e invertebrados (en especial larvas del coleóptero Chiasognathus grantii constituyen parte frecuente de los ítemes animales de la dieta del jabalí. En comparación a estudios en otras partes del mundo, el jabalí silvestre en Chile consume hongos en porcentaje de ocurrencia similar (65 % a su dieta en Estados Unidos de América pero bastante más alta que su dieta en Europa (5-32 %. En relación al volumen del componente animal, el jabalí en Chile consume más (16,1 % que en Estados Unidos de América (6 % y que en Europa (7-13 %We document the diet of wild boar in south-central Chile based on analysis of 20 stomachs collected on the outskirts of Mocho-Choshuenco volcano (39°54' S, 72°02' W and of Vicente Pérez Rosales National Park (41°03' S, 71°54' W. The diet incorporates animals, plants and fungi. Among the latter two, both epigeal and hypogeal parts

  15. Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.

    2010-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity

  16. The Volcano Disaster Assistance Program (VDAP) - Past and Future

    Science.gov (United States)

    Ewert, J. W.; Pallister, J. S.

    2010-12-01

    advanced, the role of VDAP has changed. In the early years, VDAP served mainly as a “mobile volcano observatory” to the world. More recently, our role has shifted to include enhancing and modernizing monitoring infrastructure, advancing capabilities in eruption forecasting through experience gained during eruption responses, and sharing this experience through education and training programs. As capabilities of international partner observatories have grown, the traditional VDAP “mobile observatory” response is now reserved mainly for situations in which local capabilities and resources are exceeded. The future promises continued advances in eruption forecasting, emphasizing not only “when” an eruption will take place but also on “how big” it will be. An international focus on this problem, emphasizing both stochastic and deterministic methods, offers the best opportunity for advancement. For VDAP, we expect continued work with observatory partners around the Pacific Rim to improve monitoring, and an expanded role with a variety of agency and university partners to develop new monitoring technologies, as well as hazard assessment and forecasting methods. Overall, our focus will remain on working together with international partners to prevent volcanic crises from becoming volcanic disasters.

  17. A Partnership for a Community College in Chile

    Science.gov (United States)

    McCrink, Carmen L.; Whitford, Heidi

    2017-01-01

    This chapter describes the results of case study research on a partnership between a community college in the United States and a university in Chile that attempted to develop the first community college system in Chile.

  18. Potentially active volcanoes of Peru - Observations using Landsat Thematic Mapper and Space Shuttle imagery

    Science.gov (United States)

    De Silva, S. L.; Francis, P. W.

    1990-01-01

    A synoptic study of the volcanoes of southern Peru (14-17 deg S), the northernmost part of the Central Volcanic Zone (CVZ 14-28 deg S) of the Andes, was conducted on the basis of Landsat TM images and color photography. The volcanoes were classified and their relative ages determined using subtle glacial-morphological features. Eight of them were postulated as potentially active. These are located in a narrow volcanic zone which probably reflects a steep dip of the Nazca plate through the zone of magma generation. The break in the trend of the volcanic arc possibly reflects the complexity of the crustal stress field above a major segment boundary in the subducting plate. There are also fields of mafic monogenetic centers in this region. In comparison with the southern part of the CVZ, the general paucity of older volcanic edifices north of 17 deg S suggested a more recent onset of volcanism, a possible result of the oblique subduction of the Nazca ridge and the consequent northward migration of its intersection with the Peru-Chile trench. This, together with the lack of any large silicic caldera systems and youthful dacite domes, suggested that there are real differences in the volcanic evolution of the two parts of the CVZ.

  19. A unique collaboration in Chile.

    Science.gov (United States)

    1989-01-01

    The Chilean Red Cross Society and the family planning association--APROFA, International Planned Parenthood Federation's affiliate, are joining forces to help prevent the spread of the acquired immunodeficiency syndrome (AIDS) and human immunodeficiency virus (HIV) infection. APROFA established a working group to study the knowledge, attitudes, and sexual behavior of students at the National Training Institute, INACAP. 7000 students were sampled in 11 Chilean cities. The study found that 36% of the females, and 77% of males were sexually active before the age of 20. Nearly 1/2 of the women and 1/5 of the men did not know that condoms could protect them against sexually transmitted diseases (STDs) and pregnancy. APROFA designed a program to increase students knowledge of AIDS, reduce promiscuity and increase knowledge of and use of condoms. In October, 1988 an educational package distributed, consisting of a training manual, slides, educational booklets, a poster, and a video of 3 films. It has proved so successful that APROFA has adapted it for community groups, educational institutions, and its youth program. APROFA/Red Cross nurses and Red Cross volunteers have participated in workshops and training with the package. The Red Cross has organized AIDS-related activities in Chile since 1986, including education campaigns, information for blood donors, and a telephone hotline to provide AIDS counseling. Goals are to target more poor areas and groups outside of society's mainstream in the next year for sex education and information on STDs.

  20. Regulated electricity retailing in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Galetovic, Alexander, E-mail: alexander@galetovic.cl [Facultad de Ciencias Economicas y Empresariales, Universidad de los Andes, Santiago, Chile. Av. San Carlos de Apoquindo 2200, Las Condes, Santiago (Chile); Munoz, Cristian M., E-mail: cmunozm@aes.com [AES Gener and Departamento de Ingenieria Electrica, Universidad Catolica de Chile (Chile)

    2011-10-15

    While some countries have unbundled distribution and retailing, skeptics argue that the physical attributes of electricity make retailers redundant. Instead, it is claimed that passive pass through of wholesale prices plus regulated charges for transmission and distribution suffice for customers to benefit from competitive generation markets. We review the Chilean experience with regulated retailing and pass through of wholesale prices. We argue that when energy wholesale prices are volatile and prices are stabilized, distortions emerge. Regulated retailers gain little by mitigating or correcting them. On the contrary, sometimes price distortions increase their profits. We estimate the cost of three distortions that neither regulated retailers nor the regulator have shown any interest in correcting. - Highlights: > We review Chile's experience with regulated electricity retailing. > Distortions emerge when energy wholesale prices are volatile and prices stabilized. > Regulated retailers gain little by mitigating or correcting distortions. > Sometimes price distortions increase retailers' profits. > We estimate the cost of three distortions, which retailers have not corrected.

  1. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  2. Glaciers of Avacha group of volcanoes in Neoholocene

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2016-01-01

    Full Text Available The study of moraines at the Avacha volcano group revealed that glaciers changes at all volcanoes within the group happened almost synchronously. Glacial deposits could be grouped into three generations, corresponding to three periods of glacier fluctuations in Neoholocene. The largest glaciation within the group occurred ~2000 years ago. Fragments of moraine, corresponding to that period were found only in the moraine complex of the Ditmar Glacier which was 15% larger then today at that time. The most of moraines at the Avacha volcano group were formed during the Little Ice Age, which in the studied region continued up to the first decades of XX centuries. The maximal advance of glaciers probably happened in XVII century. The moraine corresponding to that period was found at the Kozelsky Glacier valley. At present time the total area of glaciers which moraines were described and dated approaches 21.46  km2. The area of reconstructed moraines corresponding to the Little Ice Age is estimated to be 2.79 km2, therefore at that period the total glaciation area reaches 24,25 км2 exceeding the present area by 13%. It could be claimed that in general during the time past the Little Ice Age the glaciation nature and glacier types did not change sufficiently. The rate of glacier degradation at various parts of the group is different and depends mainly on exposition. At the valleys of four glaciers we found moraines formed in the middle of XX century. They may appear in 1941–1952 when the unfavorable weather conditions leaded to stable negative anomalies in accumulation have happened.

  3. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  4. [Beginning of the Microbiology education in Chile: formation centers].

    Science.gov (United States)

    Osorio, Carlos

    2015-08-01

    The first Chair of Microbiology in Chile was created in the School of Medicine of the Cañadilla at the University of Chile in 1892. Dr. Alejandro del Río Soto Aguilar was its first Professor. For almost three decades it was the only educational center for microbiologists in Chile. Among them were the first Professors of the new School of Medicine of the Catholic University of Chile and of the University of Concepción.

  5. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  6. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  7. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  8. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events

    Science.gov (United States)

    Shults, Ksenia; Astafyeva, Elvira; Adourian, Sévan

    2016-10-01

    Using data from ground-based Global Navigation Satellite Systems (GNSS) receivers located in southern Chile, we study the ionospheric total electron content (TEC) response to two eruptions of the Calbuco volcano that occurred on 22-23 April 2015. In both cases, the TEC response showed quasi-periodic signals with several consecutive wave trains. The averaged amplitude of the observed covolcanic TEC perturbations amounted 0.45 total electron content unit, 1 TECU = 1016 el m-2 (TECU) for the first eruption and 0.16 TECU for the second one. We compare amplitudes of the TEC response to volcano eruptions of different intensity from our and previously published data, and we show that both the intensity and the background ionospheric conditions define the amplitude of ionospheric covolcanic disturbances. The relative contribution, however, scales with the eruption intensity. The traveltime diagrams allowed to estimate the propagation speed of the observed covolcanic TEC perturbations as 900-1200 m/s, which is close to the acoustic (or shock acoustic) waves speed at the ionospheric height. The spectrograms are consistent with the conclusion on the acoustic nature of the observed TEC perturbations. Finally, we use the approximation of a spherical wave propagating at a constant velocity from a point source, and for the first time, we calculate the location of the volcanic source and the onset time of the volcano eruption from ionospheric measurements. We show that even from 30 s ionospheric GPS data it is possible to "localize" the eruptive source within several degrees of latitude/longitude.

  9. Somma Vesuvius volcano: ground deformations from CGPS observations (2001-2012

    Directory of Open Access Journals (Sweden)

    Umberto Tammaro

    2013-11-01

    Full Text Available This paper is a contribution to the evaluation of ground deformations at Somma-Vesuvius volcano by means GPS measurements from 2001 to 2012. In this study we use a dataset from nine continuous GPS stations of the Neapolitan Volcanoes Continuous GPS network (NeVoCGPS, which covers the Neapolitan volcanic area, and is operated by the Istituto Nazionale di Geofisica e Vulcanologia. The GPS data processing is performed by the Bernese software v. 5.0. The results of the data processing show that the dynamics of the Somma-Vesuvio volcano, between 2001 and 2012, is characterized by a general subsidence, with maximum values on the Gran Cono at BKNO (−11.7 ± 0.65 mm/year and BKE1 (−4.92 ± 0.36 mm/year stations. The subsidence decrease from the crater down to the coast and the horizontal displacements are concentrated in Gran Cono area, the youngest part of the volcano. The parameters of the principal strain components indicate that Somma-Vesuvius is affected by a predominant contraction phase, which is concentrated in the areas with the greatest altitudes.

  10. 7 CFR 319.56-38 - Citrus from Chile.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Citrus from Chile. 319.56-38 Section 319.56-38... from Chile. Clementines (Citrus reticulata Blanco var. Clementine), mandarins (Citrus reticulata Blanco), and tangerines (Citrus reticulata Blanco) may be imported into the United States from Chile,...

  11. Chronology and impact of the 2011 Cordón Caulle eruption, Chile

    Science.gov (United States)

    Elissondo, Manuela; Baumann, Valérie; Bonadonna, Costanza; Pistolesi, Marco; Cioni, Raffaello; Bertagnini, Antonella; Biass, Sébastien; Herrero, Juan-Carlos; Gonzalez, Rafael

    2016-03-01

    We present a detailed chronological reconstruction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows) are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (particulate matter ≤ 10 µm) was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analyses suggest that this combination of atmospheric and eruptive conditions has a probability of occurrence of about 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson and Chaitén volcanoes). This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation to the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding). This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  12. Causes, Dynamics and Impacts of Lahars Generated by the April, 2015 Calbuco Eruption, Chile.

    Science.gov (United States)

    Russell, A. J.; Dussaillant, A. R.; Meier, C. I.; Rivera, A.; Barra, M. M.; Urzua, N. G.; Hernandez, J. F.; Napoleoni, F.; Gonzalez, C.

    2015-12-01

    Calbuco is a 2015m high, glacier capped, stratovolcano in the heavily populated Los Lagos district of southern Chile with a history of large volcanic eruptions in 1893-95, 1906-7, 1911-12, 1917, 1932, 1945, 1961 and 1972. Calbuco experienced a powerful 90 minute eruption at 18:04h on 22 April, 2015 followed by additional major eruptions at 01:00h and 13:10h on 23 & 30 April, respectively, resulting in the evacuation of 6500 people and the imposition of a 20 km radius exclusion zone. Pyroclastic flows descended into several river catchments radiating from the volcano with lahars travelling distances of up to 14 km, reaching populated areas. We present preliminary findings regarding the causes, dynamics and impacts of lahars generated by the April 2015 eruption. Pyroclastic flows melted glacier ice and snow generating the largest lahars in the Rio Este and Rio Blanco Sur on the southern flanks of the volcano. Lahar deposits in the Rio Blanco Norte were buried by pyroclastic flow deposits with measured temperatures of up to 282°C three months after emplacement. Lahar erosional impacts included bedrock erosion, alluvial channel incision, erosion of surficial deposits and the felling of large areas of forest. Depositional landforms included boulder run-ups on the outsides of channel bends, boulder clusters and large woody debris jams. Lahars deposited up to 8m of sediment within distal reaches. Deposits on the southern flanks of Calbuco indicate the passage of multiple pulses of contrasting rheology. Lahar occurrence and magnitude was controlled by the pre-eruption distribution of snow and ice on the volcano. Pre-existing lahar channels controlled flows to lower piedmont zones where routing was determined by palaeo lahar geomorphology. Ongoing erosion of proximal pyroclastic flow and lahar deposits provides large volumes of sediment to distal portions of fluvial systems radiating from Calbuco.

  13. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  14. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  15. Expedition Atacama - project AMOS in Chile

    Science.gov (United States)

    Tóth, J.; Kaniansky, S.

    2016-01-01

    The Slovak Video Meteor Network operates since 2009 (Tóth et al., 2011). It currently consists of four semi-automated all-sky video cameras, developed at the Astronomical Observatory in Modra, Comenius University in Bratislava, Slovakia. Two new generations of AMOS (All-sky Meteor Orbit System) cameras operate fully automatically at the Canary Islands, Tenerife and La Palma, since March 2015 (Tóth et al., 2015). As a logical step, we plan to cover the southern hemisphere from Chile. We present observational experiences in meteor astronomy from the Atacama Desert and other astronomical sites in Chile. This summary of the observations lists meteor spectra records (26) between Nov.5-13, 2015 mostly Taurid meteors, single and double station meteors as well as the first light from the permanent AMOS stations in Chile.

  16. Chile: the Mapuche and the Bicentennial

    Directory of Open Access Journals (Sweden)

    José Bengoa

    2011-12-01

    Full Text Available The conmeration of the 200 years of the Independence of Chile was in September 2010. This year was also the political change from the Concertación de Partidos por la Democracia to the right political wing chilean political parties. During the last 20 years the Goverment of Chile was in the hands of the center left coalition, after the dictatorship period of Gral Augusto Pinochet end in 1990. During two decades the state aplied social policies in order two develop the indigenous comunities, specially the mapuche comunities of the south of Chile. During 2010 the research proyect named “Conmemoraciones y memorias subalternas” tried to understand the current situation of the comunities, the conflict and others aspects of the indigenous situation. This paper is part of those research.

  17. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  18. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  19. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  20. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  1. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  2. Socioeconomic determinants of disability in Chile.

    Science.gov (United States)

    Zitko Melo, Pedro; Cabieses Valdes, Báltica

    2011-10-01

    Disability is a worldwide public health priority. A shift from a biomedical perspective of dysfunction to a broader social understanding of disability has been proposed. Among many different social factors described in the past, socioeconomic position remains as a key multidimensional determinant of health. The study goal was to analyze the relationship between disability and different domains of socioeconomic position in Chile. Cross-sectional analysis of an anonymized population-based survey conducted in Chile in 2006. Any disability (dichotomous variable) and 6 different types of disability were analyzed on the bases of their relationship with income quintiles, occupational status, educational level, and material living standards (quality of the housing, overcrowding rate and sanitary conditions). Confounding and interaction effects were explored using R statistical program. Income, education, occupation, and material measures of socioeconomic position, along with some sociodemographic characteristics of the population, were independently associated with the chance of being disabled in Chile. Interestingly, classic measures of socioeconomic position (income, education, and occupation) were consistently associated with any disability in Chile, whereas material living conditions were partially confounded by these classic measures. In addition to this, each type of disability showed a particular pattern of related social determinants, which also varied by age group. This study contributed to the understanding of disability in Chile and how different domains of socioeconomic position might be associated with this prevalent condition. Disability remains a complex multidimensional public health problem in Chile that requires the inclusion of a wide range of risk factors, of which socioeconomic position is particularly relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    Science.gov (United States)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  4. The Record of Giant Earthquakes in the Sediments of Lago Villarrica (South-Central Chile)

    Science.gov (United States)

    Moernaut, J.; de Batist, M.; Pino, M.; Brümmer, R.

    2008-05-01

    South-Central Chile is located where the oceanic Nazca plate actively subducts underneath the continental South American plate. This subduction zone has ruptured in great destructive earthquakes with variable magnitude during historical times, with as tragic highlight the 1960 Valdivia earthquake, which accounts for the largest instrumentally recorded earthquake worldwide (Moment Magnitude: 9.5). Damage from severe ground-shaking was reported from up to 1000 km south of the 1960 earthquake epicenter and a devastating tsunami ravaged across the Pacific. The historical earthquake records in South-Central Chile only cover ~500 yrs, so "natural" archives -in which paleo-earthquake activity has been recorded and preserved- need to be explored to reveal a statistically significant earthquake recurrence. In this study, a high-resolution seismic survey on Lago Villarrica has been executed to study its sedimentary infill for fingerprints of severe shaking. The seismic profiles acquired in our study show a succession of voluminous underwater landslide deposits and their related failure scars. Multiple slope failures occurred simultaneously in calm depositional environments, which points toward a strong, instantaneous basin-wide trigger of slope instability. Evaluation of all possible slope failure processes led us to infer that very strong earthquakes are the most likely triggers of these landslide events. Our seismic profiles also show a distinct stratigraphic level of sediment disturbance, locally overlain by a field of sediment volcanoes, which have dimensions up to 70 m wide and 2 m thick. These structures are interpreted as a result of sudden compaction in a buried landslide deposit and subsequent vertical flow of overpressured pore water and entrained sediments which have been expelled at the paleo-lake bottom. We postulate that this process of subsurface sediment mobilization has been triggered by seismic ground-shaking, as such sediment volcanoes have been commonly

  5. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier

  6. Study of Seismic Activity at Ceboruco Volcano, Mexico

    Science.gov (United States)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  7. Time dependent deformation of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Montgomery-Brown, Emily Kvietka Desmarais

    In 1997 the continuous Global Positioning System (GPS) network was completed on Kilauea, providing the first network of daily position measurements during eruptions and earthquakes on Kilauea. Kilauea has been studied for many decades with continuous seismic and tilt instruments. Other geodetic data (e.g., campaign GPS, leveling, electronic distance measurements) are also available although they contain only sparse data. Data analysis methods used here include inverting multiple data sets for optimal source parameters and the spatio-temporal distribution of magma volume and fault slip, and combining GPS and seismic observations to understand flank tectonics. The field area for this study, Kilauea Volcano, was chosen because of its frequent activity and potential hazards. The 1997 East Rift Zone eruption (Episode 54) was the first major event to occur after the completion of the continuous GPS network. The event lasted 2 days, but transient deformation continued for six months. This long-duration transient allowed the first spatio-temporal study of transient dike deformation on Kilauea from daily GPS positions. Slow-slip events were discovered on Kilauea during which the southern flank of the volcano would accelerate seaward for approximately 2 days. The discovery was made possible because of the continuously operating GPS network. These slip events were also observed to correlate with small swarms of microearthquakes found to follow temporal pattern consistent with them being co- and aftershocks of the slow-slip event (Segall, 2006). Half-space models of geodetic data favor a shallow fault plane (˜ 5 km), which is much too shallow to have increased the Coulomb stress at the depths of the co- and aftershocks. However, optimizations for the slow-slip source parameters including a layered elastic structure and a topographic correction favor deeper models within the range of the co- and aftershocks. Additionally, the spatial distribution of seaward fault slip, fixed

  8. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  9. Constructing a reference tephrochronology for Augustine Volcano, Alaska

    Science.gov (United States)

    Wallace, K.; Coombs, M. L.

    2013-12-01

    -proximal sites, along with an off-island section 20 km to the west, provide the first continuous tephrochronology for Augustine that extends from the earliest to latest Holocene. Because examined pumice-fall exposures are limited to a narrow azimuth on the south side of the volcano, the on-island record is likely an incomplete catalog of major eruptions. It is possible however, that the coarse-grained near vent exposures (within 2 km) represent large eruptions that blanketed the entire island in tephra and are representative of the entire Holocene record. The major Holocene tephra units exposed on-island are composed of coarse-grained (cm-scale) pumice ranging in color from white to cream (variably oxidized), and light to medium gray as well as banded varieties. Accidental lithic assembles are highly variable and often unique for individual eruptions. Pumices range from 60-66 wt % SiO2 in whole-rock composition and are distinguishable using trace and minor element abundances and field context. Glass geochemistry is often distinguishable between tephras, but more overlap exists among deposits and presents challenges for correlating to regional tephras.

  10. DETERMINANTES DE LA LECTURA EN CHILE

    OpenAIRE

    2007-01-01

    Los lectores se forman principalmente leyendo libros. Numerosa evidencia muestra que en Chile los niveles de lectura son bajos, tanto en términos cuantitativos como cualitativos. Existe, además, un consenso respecto de la importancia de la habilidad y el hábito de lectura tanto para el individuo como para la sociedad y la economía. El presente trabajo tiene como objetivo analizar los factores que afectan el nivel de lectura de libros en Chile. Para ello, se revisa el rol que desempeña la l...

  11. Chile: corrupción y poder

    OpenAIRE

    Gumucio, Rafael

    2012-01-01

    Todo poder conlleva elementos de corrupción. Este artículo pretende establecer comparaciones históricas respecto de la perversión de las instituciones, en distintos períodos de nuestro pasado republicano. Si bien la tiranía de Pinochet va a ser recordada como la más criminal y  expoliadora de la historia de Chile, en menor grado y brutalidad,  la carencia de probidad existió a lo largo de nuestra historia. Este estudio pretende desmitificar la visión de un Chile republicano probo, es decir, c...

  12. DETERMINANTES DE LA LECTURA EN CHILE

    OpenAIRE

    COCIÑA VARAS, MATIAS PABLO

    2007-01-01

    Los lectores se forman principalmente leyendo libros. Numerosa evidencia muestra que en Chile los niveles de lectura son bajos, tanto en términos cuantitativos como cualitativos. Existe, además, un consenso respecto de la importancia de la habilidad y el hábito de lectura tanto para el individuo como para la sociedad y la economía. El presente trabajo tiene como objetivo analizar los factores que afectan el nivel de lectura de libros en Chile. Para ello, se revisa el rol que desempeña la l...

  13. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  14. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, Kristine M.; Cervelli, Peter; Lisowski, Michael; Miklius, Asta; Segall, Paul; Owen, Susan

    2001-09-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/√h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours.

  15. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  16. The beginning of explosive eruptions on a location lacking volcanoes: A case study on the Hijiori volcano, Northeastern Japan

    Science.gov (United States)

    Miyagi, I.

    2006-12-01

    The volcanic activity of Hijiori volcano (N38 36°f 35°f°f, E140 9°f 20°f°f, WGS84) is reported in detail as a case study to understand how a new felsic volcano commences the activity. Hijiori volcano, a small caldera with approximately 2 km in diameter, is one of the 108 active volcanoes in Japan, which erupted at about 12,000 years ago (in Calendar age) on the location where no volcanic body existed before the activity. From the field survey, it turns out that the suite of activities initiated by the major eruption that deposited a valley filling non-welded pumice flows. Finally the pumice flows covered the range 5 km to the southward and 9 km to the northward with total maximum thickness of about 150 m. The accompanying pumice fall and ash fall extends 60 km to the eastward. Although span of the activity is as short as the resolving power of radiocarbon dating, there recognized a quiescence for three times. After the every quiescence, phreatic (or phreatomagmatic) activities deposited lapilli falls and flows in the proximity. Total volume of the valley filling pyroclastic flows and the air falls are estimated to be 1.4 and 0.6 cubic km, respectively. All the pumices from the three major eruptions are similar in their phenocryst content (50- vol. percent), phenocryst assemblages (Pl, Qz, OPx, Hb, and Mt), bulk chemistry (c.a. 64 wt. percent SiO2), and in isotopic (Sr, Nd) compositions. Mt phenocrysts have no zoning profiles and their chemical compositions (Al2O3, Mg/Mn) are mostly unique through the eruptive sequences, suggesting that the physicochemical conditions of the magma were the same just before the each eruption. On the contrary Pl, Qz, OPx and Hb phenocrysts showed distinct zoning, suggesting that the magma chamber of Hijiori volcano had been disturbed repeatedly by such as magma mixing that continued intermittently before and during the eruptive activities. The observed difference between Mt and the other phenocrysts implies that there were

  17. Modeling the reactive halogen plume from Ambrym volcano and its impact on the troposphere with the CCATT-BRAMS mesoscale model

    OpenAIRE

    Jourdain, L.; T. J. Roberts; M. Pirre; Josse, B.

    2015-01-01

    Ambrym volcano (Vanuatu, Southwest Pacific) is one of the largest sources of continuous volcanic emissions worldwide. As well as releasing SO2 that is oxidized to sulfate, volcanic plumes in the troposphere are shown to undergo reactive halogen chemistry whose atmospheric impacts have been little explored to date. Here, two-way nested simulations were performed with the regional scale model CCATT-BRAMS to test our understanding of the volcano plume chemical...

  18. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the beginning of the 20th century, geologist Thomas A. Jaggar, Jr., argued that, to fully understand volcanic and associated hazards, the expeditionary mode of studying eruptions only after they occurred was inadequate. Instead, he fervently advocated the use of permanent observatories to record and measure volcanic phenomena—at and below the surface—before, during, and after eruptions to obtain the basic scientific information needed to protect people and property from volcanic hazards. With the crucial early help of American volcanologist Frank Alvord Perret and the Hawaiian business community, the Hawaiian Volcano Observatory (HVO) was established in 1912, and Jaggar’s vision became reality. From its inception, HVO’s mission has centered on several goals: (1) measuring and documenting the seismic, eruptive, and geodetic processes of active Hawaiian volcanoes (principally Kīlauea and Mauna Loa); (2) geological mapping and dating of deposits to reconstruct volcanic histories, understand island evolution, and determine eruptive frequencies and volcanic hazards; (3) systematically collecting eruptive products, including gases, for laboratory analysis; and (4) widely disseminating observatory-acquired data and analysis, reports, and hazard warnings to the global scientific community, emergency-management authorities, news media, and the public. The long-term focus on these goals by HVO scientists, in collaboration with investigators from many other organizations, continues to fulfill Jaggar’s career-long vision of reducing risks from volcanic and earthquake hazards across the globe.

  19. [The 140th anniversary of Revista Médica de Chile].

    Science.gov (United States)

    Reyes, B Humberto; Andresen, H Max; Palma, H Joaquín

    2012-01-01

    Revista Médica de Chile was founded in 1872 and thus is one of the oldest medical journals being published since the 19th Century. The sponsoring institution--"Sociedad Médica de Santiago", founded in 1869--initially was the only scientific society in Chile, gathering medical doctors from every existing specialty. With the splitting of independent organizations representing specific specialties, including subspecial-ties of internal medicine, Sociedad Médica de Santiago focused its scope of action to become the "Chilean Society of Internal Medicine". Its official journal -Revista Médica de Chile--is currently a general and internal medicine journal that also publishes articles on scientific and technological advances in many fields of medicine and health sciences. While initially all authors were Chilean, the journal is now open to submissions from abroad and since the year 2000 articles are published in English when the local language of authors is not Spanish. The number of articles received determines an increasing administrative and editorial burden and, together with the high cost of publishing, will require changes in publication policies. The journal will participate in continuing medical education programs as soon as reaccreditation of medical specialties becomes officially organized in Chile.

  20. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  1. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  2. The reawakening of Alaska's Augustine volcano

    Science.gov (United States)

    Power, John A.; Nye, Christopher J.; Coombs, Michelle L.; Wessels, Rick L.; Cervelli, Peter F.; Dehn, Jon; Wallace, Kristi L.; Freymueller, Jeffrey T.; Doukas, Michael P.

    2006-01-01

    Augustine volcano, in south central Alaska, ended a 20-year period of repose on 11 January 2006 with 13 explosive eruptions in 20 days. Explosive activity shifted to a quieter effusion of lava in early February, forming a new summit lava dome and two short, blocky lava flows by late March (Figure 1).

  3. Volcano hazards at Fuego and Acatenango, Guatemala

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  4. New volcanoes discovered in southeast Australia

    Science.gov (United States)

    Wendel, JoAnna

    2014-07-01

    Scientists have discovered three new active volcanoes in the Newer Volcanics Province (NVP) in southeast Australia. Researchers from Monash University in Melbourne describe in the Australian Journal of Earth Sciences how they used a combination of satellite photographs, detailed topography models from NASA, the distribution of magnetic minerals in the rocks, and site visits to analyze the region.

  5. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  6. Degassing and differentiation in subglacial volcanoes, Iceland

    Science.gov (United States)

    Moore, J.G.; Calk, L.C.

    1991-01-01

    Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60??C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation. ?? 1991.

  7. Statistical analysis of wind energy in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Watts, David [Pontificia Universidad Catolica de Chile, Departamento de Ingenieria Electrica, Av. Vicuna Mackenna 4860, Macul, Santiago (Chile); The University of Wisconsin-Madison, 1415 Engineering Drive, WI-53706 (United States); Jara, Danilo [Pontificia Universidad Catolica de Chile, Departamento de Ingenieria Electrica, Av. Vicuna Mackenna 4860, Macul, Santiago (Chile)

    2011-05-15

    Bearing in mind the current and pressing need for an update of the existing Chilean power supply system - which has been remarkably influenced by new requirements - the search for new energy supply sources has become a top priority. The wind resource, vis-a-vis its associated mature technology features and its apparent availability throughout Chile, comes forward as a feasible option likely to play a more important role in any future national energy generation matrix. With a view to understanding the local wind resource, this document surveys a sample set of wind profiles available in the northern Chile area, thus becoming the first public survey of this kind. It also tackles theoretical energy production and capacity factors. Those became the basis of the wind modelling we undertook for Chile's participation in COP15. This paper shows wind generation is a suitable option for curbing down Greenhouse Gas Emissions (GHG) in Chile. (author)

  8. Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004.

    Science.gov (United States)

    González-Escalona, Narjol; Cachicas, Viviana; Acevedo, Claudia; Rioseco, María L; Vergara, Juan A; Cabello, Felipe; Romero, Jaime; Espejo, Romilio T

    2005-01-01

    Analysis of clinical isolates of Vibrio parahaemolyticus from outbreaks in Chile in the cities of Puerto Montt in 2004 and Antofagasta in 1998 indicated that 23 of 24 isolates from Puerto Montt and 19 of 20 from Antofagasta belonged to the pandemic clonal complex that emerged in Southeast Asia in 1996.

  9. Vibrio parahaemolyticus Diarrhea, Chile, 1998 and 2004

    OpenAIRE

    González-Escalona, Narjol; Cachicas, Viviana; Acevedo, Claudia; Rioseco, María L.; Vergara, Juan A.; Cabello, Felipe; Romero, Jaime; Espejo, Romilio T.

    2005-01-01

    Analysis of clinical isolates of Vibrio parahaemolyticus from outbreaks in Chile in the cities of Puerto Montt in 2004 and in Antofagasta in 1998 indicated that 23 of 24 isolates from Puerto Montt and 19 of 20 from Antofagasta belonged to the pandemic clonal complex that emerged in Southeast Asia in 1996.

  10. Republic of Chile : Country Procurement Assessment Report

    OpenAIRE

    World Bank

    2004-01-01

    Chile's public procurement system is considered generally free of corruption, supported by probity of the civil servants, decentralization, and good budgetary and control systems. However, it is affected by deficiencies that the government recognizes, and is taking action to overcome, particularly with respect to procurement of goods and services. There is no unified comprehensive, and pub...

  11. DEZVOLTAREA CONTEMPORANĂ A TURISMULUI DIN CHILE

    Directory of Open Access Journals (Sweden)

    Maria-Mihaela Győri

    2011-01-01

    Full Text Available The contemporary development of the Chilean Tourism sector is analyzed mainly on thebasis of data supplied by the National Service of Tourism in Chile. Figures on inboundtourism, domestic tourism, lodging, employment, receipts, as well as the existing structurewithin the sector, were taken into consideration for the investigated period of 1999-2006.

  12. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  13. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  14. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Science.gov (United States)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4th, 2011 and still continuously erupted until August 28th, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S - P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  15. Sistema de salud de Chile The health system of Chile

    Directory of Open Access Journals (Sweden)

    Víctor Becerril-Montekio

    2011-01-01

    Full Text Available En este trabajo se describe el sistema de salud de Chile, incluyendo su estructura, financiamiento, beneficiarios y recursos físicos, materiales y humanos de los que dispone. Este sistema está compuesto por dos sectores, público y privado. El sector público está formado por todos los organismos que constituyen el Sistema Nacional de Servicios de Salud y cubre aproximadamente a 70% de la población, incluyendo a los pobres del campo y las ciudades, la clase media baja y los jubilados, así como los profesionales y técnicos. El sector privado cubre aproximadamente a 17.5% de la población perteneciente a los grupos sociales de mayores ingresos. Un pequeño sector de la población, perteneciente a la clase alta, realiza pagos directos de bolsillo a proveedores privados de servicios de atención a la salud. Alrededor de 10% de la población está cubierta por otras agencias públicas, fundamentalmente los Servicios de Salud de las Fuerzas Armadas. Recientemente el sistema se reformó creando el Régimen General de Garantías en Salud, que establece un Sistema Universal con Garantías Explícitas que se tradujo, en 2005, en el Plan de Acceso Universal con Garantías Explícitas (AUGE, que garantiza el acceso oportuno a servicios de calidad para 56 problemas de salud, incluyendo cáncer en niños, cáncer de mama, trastornos isquémicos del corazón, VIH/SIDA y diabetes.This paper describes the Chilean health system, including its structure, financing, beneficiaries, and its physical, material and human resources. This system has two sectors, public and private. The public sector comprises all the organisms that constitute the National System of Health Services, which covers 70% of the population, including the rural and urban poor, the low middle-class, the retired, and the self-employed professionals and technicians.The private sector covers 17.5% of the population, mostly the upper middle-class and the high-income population. A small

  16. Dos edificios públicos a base de tierra en Chile

    OpenAIRE

    1986-01-01

    Two works in Chile are reported: The House of the Culture in La Florida (Santiago) and the Botalcura Concentred School in the Vlllth Zone. Both constructions have as common characteristic to be built with adobe and wooden girders, to present a certain continuity in the adapted criteria of desing -both from Architect Hugo Pereira- and to be newly constructed buildings, even partialy in construction. The fact that there are spaces with appropriate light and height for public use, so as the...

  17. Dos edificios públicos a base de tierra en Chile

    OpenAIRE

    Pereira, Hugo

    1986-01-01

    Two works in Chile are reported: The House of the Culture in La Florida (Santiago) and the Botalcura Concentred School in the Vlllth Zone. Both constructions have as common characteristic to be built with adobe and wooden girders, to present a certain continuity in the adapted criteria of desing -both from Architect Hugo Pereira- and to be newly constructed buildings, even partialy in construction. The fact that there are spaces with appropriate light and height for public use, so as the...

  18. Reexamination of the ancient literature on activities of Kuju volcano, central Kyushu, Japan; Kuju kazan no rekishi jidai no katsudo kiroku no saikento

    Energy Technology Data Exchange (ETDEWEB)

    Imura, R.; Kamata, H. [Geological Survey of Japan, Tsukuba (Japan)

    1996-04-25

    In order to identify activities of Kuju Volcano in historic times, reviews were given on records with reference to original literature of historical documents. Kuju Volcano has erupted in October 1995, and rows of craters lying from east to west were created near the place called Mt. Iou on a hillside of the volcano. The smoke from the craters reached as high as 1000 meters in the air, and the ash fall was observed in the city of Kumamoto which is 60 km away from the volcano. Many of what has been recorded conventionally as eruption records of Kuju Volcano are surmised to have described explosions of eruptive gases on the surface area or events of gas bursts. They are not thought to be describing such eruptions as ones gushing a great amount of volcanic ash. Therefore, the activity in 1995 of Kuju Volcano that has created new rows of craters in points several hundred meters away from the eruptive gas area, and caused ash fall that accumulated thinly in surround area has a possibility that the eruption was the one much greater than those written in the records that have been known to date, rather than the one first in 257 years. Activities of Kuju Volcano in historic times must be evaluated quantitatively by continuing excavation of new historic materials and geological verifications. 25 refs.

  19. Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael P.

    2012-01-01

    Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.

  20. [Human resources for health in Chile: the reform's pending challenge].

    Science.gov (United States)

    Méndez, Claudio A

    2009-09-01

    Omission of human resources from health policy development has been identified as a barrier in the health sector reform's adoption phase. Since 2002, Chile's health care system has been undergoing a transformation based on the principles of health as a human right, equity, solidarity, efficiency, and social participation. While the reform has set forth the redefinition of the medical professions, continuing education, scheduled accreditation, and the introduction of career development incentives, it has not considered management options tailored to the new setting, a human resources strategy that has the consensus of key players and sector policy, or a process for understanding the needs of health care staff and professionals. However, there is still time to undo the shortcomings, in large part because the reform's implementation phase only recently has begun. Overcoming this challenge is in the hands of the experts charged with designing public health strategies and policies.

  1. [Scarlet fever epidemic during year 1929 in Chile].

    Science.gov (United States)

    Laval R, Enrique

    2009-04-01

    Scarlet fever is endemic in Chile, with relatively low morbidity and periodic exacerbations every 4 or 5 years, which can become epidemics. From 1921 to 1927, the number of patients hospitalized in the country fluctuated from 15 to 65 per year, until an epidemic involving nearly 3.000 patients started at the end of 1928 and continued during all 1929. 978 patients died, 537 (52.5%) were from Santiago. Public Health authorities confronted this emergency with prevention, prophylaxis, isolation and treatment measures and 558 beds were disposed for patient hospitalization. Vaccination trials were undertaken and specific treatment with antitoxins was used in patients with toxic clinical cases, having satisfactory results. Convalescent patients were controlled in order to stop the spread of the infection. After approximately 3 years, this disease returned to its regular endemicity.

  2. El jabalí europeo (Sus scrofa: Un invasor biológico como presa reciente del puma (Puma concolor en el sur de Chile The European wild boar (Sus scrofa: A biological invader as a recent prey of the American puma (Puma concolor in southern Chile

    Directory of Open Access Journals (Sweden)

    OSCAR SKEWES

    2012-06-01

    Full Text Available Se estudió la dieta del puma (Puma concoloren los anos 1988 y 2004 en los faldeos de los volcanes Mocho y Choshuenco, pluviselva valdiviana, sur de Chile, a través de la identificación de ítemes-presas en sus heces y la búsqueda en terreno de carcasas de jabalí europeo (Sus scrofa.Se registra por primera vez al jabalí europeo entre los ítemes-presas del puma en Chile. El puma depredó predominantemente sobre juveniles y los porcentajes de consumo variaron entre un 17-37 % dependiendo del método empleado para analizar el contenido de presas presentes en sus heces.The diet of the American puma (Puma concolorwas studied in 1988 and 2004 in the foothills of the volcanoes Mocho and Choshuenco, Valdivian rainforest, southern Chile, through the identification of prey-items in their feces and field surveys of European wild boar (Sus scrofacarcasses. We reported for the first time the invader European wild boar as a puma's prey in Chile. The puma preys mainly on juveniles and its percentage of consumed prey ranges between 17 and 37 % according to the method employed to assess the analyses of their feces prey contents.

  3. Geochemical evolution of the acid crater lake of Poas volcano (Costa Rica): Insights into volcanic-hydrothermal processes

    NARCIS (Netherlands)

    Martínez Cruz, María

    2008-01-01

    This thesis describes the evolution of Laguna Caliente, an acid crater lake at the summit of Po:is, a persistently active volcano in central Costa Rica. The appearance, volume, temperature and chemical composition of the lake have continuously changed over the entire known period of its existence. O

  4. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  5. Estado del conocimiento y principales amenazas de los humedales boscosos de agua dulce de Chile Knowledge status and principal threats to freshwater forested wetlands of Chile

    Directory of Open Access Journals (Sweden)

    FRANCISCO CORREA-ARANEDA

    2011-09-01

    en el tiempo.Forested freshwater wetlands are naturally flooded or saturated areas with hydrophilic forest vegetation which is worldwide distributed and is known as "pitrantos, hualves o hualhues" in Chile. This paper gives to know the state of art of these wetlands in Chile, through a description of its biological, physical-chemical and hydro-dynamic characteristics, identifying the main threats to its conservation and the main research needs. These environments can be permanently or temporarily flooded, depending on microclimatic, biological and edaphical processes. Its vegetation is dominated by species of the family Myrtaceae. Both hydric behavior and vegetation structure are major aspects that directly determine the water physical-chemical characteristics and the distribution patterns of biological communities. Chile's forested wetlands have been studied broadly from a vegetation and floristic point of view, but basic studies on limnology, hydrology or fauna are lacking, which results on a total lack of knowledge about its functioning at the ecosystem level and the effects that human activities on basins (e.g., agricultural, stockbreeding, forest could have on its hydric and biological components. In spite of being ecosystems of great cultural and ecological significance, important weakness can be identified on its state of conservation, as they are not protected by conservation tools that exist in Chile nowadays. Therefore, forested wetlands emerge as unique ecosystems of global importance, nearly unknown in Chile and of great interest on developing an important number of research lines, even though their high susceptibility facing anthropic disturbances threaten their continuance.

  6. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  7. The "Mud-volcanoes route" (Emilia Apennines, northern Italy)

    Science.gov (United States)

    Coratza, Paola; Castaldini, Doriano

    2016-04-01

    In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles

  8. Impact of volcanic fluoride and SO/sub 7/ emissions from moderated activity volcanoes on the surrounding vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J.P.; Plebin, R.; Faivre-Pierret, R.X.

    1984-01-01

    Studies in the regions of the volcanoes Etna (Italy) and Masaya (Nicaragua) show that the continuous emissions of gaseous pollutants (HF and SO/sub 2/) from moderated activity volcanoes causes a chronic pollution in the surrounding vegetation with certain economical and ecological consequences. Reciprocally the measure of the pollutants in the plants growing in volcanic regions may be a simple and fast method to investigate some characteristics of the volcanic plume: for example, intensity of the emissions of gas, direction and extent of the plume. 12 references.

  9. El abate Juan Ignacio Molina: una vida dedicada a la historia natural y civil del reino de Chile Abbot Juan Ignacio Molina: A life devoted to the natural and civil history of Chile

    Directory of Open Access Journals (Sweden)

    Reynaldo Charrier

    2011-09-01

    of his books, Compendio della storia geogrfica, naturale, e civile del regno del Chile. In this one and the others, Molina treated different topics as climatology, botany, geology, zoology, mineralogy, and physical geography. He described his impressions on the Concepcin earthquake, the eruptions of the Villarrica and Peteroa volcanoes, and made detailed descriptions of minerals and ore deposits. He differentiated four major lithostratigraphic units. In his descriptions of plants and animals he followed the classification of Linneus. He wrote 14 scientific memoirs. In Analogie meno osservate dei tre regni della Natura, he supports the idea of a gradual transition between all "beings" in the three kingdoms of nature, however, in it he makes no proposition that can be qualified as evolutionary. In Sulla propagazione sucesiva del genere umano he suggests three sources for the population in America. In 1802, he entered the Bolognese Academy of Sciences.

  10. Delineation of the High Enthalpy Reservoirs of the Sierra Nevada Volcanic Geothermal System, South-Central Chile

    Science.gov (United States)

    Alam, M.; Muñoz, M.; Parada, M.

    2011-12-01

    Geothermal system associated with the Pleistocene-Holocene Sierra Nevada volcano (SNVGS) in the Araucanía Region of Chile has surface manifestations from the north-western flank of the volcano, up to Manzanar and Malalcahuello. Baños del Toro, located on the northwestern flank of the volcano, has numerous fumaroles and acid pools (acid sulfate waters, T=~90°C, pH=2.1, TDS=3080 mg/L); while Aguas de la Vaca, near the base of the volcano, has a bubbling spring (chloride-sulfate waters, T=~60°C, pH=7.0, TDS=950 mg/L). Five shallow (low TDS (130-210mg/L). The main heat source of the geothermal system is apparently the magmatic system of the Sierra Nevada volcano. Liquiñe-Ofqui Fault Zone (LOFZ) that transects the area forms excellent conduits for the flow of the geothermal waters. The geothermal reservoirs are hosted in the volcanic rocks interceded with glacial deposits over the North Patagonian Batholith that forms an impermeable barrier, and thus constitutes the lower boundary of the geothermal system and also controls the lateral flow of the fluids. An equilibrium temperature of ~210°C is derived from gas geothermometry (CO2/Ar-H2/Ar) of the discharges at Baños del Toro. Geothermal fluids from the upflow area on the northwestern flank of the volcano migrate northwards to the Cautín River Valley. The geothermal system has a high enthalpy reservoir(s) on the northwestern flank of the Sierra Nevada volcano and low-enthalpy reservoirs in the Cautín River Valley that have been tapped to form spas at Manzanar and Malalcahuello. While sub-vertical fractures of LOFZ facilitate the recharge of the system, lateral flow of the geothermal fluids is apparently controlled by lithology; Melipueclo Pluton in particular prevents the westward flow from the upflow zone, causing the flow only northwards to Malalcahuello and subsequently westward on meeting poorly permeable Guapitrío Member of the Cura-Mallín Formation. This change in the flow direction from northwestward up

  11. Internet-accessible, near-real-time volcano monitoring data for geoscience education: the Volcanoes Exploration Project—Pu`u `O`o

    Science.gov (United States)

    Poland, M. P.; Teasdale, R.; Kraft, K.

    2010-12-01

    Internet-accessible real- and near-real-time Earth science datasets are an important resource for geoscience education, but relatively few comprehensive datasets are available, and background information to aid interpretation is often lacking. In response to this need, the U.S. Geological Survey’s (USGS) Hawaiian Volcano Observatory, in collaboration with the National Aeronautics and Space Administration and the University of Hawai‘i, Mānoa, established the Volcanoes Exploration Project: Pu‘u ‘O‘o (VEPP). The VEPP Web site provides access, in near-real time, to geodetic, seismic, and geologic data from the Pu‘u ‘O‘o eruptive vent on Kilauea Volcano, Hawai‘i. On the VEPP Web site, a time series query tool provides a means of interacting with continuous geophysical data. In addition, results from episodic kinematic GPS campaigns and lava flow field maps are posted as data are collected, and archived Webcam images from Pu‘u ‘O‘o crater are available as a tool for examining visual changes in volcanic activity over time. A variety of background information on volcano surveillance and the history of the 1983-present Pu‘u ‘O‘o-Kupaianaha eruption puts the available monitoring data in context. The primary goal of the VEPP Web site is to take advantage of high visibility monitoring data that are seldom suitably well-organized to constitute an established educational resource. In doing so, the VEPP project provides a geoscience education resource that demonstrates the dynamic nature of volcanoes and promotes excitement about the process of scientific discovery through hands-on learning. To support use of the VEPP Web site, a week-long workshop was held at Kilauea Volcano in July 2010, which included 25 participants from the United States and Canada. The participants represented a diverse cross-section of higher learning, from community colleges to research universities, and included faculty who teach both large introductory non-major classes

  12. The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico

    Science.gov (United States)

    Espíndola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Schaaf, P.; Rodríguez, S. R.

    2010-11-01

    San Martín Tuxtla (N18.562°; W95.199°, 1659 masl) is a basaltic volcano located in southern Veracruz, a Mexican State bordering the Gulf of Mexico. It rises in a volcanic field strewn with monogenetic volcanic cones, maars and three other large volcanoes mostly dormant since the late Pliocene: Santa Marta, San Martín Pajapan and Cerro El Vigía. The latest eruptive event of San Martín occurred in 1793 and was described by Don José Mariano Moziño, a naturalist under the commission of the Viceroy of the then New Spain. In this work we present results of the study of this eruption based on historical accounts and field observations. We identified an ash deposit around the volcano related to the 1793 eruption, mapped its distribution and determined its granulometric, petrographic and geochemical characteristics. These studies suggest that the volcano began its activity with explosive phreatomagmatic explosions, which were followed by Strombolian activity; this period lasting from March to October 1793. The activity continued with an effusive phase that lasted probably 2 years. The eruption covered an area of about 480 km 2 with at least 1 cm of ash; the fines reaching distances greater than 300 km from the crater. A total mass of about 2.5 × 10 14 g was ejected and the volcanic columns probably reached altitudes of the order of 10 km during the most explosive phases. The lava emitted formed a coulee that descended the northern flank of the volcano and has an approximate volume of 2.0 × 10 7 m 3.

  13. The story of the Hawaiian Volcano Observatory -- A remarkable first 100 years of tracking eruptions and earthquakes

    Science.gov (United States)

    Babb, Janet L.; Kauahikaua, James P.; Tilling, Robert I.

    2011-01-01

    The year 2012 marks the centennial of the Hawaiian Volcano Observatory (HVO). With the support and cooperation of visionaries, financiers, scientists, and other individuals and organizations, HVO has successfully achieved 100 years of continuous monitoring of Hawaiian volcanoes. As we celebrate this milestone anniversary, we express our sincere mahalo—thanks—to the people who have contributed to and participated in HVO’s mission during this past century. First and foremost, we owe a debt of gratitude to the late Thomas A. Jaggar, Jr., the geologist whose vision and efforts led to the founding of HVO. We also acknowledge the pioneering contributions of the late Frank A. Perret, who began the continuous monitoring of Kīlauea in 1911, setting the stage for Jaggar, who took over the work in 1912. Initial support for HVO was provided by the Massachusetts Institute of Technology (MIT) and the Carnegie Geophysical Laboratory, which financed the initial cache of volcano monitoring instruments and Perret’s work in 1911. The Hawaiian Volcano Research Association, a group of Honolulu businessmen organized by Lorrin A. Thurston, also provided essential funding for HVO’s daily operations starting in mid-1912 and continuing for several decades. Since HVO’s beginning, the University of Hawaiʻi (UH), called the College of Hawaii until 1920, has been an advocate of HVO’s scientific studies. We have benefited from collaborations with UH scientists at both the Hilo and Mänoa campuses and look forward to future cooperative efforts to better understand how Hawaiian volcanoes work. The U.S. Geological Survey (USGS) has operated HVO continuously since 1947. Before then, HVO was under the administration of various Federal agencies—the U.S. Weather Bureau, at the time part of the Department of Agriculture, from 1919 to 1924; the USGS, which first managed HVO from 1924 to 1935; and the National Park Service from 1935 to 1947. For 76 of its first 100 years, HVO has been

  14. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  15. Upgrading the seismic and geodetic network of the Popocatépetl volcano (Mexico).

    Science.gov (United States)

    Calò, Marco; Iglesias Mendoza, Arturo; Legrand, Denis; Valdés González, Carlos Miguel; Perez Campos, Xyoli

    2017-04-01

    The Popocatépetl is one of the most active volcanoes in Mexico and is located only 70 km from Mexico City, populated by more than 20 millions of people, and only 35 km from the Puebla municipality with almost 1.5 millions of people living. The recent activity of the volcano is generally marked by explosions emitting ash plumes often reaching the densely populated regions. In the framework of the Mexican Fund for Prevention of Natural Disasters (FOPREDEN) we are renovating and upgrading the existing geodetic and seismic networks monitoring the volcano. In this project we are installing 10 broadband seismic stations (120s-050Hz) in shallow boreholes (3-5m depth) and 4 GPS with real time sampling rate of 1 Hz. All instruments are equipped with continuous recording systems for real time monitoring purposes and research. The Popocatépetl exceeds 5400m, and the altitude of the stations ranges from 2200 m to 4300 m making it difficult their installation and maintenance. Because of ash emissions and the hard working condition, the real-time transmission is split into two systems in order to ensure the monitoring of the volcano also during the highest expected activity. Therefore we set up a network of "first order", consisting of four stations located about 20 km from the crater and equipped with satellite transmission. These stations, being far enough from the crater, ensure the real time monitoring of the major events also during intense periods of activity of the volcano. The remaining six stations are installed near to the crater (less than 10 km) and take part of the "second order" network equipped with a telemetered radio system transmitting the data either directly to the National Center of Disaster Prevention (CENAPRED) and National Seismological Service (SSN) or to the first order stations (for the sites that have not direct visible line with the monitoring centers). The four GPS sensors are all installed in the second order sites in order to monitor the largest

  16. Temporal radiative heat flux estimation and alteration mapping of Tendürek volcano (eastern Turkey) using ASTER imagery

    Science.gov (United States)

    Ulusoy, İnan

    2016-11-01

    Tendürek volcano is a polygenetic, basaltic shield volcano formed by successive alkaline basalt flows. It is one of the youngest volcanoes of Turkey; both historical and Holocene activities have been reported for the volcano. Continuous hydrothermal and fumarole activity has been observed on the twin summit craters located 4.5 km apart. ASTER daytime and nighttime satellite imagery acquired between 2001 and 2014 are used to calculate surface temperature, surface temperature anomaly and relative radiative heat flux from the craters to determine a base value for the current thermal emission. Surface temperature and surface temperature anomaly calculations yield a heat flux between 14.4 and 35.5 W/m2 at the western crater and between 7.72 and 28.3 W/m2 at the eastern crater. These values are well-correlated with other known low-level activity volcanoes. The annual and long term consistency of the thermal pattern is investigated. The location and extent of surficial hydrothermal alteration within and surrounding the Tendürek craters is identified by band ratioing and indexing using ASTER visible through shortwave infrared bands. Spectral identification of gypsum, hydroxides, sulfates, hydrated sulfates and clay mineralisation indicates pervasive acid-sulfate alteration due to the activity of fumarole vents around Tendürek craters.

  17. Isotope systematics of a juvenile intraplate volcano: Pb, Nd, and srisotope ratios of basalts from Loihi Seamount, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Staudigel, H. (Columbia Univ., Palisades, NY (USA). Lamont-Doherty Geological Observatory; Scripps Institution of Oceanography, La Jolla, CA (USA)); Zindler, A.; Leslie, T. (Columbia Univ., Palisades, NY (USA). Lamont-Doherty Geological Observatory); Hart, S.R.; Chen, C.Y. (Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences); Clague, D. (Geological Survey, Menlo Park, CA (USA))

    1984-07-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291 - 0.51305), and include the nearly constant tholeiite value (approx.= 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's (31) 'Loa' trend towards higher /sup 206/Pb//sup 204/Pb, ratios, resulting in a substantial overlap with the 'Kea' trend. /sup 206/Pb//sup 204/Pb ratios for Loihi and other volcanoes along the Loa and Kea trends (31) are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere.

  18. Computer aided detection of transient inflation events at Alaskan volcanoes using GPS measurements from 2005-2015

    Science.gov (United States)

    Li, Justin D.; Rude, Cody M.; Blair, David M.; Gowanlock, Michael G.; Herring, Thomas A.; Pankratius, Victor

    2016-11-01

    Analysis of transient deformation events in time series data observed via networks of continuous Global Positioning System (GPS) ground stations provide insight into the magmatic and tectonic processes that drive volcanic activity. Typical analyses of spatial positions originating from each station require careful tuning of algorithmic parameters and selection of time and spatial regions of interest to observe possible transient events. This iterative, manual process is tedious when attempting to make new discoveries and does not easily scale with the number of stations. Addressing this challenge, we introduce a novel approach based on a computer-aided discovery system that facilitates the discovery of such potential transient events. The advantages of this approach are demonstrated by actual detections of transient deformation events at volcanoes selected from the Alaska Volcano Observatory database using data recorded by GPS stations from the Plate Boundary Observatory network. Our technique successfully reproduces the analysis of a transient signal detected in the first half of 2008 at Akutan volcano and is also directly applicable to 3 additional volcanoes in Alaska, with the new detection of 2 previously unnoticed inflation events: in early 2011 at Westdahl and in early 2013 at Shishaldin. This study also discusses the benefits of our computer-aided discovery approach for volcanology in general. Advantages include the rapid analysis on multi-scale resolutions of transient deformation events at a large number of sites of interest and the capability to enhance reusability and reproducibility in volcano studies.

  19. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  20. Vulcan's fury: Man against the volcano

    Science.gov (United States)

    Varekamp, Johan C.

    I read this book on an 11-hour flight back from a field trip in the Andes, where I got first-hand insight into how people live with a volcano that now and then explodes. Appropriate reading, I felt, especially as the fascination of the human world with volcanoes and eruptive disasters is indeed long standing. This book is a recent addition to a list of titles in this genre (e.g., the new book by Sigurdsson to be reviewed in Eos shortly). The scope of the book is summarized in the introductory sentence of the preface: “This book is about an unequal contest. It describes human reactions to volcanic eruptions.” This is the perspective of the book's descriptions of 16 large and not-so-large eruptions over the last two millennia.

  1. Postavenie Chile v medzinárodnom cestovnom ruchu

    OpenAIRE

    Beňadiková, Jana

    2016-01-01

    This diploma thesis analyses the position of Chile in international tourism. The main purpose is to evaluate Chile´s status in international tourism based on the competitiveness of the country. At the begining of the thesis, the theory is defined. Then, the economy and political backgroud of Chile is specified, followed by the description of the preconditions for tourism development and its competitiveness in the tourism industry. Moreover, inbound, outbound and domestic tourism are analysed ...

  2. Weak recognition: Indigenous rights in Chile

    Directory of Open Access Journals (Sweden)

    Claudio Fuentes

    2017-01-01

    Full Text Available After seventeen years of debate, the Chilean Congress approved the ilo 169 Convention on indigenous rights that compels the State to consult indigenous communities on issues that directly affect them. As the political and economic conditions were unfavourable, this political outcome is surprising. Indeed, the legal status of the indigenous people in Chile is weaker than in the rest of Latin America. This article explains this outcome through a detailed description of institutional changes as well as social pressures from the indigenous movement. These factors made right-wing sectors to adapt their discourses in order to accept Chile as a multicultural society. Moreover, a relevant part of the story is related to territorial differences among legislators. Discourse adaptation toward a soft recognition of indigenous rights is a likely outcome in a very conservative environmental setting.

  3. Thermoluminescence properties of Chile Guajillo (paprika) Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: gkitis@auth.gr; Cruz Zaragoza, E. [Institute of Nuclear Science, UNAM, PO Box 70-753, Mexico DF (Mexico); Furetta, C. [Physics Department, University La Sapienza, P.le A. Moro 2. 00187 Rome (Italy)

    2005-08-01

    The thermoluminescence properties of the inorganic dust extracted from the Chile Guajillo (paprika) Mexicano, were studied in order to verify the possibility of using the TL technique to discriminate between irradiated and non irradiated peppers. The inorganic dust was found to consist of quartz 60%, albite (NaAlSi{sub 3}O{sub 8}) 30%, and ortose (KAlSi{sub 3}O{sub 8}) 10%. Its thermoluminescence dose response covers the wide dose range of 1Gy-10kGy, which was attributed mainly to feldspars. Its high sensitivity and its stability over 10 irradiation-readout cycles allow the application of a single grain-single aliquot regeneration dosimetry in Chile Guajillo (paprika). Evaluations based on trapping parameters show that thermal fading at room temperature for glow-peaks above 180 deg.. C, is not a problem in the dosimetry of paprika.

  4. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  5. On the morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  6. Buried caldera of mauna kea volcano, hawaii.

    Science.gov (United States)

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  7. Publications of the Volcano Hazards Program 2014

    Science.gov (United States)

    Nathenson, Manuel

    2016-04-08

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Natural Hazards activity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaiʻi Mānoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions.

  8. Adding the human dimension to drought: an example from Chile

    Science.gov (United States)

    Rangecroft, Sally; Van Loon, Anne; Maureira, Héctor; Rojas, Pablo; Alejandro Gutiérrez Valdés, Sergio; Verbist, Koen

    2016-04-01

    Drought and water scarcity are important hazards and can lead to severe socio-economic impacts in many regions of the world. Given the interlinked interactions and feedbacks of hydrological droughts and their impacts and management, we need tools to evaluate these complexities and effects on the availability of water resources. Here we use a real-world case study of the Huasco basin (Northern Chile) in which we quantify the influence of human activities on hydrological drought signals. In this arid region, Andean snowmelt provides water essential for users, with agriculture acting as the main water consumer (85% of total). An increasing water demand from different water sectors (agriculture, mining, and domestic water usage) has increased pressure on available water and its management. Consequently, the Santa Juana dam was built by 1995 to increase irrigation security for downstream users, and recent management and restrictions have been established with the objective to limit impacts of hydrological droughts across the basin. The feedbacks between water availability and water management are explored for this water stressed region in Chile. Hydro-meteorological (e.g. precipitation, temperature, streamflow, reservoir levels) variables have been analysed to assess trends and drought patterns. Data over the past three decades has indicated a decrease in surface water supply, with the basin entering a situation of water scarcity during the recent multiyear drought (2007 - to-date), partly caused by meteorological drought and partly by abstraction. During this period, water supply failed to meet the demands of water users, resulting in the implementation of water restrictions. As well as the necessary continuous hydro-meteorological data, here we used information on human water users and scenario modeling, allowing for the analysis and quantification of feedbacks. This work highlights the importance of local knowledge, especially in understanding water laws, rights

  9. Sexual violence in college students in Chile

    OpenAIRE

    Lehrer, Jocelyn A.; Lehrer, Vivian L.; Lehrer, Evelyn Lilian; Oyarzun, Pamela

    2007-01-01

    Young women's experiences of sexual victimization can have far-reaching consequences, including unwanted pregnancy and increased risk of psychological, sexual, and reproductive health difficulties; these experiences can also limit young women's ability to achieve their educational potential. To date, no quantitative studies have examined sexual violence among college students in Chile. To address this gap, an anonymous survey was administered to students enrolled in General Education courses ...

  10. Soviet Policy in Cuba and Chile.

    Science.gov (United States)

    1980-05-06

    document dated June 30, 1973, instructing all Communist Party members in Santiago to secure arms and to evacuate the upper class barrio alto in case of...loans. (Other reports indicated a figure of $100 million.) It was also announced in Santiago that the Soviet Union had granted $108 million for long-term...Chile at Rojo, Santiago : Universidad Tecnica del Estado, 1971. See also Luis Corvalan, El Camino de Victoria, Santiago : Impresova Horizonte, 1971, pp

  11. Tackling Social Exclusion: Evidence from Chile

    OpenAIRE

    2014-01-01

    This paper studies an innovative welfare program in Chile that combines a period of frequent home visits to households in extreme poverty, with guaranteed access to social services. Program impacts are identified using a regression discontinuity design, exploring the fact that program eligibility is a discontinuous function of an index of family income and assets. The analysis finds strong and lasting impacts of the program on the take-up of subsidies and employment services. These impacts ar...

  12. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  13. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  14. Seismic and infrasound monitoring at Cotopaxi volcano

    Science.gov (United States)

    Ruiz, M.; Yepes, H.; Palacios, P.; Troncoso, L.; Mothes, P.; Kumagai, H.

    2012-04-01

    Cotopaxi is an active ice-capped volcano (5967m) located 60 km SE from Quito and is one of the largest and more hazardous volcanoes in the Northern Andes. Monitoring of Cotopaxi, using seismic and infrasound techniques has improving significantly since 1976, when three short-period stations were deployed temporarily in response to an increase of fumarolic activity. Later in May 1977, a short-period vertical seismometer was installed on the NW flank at 7 km from the crater. Since 1986 a short-period seismic station is working at the northern flank of Cotopaxi and transmitting analog data to the Instituto Geofisico. In 1993 a network of 4 short-period seismic stations were installed on all flanks of the volcano. Between March 1996 and June 1997 a temporal network of 16 stations were deployed for several months in order to study local seismicity and internal structure (Metaxian et al., 1999). Since 2006, a network of five broad band stations (0.02-60 s) and low-frequency infrasound sensors (0.01-10 s) were installed through a JICA Cooperation Project (Kumagai et al., 2007). Data is transmitted to the Instituto Geofisico via a digital radio system. Through this network, LP and VLP events have been recorded and analyzed (Molina et al., 2008). VLP events were located beneath the north and north-eastern flank using waveform inversion and amplitude distribution methods (Kumagai et al., 2010).

  15. Detecting Blackholes and Volcanoes in Directed Networks

    CERN Document Server

    Li, Zhongmou; Liu, Yanchi

    2010-01-01

    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  16. Real-time GNSS volcano deformation monitoring (Invited)

    Science.gov (United States)

    Lisowski, M.; Langbein, J. O.; Hudnut, K. W.

    2013-12-01

    We present comparisons of the precision obtained from several alternative real-time GNSS processing methods, and show how offsets caused by snow and ice on an antenna can be automatically identified in real time using signal-to-noise ratio (SNR) data. We monitor ground deformation using continuous GNSS stations installed on several volcanoes in the Cascade Range and elsewhere, and many of these stations transmit high-rate (1s) data in real-time. We examine real-time, high-rate station position solutions obtained with two implementations of centralized RTNet (GPS Solutions, Inc.) processing, and find that the precision is roughly the same for ambiguity-fixed network solutions and for ambiguity-fixed precise point position solutions (PPPAR). The PPPAR method uses satellite clock corrections provided by GPS Solutions from a network of Plate Boundary Observatory (PBO) stations in western Oregon. The precision of network solutions that include GPS and GLONASS data is similar to the GPS-only solutions, except at stations with a relatively poor view of the sky. An alternative method of processing the real-time GPS data uses clock corrections transmitted directly to the receiver, which then autonomously calculates and transmits positions. We will compare our RTNet results with autonomous point position solutions calculated using Trimble's CenterPoint RTX corrections. RTX performance in repeated, controlled, large antenna-motion tests by USGS and UNAVCO indicates that it meets requirements of USGS volcano-monitoring applications; more thorough testing and performance checks on an ongoing basis would be desirable. GNSS antennas on volcanoes often become temporarily coated with ice or buried by snow in the winter. In these situations, signal delays introduce an apparent offset in the monitoring station's position. We address this problem by implementing in real time a technique developed by Kristine Larson that uses changes in the signal-to-noise ratio (SNR) of GNSS signals

  17. Dynamics of strombolian eruptions at Batu Tara volcano (Indonesia)

    Science.gov (United States)

    Scarlato, P.; Del Bello, E.; Gaudin, D.; Taddeucci, J.; Ricci, T.; Cesaroni, C.

    2015-12-01

    In September 2014, high-speed imaging and acoustic data were acquired during 3 days of almost continuous recording (04-06/09/2015) at Batu Tara Volcano, in the small isolated island of Pulau Komba, in the Flores Sea (about 50 km N of Lembata). This volcano is very similar to the Italian Stromboli Volcano in both eruptive style and edifice morphology. The field experiment aimed at investigating degassing and explosive dynamics using a combination of GPS synchronized devices deployed in direct view of the active vent: i) a high-speed visible camera acquiring images at 500 frames per second (fps),ii) a thermal infrared (FLIR) camera acquiring at 50-200 fps, iii) a visible time lapse camera (GO-PRO) acquiring at 0.2-0.5 Hz (2 - 5 s interval), iv) two broadband microphones (Freq. range of kHz to 0.1 Hz) sampled at 10 kHz. Explosions can be discriminated in type according to their visual, thermal and acoustic features.Some explosions are characterized by a first sudden radial ejection of large spatter and bombs (main pulse), eventually followed by other similar events (secondary pulses), with very little amount of ash involved. In these eruptions, infrasonic waveforms are characterized by a first, high amplitude transient, with a first positive peak pressure followed by rapid dampening, typical of a Strombolian eruption.Other explosions are characterized by the sustained ejection of a dense jet of ash, with abundant decimeter to meter sized spatter and hot blocks.These eruptions are not accompanied by a maximum peak pressure at the eruption onset. Spectrograms show a high frequency component propagating for the entire duration of the signal.These two distinct types are sometimes overlapping and eruptions show a high amplitude transient followed by a high frequency coda. These different evolutions suggest that there are at least two repeatable explosion dynamics occurring in the conduit, with comparable gas overpressure, source depth and amount of gas involved

  18. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  19. Citizen empowerment in volcano monitoring, communication and decision-making at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Bartel, B. A.; Mothes, P. A.

    2013-12-01

    Trained citizen volunteers called vigías have worked to help monitor and communicate warnings about Tungurahua volcano, in Ecuador, since the volcano reawoke in 1999. The network, organized by the scientists of Ecuador's Instituto Geofísico de la Escuela Politécnica Nacional (Geophysical Institute) and the personnel from the Secretaría Nacional de Gestión de Riesgos (Risk Management, initially the Civil Defense), has grown to more than 20 observers living around the volcano who communicate regularly via handheld two-way radios. Interviews with participants conducted in 2010 indicate that the network enables direct communication between communities and authorities; engenders trust in scientists and emergency response personnel; builds community; and empowers communities to make decisions in times of crisis.

  20. The epidemiology of tuberculosis in Chile.

    Science.gov (United States)

    1985-01-01

    Chile's tuberculosis morbidity notification statistics suggest that there has been a 3% average annual decrease in tuberculosis cases in the last 5 years (1978-82). In addition, over the period 1974-83, there was a 50% decline in the number of deaths from tuberculosis. In 1982, there were 6941 recorded cases of tuberculosis in Chile, only 6.5% of which involved children under 15 years of age; in that same year, there were 984 deaths from tuberculosis, 14.4% of which occurred in children. The majority of cases reported (78%) involve pulmonary tuberculosis. Over 90% of children under 15 years of age are covered by Bacille Calmette-Guerin (BCG) vaccination. This was achieved by immunizing 91% of all newborns, 83% of children in their first year of school, and 98% of those in their final year. Laboratories capable of case-finding now cover 95% of Chile's total area. Since 1975, an average of 47 bacilloscopies have been performed per 1000 consultations. Abandonment of treatment has been reduced to 12% and fewer than 20% of cases require hospitalization. Finally, the introduction of shortened rifampicin treatment has reduced the case-fatality rate from 6% to 3%.

  1. Registro nuevo de Amphipyrinae en Chile A new record of Amphipyrinae from Chile

    Directory of Open Access Journals (Sweden)

    Tania S. Olivares

    2006-12-01

    Full Text Available Se registra por primera vez en Chile la especie Agrotisia subhyalina Hampson, entre las latitudes 18° 29' S 70° 20' O hasta 29° 54' S 71° 16' O (I-IV regiones en Chile. Se redescriben los genitales del macho y de la hembra y se presentan algunos aspectos taxonómicos de la especie.The species Agrotisia subhyalina Hampson is recorded for the first time from Chile (18° 29' S 70° 20' W to 29° 54' S 71° 16' W, I to IV Chilean regions. Redescriptions of male and female are presented, along with some taxonomic aspects of the species.

  2. Chile shadow report to the United Nations sheds light on women's rights.

    Science.gov (United States)

    Farmer, A

    1999-07-01

    Three Chilean women's rights organizations and CRLP presented a Shadow Report to the UN Committee on the Elimination of All Forms of Discrimination Against Women (CEDAW). The 25-page Shadow Report indicates in summary the disappointment of the Chilean women in their government. Although Chile has emerged from its history of military dictatorship and is taking its first steps toward returning to a democratic-style of government, the military and the Catholic Church still exert a very strong influence, especially when it comes to policy making. Chilean people especially women, continue to be tyrannized by repressive attitudes, laws, and policies. This tyrannization is exemplified by the rampant discrimination against women in the prisons and the punishment of those undergoing illegal abortions. In short, women have no rights in Chile, and the government has not done enough to eliminate discrimination against them.

  3. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake

    Science.gov (United States)

    Kato, Aitaro; Fukuda, Jun'Ichi; Kumazawa, Takao; Nakagawa, Shigeki

    2016-04-01

    The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase.

  4. July 1973 ground survey of active Central American volcanoes

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  5. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  6. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  7. A compilation of sulfur dioxide and carbon dioxide emission-rate data from Cook Inlet volcanoes (Redoubt, Spurr, Iliamna, and Augustine), Alaska during the period from 1990 to 1994

    Science.gov (United States)

    Doukas, Michael P.

    1995-01-01

    Airborne sulfur dioxide (SO2) gas sampling of the Cook Inlet volcanoes (Mt. Spurr, Redoubt, Iliamna, and Augustine) began in 1986 when several measurements were carried out at Augustine volcano during the eruption of 1986 (Rose and others, 1988). More systematic monitoring for SO2 began in March 1990 and for carbon dioxide (CO2) began in June, 1990 at Redoubt Volcano (Brantley, 1990 and Casadevall and others, 1994) and continues to the present. This report contains all of the available daily SO2 and CO2 emission rates determined by the U.S. Geological Survey (USGS) from March 1990 through July 1994. Intermittent measurements (four to six month intervals) at Augustine and Iliamna began in 1990 and continues to the present. Intermittent measurements began at Mt. Spurr volcano in 1991, and were continued at more regular intervals from June, 1992 through the 1992 eruption at the Crater Peak vent to the present.

  8. Pre-, Syn- and Post Eruptive Seismicity of the 2011 Eruption of Nabro Volcano, Eritrea

    Science.gov (United States)

    Goitom, Berhe; Hammond, James; Kendall, Michael; Nowacky, Andy; Keir, Derek; Oppenheimer, Clive; Ogubazghi, Ghebrebrhan; Ayele, Atalay; Ibrahim, Said; Jacques, Eric

    2014-05-01

    Nabro volcano, located in south-east Eritrea, East Africa, lies at the eastern margin of the Afar Rift and the Danakil Depression. Its tectonic behaviour is controlled by the divergence of the Arabian, Nubian and Somali plates. Nabro volcano was thought to be seismically quiet until it erupted in June 2011 with limited warning. The volcano erupted on June 12, 2011 around 20:32 UTC, following a series of earthquakes on that day that reached a maximum magnitude of 5.8. It is the first recorded eruption of Nabro volcano and only the second in Eritrea, following the Dubbi eruption in 1861. A lava flow emerged from the caldera and travelled about 20 km from the vent and buried settlements in the area. At the time of this eruption there was no seismic network in Eritrea, and hence the volcano was not monitored. In this study we use ten Ethiopian, one Yemeni and one Djibouti stations to investigate the seismicity of the area before, during and after the eruption. Four Eritrean seismic stations deployed in June 2011, four days after the eruption, are also included in the dataset. Travel time picks supplied by colleagues from Djibouti were also incorporated into the dataset. Our analysis covers roughly three months before and after the eruption and shows that Nabro was seismically quiet before the eruption (nine events), with the exception of one major earthquake (4.8 magnitude) that occurred on March 31, 2011. In contrast, the region shows continued seismic activity after the eruption (92 events). During the eruption seismicity levels are high (123 events), with two days particularly active, June 12 and June 17 with 85 and 28 discrete events, respectively. Maximum magnitudes of 5.8 and 5.9 were recorded on these two days. The two days of increased seismicity are consistent with satellite observations of the eruption which show two distinct phases of the eruption. The period between these two phases was dominated by volcanic tremor. The tremor signal lasted for almost one

  9. Geochemical monitoring of Taal volcano (Philippines) by means of diffuse CO2 degassing studies

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Arcilla, Carlo; Pérez, Nemesio M.; Lagmay, Alfredo M.; Rodríguez, Fátima; Quina, Gerald; Alonso, Mar; Padilla, Germán D.; Aurelio, Mario A.

    2017-04-01

    Observing changes in the discharge rate of CO2 is an important part of volcanic monitoring programs, because it is released by progressive depressurization of magma during ascent and reach the surface well before their parental magma. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front facing the subduction zone along the Manila Trench and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. During the last period of volcanic unrest from 2010 to 2011, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates through the water surface reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). After the unrest period, diffuse CO2 emission has remained in the range 532-860 t/d in the period 2013-2016. In January 2016, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The 2016 time series show CO2 efflux values in the range 20-690 g m-2 d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96o

  10. Toothpaste lava from the Barren Island volcano (Andaman Sea)

    Science.gov (United States)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Kumar, Alok; Bhutani, Rajneesh; Awasthi, Neeraj

    2011-04-01

    Toothpaste lava is a basaltic lava flow type transitional between pahoehoe and aa and has been described from Paricutin, Kilauea and Etna volcanoes. Here we describe a spectacular example of toothpaste lava, forming part of a recent (possibly 1994-95) aa flow on the active volcano of Barren Island (Andaman Sea). This flow of subalkalic basalt shows abundant squeeze-ups of viscous toothpasate lava near its entry into the sea. The squeeze-ups are sheets and slabs, up to several meters across and tens of centimeters thick, extruded from boccas. They are often prominently curved, have striated upper surfaces with close-spaced, en echelon linear ridges and grooves, broad wave-like undulations perpendicular to the striations, and sometimes, clefts. Textural, geochemical, and Sr-Nd isotopic data on the squeeze-ups and the exposed aa flow core indicate very crystal-rich, viscous, and isotopically very homogeneous lava. We envisage that a greatly reduced speed of this viscous flow at the coastline, possibly aided by a shallowing of the basal slope, led to lateral spreading of the flow, which caused tension in its upper parts. This, with continued (albeit dwindling) lava supply at the back, led to widespread tearing of the flow surface and extrusion of the squeeze-ups. The larger slabs, while extruding in a plastic condition, curved under their own weight, whereas their surfaces experienced brittle deformation, forming the en echelon grooves. The extruded, detached, and rotated sheets and slabs were carried forward for some distance atop the very slowly advancing aa core, before the flow solidified.

  11. A series of transient slip events on Kilauea volcano, Hawaii.

    Science.gov (United States)

    Desmarais, E. K.; Segall, P.; Miklius, A.; Cervelli, P.

    2005-12-01

    Deformation on Kilauea volcano, Hawaii is monitored by a network of continuously recording GPS stations, among other methds. Since its installation in 1996, the GPS network has detected four spatially coherent accelerations on Kilauea's south flank that are not caused by either intrusions or earthquakes. These events, each lasting several hours to two days, occurred in September 1998, November 2000, July 2003, and January 2005. Previously, Cervelli et al., (Nature, 2002) interpreted the 2000 event as a silent earthquake due to slip on a sub-horizontal fault beneath Kilauea's south flank. We inverted the cumulative displacements ( less than 2 cm) using a simulated annealing algorithm for each event and found similarly sized, near horizontal, uniform slip source locations for all four events at depths of ~6 km. The estimated slip magnitudes are between 9 and 15 cm, with the upper block moving seaward. The 2005 event is the largest detected to date. Volcano-tectonic (VT) earthquakes on the south flank of Kilauea are typically restricted to the volume between the East Rift Zone and the Hilina and Poliokeawe Palis. Seismicity in this volume increased significantly during the silent events at depths of 5-10 km. However, all of the VT earthquakes were small ( less than M3) and their cumulative moment does not account for the moment released during the silent slip events. We are currently examining seismic waveform data for evidence of other signals, such as non-volcanic tremor, that might be associated with the slip events. To determine the exact onset and duration of the silent earthquakes, we invert for slip as a function of time directly from raw GPS phase and pseudorange observations. The November 2000 silent earthquake was preceded 9 days earlier by nearly 1 m of rainfall, which was speculated in Cervelli et al., (Nature, 2002) to have reduced fault stability through surface loading or pore pressure increase. In contrast, both the 2003 and 2005 events occurred

  12. First recorded eruption of Nabro volcano, Eritrea, 2011.

    Science.gov (United States)

    Goitom, Berhe; Oppenheimer, Clive; Hammond, James O S; Grandin, Raphaël; Barnie, Talfan; Donovan, Amy; Ogubazghi, Ghebrebrhan; Yohannes, Ermias; Kibrom, Goitom; Kendall, J-Michael; Carn, Simon A; Fee, David; Sealing, Christine; Keir, Derek; Ayele, Atalay; Blundy, Jon; Hamlyn, Joanna; Wright, Tim; Berhe, Seife

    We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic significance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shallow, NW-SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response mitigated the human costs of the eruption.

  13. Storage and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Roman, Diana C.; Cashman, Katharine V.; Gardner, Cynthia A.; Wallace, Paul J.; Donovan, John J.

    2006-01-01

    Compositional heterogeneity (56–64 wt% SiO2 whole-rock) in samples of tephra and lava from the 1986 eruption of Augustine Volcano, Alaska, raises questions about the physical nature of magma storage and interaction beneath this young and frequently active volcano. To determine conditions of magma storage and evolutionary histories of compositionally distinct magmas, we investigate physical and chemical characteristics of andesitic and dacitic magmas feeding the 1986 eruption. We calculate equilibrium temperatures and oxygen fugacities from Fe-Ti oxide compositions and find a continuous range in temperature from 877 to 947°C and high oxygen fugacities (ΔNNO=1–2) for all magmas. Melt inclusions in pyroxene phenocrysts analyzed by Fourier-transform infrared spectroscopy and electron probe microanalysis are dacitic to rhyolitic and have water contents ranging from Augustine, and we interpret the mafic endmember to have been intruded from depth. Mixing appears to have continued as magmas ascended towards the vent. We suggest that the physical structure of the magma storage system beneath Augustine contributed to the sustained compositional heterogeneity of this eruption, which is best explained by magma storage and interaction in a vertically extensive system of interconnected dikes rather than a single coherent magma chamber and/or conduit. The typically short repose period (∼10 years) between Augustine's recent eruptive pulses may also inhibit homogenization, as short repose periods and chemically heterogeneous magmas are observed at several volcanoes in the Cook Inlet region of Alaska.

  14. Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i2.159The Volcano-Tectonic (VT earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.

  15. The petrological relationship between Kamen volcano and adjacent volcanoes of Klyuchevskaya group

    Science.gov (United States)

    Churikova, Tatiana; Gordeychik, Boris; Wörner, Gerhard; Ivanov, Boris; Maximov, Alexander; Lebedev, Igor; Griban, Andrey

    2010-05-01

    The Klyuchevskaya Group (KG) of volcanoes has the highest magma production rate across the Kamchatka arc and in fact for any arc worldwide. However, modern geochemical studies of Kamen volcano, which is located between Klyuchevskoy, Bezymianny and Ploskie Sopky volcanoes, were not carried out and its relation and petrogenesis in comparison to other KG volcanoes is unknown. Space-time proximity of KG volcanoes and the common zone of seismicity below them may suggest a common source and genetic relationship. However, the lavas of neighboring volcanoes are rather different: high-Mg and high-Al basalts occur at Klyuchevskoy volcano, Hbl-bearing andesites and dаcites dominate at Bezymianny and medium-high-K subalkaline rocks at Ploskie Sopky volcano. Moreover, previously it was shown that distinct fluid signatures were observed in different KG volcanoes. In this report we present geological, petrographical, mineralogical and petrochemical data on the rocks of Kamen volcano in comparison with other KG volcanoes. Three consecutive periods of volcano activity were recognized in geological history of Kamen volcano: stratovolcano formation, development of a dike complex and formation of numerous cinder and cinder-lava monogenetic cones. The rock series of volcano are divided into four groups: olivine-bearing (Ol-2Px and Ol-Cpx), olivine-free (2Px-Pl, Cpx-Pl and abundant Pl), Hb-bearing and subaphyric rocks. While olivine-bearing rocks are observed in all volcanic stages, olivine-free lavas are presented only in the stratovolcano edifice. Lavas of the monogenetic cones are presented by olivine-bearing and subaphyric rocks. Dikes are olivine-bearing and hornblende-bearing rocks. Olivines of the Kamen stratovolcano and dikes vary from Fo60 to Fo83, clinopyroxenes are augites in composition and plagioclases have a bimodal distribution with maximum modes at An50 and An86. Oxides are represented by high-Al spinel, magnetite and titaniferous magnetite. Mineral compositions of the

  16. Perú-Chile: imágenes mutuas (Perú-Chile: mutual images

    Directory of Open Access Journals (Sweden)

    Álvaro González Riesle

    2014-06-01

    Full Text Available RESUMEN: A partir de los enfoques sobe Expansionismo-Revanchismo de Elizondo y las Imágenes en Espejo de Scott, se analizaron los contenidos de blogs referentes a imágenes mutuas entre Perú y Chile, comprendidos a partir de la fecha (16-01-2008 de presentación por parte del Perú de la Demanda ante el Tribunal de la Haya para la solución del Diferendo Limítrofe con Chile, hasta el 30-03-2011. Se han registrado intensas y variadas manifestaciones de hostilidad mutua, que respaldan la vigencia de la dinámica Expansionismo-Revanchismo en las imágenes mutuas entre Chile y Perú en los blogs analizados. Paralelamente, se detectaron contenidos correspondientes a actitudes integracionistas entre ambos países. Los resultados fundamentan la utilidad del enfoque de las Imágenes en Espejo como instrumento para el análisis de contenido de blogs portadores de mensajes de hostilidad e integración entre ambos países. Se propone una estrategia psicosocial binacional para desactivar la dinámica Expansionismo- revanchismo que contribuiría a producir catastróficas consecuencias para las generaciones actuales y futuras de ambos países; y, promover la integración fronteriza entre Tacna (Perú y Arica (Chile. ABSTRACT: The contents of blogs relating to mutual images between Peru and Chile were analyzed from the approaches about Expansionism – Revanchism of Elizondo, and The images on the mirror of Scott, included the date of the presentation (January 16th, 2008 by Peru of the demand before the International Court of Justice at the Hague for the solution of the border dispute with Chile until March 30th, 2011. There have been intense and varied manifestations of mutual hostility that support the validity of Expansionism-Revanchism dynamics in the mutual images between Chile and Peru in the analyzed blogs. At the same time, it was detected content corresponding to integrationist attitudes between the two countries. The results underlie the utility

  17. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    Science.gov (United States)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  18. A volcano at work: the rapidly evolving landforms of Mt Etna documented through DEMs analysis

    Science.gov (United States)

    Tarquini, Simone; Favalli, Massimiliano; Fornaciai, Alessandro

    2016-04-01

    Volcanoes are characterized by rapid morphological changes in a continuously evolving landscape. In recent years, airborne LIDAR surveys have been repeatedly carried out to document the constructive and the destructive processes which modify the topography at Mount Etna (Italy), one of the most active volcanoes on Earth. In a few cases, time series of high resolution topographies have been acquired during ongoing effusive eruptions, and this extraordinary data allowed the systematic characterization of the morphology of active lava channels and the identification of a distinctive pulsating dynamic in lava flux. Furthermore, time series of topographies spaced several years allowed the quantification of the growth and of local collapses of summit craters, as well as the erosion of cinder cones formed during flank eruptions in 2001-2002. Overall, the availability of high resolution topographies boosted dramatically our understanding of volcanic processes, also allowing a better assessment of the related hazard. The present contribution is a review of several works spanning nearly a decade.

  19. Nucleation of the 2014 Pisagua, N. Chile earthquake : seismic analysis of the foreshock sequence.

    Science.gov (United States)

    Fuenzalida, A.; Tavera, H.; Ruiz, S.; Ryder, I. M. A.; Fernandez, E.; Garth, T.; Neto, O. D. L.; Metois, M.; De Angelis, S.; Rietbrock, A.

    2014-12-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap. This part of the subduction zone was believed to have not experienced a large earthquake since 1877. As part of an international collaboration the "The Integrated Plate boundary Observatory Chile (IPOC)" network was installed in 2007 to monitor this region. As well as recording the 2014 Pisagua mainshock, the IPOC network was able to record the full foreshock and aftershock sequences, providing a unique opportunity to study the nucleation and rupture process of large megathrust earthquakes. As most seismic activity occurred ~100 km offshore of the coastline, the onshore nature of the network only covers the rupture area to the east resulting in poor azimuthal coverage and hindering accurate depth estimation of seismic events. To improve the location accuracy of the Pisagua seismic sequences, we installed a temporary seismic network that was operative from 1 May 2014. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and three stations at the slopes of Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake.Our study focuses on the nucleation area, where part of the precursory sequence and a slow slip event occurred (Ruiz et al., 2014). This region became significantly stronger in the two weeks preceding the Pisagua mainshock. On 16 March 2014 the strongest foreshock (Mw 6.7) occurred offshore of Pisagua with a centroid depth of 10 km, shallower than the estimated subduction interface.In this study aftershock locations are further constrained using observations from the new network installed in Peru. We carefully estimate event locations and we compute regional moment tensor solutions by 1-D full waveform inversion of the broadband data. To improve our solutions, we are currently relocating aftershocks, to correct for foreshock mislocations by using the double-difference earthquake

  20. Along-strike segmentation of the Abanico Basin, central Chile: New chronological, geochemical and structural constraints

    Science.gov (United States)

    Piquer, Jose; Hollings, Pete; Rivera, Orlando; Cooke, David R.; Baker, Michael; Testa, Francisco

    2017-01-01

    The Andes of central Chile are composed mostly of Cenozoic volcanic rocks, erupted during the opening and subsequent inversion of the intra-arc volcano-tectonic Abanico Basin. Until recently, the internal segmentation of this inverted basin was poorly understood. Based on a combination of U-Pb geochronology, (U-Th)/He thermochronology, whole rock geochemistry and structural data, we propose that the Abanico Basin can be divided into two main segments, separated by the NW-striking Piuquencillo fault and conjugate, NE-striking faults. Stratigraphic units defined in the northern segment (Abanico and Farellones formations) cannot be correlated with the rocks of the southern segment (Coya-Machali Formation and Teniente Volcanic Complex) in terms of lithofacies, depositional ages and geochemistry. The northern and southern segments also show temporal differences in their tectonic evolution. An early deformation event beginning at 22 Ma affected only the northern segment and is associated with the formation of progressive unconformities between the Abanico and Farellones formations, and also with crustal thickening as reflected in the geochemistry of the Farellones Formation. A second stage of crustal thickening and exhumation began at 12 Ma, as suggested by a sharp increase of the La/Yb ratios in the northern segment. In the southern segment, this event is reflected by only a moderate increase of La/Yb ratios, and by the transition between the Coya-Machali Formation and the Teniente Volcanic Complex. Finally, a third stage of exhumation and crustal thickening beginning at 7 Ma affected both the northern and southern segments. This last stage was the main exhumation event affecting the rocks of the Andes of central Chile, and is recorded in the geochemistry of igneous rocks by a sharp increase in the La/Yb ratios in the southern segment.

  1. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by obtain

  2. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by obtain

  3. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by

  4. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  5. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  6. The geological evolution of Merapi volcano, Central Java, Indonesia

    Science.gov (United States)

    Gertisser, Ralf; Charbonnier, Sylvain J.; Keller, Jörg; Quidelleur, Xavier

    2012-07-01

    Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K-40Ar and 40Ar-39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170 ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109 ± 60 ka), a small basaltic andesite volcanic structure on Merapi's north-east flank, and Gunung Turgo and Gunung Plawangan (138 ± 3 ka; 135 ± 3 ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30 ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8 ± 1.5 ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792 ± 90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an

  7. Chile: Una Vision Politica, Economica y Social (Chile: A Political, Economic, and Social View).

    Science.gov (United States)

    Cortes-Hwang, Adriana

    1972-01-01

    This address seeks to explain in brief the historical background and political, economic, and social conditions leading to the democratic election of a Marxist president in Chile. A historical sketch of Chilean government from independence in 1810 is provided with a description of the situation just before Salvador Allende's election in 1969. Some…

  8. [A scientometric view of Revista Médica de Chile].

    Science.gov (United States)

    Krauskopf, Manuel; Krauskopf, Erwin

    2008-08-01

    During the last decade Revista Médica de Chile increased its visibility, measured on citations and impact factor. To perform a scientometric analysis to assess the performance of Revista Médica de Chile. Thomson's-ISI Web of Science and Journal Citation Reports QCR) were consulted for performance indicators of Revista Médica de Chile and Latin American journals whose subject is General and Internal Medicine. We also report the h-index of the journal, which infers quality linked to the quantity of the output. According to the h-index, Revista Médica de Chile ranks 4 among the 36 journals indexed and published by Argentina, Brazil, Chile and México. The top ten articles published by Revista Médica de Chile and the institutions with the higher contribution to the journal, were identified using citations. In the Latin American region, Brazil relevantly increased its scientific output. However, Argentina, Chile and México maintain a plateau during the last decade. Revista Médica de Chile increased notoriously its performance. Its contribution to the Chilean scientific community dedicated to Medicine appears to be of central value.

  9. Studies to Control Endemic Typhoid Fever in Chile

    Science.gov (United States)

    1985-09-01

    Society for Microbiology, Chapter 16. 10. Medina E, Yrarrazaval M. (1983) Fiebre tifoidea en Chile: Consideraciones epideniologicas. Revista Medica de... panamericana .’ Santiago, Chile. 12. Morris JG Jr., Ferreccio C, Garcia J, Lobcs H, Black RE, Rodriguez H, Levine MM. (1984) TypAhoid fever in Santiago

  10. Critical Perspectives on Adolescent Vocational Guidance in Chile

    Science.gov (United States)

    McWhirter, Ellen Hawley; McWhirter, Benedict T.

    2012-01-01

    In this article, the lens of critical psychology is applied to adolescent career development and vocational guidance in Chile. The authors describe and critique the status of adolescent vocational guidance in Chile, the reproduction of extant social inequities in Chilean education, and offer recommendations for enhancing vocational guidance…

  11. Honors in Chile: New Engagements in the Higher Education System

    Science.gov (United States)

    Skewes, Juan Carlos; Sampaio, Carlos Alberto Cioce; Conway, Frederick J.

    2012-01-01

    Honors programs are rare in Latin America, and in Chile they were unknown before 2003. At the Universidad Austral de Chile, an interdisciplinary group of scholars linked to environmental studies put forward a pilot project for implementing a new experience in higher education. Challenged by an educational environment where (i) apathy and…

  12. Childcare in Chile. The role of ethnicity and socioeconomic inequalities

    NARCIS (Netherlands)

    Cárcamo Leiva, Rodrigo Alejandro

    2014-01-01

    Chile has embarked on a road that must lead to the reduction of inequality gaps for the population. A public policy called Chile Growths With You has focused on an increase in the breadth of coverage of non-maternal care through childcare centers to provide equal opportunities in early childhood and

  13. Critical Perspectives on Adolescent Vocational Guidance in Chile

    Science.gov (United States)

    McWhirter, Ellen Hawley; McWhirter, Benedict T.

    2012-01-01

    In this article, the lens of critical psychology is applied to adolescent career development and vocational guidance in Chile. The authors describe and critique the status of adolescent vocational guidance in Chile, the reproduction of extant social inequities in Chilean education, and offer recommendations for enhancing vocational guidance…

  14. Report on the ESO Fellows Days in Chile 2011

    Science.gov (United States)

    West, M.; Emsellem, E.

    2012-03-01

    The 2011 ESO Fellows Days were held in Chile and brought together over 30 ESO Fellows from Garching and Chile. As well as presentations of research and social activities, the Fellows Days included a visit to San Pedro de Atacama and the ALMA site.

  15. Chile, Latin America, and the Asia-Pacific Region

    Directory of Open Access Journals (Sweden)

    Manfred Wilhelmy

    2005-01-01

    Full Text Available Text of a presentation in the Colloquium Chile and the World, organized by the Princeton University Program in Latin American Studies, May 6, 2005, in honor of Professor Paul E.Sigmund. The views expressed have not been reviewed or endorsed by the Chile Pacific Foundation. Manfred Wilhelmy holds a Ph.D. in Politics (1973 from Princeton University

  16. The Mass Media and Political Socialization: Chile, 1970-2000

    Science.gov (United States)

    Walter, Amy R.

    2005-01-01

    This project seeks to determine the effect of the mass media on political attitudes and behaviors in Chile between the years 1970 and 2000. The relationship between the media and "political socialization" is just now gaining recognition in scholarly research, and Chile offers an excellent case study. This paper traces these two variables…

  17. Two magma bodies beneath the summit of Kilauea Volcano unveiled by isotopically distinct melt deliveries from the mantle

    Science.gov (United States)

    Pietruszka, Aaron J; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.

    2015-01-01

    The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas—from 1959 to the active Halema‘uma‘u lava lake—to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2–4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body 4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969–1974 Mauna Ulu, 1983-present Pu‘u ‘Ō‘ō and 2008-present Halema‘uma‘u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to the delivery of new magma batches from the volcano's source region within the Hawaiian mantle plume.

  18. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  19. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park....

  20. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  1. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  2. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  3. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  4. Mechanical coupling between earthquakes, volcanos and landslides

    Science.gov (United States)

    Feigl, K. L.; Retina Team

    2003-04-01

    "The eruption began as a large earthquake that triggered a massive landslide that culminated in a violent lateral explosion" [Malone et al., USGS 1981]. The 1980 eruption of Mount St. Helens taught a very powerful lesson -- that one natural hazard can trigger another. For example, earthquakes have triggered landslides in Papua New Guinea. Similarly, eruptions of Vesuvius are mechanically coupled to earthquakes in the Appenines, just as an inflating magma chamber can trigger earthquakes near Hengill volcano in SW Iceland and on the Izu Peninsula in Japan. The Luzon earthquake may have triggered the eruption of Mount Pinatubo. In many of these cases, the second triggered event caused more damage than the initial one. If we can better understand the mechanical coupling underlying the temporal and spatial correlation of such events, we will improve our assessments of the hazards they pose. The RETINA project has been funded by the European Commission's 5th Framework to study couplings between three classes of natural hazards: earthquakes, landslides, and volcanoes. These three phenomena are linked to and by the stress field in the crust. If the stress increases enough, the material will fail catastrophically. For example, magma injection beneath a volcano can trigger an earthquake by increasing stress on a fault. Increasing shear stress on unconsolidated materials on steep slopes can trigger landslides. Such stress change triggers may also be tectonic (from plate driving forces), hydrological (from heavy rain), or volcanic (magmatic injection). Any of these events can perturb the stress field enough to trigger another event. Indeed, stress changes as small as 0.1 bar (0.01 MPa) suffice to trigger an earthquake. If the medium is close to failure, this small change can increase the Coulomb stress beyond the yield threshold, breaking the material. This quantity is the primary means we will use for describing mechanical coupling. In this paper, we will review several case

  5. China and Chile Are to Be Free-Trade Partners

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ In line with the words "We hope that Chile's Next Partner is China", Chile is believed to choose China as the new negotiation party of Free Trade Agreements after signing respectively free trade agreements with Canada, the United States, EU and ROK. On January 24, Chile's trade delegation composed of 20 members led by Kaiross Feirch, the Head of economy general department of the Ministry of Foreign Affairs paid the first visit to China to launch first five-day round of mutual trade negotiation.Kaiross Feirch, the Head of economy general department of the Ministry of Foreign Affairs of Chile and Barbirlo Kafuleirla, Chile's Ambassador to China received special visit of reporters about this round.

  6. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  7. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-03-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  8. Magmatic gas scrubbing: Implications for volcano monitoring

    Science.gov (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  9. Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China

    Science.gov (United States)

    Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin

    2017-04-01

    Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water

  10. Characteristics and management of the 2006-2008 volcanic crisis at the Ubinas volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Mariño, Jersy; Berolatti, Rossemary; Fuentes, José

    2010-12-01

    Ubinas volcano is located 75 km East of Arequipa and ca. 5000 people are living within 12 km from the summit. This composite cone is considered the most active volcano in southern Peru owing to its 24 low to moderate magnitude (VEI 1-3) eruptions in the past 500 years. The onset of the most recent eruptive episode occurred on 27 March 2006, following 8 months of heightened fumarolic activity. Vulcanian explosions occurred between 14 April 2006 and September 2007, at a time ejecting blocks up to 40 cm in diameter to distances of 2 km. Ash columns commonly rose to 3.5 km above the caldera rim and dispersed fine ash and aerosols to distances of 80 km between April 2006 and April 2007. Until April 2007, the total volume of ash was estimated at 0.004 km 3, suggesting that the volume of fresh magma was small. Ash fallout has affected residents, livestock, water supplies, and crop cultivation within an area of ca. 100 km 2 around the volcano. Continuous degassing and intermittent mild vulcanian explosions lasted until the end of 2008. Shortly after the initial explosions on mid April 2006 that spread ash fallout within 7 km of the volcano, an integrated Scientific Committee including three Peruvian institutes affiliated to the Regional Committee of Civil Defense for Moquegua, aided by members of the international cooperation, worked together to: i) elaborate and publish volcanic hazard maps; ii) inform and educate the population; and iii) advise regional authorities in regard to the management of the volcanic crisis and the preparation of contingency plans. Although the 2006-2008 volcanic crisis has been moderate, its management has been a difficult task even though less than 5000 people now live around the Ubinas volcano. However, the successful management has provided experience and skills to the scientific community. This volcanic crisis was not the first one that Peru has experienced but the 2006-2008 experience is the first long-lasting crisis that the Peruvian civil

  11. Families of similar events and modes of oscillation of the conduit at Yasur volcano (Vanuatu)

    Science.gov (United States)

    Battaglia, Jean; Métaxian, Jean-Philippe; Garaebiti, Esline

    2016-08-01

    We examined one year of seismic recordings collected in 2008 during a temporary experiment at Yasur volcano (Vanuatu). The volcano has a permanent Strombolian activity that was at a relatively high level during most of our experiment with commonly at least one explosion per minute. Associated with this activity, the network recorded intense seismicicity with hundreds of transients per day. Video recordings indicate that most of the high frequency transients are directly related to the strombolian explosions. They also outline the presence of fewer signals which are not accompanied by any surface activity. The classification of transient events recorded at a station close to the summit indicates that a significant part of the events exhibit waveform similarity. This technique allows the identification of characteristic repeating events among the hundreds of thousands of transients recorded during the experiment. Most of the families of similar events are groups of explosion quakes (EQs) but a few are groups of Long Period events related to deeper processes. By scanning the 9 months of continuous data available at the summit station with master events extracted from these families we reconstruct their temporal evolution. Our results show that several families dominate the activity with a few of them lasting for several months. We show that their temporal evolutions can be used to probe changes in the structure or activity of the volcano. We observe that a major change was induced by a M = 7.3 subduction earthquake which occurred on April 9, 2008 about 80 km from the volcano. While this event did not change significantly the surface morphology of the volcano nor the intensity of the eruptive activity, it interrupted the families as none of them is present both before and after the event. This change in the waveforms can be explained by a drop in the seismic velocity of the volcano caused by the distal event. Numerous other transitions between families are observed

  12. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  13. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  14. Water in volcanoes: evolution, storage and rapid release during landslides.

    Science.gov (United States)

    Delcamp, Audray; Roberti, Gioachino; van Wyk de Vries, Benjamin

    2016-12-01

    Volcanoes can store and drain water that is used as a valuable resource by populations living on their slopes. The water drainage and storage pattern depend on the volcano lithologies and structure, as well as the geological and hydrometric settings. The drainage and storage pattern will change according to the hydrometric conditions, the vegetation cover, the eruptive activity and the long- and short-term volcano deformation. Inspired by our field observations and based on geology and structure of volcanic edifices, on hydrogeological studies, and modelling of water flow in opening fractures, we develop a model of water storage and drainage linked with volcano evolution. This paper offers a first-order general model of water evolution in volcanoes.

  15. Status of market, regulation and research of genetically modified crops in Chile.

    Science.gov (United States)

    Sánchez, Miguel A; León, Gabriel

    2016-12-25

    Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Governing the Extractive Sector: The Politics of Globalisation and Copper Policy in Chile

    Directory of Open Access Journals (Sweden)

    Jewellord T. Nem Singh

    2010-09-01

    Full Text Available Chile exhibits an immense continuity in its copper policy and the sector’s reliable output contributes enormously to the tax revenues of the state. Copper in Chile is thus an interesting case because it challenges the presumed failure of neoliberal reforms in Latin America. It does this in a number of different ways. First, the sector is a clear success in terms of its output and contribution to GDP. Second, private capital and foreign direct investment in particular plays a critical role in developing the mining sector. Third, state- owned CODELCO has stood firmly against multinational companies. And fourth, Chile simultaneously exhibits a stability of rules inherited from Pinochet’s neoliberalism; labour relations characterised by conflict and co-optation; and a depoliticised mode of governance marked by copper policy technopols and an indirect link between copper and social policy. This paper argues that the Chilean state under La Concertación government has played an important ‘steering’ role by defusing the various political conflicts, contradictions and tensions in copper policy.

  17. Health care privatization in Latin America: comparing divergent privatization approaches in Chile, Colombia, and Mexico.

    Science.gov (United States)

    Bustamante, Arturo Vargas; Méndez, Claudio A

    2014-08-01

    The public-private mix in Chile, Colombia, and Mexico was very similar until the early 1980s when Chile undertook health care privatization as part of comprehensive health care reform. Since then, health care privatization policies have diverged in these countries. In this study we characterize health care privatization in Latin America and identify the main factors that promoted and hindered privatization by comparing the experiences of these countries. We argue that policy elites took advantage of specific policy environments and the diffusion of privatization policies to promote health care privatization while political mobilization against privatization, competing policy priorities, weak market and government institutions, and efforts to reach universal health insurance hindered privatization. The privatization approaches of Chile and Colombia were classified as "big-bang," since these countries implemented health care privatization more rapidly and with a wider scope compared with the case of Mexico, which was classified as gradualist, since the privatization path followed by this country adopted a slower pace and became more limited and focalized over time. We conclude that the emphasis on policy-driven privatization diminished in the 1990s and 2000s because of increased public health care financing and a shift in health care reform priorities. Health care privatization in the region, however, continued as a consequence of demand-driven privatization.

  18. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    Claudio Vásquez

    2013-12-01

    Full Text Available Corresponding author: Claudio Vásquez, School of Architecture, Catholic University of Chile. 1916 El Comendador str. Providencia, Santiago, ZIP: 7530091, Chile. Tel.: +56 9 92826305; E-mail: clvasque@uc.cl This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception. Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed. Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace. The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  19. La atencion preescolar en Chile: desafios para la redemocratizacion (Preschool Care in Chile: Challenges for Redemocratization. Discussion Paper No. 13).

    Science.gov (United States)

    Filp, Johanna; Undurrage, Consuelo

    This paper examines the current status of programs for preschool children in Chile. Section 1 of the paper provides an overview of the situation of preschool children in Chile. The country's population includes more than 1.6 million children between the ages of 0 and 5 years 11 months, and in urban areas, 18.4 percent of children between the ages…

  20. Estudio del campo ocupacional del traductor en Santiago de Chile (A Study of Opportunities for Professional Translators in Santiago, Chile).

    Science.gov (United States)

    Cabrera, Ileana; And Others

    A study of translation as a profession in Chile covered two areas: a diagnostic study of the real need for literary, scientific, and technical translations, and a followup study of graduates of the translation degree program at the Catholic Pontifical University of Chile (Santiago). The analysis considered the relationship between the need for…

  1. Pobreza Multidimensional en Chile: 1990-2009

    OpenAIRE

    Claudia Sanhueza; Angela Denis; Francisca Gallegos

    2010-01-01

    Este trabajo presenta una propuesta de medición multidimensional de la pobreza para Chile. Siguiendo el enfoque conceptual de Amartya Sen, pobreza no es meramente insuficiencia de ingresos, sino se define como privación de capacidades para la realización de funcionamientos valiosos en la vida. Medimos carencias individuales en tres grupos de la población: niños, población económicamente activa y adultos mayores, y en cinco dimensiones: educación, salud, vivienda, empleo e ingresos. La justifi...

  2. EFECTOS DEL EMBARAZO ADOLESCENTE EN CHILE

    OpenAIRE

    LOYOLA HEUFEMANN, AMANDA

    2014-01-01

    Los efectos del embarazo adolescente en Chile han sido poco estudiados aun cuando existe diversa literatura para el resto del mundo, en especial para países desarrollados. Este trabajo estima el efecto del embarazo adolescente sobre la asistencia o completitud de la educación secundaria, años de escolaridad y participación laboral. Usando datos de corte transversal del a˜no 2012 y un enfoque de variable instrumental a trav´es del uso de la entrega comunal de la píldora anticoncept...

  3. Pentecostalism and Politics in Neoliberal Chile

    Directory of Open Access Journals (Sweden)

    Martin Lindhardt

    2013-02-01

    Full Text Available Este artículo investiga las relaciones históricas y contemporáneas entre el Pentecostalismo y la política en Chile. La primera parte del artículo provee un resumen histórico del crecimiento y consolidación de la religión Pentecostal en relación a diferentes ambientes políticos. En este artículo se esclarecen además las diferentes posturas Pentecostales hacia la esfera política. En particular hago hincapié, en cómo surge una cultura de desencanto político en el Chile post-dictatorial que crea un vacío simbólico, el cual trae como consecuencia el nacimiento de movimientos religiosos. En la segunda parte de este artículo se discute las posibles afinidades entre el Pentecostalismo, como una cultura religiosa, y los principios democráticos. El argumento es que a pesar de que el Pentecostalismo puede contener algunas cualidades democráticas, también existe una compatibilidad notable entre la visión teísta e individualista Pentecostal acerca de los cambios sociales, y un orden social neoliberal, en donde la indolencia política se expande y en donde predomina un sentido de progreso individual y no colectivo. English: This article explores historical and contemporary relationships between Pentecostalism and politics in Chile. The first part of the article provides an historical account of the growth and consolidation of Pentecostal religion within changing political environments and sheds light on Pentecostal stances to and involvements with the political sphere. In particular, it focuses on how a culture of political disenchantment has emerged in post-dictatorial neo-liberal Chile, creating a symbolic void that can be filled by religious movements. The second part of the article discusses possible affinities between Pentecostalism as a religious culture and democratic principles and values. It argues that although Pentecostalism may contain certain democratic qualities, there is also a striking compatibility between, on the one

  4. The Death of Socialism in Chile

    Science.gov (United States)

    1992-06-05

    him to return. During his absence Chile was ruled by a junta lead by General Carlos Ibanez del Campo . Welcomed back in March 1925, Alessandri kept...dictatorship of Colonel (later General) Carlos Ibanez del Campo in 1931-32. The first two were the product of divisions within the political community; the last...the Investigaciones detachment, and tanks were lined up in front of the palace. At 1:30 P.M. shortly after the Air Force bombed the presidential palace

  5. Recent IBA setup improvements in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1 (Chile)]. E-mail: pmiranda@fisica.ciencias.uchile.cl; Chesta, M.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1 (Chile); Cancino, S.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1 (Chile); Morales, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1 (Chile); Dinator, M.I. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1 (Chile); Wachter, J.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1 (Chile); Tenreiro, C. [Facultad de Ingenieria, Campus Curico, Universidad de Talca (Chile)

    2006-07-15

    This paper describes the main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator model KN3750 of HVE at University of Chile. Recent setup improvements on three beam lines available, one dedicated for PIXE analyzes, one designed for RBS-PESA analyzes and a multipurpose vacuum chamber, as well as beam energy calibration experiments of the accelerator will be summarized. Current research activities are focused on the application of the different IBA techniques for the material, biological and environmental analysis. In addition, nuclear activation analysis and the study of nuclear reactions of astrophysical interest has begun to be developed as basic research.

  6. Sobre lectura y escritura en Chile

    Directory of Open Access Journals (Sweden)

    Grínor Rojo

    2011-11-01

    Full Text Available In recent years, research conducted in Chile on reading, reading proficiency and reading news on politics shows that negative values around 50. These data add to the forty million illiterates in Latin America, so this article rejects the death of the book and the frivolous faith in the replacement of the book by the use of information technology and communication (schools full of computers Instead, he insists on paying serious attention to the links between reason, book, and reading in the development of the individual and society

  7. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  8. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe

    1999-06-01

    Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).

  9. 75 FR 10846 - The Chile Fund, Inc., et al.; Notice of Application

    Science.gov (United States)

    2010-03-09

    ... COMMISSION The Chile Fund, Inc., et al.; Notice of Application March 2, 2010. AGENCY: Securities and Exchange.... Applicants: The Chile Fund, Inc. (``Chile Fund''), Aberdeen Australia Equity Fund (``Australia Fund,'' together with the Chile Fund, the ``Current Funds''), Aberdeen Asset Management Asia Limited...

  10. Dos edificios públicos a base de tierra en Chile

    Directory of Open Access Journals (Sweden)

    Pereira, Hugo

    1986-02-01

    Full Text Available Two works in Chile are reported: The House of the Culture in La Florida (Santiago and the Botalcura Concentred School in the Vlllth Zone. Both constructions have as common characteristic to be built with adobe and wooden girders, to present a certain continuity in the adapted criteria of desing -both from Architect Hugo Pereira- and to be newly constructed buildings, even partialy in construction. The fact that there are spaces with appropriate light and height for public use, so as the circumstance that the part which waas being constructed just at the moment of the great seism in Chile (February 1985 had and excelent behaviour, makes these works interesting to be published.Se presentan dos realizaciones en Chile: la Casa de la Cultura, en la barriada La Florida (Santiago y la Escuela Concentrada de Botalcura, en la VIII Región. Ambas construcciones tienen en común el haberse realizado a base de adobe y cerchas de madera, el presentar una cierta continuidad en los criterios de diseño adoptados, en ambas ha participado el Arquitecto Hugo Pereira, y ser edificios recién construidos, incluso parcialmente en construcción. El hecho de tratarse de espacios con luces y alturas propias de construcciones para uso público, así como la circunstancia de que la parte construida de la Casa de la Cultura en el momento del último gran sismo en Chile (marzo 1985, presentase un excelente comportamiento, son hechos que hacen especialmente interesante la publicación de estas realizaciones.

  11. The Activity Of The Colima Volcano From 1999 To The 2003

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez-Cornu, F.; Reyes-Davila, G.; Diaz-Torres, J.

    2004-12-01

    The Colima Volcano has shown intense activity since the 10th of February 1999. This explosive activity of 1999 and 2000 generated an elliptical crater of 260 x 265 m, which began to be filled in by a Dome from October 2001, at February 2002 the volume of the Dome was of approximately 2x106 m3 spreading over the edges of the crater and starting to flow during the following 11 months, in this period small lobes formed on the flanks of the volcano. Constants landslides originated in these lobes filled ravines of San Antonio, El Cordovan, El Muerto, El Cafesito and Atenquique (subsequent to the earthquake of January of the 2003) with non consolidated materials, increasing the hazard of lahares during the rainy season. Beginning February 2003 the explosive activity increased, most significantly from April to August, when the plumes reached heights over 2000 meters above the crater, occasionally small pyroclastic flows were observed. The explosive events continue to date. We mapped the most significant morphological changes produced at the summit by the activity described, using three photogrammetric flights conducted by INEGI (2003) and CARTODATA (2002 and 2003). These were data complemented by a very large number of photographs taken on helicopter flights undertaken during these months. Both the photographs and the digital mapping have provided detailed information to quantify the geomorphologic evolution of the superior section of the volcano, in the course of the last five years.

  12. 4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives

    Science.gov (United States)

    Brenguier, Florent; Rivet, Diane; Obermann, Anne; Nakata, Nori; Boué, Pierre; Lecocq, Thomas; Campillo, Michel; Shapiro, Nikolai

    2016-07-01

    Monitoring magma pressure buildup at depth and transport to surface is a key point for improving volcanic eruption prediction. Seismic waves, through their velocity dependence to stress perturbations, can provide crucial information on the temporal evolution of the mechanical properties of volcanic edifices. In this article, we review past and ongoing efforts for extracting accurate information of temporal changes of seismic velocities at volcanoes continuously in time using records of ambient seismic noise. We will first introduce the general methodology for retrieving accurate seismic velocity changes from seismic noise records and discuss the origin of seismic velocity temporal changes in rocks. We will then discuss in a second part how noise-based monitoring can improve our knowledge about magmatic activity at a long (years) to a short (days) time scale taking example from Piton de la Fournaise volcano (La Réunion). We will also mention ongoing efforts for operational noise-based seismic monitoring on volcanoes. Further, we will discuss perspectives for improving the spatial localization of detected velocity changes at depth with a special focus on the use of dense seismic arrays. In the last part, we will finally explore the complex response of volcanic regions to seismic shaking with an example from Japan and show how imaging seismic velocity susceptibility allows characterizing the state of pressurized fluids in volcanic regions.

  13. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    Science.gov (United States)

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  14. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  15. Remote triggering of seismicity at Japanese volcanoes following the 2016 M7.3 Kumamoto earthquake

    Science.gov (United States)

    Enescu, Bogdan; Shimojo, Kengo; Opris, Anca; Yagi, Yuji

    2016-10-01

    The MJMA7.3 Kumamoto earthquake occurred on April 16, 2016, in the western part of Kyushu, at a depth of 12 km, on an active strike-slip fault. Here, we report on a relatively widespread activation of small remote earthquakes, which occurred as far as Hokkaido, detected by analyzing the continuous waveform data recorded at seismic stations all over Japan. Such relatively widespread remote seismicity activation, following a large inland earthquake, has not been reported before for Japan. Our analysis demonstrates that the remote events were triggered dynamically, by the passage of the surface waves from the Kumamoto earthquake. Most of the remotely triggered events in the Tohoku and Hokkaido regions, as well as close to Izu Peninsula, occur at or close to volcanoes, which suggests that the excitation of crustal fluids, by the passage of Rayleigh waves, played an important triggering role. Nevertheless, remote activation in other regions, like Noto Peninsula, occurred away from volcanoes. The relatively large-amplitude Love waves, enhanced by a source directivity effect during the Kumamoto earthquake, may have triggered seismicity on local active faults. The dynamic stresses in the areas where remote activation has been observed range from several kPa to tens of kPa, the thresholds being lower than in previous dynamic triggering cases for Japan; this might relate to a change in the crustal conditions following the 2011 M9.0 Tohoku-oki earthquake, in particular at volcanoes in NE Japan.[Figure not available: see fulltext.

  16. [Reflections about the historical development of biomedical sciences in Chile and the role of Revista Médica de Chile: an homage on 130-years old].

    Science.gov (United States)

    Vargas Fernández, Luis

    2002-12-01

    When Revista Médica de Chile turns to be 130 years old, the author reflects about the difficulties that scientific and technological creativity faces in Chile, considering that there was a 70 years gap between its historical origin in Chile compared to developed countries. The scientific progress erases the boundaries between Biomedicine and science and technology. This progress has resulted in an improvement in the quality of scientific publications in Revista Medica de Chile. The editorial work has also contributed to this improvement. Revista Medica de Chile has obtained international recognition and stands in a good position as a medical journal in Latin America and Chile.

  17. The volcanoes and clouds of Venus

    Science.gov (United States)

    Prinn, R. G.

    1985-03-01

    One of the earth's most intriguing features is its geologic activity. However, volcanic eruptions have not been observed on any other body in the solar system, except for a detection of such eruptions on Jupiter's moon Io. As in a number of respects Venus is similar to earth, questions arise regarding the presence of active volcanoes on Venus. In the past, the study of such questions was made difficult or impossible by the layer of clouds surrounding the Venusian surface. In the past half decade the situation has changed. These changes are mainly related to studies based on a utilization of radio waves and microwaves which can pass through the cloud layer. Such studies have been conducted with the aid of terrestrial radio telescopes, the Pioneer Venus satellite orbiting Venus, and two Russian spacecraft. The results of these studies are discussed in detail. It appears that there are active volcanoes on Venus. This volcanism is a key link in the chemical cycle which produces the clouds. The levels of volcanic activity on Venus and earth seem to be roughly comparable.

  18. Volcano-ice interactions on Mars

    Science.gov (United States)

    Allen, C. C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.

  19. Monitoring Santorini volcano (Greece) breathing from space

    Science.gov (United States)

    Foumelis, Michael; Trasatti, Elisa; Papageorgiou, Elena; Stramondo, Salvatore; Parcharidis, Issaak

    2013-04-01

    Since its last eruption in 1950, Santorini volcano (Greece) remained in a dormant state. This is also evidenced for the period 1992-2010 by the gradual deflation signal over Nea Kameni as measured by satellite Synthetic Aperture Radar Interferometry (InSAR) with low rates of about 5-6 mm yr-1 as well as by the absence of seismic activity within the caldera. However, at the beginning of 2011 the volcano showed signs of unrest with increased microseismic activity and significant ground uplift, reaching 14 cm within a year (2011 March-2012 March), according to InSAR time-series. ALOS PALSAR data indicate the onset of the phenomenon in early 2010 where an aseismic pre-unrest phase of increased subsidence (1-3 cm) preceded the uplift. Joint inversions of SAR and GPS velocities using spherical and spheroidal magmatic source types indicate their location offshore at about 1 km north of Nea Kameni and between 3.5 and 3.8 km depth. The estimated volume variation rate is 6 × 106 m3 yr-1 to 9 × 106 m3 yr-1. A gradual slowing in the rate of inflation within the first quarter of 2012 is apparent by ENVISAT data, while subsequent observations from RADARSAT-2 confirm the observed trend.

  20. Three and two-dimensional electrical conductivity of the mantle near the Chile-Argentina Nazca Flat Slab: insights into slab behavior

    Science.gov (United States)

    Burd, A. I.; Booker, J. R.; Mackie, R. L.; Pomposiello, C.; Favetto, A.; Larsen, J. C.

    2010-12-01

    Near 31.5°S, the subducted Nazca slab beneath Chile and western Argentina levels out near 100 km depth and does not roll over to plunge steeply into the mantle for several hundred km to the east. This flat slab prevents formation of an asthenospheric wedge under the Andes and consequently there are no active volcanoes. To the south this slab returns to a dip of ~30°, an asthenospheric wedge forms and there are active volcanoes south of 33.3°S in the Andean Southern Volcanic Zone (SVZ). The prevailing view is that the Nazca slab is warped continuously between its flat and dipping segments. Over the last decade, we have collected 83 magnetotelluric (MT) sites that form an array in Argentina from 60° - 70°W and 31.5° - 34°S. 18 sites extend this coverage along a profile near 31.5°S past where the flat slab plunges into the lower mantle. These data were initially collected as linear profiles. Eventually it became clear that the structure at mantle depth was 3D. The site geometry was thus expanded to its current 2D array. The final sites in this array were collected in late 2009. While each year’s data set was originally internally consistent, preparation of the complete data set required recalculation of the impedance tensor at each site so that all data are compatible and comparable. MT impedance tensor data (including vertical to horizontal magnetic field transfer functions) are being inverted for smoothest log conductivity using a 3D non-linear conjugate gradient (NLCG) algorithm. Initial results of this 3D study will be presented. Several conclusions have already emerged from 2D interpretations of subsets of the data. There is an asthenospheric wedge east of the flat slab. Its top at 100 km is probably at the base of the lithosphere through which it has not penetrated, presumably because of compressive stresses. This wedge is horizontally thin and is bounded to the east by the root of the Rio de la Plata Craton and to the west by the plunging slab. It

  1. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae).

    Science.gov (United States)

    Troncoso-Palacios, Jaime; Diaz, Hugo A; Puas, German I; Riveros-Riffo, Edvin; Elorza, Alvaro A

    2016-01-01

    Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus (sensu stricto) and Eulaemus, distributed mainly in Chile and Argentina. The Liolaemus elongatus-kriegi complex is the most diverse group within Liolaemus (sensu stricto), especially the species closely related to Liolaemus elongatus, which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the Liolaemus elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus (sensu stricto) is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis. Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs) of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that Liolaemus lonquimayensis is a synonym of Liolaemus elongatus.

  2. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae

    Directory of Open Access Journals (Sweden)

    Jaime Troncoso-Palacios

    2016-11-01

    Full Text Available Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus (sensu stricto and Eulaemus, distributed mainly in Chile and Argentina. The L. elongatus-kriegi complex is the most diverse group within Liolaemus (sensu stricto, especially the species closely related to L. elongatus, which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the L. elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus (sensu stricto is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis. Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that L. lonquimayensis is a synonym of L. elongatus.

  3. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae)

    Science.gov (United States)

    Troncoso-Palacios, Jaime; Diaz, Hugo A.; Puas, German I.; Riveros-Riffo, Edvin; Elorza, Alvaro A.

    2016-01-01

    Abstract Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus (sensu stricto) and Eulaemus, distributed mainly in Chile and Argentina. The Liolaemus elongatus-kriegi complex is the most diverse group within Liolaemus (sensu stricto), especially the species closely related to Liolaemus elongatus, which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the Liolaemus elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus (sensu stricto) is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis. Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs) of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that Liolaemus lonquimayensis is a synonym of Liolaemus elongatus. PMID:27920609

  4. Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: Occurrence, bulking and transformation

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.

    2005-01-01

    A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment flow. Copyright c 2004 John Wiley & Sons, Ltd.

  5. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications

    Science.gov (United States)

    Fearnley, C. J.; McGuire, W. J.; Davies, G.; Twigg, J.

    2012-11-01

    The standardisation of volcano early warning systems (VEWS) and volcano alert level systems (VALS) is becoming increasingly common at both the national and international level, most notably following UN endorsement of the development of globally comprehensive early warning systems. Yet, the impact on its effectiveness, of standardising an early warning system (EWS), in particular for volcanic hazards, remains largely unknown and little studied. This paper examines this and related issues through evaluation of the emergence and implementation, in 2006, of a standardised United States Geological Survey (USGS) VALS. Under this upper-management directive, all locally developed alert level systems or practices at individual volcano observatories were replaced with a common standard. Research conducted at five USGS-managed volcano observatories in Alaska, Cascades, Hawaii, Long Valley and Yellowstone explores the benefits and limitations this standardisation has brought to each observatory. The study concludes (1) that the process of standardisation was predominantly triggered and shaped by social, political, and economic factors, rather than in response to scientific needs specific to each volcanic region; and (2) that standardisation is difficult to implement for three main reasons: first, the diversity and uncertain nature of volcanic hazards at different temporal and spatial scales require specific VEWS to be developed to address this and to accommodate associated stakeholder needs. Second, the plural social contexts within which each VALS is embedded present challenges in relation to its applicability and responsiveness to local knowledge and context. Third, the contingencies of local institutional dynamics may hamper the ability of a standardised VALS to effectively communicate a warning. Notwithstanding these caveats, the concept of VALS standardisation clearly has continuing support. As a consequence, rather than advocating further commonality of a standardised

  6. Space Radar Image of Karisoke & Virunga Volcanoes

    Science.gov (United States)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  7. Terrestrial Real-Time Volcano Monitoring

    Science.gov (United States)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  8. Igneous Petrogenesis of Tequila Volcano, Western Mexico

    Science.gov (United States)

    Vázquez-Duarte, A.; Gómez-Tuena, A.; Díaz-Bravo, B.

    2011-12-01

    Tequila volcano belongs to a Quaternary volcanic chain that runs in parallel to the Middle American Trench, but that have been constructed within the so-called Tepic-Zacoalco rift: an extensional tectonic structure that has been active for the past 3.5 Ma. This unusual tectonic setting, and the existence of a high-resolution stratigraphy for the Tequila Volcanic Field (Lewis-Kenedi, 2005, Bull Volcanol), provide an excellent opportunity to study andesite petrogenesis. New comprehensive geochemical data allow the recognition of at least four different magmatic series around Tequila: 1) The Santa Rosa intraplate basalts (1.0 - 0.2 Ma), a volcanic plateau constructed along the Santiago River Fault north of Tequila volcano. These Na-alkaline basalts are olivine-phyric, have negligible subduction signatures (Ba/Nb= 11.75 - 49.36), and display Sr-Nd-Pb isotopic compositions that correlate with fractionation indexes, probably indicating melt-crust interactions. 2) A group of vitreous domes and flows of dacitic to rhyolitic compositions, mostly contemporaneous to the Santa Rosa basalts, that were emplaced on the periphery of Tequila volcano. These rocks can have very low Sr and Eu contents but their isotopic compositions are remarkably constant and similar to the Santa Rosa basalts, probably indicating a genetic link through low pressure fractionation in the stability field of plagioclase. 3) The main edifice of Tequila volcano (~0.2 Ma) is made of two pyroxene andesites and dacites with strong subduction signatures (Ba/Nb= 53-112), that inversely correlate with MgO contents, but that follow a diverging evolutionary trend as the rest of the sequences. The isotopic compositions of Tequila main edifice can extend to slightly more enriched values, but do not correlate with fractionation indexes, thus indicating provenance from a different source. 4) The youngest activity on Tequila volcano (~0.09 Ma) is represented by amphibole bearing andesites that erupted through the

  9. Contributions to the mammalogy of Chile

    Science.gov (United States)

    Pine, Ronald H.; Miller, Sterling D.; Schamberger, Mel L.

    1979-01-01

    Collections of mammals were made during more than three years of biological investigations in Chile sponsored by the Corporación Nacional Forestal under the aegis of the Peace Corps (Smithsonian Environmental Program). Genera and species hitherto unreported for that country were taken and many useful data concerning distributional patterns of other (mostly little-known) species were gathered. These collections have also proved valuable in better understanding Chilean mammals from a taxonomic point of view and contribute knowledge of the species' natural history. Specimens are to be deposited in the (United States) National Museum of Natural History (USNM) or are to be retained by the Corporación Nacional Forestal, Avda, Bulnes 285, Depto. 401, Santiago. Numbers provided below are field numbers. A final division of specimens between the two institutions has not yet been made. A number of specimens reported here were not taken by Peace Corps personnel but have been obtained by the National Museum of Natural History from other sources. Specimens in the Field Museum of Natural History (FMNH) were used in making comparisons. Some of Fulk's (GWF) specimens are at Texas Tech University. Other are at the Servicio Agricola y Ganadero in Santiago (as are specimens of some introduced species taken by Schamberger). Reise's (DF) are at the Universidad de Chile-Concepción and in his personal collection.

  10. Silencio y memoria: Nocturno de Chile

    Directory of Open Access Journals (Sweden)

    Pedro Iniesta Ruiz

    2016-12-01

    Full Text Available El presente estudio, sostenido por el Trabajo de Fin de Grado Representación y ficción: Nocturno de Chile y Sostiene Pereira (2015, se introduce en la construcción literaria articulada en la obra Nocturno de Chile, de Roberto Bolaño, examinando y evaluando sus fronteras, fronteras que resultan tan movedizas como las de cualquier construcción inserta en el marco de la ficción. Las implicaciones históricas y políticas del relato hacen que su impronta testimonial cobre una fuerza inusitada, y nociones como la memoria, la violencia o el silencio ayudan a vertebrar una obra de arte verbal que logra, en el decurso de su propia narración, asediar al lector con las angustiosas imágenes de un pasado hecho presente en el camino de un tiempo político que se subyuga a la propia creación artística.

  11. Ground survey of active Central American volcanoes in November - December 1973

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1974-01-01

    The author has identified the following significant results. Thermal anomalies at two volcanoes, Santiaguito and Izalco, have grown in size in the past six months, based on repeated ground survey. Thermal anomalies at Pacaya volcano have became less intense in the same period. Large (500 m diameter) thermal anomalies exist at 3 volcanoes presently, and smaller scale anomalies are found at nine other volcanoes.

  12. Time Dependence of Shear Wavespeeds in Northern Chile Related to the 2014 Mw8.3 Pisagua Earthquake

    Science.gov (United States)

    Comte, D.; Arriaza, R. C.; Roecker, S. W.

    2016-12-01

    The 2014 Mw8.3 Pisagua earthquake in northern Chile ruptured an area of about 160 x 70 km on the boundary between the Nazca and South American plates. Taking advantage of the availability of continuously recorded broadband data from the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile from three years before to two years after this event, we determined empirical Greens functions (EGFs) from ambient noise to investigate the time dependence of shear wavespeeds throughout the crust in the upper (South American) plate. Daily EGFs are phase-weight stacked over the entire five-year period using an S-transform technique based on that described by Baig et al. (2009). These pilot stacks are then interferometrically compared to similarly stacked subsets over shorter time windows varying from one month to five days. Instead of analyzing the slope of the phase spectrum within moving windows as is usually done, we determine differences in phase velocity using the vertical component of fundamental mode Rayleigh waves by comparing the phase of the spectra of the EGFs within the time window expected for the wave train. Preliminary results show that such an approach can detect variations in phase velocity on the order of 0.1%. These variations can then be used in an inversion scheme to map the corresponding location and change in the shear wavespeeds within the crust of northern Chile relative to a background model.

  13. [The Vida Chile program: results and challenges with health promotion policy in Chile, 1998-2006].

    Science.gov (United States)

    Salinas, Judith; Cancino, Anselmo; Pezoa, Sergio; Salamanca, Fernando; Soto, Marina

    2007-01-01

    The Government of Chile has placed a high priority on health promotion. This is evident in the advances made through its National Plan for Health Promotion (Plan Nacional de Promoción de la Salud) and the Vida Chile National Council for Health Promotion (Consejo Nacional para la Promoción de la Salud Vida Chile). Chaired by the minister of health, Vida Chile is made up of 28 public and private institutions from around the country. Vida Chile has a network of local councils that have been established in the country's comunas (communes, or local-level divisions of the country's provinces) and that include government officials and representatives of local societal and community organizations and private businesses. This report details the methods used to evaluate the National Plan as well as provides a preliminary assessment of the technical and financial results for the 1998-2006 period. Coverage indicators (number of participants; number of accredited health-promoting schools, workplaces, and universities; and number of health promotion events) and the extent of strategy implementation were used to measure the success of the program. Health promotion activities grew markedly during this period. Among the notable accomplishments were the following four: (1) 98% of the communes now have their own community health promotion plan and intersectoral Vida Chile committee to implement the plan, (2) there has been an increase in societal and community groups involved in the health promotion strategies, (3) 34% of the primary and secondary schools have become accredited health-promoting schools, and (4) approximately 20% of the total population benefited directly from community-health-plan activities in 2006. The average per capita cost of the community health plans' activities in 2006 was US$ 6.60. The two most important factors that facilitated the operation of the local health promotion plans were participation by community and societal groups and having an adequate

  14. ACCESO A LA SALUD EN CHILE ACESSO À SAÚDE NO CHILE ACCESS TO HEALTHCARE IN CHILE

    Directory of Open Access Journals (Sweden)

    Mauricio Olavarría Gambi

    2005-01-01

    Full Text Available Chile presenta una pronunciada reducción en la incidencia de la pobreza y los indicadores del estado de salud de la población se acercan a los de los países desarrollados. Este artículo se pregunta por el acceso efectivo de los pobres a la atención de salud y analiza el estado de salud de las personas de más bajos ingresos: si cuando están enfermos acceden a atención médica y dental, si cuando reciben atención de salud la reciben oportunamente, con demora o de manera tardía, y si disponen de cobertura de sistemas de protección de saludCostatamos que o Chile apresenta uma redução significada na incidencia da pobreza e que os indicadores do estado de saúde da população se aproximam dos países desenvolvidos. Neste artígo se pergunta pelo acesso efetivo dos pobres aos cuidados de saúde. O trabalho analiza o estado de sáude das pessoas de mais baixa renda. Quando estas adoecem tem acesso à atenção médica e odontológica? Recebem cuidados de saúde no momento necessário, com demora ou tardiamente? Além disso discorre a respeito da cobertura de sistemas de proteção de saúdeChile presents a remarkable lessening of its poverty; indicators show that people's healthcare conditions are close to those of the developed countries. This paper analyses the healthcare conditions of people with the lowest incomes, if they have access to medical and dental care when they are sick, if this care is readily obtained or with delay or when it is already late, and if they get coverage from the healthcare protective systems