WorldWideScience

Sample records for volcano central oregon

  1. Ice and water on Newberry Volcano, central Oregon

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Jensen, Robert A.; O'Connor, Jim; Madin, Ian P.; Dorsey, Rebecca

    2009-01-01

    Newberry Volcano in central Oregon is dry over much of its vast area, except for the lakes in the caldera and the single creek that drains them. Despite the lack of obvious glacial striations and well-formed glacial moraines, evidence indicates that Newberry was glaciated. Meter-sized foreign blocks, commonly with smoothed shapes, are found on cinder cones as far as 7 km from the caldera rim. These cones also show evidence of shaping by flowing ice. In addition, multiple dry channels likely cut by glacial meltwater are common features of the eastern and western flanks of the volcano. On the older eastern flank of the volcano, a complex depositional and erosional history is recorded by lava flows, some of which flowed down channels, and interbedded sediments of probable glacial origin. Postglacial lava flows have subsequently filled some of the channels cut into the sediments. The evidence suggests that Newberry Volcano has been subjected to multiple glaciations.

  2. A field guide to Newberry Volcano, Oregon

    Science.gov (United States)

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  3. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  4. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  5. Digital Data for Volcano Hazards of the Three Sisters Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Iverson, R.M.

    2008-01-01

    Three Sisters is one of three active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. The major composite volcanoes of this area are clustered near the center of the region and include South Sister, Middle Sister, and Broken Top. Additionally, hundreds of mafic volcanoes are scattered throughout the Three Sisters area. These range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. Scientists at the Cascades Volcano Observatory created a geographic information system (GIS) data set which depicts proximal and distal lahar hazard zones as well as a regional lava flow hazard zone for Three Sisters (USGS Open-File Report 99-437, Scott and others, 1999). The various distal lahar zones were constructed from LaharZ software using 20, 100, and 500 million cubic meter input flow volumes. Additionally, scientists used the depositional history of past events in the Three Sisters Region as well as experience and judgment derived from the

  6. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    Science.gov (United States)

    McKay, Daniele; Donnelly-Nolan, Julie M.; Madin, Ian P.; Champion, Duane E.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  7. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  8. Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity

    Science.gov (United States)

    Wynn, Jeff

    2014-01-01

    Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the

  9. High-resolution digital elevation dataset for Newberry Volcano and vicinity, Oregon, based on lidar survey of August-September, 2010 and bathymetric survey of June, 2001

    Science.gov (United States)

    Bard, Joseph A.; Ramsey, David W.

    2016-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km above sea level. It is the product of deposits from thousands of eruptions, including at least 25 in (approximately) the last 12,000 years (the Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history together with recent activity suggests that Newberry Volcano is likely to erupt in the future. This DEM (digital elevation model) of Newberry Volcano contributes to natural hazard monitoring efforts, the study of regional geology, volcanic landforms, and landscape modification during and after future volcanic eruptions, both at Newberry Volcano or elsewhere globally. In collaboration with the USGS, the Oregon Department of Geology and Mineral Industries-led Oregon Lidar Consortium contracted Watershed Sciences to collect 500 square miles of high-precision airborne lidar (Light Detection and Ranging) data. These data provide a digital map of the ground surface beneath forest cover. The lidar-derived DEM is amended to include bathymetric surveys of East Lake and Paulina Lake. The bathymetric surveys were performed in June, 2001 by Bob Reynolds of Central Oregon Community College, Bend, Oregon. The bathymetry is mosaicked into the DEM in place of the lidar derived lake surfaces. This release is comprised of a DEM dataset accompanied by a hillshade raster, each divided into eighteen tiles. Each tile’s bounding rectangle is identical to the extent of the USGS 7.5 minute topographic quadrangles covering the same area. The names of the DEM tiles are eleven characters long (e.g., dem_xxxxxx) with the prefix, "dem", indicating the file is a DEM and the last seven characters corresponding to the map reference code of the

  10. July 1973 ground survey of active Central American volcanoes

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  11. Landscape development and mule deer habitat in Central Oregon

    Science.gov (United States)

    James A. Duncan; Theresa Burcsu

    2012-01-01

    This research explored the ecological consequences of rural residential development and different management regimes on a tract of former industrial timberland in central Oregon known as the Bull Springs. Forage quality and habitat suitability models for mule deer (Odocoileus hemionus) winter range were joined to the outputs of a spatially explicit...

  12. Controls on long-term low explosivity at andesitic arc volcanoes: Insights from Mount Hood, Oregon

    Science.gov (United States)

    Koleszar, Alison M.; Kent, Adam J. R.; Wallace, Paul J.; Scott, William E.

    2012-03-01

    The factors that control the explosivity of silicic volcanoes are critical for hazard assessment, but are often poorly constrained for specific volcanic systems. Mount Hood, Oregon, is a somewhat atypical arc volcano in that it is characterized by a lack of large explosive eruptions over the entire lifetime of the current edifice (~ 500,000 years). Erupted Mount Hood lavas are also compositionally homogeneous, with ~ 95% having SiO2 contents between 58 and 66 wt.%. The last three eruptive periods in particular have produced compositionally homogeneous andesite-dacite lava domes and flows. In this paper we report major element and volatile (H2O, CO2, Cl, S, F) contents of melt inclusions and selected phenocrysts from these three most recent eruptive phases, and use these and other data to consider possible origins for the low explosivity of Mount Hood. Measured volatile concentrations of melt inclusions in plagioclase, pyroxene, and amphibole from pumice indicate that the volatile contents of Mount Hood magmas are comparable to those in more explosive silicic arc volcanoes, including Mount St. Helens, Mount Mazama, and others, suggesting that the lack of explosive activity is unlikely to result solely from low intrinsic volatile concentrations or from substantial degassing prior to magma ascent and eruption. We instead argue that an important control over explosivity is the increased temperature and decreased magma viscosity that results from mafic recharge and magma mixing prior to eruption, similar to a model recently proposed by Ruprecht and Bachmann (2010). Erupted Mount Hood magmas show extensive evidence for mixing between magmas of broadly basaltic and dacitic-rhyolitic compositions, and mineral zoning studies show that mixing occurred immediately prior to eruption. Amphibole chemistry and thermobarometry also reveal the presence of multiple amphibole populations and indicate that the mixed andesites and dacites are at least 100 °C hotter than the high-SiO2

  13. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  14. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    Science.gov (United States)

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  15. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  16. Climbing in the high volcanoes of central Mexico

    Science.gov (United States)

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  17. Evolution of Irruputuncu volcano, Central Andes, northern Chile

    Science.gov (United States)

    Rodríguez, I.; Roche, O.; Moune, S.; Aguilera, F.; Campos, E.; Pizarro, M.

    2015-11-01

    The Irruputuncu is an active volcano located in northern Chile within the Central Andean Volcanic Zone (CAVZ) and that has produced andesitic to trachy-andesitic magmas over the last ˜258 ± 49 ka. We report petrographical and geochemical data, new geochronological ages and for the first time a detailed geological map representing the eruptive products generated by the Irruputuncu volcano. The detailed study on the volcanic products allows us to establish a temporal evolution of the edifice. We propose that the Irruputuncu volcanic history can be divided in two stages, both dominated by effusive activity: Irruputuncu I and II. The oldest identified products that mark the beginning of Irruputuncu I are small-volume pyroclastic flow deposits generated during an explosive phase that may have been triggered by magma injection as suggested by mingling features in the clasts. This event was followed by generation of large lava flows and the edifice grew until destabilization of its SW flank through the generation of a debris avalanche, which ended Irruputuncu I. New effusive activity generated lavas flows to the NW at the beginning of Irruputuncu II. In the meantime, lava domes that grew in the summit were destabilized, as shown by two well-preserved block-and-ash flow deposits. The first phase of dome collapse, in particular, generated highly mobile pyroclastic flows that propagated up to ˜8 km from their source on gentle slopes as low as 11° in distal areas. The actual activity is characterized by deposition of sulfur and permanent gas emissions, producing a gas plume that reaches 200 m above the crater. The maximum volume of this volcanic system is of ˜4 km3, being one of the smallest active volcano of Central Andes.

  18. Survey of Potential Geothermal Exploration Sites at Newberry Volcano Deschutes County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Priest, George R.; Vogt, Beverly F.; Black, Gerald L.

    1983-01-01

    The study summarizes the current data, generates some new data, and recommends further steps which should be taken to investigate the electrical power production potential of Newberry volcano. The objective was to concentrate on data from the developable flanks of the volcano. All previous data on the geology, hydrology, and geophysics were summarized. A soil-mercury survey focused on the flanks of the volcano was conducted. Samples from 1000 km/sup 2/ of the volcano were analyzed for mercury content. All this information was utilized to evaluate (1) the likelihood of future discovery of electrical-quality geothermal fluids on the flanks, and (2) the most cost-effective means of improving the quality of available power generation estimates for the volcano. 37 figures.

  19. Digital Data for Volcano Hazards of the Mount Hood Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Pierson, T.C.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    2008-01-01

    Snow-clad Mount Hood dominates the Cascade skyline from the Portland metropolitan area to the wheat fields of Wasco and Sherman Counties. The mountain contributes valuable water, scenic, and recreational resources that help sustain the agricultural and tourist segments of the economies of surrounding cities and counties. Mount Hood is also one of the major volcanoes of the Cascade Range, having erupted repeatedly for hundreds of thousands of years, most recently during two episodes in the past 1,500 yr. The last episode ended shortly before the arrival of Lewis and Clark in 1805. When Mount Hood erupts again, it will severely affect areas on its flanks and far downstream in the major river valleys that head on the volcano. Volcanic ash may fall on areas up to several hundred kilometers downwind. The purpose of the volcano hazard report USGS Open-File Report 97-89 (Scott and others, 1997) is to describe the kinds of hazardous geologic events that have happened at Mount Hood in the past and to show which areas will be at risk when such events occur in the future. This data release contains the geographic information system (GIS) data layers used to produce the Mount Hood volcano hazard map in USGS Open-File Report 97-89. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain. A second data layer contains points that indicate estimated travel times of lahars.

  20. Hydrologic, water-quality, and meteorologic data for Newberry Volcano and vicinity, Deschutes County, Oregon, 1991-93

    Science.gov (United States)

    Crumrine, Milo D.; Morgan, David S.

    1994-01-01

    This report is a compilation of hydrologic, water- quality, and meteorologic data collected in the vicinity of Newberry Volcano near Bend, Oregon. These data were collected, in cooperation with the Bonneville Power Administration, the U.S. Forest Service, and the Bureau of Land Management, to provide baseline data for identifying and assessing the effects of proposed geothermal development in the vicinity of Newberry Volcano. Types of data collected include ground-water levels, lake levels, streamflow, water quality, and meteorologic measurements. Sites that were monitored include: (1) two thermal wells in the caldera, (2) several nonthermal wells in the caldera, (3) four wells outside of the caldera, (4) Paulina Creek, (5) Paulina and East Lakes, (6) hot springs that discharge into Paulina and East Lakes, and (7) meteorologic conditions near Paulina Lake. Data are presented for the period summer 1991 through fall 1993. Water-quality data collected include concentrations of common anions and cations, nutrients, trace elements, radiochemicals, and isotopes. Meteorologic data collected include wind velocity, air temperature, humidity, solar radiation, and precipitation.

  1. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  2. The geological evolution of Merapi volcano, Central Java, Indonesia

    Science.gov (United States)

    Gertisser, Ralf; Charbonnier, Sylvain J.; Keller, Jörg; Quidelleur, Xavier

    2012-07-01

    Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K-40Ar and 40Ar-39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170 ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109 ± 60 ka), a small basaltic andesite volcanic structure on Merapi's north-east flank, and Gunung Turgo and Gunung Plawangan (138 ± 3 ka; 135 ± 3 ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30 ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8 ± 1.5 ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792 ± 90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an

  3. Volcanoes

    Science.gov (United States)

    ... or more from a volcano. Before a Volcanic Eruption The following are things you can do to ... in case of an emergency. During a Volcanic Eruption Follow the evacuation order issued by authorities and ...

  4. Seismicity at Fuego, Pacaya, Izalco, and San Cristobal Volcanoes, Central America, 1973-1974

    Science.gov (United States)

    McNutt, S.R.; Harlow, D.H.

    1983-01-01

    Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day with b value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and with b values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (??=3.0??0.2 km/sec.). ?? 1983 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  5. Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA

    Science.gov (United States)

    Ana M. G. Barros; Alan A. Ager; Michelle A. Day; Haiganoush K. Preisler; Thomas A. Spies; Eric White; Robert J. Pabst; Keith A. Olsen; Emily Platt; John D. Bailey; John P. Bolte

    2017-01-01

    We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and...

  6. Seismic studies at the Mt. Hood Volcano, northern Cascade Range, Oregon

    Science.gov (United States)

    Green, Susan Molly; Weaver, Craig S.; Iyer, Hariharaiyer Mahadeva

    1979-01-01

    A sixteen station telemetered seismic network was established in the Mt. Hood, Oregon area to monitor local seismicity and to study crustal and upper mantle structure. The network was in operation 13 months, and recorded 10 local earthquakes, 25 regional events, and 300 teleseisms. A series of construction blasts were recorded and used to define an average upper crustal velocity of 5.4 km/s in the region. All local earthquakes occurred beneath Mt. Hood at shallow depths and roughly define a zone striking north-northwest beneath the mountain. The largest earthquake was a magnitude 3.4 event which had a strike-slip focal mechanism. The other events had magnitudes (ML) less than 2.0. P-wave travel time residuals from teleseismic events show a 0.5 second decrease in travel time from east to west across the Cascade Range. No travel time anomalies are associated directly with Mt. Hood.

  7. Output rate of magma from active central volcanoes

    Science.gov (United States)

    Wadge, G.

    1980-01-01

    For part of their historic records, nine of the most active volcanoes on earth have each erupted magma at a nearly constant rate. These output rates are very similar and range from 0.69 to 0.26 cu m/s. The volcanoes discussed - Kilauea, Mauna Loa, Fuego, Santiaguito, Nyamuragira, Hekla, Piton de la Fournaise, Vesuvius and Etna - represent almost the whole spectrum of plate tectonic settings of volcanism. A common mechanism of buoyantly rising magma-filled cracks in the upper crust may contribute to the observed restricted range of the rates of output.

  8. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  9. Improved image of intrusive bodies at Newberry Volcano, Oregon, based on 3D gravity modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain H.; Cladouhos, Trenton; Rose, Kelly K.; Schultz, Adam; Strickland, Christopher E.; Urquhart, Scott

    2017-02-15

    Beneath Newberry Volcano is one of the largest geothermal heat reservoirs in the western United States and it has been extensively studied for the last 40 years. Several magmatic intrusions have been recognized at depths between 2.5 and 8 km and some of them identified as suitable targets for enhanced geothermal energy and tested during two previous EGS campaigns. These subsurface structures have been intersected by three deep wells and imaged by various geophysical methods including seismic tomography and magnetotellurics. Although three high quality gravity surveys were completed between 2006 and 2010 as part of various projects, a complete synthesis and interpretation of the gravity data has not yet been performed. Regional gravity data also exist in the vicinity of the Newberry volcano and have been added to these surveys to constitute a dataset with a total of 1418 gravity measurements. When coupled with existing geologic and geophysical data and models, this new gravity dataset provides important constraints on the depth and contours of the magmatic bodies previously identified by other methods and thus greatly contributing to facilitate any future drilling and stimulation works. Using the initial structures discovered by seismic tomography, inversion of gravity data has been performed. Shape, density values and depths of various bodies were allowed to vary and three main bodies have been identified. Densities of the middle and lower intrusive bodies (~2.6-2.7 g/cm3) are consistent with rhyolite, basalt or granites. Modeled density of the near-surface caldera body match that of a low density tephra material and the density of the shallow ring structures contained in the upper kilometer correspond to that of welded tuff or low-density rhyolites. Modeled bodies are in reality a composite of thin layers; however, average densities of the modeled gravity bodies are in good agreement with the density log obtained in one well located on the western flank (well 55

  10. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  11. Fluctuating Eruption Style at Blue Lake Crater, Central Oregon Cascades: Insights from Deposit Granulometry and Componentry and Pyroclast Textures

    Science.gov (United States)

    Johnson, E. R.

    2016-12-01

    Blue Lake crater in the central Oregon Cascades is one of the youngest Cascades volcanoes, erupting pyroclastic deposits to better understand changes in eruption style as the eruption progressed. Based on a new isopach map of the deposit thickness, the volume of erupted material is 4 x 107 m3. The deposits also suggest that the eruption was dominantly magmatic; phreatomagmatic surge deposits (pyroclasts from throughout the deposit reveal more subtle changes in the influence of external water over time. Granulometry from a complete deposit section (130 cm) reveals that the average grain size is finest immediately overlying the basal surge deposits and increases upsection. Componentry from this section shows that lithic and dense clasts are most abundant below and directly above the surges (near the deposit base) and decrease in abundance upsection, where vesicular scoria dominates. High magnification SEM BSE images of tephra clasts from throughout the deposit were obtained in order to better assess the changing role of external water during the eruption. Preliminary assessment of the images reveals that clasts from the eruption initiation have a glassier matrix compared to those upsection, which have a highly microcrystalline matrix, suggesting that early-erupted samples were likely quenched with external water. Taken together, these datasets suggest that the eruption initiated as dominantly phreatomagmatic but then rapidly transitioned to dominantly magmatic for the eruption duration. Further investigation of clast vesicularity and crystallinity will aid in understanding the changing influence of external water during the Blue Lake eruption.

  12. Application of the Landsat Thematic Mapper to the identification of potentially active volcanoes in the Central Andes

    Science.gov (United States)

    Francis, P. W.; De Silva, S. L.

    1989-01-01

    A systematic study of the potentially active volcanoes in the Central Andes (14 deg S to 28 deg S) was carried out on the basis of Landsat Thematic Mapper images which provided consistent coverage of the area. More than 60 major volcanoes were identified as potentially active, as compared to 16 that are listed in the Catalog of Active Volcanoes of the World (Casertano, 1963; Hantke and Parodi, 1966). Most of these volcanoes are large (up to 6000 m in height) composite cones. Some of them could threaten nearby settlements, especially those in southern Peru, where the volcanoes rise above deep canyons with settlements along them.

  13. Distribution, foraging behavior, and capture results of the spotted bat (Euderma maculatum) in central Oregon

    Science.gov (United States)

    Rodhouse, T.J.; McCaffrey, M.F.; Wright, R.G.

    2005-01-01

    The spotted bat (Euderma maculatum) has been virtually unknown in Oregon despite the existence of potential habitat in many areas of the state. In 2002 and 2003 we searched for spotted bats along the John Day, Deschutes, and Crooked Rivers and at a remote dry canyon southeast of the city of Bend in central Oregon. The species was documented through the use of mist-nets, a bat detector, and recognition of audible spotted bat calls. Spotted bats were found at 11 locations in 6 Oregon counties. Nightly activity patterns of spotted bats were unpredictable. Spotted bats were found in 78% of search areas but on only 48% of survey nights. We observed spotted bats foraging above fields and low upland slopes adjacent to rivers and creeks and along the rims of cliffs. Estimated flying heights of spotted bats ranged from 3 m to 50 m aboveground. The species was difficult to capture and was captured only after considerable experimentation with methods and materials. Three spotted bats were captured toward the end of the project in 2003 and accounted for only 0.5% of all bats captured during the study. Although we attached radio transmitters to 2 spotted bats, we found no roost locations. We believe additional spotted bat surveys in Oregon are warranted, especially in higher-elevation habitats, but recommend that to increase their effectiveness, surveys accommodate the unique foraging behavior of the species.

  14. Volcanoes in the pre-Columbian life, legend, and archaeology of Costa Rica (Central America)

    Science.gov (United States)

    Alvarado, Guillermo E.; Soto, Gerardo J.

    2008-10-01

    Costa Rica is located geographically in the southern part of the Central American Volcanic Front, a zone where interaction between the Mesoamerican and South American cultures occurred in pre-Columbian times. Several volcanoes violently erupted during the Holocene, when the first nomadic human hunters and later settlers were present. Volcanic rocks were the most important geo-resource in making artifacts and as construction materials for pre-Columbian inhabitants. Some pottery products are believed to resemble smoking volcanoes, and the settlements around volcanoes would seem to indicate their influence on daily life. Undoubtedly, volcanic eruptions disrupted the life of early settlers, particularly in the vicinity of Arenal and Irazú volcanoes, where archaeological remains show transient effects and displacement caused by periodical eruptions, but later resilient occupations around the volcanoes. Most native languages are extinct, with the exception of those presently spoken in areas far away from active volcanoes, where no words are related to volcanic phenomena or structures. The preserved legends are ambiguous, suggesting that they were either produced during the early Spanish conquest or were altered following the pre-Columbian period.

  15. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    Directory of Open Access Journals (Sweden)

    H. Mahadeva Iyer

    1994-06-01

    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  16. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  17. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  18. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Cascade Volcano Observatory (CVO) Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  19. Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia

    Science.gov (United States)

    Lavigne, F.; Thouret, J.-C.; Voight, B.; Young, K.; LaHusen, R.; Marso, J.; Suwa, H.; Sumaryono, A.; Sayudi, D.S.; Dejean, M.

    2000-01-01

    More than 50 volcanic debris flows or lahars were generated around Mt Merapi during the first rainy season following the nuees ardentes of 22 November 1994. The rainfalls that triggered the lahars were analyzed, using such instruments as weather radar and telemetered rain gauges. Lahar dynamics were also monitored, using new non-contact detection instrumentation installed on the slopes of the volcano. These devices include real-time seismic amplitude measurement (RSAM), seismic spectral amplitude measurement (SSAM) and acoustic flow monitoring (AFM) systems. Calibration of the various systems was accomplished by field measurements of flow velocities and discharge, contemporaneously with instrumental monitoring. The 1994–1995 lahars were relatively short events, their duration in the Boyong river commonly ranging between 30 min and 1 h 30 min. The great majority (90%) of the lahars was recognized at Kaliurang village between 13:00 and 17:30 h, due to the predominance of afternoon rainfalls. The observed mean velocity of lahar fronts ranged between 1.1 and 3.4 m/s, whereas the peak velocity of the flows varied from 11 to 15 m/s, under the Gardu Pandang viewpoint location at Kaliurang, to 8–10 m/s at a section 500 m downstream from this site. River slopes vary from 28 to 22 m/km at the two sites. Peak discharges recorded in various events ranged from 33 to 360 m3/s, with the maximum value of peak discharge 360 m3/s, on 20 May 1995. To improve the lahar warning system along Boyong river, some instrumental thresholds were proposed: large and potentially hazardous lahars may be detected by RSAM units exceeding 400, SSAM units exceeding 80 on the highest frequency band, or AFM values greater than 1500 mV on the low-gain, broad-band setting.

  20. Slab Contributions to Cascades Magmas: Constraints from Central Oregon and Northern California

    Science.gov (United States)

    Ruscitto, D. M.; Wallace, P. J.

    2010-12-01

    The Cascades arc is the global end member, warm-slab subduction zone (slab thermal parameter ~200 km) resulting from the slow subduction of young oceanic crust beneath North America. Significant slab dehydration is predicted to occur beneath the forearc (high-Mg andesite (HMA) and primitive basaltic andesite (PBA) with 3.3 and 5.6 wt.% H2Omax, respectively. Three distinct primitive melt compositions were calculated using inclusions from Central Oregon: calc-alkaline basalt, Sr-rich basalt, and depleted basaltic andesite (1.6, 2.3, and 3.0 wt.% H2Omax, respectively). We calculated extents of mantle melting for each primitive magma composition using Ti, Y, Gd, Dy, Er, and Yb contents (i.e., assuming negligible contributions from the slab). Based on these calculations, we infer Central Oregon and Shasta magmas to represent 8-15% and 14-20% partial melts (respectively) of variably depleted sources. Major elements in preliminary slab components from Central Oregon are H2O (~39-45 wt.%), Na2O (~36-47 wt.%), K2O (~8-15 wt.%), and Cl (~1.0-3.8 wt.%) and similar to the slab component calculated for Shasta HMA. The slab component calculated for Shasta PBA is more volatile-rich with ~62 wt.% H2O, ~28 wt.% Na2O, ~5.3 wt.% K2O, and 4.6 wt.% Cl. Calculated slab components are similar to previously published estimates from the Shasta region and experimental high temperature (>800 °C) fluids/melts derived from altered oceanic crust and/or sediments. Compositional proxies for slab surface temperatures (H2O/K2O and H2O/Ce) are at the high temperature range of the global arc spectrum, corresponding to temperatures of 850-950 °C, and are consistent with a young, hot incoming plate.

  1. Urban Risk Assessment of Lahar Flows in Merapi Volcano (Study Case: Muntilan Urban Area, Central Java)

    OpenAIRE

    2014-01-01

    The objective of the research was to analyse probability of lahar flows occurrence in Muntilan urban area, Central Java. By using integrated methods, which involve the numerical simulation program, Geographic Information System (GIS), Remote Sensing (RS) and field verification to produce lahar flows Hazard Map and Risk Map. Muntilan urban area located at western flank of Merapi volcano, and in down stream of Lamat river. The river is Lahar River that is endangering from Merapi vol...

  2. Directed Volcanic Blast as a Tragedy of October 26Th, 2010 at Merapi Volcano, Central Java

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.163Merapi is an active strato volcano located in Central Java. This volcano is regarded as the most active and most dangerous volcano in Indonesia. Since the twentieth century, the activities have comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of over-steepened domes producing pyroclastic flows, commonly defined as “Merapi-Type”. Since October 2010, however, explosive eruptions of a relatively large size have occurred to VEI 4, and some associated pyroclastic flows were larger and had farther reach than any produced on July 2006. These events may also be regarded as another type of eruptions for Merapi. On October26th, 2010 such event happened, even though it was not caused by pyroclastic flows of the dome collapses, about thirty people were killed including Mbah Marijan, known as the Merapi volcano's spiritual gatekeeper, who was found dead at his home approximately 4 km from the crater. The Yogyakarta Palace subsequently confirmed his death. This time the disaster was caused by a sudden directed blast that took place at 17:02 pm throughout Cangkringan, Kinahrejo Village, at the south flank of Merapi Volcano. The victims were the local people who did not predict the blast threatened their areas, because they believed that the pyroclastic flows from the dome collapses as long as they knew, did not threaten their areas, and pyroclastic flows would flow down following the Boyong River as the closest valley to their village. The blast swept an area about 8 km2, reaching about 5 km in distance, deposited thin ash, and toppled all trees to the south around the Kinahrejo and Pakem areas. The blast that reached Kinahrejo Village seemed to have moderate temperatures, because all trees facing the crater were not burnt. However, the victims were affected by dehydration and blanketed by fine ash.

  3. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Goff, S.J.; Goff, F.E.; Heiken, G.H. [Los Alamos National Lab., NM (United States); Duffield, W.A. [Geological Survey, Flagstaff, AZ (United States); Janik, C.J. [Geological Survey, Menlo Park, CA (United States)

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  4. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wannamaker, Philip E. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst. (EGI)

    2016-07-31

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T and TOUGHREACT software.

  5. Eruptive History of the Rhyolitic Guangoche Volcano, Los Azufres Volcanic Field, Central Mexico

    Science.gov (United States)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.; Layer, P. W.

    2014-12-01

    Guangoche is a rhyolitic and polygenetic volcano with a maximum elevation of 2,760 meters above sea level. It is situated to the southwest of the Los Azufres Volcanic Field (LAVF), in the central sector of the Trans-Mexican Volcanic Belt. Guangoche volcano is the youngest volcano described within the LAVF. It shows a horseshoe shaped crater open to the south, with a central lava dome. Its eruptive history during late Pleistocene has been intense with six explosive eruptions that consists of: 1) A southwards sector collapse of the volcano that generated a debris avalanche deposit with megablocks of heterogenous composition; 2) A plinian-type eruption that generated a pumice fall deposit and pyroclastic density currents by column collapse at 30.6 ka; 3) A plinian-type eruption "White Pumice Sequence" (29 ka) that developed a 22-km-high eruptive column, with a MDR of 7.0 x 107 kg/s (vol. = 0.53 km3); 4) A dome-destruction event, "Agua Blanca Pyroclastic Sequence" at 26.7 ka, that deposited a block-and-ash flow deposit; 5) A subplinian-plinian type eruption "Ochre Pyroclastic Sequence" (<26 ka) with an important initial phreatomagmatic phase, that generated pyroclastic density currents and pumice fallouts. The subplinian-plinian event generated a 16-km-high eruptive column, with a MDR of 1.9 x 107 kg/s, and magma volume of 0.38 km3; 6) The eruptive history ended with a subplinian eruption (<<26 ka), that generated a multilayered fall deposit, that developed a 11-km-high eruptive column, with a MDR of 2.9 x 106 kg/s and a magma volume of 0.26 km3. Volcanic activity at Guangoche volcano has been intense and future activity should not be discarded. Unfortunately, the last two events have not been dated yet. Guangoche rhyolitic magma is characterized by low-Ba contents suggesting crystal mush extraction for their genesis.

  6. Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico

    Directory of Open Access Journals (Sweden)

    M. A. Armienta

    2011-07-01

    Full Text Available Ash emitted by volcanic eruptions, even of moderate magnitude, may affect the environment and the health of humans and animals through different mechanisms at distances significantly larger than those indicated in the volcanic hazard maps. One such mechanism is the high capacity of ash to transport toxic volatiles like fluoride, as soluble condensates on the particles' surface. The mobilization and hazards related to volcanic fluoride are discussed based on the data obtained during the recent activity of Popocatépetl volcano in Central Mexico.

  7. Ground survey of active Central American volcanoes in November - December 1973

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1974-01-01

    The author has identified the following significant results. Thermal anomalies at two volcanoes, Santiaguito and Izalco, have grown in size in the past six months, based on repeated ground survey. Thermal anomalies at Pacaya volcano have became less intense in the same period. Large (500 m diameter) thermal anomalies exist at 3 volcanoes presently, and smaller scale anomalies are found at nine other volcanoes.

  8. Diffusive Soil Degassing of Radon and Carbon Dioxide at San Miguel Volcano, El Salvador, Central America

    Science.gov (United States)

    Lopez, D. L.; Olmos, R.; Cartagena, R.; Soriano, T.; Barahona, F.

    2001-12-01

    San Miguel volcano is located 15 km to the Southwest of San Miguel City (population ~300,000) and lies on the southern fault of the Central American graben at an intersection with NW-SE faults. The composition of San Miguel lavas varies from olivine-pyroxene basalts for the older lava flows to more andesitic compositions for the more recent products. This volcano have been degassing and having small ash emission since the late nineteen eighties. During December 1999 and January 2000, radon gas concentrations (pCi/l) in soils were measured using a Pylon AB5 radon monitor, and flux of CO2 (g/m2/day) was determined using the accumulation chamber method at 205 sampling stations. High gas emission inside the crater did not allow measurements to be taken in that region. CO2 fluxes throughout the soils of the volcanic edifice show low values compared to other active volcanoes of the world, suggesting that San Miguel is degassing preferentially throughout the summit region. CO2 fluxes range from less than 1 to 14 g/m2/day, with an average value of 5.6 g/m2/day. Radon concentrations range from 2 to 833 pCi/l with an average value of 110 pCi/l. Thoron concentrations range from 20 to 2178 pCi/l with an average value of 362 pCi/l. These values are comparable to radon concentrations found in other active volcanoes (e.g. Cerro Negro, Connor et al., 1996). CO2 flux, radon and thoron concentrations show higher values to the northwest and northeast faulted regions. Some anomalies seem to be related to the contact region between the older and more recent lava flows. Thoron/radon ratios show high anomalies aligning in the NW-SE direction where faulting also occurs. These results suggests that low permeability rocks forming the volcanic edifice of San Miguel volcano do not allow large fluxes of magmatic CO2 to be discharged throughout the soils. Higher permeability at faults and contacts allow slightly larger fluxes of CO2 and radon and thoron concentrations.

  9. Internal stress field at Mount Vesuvius: A model for background seismicity at a central volcano

    Science.gov (United States)

    de Natale, Giuseppe; Petrazzuoli, Stefano M.; Troise, Claudia; Pingue, Folco; Capuano, Paolo

    2000-07-01

    We propose a model to explain the background seismicity occurring at Somma-Vesuvius in its present, mostly quiescent period. A finite element procedure has been used to simulate the stress field due to gravitational body forces in an axisymmetric volcano characterized by a central high-rigidity anomaly. Results emphasize the important effect of axial high-rigidity, which concentrates at its borders stresses resulting from the gravitational load of the volcanic edifice, as well as external (regional) stresses. The joint effect of the gravitational loading and of the presence of the anomaly produces stresses very close to or above the critical rupture threshold. The observed spatial concentrations of seismicity and moment release correlate well with peaks of computed maximum shear stress. Seismicity is then interpreted as due to small stress perturbations concentrated around the high-rigidity core and added to a system already close, to the failure threshold. This model can explain the widely observed occurrence of background seismicity at central volcanoes worldwide.

  10. Newberry Volcano's youngest lava flows

    Science.gov (United States)

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    Most of Newberry Volcano's youngest lava flows are found within the Newberry National Volcanic Monument in central Oregon. Established November 5, 1990, the monument is managed by the U.S. Forest Service as part of the Deschutes National Forest. Since 2011, a series of aerial surveys over the monument collected elevation data using lidar (light detection and ranging) technology, which uses lasers to directly measure the ground surface. These data record previously unseen detail in the volcano’s numerous lava flows and vents. On average, a laser return was collected from the ground’s surface every 2.17 feet (ft) with ±1.3 inches vertical precision.

  11. Late Pleistocene flank collapse of Zempoala volcano (Central Mexico) and the role of fault reactivation

    Science.gov (United States)

    Arce, José Luis; Macías, Rodolfo; García Palomo, Armando; Capra, Lucia; Macías, José Luis; Layer, Paul; Rueda, Hernando

    2008-11-01

    Zempoala is an extinct Pleistocene (˜ 0.7-0.8 Ma) stratovolcano that together with La Corona volcano (˜ 0.9 Ma) forms the southern end of the Sierra de las Cruces volcanic range, Central Mexico. The volcano consists of andesitic and dacitic lava flows and domes, as well as pyroclastic and epiclastic sequences, and has had a complex history with several flank collapses. One of these collapses occurred during the late Pleistocene on the S-SE flank of the volcano and produced the Zempoala debris avalanche deposit. This collapse could have been triggered by the reactivation of two normal fault systems (E-W and NE-SW), although magmatic activity cannot be absolutely excluded. The debris avalanche traveled 60 km to the south, covers an area of 600 km 2 and has a total volume of 6 km 3, with a calculated Heim coefficient (H/L) of 0.03. Based on the textural characteristics of the deposit we recognized three zones: proximal, axial, and lateral distal zone. The proximal zone consists of debris avalanche blocks that develop a hummocky topography; the axial zone corresponds with the main debris avalanche deposit made of large clasts set in a sandy matrix, which transformed to a debris flow in the lateral distal portion. The deposit is heterolithologic in composition, with dacitic and andesitic fragments from the old edifice that decrease in volume as bulking of exotic clasts from the substratum increase. Several cities (Cuernavaca, Jojutla de Juárez, Alpuyeca) with associated industrial, agricultural, and tourism activities have been built on the deposit, which pose in evidence the possible impact in case of a new event with such characteristics, since the area is still tectonically active.

  12. Evolution of silicic volcanism following the transition to the modern High Cascades, Deschutes Formation, central Oregon

    Science.gov (United States)

    Eungard, D.; Kent, A. J.; Grunder, A.

    2012-12-01

    An understanding of the controls on silicic volcanism within convergent margin environments has important implications for crustal growth and modification during subduction. In the central Oregon Cascade range silicic volcanism has generally decreased in both size and frequency of eruptions over the last ~40 million years. Despite the general decrease, an increased abundance of silicic volcanism is observed from 5-8 Ma, corresponding to the transition from the Western Cascades to High Cascades volcanic regime. In order to constrain the processes that lead to formation of silicic magmas at this time we have studied the petrogenesis of two extensive and well-preserved ash-flow tuffs from this time period hosted within the Deschutes Formation of central Oregon. The Lower Bridge (LBT) and McKenzie Canyon Tuffs (MCT) produced ~5 km3 each of magma of predominantly rhyolitic and basaltic andesite composition. Both include large volumes of rhyolite, although the MCT also contains a significant mafic component. Both tuffs are normally zoned with mafic ejecta concentrated upsection. Geothermometry also shows that the rhyolitic component in both magmas was relatively hot (~830 degrees C). Distribution, thickness, welding facies, and paleoflow indications from imbricated pumice suggest that both eruptions derive from the same source region, probably near the present day Three Sisters complex, and were likely produced from the same magmatic system. Variations in major and trace element geochemistry also indicate that the magmas involved in both eruptions were produced through fractionation and mixing of mantle melts with a silicic partial melt derived from melting of mafic crust. Production of these voluminous silicic magmas required both crystal fractionation of incoming melts from the mantle, together with mixing with silicic partial melts derived from relatively hot mafic crust. This observation provides a potential explanation for the decrease in silicic melt production

  13. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 40132, Bandung (Indonesia); Yudistira, Tedi; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Zulhan, Zulfakriza [Earth Science Graduate Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Saygin, Erdinc [Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 (Australia)

    2015-04-24

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  14. Mid-Holocene Sector Collapse at Mount Spurr Volcano, South-Central Alaska

    Science.gov (United States)

    Waythomas, Christopher F.

    2007-01-01

    Radiocarbon-dated volcanic mass-flow deposits on the southeast flank of Mount Spurr in south-central Alaska provide strong evidence for the timing of large-scale destruction of the south flank of the volcano by sector collapse at 4,769^ndash;4,610 yr B.P. The sector collapse created an avalanche caldera and produced an ~1-km3-volume clay-rich debris avalanche that flowed into the glacially scoured Chakachatna River valley, where it transformed into a lahar that extended an unknown distance beyond the debris avalanche. Hydrothermal alteration, an unbuttressed south flank of the volcano, and local structure have been identified as plausible factors contributing to the instability of the edifice. The sector collapse at Mount Spurr is one of the later known large-volume (>1 km,sup>3) flank failures recognized in the Aleutian Arc and one of the few known Alaskan examples of transformation of a debris avalanche into a lahar.

  15. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    Science.gov (United States)

    Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc

    2015-04-01

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green's function for all possible station pairs. Then we carefully picked the peak of each Green's function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  16. The magmatic plumbing system of the Askja central volcano, Iceland, as imaged by seismic tomography

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.; Roecker, Steven

    2016-10-01

    The magmatic plumbing system beneath Askja, a volcano in the central Icelandic highlands, is imaged using local earthquake tomography. We use a catalog of more than 1300 earthquakes widely distributed in location and depth to invert for the P wave velocity (Vp) and the Vp/Vs ratio. Extensive synthetic tests show that the minimum size of any velocity anomaly recovered by the model is 4 km in the upper crust (depth < 8 km below sea level (bsl)), increasing to 10 km in the lower crust at a depth of 20 km bsl. The plumbing system of Askja is revealed as a series of high-Vp/Vs ratio bodies situated at discrete depths throughout the crust to depths of over 20 km. We interpret these to be regions of the crust which currently store melt with melt fractions of 10%. The lower crustal bodies are all seismically active, suggesting that melt is being actively transported in these regions. The main melt storage regions lie beneath Askja volcano, concentrated at depths of 5 km bsl with a smaller region at 9 km bsl. Their total volume is 100 km3. Using the recorded waveforms, we show that there is also likely to be a small, highly attenuating magmatic body at a shallower depth of about 2 km bsl.

  17. Eruptive history of Sundoro volcano, Central Java, Indonesia since 34 ka

    Science.gov (United States)

    Prambada, Oktory; Arakawa, Yoji; Ikehata, Kei; Furukawa, Ryuta; Takada, Akira; Wibowo, Haryo Edi; Nakagawa, Mitsuhiro; Kartadinata, M. Nugraha

    2016-11-01

    Reconstruction of the eruptive history of Sundoro volcano is needed to forecast the probability of future eruptions and eruptive volumes. Sundoro volcano is located in Central Java (Indonesia), 65 km northwest of Yogyakarta, and in one of the most densely populated areas of Indonesia. On the basis of stratigraphy, radiocarbon dating, petrography, and whole-rock geochemistry, we recognize the following 12 eruptive groups: (1) Ngadirejo, (2) Bansari, (3) Arum, (4) Kembang, (5) Kekep, (6) Garung, (7) Kertek, (8) Watu, (9) Liyangan, (10) Kledung, (11) Summit, and (12) Sibajak. The Ngadirejo (34 ka BP) to Kledung (1 ka) eruptive groups are inferred to have been the stratovolcano building phase. Based on compositions of deposits, one or more magma reservoirs of intermediate chemical composition are inferred to have existed below the volcano during the periods of time represented by the eruptive groups. SiO2 of juvenile eruptive products ranges from 50 to 63 wt%, and K2O contents range from high K to medium K. The chemical composition and phenocryst content of eruptive products change with time. The lower SiO2 products contain mainly plagioclase, clinopyroxene, and olivine, whereas the more evolved rocks contain plagioclase, clinopyroxene, orthopyroxene, and rare hornblende and olivine. Our work has defined Sundoro's eruptive history for the period 1-34 ka, and this history helps us to forecast future activity. We estimated that the total amount of magma discharged since 34 ka is approximately 4.4 km3. The average eruption rate over this group ranges from 0.14 to 0.17 km3/kyr. The eruption rate and the frequency of individual eruptions indicate that the volcano has been very active since 34 ka, and this activity in combination with our petrological data suggest the presence of one or more magma reservoirs that have been repeatedly filled and then discharged as eruptions have taken place. Our data further suggest that the volume of the crustal reservoir system has

  18. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  19. Adapting natural resource management to climate change: The South Central Oregon and Northern Rockies Adaptation Partnerships

    Science.gov (United States)

    Halofsky, J.; Peterson, D. L.

    2015-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  20. Climate Change and Land Management in the Rangelands of Central Oregon

    Science.gov (United States)

    Creutzburg, Megan K.; Halofsky, Jessica E.; Halofsky, Joshua S.; Christopher, Treg A.

    2015-01-01

    Climate change, along with exotic species, disturbances, and land use change, will likely have major impacts on sagebrush steppe ecosystems in the western U.S. over the next century. To effectively manage sagebrush steppe landscapes for long-term goals, managers need information about the interacting impacts of climate change, disturbances and land management on vegetation condition. Using a climate-informed state-and-transition model, we evaluated the potential impacts of climate change on rangeland condition in central Oregon and the effectiveness of multiple management strategies. Under three scenarios of climate change, we projected widespread shifts in potential vegetation types over the twenty-first century, with declining sagebrush steppe and expanding salt desert shrub likely by the end of the century. Many extreme fire years occurred under all climate change scenarios, triggering rapid vegetation shifts. Increasing wildfire under climate change resulted in expansion of exotic grasses but also decreased juniper encroachment relative to projections without climate change. Restoration treatments in warm-dry sagebrush steppe were ineffective in containing exotic grass, but juniper treatments in cool-moist sagebrush steppe substantially reduced the rate of juniper encroachment, particularly when prioritized early in the century. Overall, climate-related shifts dominated future vegetation patterns, making management for improved rangeland condition more difficult. Our approach allows researchers and managers to examine long-term trends and uncertainty in rangeland vegetation condition and test the effectiveness of alternative management actions under projected climate change.

  1. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  2. The Characteristics of Lahar in Merapi Volcano, Central Java as the Indicator of the Explosivity during Holocene

    Directory of Open Access Journals (Sweden)

    Adjat Sudradjat

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i2.116Merapi Volcano in Central Java has been the most active volcano during Holocene time. As a strato volcano, Merapi exhibits alternating volcanic activities of effusive and explosive characters and self destruction. The explosivity index has evolved during the last ten thousand years. The effusive activities were characterized by the occurrence of lava flows, the development of lava dome, and the production of the “nuee ardente d’avalanche” called Merapi type. The explosive stage is frequently accompanied by the occurence of pyroclastic flows. The present investigation is attempted to reveal the relationship between the characteristics of lahar and the evolution of the activity of Merapi Volcano. The quantitative analysis was focused on the size and shape of the lahar components particularly that of pumice as the main indicators in 73 measured stratigraphic columns of lahar deposits. In addition, the main chemical element rim structures of hornblende identified in lahar components indicate the different lahar units. There are five lahar units and five groups of Merapi activities which can be distinguished. It can be concluded that the characteristics of lahar reflect the evolution of the activities in the past. The risk analyses of Merapi Volcano therefore can be enlarged to cover the possible hazard based on the lahar characteristics.

  3. The stratigraphy, depositional processes, and environment of the late Pleistocene Polallie-period deposits at Mount Hood Volcano, Oregon, USA

    Science.gov (United States)

    Thouret, Jean-Claude

    2005-08-01

    The Polallie eruptive period of Mt. Hood, Oregon, is the last major episode of eruption and dome growth, before the late Holocene activity which was centered at Crater Rock. A volume of 4-8 km 3 of Polallie deposits forms an apron of ca. 60 km 2 on the east, northeast and southeast flanks. The Polallie deposits can be divided, stratigraphically, into four groups: Group I rockslide avalanche and pyroclastic-flow deposits; Group II debris-flow and pyroclastic-flow deposits that suggest some explosive activity and remobilization of pyroclastic debris in a glacial environment; Group III block-and-ash flow deposits that attest to summit dome growth; Group IV alternating debris-flow deposits, glacial sediments, and reworked pyroclastic-flow deposits that indicate a decrease in dome activity and an increase in erosion and transport. Group III clearly indicates frequent episodes of dome growth and collapse, whereas Groups II and IV imply increasing erosion and, conversely, decreasing volcanic activity. The Polallie period occurred in the late Pleistocene during and just after the last Alpine glaciation, which is named Evans Creek in the Cascade Range. According to four K-Ar age dates on lava flows interbedded with Polallie deposits and to published minimum 14C ages on tephra and soils overlying these deposits, the Polallie period had lasted 15,000-22,000 years between 28-34 ka and 12-13 ka. From stratigraphic subdivisions, sedimentary lithofacies and features and from the grain-size and geochemical data, we infer that the Polallie depositional record is a result of the interplay of several processes acting during a long-lasting period of dome growth and destruction. The growth of several domes near the present summit was intermittent, because each group of sediments encompasses primary (pyroclastic) and secondary (volcaniclastic and epiclastic) deposition. Direct deposition of primary material has occurred within intervals of erosion that have probably included meltwater

  4. Analysis of 1997–2008 groundwater level changes in the upper Deschutes Basin, Central Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2013-01-01

    Groundwater-level monitoring in the upper Deschutes Basin of central Oregon from 1997 to 2008 shows water-level declines in some places that are larger than might be expected from climate variations alone, raising questions regarding the influence of groundwater pumping, canal lining (which decreases recharge), and other human influences. Between the mid-1990s and mid-2000s, water levels in the central part of the basin near Redmond steadily declined as much as 14 feet. Water levels in the Cascade Range, in contrast, rose more than 20 feet from the mid-1990s to about 2000, and then declined into the mid-2000s, with little or no net change. An existing U.S. Geological Survey regional groundwater-flow model was used to gain insights into groundwater-level changes from 1997 to 2008, and to determine the relative influence of climate, groundwater pumping, and irrigation canal lining on observed water-level trends. To utilize the model, input datasets had to be extended to include post-1997 changes in groundwater pumping, changes in recharge from precipitation, irrigation canal leakage, and deep percolation of applied irrigation water (also known as on-farm loss). Mean annual groundwater recharge from precipitation during the 1999–2008 period was 25 percent less than during the 1979–88 period because of drying climate conditions. This decrease in groundwater recharge is consistent with measured decreases in streamflow and discharge to springs. For example, the mean annual discharge of Fall River, which is a spring-fed stream, decreased 12 percent between the 1979–88 and 1999–2008 periods. Between the mid-1990s and late 2000s, groundwater pumping for public-supply and irrigation uses increased from about 32,500 to 52,000 acre-feet per year, partially because of population growth. Between 1997 and 2008, the rate of recharge from leaking irrigation canals decreased by about 58,000 acre-feet per year as a result of lining and piping of canals. Decreases in recharge

  5. Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon

    Science.gov (United States)

    Cummings, M. L.; Weatherford, J. M.; Eibert, D.

    2015-12-01

    Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.

  6. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Toluca volcano (~6 km) some 50 km to the southwest.

  7. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

    Science.gov (United States)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano

    2017-08-01

    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  8. Giant magmatic water reservoir beneath Uturuncu volcano and Altiplano-Puna region (Central Andes)

    Science.gov (United States)

    Laumonier, Mickael; Gaillard, Fabrice; Muir, Duncan; Blundy, Jon; Unsworth, Martyn

    2016-04-01

    Volcanism at continental arcs is the surface manifestation of long-lived crustal magmatic processes whereby mantle-derived hydrous basalt magma differentiates to more silica-rich magmas by a combination of crystallization and crustal melting. What erupts is just a fraction of the total volume of magma produced by these processes; the unerupted, plutonic residues solidify and are inaccessible to direct study until millions of years of uplift and erosion bring them to the surface. In contrast, geophysical surveys, using electromagnetic and seismic waves, can provide real-time images of subduction zone magmatic systems. Several such studies have revealed that arc volcanoes are underlain by large partially molten regions at depths of >10 km, the largest known example being the Altiplano-Puna magma body (APMB) in central Andes. Interpreting such geophysical images in terms of amount, composition and distribution of partial melts is limited by our lack of knowledge of the physical properties of silicate melts at elevated pressures and temperatures. Here we present high-pressure, in situ experimental data showing that the electrical conductivity of andesitic melts is primarily controlled by their dissolved water contents. Linking our new measurements to petrological constraints from andesites erupted on the Altiplano, we show that the APMB is composed of 10-20% of an andesitic melt containing 8-10 wt% dissolved water. This implies that the APMB is a giant water anomaly in the global subduction system, with a total mass of dissolved magmatic water about half of the water contained within the Adriatic Sea. In addition to the controls on the physical properties of the melts, the abundance of dissolved water governs the structural levels of magma ponding, equivalent to the depth of water saturation, where degassing and crystallisation promote partial melting and weakening of the upper crust. Unexpectedly, very high concentrations of water in andesite magmas shall impede their

  9. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles

    Science.gov (United States)

    Rybin, A.; Chibisova, M.; Webley, P.; Steensen, T.; Izbekov, P.; Neal, C.; Realmuto, V.

    2011-01-01

    After 33 years of repose, one of the most active volcanoes of the Kurile island arc-Sarychev Peak on Matua Island in the Central Kuriles-erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8-16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0. 4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano. ?? 2011 Springer-Verlag.

  10. The ~ 2000 yr BP Jumento volcano, one of the youngest edifices of the Chichinautzin Volcanic Field, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Muñoz-Salinas, E.; Castillo, M.; Salinas, I.

    2015-12-01

    The Chichinautzin Volcanic Field is situated at the southern limit of the Basin of Mexico and the Metropolitan area of Mexico City, the third most populated city around the world. The Chichinautzin Volcanic field holds more than 220 monogenetic volcanoes. Xitle is the youngest of these with an estimated age of 1.6 ky BP. Xitle's eruptive activity took place during the Mesoamerican Mexican Pre-classic period and is related to the destruction of Cuicuilco Archaeological Site, the oldest civilization known in Central Mexico. However, there are still several regional cones that have not been dated. Based on 14C ages, stratigraphic and geomorphologic criteria, we conclude that the Jumento volcano, located to the west of Xitle, is one of the youngest cones of the Chichinautzin Volcanic Field. The Jumento volcano has a basaltic andesite composition, and its eruptive activity was initially hydromagmatic, followed by Strombolian and finally effusive events occurred recorded through: (1) a sequence of hydromagmatic pyroclastic surges and ashfall layers emplaced at a radius of > 5 km from the crater with charcoal fragments at its base; this activity built the Jumento's cone with slopes of 32°; and (2) lava flows that breached the southern part of the cone and flowed for up to 2.5 km from the vent. The resulting 14C ages for this volcano yielded a maximum age of ~ 2 ky BP. Morphometric analysis indicates that the state of degradation of Jumento cone is similar to the Xitle, suggesting that the Jumento could be in the state of degradation of a volcanic structure of similar age or younger adding credence to the probable radiocarbon age of ~ 2 ky BP for the Jumento edifice.

  11. Pleistocene glaciation of volcano Ajusco, central Mexico, and comparison with the standard Mexican glacial sequence

    Science.gov (United States)

    White, Sidney E.; Valastro, Salvatore

    1984-01-01

    Three Pleistocene glaciations and two Holocene Neoglacial advances occurred on volcano Ajusco in central Mexico. Lateral moraines of the oldest glaciation, the Marqués, above 3250 m are made of light-gray indurated till and are extensively modified by erosion. Below 3200 m the till is dark red, decomposed, and buried beneath volcanic colluvium and tephra. Very strongly to strongly developed soil profiles (Inceptisols) have formed in the Marqués till and in overlying colluvia and tephra. Large sharp-crested moraines of the second glaciation, the Santo Tomás, above 3300 m are composed of pale-brown firm till and are somewhat eroded by gullies. Below 3250 m the till is light reddish brown, cemented, and weathered. Less-strongly developed soil profiles (Inceptisols) have formed in the Santo Tomás till and in overlying colluvia and tephra. Narrow-crested moraines of yellowish-brown loose till of the third glaciation, the Albergue, are uneroded. Weakly developed soil profiles (Inceptisols) in the Albergue till have black ash in the upper horizon. Two small Neoglacial moraines of yellowish-brown bouldery till on the cirque floor of the largest valley support weakly developed soil profiles with only A and Cox horizons and no ash in the upper soil horizons. Radiocarbon dating of organic matter of the B horizons developed in tills, volcanic ash, and colluvial volcanic sand includes ages for both the soil-organic residue and the humic-acid fraction, with differences from 140 to 660 yr. The dating provides minimum ages of about 27,000 yr for the Marqués glaciation and about 25,000 yr for the Santo Tomás glaciation. Dates for the overlying tephra indicate a complex volcanic history for at least another 15,000 yr. Comparison of the Ajusco glacial sequence with that on Iztaccíhuatl to the east suggests that the Marqués and Santo Tomás glaciations may be equivalent to the Diamantes glaciation First and Second advances, the Albergue to the Alcalican glaciations, and the

  12. 1D and 2D Occam's Inversion of Magnetotelluric Data Applied in Volcano-Geothermal Area In Central Java, Indonesia

    Science.gov (United States)

    Ariani, Elsi; Srigutomo, Wahyu

    2016-08-01

    One-dimensional (1D) and two-dimensional (2D) magnetotelluric data inversion were conducted to reveal the subsurface resistivity structure beneath the eastern part of a volcano in Central Java, Indonesia. Fifteen magnetotelluric sounding data spanning two lines of investigation were inverted using Occam's inversion scheme. The result depict that there are extensively conductive layer (2-10 ohm meter) below the volcanic overburden. This conductive layer is interpreted as the clay cap resulted from thermal alteration. A higher resistivity layer (10-80 ohm meter) underlies the clay cap and is interpreted as the reservoir whose top boundaries vary between 1000 m above and 2000 m below sea level.

  13. Riparian litter inputs to streams in the central Oregon Coast Range

    Science.gov (United States)

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  14. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km 3 that devastated an approximate area of 250 km 2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  15. Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression

    Science.gov (United States)

    Kayzar, Theresa M.; Nelson, Bruce K.; Bachmann, Olivier; Bauer, Ann M.; Izbekov, Pavel E.

    2014-10-01

    The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956-present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts-basaltic andesites are more radiogenic than Bezymianny andesites (208Pb/204Pb = 37.850-37.903, 207Pb/204Pb = 15.468-15.480, and 206Pb/204Pb = 18.249-18.278 at Bezymianny; 208Pb/204Pb = 37.907-37.949, 207Pb/204Pb = 15.478-15.487, and 206Pb/204Pb = 18.289-18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.

  16. Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)

    Science.gov (United States)

    Gencalioglu-Kuscu, Gonca

    2011-11-01

    Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an "orogenic" fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts ( sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb-Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the "alkaline" basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts ( sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts ( sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source

  17. Outburst fan deposit from pyroclastic flows, Williamson River canyon, south-central Oregon

    Science.gov (United States)

    Cummings, M. L.; Eibert, D.

    2016-12-01

    Pyroclastic flows from the Holocene eruption of Mount Mazama in the Cascade volcanic arc of Oregon, blocked the narrow (210 to 225 m wide, 35 to 40 m deep), bedrock-lined canyon of the Williamson River. The estimated volume of the long, narrow blockage was 4.4 x 10^7 cubic meters. The blockage eventually failed releasing an impounded lake and depositing a debris fan at the mouth of the canyon. Remnants of the debris fan underlie a gently sloping surface dissected by various abandoned channels of the river. The modern Williamson River cut its channel across the upper part of the fan. Three bedrock units are present as boulders: hydrovolcanic tuff (Di = 2.75 m) derived from tuff cones in the lower reaches of the canyon, distinctly layered geochemically primitive olivine basalt (Di = 3.4 m) that crops out approximately 6 km upstream, and massive basaltic andesite that underlies the channel in the upper canyon and cliffs that define the right bank of the canyon near the mouth. Matrix between boulders and deposits that flank and overlie the boulder deposit are dominated by medium- to fine-grained sand (ASTM; 61-70 wt. % in matrix; 76-100 wt. % elsewhere). Sand grains are predominantly well-rounded phenocryst-bearing glass that vary from massive to moderately vesiculated and crystals of plagioclase and hornblende commonly with attached remnants of groundmass. Crystals are most abundant in the medium- and fine-grained size range (>20 and fragments (twigs and molds) are common in medium-sand and larger. Elongate bars of rounded pumice gravel provide local current directions during the waning stage of the outburst flood. The thickness of the boulder deposit near the mouth of the canyon is not known. Sand deposits are 1 to 1.5 m thick near the mouth of the canyon and thin to 70 cm at about 3.4 km from the mouth of the canyon.

  18. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. (Los Alamos National Lab., NM (United States)); Aycinena, S.; Martinelli, L. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O.; Revolorio, M.; Roldan, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  19. Volcano-tectonics of the Al Haruj Volcanic Province, Central Libya

    Science.gov (United States)

    Elshaafi, Abdelsalam; Gudmundsson, Agust

    2016-10-01

    The Al Haruj intra-continental Volcanic Province (AHVP), located at the south-western margin of the Sirt Basin, hosts the most extensive and recent volcanic activity in Libya - which is considered typical for plate interiors. From north to south the AHVP is divided into two subprovinces, namely Al Haruj al Aswad and Al Haruj al Abiyad. The total area of the AHVP is around 42,000 km2. Despite the great size of the AHVP, its volcano-tectonic evolution and activity have received very little attention and are poorly documented and understood. Here we present new field data, and analytical and numerical results, on the volcano-tectonics of the AHVP. The length/thickness ratio of 47 dykes and volcanic fissures were measured to estimate magmatic overpressure at the time of eruption. The average dyke (length/thickness) ratio of 421 indicates magmatic overpressures during the associate fissure eruptions of 8-19 MPa (depending on host-rock elastic properties). Spatial distributions of 432 monogenetic eruptions sites/points (lava shields, pyroclastic cones) in the AHVP reveal two main clusters, one in the south and another in the north. Aligned eruptive vents show the dominating strike of volcanic fissures/feeder-dykes as WNW-ESE to NW-SE, coinciding with the orientation of one of main fracture/fault zones. Numerical modelling and field observations suggest that some feeder-dykes may have used steeply dipping normal-fault zones as part of their paths to the surface.

  20. The ongoing dome emplacement and destruction cyclic process at Popocatépetl volcano, Central Mexico

    Science.gov (United States)

    Gómez-Vazquez, Angel; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2016-09-01

    The ongoing eruptive activity of Popocatépetl volcano has been characterized by emplacement and subsequent destruction of a succession of lava domes. Between the onset of the current eruption in 1994 and the time of this submission, 38 episodes of lava dome formation and removal have been identified. Each dome has showed particular features related to the magma extrusion process. Among other manifestations, dome-emplacement events have been usually accompanied by relatively low-intensity, protracted explosions referred to as exhalations. After variable times of residence, emplacements have ended in partial or total destruction of the domes by strong vulcanian explosions that produced sizeable ash plumes, with most of them also ejecting incandescent debris onto the volcano flanks. Here, we present a detailed account for the observed activity related to the domes' growth and destruction, related seismic monitoring signals, and morphological features of the domes based on 19 years of visual observations and image analysis. We then discuss a model for the process of dome growth and destruction and its hazard implications.

  1. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  2. Paleomagnetism of the Tertiary Clarno Formation of central Oregon and its significance for the tectonic history of the Pacific Northwest

    Science.gov (United States)

    Gromme, C. Sherman; Beck, Myrl E., Jr.; Wells, Ray E.; Engebretson, David C.

    1986-12-01

    The Clarno Formation, a mostly Eocene and partly early Oligocene sequence of andesitic lavas and volcaniclastic rocks, is the oldest Tertiary formation exposed in north central Oregon. Remanent magnetization directions at 46 sites in the lavas provide a paleomagnetic pole at 84°N, 278°E with a 95% confidence cone of 7°. Comparison of this pole with the North American reference pole for Eocene time indicates that the Clarno Formation has rotated 16° clockwise with an uncertainty of 10° but has undergone no significant latitudinal displacement. Further comparison with paleomagnetic data from the Miocene Columbia River Basalt Group and Steens Basalt shows that large-scale block rotations in the eastern Columbia Embayment ceased sometime between 38 m.y. and 15 m.y. A paleogeographic reconstruction for 38 m.y. is offered which is consistent with the observed rotation of the Clarno and with the other paleomagnetic data from the Pacific Northwest, which are briefly reviewed. This reconstruction shows that it is possible to account for virtually all of the paleomagnetically indicated rotations in pre-Miocene Tertiary rocks of the Pacific Northwest by an extensional tectonic model. As a consequence, only part of the rotations in the pre-Tertiary rocks of the eastern Columbia Embayment need to be the result of accretionary tectonics. The initiation of magmatism in the eastern Columbia Embayment that is represented by the Clarno Formation itself may have been contemporaneous with the beginning of crustal extension in the Pacific Northwest.

  3. Social Networks and Adaptation to Environmental Change: The Case of Central Oregon's Fire-Prone Forest Landscape

    Science.gov (United States)

    Fischer, A.

    2012-12-01

    Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.

  4. Late Pleistocene Holocene stratigraphy and radiocarbon dating of La Malinche volcano, Central Mexico

    Science.gov (United States)

    Castro-Govea, Renato; Siebe, Claus

    2007-04-01

    Previous studies of La Malinche identified and radiocarbon dated several volcanic layers, the youngest of which yielded an age of ca. 7.5 ka. An additional ash fallout layer that crops out at high altitudes was considered the most recent deposit, with an estimated age of 6 ka. In the present work 38 new radiocarbon ages are presented. From these, several date the young ash fallout layer and lie around 3.1 ka. With the aid of these dates a new and comprehensive stratigraphy documenting the Late Pleistocene-Holocene eruptive history of La Malinche is presented. The stratigraphy indicates two main stages of volcanic activity: Pre-Malinche and Malinche. The first undoubtedly comprises the major part of the eruptive history, but its deposits are largely covered by the products of the latter stage, on which this study is focused. The Malinche stage was subdivided into three eruptive periods. Period 1 started with the emplacement of the Huamantla Pumice more than 45 ka ago. This deposit consists of a thick pumice fallout overlain by pyroclastic flow deposits. Subsequently, several episodes of construction and collapse of summit domes occurred. The oldest dome was dated at ca. 45 ka. Period 2 started 21.5 ka ago with the Malinche Pumice I, a widespread pumice fallout covering the entire slopes of the volcano. Pyroclastic flows and lahars related to this eruption were channeled along deep barrancas and reached considerable distances. Deposits produced by partial sector collapse and dated at ca. 20.9 ka, and a pumice-and-ash flow deposit dated at 15.9 ka were also generated during this period. The last period started with the eruption of the Malinche Pumice II, a distinctive fallout deposit overlain by ash flow deposits on the NE slope of the volcano. The age of this pumice layer is estimated between 12 and 9 ka. Formation of block-and-ash flows, lahars and pumice-and-ash flows followed during this period, and peaked in a most intensive episode that was dated at 7.5 ka

  5. Cross-shelf life-stage segregation and community structure of the euphausiids off central Oregon (1970 1972)

    Science.gov (United States)

    Gómez-Gutiérrez, J.; Peterson, W. T.; Miller, C. B.

    2005-01-01

    Community structure and zonal distribution of euphausiids along the Newport Hydrographic line (44°39.1'N) off central Oregon, USA, were examined from bi-weekly oceanographic surveys ( n=48) carried out from January 1970 through July 1972. We explored the associations among the euphausiid community composition (14 species) and changes in sea-surface temperature (SST), sea-surface salinity (SSS), coastal upwelling index (CUI), sigma- t, day vs. night sampling time, and distance from the coast. This period included the 1970-1971 La Niña and, at low latitudes, the 1972 El Niño events; this study shows that this El Niño event did not reach the Oregon coast as have most other most recent events. Multivariate analyses were done to identify the cross-shelf environmental gradients that most influence temporal changes in the euphausiid community structure. Non-metric multidimensional scaling (NMDS) indicated that the euphausiid community separates into coastal and oceanic assemblages, with a species-richness gradient located about 45 km from shore, over the shelf-break. In the inshore zone, positive CUI (upwelling) was associated with Thysanoessa spinifera, while negative CUI (downwelling) was associated with the presence of the oceanic species assemblage during October-November. Indicator species analysis (ISA) showed that two species were good indicators for the oceanic environment: Thysanoessa longipes and Nematoscelis atlantica. Three species (Thysanoessa gregaria, Nematoscelis difficilis, and Tessarabrachion oculatum) were moderate indicators for the oceanic environment because, during fall and winter downwelling events, they may be transported over the continental shelf. High densities of larvae and juveniles of T. spinifera were found nearshore (18-108 km from the coast). Euphausia pacifica was relatively homogeneously distributed in shelf and offshore waters, but its larvae were recorded chiefly inshore in mid-summer and offshore during the rest of the year. Our

  6. Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768-1998

    Science.gov (United States)

    Voight, B.; Constantine, E.K.; Siswowidjoyo, S.; Torley, R.

    2000-01-01

    Information on Merapi eruptive activity is scattered and much is remotely located. A concise and well-documented summary of this activity has been long needed to assist researchers and hazard-mitigation efforts, and the aim of this paper is to synthesize information from the mid-1700s to the present. A descriptive chronology is given, with an abbreviated chronology in a table that summarizes events by year, assigns preliminary Volcanic Explosivity Index (VEI) ratings and Hartmann classifications, and provides key references. The history of volcano monitoring is also outlined. The study reveals that a major difference in eruption style exists between the twentieth and nineteenth centuries, although the periodicity between larger events seems about the same. During the twentieth century, activity has comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of oversteepened domes to produce the nue??es ardentes - commonly defined as "Merapi-type". In the 1800s, however, explosive eruptions of relatively large size occurred (to VEI 4), and some associated "fountain-collapse" nue??es ardentes were larger and farther reaching than any produced in the twentieth century. These events may also be regarded as typical eruptions for Merapi. The nineteenth century activity is consistent with the long-term pattern of one relatively large event every one or two centuries, based on the long-term eruptive record deduced by others from volcanic stratigraphy. It is uncertain whether or not a "recurrence-time" model continues to apply to Merapi, but if so, Merapi could soon be due for another large event and its occurrence with only modest (or inadequately appreciated) precursors could lead to a disaster unprecedented in Merapi's history because the area around the volcano is now much more densely populated. ?? 2000 Elsevier Science B.V. All rights reserved.

  7. Precise hypocentre relocation of microearthquakes in a high-temperature geothermal field: the Torfajökull central volcano, Iceland

    Science.gov (United States)

    Lippitsch, Regina; White, Robert S.; Soosalu, Heidi

    2005-01-01

    The Torfajökull volcanic system is one of approximately 30 active volcanoes comprising the neovolcanic zones of Iceland. The central volcano of the system is the largest silicic centre in Iceland with a caldera of approximately 12 km diameter. Its high-temperature geothermal system is one of the most powerful in Iceland. Torfajökull is a source of persistent seismicity, where both high- and low-frequency earthquakes occur. To study this microseismicity in detail, a temporary array of 20 broad-band seismic stations was deployed between 2002 June and November. These temporary stations were embedded in the permanent South Iceland Lowland (SIL) network and data from nine adjacent SIL stations were included in this study. A minimum one-dimensional (1-D) velocity model with station corrections was computed for earthquake relocation by inverting manually picked P- and S-wave arrival times from events occurring in the Torfajökull volcanic centre and its surroundings. High-frequency earthquakes from the Torfajökull volcanic centre were then relocated calculating a non-linear, probabilistic solution to the earthquake location problem. Subsequently, we correlated the waveforms of these 121 events (~2000 observations) to define linked events, calculated the relative traveltime difference between event pairs and solved for the hypocentral separation between these events. The resulting high-resolution pattern shows a tighter clustering in epicentre and focal depth when compared with original locations. Earthquakes are mainly located beneath the caldera with hypocentres between 1 and 6 km depth and lie almost exclusively within the geothermal system. A sharp cut-off in seismicity at 3 km suggests either that there is a marked temperature increase or that this is a structural boundary. No seismic activity was observed in the fissure swarms to the northeast (NE) and southwest (SW) of the volcanic centre.

  8. Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar)

    Science.gov (United States)

    Gençalioğlu-Kuşcu, Gonca; Atilla, Cüneyt; Cas, Ray A. F.; Kuşcu, İlkay

    2007-01-01

    Cora Maar is a Quaternary volcano located to the 20 km northwest of Mount Erciyes, the largest of the 19 polygenetic volcanic complexes of the Cappadocian Volcanic Province in central Anatolia. Cora Maar is a typical example of a maar-diatreme volcano with a nearly circular crater with a mean diameter of c.1.2 km, and a well-bedded base surge-dominated maar rim tephra sequence up to 40 m in thickness. Having a diameter/depth ratio ( D/ d) of 12, Cora is a relatively "mature" maar compared to recent maar craters in the world. Cora crater is excavated within the andesitic lava flows of Quaternary age. The tephra sequence is not indurated, and consists of juvenile clasts up to 70 cm, non-juvenile clasts up to 130 cm, accretionary lapilli up to 1.2 cm in diameter, and ash to lapilli-sized tephra. Base surge layers display well-developed antidune structures indicating the direction of the transport. Both progressive and regressive dune structures are present within the tephra sequence. Wavelength values increase with increasing wave height, and with large wavelength and height values. Cora tephra display similarities to Taal and Laacher See base surge deposits. Impact sags and small channel structures are also common. Lateral and vertical facies changes are observed for the dune bedded and planar bedsets. According to granulometric analyses, Cora Maar tephra samples display a bimodal distribution with a wide range of Md φ values, characteristic for the surge deposits. Very poorly sorted, bimodal ash deposits generally vary from coarse tail to fine tail grading depending on the grain size distribution while very poorly sorted lapilli and block-rich deposits display a positive skewness due to fine tail grading.

  9. Geology of Newberry National Volcanic Monument, Oregon, USA

    Science.gov (United States)

    Donnelly-Nolan, J. M.; Jensen, R. A.; Robinson, J. E.

    2014-12-01

    Volcanic geology is the dominant theme at Newberry National Volcanic Monument in central Oregon. Established almost 25 years ago, the NNVM (like the Mt. St. Helens National Volcanic Monument) is managed by the U.S. Forest Service. The monument encompasses some 90 square miles in Deschutes National Forest of the 1200-sq-mi Newberry Volcano, including the 4x5 mi scenic central caldera and the volcano's youngest lava flow, the 1300-yr-old Big Obsidian Flow. The seismically-monitored Newberry Volcano is considered by the USGS to be a very high threat volcano, with the potential to impact adjacent populations in Bend, Sunriver, and LaPine and damage infrastructure including highways, railroads, and power lines. Unspectacular from a distance, the broad shield shape of Newberry Volcano hides the abundance and youthfulness of volcanic activity. Included in NNVM are 7-ka basalt to andesite lavas of the Northwest Rift Zone (NWRZ) that erupted from spatter and cinder cones over a N-S distance of 20 miles and temporarily blocked the flow of the adjacent Deschutes River. These well-exposed lavas are post-Mazama in age, having erupted after a blanket of ash and pumice was deposited on the volcano when Mt. Mazama erupted at 7.7 ka to form Crater Lake. Images from lidar data obtained in 2011 clearly display the post-Mazama lavas, which not only are unmantled by the tephra, but also lack the thick forest that has grown in the tephra further obscuring many of the youthful volcanic features across this massive rear-arc Cascades volcano. NNVM features interpretive trails at the Big Obsidian Flow in the caldera and at Lava Cast Forest and Lava Butte flow along the NWRZ. Also within the monument are two of the premier drivable viewpoints in Oregon, on Lava Butte and at the 7984-ft top of Paulina Peak on the rim of the caldera. On a clear day, views from Paulina Peak encompass much of the High Cascades, extending from Mt. Shasta in California to Mt. Adams in Washington.

  10. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  11. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    This report is temporarily unavailableSummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  12. River responses to the 2010 major eruption of the Merapi volcano, central Java, Indonesia

    Science.gov (United States)

    Gob, Frédéric; Gautier, Emmanuèle; Virmoux, Clément; Grancher, Delphine; Tamisier, Vincent; Primanda, Kiki Widyaputra; Wibowo, Sandy Budi; Sarrazin, Caroline; de Belizal, Edouard; Ville, Anouk; Lavigne, Franck

    2016-11-01

    This study examines the fluvial readjustment of a Javanese river impacted by the major eruption of the Merapi volcano (Indonesia) in October and November 2010. The basin of the Opak River, located on the southern flank of the Merapi, was subject to substantial sediment input related to massive pyroclastic deposits that were remobilized by numerous lahars during the year after the eruption. Two study sites were equipped in order to evaluate the morphodynamic evolution of the riverbed of the Opak River. Topographic surveys, bedload particle marking, and suspended sediment sampling revealed an important sediment mobilization during efficient flash floods. Surprisingly, no bed aggradation related to the progradation of a sediment wave was observed. Two years after the eruptive event, marked bed incision was observed. The Opak River readjustment differs from that of other fluvial systems affected by massive eruptions in two ways. Firstly, local population extracted the sand and blocks injected by the eruption as they represent a valuable economic resource. Secondly, several dams trapped the major part of the sediment load remobilized by lahars.

  13. Effects of environment and grazing disturbance on tree establishment in meadows of the central Cascade Range, Oregon, USA

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.A.; Halpern, C.B. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources

    1998-04-01

    Within the last century there has been widespread establishment of trees in mountain meadows of the Pacific Northwest. We reconstructed patterns of tree invasion at 17 meadow sites in the central Cascade Range of Oregon, USA - sites representing diverse physical environments and vegetation types and experiencing different histories of recent anthropogenic disturbance (sheep grazing). Spatial distributions and age structures of invasive tree populations were analysed with respect to climatic records and grazing history. Patterns of establishment varied considerably among meadows, reflecting strong differences in environment and grazing history. In montane hydric meadows, tree establishment was spatially clumped beneath large old trees and on elevated microsites; however the timing of invasion differed between sites with stable versus fluctuating water tables. In upland mesic/dry montane meadows, timing of invasion corresponded with cessation of sheep grazing (early 1940s) and the onset of wetter summers (mid 1940s). In the subalpine zone, climate and aspect interacted to produce contrasting histories of invasion on north- and south-faced slopes. Establishment on north-facing slopes, concentrated in heath-shrub communities, coincided with regional warming (1920-1945) when snowpacks were lighter and melted earlier. Recruitment of trees onto south-facing slopes occurred later, when conditions were wetter (1945-1985). In many environments, the spatial distribution of recruitment suggests that once trees have established, autogenic factors become increasingly important as individual trees or groups of trees alter the physical or biotic conditions that once inhibited establishment. Knowledge of the factors that influence invasion, and of their varying importance across gradients in environment and vegetation, is critical to predicting future changes in these dynamic systems 74 refs, 12 figs, 2 figs

  14. Timing of cut-and-fill sequences in the John Day Formation (Eocene-Oligocene), Painted Hills area, central Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bestland, E.A.; Retallack, G.J. (Univ. of Oregon, Eugene, OR (United States). Dept. of Geological Sciences); Swisher, C.C. III (Inst. of Human Origins, Berkeley, CA (United States)); Fremd, T.J. (John Day Fossil Beds National Monument, John Day, OR (United States))

    1993-04-01

    Large-scale cut-and-fill features in the Eocene-Oligocene part of the John Day Formation in the Pained Hills area of central Oregon can be interpreted as terrestrial depositional sequences, mapped as lithostratigraphic units, and correlated to North American Land Mammal Ages (NALMA). New laser-fusion 40Ar/39Ar single-crystal ages from the John Day Formation provide evidence for the timing of these sequences and a revised placement of the Eocene-Oligocene boundary. The sequences are bound by erosional surfaces that have relief of up to 60 m, are marked in places by claystone breccias full of reworked soil clasts, and separate otherwise conformable strata. The lowermost depositional sequence in the John Day Formation contains very well developed, Fe- and Al-rich paleosols, laterite horizons, and the welded tuff of member A (39.7 my), and probably correlates to the Duchesean and Chadronian NALMA. These brick-rid claystones are sharply truncated by prominent detrital laterite horizon. Overlying this basal sequence is a second sequence of much less well developed paleosols, abundant tuffs and lacustrine tuffaceous claystones. This sequence contains a distinctive biotite tuff (33 my) and the type locality of the Bridge Creek fossil flora and probably correlates to the Orellan NALMA. Above this biotite tuff are alternating red, dark gray, and tan paleosols and a prominent crystal vitric tuff (32.7 my). The Eocene-Oligocene boundary lies between these two sequences, associated with the laterite horizon that truncates the basal red beds. A major truncation surface cuts this sequence and is overlain by a third sequence of thin red paleosols which probably correlates with the Whitneyan NALMA. Above this is a fourth sequence (Arikareean NALMA) consisting of greenish-tan paleosols, a crystal vitric tuff near its base (29.8 my) and the Picture Gorge Ignimbrite (28.7 my).

  15. Understanding the transmission of wildfire risk on a fire prone landscape - A Case study from Central Oregon

    Science.gov (United States)

    Ager, Alan; Barros, Ana; Day, Michelle; Preisler, Haiganoush; Evers, Cody

    2015-04-01

    We develop the idea of risk transmission from large wildfires and apply network analyses to understand its importance within the 3.2 million ha Fire-People-Forest study area in central Oregon, US. Historic wildfires within the study and elsewhere in the western US frequently burn over long distances (e.g., 20-50 km) through highly fragmented landscapes with respect to ownership, fuels, management intensity, population density, and ecological conditions. The collective arrangement of fuel loadings in concert with weather and suppression efforts ultimately determines containment and the resulting fire perimeter. While spatial interactions among land parcels in terms of fire spread and intensity have been frequently noted by fire managers, quantifying risk and exposure transmission is not well understood. In this paper we used simulation modeling to quantify wildfire transmission and built a transmission network among and within land owners and communities within the study area. The results suggested that 84% of the predicted area burned within the 25 communities in the study area was from simulated fires that ignited on federal lands. The wildland urban interface surrounding the communities was predicted to burn at a rate of 2 % per year, with 57% of the area burned from fires ignited on federal lands. The node degree for communities indicated that simulated fires originated on about 6 different landowners. Network analyses in general revealed independent variation in transmitted fire among landowners in terms of both node degree (diversity of landowners exchanging fire) and transmitted fire, indicating that both the spatial grain of land ownership and wildfire topology contribute to transmission among land parcels. We discuss how network analyses of wildfire transmission can inform fire management goals for creating fire adapted communities, conserving biodiversity, and resolving competing demands for fire-prone ecosystem services. We also discuss how biophysical

  16. Structured decision making for conservation of bull trout (Salvelinus confluentus) in Long Creek, Klamath River Basin, south-central Oregon

    Science.gov (United States)

    Benjamin, Joseph R.; McDonnell, Kevin; Dunham, Jason B.; Brignon, William R.; Peterson, James T.

    2017-06-21

    With the decline of bull trout (Salvelinus confluentus), managers face multiple, and sometimes contradictory, management alternatives for species recovery. Moreover, effective decision-making involves all stakeholders influenced by the decisions (such as Tribal, State, Federal, private, and non-governmental organizations) because they represent diverse objectives, jurisdictions, policy mandates, and opinions of the best management strategy. The process of structured decision making is explicitly designed to address these elements of the decision making process. Here we report on an application of structured decision making to a population of bull trout believed threatened by high densities of nonnative brook trout (S. fontinalis) and habitat fragmentation in Long Creek, a tributary to the Sycan River in the Klamath River Basin, south-central Oregon. This involved engaging stakeholders to identify (1) their fundamental objectives for the conservation of bull trout, (2) feasible management alternatives to achieve their objectives, and (3) biological information and assumptions to incorporate in a decision model. Model simulations suggested an overarching theme among the top decision alternatives, which was a need to simultaneously control brook trout and ensure that the migratory tactic of bull trout can be expressed. More specifically, the optimal management decision, based on the estimated adult abundance at year 10, was to combine the eradication of brook trout from Long Creek with improvement of downstream conditions (for example, connectivity or habitat conditions). Other top decisions included these actions independently, as well as electrofishing removal of brook trout. In contrast, translocating bull trout to a different stream or installing a barrier to prevent upstream spread of brook trout had minimal or negative effects on the bull trout population. Moreover, sensitivity analyses suggested that these actions were consistently identified as optimal across

  17. Structural control on volcanoes and magma paths from local- to orogen-scale: The central Andes case

    Science.gov (United States)

    Tibaldi, A.; Bonali, F. L.; Corazzato, C.

    2017-03-01

    Assessing the parameters that control the location and geometry of magma paths is of paramount importance for the comprehension of volcanic plumbing systems and geo-hazards. We analyse the distribution of 1518 monogenic and polygenic volcanoes of Miocene-Quaternary age of the Central Volcanic Zone of the Andes (Chile-Bolivia-Argentina), and reconstruct the magma paths at 315 edifices by analysing the morphostructural characteristics of craters and cones. Then we compare these data with outcropping dykes, tectonic structures and state of stress. Most magma paths trend N-S, NW-SE, and NE-SW, in decreasing order of frequency. The N-S and NW-SE paths coexist in the northern and southern part of the study area, whereas N-S paths dominate east of the Salar de Atacama. Outcropping dykes show the same trends. The regional Holocene stress state is given by an E-W greatest horizontal principal stress. N-S and NNE-SSW reverse faults and folds affect deposits of 4.8, 3.2 and 1.3 Ma BP, especially in the central and southern study areas. A few NW-SE left-lateral strike-slip faults are present in the interior of the volcanic arc, part of which belong to the Calama-Olacapato-El Toro fault. The volcanic chain is also affected by several N-S- and NW-SE-striking normal faults that offset Pliocene and Quaternary deposits. The results indicate different scenarios of magma-tectonic interaction, given by N-S normal and reverse faults and N-S fold hinges that guide volcano emplacement and magma paths. Magma paths are also guided by strike-slip and normal NW-SE faults, especially in the northern part of the study area. Zones with verticalized strata, with bedding striking NE-SW, also acted as preferential magma paths. These data suggest that at convergence zones with continental crust, shallow magma paths can be more sensitive to the presence and geometry of upper crustal weakness zones than to the regional state of stress.

  18. Bedrock Control on Slope Gradients in the Luckiamute Watershed, Central Coast Range, Oregon: Implications for Sediment Transport and Storage

    Science.gov (United States)

    Taylor, S. B.

    2002-12-01

    The Luckiamute River watershed drains 815 sq km along the east flank of the Coast Range in west-central Oregon. Active mountain building and extreme precipitation patterns result in a dynamic geomorphic system characterized by seasonal flooding and slope failure. Style of surficial process and landform associations are controlled by topographic position, underlying bedrock geology, and resistance to erosion. Bedrock map units are grouped into four lithospatial domains, these include the Siletz River Volcanics Domain (south), the Tyee Domain (west-southwest), the Yamhill-Intrusive Domain (north-northwest), and the Valley Fill-Spencer Domain (east). The Siletz River Domain comprises 19% of the watershed and is mainly seafloor basalt. The Tyee Domain (29% of total area) is underlain by arkosic sandstone lithofacies with local mafic intrusives. The Yamhill-Intrusive Domain occupies 23% of the watershed and is characterized by outcrop of marine siltstone and mafic intrusives. The Valley Fill-Spencer Domain (29%) is underlain by a patchwork of marine sandstones and Quaternary alluvium. Hillslope landforms and colluvial processes dominate the Siletz River, Tyee, and Yamhill domains, whereas fluvial landforms and alluvial processes are characteristic of the Valley Fill Domain. GIS-based analyses of USGS 10-meter DEMs elucidate associations between lithospatial domains and slope gradients. Average gradients for the Valley Fill, Siletz, Yamhill, and Tyee domains are 3.2 (n = 2290702 10-m cells), 12.7 (n = 1510287 10-m cells), 11.9 (n = 1926899 10-m cells), and 14.5 (n = 2409140 10-m cells) degrees, respectively. The Tyee Domain is associated with significantly steeper slopes on average compared to the other three domains. In addition, greater than 14% of the Tyee Domain area has slopes greater than 25 degrees, compared to less than 1% for the Valley Fill Domain, and less than 8% for the Siletz and Yamhill domains. Results of the slope analyses are consistent with debris

  19. Amphibole megacrysts as a probe into the deep plumbing system of Merapi volcano, Central Java, Indonesia

    Science.gov (United States)

    Peters, Stefan T. M.; Troll, Valentin R.; Weis, Franz A.; Dallai, Luigi; Chadwick, Jane P.; Schulz, Bernhard

    2017-04-01

    Amphibole has been discussed to potentially represent an important phase during early chemical evolution of arc magmas, but is not commonly observed in eruptive arc rocks. Here, we present an in-depth study of metastable calcic amphibole megacrysts in basaltic andesites of Merapi volcano, Indonesia. Radiogenic Sr and Nd isotope compositions of the amphibole megacrysts overlap with the host rock range, indicating that they represent antecrysts to the host magmas rather than xenocrysts. Amphibole-based barometry suggests that the megacrysts crystallised at pressures of >500 MPa, i.e., in the mid- to lower crust beneath Merapi. Rare-earth element concentrations, in turn, require the absence of magmatic garnet in the Merapi feeding system and, therefore, place an uppermost limit for the pressure of amphibole crystallisation at ca. 800 MPa. The host magmas of the megacrysts seem to have fractionated significant amounts of amphibole and/or clinopyroxene, because of their low Dy/Yb ratios relative to the estimated compositions of the parent magmas to the megacrysts. The megacrysts' parent magmas at depth may thus have evolved by amphibole fractionation, in line with apparently coupled variations of trace element ratios in the megacrysts, such as e.g., decreasing Zr/Hf with Dy/Yb. Moreover, the Th/U ratios of the amphibole megacrysts decrease with increasing Dy/Yb and are lower than Th/U ratios in the basaltic andesite host rocks. Uranium in the megacrysts' parent magmas, therefore, may have occurred predominantly in the tetravalent state, suggesting that magmatic fO2 in the Merapi plumbing system increased from below the FMQ buffer in the mid-to-lower crust to 0.6-2.2 log units above it in the near surface environment. In addition, some of the amphibole megacrysts experienced dehydrogenation (H2 loss) and/or dehydration (H2O loss), as recorded by their variable H2O contents and D/ H and Fe3+/Fe2+ ratios, and the release of these volatile species into the shallow plumbing

  20. Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatepetl volcano, central Mexico

    Science.gov (United States)

    Panfil, M.S.; Gardner, T.W.; Hirth, K.G.

    1999-01-01

    Late Holocene (240 km2 on the east side of the volcano with >25 cm of tephra. Lavas from eruptive sequence I dammed drainage in the lowland area near the town of San Nicolas and caused local upstream deposition of as much as 30 m of lacustrine silts, clays, and sands. These lacustrine deposits record an eruptive hiatus for the Tetimpa area of about 750 14C yr: between ca. 2100 and ca. 1350 yr B.P., no major tephras were deposited in the Tetimpa area. In upland areas, this time period is represented by an unconformity and by Entisols formed in the top of pumice deposits and lavas from eruptive sequence I. Artifacts, agricultural furrows, and dwellings record human reoccupation of this surface. At the end of this hiatus, several lahars were deposited above the lacustrine sequence and locally above the Entisol in upland positions adjacent to streams. Between ca. 1350 and ca. 1200 yr B.P., tephras from eruptive sequence II buried these paleosols, occupation sites, lacustrine sediments, and lahars. Andesitic (~62% SiO2) pumice lapilli deposits in the Tetimpa area record three pumice-fall eruptions directed northeast and east of the crater. The first and smallest of these (maximum Tetimpa area thickness = 12 cm; >52 km2 covered by >25 cm) took place at ca. 1350 yr B.P. and was accompanied by pyroclastic surge events preserved in the Tetimpa area by charcoal, sand waves, and cross-stratified sand-sized tephra. At ca. 1200 yr B.P., the products of two Plinian-style events and additional pyroclastic surges reached the Tetimpa area. The largest of these tephra-fall events covered the Tetimpa area with 0.5-1 m of tephra and blanketed an area of >230 km2 with a thickness of >25 cm. The Tetimpa record confirms two of the four periods of explosive volcanism recognized by studies conducted around Popocatepetl in the past 30 yr. Eruptive sequence I corresponds to the explosive period between 2100 and 2500 yr B.P., and eruptive sequence II corresponds to the period between 900 and

  1. The 2010 Pyroclastic Density Currents of Merapi Volcano, Central Java, Indonesia

    Science.gov (United States)

    Charbonnier, Sylvain; Germa, Aurelie; Connor, Chuck; Connor, Laura; Dixon, Tim; Komorowski, Jean-Christophe; Gertisser, Ralf; Lavigne, Franck; Preece, Katie

    2013-04-01

    , allow us to evaluate the ability of these models to reproduce the main features of the natural deposits and some of the flow overbanking processes observed in the field. Using such a multi-techniques approach, the dataset obtained in this study is considered not only instrumental for characterizing PDCs and related hazards at Merapi, but will allow comparisons with similar events at other volcanoes around the globe.

  2. Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume

    Science.gov (United States)

    Feigenson, Mark D.; Carr, Michael J.; Maharaj, Susan V.; Juliano, Scott; Bolge, Louise L.

    2004-06-01

    Lead isotopic analyses of lavas from Central America, both along and behind the volcanic arc, help to clarify source components in the mantle wedge. Analysis of previous Pb isotopic data had implied that little or no marine sediment lead was added to the Central American source region, as all samples fell within the MORB field, in contrast to other information (e.g., Ba/La, 10Be, 87Sr/86Sr) that indicated a high subduction component. The data presented here include several analyses of local marine sediment, showing it to be exceptionally unradiogenic in Pb and thus permitting high sediment contributions to the mantle source region without significant changes in Pb isotopes. Combined Pb-Nd and Pb-Sr isotopic diagrams clearly illustrate the influence of crustal contamination for samples from Guatemala and Honduras, and of subducted sediment for all lavas of the volcanic front. Samples collected behind the volcanic front are derived from mixing between enriched and depleted mantle sources, and in central Costa Rica (extending to the back arc) overlap Pb, Sr and Nd isotope values for both Cocos Island and some components of the Galapagos hot spot. The restricted geographical occurrence of the enriched mantle signature in Central America, coupled with the persistence of the signal well into the back arc region, imply that these lavas are sampling Galapagos plume-influenced mantle. The presence of this plume component beneath southern Central America and extending to the northeast beneath the Caribbean confirms a Galapagos hot spot origin for this part of Caribbean Plate.

  3. Water composition in the unsaturated zone at Sete Cidades central volcano (S. Miguel, Azores, Portugal)

    Science.gov (United States)

    Cruz, J.; Silva, M.; Mendonça, J.; Dias, I.; Prudêncio, I.

    2009-04-01

    A field study was developed at Sete Cidades, the westernmost of the three active composite volcanoes that dominate the geology of São Miguel, the largest of the nine islands from the Azores archipelago. Research methodology comprehends the characterization of soil-water composition at several depths, sampled by means of ceramic suction cups. Previously to their installation, cups were all submitted to several stages of washing, first in the laboratory with supra pure water, until aliquot conductivity stabilizes, and after in the field. This study was planned in order to study the water pollution due to agriculture, one of the main economic activities in the Azores, as shown by the gross value added to regional product. The negative effects of groundwater pollution due to agriculture have been reported in the majority of the nine islands, reflected by high contents of nitrogen species, derived from the inadequate use of synthetic and organic fertilizers, as well as from animal wastes leaching, or also by microbiology parameters. The relation between water pollution and agriculture results in some cases in the failure to comply regarding EU and national water quality regulations, through quality deterioration and compromising groundwater as strategic natural resource in the Azores. The studied area corresponds to Sete Cidades volcano caldera, a 5 km-diameter circular shaped depression, contoured by steep walls from 30 m high up to 400 m. In order to characterize unsaturated water composition in the caldera floor, five pasture locations were selected and monitored, as well as one site with the same physical conditions, but without agricultural activity. From the 5 pasture lands we discuss further results obtained in the so-called Pavão I (Pa I), which corresponds to the most extensive data set. On this site, 6 suction cups were installed, at depths 0.35 m, 0.7 m, 1 m, 1.3 m, 1.6 m and 1.9 m. In the site without agricultural activity, in the vicinity of Sete Cidades

  4. Seismic Study of the Velocity Structure and Earthquake FocalMechanisms beneath the Krafla Central Volcano, NE Iceland

    Science.gov (United States)

    Martens, H. R.; Schuler, J.; Greenfield, T. S.; White, R. S.; Roecker, S. W.; Brandsdottir, B.; Stock, J. M.; Tarasewicz, J.; Pugh, D. J.

    2015-12-01

    We investigated the seismic velocity structure of the Krafla central volcano, NE Iceland, and its shallow geothermal fields. In our 3D tomographic inversions, we used passive seismic data recorded between 2009-2012 from a temporary local network as well as active seismic legacy data to constrain the velocity models. We find high P-wave velocities (Vp) underneath regions of elevated topographic relief as well as two low-Vp anomalies that coincide spatially with two attenuating bodies outlined from S-wave shadows during the Krafla rifting episode of 1974-1985. Within the Krafla geothermal reservoir, which is developed for energy production, we imaged a shallow low-Vp/Vs zone overlying a deeper high-Vp/Vs zone and interpreted them as steam- and brine-bearing formations, respectively. Previously undertaken borehole measurements support our findings. A prominent low-Vp/Vs anomaly underlies these zones at rock depths greater than 1.5 km, where a super-heated zone within felsic overlies rhyolitic within the geothermal melt. Calculations systems show that of the most earthquake focal events are mechanisms consistent double-couple source models with only a few clear non-shear source models.

  5. Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico

    Science.gov (United States)

    Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.

    2007-05-01

    The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.

  6. Sprague River Oregon Bars 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  7. Sprague River Oregon Floodplain Boundary

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  8. Sprague River Oregon Floodplain 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the...

  9. Sprague River Oregon Centerline 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  10. Sprague River Oregon Centerline 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  11. Sprague River Oregon Water 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  12. Sprague River Oregon Water 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  13. Sprague River Oregon Floodplain 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  14. Sprague River Oregon Bars 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the...

  15. Sprague River Oregon Bars 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  16. Sprague River Oregon Centerline 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  17. Sprague River Oregon Centerline 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  18. Sprague River Oregon Floodplain Centerline

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  19. Estimation of total discharged mass from the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014

    Science.gov (United States)

    Takarada, Shinji; Oikawa, Teruki; Furukawa, Ryuta; Hoshizumi, Hideo; Itoh, Jun'ichi; Geshi, Nobuo; Miyagi, Isoji

    2016-08-01

    The total mass discharged by the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014, was estimated using several methods. The estimated discharged mass was 1.2 × 106 t (segment integration method), 8.9 × 105 t (Pyle's exponential method), and varied from 8.6 × 103 to 2.5 × 106 t (Hayakawa's single isopach method). The segment integration and Pyle's exponential methods gave similar values. The single isopach method, however, gave a wide range of results depending on which contour was used. Therefore, the total discharged mass of the 2014 eruption is estimated at between 8.9 × 105 and 1.2 × 106 t. More than 90 % of the total mass accumulated within the proximal area. This shows how important it is to include a proximal area field survey for the total mass estimation of phreatic eruptions. A detailed isopleth mass distribution map was prepared covering as far as 85 km from the source. The main ash-fall dispersal was ENE in the proximal and medial areas and E in the distal area. The secondary distribution lobes also extended to the S and NW proximally, reflecting the effects of elutriation ash and surge deposits from pyroclastic density currents during the phreatic eruption. The total discharged mass of the 1979 phreatic eruption was also calculated for comparison. The resulting volume of 1.9 × 106 t (using the segment integration method) indicates that it was about 1.6-2.1 times larger than the 2014 eruption. The estimated average discharged mass flux rate of the 2014 eruption was 1.7 × 108 kg/h and for the 1979 eruption was 1.0 × 108 kg/h. One of the possible reasons for the higher flux rate of the 2014 eruption is the occurrence of pyroclastic density currents at the summit area.

  20. Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America)

    Science.gov (United States)

    Mattioli, Michele; Renzulli, Alberto; Agostini, Samuele; Lucidi, Roberto

    2016-01-01

    Isla El Tigre volcano is located in the Gulf of Fonseca (Honduras) along the Central America volcanic front, where a significant change in the strike of the volcanic chain is observed. The studied samples of this poorly investigated volcano are mainly subalkaline basic to intermediate lavas (basalts and basaltic andesites) and subordinate subalkaline/alkaline transitional basalts, both having the typical mineralogical and geochemical characteristics of arc volcanic rocks. On the basis of petrographic and geochemical features, two groups of rocks have been distinguished. Lavas from the main volcanic edifice are highly porphyritic and hy-qz normative, and have lower MgO contents ( 5 wt.%), are ol-hy normative and show lower HFSE depletions relative to LILE and LREE, with lower Ba/La, Ba/Nb and Zr/Nb ratios. This suggests that mantle-derived magmas were not produced by the same process throughout the activity of the volcano. The bulk rock geochemistry and 87Sr/86Sr (0.70373-0.70382), 143Nd/144Nd (0.51298-0.51301), 206Pb/204Pb (18.55-18.58), 207Pb/204Pb (15.54-15.56) and 208Pb/204Pb (38.23-38.26) isotopic data of Isla El Tigre compared with the other volcanoes of the Gulf of Fonseca and all available literature data for Central America suggests that this stratovolcano was mainly built by mantle-derived melts driven by slab-derived fluid-flux melting, while magmas erupted through its parasitic cones have a clear signature of decompression melting with minor slab contribution. The coexistence of these two different mantle melting generation processes is likely related to the complex geodynamic setting of the Gulf of Fonseca, where the volcanic front changes direction by ca. 30° and two fundamental tectonic structures of the Chortis continental block, mainly the N-S Honduras Depression and the NE-SW Guayape Fault Zone, cross each other.

  1. Late Pleistocene to Holocene tephrostratigraphy of the Lonquimay Volcano, South Central Chile

    Science.gov (United States)

    Gilbert, D.; Freundt, A.; Kutterolf, S.; Burkert, C.

    2010-12-01

    The Lonquimay Volcanic Complex (LVC) in South Central Chile (38.38°S, 71.58°W) is part of the Southern Volcanic Zone of the Andes, which formed in response to the subduction of the Nazca Plate beneath the South American Plate. During the course of its magmatic evolution, the LVC produced explosive eruptions documented in the succession of widespread tephra deposits, as well as large lava flows that originated from the main edifice and several adjacent minor eruptive centers. The last eruptive phase in Lonquimays volcanic evolution occurred from 1988-1990. It led to the formation of the Navidad cinder cone with its associated 10.2 km long lava flow, and a widely distributed tephra blanket of andesitic composition (Moreno and Gardeweg, 1989). During recent field work we reinvestigated and complemented the LVC tephrostratigraphy as originally established by Polanco (1998)by detailed logging of 22 outcrops and collecting 126 stratigraphically controlled samples that were analyzed for their matrix glass, mineral and bulk rock compositions. This data set allows us to verify and extend the field-based correlations, and to establish a tephrostratigraphy for the LVC that comprises 15 stratigraphic units (LQA-LQO) and provides a framework for ongoing investigations of the petrogenetic evolution of the LVC. The stratigraphic record identifies at least 13 explosive eruptions of VEI > 3 that occurred since the last glaciation period (17150 a BP, McCulloch et al. 2000). Magmatic compositions of the tephra deposits range from basaltic scoriae (51wt% SiO2) to evolved dacitic pumice lapilli layers (67wt% SiO2), and thus have a wider compositional range than the chemically distinct andesitic lavas (57-63wt%) of the LVC. The vertical succession of tephra compositions reflects four periods of progressive magmatic differentiation, each successively tapped by several eruptions. The maximum degree of fractionation reached during these periods increases to younger ages. The

  2. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  3. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  4. Identifying deformation styles and causes at two deforming volcanoes of the Central Main Ethiopian Rift with seismic anisotropy

    Science.gov (United States)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay; Tulu, Beshahe; James, Wookey

    2016-04-01

    The Main Ethiopian Rift (MER) has undergone extension since ˜8 Ma, and whilst large border faults were active until later stages, since then (2 Ma) seemingly most extension has been via the Wonji Fault Belt (WFB), a series of en-echelon faults perpendicular to current spreading, which possibly focus around magmatic centres. Two such centres are Corbetti and Aluto volcanoes in the central MER. They have shown significant (>5 cm) uplift and subsidence for at least five years, probably erupted in the Holocene, and are geothermal sites. They are presumed therefore to play an active rôle in present-day extension along the rift, via magma injection and brittle deformation; yet a detailed physical explanation of their behaviour remains elusive. We report results from a recent combined seismic-geodetic study (ARGOS) of these areas, focussing on the seismic anisotropy revealed. We confirm that both volcanoes are seismically active, with events located beneath the edifice having mean local magnitude mL = 1.0. Beneath Aluto, there are two main clusters of activity: (1) at depths 5-10 km below sea level (bsl), and (2) between -2 and 0 km bsl. Focal mechanisms show predominantly normal faulting on fault planes striking north-northeast (NNE), and event locations cluster along a similar trend. The identification of the WFB in this region is debated, but we show that only the deepest (5-15 km) events occur along the northeast-trending faults with outcropping to the east. Shear wave splitting of over 5 % is present, and appears to be confined to the top 5 km, since little depth dependence is shown. Fast shear wave orientations have again a NNE trend. These lines of evidence indicate that current seismic deformation, and aligned structures in the top few km, act in response to the current stress field, and not pre-existing features. Any magmatic emplacement occurring above 15 km is likely not as dykes, as these would create large seismic anisotropy at these depths which is not

  5. Volcano Preparedness

    Science.gov (United States)

    ... You might feel better to learn that an ‘active’ volcano is one that has erupted in the past ... miles away. If you live near a known volcano, active or dormant, following these tips will help you ...

  6. Lulak Abad Iron Occurrence, Northwest of Zanjan: Metamorphosed and Deformed Volcano-Sedimentary Type of Mineralization in Central Iran

    Directory of Open Access Journals (Sweden)

    Mehri Karami

    2016-07-01

    are depleted in LREE (except Ce but enriched in most HREE (beside depletion in Dy and Ho. These signatures indicate high wall rock interaction (e.g., Lottermoser, 1992; Liegeois et al., 2003. Comparison of the geological, mineralogical, geochemical, textural and structural characteristics of the Lulak Abad occurrence with different types of iron deposits reveals that iron mineralization at Lulak Abad was originally formed as volcano-sedimentary, and then reconcentrated as vein mineralization (Karami et al., 2012; Karami et al., 2013. Acknowledgements The authors are grateful to the University of Zanjan Grant Commission for research funding. Journal of Economic Geology reviewers and editor are also thanked for their constructive suggestions on alterations to the manuscript. v References Karami, M., Ebrahimi, M. and Kouhestani, H., 2012. Geological and mineralization characteristics of Lulak Abad iron occurrence, east of Mahneshan. 31th Symposium of Geosciences, Geological Survey of Iran, Tehran, Iran (in Persian with English abstract. Karami, M., Kouhestani, H. and Ebrahimi, M., 2013. Mineralogy, structure, texture and type of iron mineralization in Lulak Abad occurrence, east of Mahneshan. 1st International Conference on Mining, Mineral Processing, Metallurgical and Environmental Engineering. University of Zanjan, Zanjan, Iran (in Persian with English abstract. Liegeois, J.P., Latouche, L., Boughrara, M., Navez, J. and Guiraud, M., 2003. The Latea metacraton (Central Hoggar, Tuareg shield, Algeria: behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3–4: 161–190. Lotfi, M., 2001. Geological map of Mahneshan, scale 1:100,000. Geological Survey of Iran. Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1: 25–41. Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes

  7. Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California

    Science.gov (United States)

    Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet

    2017-08-15

    The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.

  8. Bull Trout Life History, Genetics, Habitat Needs, and Limiting Factors in Central and Northeast Oregon. Annual Report 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Bellerud, Blane L.; Gunckel, Stephanie; Hemmingsen, Alan R.; Buchanan, David V.; Howell, Philip J.

    1997-10-01

    This study is part of a multi-year research project studying aspects of bull trout life history, ecology and genetics. This report covers the activities of the project in 1996. Results and analysis are presented in the following five areas: (1) analysis of the genetic structure of Oregon bull trout populations; (2) distribution and habitat use of bull trout and brook trout in streams containing both species; (3) bull trout spawning surveys; (4) summary and analysis of historical juvenile bull trout downstream migrant trap catches in the Grande Ronde basin; and (5) food habits and feeding behavior of bull trout alone and in sympatry with brook trout.

  9. Bull Trout Life History, Genetics, Habitat Needs, and Limiting Factors in Central and Northeast Oregon. Annual Report 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Bellerud, Blane L.; Gunckel, Stephanie; Hemmingsen, Alan R.; Buchanan, David V.; Howell, Philip J.

    1997-10-01

    This study is part of a multi-year research project studying aspects of bull trout life history, ecology and genetics. This report covers the activities of the project in 1996. Results and analysis are presented in the following five areas: (1) analysis of the genetic structure of Oregon bull trout populations; (2) distribution and habitat use of bull trout and brook trout in streams containing both species; (3) bull trout spawning surveys; (4) summary and analysis of historical juvenile bull trout downstream migrant trap catches in the Grande Ronde basin; and (5) food habits and feeding behavior of bull trout alone and in sympatry with brook trout.

  10. Eruptive history of western and central Aeolian Islands volcanoes (South Tyrrhenian Sea, Italy): temporal evolution of magmatism and of morphological structures

    Science.gov (United States)

    Leocat, E.; Gillot, P.; Peccerillo, A.

    2010-12-01

    The Aeolian Island archipelago is a complex volcanic province located on the continental margin of the Calabro-Peloritan basement. It emplaced in a geodynamic setting linked to the convergence of African and European plates. In this study, we focused on the western and central volcanoes that are respectively Alicudi-Filicudi-Salina and Lipari-Vulcano. They erupted the whole range of magmas typical of convergence settings : from calc-alkaline (CA) to potassic series (KS) through high-K CA (HKCA) and shoshonitic series (SHO). All these magma products were emitted in a span time of less than 300 ka that attests to the complexity of the volcano-tectonic evolution of this province. We report new geochronological data, based on the K/Ar Cassignol-Gillot technique, which is well suited for dating Quaternary volcanic materials. New geochemical analyses were realized on the dated samples in order to study the temporal evolution of the magmatism. These data sets were coupled with geomorphological analysis to study the relation between main morphological structures and eruptive styles. Before 180 ka, only the Filicudi, Salina and Lipari volcanoes had emerged activity. Their magmas have relatively the same CA composition, whereas some Lipari lavas have early HKCA affinity. Around 120-130 ka, Alicudi and Vulcano emerged simultaneously at the extremities of the archipelago. Alicudi products are less various and have the more primitive composition. SHO and HKCA products were emitted on Lipari and Vulcano, while only CA magmas were emplaced on Filicudi and Salina. After 40 ka, the last activity of Filicudi is characterized by mafic magmas of HKCA affinity. To the other extremity, similar products of SHO affinity were emplaced in southern Lipari and northern Vulcano. At this period, explosive activity with dacitic pumices occurred in Salina. The degree of differentiation and the K enrichment increase from western sector to central sector volcanoes and through time except at

  11. Comments on cladocerans of crater lakes of the Nevado de Toluca Volcano (Central Mexico), with the description of a new species, Alona manueli sp. nov.

    Science.gov (United States)

    Sinev, Artem Y; Zawisza, Edyta

    2013-01-01

    Cladoceran communities of two lakes of Nevado de Toluca Volcano, Central Mexico, were studied. A new species of Aloninae, Alona manueli sp. nov., is described. It was previously confused with Palearctic Alona intermedia Sars, 1862, but clearly differs from it in the morphology of postabdomen, head shield and head pores, and thoracic limbs. Position of Alona manueli sp. nov. within the genus is unclear, it did not belong to any species-group within Alona s. lato. Other species recorded in the studied lakes are Alona ossiani Sinev, 1998, Alonella pulchella Herrick, 1884, Chydorus belonging to sphaericus-group, Eurycercus longirostris Hann, 1982 and Pleuroxus cf. denticulatus Birge, 1879.

  12. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  13. Vanishing Volcano

    Institute of Scientific and Technical Information of China (English)

    杨树仁

    1995-01-01

    Mauna Loa, the world’s largest active volcano,is sinking into the Pacific Ocean——and it’s taking the main island of Hawaii with it! The problem:The mighty volcano has gained too much weight, says Peter Lipman of the U. S. Geological Survey.

  14. Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania)

    Science.gov (United States)

    Kis, Boglárka-Mercédesz; Ionescu, Artur; Cardellini, Carlo; Harangi, Szabolcs; Baciu, Călin; Caracausi, Antonio; Viveiros, Fátima

    2017-07-01

    We provide the first high-resolution CO2 flux data for the Neogene to Quaternary volcanic regions of the entire Carpathian-Pannonian Region, Eastern-Central Europe, and estimate the CO2 emission of the seemingly inactive Ciomadul volcanic complex, the youngest volcano of this area. Our estimate includes data from focused and diffuse CO2 emissions from soil. The CO2 fluxes of focused emissions range between 277 and 8172 g d- 1, corresponding to a CO2 output into the atmosphere between 0.1 and 2.98 t per year. The investigated areas for diffuse soil gas emissions were characterized by wide range of CO2 flux values, at Apor Baths, ranging from 1.7 × 101 to 8.2 × 104 g m- 2 d- 1, while at Lăzărești ranging between 1.43 and 3.8 × 104 g m- 2 d- 1. The highest CO2 focused gas fluxes at Ciomadul were found at the periphery of the youngest volcanic complex, which could be explained either by tectonic control across the brittle older volcanic edifices or by degassing from a deeper crustal zone resulting in CO2 flux at the periphery of the supposed melt-bearing magma body beneath Ciomadul. The estimate of the total CO2 output in the area is 8.70 × 103 t y- 1, and it is consistent with other long (> 10 kyr) dormant volcanoes with similar age worldwide, such as in Italy and USA. Taking into account the isotopic composition of the gases that indicate deep origin of the CO2 emissions, this yields further support that Ciomadul may be considered indeed a dormant, or PAMS volcano (volcano with potentially active magma storage) rather than an inactive one. Furthermore, hazard of CO2 outpourings has to be taken into account and it has to be communicated to the visitors. Finally, we suggest that CO2 output of dormant volcanic systems has to be also accounted in the estimation of the global volcanic CO2 budget.

  15. Bull Trout life History, Genetics, Habitat Needs, and Limiting Factors in Central and Northeast Oregon, Annual Report 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Hemmingsen, Alan R.; Buchanan, David V.; Howell, Philip J.

    1996-03-01

    To fulfill one objective of the present study, genetic characteristics of Oregon bull trout will be determined by analysis of mitochondrial and nuclear DNA. During 1995, the authors collected and sampled a total of 1,217 bull trout from 46 streams in the Columbia River Basin. DNA analysis of those samples will be conducted at University of Montana. They primarily sampled juvenile fish near natal areas to increase the likelihood of identifying discrete populations while minimizing risk of injury to large spawners. Fork lengths of all fish sampled ranged from 2.6 to 60.5 cm with a median of 12 cm. Eighty-four percent of all bull trout sampled were less than 19 cm while two percent were larger than 27 cm. Bull trout were collected by several methods, mostly by electrofishing. Eighty-six percent of all bull trout sampled were collected by electrofishing with a programmable waveform electrofisher. They observed injuries caused by electrofishing to 8% of that proportion. Based on preliminary analysis, no waveform combination used appeared less injurious than others. Highest voltages appeared less injurious than some that were lower. Frequency of electrofishing injury was significantly correlated to fork length over the range-from 4 to 26 cm. There were indications for substantial risk for such injury to bull trout larger than 26 cm. Other species found in association with bull trout included chinook salmon Oncorhynchus tshawytscha, mountain whitefish Prosopium williamsoni, rainbow trout Oncorhynchus mykiss, sculpins Cottus spp., cutthroat trout Oncorhynchus clarki, non-native brook trout Salvelinus fontinalis, and tailed frogs Ascaphus truei. Rainbow trout was the species most frequently associated with bull trout. No injury or mortality was observed for any of the associated species captured.

  16. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Science.gov (United States)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  17. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier

  18. Determination of temporal changes in seismic velocity caused by volcanic activity in and around Hakone volcano, central Japan, using ambient seismic noise records

    Science.gov (United States)

    Yukutake, Yohei; Ueno, Tomotake; Miyaoka, Kazuki

    2016-12-01

    Autocorrelation functions (ACFs) for ambient seismic noise are considered to be useful tools for estimating temporal changes in the subsurface structure. Velocity changes at Hakone volcano in central Japan, where remarkable swarm activity has often been observed, were investigated in this study. Significant velocity changes were detected during two seismic activities in 2011 and 2013. The 2011 activity began immediately after the 2011 Tohoku-oki earthquake, suggesting remote triggering by the dynamic stress changes resulting from the earthquake. During the 2013 activity, which exhibited swarm-like features, crustal deformations were detected by Global Navigation Satellite System (GNSS) stations and tiltmeters, suggesting a pressure increment of a Mogi point source at a depth of 7 km and two shallow open cracks. Waveforms that were bandpass-filtered between 1 and 3 Hz were used to calculate ACFs using a one-bit correlation technique. Fluctuations in the velocity structure were obtained using the stretching method. A gradual decrease in the velocity structure was observed prior to the 2013 activity at the KOM station near the central cone of the caldera, which started after the onset of crustal expansion observed by the GNSS stations. Additionally, a sudden significant velocity decrease was observed at the OWD station near a fumarolic area just after the onset of the 2013 activity and the tilt changes. The changes in the stress and strain caused by the deformation sources were likely the main contributors to these decreases in velocity. The precursory velocity reduction at the KOM station likely resulted from the inflation of the deep Mogi source, whereas the sudden velocity decrease at the OWD station may reflect changes in the strain caused by the shallow open-crack source. Rapid velocity decreases were also detected at many stations in and around the volcano after the 2011 Tohoku-oki earthquake. The velocity changes may reflect the redistribution of hydrothermal

  19. Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA

    Science.gov (United States)

    Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.; Poland, Michael P.; Endo, Elliot T.

    2006-01-01

    Tumescence at the Three Sisters volcanic center began sometime between summer 1996 and summer 1998 and was discovered in April 2001 using interferometric synthetic aperture radar (InSAR). Swelling is centered about 5 km west of the summit of South Sister, a composite basaltic-andesite to rhyolite volcano that last erupted between 2200 and 2000 yr ago, and it affects an area ∼20 km in diameter within the Three Sisters Wilderness. Yearly InSAR observations show that the average maximum displacement rate was 3–5 cm/yr through summer 2001, and the velocity of a continuous GPS station within the deforming area was essentially constant from June 2001 to June 2004. The background level of seismic activity has been low, suggesting that temperatures in the source region are high enough or the strain rate has been low enough to favor plastic deformation over brittle failure. A swarm of about 300 small earthquakes (Mmax = 1.9) in the northeast quadrant of the deforming area on March 23–26, 2004, was the first notable seismicity in the area for at least two decades. The U.S. Geological Survey (USGS) established tilt-leveling and EDM networks at South Sister in 1985–1986, resurveyed them in 2001, the latter with GPS, and extended them to cover more of the deforming area. The 2001 tilt-leveling results are consistent with the inference drawn from InSAR that the current deformation episode did not start before 1996, i.e., the amount of deformation during 1995–2001 from InSAR fully accounts for the net tilt at South Sister during 1985–2001 from tilt-leveling. Subsequent InSAR, GPS, and leveling observations constrain the source location, geometry, and inflation rate as a function of time. A best-fit source model derived from simultaneous inversion of all three datasets is a dipping sill located 6.5 ± 2.5 km below the surface with a volume increase of 5.0 × 106 ± 1.5 × 106m3/yr (95% confidence limits). The most likely cause of tumescence is a pulse of

  20. Seismic activity associated with the September 1977 deflation of the Krafla central volcano in NE-Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Brandsdottir, Bryndis; Einarsson, Pall

    1979-01-01

    The September 1977 deflation event in the Krafla caldera was one of a series of such events that has been in progress since December 1975. The operation of portable seismographs in the active region and favorable location of the main seismic activity with respect to the permanent seismograph network in NE-Iceland allow a more detailed study of this deflation event than most of the other events. Continuous volcanic tremor appeared on the local seismographs shortly before 16 h on September 8, 1977. Deflation of the volcano began at the same time. A small basaltic eruption broke out on a 0.9 km long fissure near the northern rim of the caldera at about 18 h. Earthquake activity increased soon after the beginning of the tremor and the first earthquakes were located in the caldera region. The earthquake activity then migrated southwards along the Krafla fault swarm with a speed of about 0.5 m sec{sup -1}, and culminated shortly before midnight with 8 earthquakes larger than magnitude 3 that were located near the Namafjall geothermal area 8 km south of the center of the caldera. Shortly after the earthquake activity migrated into the Namafjall area small amounts of basaltic pumice were erupted through a 1138 m deep drill hole there. Depths of earthquakes were 0-6 km in the northern part of the hypocentral zone and 0-4 in the southern part. The first motion pattern of P-waves suggests dip-slip faulting on steeply dipping fault planes consistent with the extensive normal faulting observed on the surface throughout the epicentral zone. The magnitude-frequency relationship was nonlinear and changed during the earthquake sequence. The seismological data strongly support the interpretation that deflation of the Krafla volcano is associated with horizontal migration of magma from the caldera region and formation of dykes in the Krafla fault swarm.

  1. Poisson's ratio analysis (Vp/Vs) on volcanoes and geothermal potential areas in Central Java using tomography travel time method of grid search relocation hypocenter

    Science.gov (United States)

    Raharjo, W.; Palupi, I. R.; Nurdian, S. W.; Giamboro, W. S.; Soesilo, J.

    2016-11-01

    Poisson's Ratio illustrates the elasticity properties of a rock. The value is affected by the ratio between the value of P and S wave velocity, where the high value ratio associated with partial melting while the low associated with gas saturated rock. Java which has many volcanoes as a result of the collision between the Australian and Eurasian plates also effects of earthquakes that result the P and S wave. By tomography techniques the distribution of the value of Poisson's ratio can be known. Western Java was dominated by high Poisson's Ratio until Mount Slamet and Dieng in Central Java, while the eastern part of Java is dominated by low Poisson's Ratio. The difference of Poisson's Ratio is located in Central Java that is also supported by the difference characteristic of hot water manifestation in geothermal potential area in the west and east of Central Java Province. Poisson's ratio value is also lower with increasing depth proving that the cold oceanic plate entrance under the continental plate.

  2. Earthquake effect on volcano and the geological structure in central java using tomography travel time method and relocation hypocenter by grid search method

    Science.gov (United States)

    Suharsono; Nurdian, S. W.; Palupi, I. R.

    2016-11-01

    Relocating hypocenter is a way to improve the velocity model of the subsurface. One of the method is Grid Search. To perform the distribution of the velocity in subsurface by tomography method, it is used the result of relocating hypocenter to be a reference for subsurface analysis in volcanic and major structural patterns, such as in Central Java. The main data of this study is the earthquake data recorded from 1952 to 2012 with the P wave number is 9162, the number of events is 2426 were recorded by 30 stations located in the vicinity of Central Java. Grid search method has some advantages they are: it can relocate the hypocenter more accurate because this method is dividing space lattice model into blocks, and each grid block can only be occupied by one point hypocenter. Tomography technique is done by travel time data that has had relocated with inversion pseudo bending method. Grid search relocated method show that the hypocenter's depth is shallower than before and the direction is to the south, the hypocenter distribution is modeled into the subduction zone between the continent of Eurasia with the Indo-Australian with an average angle of 14 °. The tomography results show the low velocity value is contained under volcanoes with value of -8% to -10%, then the pattern of the main fault structure in Central Java can be description by the results of tomography at high velocity that is from 8% to 10% with the direction is northwest and northeast-southwest.

  3. About the use of radon in the surveillance of volcanoes from Central America; De l`utilisation du radon dans la surveillance des volcans d`amerique centrale

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E. [Obviscori, Heridia (Costa Rica); Garcia Vindas, R.; Monnin, M.; Seidel, J.L. [Centre National de la Recherche Scientifique (CNRS), 34 -Montpellier (France). Centre d`Etudes Phytosociologiques et Ecologiques Louis-Emberger; Segovia, N. [ININ, Mexico (Mexico)

    1996-12-31

    Anomalous fluctuations of radon content in soil gases, fumaroles or thermal sources associated with volcanic systems are considered as precursors of deep degassing phenomena. Radon measurements in soil gases were performed for several years on three active volcanoes of Costa-Rica (Arenal, Irazu, Poas), also on El Chichon and Colima volcanoes in Mexico and more recently on the Popocatepetl since its reactivation in December 1994. Data acquisition was initially performed using plastic detectors with a 15 days integration. Since 1993, autonomous automatic probes are used and give hourly measurements. A nine stations network for ground measurements is installed on the Poas since 1982. Radon and Cl{sup -}, F{sup -} and SO{sub 4}{sup 2-} variations of the main crater lake are examined and correlated with the volcanic activity which led to the decay and disappearing of the lake in April 1989. On the Irazu, five stations were installed in 1982 and 3 automatic ones were added in November 1993. Results obtained so far are discussed according to the phreatic eruption of December 1994. The Popocatepetl measurements obtained since December 1994 are presented too. Abstract only. (J.S.).

  4. Sprague River Oregon Centerline North Fork 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  5. Sprague River Oregon Centerline North Fork 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  6. Sprague River Oregon Centerline North Fork 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  7. Sprague River Oregon Centerline South Fork 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  8. Sprague River Oregon Centerline South Fork 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  9. Sprague River Oregon Centerline Sycan 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  10. Sprague River Oregon Centerline North Fork 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  11. Sprague River Oregon Centerline South Fork 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  12. Sprague River Oregon Centerline South Fork 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  13. Sprague River Oregon Water circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the...

  14. Sprague River Oregon Centerline Sycan 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  15. Sprague River Oregon Centerline South Fork 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  16. Sprague River Oregon Centerline circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  17. Sprague River Oregon Centerline Sycan circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  18. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  19. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  20. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  1. Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy)

    Science.gov (United States)

    Porreca, M.; Mattei, M.; Macniocaill, C.; Giordano, G.; McClelland, E.; Funiciello, R.

    2008-05-01

    The Peperino Albano (approximately 19-36 ka old) is a phreatomagmatic pyroclastic flow deposit, cropping out along the slopes of the associated Albano maar (Colli Albani volcano, Italy). The deposit exhibits lateral and vertical transitions from valley pond to veneer facies, as well as intracrater facies. We present the results of a paleomagnetic study of thermal remanent magnetization (TRM) of the lithic clasts of the Peperino Albano ignimbrite that provide quantitative estimates of the range of emplacement temperatures across the different facies of the ignimbrite. Emplacement temperatures estimated for the Peperino Albano ignimbrite range between 240° and 350°C, with the temperatures defined in the intracrater facies being generally lower than in the valley pond and veneer facies. This is possibly due to the large size of the sampled clasts in the intracrater facies which, when coupled with low temperature at the vent, were not completely heated throughout their volume during emplacement. The emplacement temperatures derived from the paleomagnetic results are in good agreement with the presence of un-burnt plants at the base of the ignimbrite, indicating that the temperature of the pyroclastic flow was lower than the temperature of ignition of wood. Paleomagnetic results from the Peperino Albano confirm the reliability of the paleomagnetic approach in defining the thermal history of pyroclastic flow deposits.

  2. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  3. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  4. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    Science.gov (United States)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  5. Social vulnerability as a contributing factor to disasters in Central America: A case study at San Vicente volcano, El Salvador

    Science.gov (United States)

    Bowman, L. J.; Henquinet, K. B.; Gierke, J. S.; Rose, W. I.

    2012-12-01

    El Salvador's geographic location on the Pacific Ring of Fire at the juncture of the Caribbean and Cocos plates exposes its population to various natural hazards, including volcanic eruptions (e.g., Santa Ana in 2005), earthquakes (e.g., January 13 and February 13, 2001), and landslides and flooding due to tropical rainfall events (e.g., Hurricane Mitch in 1998, Hurricane Stan in 2005). Such hazards can be devastating anywhere, but the condition of social vulnerability in which many Salvadorans currently live exacerbates the impacts of these hazards. Aspects contributing to most rural Salvadorans being marginalized include a colonial history marked by ethnic discrimination and laws prohibiting land ownership, lack of access to desirable land in an agrarian society, a poor education system, global economic policies that foster inequality, political marginalization, a bloody civil conflict, and rampant criminality and violence. In November 2009, an extreme rainfall event triggered landslides and lahars killing over 200 people at San Vicente volcano. This disaster brought to light weaknesses in disaster preparedness and response plans. Despite the existence of recent hazard maps and lahar inundation models (2001), and the occurrence of a similar, deadly event in 1934, the population appeared to be unaware of the risk, and lacked the organization and decision-making protocols to adequately deal with the emergency. Therefore, in the aftermath of the 2009 lahars, much of the focus on disaster risk reduction (DRR) initiatives has been aimed at the communities affected by this most recent event. Our study examines root causes of social vulnerability and assesses the apparent impacts of these interventions on the population, including individual's perceptions regarding these risk-reducing interventions. Two years after the event, though aid abounds, many people remain vulnerable to hazards in this area. Semi-structured interviews were completed with survivors of the 2009

  6. Tectonic evolution of the central-eastern sector of Trans Mexican Volcanic Belt and its influence on the eruptive history of the Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Bellotti, F.; Capra, L.; Groppelli, G.; Norini, G.

    2006-11-01

    The Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age located within the central and eastern sectors of the Trans Mexican Volcanic Belt. Morphostructural analysis, aerial photograph and satellite image interpretation, structural analysis and geological fieldwork were methods used to investigate the relationship between the evolution of the volcano and the tectonic framework of its basement. The study revealed that the area of Nevado de Toluca is affected by three main fault systems that intersect close to the volcanic edifice. These are from oldest to youngest, the Taxco-Querétaro, San Antonio and Tenango fault systems. The NNW-SSE Taxco-Querétaro fault system was active in the area since Early Miocene, and is characterized by right-lateral transtensive movement. Its reactivation during Early to Middle Pleistocene was responsible for the emplacement of andesitic to dacitic lava flows and domes of La Cieneguilla Supersynthem. The NE-SW San Antonio fault system was active during Late Pliocene, before the reactivation of the Taxco-Querétaro fault system, and is characterized by extensional left-lateral oblique-slip kinematics. The youngest is the E-W Tenango fault system that has been active since Late Pleistocene. This fault system is characterized by transtensive left-lateral strike-slip movement, and partly coeval with the youngest eruptive phase, the Nevado Supersynthem, which formed the present summit cone of the Nevado de Toluca volcano. The stress re-orientation from the Taxco-Querétaro to the Tenango fault system during Late Pleistocene is responsible for the ˜ 1 Ma hiatus in the magmatic activity between 1.15 Ma and 42 ka. After this period of repose, the eruptive style drastically changed from effusive to explosive with the emission of dacitic products. The methodology presented here furnish new data that can be used to better assess the complex structural evolution of this sector of the Trans Mexican Volcanic Belt

  7. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  8. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  9. Reexamination of the ancient literature on activities of Kuju volcano, central Kyushu, Japan; Kuju kazan no rekishi jidai no katsudo kiroku no saikento

    Energy Technology Data Exchange (ETDEWEB)

    Imura, R.; Kamata, H. [Geological Survey of Japan, Tsukuba (Japan)

    1996-04-25

    In order to identify activities of Kuju Volcano in historic times, reviews were given on records with reference to original literature of historical documents. Kuju Volcano has erupted in October 1995, and rows of craters lying from east to west were created near the place called Mt. Iou on a hillside of the volcano. The smoke from the craters reached as high as 1000 meters in the air, and the ash fall was observed in the city of Kumamoto which is 60 km away from the volcano. Many of what has been recorded conventionally as eruption records of Kuju Volcano are surmised to have described explosions of eruptive gases on the surface area or events of gas bursts. They are not thought to be describing such eruptions as ones gushing a great amount of volcanic ash. Therefore, the activity in 1995 of Kuju Volcano that has created new rows of craters in points several hundred meters away from the eruptive gas area, and caused ash fall that accumulated thinly in surround area has a possibility that the eruption was the one much greater than those written in the records that have been known to date, rather than the one first in 257 years. Activities of Kuju Volcano in historic times must be evaluated quantitatively by continuing excavation of new historic materials and geological verifications. 25 refs.

  10. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico)

    OpenAIRE

    2008-01-01

    Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l.), considering also possible future developments of the glaciers on the v...

  11. Santorini Volcano

    Science.gov (United States)

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  12. Facies volcánicas del depósito de avalancha de detritos del volcán Tata Sabaya, Andes Centrales Volcanic facies of the debris avalanche deposit of Tata Sabaya Volcano, Central Andes

    Directory of Open Access Journals (Sweden)

    Benigno Godoy

    2012-09-01

    evolution of a volcano. These flows are formed by edifice instability, which could be due to several factors such as the presence of hydrother-mally altered areas, climatic changes, earthquakes, shallow magma intrusions (cryptodomes and/or dykes and/or fault activity beneath or close to the volcano. The final product of this avalanche flow, known as debris avalanche deposit (DAD shows typical hummocky and closed drainage morphologies. More than 14 volcanic centers of the Central Andes have volcanic DAD's, being Tata Sabaya (Bolivia one of them. The collapse that has originated the deposit could have been generated by a combination of magmatic and seismic activity in the volcano. The deposit associated to the partial collapse of Tata Sabaya volcano is distributed on its lower southern flank and partially fills the north-western part of the Salar de Coipasa basin. The deposit covers a minimum area of 230 km² and has an estimated minimum volume of 6±1 km³. The deposit is formed by 6 different types of hummocks, according to their compositions: lavic, pyroclastic, sedimentary, mixed, pyroclastic breccia and basaltic-andesitic hummocks. Based on the predominant hummock type and the spatial distribution, the deposit has been divided into 6 different facies (Toreva Block Facies, Volcanic Hummocks Facies, Central Facies, Sedimentary Hummocks Facies, Mixed Facies and Pyroclastic Breccia Hummocks Facies. Taking into account the facies distribution and their characteristics, we infer the pre-collapse structure of the volcano.

  13. U-Th fractionation by fluids in K-rich magma genesis: The Vico volcano, Central Italy

    Energy Technology Data Exchange (ETDEWEB)

    Villemant, B.; Flehoc, C.

    1989-01-01

    The /sup 230/Th-/sup 238/U disequilibrium method has been applied to the potassic volcanic series of Vico (Latium, Central Italy). The 3 main events of the recent volcanic activity have been dated using whole-rock isochrons. The lava flows of the main cone were erupted between 260 and 180 ky. Pyroclastic flows are dated around 90 ky and the final effusive activity (Mte. Venere) around 60 ky. These results are in good agreement with previous K/Ar ages. The intense Th-U fractionation (Th/U varying from 3.2 to 11) is apparently not related to processes of partial melting and crystal fractionation. The Th-U fractionation is the most intense in basic terms of the first episode, and is due to the percolation of a deep hydrothermal fluid which impoverishes U in different batches of primary magmas. More limited Th-U fractionations in highly differentiated magma are due to U (accompanied by Sb and alkalies) enrichments in the shallow magma chambers. A time-integrated model is proposed for the evolution of the (/sup 230/Th//sup 232/Th) ratio in the mantle source of Vico. It shows that Th-U and Th-Ta fractionations are probably related to the bulk K, U and Th enrichment of the mantle of the Roman Province, around 300 ky ago. A metasomatic enrichment by a silicate melt is proposed to explain the anomalously high Th-U and Th-Ta fractionations.

  14. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  15. Seasonal species composition of invertebrates in several Oregon streams.

    Science.gov (United States)

    Pamela E. Porter; William R. Meehan

    1987-01-01

    The invertebrate communities ofeight Oregon streams were sampled seasonally from 1974 to 1976. Benthic, drift, and two types of aerial-trap samples were collected. Occurrence and percentage composition are summarized by sample type, season, and geographic area (coastal, Cascade, central, and eastern Oregon). Within 276 families, 426 taxa were identified; the 20...

  16. The polycyclic Lausche Volcano (Lausitz Volcanic Field) and its message concerning landscape evolution in the Lausitz Mountains (northern Bohemian Massif, Central Europe)

    Science.gov (United States)

    Wenger, Erik; Büchner, Jörg; Tietz, Olaf; Mrlina, Jan

    2017-09-01

    The Tertiary Lausitz Volcanic Field covers a broad area encompassing parts of Eastern Saxony (Germany), Lower Silesia (Poland) and North Bohemia (Czech Republic). Volcanism was predominantly controlled by the volcano-tectonic evolution of the Ohře Rift and culminated in the Lower Oligocene. This paper deals with the highest volcano of this area, the Lausche Hill (792.6 m a.s.l.) situated in the Lausitz Mountains. We offer a reconstruction of the volcanic edifice and its eruptive history. Its complex genesis is reflected by six different eruption styles and an associated petrographic variety. Furthermore, the Lausche Volcano provides valuable information concerning the morphological evolution of its broader environs. The remnant of an alluvial fan marking a Middle Paleocene-Lower Eocene (62-50 Ma) palaeo-surface is preserved at the base of the volcano. The deposition of this fan can be attributed to a period of erosion of its nearby source area, the Lausitz Block that has undergone intermittent uplift at the Lausitz Overthrust since the Upper Cretaceous. The Lausche Hill is one of at least six volcanoes in the Lausitz Mountains which show an eminent low level of erosion despite their Oligocene age and position on elevated terrain. These volcanoes are exposed in their superficial level which clearly contradicts their former interpretation as subvolcanoes. Among further indications, this implies that the final morphotectonic uplift of the Lausitz Mountains started in the upper Lower Pleistocene ( 1.3 Ma) due to revived subsidence of the nearby Zittau Basin. It is likely that this neotectonic activity culminated between the Elsterian and Saalian Glaciation ( 320 ka). The formation of the low mountain range was substantially controlled by the intersection of the Lausitz Overthrust and the Ohře Rift.

  17. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    Science.gov (United States)

    Chivarean, Radu

    2017-04-01

    or dome complexes. Dacitic volcanoes are smaller in size and consist of lava dome complexes, in places with associated pyroclastic cones and volcanic aprons. The volcanic history of Carpathian volcanic chain lasts since ca. 15 Ma, with the youngest occurring in the southern chain-terminus; the last eruption of Ciomadu volcano (Harghita) was ca. 10000 years ago. Using the knowledge acquired during the compulsory curriculum and complementary activities we we consider that the outdoor education is the best way to establish a relationship between the theory and the landscape reality in the field. As a follow up to our theoretical approach for the Earth's crust we organized two study trips in our region. During the first one the students could walk in a real crater, see scoria deposits and admire the basalt columns from Racos. In the second activity they could climb the Ciomadu volcano and go down to observe the crater lake St. Anna, the single volcanic lake in central Europe.

  18. Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas

    Science.gov (United States)

    Portnyagin, Maxim V.; Hoernle, Kaj; Mironov, Nikita L.

    2014-10-01

    Melt inclusions in olivine Fo83-72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6-8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.

  19. The cervantes lava flow geomorfology, irazú volcano (costa rica): description of the central america`s greater lava flow field

    OpenAIRE

    Guillermo E. Alvarado; Vega, Ana E.

    2011-01-01

    The Cervantes lava flow field, on the southeastern flank of Irazú volcano, is the most recent and large effusive event dated at this volcano. The Cervantes lava flow actually consists of two different bi-modal lava flow fields. The Western composite lava field (10.85 km2, 0.18 ± 0.1 km3) has a basaltic (SiO2: 50.71-52.06%; MgO: 8.13- 9.50%) and basaltic andesite composition due to magma mixing (SiO2: 52.90-53.42%; MgO: 6.71-7.12%) and is older in age (57 ka ± 13 ka years B.P.). The Eastern co...

  20. Biological science in Oregon

    Science.gov (United States)

    Thorsteinson, Lyman

    2005-01-01

    Fishing is an important part of Oregon's culture. The Western Fisheries Research Center (WFRC) has been conducting research in Oregon for many years to provide information that can be used by managers to help keep fish and other parts of the ecosystem healthy. Below are examples of some of WFRC's studies.

  1. Geology and mineral resources of the North-Central Idaho Sagebrush Focal Area: Chapter C in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Lund, Karen; Zürcher, Lukas; Hofstra, Albert H.; Van Gosen, Bradley S.; Benson, Mary Ellen; Box, Stephen E.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; John, David A.; Robinson,, Gilpin R.; Rockwell, Barnaby W.; San Juan, Carma A.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Idaho SFA, which extends from east-central to south-central Idaho. The geologically complex area is composed of many different rock units that locally contain potential mineral resources.

  2. Geology and mineral resources of the North-Central Idaho Sagebrush Focal Area: Chapter C in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Lund, Karen; Zürcher, Lukas; Hofstra, Albert H.; Van Gosen, Bradley S.; Benson, Mary Ellen; Box, Stephen E.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; John, David A.; Robinson,, Gilpin R.; Rockwell, Barnaby W.; San Juan, Carma A.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.

    2016-10-04

    This report is temporarily unavailableSummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Idaho SFA, which extends from east-central to south-central Idaho. The geologically complex area is composed of many different rock units that locally contain potential mineral resources.

  3. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador, Central America)

    Science.gov (United States)

    Granieri, Domenico; Salerno, Giuseppe; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael R.; Papale, Paolo

    2015-07-01

    San Miguel volcano, El Salvador, erupted on 29 December 2013, after a 46 year period characterized by weak activity. Prior to the eruption a trend of increasing SO2 emission rate was observed, with all values measured after mid-November greater than the average value of the previous year (~310 t d-1). During the eruption, SO2 emissions increased from the level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 emission rates during the preeruptive, syneruptive, and posteruptive stages were used to model SO2 dispersion around the volcano. Atmospheric SO2 concentration exceeded the dangerous threshold of 5 ppm in the crater region and in some sectors with medium elevation of the highly visited volcanic cone. Combining the SO2 emission rate with measured CO2/SO2, HCl/SO2, and HF/SO2 plume gas ratios, we estimate the CO2, HCl, and HF outputs for the first time on this volcano.

  4. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico)

    Science.gov (United States)

    Schneider, D.; Delgado Granados, H.; Huggel, C.; Kääb, A.

    2008-06-01

    Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l.), considering also possible future developments of the glaciers on the volcano. Observations of the glacial extent are important for estimations of future hazard scenarios, especially in a rapidly changing tropical glacial environment. In this study, analysis of the glaciers on Iztaccíhuatl shows a dramatic retreat during the last 150 years: the glaciated area in 2007 corresponds to only 4% of the one in 1850 AD and the glaciers are expected to survive no later than the year 2020. Most of the glacial retreat is considered to be related to climate change but in-situ observations suggest also that geo- and hydrothermal heat flow at the summit-crater area can not be ruled out, as emphasized by fumarolic activity documented in a former study. However, development of crater lakes and englacial water reservoirs are supposed to be a more realistic scenario for lahar generation than sudden ice melting by rigorous volcano-ice interaction. Model calculations show that possible outburst floods have to be larger than ~5×105 m3 or to achieve an H/L ratio (Height/runout Length) of 0.2 and lower in order to reach the populated lower flanks. This threshold volume equals 2.4% melted ice of Iztaccíhuatl's total ice volume in 2007, assuming 40% water and 60% volumetric debris content of a potential lahar. The model sensitivity analysis reveals important effects of the generic type of the Digital Terrain Model (DTM) used on the results. As a consequence, the predicted affected areas can vary significantly. For such hazard zonation, we therefore suggest the use of

  5. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico

    Directory of Open Access Journals (Sweden)

    D. Schneider

    2008-06-01

    Full Text Available Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l., considering also possible future developments of the glaciers on the volcano. Observations of the glacial extent are important for estimations of future hazard scenarios, especially in a rapidly changing tropical glacial environment. In this study, analysis of the glaciers on Iztaccíhuatl shows a dramatic retreat during the last 150 years: the glaciated area in 2007 corresponds to only 4% of the one in 1850 AD and the glaciers are expected to survive no later than the year 2020. Most of the glacial retreat is considered to be related to climate change but in-situ observations suggest also that geo- and hydrothermal heat flow at the summit-crater area can not be ruled out, as emphasized by fumarolic activity documented in a former study. However, development of crater lakes and englacial water reservoirs are supposed to be a more realistic scenario for lahar generation than sudden ice melting by rigorous volcano-ice interaction. Model calculations show that possible outburst floods have to be larger than ~5×105 m3 or to achieve an H/L ratio (Height/runout Length of 0.2 and lower in order to reach the populated lower flanks. This threshold volume equals 2.4% melted ice of Iztaccíhuatl's total ice volume in 2007, assuming 40% water and 60% volumetric debris content of a potential lahar. The model sensitivity analysis reveals important effects of the generic type of the Digital Terrain Model (DTM used on the results. As a consequence, the predicted affected areas can vary significantly. For such

  6. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  7. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges. 

  8. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  9. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  10. Geology and mineral resources of the North-Central Montana Sagebrush Focal Area: Chapter D in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Mauk, Jeffrey L.; Zientek, Michael L.; Hearn, B. Carter; Parks, Heather L.; Jenkins, M. Christopher; Anderson, Eric D.; Benson, Mary Ellen; Bleiwas, Donald I.; DeAngelo, Jacob; Denning, Paul D.; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Folger, Helen W.; Giles, Stuart A.; Glen, Jonathan M. G.; Granitto, Matthew; Haacke, Jon E.; Horton, John D.; Kelley, Karen D.; Ober, Joyce A.; Rockwell, Barnaby W.; San Juan, Carma A.; Sangine, Elizabeth S.; Schweitzer, Peter N.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.; Yager, Douglas B.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Montana SFA. The proposed withdrawal area that is evaluated in this report is located in north-central Montana, and includes parts of Fergus, Petroleum, Phillips, and Valley Counties.

  11. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  12. Real-time GNSS volcano deformation monitoring (Invited)

    Science.gov (United States)

    Lisowski, M.; Langbein, J. O.; Hudnut, K. W.

    2013-12-01

    We present comparisons of the precision obtained from several alternative real-time GNSS processing methods, and show how offsets caused by snow and ice on an antenna can be automatically identified in real time using signal-to-noise ratio (SNR) data. We monitor ground deformation using continuous GNSS stations installed on several volcanoes in the Cascade Range and elsewhere, and many of these stations transmit high-rate (1s) data in real-time. We examine real-time, high-rate station position solutions obtained with two implementations of centralized RTNet (GPS Solutions, Inc.) processing, and find that the precision is roughly the same for ambiguity-fixed network solutions and for ambiguity-fixed precise point position solutions (PPPAR). The PPPAR method uses satellite clock corrections provided by GPS Solutions from a network of Plate Boundary Observatory (PBO) stations in western Oregon. The precision of network solutions that include GPS and GLONASS data is similar to the GPS-only solutions, except at stations with a relatively poor view of the sky. An alternative method of processing the real-time GPS data uses clock corrections transmitted directly to the receiver, which then autonomously calculates and transmits positions. We will compare our RTNet results with autonomous point position solutions calculated using Trimble's CenterPoint RTX corrections. RTX performance in repeated, controlled, large antenna-motion tests by USGS and UNAVCO indicates that it meets requirements of USGS volcano-monitoring applications; more thorough testing and performance checks on an ongoing basis would be desirable. GNSS antennas on volcanoes often become temporarily coated with ice or buried by snow in the winter. In these situations, signal delays introduce an apparent offset in the monitoring station's position. We address this problem by implementing in real time a technique developed by Kristine Larson that uses changes in the signal-to-noise ratio (SNR) of GNSS signals

  13. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  14. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  15. Multi-sensor and multi-temporal data fusion for measurement of depositional features at Augustine Volcano, south-central Alaska

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.

    2012-12-01

    In this paper, optical, SAR, and InSAR data from the 2006 eruption of Augustine Volcano, are used to demonstrate how fusion of photogrammatically derived, high resolution DEMs can be used to quantify extent and volume of eruption-related depositional features; to improve the sensitivity and accuracy of differential InSAR (d-InSAR) for volcano deformation monitoring; and how coherence maps of lava, pyroclastic flow deposits, and lahars provide information on deposition history and coherence recovery time of areas disrupted by lahars. Augustine Volcano's most recent eruption occurred in December 2005 through March 2006. Post 2006-eruption data from the ALOS-PRISM satellite is available from image acquisitions on 21 September 2007, 25 May 2008, and 26 September 2009. The ALOS-PRISM instrument consists of three independent panchromatic radiometers for simultaneous imaging in nadir, forward, and backward directions. This results in along-track stereoscopy in overlapping images (triplets), with horizontal resolution at nadir of 2.5-meters. DEMs produced from these high resolution triplets are compared to pre-eruption DEMs from the Shuttle Radar Topography Mission (SRTM) to delineate depositional features and quantify their volumes. Multi-temporal DEMs are also beneficial for the generation of topography-free d-InSAR images Separate d-InSAR analyses based on DEMs from PRISM triplets and the SRTM demonstrate the improvement in deformation-estimate precision that is achieved by using high-resolution DEM information. Augustine's 2006 eruption produced significant lava flows, pyroclastic flows, and lahars, which were previously mapped in detail. Coherence mapping from pre- and post-eruption Envisat data are validated by comparison to the available detail maps, and analyzed to determine the extent to which coherence mapping can resolve the time sequence of deposition during the 2006 eruption. Additional radar data sets are available from the Phased Array type L-band Synthetic

  16. A study of the Taisho lahar generated by the 1926 eruption of Tokachidake Volcano, central Hokkaido, Japan, and implications for the generation of cohesive lahars

    Science.gov (United States)

    Uesawa, Shimpei

    2014-01-01

    Understanding the generation mechanisms of lahars is important for improving volcanic hazard assessments. The Taisho lahar (TL) was generated during the 1926 eruption of Tokachidake Volcano, Japan, and was considered a typical snowmelt lahar caused by the runout of hot debris onto a snow-covered slope. A similar mechanism produced a huge mud flow during the 1985 eruption of Nevado del Ruiz, Colombia. However, the origin of water in such lahars remains a controversial topic because the calculated water mass is based on the assumption that all of the snow on the runout area of the TL was melted, although this is much less than the estimated water volume in the TL estimated by previous studies. I have re-examined proximal deposits of the TL and their paleomagnetic characteristics in order to better understand the eruption sequence and formation of the TL. The TL produced two debris avalanche deposits and a surge-like deposit that had relatively high emplacement temperature (~ 350 °C). The deposits are composed of hydrothermally altered andesitic gravel, sand and mud. The high clay content (3-5 wt.% clay in the pyroclastic cone (hypocenter). The presence of the surge deposit indicates that the TL was not caused by simple collapse of a cinder cone but by a phreatic explosion that resulted in sector collapse. This suggests that the hydrothermal system was related to the 1926 eruption. The present-day volcano has a large hydrothermal system (1 × 106 m3 water) beneath the active crater. This study indicates that hydrothermal system explosions can trigger cohesive lahars that contain both snow melt and hydrothermal pore water, and this indicates the need to monitor hydrothermal systems.

  17. Foci of Volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, I.

    1974-01-01

    One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.

  18. Mineralogical study on volcanic ash of the eruption on September 27, 2014 at Ontake volcano, central Japan: correlation with porphyry copper systems

    Science.gov (United States)

    Minami, Yusuke; Imura, Takumi; Hayashi, Shintaro; Ohba, Tsukasa

    2016-04-01

    The volcanic ash of the eruption on September 27, 2014 at Ontake volcano consists mostly of altered rock fragments. The ash contains partly altered volcanic rock fragments consisting of primary igneous minerals (plagioclase, orthopyroxene, titanomagnetite, and feldspars) and volcanic glass accompanied by alteration minerals to some extents, and contains no juvenile fragments. These features indicate that the eruption was a non-juvenile hydrothermal eruption that was derived from the hydrothermal system developed under the crater. The major minerals derived from hydrothermal alteration zones are silica mineral, kaolin-group mineral, smectite, pyrophyllite, muscovite, alunite, anhydrite, gypsum, pyrite, K-feldspar, albite, and rutile. Minor chlorite, biotite, and garnet are accompanied. Five types of alteration mineral associations are identified from observations on individual ash particles: silica-pyrite, silica-pyrite ± alunite ± kaolin, silica-pyrophyllite-pyrite, silica-muscovite ± chlorite, and silica-K-feldspar ± albite ± garnet ± biotite. The associations indicate development of advanced argillic, sericite, and potassic alteration zones under the crater. Occurrence of anhydrite veinlet and the set of alteration zones indicate hydrothermal alteration zones similar to late-stage porphyry copper systems. Comparing the mineral associations with the geologic model of the late-stage porphyry copper systems, the source depths of mineral associations are estimated to range from near surface to >2 km. The depths of advanced argillic alteration, sericite, and potassic zones are 0 to ~2, ~1.5 to ~2, and >2 km, respectively.

  19. The Mesoproterozoic volcano-sedimentary Serra do Itaberaba Group of the Central Ribeira Belt, Sao Paulo State, Brazil: implications for the age of the overlying Sao Roque Group

    Energy Technology Data Exchange (ETDEWEB)

    Juliani, Caetano [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias]. E-mail: cjuliani@usp.br; Hackspacher, Peter; Fetter, Allen Hutchenson [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas]. E-mail: phack@rc.unesp.br; fetter@rc.unesp.br; Dantas, Elton Luiz [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: elton@unb.br

    2000-03-01

    One of the fundamental problems to understanding the evolution of volcano-sedimentary sequences in southeastern Brazil is constraining their depositional ages. Brasiliano tectonic and metamorphic either obscured or destroyed primary features, such as unconformities, as well as other geologic relationships. This problem is exemplified by the Serra do Itaberaba and Sao Roque groups, where the lack of data about the timing of their deposition has prevented resolution of proposed one-and two-stage geotectonic/depositional models. Recent U-Pb zircon data obtained from metavolcanic rocks in the Sao Roque Group indicate that it was deposited between 628 and 607 Ma. New U-Pb zircon data of 1395{+-} 10 Ma for a metandesite in the basal Morro da Pedra Preta Formation (Serra do Itaberaba Group) indicate the maximum age for the beginning of the deposition of the pelites overlying MORB-like basalt. A metarhyolite of the upper unit, the Nhangucu Formation, contains two zircon populations. One yielded an age of 619 {+-}3 Ma, which defines the crystallization age of the rock, and the other an age of 1449 {+-}3 Ma, interpreted as inherited xenocrystal grains from older units of the Serra do Itaberaba Group. The younger metarhyolite was affected only by the S{sub 2} foliation, generated during the Brasiliano orogenesis, whereas the Middle Proterozoic metavolcano-sedimentary sequence records additional metamorphic and deformational events, confirming the presence of two different geotectonic cycles. (author)

  20. Sem Analysis of particles from the 28, 000 B.P El Zaguan debris avalanche deposit, Nevado de Toluca volcano, Central Mexico: evidences of flow behavior during emplacement

    Science.gov (United States)

    Caballero, L.; Capra, L.

    2008-12-01

    The Zaguan deposit originated at 28, 000 yr. B.P from the flank collapse of the Nevado de Toluca volcano, a dacitic stratovolcano of the Transmexican Volcanic Belt. A Scanning Electron Microprobe analysis (SEM) was made to some clasts of this deposit to observe microtextures produced during transport and emplacement of the debris avalanche flow. Particles from 2, 0 and -2 Φ granulometric classes were randomly selected and their surface textures were described. The textures observed were divided in two groups, collision and shear structures indicating different clast interaction. Shear textures were observed predominantly on the basal part of the deposit and consisted of parallel ridges, parallel grooves, scratches and lips. Collision textures were mainly present in the upper part of the deposit and consisted of fractures, percussion marks, and broken or grinded crystals. These characteristics, coupled with field observation, like the presence of clast dikes and deformed lacustrine megaclasts, indicate that the basal part of the debris avalanche was moving in a partially liquefied state, were particles were not able to move freely because of the confinement exerted by the upper part of the flow, so shear stresses dominated. On the contrary, the particles in the upper part were able to move freely so the principal mechanism of interaction between particles was collision. These microscopic textures are in agreement with previously described behavior of emplacement of debris avalanches of volcanic origin, that suggest a stratified flow dominated by different transport and depositional mechanism depending on flow depth and possible fluid content at their base.

  1. The reawakening of Alaska's Augustine volcano

    Science.gov (United States)

    Power, John A.; Nye, Christopher J.; Coombs, Michelle L.; Wessels, Rick L.; Cervelli, Peter F.; Dehn, Jon; Wallace, Kristi L.; Freymueller, Jeffrey T.; Doukas, Michael P.

    2006-01-01

    Augustine volcano, in south central Alaska, ended a 20-year period of repose on 11 January 2006 with 13 explosive eruptions in 20 days. Explosive activity shifted to a quieter effusion of lava in early February, forming a new summit lava dome and two short, blocky lava flows by late March (Figure 1).

  2. The Oregon Walkabout

    Science.gov (United States)

    Parnell, Dale

    1974-01-01

    Too often American schools aim to satisfy the self-actualizing and higher-level needs in Maslow's hierarchy, while ignoring survival and security needs. The new State curriculum seeks to correct that deficit. To graduate, an Oregon student in the Class of 1978 will be expected to demonstrate the competencies to function effectively on the job, as…

  3. The seismicity of Marapi volcano, West Sumatra.

    Science.gov (United States)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of

  4. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  5. Newberry Volcano EGS Demonstration - Phase I Results

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, William L. [AltaRock Energy, Inc., Seattle, WA (United States); Petty, Susan [AltaRock Energy, Inc., Seattle, WA (United States); Cladouhos, Trenton T. [AltaRock Energy, Inc., Seattle, WA (United States); Iovenitti, Joe [AltaRock Energy, Inc., Seattle, WA (United States); Nofziger, Laura [AltaRock Energy, Inc., Seattle, WA (United States); Callahan, Owen [AltaRock Energy, Inc., Seattle, WA (United States); Perry, Douglas S. [Davenport Newberry Holdings LLC, Stamford, CT (United States); Stern, Paul L. [PLS Environmental, LLC, Boulder, CO (United States)

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project's water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role

  6. Volatile Outputs From Subduction-Related Magmatism in the Oregon Cascades Estimated From Melt Inclusions, Spring Discharges, Heat Flow Data and Geochronology

    Science.gov (United States)

    Wallace, P.; Ruscitto, D.; Rowe, M.; Kent, A.

    2008-12-01

    Estimates of volatile fluxes provide a primary test for models of magmatism and volatile cycling during subduction in the endmember "hot and dry" Cascadia subduction zone, which is caused by slow convergence (4 cm/a) of the young (~10-12 Ma) Juan de Fuca plate with Western North America. Intra- arc rifting in the Central Oregon segment of the Cascade arc during the past 2 Ma has caused this region to have the highest mafic output along the arc. However, estimates of major volatile (H2O, CO2, S, Cl) fluxes and comparisons with other arcs (e.g. Central America) are not straightforward because there are no passively degassing volcanoes in the area. We estimate volatile outputs for the Central Oregon Cascades by combining data for olivine-hosted melt inclusions with regional heat flow (e.g. Ingebritsen, 1989; Blackwell,1990) and geochronological (Sherrod and Smith, 1990) studies. These flux estimates can be compared with those obtained from spring water studies (e.g. James, 1999; Hurwitz, 2005). This multidisciplinary approach allows us to more accurately constrain volatile fluxes, given that uncertainties in all methods are large and difficult to evaluate. Reported fluxes for Central Oregon springs are 3.4E5 CO2 and 1.5E4 Cl kg/yr/km of arc (James, 1999; Hurwitz, 2005). Melt inclusion data indicate primitive basaltic magmas in the Central Oregon Cascades have 1.0-3.5 wt% H2O, 800-1900 ppm S, and 300-1100 ppm Cl. Assuming global arc magma CO2 contents of ~1 wt% (Wallace, 2005), we estimate H2O/CO2 (1.0-3.5), S/CO2 (0.08-0.19), and Cl/CO2 (0.03-0.11) in magmas, which when combined with spring CO2 estimates, yield an H2O flux of 0.34-1.2E6, a S flux of 2.6-6.5E4, and a Cl flux of 1.0-3.7E4 kg/yr/km of arc. Alternatively, by combining melt inclusion data with magma flux estimates (14-38 km3/Myr/km of arc; Ingebritsen et al. 1989; Sherrod and Smith 1990) we estimate volatile fluxes for H2O: 0.39-5.4E6; S: 0.39-3.9E5; and Cl: 0.16- 2.3E5 kg/yr/km of arc. Given the

  7. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  8. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  9. Real-time measurements of Hg0 and H2S at La Solfatara Crater (Campi Flegrei, Southern Italy) and Mt. Amiata volcano (Siena, Central Italy): a new geochemical approach to estimate the distribution of air contaminants

    Science.gov (United States)

    Cabassi, J.; Calabrese, S.; Tassi, F.; Venturi, S.; Capecchiacci, F.; Di Lonardo, C.; D'Alessandro, W.; Vaselli, O.

    2014-12-01

    The emission of Hg and H2S from natural and anthropogenic sources may have a great environmental impact in urban areas as well as in the surroundings of active and passive degassing volcanoes. Mercury is present in the atmosphere mainly in its elemental form (Hg0~98 %), which has a relatively high volatility, low solubility and chemical inertness. Hydrogen sulfide, one of the most abundant gas species in volcanic fluids, is highly poisoning and corrosive. In this study, an innovative real-time method for the measurements of Hg0 and H2S concentrations in air was carried out at La Solfatara Crater, a hydrothermally altered tuff-cone nested in the town of Pozzuoli (Southern Italy), and at Mt. Amiata volcano (Central Italy), where a world-class Hg mining district abandoned in the seventies and a presently-exploited geothermal field for the production of electrical energy occur. The main aims were (i) to test this new methodological approach and (ii) to investigate Hg0 and H2S concentrations and the chemical-physical parameters regulating their spatial distribution in polluted areas. A portable Zeeman atomic absorption spectrometer with high frequency modulation of light polarization (Lumex RA-915M) was used in combination with a pulsed fluorescence gas analyzer (Thermo Scientific Model 450i) to measure Hg0 and H2S, respectively. The instruments were synchronized and set at high-frequency acquisition (10 sec and 1 min, respectively). Measurements were carried out along pathways (up to 12 km long) at an average speed of <10 km/h and coupled with GPS data and meteorological parameters. In selected sites, passive samplers were positioned to determine the time-integrated Hg0 and H2S concentrations to be compared with the real-time measurements. The results indicate that this approach is highly efficient and effective in providing reliable and reproducible Hg0 and H2S concentrations and can be used to identify and characterize gas emitters in different environments.

  10. ANCIENT VOLCANOES AND TECTONIC STRUCTURES OF A RELIEF OF MARS

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2014-01-01

    Full Text Available In article the basic geological and morphological features of a volcanic relief of a surface of a planet Mars are considered. The volcanic relief of a planet represents relic ancient shield volcanoes, linear forms of volcanic mountains, areal and central lava flooding, radial and concentric breaks. Results of researches of morphology of volcanic and tectonic formations of a relief of Mars are given in article. On materials of shooting of a surface of Mars spacecrafts constructed hypsometric high-rise profiles of volcanoes and average steepness of slopes are defined. The relative age of volcanoes and volcanic plains is estimated on density of shock craters.

  11. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  12. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    Science.gov (United States)

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.

  13. Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD

    Directory of Open Access Journals (Sweden)

    M. Génova

    2012-04-01

    Full Text Available The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths and 34 positive (representing maximum growths, the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600–1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.

  14. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  15. Sulfur dioxide contributions to the atmosphere by volcanoes.

    Science.gov (United States)

    Stoiber, R E; Jepsen, A

    1973-11-01

    The first extensive measurements by remote-sensing correlation spectrometry of the sulfur dioxide emitted by volcanic plumes indicate that on the order of 10(3) metric tons of sulfur dioxide gas enter the atmosphere daily from Central American volcanoes. Extrapolation gives a minimum estimate of the annual amount of sulfur dioxide emitted from the world's volcanoes of about 10(7) metric tons.

  16. Central Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from six years of continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    Science.gov (United States)

    Geirsson, Halldor; d'Oreye, Nicolas; Mashagiro, Niche; Syauswa, Muhindo; Celli, Gilles; Kadufu, Benjamin; Smets, Benoît; Kervyn, François

    2017-10-01

    We present an overview of the installation, operation, and initial results of the 15-station KivuGNet (Kivu Geodetic Network) in the Kivu Region, Central Africa. The network serves primarily as a research and monitoring tool for active volcanic, earthquake, and plate boundary processes in the region. Continuous operation of in-situ measurement networks in naturally and politically harsh environments is challenging, but has proven fruitful in this case. During the operation of the network since 2009, KivuGNet has captured: co-eruptive deformation from two eruptions of Nyamulagira (in 2010 and 2011-2012); inter-eruptive deformation, which we interpret as a combination of plate motion across the Western - East Africa Rift, and decreasing deep-seated magma accumulation under the Nyiragongo-Nyamulagira region; co-seismic deformation from the Mw5.8 August 7, 2015 Lwiro earthquake at the western border of Lake Kivu. We hope that this study will serve as a motivation for further implementation of in-situ geodetic networks in under-monitored and under-studied sections of the East African Rift.

  18. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  19. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from multi-year InSAR time series analysis and continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    Science.gov (United States)

    Geirsson, Halldor; D'Oreye, Nicolas; Smets, Benoît; Nobile, Adriano; Samsonov, Sergey; De Rauw, Dominique; Mashagiro, Niche; Kervyn, Francois

    2016-04-01

    The Kivu Region in Central Africa is a topographic dome cut by the depression of the western branch of the East African Rift, where the Nubia plate and the Victoria micro-plate are diverging by approximately 2-3 mm/yr (Stamps et al. 2008). Two closely spaced and frequently active volcanoes, Nyiragongo and Nyamulagira, are located at the plate boundary. Here, deformation signals from transient deformation events (i.e. earthquakes, eruptions, rifting episodes, intrusions or other subsurface mass movements) are intertwined with the more perpetual nature of inter-seismic strain accumulation and gradual magma accumulation. Here, we present deformation results from six years of operation of the 15- station KivuGNet (Kivu Geodetic Network) in the Kivu Region and multi-year InSAR time series of the region using the MSBAS approach (Samsonov & d'Oreye, 2012). Since 2009, KivuGNet has captured transient deformation from a) the 2010 eruption of Nyamulagira, b) the 2011-2012 eruption of Nyamulagira c) the Mw5.8 August 7, 2015 Katana earthquake at the western border of Lake Kivu. Importantly, the GPS data also show an ongoing deformation signal, which is most readily explained by long-term magma accumulation under the volcanic region. We use the GPS and InSAR deformation signals to constrain and compare source parameters of simplistic elastic models for the different time periods. Although not well constrained, most of the time periods indicate the presence of a deep (~15-30 km) magmatic source centered approximately under Nyamulagira or to the southeast of Nyamulagira, that inflates between eruptions and deflates during eruptions.

  20. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  1. Multi-stage metasomatism revealed by trace element and Li isotope distributions in minerals of peridotite xenoliths from Allègre volcano (French Massif Central)

    Science.gov (United States)

    Gu, Xiaoyan; Deloule, Etienne; France, Lydéric; Ingrin, Jannick

    2016-11-01

    The modal, chemical, and isotopic compositions of mantle peridotite are largely modified by metasomatic processes, which may affect them repeatedly. Xenoliths are commonly used to characterize those metasomatic processes along with the structure, and chemical and isotopic compositions of mantle domains. Nevertheless, the original mantle signatures born by mantle xenoliths are potentially obscured by the interactions occurring between the host magma and the xenolith itself. Here we attempt to identify to which degree the original Li content and isotopic composition, as well as other trace element contents of mantle xenoliths, can be modified by interaction with the host magma. Peridotite xenoliths that have suffered extensive exchange with the entraining magma were sampled in the solidified lava lake of Allègre, Southern French Massif Central, in order to decipher the signature related to peridotite-melt interaction, and to further unravel the evolution of the sub-continental lithospheric mantle. In-situ trace element analyses of clinopyroxene (Cpx) were performed via LA-ICP-MS, and the Li content and isotopic composition of pyroxene and olivine (Ol) via SIMS. Negative HFSE anomalies (Ti/Eu ratios as low as 437) and markedly high LREE/HREE ratios ((La/Yb)N as high as 79) are characteristic of mantle metasomatism at depth. Lithium isotope systematics indicates that at least two different metasomatic events affected the peridotite. Exceptionally high Li contents in Cpx (up to 50 ppm) and slight Li enrichment of Ol rims are ascribed to diffusive Li influx with a positive δ7Li value (+ 3.2‰) from the host magma after entrainment. Conversely, Ol cores preserve extremely light Li isotopic compositions (δ7Li as low as - 25‰) with high Li contents (up to 4.4 ppm) compared to normal mantle, indicating a metasomatic event that occurred before xenolith entrainment. The negative δ7Li signature of this early metasomatism may be related to subduction-related fluids

  2. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    Science.gov (United States)

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  3. Volcano hazards at Fuego and Acatenango, Guatemala

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  4. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  5. Earning College Credits in High School: Options, Participation, and Outcomes for Oregon Students. REL 2017-216

    Science.gov (United States)

    Pierson, Ashley; Hodara, Michelle; Luke, Jonathan

    2017-01-01

    Oregon's postsecondary attainment goal for 2025, adopted in 2011, calls for 40 percent of Oregon adults to have a bachelor's degree or higher, 40 percent to have an associate's degree or postsecondary certificate, and the remaining 20 percent to have a high school diploma or equivalent (S. 253, Or. 2011). As in other states a central strategy for…

  6. Santa Maria Volcano, Guatemala

    Science.gov (United States)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  7. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  8. 2007 Oregon Department of Forestry (ODF) Northwest Oregon Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This lidar dataset encompasses two areas in northwest Oregon. The northern area is located in Clatsop County, encompassing Clatsop State Forest ownership; the...

  9. [Volcanoes: A Compilation of Four Articles Appearing in Issues of "Instructor,""Science and Children," and "Science Teacher" Magazines in September 1980 and March 1981.

    Science.gov (United States)

    San Mateo County Office of Education, Redwood City, CA. SMERC Information Center.

    This compilation of four journal articles (Instructor, September 1980; Science and Children, September 1980; and Science Teacher, September 1980 and March 1981) focuses on volcanoes, particularly Mount St. Helens in Oregon. The first article, "The Earth is Alive!" describes the eruptions of Mount St. Helens, provides basic information on…

  10. Umpqua River Oregon Geologic Floodplain

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  11. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  12. On the morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  13. Spatial Analysis of Volcanoes at Convergent Margins on Earth

    Science.gov (United States)

    Roberts, R. V.; de Silva, S. L.; Meyers, M.

    2009-12-01

    One of the most obvious patterns seen on the surface of the terrestrial planets is the distribution of volcanoes. On Earth, most volcanoes are distributed in volcanic “arcs” that signal the primary relationship between subduction and volcanism. The distributions of major composite volcanoes in volcanic arcs are thought to reflect the primary magmatic pathways from source to surface. Understanding these patterns therefore may allow fundamental controls on the organization of magmatic plumbing in arcs to be identified. Using a control dataset from the Central Volcanic Zone of the Andes (de Silva and Francis, 1991; Springer-Verlag) we have examined several popular approaches to spatial analysis of volcano distribution in several volcanic arcs (Aleutian, Alaskan, Central American, Northern and Southern volcanic zones of the Andes). Restricting our analysis to major volcanoes of similar age, we find that while clustering is visually obvious in many volcanic arcs it has been rejected as a primary signal by previous analytical efforts (e.g. Bremont d'Ars et al (1995)). We show that the fractal box or grid counting method used previously does not detect clusters and statistical methods such as the Kernel Density Analysis or Single-link Cluster Analysis are better suited for cluster detection. Utilizing both ARC GIS and Matlab to conduct density analyses in combination with statistical software SPlus for the appropriate hypothesis testing methods such as the pooled variance t-test, the Welch Modified two sample t-test, and the f-test we find evidence of clustering in four volcanic arcs whose crustal thickness is greater than or equal to 40 kilometres (Central America, CVZ, NVZ, SVZ). We suggest that clustering is the surface manifestation of upper crustal diffusion of primary magmatic pathways, which in other places manifests as a single volcano. The inter-cluster distance is a thus reflection of primary magmatic pathways and thus equivalent to inter-volcano distance

  14. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  15. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  16. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  17. Geomorphometric comparative analysis of Latin-American volcanoes

    Science.gov (United States)

    Camiz, Sergio; Poscolieri, Maurizio; Roverato, Matteo

    2017-07-01

    The geomorphometric classifications of three groups of volcanoes situated in the Andes Cordillera, Central America, and Mexico are performed and compared. Input data are eight local topographic gradients (i.e. elevation differences) obtained by processing each volcano raster ASTER-GDEM data. The pixels of each volcano DEM have been classified into 17 classes through a K-means clustering procedure following principal component analysis of the gradients. The spatial distribution of the classes, representing homogeneous terrain units, is shown on thematic colour maps, where colours are assigned according to mean slope and aspect class values. The interpretation of the geomorphometric classification of the volcanoes is based on the statistics of both gradients and morphometric parameters (slope, aspect and elevation). The latter were used for a comparison of the volcanoes, performed through classes' slope/aspect scatterplots and multidimensional methods. In this paper, we apply the mentioned methodology on 21 volcanoes, randomly chosen from Mexico to Patagonia, to show how it may contribute to detect geomorphological similarities and differences among them. As such, both its descriptive and graphical abilities may be a useful complement to future volcanological studies.

  18. Observation of Eyjafjallajökull volcano ash over Poland

    Science.gov (United States)

    Zielinski, T.; Petelski, T.; Makuch, P.; Kowalczyk, J.; Rozwadowska, A.; Drozdowska, V.; Markowicz, K.; Malinowski, S.; Kardas, A.; Posyniak, M.; Jagodnicka, A. K.; Stacewicz, T.; Piskozub, J.

    2010-05-01

    The plume of Eyjafjallajökull volcano ash has been identified over Poland using three instruments (two lidars and a ceilometer) stationed in two locations: Sopot in northern Poland and Warsaw in central-eastern Poland. The observations made it possible to establish the base of the ash layer. However ash concentration could not be determined.

  19. Italian Volcano Supersites

    Science.gov (United States)

    Puglisi, G.

    2011-12-01

    Volcanic eruptions are among the geohazards that may have a substantial economic and social impact, even at worldwide scale. Large populated regions are prone to volcanic hazards worldwide. Even local phenomena may affect largely populated areas and in some cases even megacities, producing severe economic losses. On a regional or global perspective, large volcanic eruptions may affect the climate for years with potentially huge economic impacts, but even relatively small eruptions may inject large amounts of volcanic ash in the atmosphere and severely affect air traffic over entire continents. One of main challenges of the volcanological community is to continuously monitor and understand the internal processes leading to an eruption, in order to give substantial contributions to the risk reduction. Italian active volcanoes constitute natural laboratories and ideal sites where to apply the cutting-edge volcano observation systems, implement new monitoring systems and to test and improve the most advanced models and methods for investigate the volcanic processes. That's because of the long tradition of volcanological studies resulting into long-term data sets, both in-situ and from satellite systems, among the most complete and accurate worldwide, and the large spectrum of the threatening volcanic phenomena producing high local/regional/continental risks. This contribution aims at presenting the compound monitoring systems operating on the Italian active volcanoes, the main improvements achieved during the recent studies direct toward volcanic hazard forecast and risk reductions and the guidelines for a wide coordinated project aimed at applying the ideas of the GEO Supersites Initiative at Mt. Etna and Campi Flegrei / Vesuvius areas.

  20. Geochemical studies of rocks, water, and gases at Mt. Hood, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Bowen, R.E.; Bowman, H.R.; Strisower, B.

    1979-02-01

    Mr. Hood, a composite andesitic volcano, located near Portland, Oregon, is one of several large eruptive centers which dominate the Cascade Mountains of the western United States. As part of a program of geologic, geophysical and geochemical studies to examine Mt. Hood's geothermal resource potential, samples of warm-and cold-spring water, water from a geothermal test well in Old Maid Flat, fumarolic gases, and rocks were collected and analyzed for major chemical constituents and trace elements. The only warm-spring area on Mt. Hood is Swim Springs, located on the south flank. Orifices at Swim were sampled repeatedly with little overall change noted in water chemistry between summer and winter. Oxygen and hydrogen isotope data and mixing calculations based on analyses of Swim Springs and numerous cold springs, indicate that a large component of the warm water at Swim is from near-surface runoff. Chemical geothermometry suggests that temperatures at depth in the Swim Springs system are within the range 104 to 170/sup 0/C; the temperature of unmixed hot water may exceed 200/sup 0/C. Higher-than-background chloride contents and specific conductances of cold springs on the south flank of the mountain suggest that there is a small component of thermal water in these sources. A geothermal model of Mt. Hood is proposed wherein snow- and glacier-melt water near the summit comes in close promimity to the hot central neck of the mountain, manifested by the summit-crater fumaroles.Iridium was detected in warm and cold spring waters and in a sample of altered andesite.

  1. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  2. Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east-central Europe, from combined U-Th/He and U-Th zircon geochronology

    Science.gov (United States)

    Harangi, S.; Lukács, R.; Schmitt, A. K.; Dunkl, I.; Molnár, K.; Kiss, B.; Seghedi, I.; Novothny, Á.; Molnár, M.

    2015-08-01

    High-spatial resolution zircon geochronology was applied to constrain the timescales of volcanic eruptions of the youngest, mostly explosive volcanic phase of Ciomadul volcano (Carpathian-Pannonian region, Romania). Combined U-Th and (U-Th)/He zircon dating demonstrates that intermittent volcanic eruptions occurred in a time range of 56-32 ka. The reliability of the eruption dates is supported by concordant ages obtained from different dating techniques, such as zircon geochronology, radiocarbon analysis, and infrared stimulated luminescence dating for the same deposits. The new geochronological data suggest that volcanism at Ciomadul is much younger (volcanic phase occurred after an apparent lull in volcanism that lasted for several 10's of ka, after a period of lava dome extrusion that defines the onset of the known volcanism at Ciomadul. At least four major eruptive episodes can be distinguished within the 56-32 ka period. Among them, relatively large (sub-plinian to plinian) explosive eruptions produced distal tephra covering extended areas mostly southeast from the volcano. The 38.9 ka tephra overlaps the age of the Campanian Ignimbrite eruption and has an overlapping dispersion axis towards the Black Sea region. The wide range of U-Th model ages of the studied zircons indicates prolonged existence of a low-temperature (volcanism. Even the youngest U-Th model ages obtained for the outermost 4 μm rim of individual zircon crystals predate the eruption by several 10's of ka. The zircon age distributions suggest re-heating above zircon saturation temperatures via injection of hot mafic magmas prior to eruption. Intermittent intrusions of fresh magma could play a significant role in keeping the intrusive silicic magmatic reservoir in a partially melted for prolonged period. The previous history of Ciomadul suggests that melt-bearing crystal mush resided beneath the volcano, and was rapidly remobilized after a protracted (several 10's of ka) lull in volcanism to

  3. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  4. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    Science.gov (United States)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    to investigate the degassing behavior of the individual fumaroles. Lascar volcano only had a very weak plume originating from the active central crater with maximum SO2 column densities of only up to 5 × 1017[molecules/cm2] during our measurements. These low SO2 column densities in combination with the almost ideal measurements conditions will be used to assess the detection limit of our current SO2 camera system.

  5. Lucky Strike seamount: Implications for the emplacement and rifting of segment-centered volcanoes at slow spreading mid-ocean ridges

    Science.gov (United States)

    Escartín, J.; Soule, S. A.; Cannat, M.; Fornari, D. J.; Düşünür, D.; Garcia, R.

    2014-11-01

    history of emplacement, tectonic evolution, and dismemberment of a central volcano within the rift valley of the slow spreading Mid-Atlantic Ridge at the Lucky Strike Segment is deduced using near-bottom sidescan sonar imagery and visual observations. Volcano emplacement is rapid (spreading may eventually split it. At Lucky Strike, this results in two modes of crustal construction. Eruptions and tectonic activity focus at a narrow graben that bisects the central volcano and contains the youngest lava flows, accumulating a thick layer of extrusives. Away from the volcano summit, deformation and volcanic emplacement is distributed throughout the rift valley floor, lacking a clear locus of accretion and deformation. Volcanic emplacement on the rift floor is characterized by axial volcanic ridges fed by dikes that propagate from the central axial magma chamber. The mode of rapid volcano construction and subsequent rifting observed at the Lucky Strike seamount is common at other central volcanoes along the global mid-ocean ridge system.

  6. Volcano-estratigrafía y tectónica del Valle Central Occidentaly las estribaciones de los Montes del Aguacate a lo largo de la ruta 27, Costa Rica Volcano-stratigraphy and tectonics of the Western Central Valley and Montes del Aguacate along road 27, Costa Rica

    Directory of Open Access Journals (Sweden)

    Hernán Porras

    2012-12-01

    Full Text Available La Ruta 27, también conocida como carretera Ciudad Colón-Caldera, ofrece cortes geológicos de entre 5 y 40 m de altura que muestran una buena parte de la estratigrafía, en su mayoría volcánica y subvolcánica, del extremo occidental del Valle Central y las estribaciones de los Montes del Aguacate. Se observa una secuencia volcánica correlacionable con la Formación Grifo Alto (Plioceno, profundamente hidrotermalizada (alteración propilítica en varios sectores, compuesta por lavas, brechas y depósitos epivolcánicos, (depósitos fluviales de corrientes hiperconcentradas, depósitos de debris avalanches algunos ligera a moderadamente basculados, cortados por diques. Una serie de depósitos de debris avalanches antiguos también está presente, relacionados con el vulcanismo de los Montes del Aguacate. Localmente, una secuencia de varias unidades de mesobrechas de bloques andesíticos vidriosos, monomícticos en una matriz de cenizas vitro-cristalina, se interpreta como posibles depósitos asociados a flujos de bloques y cenizas, posiblemente en correspondencia con un vulcanismo coetáneo con la Formación Monteverde (Pleistoceno Inferior. Al menos 4 unidades de depósitos de debris flow/debris avalanche del Pleistoceno Medio se asocian a la Formación Nuestro Amo (Pleistoceno Medio. Sobre ellos se presentan los pórfidos andesíticos de la Formación Colima Inferior, seguidos de las ignimbritas de las formaciones Puente de Mulas y Tiribí, todas del Pleistoceno Medio, las que contienen niveles ignimbríticos hiperconcentrados e intercalaciones fluviales con espesores decrecientes. Un pliegue de propagación, que afecta a estas ignimbritas, es considerado indicio de la existencia de una tectónica de cabalgamiento de tipo piel delgada con vergencia al SW, activa al menos desde el Pleistoceno Medio. Gran parte del basculamiento de las rocas expuestas a lo largo de la Ruta 27, su tipo de fracturamiento, fallamiento y plegamiento, y la

  7. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  8. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  9. The diversity of mud volcanoes in the landscape of Azerbaijan

    Science.gov (United States)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  10. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  11. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  12. Western juniper in eastern Oregon.

    Science.gov (United States)

    Donald R. Gedney; David L. Azuma; Charles L. Bolsinger; Neil. McKay

    1999-01-01

    This report analyzes and summarizes a 1988 inventory of western juniper (Juniperus occidentalis Hook.) in eastern Oregon. This inventory, conducted by the Pacific Northwest Research Station of the USDA Forest Service, was intensified to meet increased need for more information about the juniper resource than was available in previous inventories. A...

  13. Oregon's forest products industry: 1976.

    Science.gov (United States)

    James O. Howard; Bruce A. Hiserote

    1976-01-01

    This report presents the findings of a 100-percent canvas of the primary forest products industry in Oregon for 1976. Tabular presentation includes characteristics of the industry log consumption and disposition of mill residues. Accompanying the tables is a descriptive analysis of conditions and trends in the industry.

  14. An investigation of vegetation and other Earth resource/feature parameters using LANDSAT and other remote sensing data. 1: LANDSAT. 2: Remote sensing of volcanic emissions. [New England forest and emissions from Mt. St. Helens and Central American volcanoes

    Science.gov (United States)

    Birnie, R. W.; Stoiber, R. E. (Principal Investigator)

    1981-01-01

    A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.

  15. Lakeview, Oregon, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management (LM), Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprap was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability

  16. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  17. Microseismic Event Grouping Based on PageRank Linkage at the Newberry Volcano Geothermal Site

    Science.gov (United States)

    Aguiar, A. C.; Myers, S. C.

    2016-12-01

    The Newberry Volcano DOE FORGE site in Central Oregon has been stimulated two times using high-pressure fluid injection to study the Enhanced Geothermal Systems (EGS) technology. Several hundred microseismic events were generated during the first stimulation in the fall of 2012. Initial locations of this microseismicity do not show well defined subsurface structure in part because event location uncertainties are large (Foulger and Julian, 2013). We focus on this stimulation to explore the spatial and temporal development of microseismicity, which is key to understanding how subsurface stimulation modifies stress, fractures rock, and increases permeability. We use PageRank, Google's initial search algorithm, to determine connectivity within the events (Aguiar and Beroza, 2014) and assess signal-correlation topology for the micro-earthquakes. We then use this information to create signal families and compare these to the spatial and temporal proximity of associated earthquakes. We relocate events within families (identified by PageRank linkage) using the Bayesloc approach (Myers et al., 2007). Preliminary relocations show tight spatial clustering of event families as well as evidence of events relocating to a different cluster than originally reported. We also find that signal similarity (linkage) at several stations, not just one or two, is needed in order to determine that events are in close proximity to one another. We show that indirect linkage of signals using PageRank is a reliable way to increase the number of events that are confidently determined to be similar to one another, which may lead to efficient and effective grouping of earthquakes with similar physical characteristics, such as focal mechanisms and stress drop. Our ultimate goal is to determine whether changes in the state of stress and/or changes in the generation of subsurface fracture networks can be detected using PageRank topology as well as aid in the event relocation to obtain more accurate

  18. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  19. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  20. Hydraulic modeling for lahar hazards at cascades volcanoes

    Science.gov (United States)

    Costa, J.E.

    1997-01-01

    The National Weather Service flood routing model DAMBRK is able to closely replicate field-documented stages of historic and prehistoric lahars from Mt. Rainier, Washington, and Mt. Hood, Oregon. Modeled time-of-travel of flow waves are generally consistent with documented lahar travel-times from other volcanoes around the world. The model adequately replicates a range of lahars and debris flows, including the 230 million km3 Electron lahar from Mt. Rainier, as well as a 10 m3 debris flow generated in a large outdoor experimental flume. The model is used to simulate a hypothetical lahar with a volume of 50 million m3 down the East Fork Hood River from Mt. Hood, Oregon. Although a flow such as this is thought to be possible in the Hood River valley, no field evidence exists on which to base a hazards assessment. DAMBRK seems likely to be usable in many volcanic settings to estimate discharge, velocity, and inundation areas of lahars when input hydrographs and energy-loss coefficients can be reasonably estimated.

  1. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  2. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  3. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  4. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  5. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  6. Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea)

    Science.gov (United States)

    Hübscher, Christian; Ruhnau, M.; Nomikou, P.

    2015-01-01

    Here we show for the first time the 3D-structural evolution of an explosive submarine volcano by means of reflection seismic interpretation. Four to five vertically stacked circular and cone-shaped units consisting mainly of volcaniclastics build the Kolumbo underwater volcano which experienced its first eruption > 70 ka ago and its last explosive eruption 1650 AD, 7 km NE of Santorini volcano (southern Aegean Sea). The summed volume of volcaniclastics is estimated to range between 13-22 km3. The entire Kolumbo volcanic complex has a height of ≥ 1 km and a diameter of ≥ 11 km. All volcaniclastic units reveal the same transparent reflection pattern strongly suggesting that explosive underwater volcanism was the prevalent process. Growth faults terminate upwards at the base of volcaniclastic units, thus representing a predictor to an eruption phase. Similarities in seismic reflection pattern between Kolumbo and near-by volcanic cones imply that the smaller cones evolved through explosive eruptions as well. Hence, the central Aegean Sea experienced several more explosive eruptions (≥ 23) than previously assumed, thus justifying further risk assessment. However, the eruption columns from the smaller volcanic cones did not reach the air and- consequently - no sub-aerial pyroclastic surge was created. The Anydros basin that hosts Kolumbo volcanic field opened incrementally NW to SE and parallel to the Pliny and Strabo trends during four major tectonic pulses prior to the onset of underwater volcanism.

  7. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  8. Investigation of the conductivity distribution in the vicinity of a cascade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, E.C.

    1982-11-01

    Magnetotelluric and telluric data were acquired in the vicinity of Mount Hood Oregon as part of a multidisciplinary exploration program to evaluate the geothermal potential of this stratocone volcano. Eleven field components were acquired simultaneously over the frequency band of 50. to .001 hertz. These data consisted of one five component magnetotelluric base site, two sets of two component remote electric field measurements and one set of remote horizontal magnetic field measurements. The data were recorded digitally in the field and processed later using the remote electric and magnetic signals to obtain unbiased tensor impedance and geomagnetic transfer function (tipper) estimates.

  9. Tsunami Preparedness in Oregon (video)

    Science.gov (United States)

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Oregon distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Oregon Department of Geology and Mineral Industries (DOGAMI).

  10. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    OpenAIRE

    Mena, M.; Cisniega, G.; Lopez, B.; M. A. Armienta; Valdés, C; Peña, P.; N. Segovia

    2005-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration d...

  11. Geology and mineral resources of the Southwestern and South-Central Wyoming Sagebrush Focal Area, Wyoming, and the Bear River Watershed Sagebrush Focal Area, Wyoming and Utah: Chapter E in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Wilson, Anna B.; Hayes, Timothy S.; Benson, Mary Ellen; Yager, Douglas B.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; Parks, Heather L.; Rockwell, Barnaby W.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the Southwestern and South-Central Wyoming and Bear River Watershed, Wyoming and Utah, SFAs.

  12. Volcano-ice interactions on Mars

    Science.gov (United States)

    Allen, C. C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.

  13. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  14. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  15. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Sorensen, O. E.; Rose, W. I.; Jaya, D.

    2003-04-01

    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  16. Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chichinautzin, México

    Science.gov (United States)

    Siebe, Claus; Arana-Salinas, Lilia; Abrams, Michael

    2005-03-01

    Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes located within the Sierra del Chichinautzin Volcanic Field (SCVF) at the southern margin of Mexico City were studied to further refine attendant volcanic hazards in this heavily populated region. Based on fieldwork and Landsat imagery interpretation, a geologic map was produced, morphometric parameters characterizing the cones and lava flows were determined, and the areal extent and volumes of erupted products were estimated. The longest lava flow was produced by Tlacotenco and reached 9.5 km from its source; total areas covered by lava flows from each eruption range between 12.8 km 2 (Tlacotenco) and 54.4 km 2 (Tláloc); and total erupted volumes range between 0.26 and 1.36 km 3 per volcano. Radiocarbon measurements of a paleosol underneath an ash layer from the Tláloc scoria cone yielded an age of 6200 years BP, while charcoal found within block-and-ash flow and lahar deposits from Cuauhtzin dome yielded ages of 7360 and 8225 years BP, respectively. The Tlacotenco dacite lava flow overlies Popocatépetl's Tutti Frutti Plinian pumice fall deposit dated at 14,000 years BP and is therefore younger than this prominent stratigraphic marker. On the other hand, Teuhtli and Hijo del Cuauhtzin scoria cones and the Ocusacayo andesite lava flows are overlain by the Tutti Frutti and therefore older than 14,000 years BP. These new dates together with other published dates for scoria cones in the SCVF imply that the previously determined recurrence interval during the Holocene for monogenetic eruptions in the SCVF of <1700 years [Siebe, C., Rodríguez-Lara, V., Schaaf, P., Abrams, M., 2004a. Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico_City: implications for archaeology and future hazards. Bull. Volcanol. 66, 203-225.] needs to be corrected to <1250 years. This means that the time of quiescence since the last eruption of the SCVF

  17. Endangered Plants in Oregon and Washington.

    Science.gov (United States)

    Love, Rhoda M.

    1985-01-01

    Presents a partial list of the 132 Oregon and Washington plants which have been proposed for federal protection under the Endangered Species Act. Suggestions for student/citizen involvement in preserving these species and a description of a videotape about rare/endangered species of the Willamette Valley (Oregon) are included. (DH)

  18. On the Oregon Trail. [Lesson Plan].

    Science.gov (United States)

    2000

    In this lesson, students work with primary documents and latter-day photographs to recapture the experience of traveling on the Oregon Trail. The learning objectives of the lesson are: (1) to learn about the pioneer experience on the Oregon Trail; (2) to evaluate a historical re-enactment in light of documentary evidence; and (3) to synthesize…

  19. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  20. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  1. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  2. Imaging the Juan de Fuca plate beneath southern Oregon using teleseismic P wave residuals

    Science.gov (United States)

    Harris, R.A.; Iyer, H.M.; Dawson, P.B.

    1991-01-01

    Images the Juan de Fuca plate in southern Oregon using seismic tomography. P wave travel time residuals from a 366-km-long seismic array operated in southern Oregon in 1982 are inverted. The southeast striking array extended from the Coast ranges to the Modoc Plateau and crossed the High Cascades at Crater Lake, Oregon. Three features under the array were imaged: one high-velocity zone and two low-velocity zones. The high-velocity zone is 3-4% faster than the surrounding upper mantle. It dips steeply at 65?? to the east beneath the Cascade Range and extends down to at least 200 km. It is proposed that this high-velocity feature is subducted Juan de Fuca plate. Two low-velocity zones were also imaged, both of which are 3-4% slower than the surrounding earth structure. The southeastern low-velocity zone may be caused by partially molten crust underlying the Crater Lake volcano region. -from Authors

  3. Space Radar Image of Karisoke & Virunga Volcanoes

    Science.gov (United States)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  4. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  5. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  6. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  7. Potential hydrologic effects of developing coal and other geoenergy resources in Oregon: a review

    Energy Technology Data Exchange (ETDEWEB)

    Sidle, W.C.

    1981-01-01

    Geoenergy resources in Oregon, in addition to coal, include noncommercial deposits of oil shale, natural gas, and geothermal heat. Commercial quantities of natural gas were discovered at Mist in northwestern Oregon in 1979. Gas presently is being produced from five wells and additional exploratory drilling is underway. More than 2 million acres of Oregon land is under lease for petroleum and natural gas exploration, mostly in the Astoria embayment-Willamette syncline, central (Oregon) Paleozoic-Mesozoic basin, and eastern Tertiary nonmarine basin. The Cascade Range and eastern Oregon contain sizable resources of geothermal heat, of which a small part has been developed for space heating at Klamath Falls and Lakeview. Thirteen Known Geothermal Resource Areas (KGRA's) comprising 432,000 acres have been identified, 422,000 acres are currently leased for geothermal development. KGRA's judged to have potential for generation of electrical power are Newberry Crater, Crump Geyser, and Alvord Desert. No adverse hydrologic effects have been noted to date from coal or other geoenergy exploration or development in Oregon, and no effects are expected if federal and state regulations are adhered to. The southwestern Oregon coals would have to be mined by underground methods. Potential hydrologic impacts would be local increases in sedimentation, turbidity, and mineralization of surface and ground water. Water-quality degradation, including both thermal pollution and increased concentrations of dissolved minerals, could result from geothermal development. Other potential problems include land subsidence and consumptive use of water associated with both coal and geothermal development. 53 refs., 3 figs., 1 tab.

  8. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  9. 78 FR 38703 - LNG Development Company (d/b/a Oregon LNG); Oregon Pipeline Company, LLC; Notice of Application

    Science.gov (United States)

    2013-06-27

    ... Energy Regulatory Commission LNG Development Company (d/b/a Oregon LNG); Oregon Pipeline Company, LLC; Notice of Application Take notice that on June 7, 2013, LNG Development Company, LLC (d/ b/a Oregon LNG) (Oregon LNG), 8100 NE Parkway Drive, Suite 165, Vancouver, WA 98662, filed in Docket No. CP9-6-001...

  10. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    Science.gov (United States)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  11. Developing the OORCC: A Multifaceted Astronomical Research and Outreach Facility at the University of Oregon

    Science.gov (United States)

    Kwan, Teiler J.; Bullis, Jeremy; Gustafsson, Annika; Fisher, Robert Scott

    2015-01-01

    The University of Oregon (UO) owns and operates Pine Mountain Observatory (PMO), located in central Oregon on the summit of Pine Mountain at an elevation of 1980 meters. PMO consists of four telescopes ranging in size from 0.35 - 0.8 meters. The Oregon Observatory Remote Control Center (OORCC) is a remote-observing center within the Department of Physics on the UO campus (~140 miles from the observatory) that has a direct connection to PMO through a dedicated fiber-optic cable. With this facility, we will enable UO undergraduate student researchers, UO faculty, and the non-scientific community to fully control and operate a newly installed robotic telescope on the summit of Pine Mountain from Eugene, or any other authorized site in Oregon. In addition to providing undergraduates with instrumentation and engineering experience, we will implement research by photometrically monitoring bright and variable astronomical sources including main belt comets, Herbig Ae/Be stars, and active galactic nuclei in extragalactic systems. The primary objective with the OORCC is to manage a multifaceted astronomy and astrophysics research facility, extending as a state-wide resource for K-12 STEM activities and public outreach programs. With the OORCC, we intend to bring unique and enriching astronomy exposure to many different groups of people throughout the state of Oregon.

  12. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  13. Iowa and Eugene, Oregon, Orthopaedics

    Science.gov (United States)

    Buckwalter, Joseph A

    2003-01-01

    Over the last 50 years, the commitment of orthopaedic surgeons to basic and clinical research and evaluation of treatment outcomes has made possible remarkable improvements in the care of people with injuries and diseases of the limbs and spine. A group of Oregon orthopaedic surgeons has had an important role in these advances, especially in the orthopaedic specialties of sports medicine and hip reconstruction. Since Don Slocum (Iowa Orthopaedic Resident, 1934-1937), started practice in Eugene, Oregon, in 1939, three orthopaedic surgeons, Denny Collis, Craig Mohler and Paul Watson, who received their orthopaedic residency education at the University of Iowa, and three orthopaedic surgeons, Stan James, Tom Wuest and Dan Fitzpatrick, who received their undergraduate, medical school and orthopaedic residency education at the University of Iowa, have joined the group Dr. Slocum founded. These individuals, and their partners, established and have maintained a successful growing practice that serves the people of the Willamette valley, but in addition, they have made important contributions to the advancement of orthopaedics. PMID:14575262

  14. Volcano plumbing system geometry: The result of multi-parametric effects

    Science.gov (United States)

    Tibaldi, Alessandro

    2014-05-01

    Magma is transported from magma chambers towards the surface through networks of planar structures (intrusive sheets) spanning from vertical dikes to inclined sheets and horizontal sills. This study presents an overview of intrusive sheets at several volcanoes located in different settings in order to contribute to assess the factors controlling the geometry of magma plumbing systems. Data have been mainly acquired in the field and secondarily through a collection and analysis of geophysical publications; data include local lithology and tectonics of the substratum surrounding the volcano with special reference to local fault kinematics and related stress tensor, regional tectonics (general kinematics and far-field stress tensors), crustal thickness, geology and shape of the volcano, topographic setting, and characteristics of the plumbing system. Data from active volcanoes and eroded extinct volcanoes are discussed; the shallow plumbing system of active volcanoes has been reconstructed by combining available geophysical data with field information derived from outcropping sheets, morphometric analyses of pyroclastic cones, and the orientation and location of eruptive fissures. The study of eroded volcanoes enabled to assess the plumbing system geometry at lower levels in the core of the edifice or under the volcano-substratum interface. Key sites are presented in extensional, transcurrent and contractional tectonic settings, and different geodynamic areas have been investigated in North and South-America, Iceland, Southern Tyrrhenian Sea and Africa. The types of sheet arrangements that are illustrated include swarms of parallel dikes, diverging rift patterns, centrally-inclined sheets, radial dikes, bi-modal dike strikes, circum-lateral collapse sheets, and mixed members. This review shows that intrusive sheet emplacement at a volcano depends upon the combination of several local and regional factors, some of which are difficult to be constrained. While much

  15. Evaluation of volcanic risk management in Merapi and Bromo Volcanoes

    Science.gov (United States)

    Bachri, S.; Stöetter, J.; Sartohadi, J.; Setiawan, M. A.

    2012-04-01

    Merapi (Central Java Province) and Bromo (East Java Province) volcanoes have human-environmental systems with unique characteristics, thus causing specific consequences on their risk management. Various efforts have been carried out by many parties (institutional government, scientists, and non-governmental organizations) to reduce the risk in these areas. However, it is likely that most of the actions have been done for temporary and partial purposes, leading to overlapping work and finally to a non-integrated scheme of volcanic risk management. This study, therefore, aims to identify and evaluate actions of risk and disaster reduction in Merapi and Bromo Volcanoes. To achieve this aims, a thorough literature review was carried out to identify earlier studies in both areas. Afterward, the basic concept of risk management cycle, consisting of risk assessment, risk reduction, event management and regeneration, is used to map those earlier studies and already implemented risk management actions in Merapi and Bromo. The results show that risk studies in Merapi have been developed predominantly on physical aspects of volcanic eruptions, i.e. models of lahar flows, hazard maps as well as other geophysical modeling. Furthermore, after the 2006 eruption of Merapi, research such on risk communication, social vulnerability, cultural vulnerability have appeared on the social side of risk management research. Apart from that, disaster risk management activities in the Bromo area were emphasizing on physical process and historical religious aspects. This overview of both study areas provides information on how risk studies have been used for managing the volcano disaster. This result confirms that most of earlier studies emphasize on the risk assessment and only few of them consider the risk reduction phase. Further investigation in this field work in the near future will accomplish the findings and contribute to formulate integrated volcanic risk management cycles for both

  16. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  17. The western Aeolian Islands volcanoes (South Tyrrhenian Sea): highlight on their eruptive history based on K-Ar dating.

    Science.gov (United States)

    Leocat, E.; Gillot, P.-Y.; Peccerillo, A.

    2012-04-01

    The Aeolian Islands volcanoes are located in southern Tyrrhenian Sea on the northern continental margin of the Calabro-Peloritan basement. The Stromboli, Panarea and Vulcano volcanoes of the half eastern sector are well studied as they are still active and they represent high volcanic hazard. While stratigraphic studies were carried out on volcanoes of the western sector, radiometric ages are lacking to well understand their eruptive history. Therefore, new geochronological and geochemical data were obtained for Alicudi, Filicudi, Salina and Lipari western volcanoes. The aim is to establish a complete time framework of the volcanism and to study possible time-related variations of magma compositions. The 37 new ages were obtained using K-Ar Cassignol-Gillot technique that is suitable for dating Quaternary volcanic rocks. The new geochemical data consist of whole rock major and trace elements analysis on dated samples. Our new sets of data give evidence that the Aeolian Islands are young volcanoes emplaced within the last 300 ka. The oldest products outcrop at Filicudi, Salina and Lipari. Te first emerged activity of Alicudi volcano occurred 120 ka ago. While quiescence activity of at least 50 ka is recognized at Filicudi and Lipari, and potentially at Salina, the volcanic activity of Alicudi would have been relatively continuous. These whole volcanoes were active within the last 30 ka which has to be considered for volcanic hazard assessment. At the scale of each volcano, the degree of differentiation increase roughly through time, except at Filicudi where the ultimate products correspond to mafic magma. At the scale of the archipelago, this process increases from western Alicudi and Filicudi volcanoes, where andesitic magmas are the most evolved magmas, to central Salina and Lipari volcanoes, where rhyolitic magmas are emitted during explosive eruption. Moreover, pulses of magmatic activity would have occurred around 30-40 and 110-120 ka when the four volcanoes

  18. DCS Hydrology Submission for Lincoln County, Oregon

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The hydrology dataset for Lincoln County, Oregon includes proposed 10-, 50-, 100-, and 500-year discharges for Salmon River, Schooner Creek, Drift Creek, Siletz...

  19. Umpqua River Oregon Active Channel 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  20. Floodplain Mapping Submission for Oregon County, MO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping study deliverables depict and quantify the flood risks for Oregon County, MO. The City of Thayer and the Missouri State Emergency Management...

  1. Headwater Stream Barriers in Western Oregon

    Data.gov (United States)

    Oak Ridge National Laboratory — This data set is an ArcInfo point coverage depicting barriers to fish migration in headwater basins in western Oregon. Data were compiled from reports by fisheries...

  2. Northern Oregon 6 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 6-second North Coast Oregon Elevation Grid provides bathymetric data in ASCII raster format of 6-second resolution in geographic coordinates. This grid is...

  3. Umpqua River Oregon Active Channel 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  4. Oregon Salt Marshes: How Blue are They?

    Science.gov (United States)

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  5. Opportunities for silvicultural treatment in western Oregon.

    Science.gov (United States)

    Colin D. MacLean

    1980-01-01

    A recent Forest Survey inventory of western Oregon has been analyzed to determine the extent of physical opportunities to increase wood production through silvicultural treatment. Results are presented by owner group and by geographic unit.

  6. Oregon State University TRIGA Reactor annual report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.; Ringle, J.C.

    1979-08-31

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included.

  7. Umpqua River Oregon Active Channel 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  8. Umpqua River Oregon Active Channel 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  9. Umpqua River Oregon Active Channel 1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  10. Umpqua River Oregon Active Channel 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  11. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  12. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  13. Modeling eruptions of Karymsky volcano

    OpenAIRE

    Ozerov, A.; Ispolatov, I.; Lees, J.

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of...

  14. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  15. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  16. Geologic field-trip guide to Mount Shasta Volcano, northern California

    Science.gov (United States)

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  17. Volcanic structure and composition of Old Shiveluch volcano, Kamchatka

    Science.gov (United States)

    Gorbach, Natalia; Portnyagin, Maxim; Tembrel, Igor

    2013-08-01

    This paper reports results of a new comprehensive geological mapping of the Late Pleistocene Old Shiveluch volcano. The mapping results and geochemical data on major and trace element composition of the volcanic rocks are used to characterize spatial distribution, eruptive sequence and volumetric relationships between different rock types of the volcano. Old Shiveluch volcano had been constructed during two main stages: initial explosive and subsequent effusive ones. Pyroclastic deposits of the initial stage are represented by agglomerate and psephytic tuffs with very few lava flows and form at least 60% of volume of the Old Shiveluch edifice. The deposits of the second stage are dominantly lava flows erupted from four vents: Central, Western, Baidarny and Southern, reconstructed from the field relationships of their lava flows. About 75% of the Old Shiveluch edifice, both pyroclastic deposits and lava, are composed of magnesian andesites (SiO2 = 57.3-63.8 wt.%, Mg# = 0.53-0.57). The most abundant andesitic lavas were coevally erupted from the Central and Western vents in the central part of the edifice. Less voluminous high-Al basaltic andesites (SiO2 = 53.5-55.7 wt.%, Mg# = 0.52-0.56) were produced by the Western, Baidarny and Southern vents situated in the south-western sector. Small volume high-Mg basaltic andesites (SiO2 = 53.9-55.0 wt.%, Mg# = 0.59-0.64) occur in the upper part of the pyroclastic deposits. Andesites of Old and Young Shiveluch Volcanoes have similar compositions, whereas Old Shiveluch basaltic andesites are compositionally distinctive from those of the Young Shiveluch by having lower Mg#, SiO2, Cr and Ni, and higher Al2O3, FeOT, CaO, TiO2, and V contents at given MgO. Geochemical modeling suggests that the compositions of the intermediate Old Shiveluch magmas can be reasonably explained by simple fractional crystallization of olivine, clinopyroxene, plagioclase and magnetite (± hornblende) from water-bearing (~ 3 wt.% H2O) high-Mg# basaltic

  18. Campgrounds in Hawaii Volcanoes National Park

    Data.gov (United States)

    National Park Service, Department of the Interior — This dataset provides campground locations in Hawaii Volcanoes National Park. Information about facilities, water availability, permit requirements and type of...

  19. Structure of volcano plumbing systems: A review of multi-parametric effects

    Science.gov (United States)

    Tibaldi, Alessandro

    2015-06-01

    Magma is transported and stored in the crust mostly through networks of planar structures (intrusive sheets), ranging from vertical dykes to inclined sheets and horizontal sills, and magma chambers, which make up the plumbing system of volcanoes. This study presents an overview of plumbing systems imaged at different depths and geodynamic settings, in order to contribute to assessing the factors that control their geometry. Data were derived from personal field surveys and through the analysis of publications; observations include local lithology and tectonics of the host rock with special reference to local fault kinematics and related stress tensor, regional tectonics (general kinematics and far-field stress tensors), geology and shape of the volcano, topographic settings, and structural and petrochemical characteristics of the plumbing system. Information from active volcanoes and eroded extinct volcanoes is discussed; the shallow plumbing system of active volcanoes has been reconstructed by combining available geophysical data with field information derived from outcropping sheets, morphometric analyses of pyroclastic cones, and the orientation and location of eruptive fissures. The study of eroded volcanoes enabled to assess the plumbing system geometry at deeper levels in the core of the edifice or underneath the volcano-substratum interface. Key sites are presented in extensional, transcurrent and contractional tectonic settings from North and South-America, Iceland, the Southern Tyrrhenian Sea and Africa. The types of sheet arrangements illustrated include swarms of parallel dykes, diverging rift patterns, centrally-inclined sheets, ring and radial dykes, circum-lateral collapse sheets, sills, and mixed members. This review shows that intrusive sheet emplacement at a volcano depends upon the combination of several local and regional factors, some of which are difficult to be constrained. While much progress has been made, it is still very challenging to

  20. Hazard information management, interagency coordination, and impacts of the 2005-2006 eruption of Augustine Volcano: Chapter 28 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Neal, Christina A.; Murray, Thomas L.; Power, John A.; Adleman, Jennifer N.; Whitmore, Paul M.; Osiensky, Jeffery M.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    Dissemination of volcano-hazard information in coordination with other Federal, State, and local agencies is a primary responsibility of the Alaska Volcano Observatory (AVO). During the 2005-6 eruption of Augustine Volcano in Alaska, AVO used existing interagency relationships and written protocols to provide hazard guidance before, during, and after eruptive events. The 2005-6 eruption was notable because of the potential for volcanogenic tsunami, which required establishment of a new procedure for alerts of possible landslide-induced tsunami in Cook Inlet. Despite repeated ash-cloud generating explosions and far-traveled ash clouds, impacts from the event were relatively minor. Primary economic losses occurred when air carriers chose to avoid flights into potentially unsafe conditions. Post-eruption evaluations by agencies involved in the response indicated weaknesses in information centralization and availability of specific information regarding ash fall hazards in real time.

  1. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    Science.gov (United States)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  2. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  3. Channel centerline for the Rogue River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  4. Mammal Observations-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the Oregon OCS Data Release presents marine mammal observations from U.S. Geological Survey (USGS) field activity 2014-607-FA in the Oregon Outer...

  5. Mammal Observations-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the Oregon OCS Data Release presents marine mammal observations from U.S. Geological Survey (USGS) field activity 2014-607-FA in the Oregon Outer...

  6. Channel centerline for the Rogue River, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  7. Virtual Investigations of an Active Deep Sea Volcano

    Science.gov (United States)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  8. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  9. Geology and geothermal potential of the tecuamburro volcano area, Guatemala

    Science.gov (United States)

    Duffield, W.A.; Heiken, G.H.; Wohletz, K.H.; Maassen, L.W.; Dengo, G.; McKee, E.H.; Castaneda, O.

    1992-01-01

    Tecuamburro, an andesitic stratovolcano in southeastern Guatemala, is within the chain of active volcanoes of Central America. Though Tecuamburro has no record of historic eruptions, radiocarbon ages indicate that eruption of this and three other adjacent volcanoes occurred within the past 38,300 years. The youngest eruption produced a dacite dome. Moreover, powerful steam explosions formed a 250 m wide crater about 2900 years ago near the base of this dome. The phreatic crater contains a pH-3 thermal lake. Fumaroles are common along the lake shore, and several other fumaroles are located nearby. Neutral-chloride hot springs are at lower elevations a few kilometers away. All thermal manifestations are within an area of about 400 km2 roughly centered on Tecuamburro Volcano. Thermal implications of the volume, age, and composition of the post-38.3 ka volcanic rocks suggest that magma, or recently solidified hot plutons, or both are in the crust beneath these lavas. Chemical geothermometry carried out by other workers suggests that a hydrothermal-convection system is centered over this crustal heat source. Maximum temperatures of about 300??C are calculated for samples collected in the area of youngest volcanism, whereas samples from outlying thermal manifestations yield calculated temperatures <- 165??C. An 808 m deep drill hole completed in 1990 to partly test the geothermal model developed from surface studies attained a maximum temperature of almost 240??C. Thus, the possibility of a commercial-grade hydrothermal resource in the area seems high. ?? 1992.

  10. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  11. Field-trip guide to Mount Hood, Oregon, highlighting eruptive history and hazards

    Science.gov (United States)

    Scott, William E.; Gardner, Cynthia A.

    2017-06-22

    This guidebook describes stops of interest for a geological field trip around Mount Hood volcano. It was developed for the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon. The intent of this guidebook and accompanying contributions is to provide an overview of Mount Hood, including its chief geologic processes, magmatic system, eruptive history, local tectonics, and hazards, by visiting a variety of readily accessible localities. We also describe coeval, largely monogenetic, volcanoes in the region. Accompanying the field-trip guidebook are separately authored contributions that discuss in detail the Mount Hood magmatic system and its products and behavior (Kent and Koleszar, this volume); Mount Hood earthquakes and their relation to regional tectonics and the volcanic system (Thelen and Moran, this volume); and young surface faults cutting the broader Mount Hood area whose extent has come to light after acquisition of regional light detection and ranging coverage (Madin and others, this volume).The trip makes an approximately 175-mile (280-kilometer) clockwise loop around Mount Hood, starting and ending in Portland. The route heads east on Interstate 84 through the Columbia River Gorge National Scenic Area. The guidebook points out only a few conspicuous features of note in the gorge, but many other guides to the gorge are available. The route continues south on the Mount Hood National Scenic Byway on Oregon Route 35 following Hood River, and returns to Portland on U.S. Highway 26 following Sandy River. The route traverses rocks as old as the early Miocene Eagle Creek Formation and overlying Columbia River Basalt Group of middle Miocene age, but chiefly lava flows and clastic products of arc volcanism of late Miocene to Holocene age.

  12. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  13. 1982 Oregon energy resource manual

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R.; Ebert, J. (eds.)

    1982-01-01

    This manual is divided into three distinct sections. Part one contains 40 passive solar home plans designed for the Pacific Northwest by Oregon architects and designers. Floor plans and exterior renderings of multi-family and single-family dwellings, earth sheltered and bermed designs, and light commercial structures are included. The degree of solar contribution each residence achieves is graphically presented for ease of understanding. Part two, renewable-energy-resource guide, is primarily designed as a locator to indepth publications that explain specific energy resources in detail. It contains illustrated book reviews of pertinent private and government publications available. Various tables, forms, diagrams, energy system evaluation criteria, an illustrated glossary, BPA energy programs, utility programs, financial outlooks and non-profit organizations are included. The product locator index makes up part three. This indexed directory contains the listings of businesses, including the address, phone number, contact person and a 30 to 50 word description of the product or services currently offered. These renewable energy companies range from architectural and engineering services to research and development firms.

  14. 2007 Oregon Department of Geology and Mineral Industries (DoGAMI) LiDAR: Northwest Oregon and Portland Metro Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Oregon Department of Geology and Mineral Industries (DoGAMI) and the Oregon...

  15. 2007 Oregon Department of Geology and Mineral Industries (DoGAMI) LiDAR: Northwest Oregon and Portland Metro Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Oregon Department of Geology and Mineral Industries (DoGAMI) and the Oregon...

  16. Trichinella surveillance in black bears (Ursus americanus) from Oregon, USA.

    Science.gov (United States)

    Mortenson, J A; Kent, M L; Fowler, D R; Chomel, B B; Immell, D A

    2014-01-01

    We used serology and muscle digestion to test black bears (Ursus americanus) from western Oregon, USA, for Trichinella. Results indicate black bears in Oregon are not part of a sylvatic cycle for Trichinella, and risk of human exposure to Trichinella larvae from eating black bear meat from Oregon appears low.

  17. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  18. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    Science.gov (United States)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  19. Chemical and isotopic data for water from thermal springs and wells of Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  20. Oregon spotted frog (Rana pretiosa) monitoring in the Oregon Cascades 2012-2016

    Science.gov (United States)

    Adams, Michael J.; Pearl, Christopher A.; Mccreary, Brome; Galvan, Stephanie; Rowe, Jennifer

    2017-01-01

    This dataset contains information from visual encounter surveys conducted between 2012 and 2016 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa) monitoring effort in the Oregon Cascade Mountain Range. We surveyed 91 sites using a rotating frame design in the Klamath and Deschutes Basins, Oregon, which encompass most of the species' core extant range. Data consist of spotted frog counts aggregated by date, location, and life stage, as well as data on environmental conditions at the time of each survey.

  1. Chapter 6. Impacts of Climate Change on Oregon's Coasts and Estuaries in "Oregon Climate Change Assessment Report"

    Science.gov (United States)

    In 2007 the Oregon legislature created a new Oregon Climate Change Research Institute (OCCRI), which is based at Oregon State University (OSU). As part of its charter, OCCRI is mandated to produce a biennial report for the state legislature synthesizing climate change impacts a...

  2. Silvicultural activities in Pringle Falls Experimental Forest, Central Oregon

    Science.gov (United States)

    Andrew Youngblood; Kim Johnson; Jim Schlaich; Boyd Wickman

    2004-01-01

    Pringle Falls Experimental Forest has been a center for research in ponderosa pine forests east of the crest of the Cascade Range since 1931. Long-term research facilities, sites, and future research opportunities are currently at risk from stand-replacement wildfire because of changes in stand structure resulting from past fire exclusion. At the same time, many of the...

  3. Radon, volatile organic compounds and water chemistry in springs around Popocatepetl volcano, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Pena, P.; Lopez, M.B.E.; Cisniega, G. [Inst. Nacional de Investigaciones Nucleares, Mexico D.F. (Mexico); Valdes, C.; Armienta, M.A.; Mena, M. [Inst. de Geofisica, UNAM, Ciudad Univ., Mexico D.F. (Mexico)

    2003-07-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both to the meteorological and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period indicating differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (orig.)

  4. Subaqueous geology and a filling model for Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  5. Geochemical characterization of the Nirano Mud Volcano Field

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Ricci, Tullio; Conventi, Marzia

    2016-04-01

    fact, Rn is around 28800 Bq/m3 (southern part), CO2 up to 5.5 %, CH4 about 6000 ppm, He and H2 are 18 ppm and 39 ppm, respectively. CO2 flux measurements show high values (up to 91 g/m2day) along a natural slope, at the central sector of the NMVF, suggesting the presence of fracturation zone. CH4 fluxes show a spotty distribution and low values (mean 65,95 mg/m2day), similar to average values measured in adjacent areas (67 mg/m2day), in the Modena province. The mud volcanoes of Nirano are characterized by mud, gas bubbles, and muddy water, which may also contain a small fraction of liquid hydrocarbons. Water analysis highlights connate origin of fluids dominated by sodium-chloride component. Extruded gas is chemically composed essentially by methane and in minor measure by nitrogen, oxygen, carbon dioxide, and ethane. Isotopic analyses highlight the thermogenic origin of emitted methane.

  6. Geometry and structure of the andesitic volcano-detritic deposits: The Merapi case

    Science.gov (United States)

    Selles, A.; Deffontaines, B.; Hendrayana, H.; Violette, S.

    2013-12-01

    Several geological studies have been performed on the volcano-detritic deposits but finally the global overview of the geometry of those is still poorly known. The quick alteration enhances the high heterogeneity of these formations, especially under tropical climate. Better knowledge of the structure of the volcano-sedimentary edifices is capital to understand:i) the geomorphological impacts, as landslides ii) or the hydrogeological processes. The Merapi Mount is an andesitic strato-volcano, located in Central Java and is one of the most active volcanoes in Indonesia. About 500,000 people live in the immediate vicinity of the volcano and are directly subject, not only to the volcanic eruptions but also to the landslide hazards. The East flank of the Merapi presents a complex history and has been relatively spared by the recent volcanic activity; thus, the geomorphology and the structure of the deposit have been driven by the erosion and remobilization processes under equatorial climate. This work contributes to understand the processes of construction, destruction and sedimentation of a complex active strato-volcano and shed light to its geological and geomorphological history. Based on field observations and literature, the specific deposits have been identified. The lithological facies have been described and several cross sections have been done to precise the distinct phases of building edifice, due to old eruptions. Recent field surveys allowed characterizing the dismantling steps and processes of the volcano by erosion and the local to distal sedimentation associated. The East flank has been split in four zones where each formation presents a lateral facies variation depending on the distance from the summit and the age of deposits. Based on the collected data, the size and the three dimensional extension of each deposits has been delimitated. The geological and geomorphological interpretation is proposed through a conceptual model.

  7. Monitoring Oregon Silverspot Butterfly Habitat Restoration Methods: Willapa Bay National Wildlife Refuge and Oregon Coast NWRs

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Oregon Silverspot Butterfly is thought to be extirpated from the northern portion oftheir historic range. Currently the entire population is only known to...

  8. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: North Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  9. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: North Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  10. 2008 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Lake Billy Chinook, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  11. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Willamette Valley

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  12. Oregon Spotted Frog Monitoring in the Oregon Cascades 2012-2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information from visual encounter surveys conducted between 2012 and 2016 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa)...

  13. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  14. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  15. Volcanoes

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  16. Redoubt Volcano: 2009 Eruption Overview

    Science.gov (United States)

    Bull, K. F.

    2009-12-01

    Redoubt Volcano is a 3110-m glaciated stratovolcano located 170 km SW of Anchorage, Alaska, on the W side of Cook Inlet. The edifice comprises a oil production in Cook Inlet was halted for nearly five months. Unrest began in August, 2008 with reports of H2S odor. In late September, the Alaska Volcano Observatory (AVO)’s seismic network recorded periods of volcanic tremor. Throughout the fall, AVO noted increased fumarolic emissions and accompanying ice- and snow-melt on and around the 1990 dome, and gas measurements showed elevated H2S and CO2 emissions. On January 23, seismometers recorded 48 hrs of intermittent tremor and discrete, low-frequency to hybrid events. Over the next 6 weeks, seismicity waxed and waned, an estimated 5-6 million m3 of ice were lost due to melting, volcanic gas emissions increased, and debris flows emerged repeatedly from recently formed ice holes near the 1990 dome, located on the crater’s N (“Drift”) side. On March 15, a phreatic explosion deposited non-juvenile ash from a new vent in the summit ice cap just S of the 1990 dome. Ash from the explosion rose to ~4500 m above sea level (asl). The plume was accompanied by weak seismicity. The first magmatic explosion occurred on March 22. Over the next two weeks, more than 19 explosions destroyed at least two lava domes and produced ash plumes that reached 6-18 km asl. Tephra was deposited along variable azimuths including trace to minor amounts on Anchorage and Kenai Peninsula communities, and reached Fairbanks, ~800 km to the N. Several lahars were produced by explosive disruption and melting of the “Drift” glacier. The largest lahars followed explosions on March 23 and April 4 and inundated the Drift River valley to the coast, causing temporary evacuation of the Drift River Oil Terminal, ~40 km from the vent. Time-lapse images captured pyroclastic flows and lahars in the “Drift” glacier valley during several of the explosions. Ballistics and pyroclastic flow deposits were

  17. Recent eruptive history of Mount Hood, Oregon, and potential hazards from future eruptions

    Science.gov (United States)

    Crandell, Dwight Raymond

    1980-01-01

    Each of three major eruptive periods at Mount Hood (12,000-15,000(?), 1,500-1,800, and 200-300 years ago) produced dacite domes, pyroclastic flows, and mudflows, but virtually no pumice. Most of the fine lithic ash that mantles the slopes of the volcano and the adjacent mountains fell from ash clouds that accompanied the pyroclastic flows. Widely scattered pumice lapilli that are present at the ground surface on the south, east, and north sides of Mount Hood may have been erupted during the mid-1800's, when the last known activity of the volcano occurred. The geologically recent history of Mount Hood suggests that the most likely eruptive event in the future will be the formation of another dome, probably within the present south-facing crater. The principal hazards that could accompany dome formation include pyroclastic flows and mudflows moving from the upper slopes of the volcano down the floors of valleys. Ash clouds which accompany pyroclastic flows may deposit as much as a meter of fine ash close to their source, and as much as 20 centimeters at a distance of 11 kilometers downwind from the pyroclastic flows. Other hazards that could result from such eruptions include laterally directed explosive blasts that could propel rock fragments outward from the sides of a dome at high speed, and toxic volcanic gases. The scarcity of pumiceous ash erupted during the last 15,000 years suggests that explosive pumice eruptions are not a major hazard at Mount Hood; thus, there seems to be little danger that such an eruption will significantly affect the Portland (Oregon) metropolitan area in the near future.

  18. Yanshan, Gaoshan-Two Active Volcanoes of the Volcanic Cluster in Arshan, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    Bai Zhida; Tian Mingzhong; Wu Fadong; Xu Debing; Li Tuanjie

    2005-01-01

    The volcanic cluster in Arshan, Inner Mongolia, is located in the west of the middle section of the Da Hinggan Mountains. There are more than forty Cenozoic volcanoes among which the Yanshan Volcano and Gaoshan Volcano are the active ones in broad sense and basaltic central vents. Arshan is a newly found volcanic active region in the Chinese continent. The volcanoes are perfectly preserved and composed of cinder cones, pyroclastic sheets and lava flows. Their cones are grand and the Gaoshan cone is about 362m high, and the depth of the Yanshan crater is about 140m. The pyroclastic sheet is mainly made up of scoria, and the distribution area of scoria with thickness more than 1m is about 27km2. There are two Carbonized-wood sites in the pyroclastic sheet and the 14C datings indicate ages of 1990 ± 100a B. P and 1900 ±70a B. P, which are rectified by dendrodating. Basaltic lava flows are uncovered, and they change from pahoehoe in the early stage to aa in the later stage. There are lots of perfect fumarolic cones, fumarolic dishes and lava tumulus in the front zones. The spread of lava flow is controlled by the local topography and its main body flowed northwestwards covering the Holocene rivers and swamp deposits and blocked up the Halahahe river and its branches to create six lava-dam lakes. For these distinguishing features, Arshan volcanic cluster could be called another natural "Volcano Museum".

  19. Review and reassessment of hazards owing to volcano-glacier interactions in Colombia

    Science.gov (United States)

    Huggel, Christian; Ceballos, Jorge Luis; Pulgarín, Bernardo; Ramírez, Jair; Thouret, Jean-Claude

    The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano-glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world's largest volcano-glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerouscommunities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados delRuiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows. Such events can have severe consequences for the downstream communities. Integrated monitoring strategies are therefore essential for early detection of emerging activity that may result in hazardous volcano-ice interaction. Corresponding efforts are currently being strengthened within the framework of international programmes.

  20. Modeling of subsurface structures in Telomoyo Volcano geothermal area, Magelang using 1-D magnetotelluric method

    Science.gov (United States)

    Sarjan, Achmad Fajar Narotama; Niasari, Sintia Windhi

    2017-07-01

    There are some of geothermal prospects around Java Island. One of them are located in Telomoyo Volcano area, Magelang, Central Java. The existence of hot spring manifestations in Telomoyo Volcano area shows the presence of geothermal system. The upflow zone of this geothermal system was formed in the caldera of Telomoyo Volcano area, while the outflow zone was formed around Candi Umbul. In addition, from the geological map shows a geological structure assumed as a normal fault with southwest-northeast orientation that was caused by the volcanic activity. The aim of this research is to give a brief introduction about subsurface resistivity beneath Telomoyo Volcano area using 1-D magnetotelluric forward model. Thus, we can determine the possibility of data that will obtained during the acquisition process based on the geological model that was made. The apparent resistivity, phase, and period values were obtained from the forward modeling process. The result from this study is a 1-D resistivity section with synthetics curves of each geothermal model. In each model the presence of clay cap characterized by a low resistivity layer. A layer below the clay cap with a medium resistivity value interpreted as the reservoir of this geothermal system. The heat source of this geothermal area is characterized by a low resistivity that is located at depth 4000-5500m. This study is still in progress to acquire the exact values of resistivity from each layer from the field data acquisition in Telomoyo Volcano area, Magelang.

  1. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  2. Myxomatosis in domestic rabbits in Oregon.

    Science.gov (United States)

    Patton, N M; Holmes, H T

    1977-09-15

    An epizootic of myxomatosis involved 26 rabbitries in western Oregon. Major clinical signs were inflammation and edema of the eyelids, conjunctiva, and anogenital area. Mortality ranged from 20 to 50%. On histologic examination, intracytoplasmic inclusion bodies were readily apparent in the epithelial cells of the conjunctiva. Lymphoid depletion of the spleen was also a common finding.

  3. 76 FR 11835 - Oregon Disaster #OR-00036

    Science.gov (United States)

    2011-03-03

    ... ADMINISTRATION Oregon Disaster OR-00036 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for the... CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409 3rd Street,...

  4. Oregon Students Help Prepare Impact Statement

    Science.gov (United States)

    Cochran, Tom

    1973-01-01

    Describes a field-biology research project conducted at Coos Bay, Oregon by high school students attending the summer sessions at Terramar Field Science Facility during the summer of 1972. Discusses the value of this type of environmental survey for both the students and the community. (JR)

  5. Juniper for Streambank Stabilization in Eastern Oregon

    Science.gov (United States)

    Guy R. Sheeter; Errol W. Claire

    1989-01-01

    Cut juniper trees (Juniperous osteosperma Hook.) anchored along eroded streambanks proved beneficial in stabilizing 96 percent of the erosion on eight streams evaluated in eastern Oregon over a 14-year-period. Juniper revetment was a successful substitute for costly rock structures on straight or slightly curved banks, but failed when placed on outside curves or when...

  6. Blueberry Cultivars for Oregon (EC 1308)

    Science.gov (United States)

    This Extension publication gives an overview of the types of blueberries and the blueberry cultivars that might be grown in Oregon or elsewhere in the Pacific Northwest. Bush and berry characteristics, yield potential, and suitability for commercial or home garden production are given for over 30 bl...

  7. Timber resources of Douglas County, Oregon.

    Science.gov (United States)

    Colin D. MacLean

    1976-01-01

    This report summarizes a 1973 timber resource inventory of Douglas County, Oregon. Detailed tables of forest area, timber volume, growth, mortality, and cut are presented. A discussion of the present resource situation highlights the condition of cutover lands and the opportunities for silvicultural treatment.

  8. 77 FR 14853 - Oregon Disaster #OR-00041

    Science.gov (United States)

    2012-03-13

    ... ADMINISTRATION Oregon Disaster OR-00041 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This.../03/2012. ADDRESSES: Submit completed loan applications to: U.S. Small Business Administration... CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409 3rd Street...

  9. Teaching Biochemistry Online at Oregon State University

    Science.gov (United States)

    Ahern, Kevin

    2017-01-01

    A strategy for growing online biochemistry courses is presented based on successes in ecampus at Oregon State University. Four free drawing cards were key to the effort--YouTube videos, iTunes U online free course content, an Open Educational Resource textbook--Biochemistry Free and Easy, and a fun set of educational songs known as the Metabolic…

  10. Oregon University System Fact Book 2006

    Science.gov (United States)

    Mayfield, Vern; North, Tom; Kieran, Bob

    2007-01-01

    This compendium of narrative and statistical information is an overview of the Oregon University System (OUS) and is produced every two years. The introduction includes a mission and vision statement, a listing of OUS campuses and centers, a history of the institutions, OUS degree partnership programs, and distance education degree programs, OUS…

  11. Oregon University System Fact Book 2010

    Science.gov (United States)

    Oregon University System, 2011

    2011-01-01

    This compendium of narrative and statistical information is an overview of the Oregon University System (OUS) and is produced every two years. The introduction includes a mission and vision statement, OUS Governance Change Proposal, a listing of OUS campuses and centers, a roster of the members of the State Board of Higher Education, and Access…

  12. Oregon University System Fact Book 2008

    Science.gov (United States)

    Oregon University System, 2009

    2009-01-01

    This compendium of narrative and statistical information is an overview of the Oregon University System (OUS) and is produced every two years. The introduction includes a mission and vision statement, strategic priorities, a listing of OUS campuses and centers, a roster of the members of the State Board of Higher Education, OUS degree partnership…

  13. Oregon University System Fact Book 2012

    Science.gov (United States)

    Oregon University System, 2013

    2013-01-01

    This compendium of narrative and statistical information is an overview of the Oregon University System (OUS) and is produced every two years. The introduction includes a mission and vision statement, OUS Governance Change Move, a listing of OUS campuses and centers, a roster of the members of the State Board of Higher Education, and Access and…

  14. 40 CFR 81.338 - Oregon.

    Science.gov (United States)

    2010-07-01

    ... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.338 Oregon... Urban Growth Boundary Medford Area Jackson County (part) 9/23/02 Attainment Medford Urban Growth... Intrastate Unclassifiable/Attainment Crook County Deschutes County Hood River County Jefferson County...

  15. Earthquake families in the seismicity of Popocatepetl volcano

    Energy Technology Data Exchange (ETDEWEB)

    Espindola, J. M [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico (Mexico); Zamora-Camacho, A [Posgrado en Ciencias de la Tierra, Universidad Nacional Autonoma de Mexico (Mexico); Jimenez, Z [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2005-04-15

    Analysis of the seismicity of Popocatepetl volcano (Central Mexico) over the period September 1 to December 31, 1995, shows the existence of three earthquake families, with correlation coefficients better than 0.5 in all components of three stations. For two families the events have similar magnitudes and occur over a relatively long period of time. This suggests that they are of the asperity type. They occur up to a depth of 4 km below sea level underneath the volcano, and may be generated by the passage of magma through the upper volcanic conduits. [Spanish] El analisis de la sismicidad asociada al volcan Popocatepetl (Meseta Central, Mexico) en el periodo 1 de septiembre a 31 de diciembre de 1995 permitio la identificacion de 3 familias de temblores. El coeficiente de correlacion encontrado para todos los miembros de las familias es mayor de 0.5 en todas las componentes de 3 estaciones cercanas a los epicentros. Los eventos de dos de las familias son de similar magnitud y ocurren dentro de un periodo relativamente largo. Esto sugiere que sean generados por la accion de una misma aspereza. Los hipocentros de los eventos se localizan bajo el edificio volcanico a profundidades de hasta 4 km bajo el nivel del mar y fueron generados probablemente por el paso de magma a traves de los conductos volcanicos superiores.

  16. Development of a wireless seismic array for volcano monitoring

    Science.gov (United States)

    Moure, David; Toma, Daniel; Lázaro, Antoni Manuel; Del Río, Joaquín; Carreras, Normandino; José Blanco, María

    2014-05-01

    Volcano monitoring is mainly based on three sciences: seismology, geodesy and geochemistry. Seismic arrays are used to locate the seismic source, based on analysis of signals recorded by each seismometer. The most important advantages of arrays over classical seismic networks are: painless deployment, no major infrastructures needed, able to provide an approximate location of a signal that is not feasible by a seismic network. In this paper the design of a low-power wireless array is presented. All sensors transmit acquired data to a central node which is capable to calculate the possible location of the seismic source in real-time. The reliability of those locations depends, among other parameters (number of sensors and geometrical distribution), on precision of time synchronization between the nodes. To achieve the necessary precision, the wireless seismic array implements a time synchronization protocol based on the IEEE1588 protocol, which ensures clock synchronization between nodes better than a microsecond, therefore, signal correlation between sensors is achieved correlating the signals from all the sensors. The ultimate challenge would be that the central node receives data from all the seismometers locating the seismic source, only transmitting the result, which dramatically reduces data traffic. Often, active volcano areas are located far from inhabited areas and data transmission options are limited. In situ calculation is crucial in order to reduce data volume transmission generated by the seismic array.

  17. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  18. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  19. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  20. Radial anisotropy ambient noise tomography of volcanoes

    Science.gov (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  1. Plume composition and volatile flux from Nyamulagira volcano

    Science.gov (United States)

    Calabrese, Sergio; Bobrowski, Nicole; Giuffrida, Giovanni Bruno; Scaglione, Sarah; Liotta, Marcello; Brusca, Lorenzo; D'Alessandro, Walter; Arellano, Santiago; Yalire, Matiew; Galle, Bo; Tedesco, Dario

    2015-04-01

    Nyamulagira, in the Virunga volcanic province (VVP), Democratic Republic of Congo, is one of the most active volcanoes in Africa. The volcano is located about 25 km north-northwest of Lake Kivu in the Western Branch of the East African Rift System (EARS). The activity is characterized by frequent eruptions (on average, one eruption every 2-4 years) which occur both from the summit crater and from the flanks (31 flank eruptions over the last 110 years). Due to the peculiar low viscosity of its lava and its location in the floor of the rift, Nyamulagira morphology is characterized by a wide lava field that covers over 1100 km2 and contains more than 100 flank cones. Indeed, Nyamulagira is a SiO2- undersaturated and alkali-rich basaltic shield volcano with a 3058 m high summit caldera with an extension of about 2 km in diameter. In November 2014 a field expedition was carried out at Nyamulagira volcano and we report here the first assessment of the plume composition and volatile flux from Nyamulagira volcano. Helicopter flights and field observations allowed us to recognize the presence of lava fountains inside an about 350-meter wide pit crater. The lava fountains originated from an extended area of about 20 to 40 m2, in the northeast sector of the central caldera. A second smaller source, close to the previous described one, was clearly visible with vigorous spattering activity. There was no evidence of a lave lake but the persistence of intense activity and the geometry of the bottom of the caldera might evolve in a new lava lake. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles, halogens and trace elements. We deployed a portable MultiGAS station at the rim of Nyamulagira crater, measuring (at 0.5 Hz for about 3 hours) the concentrations of major volcanogenic gas species in the plume (H2O, CO2, SO2, H2S). Simultaneously, scanning differential optical absorption spectroscopy instruments were

  2. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    Science.gov (United States)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    in the central Sunda Arc from Java to central Flores. We focus on this section because of the complicating influences of the Great Sumatran Fault, further to the west, and the collision between the arc and Australian continental lithosphere, to the east of central Flores. Volcano distribution in the central Sunda Arc is best described as linear segments, rather than as small circles. We conclude that the stress field in the Sunda Arc lithosphere is the primary control on the distribution of its volcanoes. Changes in the location and petrographic/geochemical characteristics in magmatism from initiation, in the late-Plio-Pleistocene, until the present day can also be attributed to the evolving stress in the upper plate.

  3. Ambulatory Research and Education Center Oregon Health Science University. Environmental Assesment

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-21

    DOE has prepared an Environmental Assessment (EA) (DOE/EA-0921) evaluating the proposed construction and operation of the Ambulatory Research and Education Center (AREC), which would be located on the top seven floors of the existing NeuroSensory Research Center (NRC) on the campus of the Oregon Health Sciences University (OHSU) at Portland, Oregon. The proposed action would combine activities scattered across the campus into a central facility. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC 4321 et seq. Therefore, an environmental impact statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  4. Autonomous Glider Observations from the Oregon Shelf: The New Vagaries of Fortune

    Science.gov (United States)

    Shearman, R.; Barth, J. A.; Erofeev, A.; Rubiano-Gomez, L.; Brodersen, J.; Fortier, R.

    2008-12-01

    Since April 2006, we have maintained a small fleet of autonomous gliders, sampling cross-shelf transects of hydrography, currents and bio-optical properties within the central Oregon coastal ocean. The benefits of autonomous sampling are well known; the cost relative to comparable ship-time is minuscule, sampling is not curtailed by strong winds or large waves, and by maintaining a continuous presence in the ocean, the chances of observing intermittent, unpredictable (possibly important) processes are increased. For example, the ongoing observations off Oregon have found finescale structures composed of relatively warm, high- chlorophyll water subducting along the outcropping isopycnals of the seasonal upwelling front - consistent with the interactions between turbulent stresses and frontal dynamics seen at open ocean fronts. The subducting tongues of chlorophyll range from 2-20 m thick, can persist for more than 2 days, and extend 20 km or more offshore, offering a potentially new mechanism for thin-layer formation.

  5. Ambulatory Research and Education Center Oregon Health Science University. Environmental Assesment

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-21

    DOE has prepared an Environmental Assessment (EA) (DOE/EA-0921) evaluating the proposed construction and operation of the Ambulatory Research and Education Center (AREC), which would be located on the top seven floors of the existing NeuroSensory Research Center (NRC) on the campus of the Oregon Health Sciences University (OHSU) at Portland, Oregon. The proposed action would combine activities scattered across the campus into a central facility. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC 4321 et seq. Therefore, an environmental impact statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  6. Why did we lose the 59 climbers in 2014 Ontake Volcano Eruption?

    Science.gov (United States)

    Kimata, F.

    2015-12-01

    The first historical eruption at Ontake volcano, central Japan was in 1979, and it was a phreatic eruption. Until then, most Japanese volcanologists understood that Ontake is a dormant or an extinct volcano. Re-examination of active volcanoes was done after the eruption.After the first historical eruption in 1979, two small eruptions are repeated in 1991 and 2007. Through the three eruptions, nobody has got injured. The last eruption on September 27, 2014, we lost 65 people included missing. Because it was fine weekend and there were many climbers on the summit. The eruption was almost at lunchtime. Clearly, casualties by tsunamis are inhabitants along the coastlines, and casualties by eruption are visitors not inhabitants around the volcano. Basically, visitors have small information of Ontake volcano. After the accident, one mountain guide tells us that we never have long broken such as lunch around the summit, because an active creator is close, and they are afraid of the volcano gas accidents. All casualties by eruption were lost their lives in the area of 1.0 km distance from the 2014 creators. In 2004 Sumatra Earthquake Tsunami, we could not recognize the tsunami inspiration between the habitants in Banda Aceh, Sumatra. They have no idea of tsunami, and they called "Rising Sea" never"Tsunami". As the result, they lost many habitants close to the coast. In 2011 Tohoku Earthquake Tsunami, when habitants felt strong shaking close to coast, they understood the tsunami coming. 0ver 50 % habitants decide to evacuate from the coast. However, 20-30 % habitants believe in themselves no tsunami attacking for them. As a result we lost many habitants. Additionally, the tsunami height was higher than broadcasting one by JMA. According to the results of the questionnaire survey in climbers or bereaved families of the eruption day on Ontake volcano (Shinano Mainich Newspaper, 2015), 39 % of them were climbing no understand of "Ontake active volcano". Moreover, only 10

  7. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  8. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  9. 75 FR 22621 - Notice of Intent To Solicit Nominations, Western Oregon Resource Advisory Committees

    Science.gov (United States)

    2010-04-29

    ... Robbins, Oregon/Washington Bureau of Land Management, Oregon State Office, P.O. Box 2965, Portland, Oregon 97208, (503) 808-6306; pam_robbins@blm.gov . SUPPLEMENTARY INFORMATION: The Secure Rural Schools...

  10. The Volcano Disaster Assistance Program (VDAP) - Past and Future

    Science.gov (United States)

    Ewert, J. W.; Pallister, J. S.

    2010-12-01

    For 24 years the U.S. Geological Survey and USAID’s Office of Foreign Disaster Assistance have supported a small team of scientists and the monitoring equipment required to respond to volcanic crises at short notice anywhere in the world. This VDAP team was founded following the 1985 tragedy at Nevado del Ruiz, where 23,000 perished following an eruption-triggered lahar that swept through the town of Armero, Colombia. Through its first two decades, VDAP has deployed teams and equipment to assist host-country counterparts in responding to volcanic eruptions and unrest at numerous volcanoes in Central and South America, the Caribbean, the Western Pacific and Africa and the Middle East. VDAP and the larger USGS Volcano Hazards Program (VHP) have a synergistic relationship. VDAP contributes to domestic eruption responses (e.g., Anatahan, Commonwealth of the Marianas Islands (2003-05), Mount St. Helens (2004) and several Alaskan eruptions). In turn, when VDAP lacks sufficient capability, the larger USGS Volcano Hazards Program provides a “backstop” of staff and expertise to support its international work. Between crises, VDAP conducts capacity-building projects, including construction of volcano-monitoring networks and education programs in monitoring, hazard assessment and eruption forecasting. Major capacity-building projects have focused on Central and South America (1998-present), Papua New Guinea (1998-2000) and Indonesia (2004-present). In all cases, VDAP scientists work in the background, providing support to counterpart agencies and representing the U.S. Government as scientist-diplomats. All VDAP monitoring equipment (whether used in crisis response or in capacity building) is donated to counterpart agencies as a form of U.S. foreign aid. Over the years, VDAP has helped build and sustain volcano observatories and monitoring programs in more than a dozen countries. As observatories, monitoring networks, and the science of volcanology and forecasting have

  11. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  12. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  13. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  14. Gouge marks on deep-sea mud volcanoes in the eastern Mediterranean: Caused by Cuvier's beaked whales?

    Science.gov (United States)

    Woodside, J. M.; David, L.; Frantzis, A.; Hooker, S. K.

    2006-11-01

    Enigmatic seafloor gouge marks at depths of 1700-2100 m have been observed from submersible during geological survey work studying mud volcanoes in the eastern Mediterranean Sea. The marks consist of a central groove (about 10 cm deep and 1-2 m long), superimposed on a broader bowl-shaped depression (1-2 m long by about 50 cm wide) with raised rims (up to 10 cm high) to either side of the central groove. We discuss the potential biological causes of these marks, and conclude that they are probably created by Cuvier's beaked whales ( Ziphius cavirostris) during foraging dives to these depths. The mud volcanoes have a comparatively rich and diverse benthic ecology associated with methane-rich fluid seeps and thus could be the base of food chains that reach top predators like the deep-diving whales. The characteristic high acoustic backscatter of the mud volcanoes would facilitate their detection by the echolocation system of these whales.

  15. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  16. A new volcano-structural map of the Virunga Volcanic Province, D.R.Congo and Rwanda

    Science.gov (United States)

    Poppe, Sam; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2013-04-01

    The Virunga Volcanic Province (VVP) is situated within the Western branch of the East African Rift system at the boundary of D.R.Congo, Rwanda and Uganda. The Western VVP comprises two active volcanoes, Nyamulagira and Nyiragongo. Six supposedly historically inactive volcanoes are present in the Central and Eastern VVP. Nyamulagira is recently the most active volcano on the African continent, with 30 eruptions since 1900, while Nyiragongo hosts a semi-permanent lava lake in its crater and fed a catastrophic lava flow in 2002. Additionally, numerous volcanic vents, fissures and cones are scattered on and around the main edifices. Except for geological maps from the colonial times and limited studies of historical eruptions, little is known about the volcano-tectonic structure and long term volcanic history of the VVP. A new Digital Elevation Model (TanDEM-X) with a resolution of 5 m, combined with SPOT and SAR images served as a base for the development of a new volcano-structural map for the entire VVP. A GIS data base was developed including the location of eruptive cones and fissures and the distribution of lava flows. The boundaries of historic and pre-historic lava flows and pyroclastic cones were traced from from interpretation of topographic and multispectral remote sensing data and re-analysis of ancient geological maps.Larger-scale lineaments interpreted as potential volcano-tectonic structures were also systematically mapped. All previously geochemically analyzed samples were localized. This GIS-based volcano-structural map will serve as a base for the quantitative characterization of recent and historic volcanic eruption products, such as pyroclastic cones and lava flows, of Nyamulagira and Nyiragongo, as well as for the assessment of potential Holocene activity in the Central and Eastern VVP. The orientation of feeder dykes inferred from cone alignments and morphology is used to identify the main volcanic structures and infer the locally dominant stress

  17. Rhabdochlamydia spp. in an Oregon raptor.

    Science.gov (United States)

    Jouffroy, Sophie J; Schlueter, Andrew H; Bildfell, Robert J; Rockey, Daniel D

    2016-07-01

    PCR-based approach was used to examine the rate of Chlamydia positivity in raptors from wild bird rehabilitation centers in Oregon. Three of 82 birds were identified as positive for Chlamydia with this PCR. Sequence analysis of 16S ribosomal DNA from 2 of these birds confirmed the presence of DNA from phylum Chlamydiae. One bird was positive for Chlamydia psittaci in both choanal and cloacal swabs. The second bird, a louse-infested red-tailed hawk, had evidence of choanal colonization by "Candidatus Rhabdochlamydia" spp. Our study describes evidence of this Chlamydia-like organism in the United States. This survey also suggests that the carriage rate of C. psittaci is low in raptors in Oregon wild bird rehabilitation centers, and that care must be taken in the design of PCR primers for phylum Chlamydiae such that colonization by insect endosymbionts is not mistaken for an infection by known chlamydial pathogens.

  18. Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany

    Science.gov (United States)

    Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina

    2015-07-01

    The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.

  19. Hazardous Materials Hazard Analysis, Portland, Oregon.

    Science.gov (United States)

    1981-06-01

    ACCIDENTS IN OREGON, 1976-1979 INJURY RATE FATALITY RATE (per 100 million nilles ) (per 100 million miles) Injuries Fatalities 100 - 94. 8 80 75 - - 6...commercial vehicle Involved. Driver fault--icy road conditions caused truck to jack -knIfe and skid. Resulted in hazardous material spill and relase and...Wheel gem tanks retrieved her body. Huerta Mayor Jack Pirog said Mobil Chemi- Corp. i Mendota. She distributed the revived after emergency treatment at

  20. Staged storage and magma convection at Ambrym volcano, Vanuatu

    Science.gov (United States)

    Sheehan, Fionnuala; Barclay, Jenni

    2016-08-01

    New mineral-melt thermobarometry and mineral chemistry data are presented for basaltic scoriae erupted from the Mbwelesu crater of Ambrym volcano, Vanuatu, during persistent lava lake activity in 2005 and 2007. These data reveal crystallisation conditions and enable the first detailed attempt at reconstruction of the central magma plumbing system of Ambrym volcano. Pressures and temperatures of magma crystallisation at Ambrym are poorly constrained. This study focuses on characterising the magma conditions underlying the quasi-permanent lava lakes at the basaltic central vents, and examines petrological evidence for magma circulation. Mineral-melt equilibria for clinopyroxene, olivine and plagioclase allow estimation of pressures and temperatures of crystallisation, and reveal two major regions of crystallisation, at 24-29 km and 11-18 km depth, in agreement with indications from earthquake data of crustal storage levels at c. 25-29 km and 12-21 km depth. Temperature estimates are 1150-1170 °C for the deeper region, and 1110-1140 °C in the mid-crustal region, with lower temperatures of 1090-1100 °C for late-stage crystallisation. More primitive plagioclase antecrysts are thought to sample a slightly more mafic melt at sub-Moho depths. Resorption textures combined with effectively constant mafic mineral compositions suggest phenocryst convection in a storage region of consistent magma composition. In addition, basalt erupted at Ambrym has predominantly maintained a constant composition throughout the volcanic succession. This, coupled with recurrent periods of elevated central vent activity on the scale of months, suggest frequent magmatic recharge via steady-state melt generation at Ambrym.

  1. Seepage investigations of the Clackamas River, Oregon

    Science.gov (United States)

    Lee, Karl K.

    2011-01-01

    Analysis of streamflow measurements and continuous records of streamflow provided insight into interaction of the groundwater system with the Clackamas River in northwestern Oregon. This report assesses gains and losses of the Clackamas River based on streamflow measurements made during previous hydrologic studies, decades of continuous streamflow data, and a detailed suite of streamflow measurements made in September 2006. Gains and losses were considered significant if, after accounting for tributary inflows and withdrawals, the difference in streamflow from a measurement site to the next site downstream exceeded the streamflow measurement uncertainty. Streamflow measurements made in 1987, 1992, and 1998 indicated minor gains and losses. Comparison of continuous records of late summer streamflow of the Clackamas River at Estacada to sites at Clackamas and Oregon City indicated gains in some years, and no losses. Analysis of streamflow measurements of the Clackamas River from Estacada to Oregon City during low-flow conditions in September 2006 enabled an estimation of gains and losses on a reach-by-reach scale; these gains and losses were attributable to the geomorphic setting. During late summer, most groundwater discharge occurs upstream of Estacada, and groundwater contributions to streamflow downstream of Estacada are minor.

  2. Geothermal research, Oregon Cascades: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  3. Reconstructing the evoluortunity to study processes related to composite volction of an eroded Miocene caldera volcano (Yamanlar volcano, İzmir, Turkey)

    Science.gov (United States)

    Karaoğlu, Özgür; Brown, Richard J.

    2016-05-01

    The Miocene Yamanlar composite volcano is located in the central part of a shear zone in western Turkey. The volcano's deeply-eroded interior provides excellent three-dimensional exposure of a faulted caldera-floor and caldera-fill rocks as well as surrounding extracaldera ignimbrites. We present a much-revised stratigraphy and geological map of Yamanlar in order to quantify the evolutionary stages of the volcano. The Yamanlar volcanic cone was composed of > 800 m of basaltic-andesite to andesite lavas and lava domes. The volcano underwent at least one phase of caldera formation associated with an explosive eruption that deposited an ignimbrite sheet within and outside the caldera. Lithofacies architecture analysis is applied to the proximal and medial exposures of the Early-Middle Yamanlar Formation, which occurs outside of the caldera. Field evidence of the succession indicates a caldera-forming eruption. Our results indicate that the formation of the Yamanlar caldera resulted from one major catastrophic eruption that generated several sustained pyroclastic density currents (PDCs) subdivided by fall deposits with sharp contacts. The ignimbrite sheet is composed of four flow units. The presence of numerous coarse-grained lithic-rich horizons within the ignimbrite sheet is consistent with caldera subsidence. Post-caldera volcanism is indicated by intrusions and lava domes erupted along the inferred caldera-bounding faults, some of which record ~ 90 m of displacement. Widespread, coarse-grained breccias that overlie the ignimbrite sheet are interpreted as debris avalanche deposits resulting from gravitational failure of the flanks of the volcano or the caldera wall during or after caldera subsidence.

  4. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  5. 2003 Eruption of Chikurachki Volcano, Paramushir Island, Northern Kuriles, Russia

    Science.gov (United States)

    Schneider, D. J.; Girina, O. A.; Neal, C. A.; Kotenko, L.; Terentiev, N. S.; Izbekov, P.; Belousov, I.; Senyukov, S.; Ovsyannikov, A. A.

    2003-12-01

    Chikurachki Volcano in the northern Kurile Islands erupted for the second time in two years in mid-April 2003. Although the Kamchatka Volcanic Eruptions Response Team (KVERT) received word of a possible eruption from residents of Paramushir Island on April 17, poor weather precluded confirmation of volcanic activity, and the exact start date is uncertain. On April 18, during routine satellite image analysis, the Alaska Volcano Observatory (AVO) detected an ash cloud from Chikurachki in GMS data and immediately notified the Federal Aviation Administration (FAA), National Weather Service, and other agencies. Subsequent formal alerts were issued through aviation and meteorological channels as outlined in the Alaska Interagency Operating Plan for Volcanic Ash Episodes. Thermal infrared imagery and trajectory models suggested the initial cloud was relatively low-level (below 25,000 ft ASL), however this height was not well constrained. Over the next several months, activity at Chikurachki consisted largely of strombolian bursts producing intermittent ash clouds reaching heights of generally less than 10-13,000 ft. ASL. Ash fall was noted as far as 60 km downwind. The last confirmed eruptive activity was June 16, 2003. During the eruption, AVHRR, MODIS, and GMS satellites captured images of the ash cloud as far as 300 km generally east and southeast of the volcano in the region heavily traveled North Pacific air routes. The propagation of volcanic clouds was monitored using visual and infrared channels and included a routine split-window analysis. Weak thermal anomalies were detected in AVHRR images suggesting minimal effusive activity near the central vent. Over the course of the eruption, aviation and meteorological authorities in Russia, the U.S., and Japan issued official notices regarding the eruption and the position and estimated height of the ash plume. Impacts to aviation were minor due to the low-level and intermittent nature of the eruption. Chikurachki is a

  6. Analysis of Vulnerability Around The Colima Volcano, MEXICO

    Science.gov (United States)

    Carlos, S. P.

    2001-12-01

    The Colima volcano located in the western of the Trasmexican Volcanic Belt, in the central portion of the Colima Rift Zone, between the Mexican States of Jalisco and Colima. The volcano since January of 1998 presents a new activity, which has been characterized by two stages: the first one was an effusive phase that begin on 20 November 1998 and finish by the middle of January 1999. On February 10of 1999 a great explosion in the summit marked the beginning of an explosive phase, these facts implies that the eruptive process changes from an effusive model to an explosive one. Suárez-Plascencia et al, 2000, present hazard maps to ballistic projectiles, ashfalls and lahars for this scenario. This work presents the evaluation of the vulnerability in the areas identified as hazardous in the maps for ballistic, ashfalls and lahars, based on the economic elements located in the middle and lower sections of the volcano building, like agriculture, forestry, agroindustries and communication lines (highways, power, telephonic, railroad, etc). The method is based in Geographic Information Systems, using digital cartography scale 1:50,000, digital orthophotos from the Instituto Nacional de Estadística, Geografía e Informática, SPOT and Landsat satellite images from 1997 and 2000 in the bands 1, 2 and 3. The land use maps obtained for 1997 and 2000, were compared with the land use map reported by Suárez in 1992, from these maps an increase of the 5 porcent of the sugar cane area and corn cultivations were observed compared of those of 1990 (1225.7 km2) and a decrease of the forest surface, moving the agricultural limits uphill, and showing also some agave cultivation in the northwest and north hillslopes of the Nevado de Colima. This increment of the agricultural surface results in bigger economic activity in the area, which makes that the vulnerability also be increased to different volcanic products emitted during this phase of activity. The degradation of the soil by the

  7. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  8. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  9. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  10. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    Science.gov (United States)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  11. Geochemical evolution of the acid crater lake of Poas volcano (Costa Rica): Insights into volcanic-hydrothermal processes

    NARCIS (Netherlands)

    Martínez Cruz, María

    2008-01-01

    This thesis describes the evolution of Laguna Caliente, an acid crater lake at the summit of Po:is, a persistently active volcano in central Costa Rica. The appearance, volume, temperature and chemical composition of the lake have continuously changed over the entire known period of its existence. O

  12. Temporal evolution of a post-caldera, mildly peralkaline magmatic system: Furnas volcano, São Miguel, Azores

    Science.gov (United States)

    Jeffery, A. J.; Gertisser, R.; O'Driscoll, B.; Pacheco, J. M.; Whitley, S.; Pimentel, A.; Self, S.

    2016-05-01

    Furnas is one of three active central volcanoes on São Miguel Island, Azores, and is considered to be one of the most hazardous in the archipelago. In this study, the pre-eruptive magma plumbing system of the 10 young (intermittent replenishment and subsequent fractional crystallisation.

  13. The story of the Hawaiian Volcano Observatory -- A remarkable first 100 years of tracking eruptions and earthquakes

    Science.gov (United States)

    Babb, Janet L.; Kauahikaua, James P.; Tilling, Robert I.

    2011-01-01

    part of the USGS, the Nation’s premier Earth science agency. It currently operates under the direction of the USGS Volcano Science Center, which now supports five volcano observatories covering six U.S. areas—Hawaiʻi (HVO), Alaska and the Northern Mariana Islands (Alaska Volcano Observatory), Washington and Oregon (Cascades Volcano Observatory), California (California Volcano Observatory), and the Yellowstone region (Yellowstone Volcano Observatory). Although the National Park Service (NPS) managed HVO for only 12 years, HVO has enjoyed a close working relationship with Hawaiʻi Volcanoes National Park (named Hawaii National Park until 1961) since the park’s founding in 1916. Today, as in past years, the USGS and NPS work together to ensure the safety and education of park visitors. We are grateful to all park employees, particularly Superintendent Cindy Orlando and Chief Ranger Talmadge Magno and their predecessors, for their continuing support of HVO’s mission. HVO also works closely with the Hawaiʻi County Civil Defense. During volcanic and earthquake crises, we have appreciated the support of civil defense staff, especially that of Harry Kim and Quince Mento, who administered the agency during highly stressful episodes of Kīlauea's ongoing eruption. Our work in remote areas on Hawaiʻi’s active volcanoes is possible only with the able assistance of Hawaiʻi County and private pilots who have safely flown HVO staff to eruption sites through the decades. A special mahalo goes to David Okita, who has been HVO’s principal helicopter pilot for more than two decades. Many commercial and Civil Air Patrol pilots have also assisted HVO by reporting their observations during various eruptive events. Hawaiʻi’s news media—print, television, radio, and online sources—do an excellent job of distributing volcano and earthquake information to the public. Their assistance is invaluable to HVO, especially during times of crisis. HVO’s efforts to provide

  14. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  15. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  16. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  17. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  18. Air-cooled volcanoes ? New insights on convective airflow process within Miyakejima and Piton de la Fournaise volcanoes

    Science.gov (United States)

    Antoine, R.; Geshi, N.; Kurita, K.; Aoki, Y.; Ichihara, M.; Staudacher, T.; Bachelery, P.

    2012-04-01

    Subsurface airflow in the unsaturated zone of the soil has been extensively investigated in a variety of disciplines such as mining, nuclear waste or agriculture science. In volcanology, the recent discovery of subsurface airflow close to the terminal cone of Piton de La Fournaise volcano (La Réunion Island, France) provides for the first time insights into the convective behavior of air within the unsaturated layer [1]. The characteristics of the aerothermal system, its occurrence in other volcanoes, its ability to transport heat during quiescent periods and the perturbation of this system before eruptions are the key questions we want to address following this discovery. In this study, we present observations of subsurface convective airflow within opened fractures located at the summit of Miyakejima and Piton de la Fournaise volcanoes from anemometric and temperature data. Two anemometers and thermocouples were placed at the surface and at the center of the fracture at two-meter depth during a diurnal cycle. Six thermocouples also measured the temperature at 1 meter-depth, on a profile set perpendicularly to the fracture. Finally, a thermal camera was used to make punctual measurements of the surface temperature of the fracture. At Miyakejima, two surveys were realized in winter 2010 and summer 2011. During the winter, mild air exit was detected from the fracture with a central vertical velocity of 20 to 50 cm/s. The temperature of the site was constant during the diurnal cycle (~ 22°C), leading to a maximum temperature contrast of 15°C between the fracture and the atmosphere just before sunrise. During summer, a different hydrodynamic behavior was observed: Air inflow was detected during the whole diurnal cycle with a mean velocity of 20 cm/s. The temperature of the fracture followed the temperature of the atmosphere at 2 meters-depth. In the case of Piton de la Fournaise volcano, the same convective behavior was observed at two different fractures during

  19. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  20. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  1. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  2. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    Science.gov (United States)

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  3. Evaluation of landslide susceptibility of Sete Cidades Volcano (S. Miguel Island, Azores

    Directory of Open Access Journals (Sweden)

    A. Gomes

    2005-01-01

    Full Text Available Sete Cidades is an active central volcano with a summit caldera located in the westernmost part of S. Miguel Island (Azores. Since the settlement of the Island, in the 15th century, many landslide events occurred in this volcano, causing extensive damages in buildings and infrastructures. The study of historical records and the observation of new occurrences showed that landslides in the region have been triggered by heavy rainfall periods, earthquakes and erosion. In order to assess landslide susceptibility at Sete Cidades Volcano, landslide scars and associated deposits were mapped through aerial photographs and field surveys. The obtained data were inserted in a GIS to produce a landslide distribution map. It was concluded that the high density landslide areas are related with (1 major scarp faults, (2 the margin of fluvial channels, (3 the sea cliffs and (4 volcanic landforms, namely the caldera wall. About 73% of the mapped events took place in areas where pyroclastic deposits are the dominant lithology and more than 77% occurred where slopes are equal or higher than 20°. These two parameters were integrated and used to generate a preliminary susceptibility map. The incorporation of vulnerability data into the GIS allowed concluding that 30% of dwellings and most of the roads on Sete Cidades Volcano are located in areas where landslide susceptibility is high to very high. Such conclusion should be taken into account for emergency and land use planning.

  4. Three-dimensional resistivity modeling of GREATEM survey data from Ontake Volcano, northwest Japan

    Science.gov (United States)

    Abd Allah, Sabry; Mogi, Toru

    2016-05-01

    Ontake Volcano is located in central Japan, 200 km northwest of Tokyo and erupted on September 27, 2014. To study the structure of Ontake Volcano and discuss the process of its phreatic eruption, which can help in future eruptions mitigation, airborne electromagnetic (AEM) surveys using the grounded electrical-source airborne transient electromagnetic (GREATEM) system were conducted over Ontake Volcano. Field measurements and data analysis were done by OYO Company under the Sabo project managed by the Ministry of Land, Infrastructure, Transport and Tourism. Processed data and 1D resistivity models were provided by this project. We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model that fits the GREATEM data where a composite of 1D resistivity models was used as the starting model. A 3D electromagnetic forward-modeling scheme based on a staggered-grid finite-difference method was modified and used to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of magnetic-transient responses between the field data and 3D forward-model computed data. The preferred 3D resistivity models show that a moderately resistive structure (30-200 Ω m) is characteristic of most of the volcano, and were able to delineate a hydrothermal zone within the volcanic edifice. This hydrothermal zone may be caused by a previous large sector collapse.

  5. Host and habitat index for Phytophthora species in Oregon

    Science.gov (United States)

    Everett Hansen; Paul Reeser; Wendy Sutton; Laura. Sims

    2012-01-01

    In this contribution we compile existing records from available sources of reliably identified Phytophthora species from forests and forest trees in Oregon, USA. A searchable version of this information may be found in the Forest Phytophthoras of the World Disease Finder (select USA-Oregon). We have included isolations from soil and streams in...

  6. Stream monitoring for detection of Phytophthora ramorum in Oregon

    Science.gov (United States)

    W. Sutton; E.M. Hansen; P. Reeser; A. Kanaskie

    2008-01-01

    Stream monitoring using leaf baits for early detection of P. ramorum is an important part of the Oregon sudden oak death program. About 50 streams in and near the Oregon quarantine area in the southwest corner of the state are currently monitored. Rhododendron and tanoak leaf baits in mesh bags are exchanged every two weeks throughout the year....

  7. 75 FR 62690 - Radio Broadcasting Services; Grants Pass, Oregon

    Science.gov (United States)

    2010-10-13

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Grants Pass, Oregon AGENCY: Federal Communications..., allots FM Channel 257A at Grants Pass, Oregon, as the community's second commercial FM transmission service. Channel 257A can be allotted at Grants Pass, consistent with the minimum distance...

  8. 75 FR 43897 - FM TABLE OF ALLOTMENTS, GRANTS PASS, OREGON

    Science.gov (United States)

    2010-07-27

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, GRANTS PASS, OREGON AGENCY: Federal Communications... the allotment of FM Channel 257A as the second commercial allotment at Grants Pass, Oregon. The channel can be allotted at Grants Pass in compliance with the Commission's minimum distance...

  9. Go West: Imagining the Oregon Trail. [Lesson Plan].

    Science.gov (United States)

    National Endowment for the Humanities (NFAH), Washington, DC.

    In this lesson plan, students in grades 3-5 compare imagined travel experiences of their own with the actual experiences of 19th-century pioneers on the Oregon Trail. After the 4 lessons students will have: (1) learned about the pioneer experience on the Oregon Trail; (2) compared and contrasted modern-day travel experiences with those of the 19th…

  10. The Artist Residency Program in Eastern Oregon: Emphasizing the Rural.

    Science.gov (United States)

    Davis, Doug

    During a 1979-1980 pilot project, 13 nine-week residencies by professional artists were sponsored in 10 eastern Oregon school districts with Eastern Oregon State College serving as liaison, the Northwest Area Foundation of St. Paul (Minnesota) contributing $33,500, and participating school districts adding a total of $8,000 in funding. This low…

  11. Genetic characteristics of red foxes In northeastern Oregon

    Science.gov (United States)

    Gregory A Green; Benjamin N Sacks; Leonard J Erickson; Keith B Aubry

    2017-01-01

    The Rocky Mountain Red Fox (Vulpes vulpes macroura), once common in the Blue Mountains ecoregion of northeastern Oregon, was considered rare in eastern Oregon by the 1930s and thought to be extirpated by the 1960s, when putatively new Red Fox populations began to appear. Although the new foxes were long presumed to be nonnative (originating from...

  12. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  13. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  14. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  15. Keeping watch over Colombia’s slumbering volcanoes

    Science.gov (United States)

    Ordoñez, Milton; López, Christian; Alpala, Jorge; Narváez, Lourdes; Arcos, Dario; Battaglia, Maurizio

    2015-01-01

    Located in the Central Cordillera (Colombian Andes), Nevado del Ruiz is a volcanic complex, topped by glaciers, rising 5,321 m above sea level. A relatively small explosive eruption from Ruiz's summit crater on November 13, 1985, generated an eruption column and sent a series of pyroclastic flows and surges across the volcano's ice-covered summit. Pumice and meltwater produced by the hot pyroclastic flows and surges swept into gullies and channels on the slopes of Ruiz as a series of lahars. Within two hours of the beginning of the eruption, lahars had traveled 100 km and left behind a wake of destruction: more than 25,000 people were killed (23,000 in the town of Armero and 2,000 in the town of Chinchiná), about 5,000 injured, and more than 5,000 homes destroyed along the Chinchiná, Gualí, and Lagunillas rivers.

  16. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    Science.gov (United States)

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  17. Volcano shapes, entropies, and eruption probabilities

    Science.gov (United States)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  18. 75 FR 14461 - Notice of Inventory Completion: University of Oregon Museum of Natural and Cultural History...

    Science.gov (United States)

    2010-03-25

    ... funerary object in the possession of the University of Oregon Museum of Natural and Cultural History/Oregon... Museum of Natural and Cultural History/Oregon State Museum of Anthropology professional staff in... Natural and Cultural History/Oregon State Museum of Anthropology, it is likely that these are from...

  19. 77 FR 74869 - Notice of Inventory Completion: Southern Oregon Historical Society, Medford, OR; Correction

    Science.gov (United States)

    2012-12-18

    ... Confederated Tribes of the Grand Ronde Community of Oregon; the Cow Creek Band of Umpqua Indians of Oregon; and... Tribes of the Grand Ronde Community of Oregon; the Cow Creek Band of Umpqua Indians of Oregon; and the... associated funerary objects listed in the earlier notice. Representatives of any Indian tribe that believes...

  20. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  1. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  2. New volcanoes discovered in southeast Australia

    Science.gov (United States)

    Wendel, JoAnna

    2014-07-01

    Scientists have discovered three new active volcanoes in the Newer Volcanics Province (NVP) in southeast Australia. Researchers from Monash University in Melbourne describe in the Australian Journal of Earth Sciences how they used a combination of satellite photographs, detailed topography models from NASA, the distribution of magnetic minerals in the rocks, and site visits to analyze the region.

  3. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  4. Degassing and differentiation in subglacial volcanoes, Iceland

    Science.gov (United States)

    Moore, J.G.; Calk, L.C.

    1991-01-01

    Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60??C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation. ?? 1991.

  5. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  6. Diurnal cortisol rhythms among Latino immigrants in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Squires Erica C

    2012-06-01

    Full Text Available Abstract One of the most commonly used stress biomarkers is cortisol, a glucocorticoid hormone released by the adrenal glands that is central to the physiological stress response. Free cortisol can be measured in saliva and has been the biomarker of choice in stress studies measuring the function of the hypothalamic-pituitary-adrenal axis. Chronic psychosocial stress can lead to dysregulation of hypothalamic-pituitary-adrenal axis function and results in an abnormal diurnal cortisol profile. Little is known about objectively measured stress and health in Latino populations in the United States, yet this is likely an important factor in understanding health disparities that exist between Latinos and whites. The present study was designed to measure cortisol profiles among Latino immigrant farmworkers in Oregon (USA, and to compare quantitative and qualitative measures of stress in this population. Our results indicate that there were no sex differences in average cortisol AUCg (area under the curve with respect to the ground over two days (AvgAUCg; males = 1.38, females = 1.60; P = 0.415. AUCg1 (Day 1 AUCg and AvgAUCg were significantly negatively associated with age in men (PPPP

  7. Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study

    Energy Technology Data Exchange (ETDEWEB)

    Sammel, E.A.; Craig, R.W.

    1981-01-01

    Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

  8. Incorporating Community Knowledge to Lahar Hazard Maps: Canton Buenos Aires Case Study, at Santa Ana (Ilamatepec) Volcano

    Science.gov (United States)

    Bajo, J. V.; Martinez-Hackert, B.; Polio, C.; Gutierrez, E.

    2015-12-01

    Santa Ana (Ilamatepec) Volcano is an active composite volcano located in the Apaneca Volcanic Field located in western part of El Salvador, Central America. The volcano is surrounded by rural communities in its proximal areas and the second (Santa Ana, 13 km) and fourth (Sonsosante, 15 km) largest cities of the country. On October 1st, 2005, the volcano erupted after months of increased activity. Following the eruption, volcanic mitigation projects were conducted in the region, but the communities had little or no input on them. This project consisted in the creation of lahar volcanic hazard map for the Canton Buanos Aires on the northern part of the volcano by incorporating the community's knowledge from prior events to model parameters and results. The work with the community consisted in several meetings where the community members recounted past events. They were asked to map the outcomes of those events using either a topographic map of the area, a Google Earth image, or a blank paper poster size. These maps have been used to identify hazard and vulnerable areas, and for model validation. These maps were presented to the communities and they accepted their results and the maps.

  9. Lava Flow Mapping and Change Detection in the Mt. Etna Volcano Between 2009-2012 Using Hyperion Hyperspectral Imagery

    Science.gov (United States)

    Karagiannopoulou, Catherine; Sykioti, Olga; Parcharidis, Issaak Briole, Pierre

    2016-08-01

    Mt. Etna is a young composite strato-volcano and one of the most active volcanoes in the world. Eruptions occur almost every year with a persistent degassing activity at the summit craters. In the last 100 years it has produced in average 107m3 of new lava per year. The main goal of our work is to detect land cover changes, including different lava flows, over the volcano that occurred between 2009 and 2012 using hyperspectral imagery (EO-1 Hyperion). For this purpose, we separated the volcano into three main land cover types: dense vegetation, urban and semi-urban areas and bare lava areas. For each area, a change detection map was produced. For the bare lava areas, two classification maps were produced based on (i) reflectance differences and (ii) chronology as proposed in bibliography. Results have shown changes in all three land cover types. In particular, for the bare lava areas, the most significant lava changes are observed in the northern and central part of the volcano, where several lava flows occurred during the 3-year study period.

  10. Tectonic control on the distribution of onshore mud volcanoes in parts of the Upper Benue Trough, northeastern Nigeria.

    Directory of Open Access Journals (Sweden)

    Musa Ojochenemi K.

    2016-06-01

    Full Text Available Onshore mud volcanoes are rare geological phenomena, which in Nigeria were reported for the first time few years ago in the Upper Benue Trough. In this study a detail geological mapping of the area of mud volcanoes occurrence was carried out, with the primary aim of defining their relationship, if any, to the structural geology there. The systematic field reconnaissance included field observations of the structural features, as well as analysis of the location and distribution of the onshore mud volcanoes, marking their locations on the topographic and geological maps, analysis of the aerial photographs and satellite images. The study area covered the central part of the Upper Benue Trough where the onshore mud volcanoes were found. The study area is the part of a sedimentary basin comprising Cretaceous clastic rocks that have been deformed intensively by a network of faults often embedded in the underlying Precambrian basement. This network of faults underwent a rejuvenation period from the Aptian to the Palaeocene. The most prominent tectonic structure in the study area is the NE – SW trending Kaltungo Fault Zone, however, there are other minor faults with N – S and NW – SE trends. This study shows that the mud volcanoes found in the study area are usually located near or within fault zones, within the outcropping Upper Cretaceous Yolde Formation and Upper Bima Sandstone, both of which were deformed by the Kaltungo faults, as well as by other minor faults.

  11. Evaluation of Beginner Driver Education in Oregon

    Directory of Open Access Journals (Sweden)

    Dan Mayhew

    2017-02-01

    Full Text Available Although driver education (DE is widely accepted as an effective teen driver safety measure and widely available in the United States, Canada and elsewhere, evaluations have generally failed to show that such formal programs actually produce safer drivers. To address the issue of safety effects as part of a larger investigation, two studies were conducted to examine whether the Oregon Department of Transportation (ODOT-approved DE program was associated with reductions in collisions and convictions. In the first study, DE status among a relatively small sample of teens who completed an online survey was not found to have a significant effect on collisions and convictions. In the second study, of a much larger population of teen drivers, DE status was associated with a lower incidence of collisions and convictions. On balance, this suggests that the safety effects of DE are either neutral, based on the results of the first Oregon study, or cautiously optimistic based on the results of the second study. The implications of these findings are discussed in terms of making improvements in DE that are evidence-based, and the need for further evaluation to establish that improved and new programs meet their safety objectives.

  12. Northeast Oregon Hatchery Project, Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  13. Variations of the state of stress and dike propagation at Fernandina volcano, Galápagos.

    Science.gov (United States)

    Bagnardi, M.; Amelung, F.

    2012-04-01

    Fernandina volcano forms the youngest and westernmost island of the Galapagos Archipelago, a group of volcanic islands located near the equator and 1000 km west of Ecuador. Twenty-five eruptions in the last two hundred years make Fernandina the most active volcano in the archipelago and one of the most active volcanoes in the world. Most eruptions occur along fissures fed by dikes that propagate from the central magmatic system and from reservoirs centered under the summit caldera. Eruptive fissures in the subaerial portion of the volcano form two distinct sets: (1) arcuate or circumferential fissures characterize the upper portion of the volcano around the caldera while (2) radial fissures are present on the lower flanks. The subaerial portion of the volcano lacks of well-developed rift zones, while the submarine part of Fernandina shows three rifting zones that extend from the western side of the island. Using Interferometric Synthetic Aperture Radar (InSAR) measurements of the surface displacement at Fernandina acquired from 1992 to 2010, and in particular the ones spanning the last three eruptions (1995 - radial, 2005 - circumferential and 2009 - radial) we infer the geometry of the shallow magmatic system and of the dikes that fed these eruptions. A shallow dipping radial dike on the southwestern flank has been inferred by Jónnson et al. (1999) for the 1995 eruption. This event shows a pattern of deformation strikingly similar to the one associated with the April 2009 eruption for which we infer a similar geometry. Co-eruptive deformation for the 2005 event has been modeled by Chadwick et al. (2010) using three planar dikes, connected along hinge lines, in the attempt to simulate a curve-concave shell, steeply dipping toward the caldera at the surface and more gently dipping at depth. Dike propagation in a volcano is not a random process but it is controlled by the orientation of the principal stresses, with the dike orthogonal to the least compressive stress

  14. The Role Played by Rainfall on the Seismicity at Fogo Volcano, Azores

    Science.gov (United States)

    Martini, F.; Saccorotti, G.; Riedel, C.; Bean, C. J.; Wallenstein, N. M.; Viveiros, F. M.

    2007-12-01

    Fogo volcano is an active central volcano, with a lake filled caldera, in the central part of Sao Miguel Island, Azores, whose current activity is limited to fumarolic and hydrothermal activity. It is affected by important active tectonic structures, with extremely high seismic activity and micro-seismicity concentrated in very frequent swarms. A recurrent feature of the seismicity observed in volcanic regions is the occurrence of seismic families, whose origins can be attributed to the same source mechanism, acting in the same small rock volume. Doublets/multiplets were identified in this study within a catalogue of small magnitude (usually lack of any main-shock after-shock sequence and organized migration of the hypocenters. This is suggestive of a very heterogeneous stress field. Vp/Vs is found to be lower than usually observed in volcanic areas, an occurrence likely related to the presence of fluid associated with the geothermal system (Saccorotti et al., 2004). Taken together, these two observations suggest that fluid migration/pressurization play a major role in triggering the recorded seismicity. The geothermal fluids around Fogo massif have been identified as derived from meteoric water, which infiltrates through Fogo Lake and the volcano flank and flows from south to north on the northern flank (Carvalho, 1999). These results point to the important role played by rainfall in triggering seismicity at Sao Miguel, possibly through pressure changes at depth in response to surface rain and/or interaction with the geothermal system.

  15. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  16. Pumice from volcanoes: Its possible role for the iron and silica budget of the surface ocean and diatom growth

    Science.gov (United States)

    Teschner, C.; Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.

    2009-04-01

    Volcanic eruptions can inject pumice in major amounts into the oceans. Pumice can swim in seawater as pumice rafts or single pieces for years and contain relatively high concentrations of iron and silica, mainly found in seawater-reactive, metastable glass. Yet it is unknown to what extent pumice can release iron and silica, important for diatom growth, to surface ocean water. We examined the release of iron and silica of pumice from Central American volcanoes in contact with natural seawater by means of Cathodic Stripping Voltammetry and standard photometry. Based on our data we focus on evaluating how pumice from volcanoes in Central America may have contributed to the budget of the key nutrients iron and silica in the Central Pacific Ocean. Our study also provides new constraints on the importance of pumice for the marine biogeochemical iron- and silica-cycle.

  17. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  18. Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies

    Science.gov (United States)

    Higgins, Michael D.; Voos, Stéphanie; Vander Auwera, Jacqueline

    2015-12-01

    Quizapu is part of a linear system of active volcanos in central Chile. The volcanic petrology and geology have been used to infer the plumbing system beneath the volcano. The 1846-1847 eruption (~5 km3) started with small flows of dacite, then changed to a range of andesite-dacite compositions and finally terminated with large flows of dacite. Andesitic enclaves (feed the system—first mixed magmas, then back to dacites. The eruption then terminated until 1932 when renewed injection of andesite into the system created a conduit that tapped an undegassed dacite chamber and resulted in a strong explosive eruption. The whole story is one of continual andesite magmatism, modulated by storage, degassing and mixing.

  19. Oregon Trail Mushrooms geothermal loan guaranty application, Malheur County, Oregon: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The action assessed is the guaranty of a loan by the Geothermal Loan Guaranty Office of the US Department of Energy (DOE) to finance the construction and operation of a mushroom-growing facility that will use geothermal (hot) water for process and space heat. The project consists of two separate facilities: a growing facility located just outside of the eastern limit of the city of Vale, Oregon (Malheur County, Oregon) and a composting facility located about 6.4 km (4 miles) southwest of the city limits (also in Malheur County, Oregon). Five test wells have been drilled into the geothermal resource at the growing site. Either well No. 4 or well No. 5 will serve as a production well. All geothermal fluids will be reinjected into the geothermal aquifer, so either well No. 3 will be used for this purpose, wells Nos. 1 and 2 will be deepened, or a new well will be drilled on the site. A cold-water well will be drilled at the growing site, and another will be drilled at the composting site. The environmental effects of the proposed project are not expected to be significant.

  20. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  1. Volcanoes of México: An Interactive CD-ROM From the Smithsonian's Global Volcanism Program

    Science.gov (United States)

    Siebert, L.; Kimberly, P.; Calvin, C.; Luhr, J. F.; Kysar, G.

    2002-12-01

    xico from the Bulletin of the Global Volcanism Network and its predecessor, the Scientific Event Alert Network Bulletin, as well as early event-card notices of the Smithsonian's Center for Short-Lived Phenomena. An extensive petrologic database contains major-element analyses and other petrological and geochemical data for 1776 samples. The user also has access to a database of the Global Volcanism Program's map archives. Another option on the CD views earthquake hypocenters and volcanic eruptions from 1960 to the present plotted sequentially on a map of México and Central America. A bibliography of Mexican volcanism and geothermal research includes references cited in the Smithsonian's volcano database as well as those obtained from a search of the Georef bibliographic database. For more advanced queries and searches both the petrologic database and volcanic activity reports can be uploaded from the CD.

  2. Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon

    Science.gov (United States)

    Hollenbeck, J.P.; Saab, V.A.; Frenzel, R.W.

    2011-01-01

    We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion-juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI=0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low-moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations. ?? 2011 The Wildlife Society.

  3. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes.

    Science.gov (United States)

    Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio

    2017-01-01

    Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 10(4) cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.

  4. Initial Analysis of Inner Crater Eruptive Deposits and Modeling of the 2005 Eruption of Ilamatepec (Santa Ana) Volcano, El Salvador

    Science.gov (United States)

    Martinez-Hackert, B.; Bajo, J. V.; Escobar, D.; Gutierrez, E.

    2011-12-01

    The October 1st, 2005 eruption of Ilamatepec Volcano, also known as Santa Ana Volcano in El Salvador, Central America, was a relatively small phreatic possibly phreatomagmatic eruption that generated an approximately 10km high ash column, with a volume of 1.5 million cubic meters. It generated small pyroclastic density currents, and shortly after the eruption a hot lahar. All of these volcanic products present grat danger to the surrounding population and the surrounding fertile lands growing coffe and sugar cane, the major export products. To better understand the eruptive behavior of this active composite volcano, older deposits need to be studied. An initial analysis of the inner crater eruptive deposits was undertaken in 2011. The many layers that can be seen within the crater suggest that Santa Ana volcano alternates its eruptions from phreatic to phreatomagmatic to magmatic, back to phreatomagmatic to phreatic with a period of rest in between. The last magmatic eruption of the Santa Ana Volcano took place in 1904. There are some historical records of it, and the scoracious materials and lava flows can still be well traced on the flanks and the crater of Ilamatepec, while the 2005 eruption has been eroded away in most areas of the flanks. Observations and data collected in 2005 and 2011 indicate that pyroclastic density currents went not only to the Southeastern flanks of the volcano, but also towards the Northwestern flanks, an area behind the highest rim of the volcano. Deposits up to 0.5 m were found in 2011, after significant erosion already had taken place. We present here the partial stratigraphic column taken within the inner crater walls that indicate alternating eruption styles from eruptions well pre-1904, with radiocarbon dating pending. Additionally, we show the results of the modeling of pyroclastic deposits, and lahars using Titan2D on DEMs extracted from the only topographic map (pre-1980) which has a 10 m resolution of the volcano, and a DEM

  5. 3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland

    Science.gov (United States)

    Obermann, Anne; Lupi, Matteo; Mordret, Aurélien; Jakobsdóttir, Steinunn S.; Miller, Stephen A.

    2016-05-01

    From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6 km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8 s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6 km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5 km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5 km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5 km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.

  6. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  7. Vulcan's fury: Man against the volcano

    Science.gov (United States)

    Varekamp, Johan C.

    I read this book on an 11-hour flight back from a field trip in the Andes, where I got first-hand insight into how people live with a volcano that now and then explodes. Appropriate reading, I felt, especially as the fascination of the human world with volcanoes and eruptive disasters is indeed long standing. This book is a recent addition to a list of titles in this genre (e.g., the new book by Sigurdsson to be reviewed in Eos shortly). The scope of the book is summarized in the introductory sentence of the preface: “This book is about an unequal contest. It describes human reactions to volcanic eruptions.” This is the perspective of the book's descriptions of 16 large and not-so-large eruptions over the last two millennia.

  8. 2009 Oregon Parks and Recreation Department Lidar: Columbia River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set represents the lidar elevations along the Columbia River corridor in Oregon, including portions of the following counties: Gilliam, Hood River,...

  9. Oregon High Desert Interpretive Center : Economic feasibility and impact analysis

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a proposal to construct a High Desert Interpretive Center to inform visitors to Harney County, Oregon of the opportunities for education, recreation and...

  10. Baskett Slough - Oregon White Oak Restoration- North Butte

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Willamette Valley National Wildlife Refuge Complex (WVNWRC) holds some of the largest and best examples of Oregon white oak habitat remaining in the Valley....

  11. Umpqua River Oregon Roseburg PhotoMosaic 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  12. Umpqua River Oregon Aerial Photograph Data for 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  13. TSUNAMI_DEPOSITS - Tsunami Deposits at Seaside, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a point shapefile representing tsunami deposits within the Seaside, Oregon region obtained by Brooke Fiedorowicz and Curt Peterson in 1997 and Bruce...

  14. Status of Oregon's Bull Trout.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

    1997-10-01

    Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

  15. Backscatter-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This Data Release contains data from the U.S. Geological Survey (USGS) survey of the Oregon outer Continental shelf (OCS) Floating Wind Farm Site in 2014. The...

  16. Bathymetry Hillshade-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This Data Release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014. The shaded-relief raster was generated from bathymetry data...

  17. Final Critical Habitat for Oregon Spotted Frog (Rana pretiosa)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify, in general, the areas of FINAL critical habitat for Rana pretiosa (Oregon Spotted Frog). Maps published in the Federal Register 2016.

  18. Oregon Crest-to-Coast Environmental Monitoring Transect Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Environmental Protection Agency - Western Ecology Division (EPA) has been monitoring above- and belowground climate data from 23 locations along an Oregon...

  19. Umpqua River Oregon Tidal PhotoMosaic 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  20. Umpqua River Oregon Coast Range PhotoMosaic 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  1. Umpqua River Oregon North Umpqua PhotoMosaic 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  2. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  3. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  4. Channel centerline for the Nehalem River, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  5. Channel centerline for the Nehalem River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  6. Newport, Oregon 1/3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3-second Newport, Oregon Elevation Grid provides bathymetric data in ASCII raster format of 1/3-second resolution in geographic coordinates. This grid is...

  7. TERRAIN, City of Reedsport Levee PMR, Douglas COUNTY, OREGON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  8. 2009 Oregon Parks and Recreation Department Lidar: Columbia River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set represents the lidar elevations along the Columbia River corridor in Oregon, including portions of the following counties: Gilliam, Hood River,...

  9. Channel centerline for Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  10. Geologic Observations-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the Oregon Outer Continental Shelf (OCS) Floating Windfarm Suite Data Release presents geological observations from video collected on U.S. Geological...

  11. Geologic Observations-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the Oregon Outer Continental Shelf (OCS) Floating Windfarm Suite Data Release presents geological observations from video collected on U.S. Geological...

  12. Hydrographic Data from Oregon Waters, 1970 - 1971 (NODC Accession 7400004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data were collected by Oregon State University personnel aboard the R/V YAQUINA and the R/V CAYUSE. Most of the cruises were concerned with surveying hydrographic...

  13. Landslide Inventory for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified...

  14. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Piping Plover (Charadrius ntelodus) monitoring at Oregon Inlet, North Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report recommends a plan of monitoring Piping Plovers adjacent to Oregon Inlet relative to activities associated with the construction of a new bridge across...

  16. Erosion and deposition for Fanno Creek, Oregon 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2010, the U.S. Geological Survey (USGS) began investigating the sources and sinks of organic matter in Fanno Creek, a tributary of the Tualatin River, Oregon....

  17. Bathymetry Hillshade-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This Data Release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014. The shaded-relief raster was generated from bathymetry data...

  18. Channel centerline for Hunter Creek, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  19. TSUNAMI_DEPOSITS - Tsunami Deposits at Seaside, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a point shapefile representing tsunami deposits within the Seaside, Oregon region obtained by Brooke Fiedorowicz and Curt Peterson in 1997 and Bruce...

  20. Final Critical Habitat for Oregon Spotted Frog (Rana pretiosa)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify, in general, the areas of FINAL critical habitat for Rana pretiosa (Oregon Spotted Frog). Maps published in the Federal Register 2016.