WorldWideScience

Sample records for volcanically quiescent periods

  1. Quiescent Diffusive and Fumarolic Volcanic Bromocarbon Emissions

    Science.gov (United States)

    Schwandner, F. M.; Giźe, A. P.; Seward, T. M.; Hall, P. A.; Dietrich, V. J.

    2002-12-01

    Future scenarios of declining atmospheric burdens of Ozone Depleting Substances (ODS) such as halocarbons after phase-out following international regulation (Montreal Protocol) vary strongly depending on what contribution from natural sources is taken into account. In addition, current and pre-industrial global atmospheric budgets of ODS are poorly balanced by known natural and anthropogenic sources of halocarbons (Butler, 2000). Brominated halocarbons have a high Ozone Depletion Potential, Br is at least 40x as efficient as Cl in polar stratospheric ozone destruction (Solomon et al., 1992). CH3Br is the dominant Br carrier to the stratosphere with sources being ca.: 32% anthropogenic, 39% natural, but ca. 29% unaccounted for (WMO, 1998). Natural sources have been reviewed recently (Gribble, 2000, Butler, 2000), including magmatic inorganic (Bureau, 2000) and volcanic organic sources (Rassmussen et al., 1980; Schwandner et al., 2002). CH3Br and other bromocarbons have been reported in non-eruptive volcanic gases previously (Jordan et al., 2000; Schwandner et al., 2000). Due to its capability to extremely rapidly hydrolyse (Gan et al., 1995), CH3Br should not be sampled by the caustic soda bottle technique as used by Jordan et al. (2000) whose samples also show signs of air contamination, but by cryogenic separation of steam with subsequent sorbent trapping, as used by Isidorov (1990), Wahrenberger (1996) and Schwandner et al. (2000, 2001). To contribute significantly to the natural Br budget, volcanic gases would have to at least contain 2 ppmv (dry gas) CH3Br, scaled to a global CO2 emission of 66 Tgy-1 (Stoiber, 1995) based on CO2 flux to halocarbon concentration correlations (e.g. CFC-11: R2=0.91, Schwandner et al., 2002). However, CH3Br is not the only volcanogenic bromocarbon. Analysis of diffusive flank and crater degassing on Vulcano island (Italy) showed a strong diffusive component of CH3Br and C2H5Br emissions in 60-100°C hot pristine unvegetated

  2. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  3. The quiescent light curve and orbital period of GRO$\\sim$J0422+32

    CERN Document Server

    Chevalier, C; Chevalier, Claude; Ilovaisky, Sergio A

    1996-01-01

    CCD photometry of the black hole candidate GRO~J0422+32 in quiescence, obtained at Haute-Provence from 1994 November to 1995 February, reveals a double-wave modulation at a period close to the value we found during outbursts and also close to one of the possible periods derived by Filippenko, Matheson and Ho (1995) from spectroscopic observations with the W. M. Keck 10-m telescope. A period of 0.212140 \\pm 0.000003 d (5.09136 \\pm 0.00007 h) fits all our photometric data from 1993 January to 1995 February and yields a minimum in our light curves at the inferior conjunction of the M star, as determined from the radial velocity data of Filippenko et al. (1995). The quiescent R_{c} band light curve exhibits a changing asymmetry of shape and a variable amplitude. On two consecutive nights the source was found constant to within \\pm 0.05 mag, suggesting an upper limit on the ellipsoidal effect in this band.

  4. Subarcsecond Bright Points and Quasi-periodic Upflows Below a Quiescent Filament Observed by the IRIS

    CERN Document Server

    Li, Ting

    2016-01-01

    Using UV spectra and SJIs from the IRIS, and coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. The BPs in the TR have a spatial scale of about 350$-$580 km and lifetime of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel, with magnetic flux of about 10$^{17}$$-$10$^{18}$ Mx. Quasi-periodic brightenings and upflows are observed in the BPs and the period is about 4$-$5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in plane of sky is about 5$-$50 km s$^{-1}$. The emission line of Si IV 1402.77 {\\AA} at the locations of upflows ex...

  5. Periodic and quiescent solar activity effects in the low ionosphere, using SAVNET data

    Science.gov (United States)

    Bertoni, F. C. P.; Raulin, J.-P.; Gavilan, H. R.; Kaufmann, P.; Raymundo, T. E.

    2010-10-01

    Important results have been acquired using the measurements of VLF amplitude and phase signals from the South America VLF Network (SAVNET) stations. This network is an international project coordinated by CRAAM, Brazil in cooperation with Peru and Argentina. It started operating in April 2006, and now counts on eight stations (Atibaia, Palmas, Santa Maria and Estaça~o Antártica Comandante Ferraz in Brazil; Piura, Punta-Lobos and Ica, in Peru; CASLEO, in Argentina). Researches, through the last decades, have demonstrated the versatility of the VLF technique for many scientific and technological purposes. In this work, we summarize some recent results using SAVNET data base. We have obtained daily maximum diurnal amplitude time series that exhibited behavior patterns in different time scales: 1) 1ong term variations indicating the solar activity level control of the low ionosphere; 2) characteristic periods of alternated slow and fast variations, the former being related to solar illumination conditions, and the latter that have been associated with the winter anomaly at high latitudes; 3) 27-days period related to the solar rotation and consequently associated to the solar Lyman-α radiation flux variations, reinforcing earlier theories about the importance of this spectral line for the D-region formation. Finally, we conclude presenting preliminary results of simulation using LWPC, which showed very good agreement at times of observed modal amplitude minima for a given VLF propagation path.

  6. Observations of the surge-type Black Rapids Glacier, Alaska, during a quiescent period, 1970-92

    Science.gov (United States)

    Heinrichs, Thomas A.; Mayo, L.R.; Trabant, D.C.; March, R.S.

    1995-01-01

    This report presents 23 years (1970 to 1992) of observations of Black Rapids Glacier, Alaska. Black Rapids Glacier is a surge-type glacier which most recently surged in 1936-37, and is currently in its quiescent phase. This glacier is of special interest because it is a potential hazard to the trans-Alaska oil pipeline. Ten sites on the glacier were monitored from 1972 to 1987, and three sites were monitored from 1988 to 1992. The measurement program presented here includes observations of surface mass balance, ice velocity, and surface altitude made twice each year. Additional one-time data include observations of ice thickness, previously unreported observations of the 1936-37 surge, establishment of the geodetic control monuments, and a new map of Black Rapids Glacier.

  7. Dynamics and ‘normal stress’ evaluation of dilute suspensions of periodically forced prolate spheroids in a quiescent Newtonian fluid at low Reynolds numbers

    Indian Academy of Sciences (India)

    K Madhukar; P V Kumar; T R Ramamohan; I S Shivakumara

    2010-12-01

    The problem of determining the force acting on a particle in a fluid where the motion of the fluid and the particle is given has been considered in some detail in the literature. In this work, we propose an example of a new class of problems where, the fluid is quiescent and the effect of an external periodic force on the motion of the particle is determined at low non-zero Reynolds numbers. We present an analysis of the dynamics of dilute suspensions of periodically forced prolate spheroids in a quiescent Newtonian fluid at low Reynolds numbers including the effects of both convective and unsteady inertia. The inclusion of both forms of inertia leads to a nonlinear integro – differential equation which is solved numerically for the velocity and displacement of the individual particle. We show that a ‘normal stress’ like parameter can be evaluated using standard techniques of Batchelor. Hence this system allows for an experimentally accessible measurable macroscopic parameter, analogous to the ‘normal stress’, which can be related to the dynamics of individual particles. We note that this ‘normal stress’ arises from the internal fluctuations induced by the periodic force. In addition, a preliminary analysis leading to a possible application of separating particles by shape is presented. We feel that our results show possibilities of being technologically important since the ‘normal stress’ depends strongly on the controllable parameters and our results may lead to insights in the development of active dampeners and smart fluids. Since we see complex behaviour even in this simple system, it is expected that the macroscopic behaviour of such suspensions may be much more complex in more complex flows.

  8. Volcanism and Tectonic Evolution in the North Qilian Mountains during Ordovician Period

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The Ordovician marine volcanic rocks in the north Qilian mountains are discussed in this paper. According to geology, petrotectonic assemblage and geochemistry, a new model about plate tectonic evolution of the north Qilian mountains is set up. The Ordovician marine volcanic rocks in the north Qilian mountains which characterized by the geological features of tectonic melange of continent to continent collision underwent complicated tectonic movement, and can be classified into three main kinds of petrotectonic assemblages. During Ordovician period, north Qilian area was a polyisland ocean which consisted of three ocean basins separated by the middle microcontinental blocks.

  9. Volcanic eruption volume flux estimations from very long period infrasound signals

    Science.gov (United States)

    Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad

    2017-01-01

    We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.

  10. The Santorini Volcanic Complex: A detailed multi-parameter seismological approach with emphasis on the 2011-2012 unrest period

    Science.gov (United States)

    Papadimitriou, P.; Kapetanidis, V.; Karakonstantis, A.; Kaviris, G.; Voulgaris, N.; Makropoulos, K.

    2015-04-01

    The present study is focused on the examination of the state of the recently activated Santorini Volcanic Complex (SVC) area, located in the Southern Aegean Sea. The seismic activity was investigated in detail and different methodologies have been applied to examine whether the SVC area approached an eruptive phase during the 2011-2012 seismic crisis period. The detailed spatiotemporal analysis for the broader study area revealed two different seismic patterns: low seismic activity until 2010, mainly concentrated within the Anydros basin and close to the submarine volcano, Columbo, and activation during 2011 and 2012 of two previously quiescent regions. The first is the Santorini Caldera, which had been active for more than one year, and the second is the area south of Christiana Islands, which was activated in January 2012 with the occurrence of two major events of magnitude 5.1 and 5.2, respectively, followed by a large number of aftershocks. In this study, manual analysis and relocation of the 2011-2012 seismic crisis in the SVC was performed, in order to obtain a high-resolution image of the activated structures. The seismicity within the Santorini Caldera, which is oriented approximately NE-SW, was rapidly diminished after the activation of the Christiana area. A large number of focal mechanisms were determined which mainly indicated strike-slip faulting inside the Caldera. Furthermore, the fault plane solutions of the major events in the area south of Christiana, derived by waveform modeling, also suggested similar type of faulting. This type differs from the normal faults observed in the Anydros basin. However, the stress field in all cases is consistently oriented in a NW-SE direction. Since the Santorini Volcano was seismically activated for the first time after the 1950 eruption, changes of the physical properties of the medium were examined using different approaches to assess the state of the volcano. The shear-wave splitting analysis revealed the

  11. Major optical depth perturbations to the stratosphere from volcanic eruptions: Steller extinction period, 1961-1978

    Science.gov (United States)

    Stothers, Richard B.

    2001-02-01

    A revised chronology of stratospheric aerosol extinction due to volcanic eruptions has been assembled for the period 1961-1978, which immediately precedes the era of dedicated satellite measurements. On the whole, the most accurate data consist of published observations of stellar extinction, supplemented in part by other kinds of observational data. The period covered encompasses the important eruptions of Agung (1963) and Fuego (1974), whose dust veils are discussed with respect to their transport, decay, and total mass. The effective (area-weighted mean) radii of the aerosols for both eruptions are found to be 0.3-0.4 μm. It is confirmed that, among known tropical eruptions, Agung's dust was unique for a low-latitude eruption in remaining almost entirely confined to the hemisphere of its production. A new table of homogeneous visual optical depth perturbations, listed by year and by hemisphere, is provided for the whole period 1881-1978, including the pyrheliometric period before 1961 that was investigated previously.

  12. Source Dynamics of Long-Period Seismicity in Volcanic and Hydrothermal Systems

    Science.gov (United States)

    Chouet, B. A.

    2006-12-01

    Long-period (LP) seismicity, including individual LP events and tremor, is widely observed in relation to magmatic and hydrothermal activities in volcanic areas and is recognized as a precursory phenomenon for eruptive activity. The waveform of the LP event is characterized by simple decaying harmonic oscillations except for a brief interval at the event onset. This characteristic event signature is commonly interpreted as oscillations of a fluid-filled resonator in response to a time-localized excitation. By the same token, tremor may be viewed as oscillations of the same resonator in response to a sustained excitation. Because the properties of the resonator system at the source of the LP event can be inferred from the complex frequencies of the decaying harmonic oscillations in the tail of the seismogram, these events are particularly important in the quantification of volcanic and hydrothermal processes. The damped oscillations in the LP coda are characterized by two parameters, T and Q, where T is the period of the dominant mode of oscillation, and Q is the quality factor of the oscillatory system representing the combined effects of radiation and intrinsic losses. Typical periods observed for LP events are in the range 0.2 - 2 s, while observed Q range from values near 1 to values larger than 100. Waveform inversions of LP signals carried out so far point to a crack geometry at the source of these events. Detailed investigations of the oscillating characteristics of LP sources based on the fluid-filled crack model suggest source dimensions ranging from tens to several hundred meters. Such studies further indicate that dusty gases and bubbly basalt are the most common types of fluids involved at the source of LP events in magmatic systems, while misty gases, steam and bubbly water commonly represent LP events of hydrothermal origin. Observations carried out in different volcanic settings point to a wide variety of LP excitation mechanisms. At Stromboli

  13. Attenuation of short period seismic waves at Etna as compared to other volcanic areas

    Science.gov (United States)

    Del Pezzo, E.; Gresta, S.; Patané, G.; Patané, D.; Scarcella, G.

    1987-11-01

    Coda Q for Etna volcano is frequency dependent and the Q frequency pattern and the numerical values ranging from about 100 at 1 Hz to about 300 at 18 Hz are similar to the values obtained for other volcanoes: Campi Flegrei, Aeolian Islands and Hawaii. Moreover the frequency pattern and the numerical values of coda quality factor, for most of the seismically active zones of Italy are very different from those of the volcanic zones. Several studies of the location of magma chambers show the presence of magma pockets beneath Lipari and Vulcano Islands of the Aeolian archipelago and an anomalous low velocity body beneath Etna. These evidences suggest that a possible interpretation of the characteristic frequency pattern of Q on volcanic areas is that the presence of magma can modify the scattering environment and consequently the coda Q estimates.

  14. Tree-ring density variations during the 1450s period of strong volcanic forcing

    Science.gov (United States)

    Esper, Jan; Büntgen, Ulf; Hartl-Meier, Claudia; Oppenheimer, Clive; Schneider, Lea

    2017-04-01

    Ice core based reconstructions of the magnitude and timing of volcanic eruptions are used to force climate models and therefore are of critical importance for assessing the dynamics of the global climate system. The forcing timeseries of the past millennium are punctuated by a few very large volcanic events including a major eruption in the 1450s. This event was originally attributed to the Kuwae caldera in the South Pacific dated to the year 1452. Recent evidence from high-resolution ice core records, however, indicated a shift by six years (to 1458), a change that will fundamentally alter 15th century climate simulations and affect model/proxy comparisons. Here we compile a Northern Hemisphere network of 25 tree-ring maximum latewood density chronologies extending back over the past 650+ years and analyze the 1450s temperature deviations. Warm season temperature reconstructions from these data reveal the spatially most coherent and by far most severe cooling of the 15th century occurred in 1453. Cooling was overall stronger in the Eurasian high latitudes and northwestern North America, and less severe in central and southern Europe. These findings indicate that the original dating of a large eruption in 1452 was correct.

  15. Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica

    Science.gov (United States)

    de Moor, Maarten; Aiuppa, Alessandro; Pacheco, Javier; Avard, Geoffroy; Kern, Christoph; Liuzzo, Marco; Martinez, Maria; Giudice, Gaetano; Fischer, Tobias P.

    2016-01-01

    Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO2 1–6 days prior to eruption. The SO2 flux derived from magmatic degassing through the lake is measureable by differential optical absorption spectrometry (sporadic campaign measurements), which allows us to constrain lake gas output and input for the major gas species during eruptive and non-eruptive periods. We can further calculate power supply to the hydrothermal system using volatile mass balance and thermodynamics, which indicates that the magmatic heat flux into the shallow hydrothermal system increases from ∼27 MW during quiescence to ∼59 MW during periods of phreatic events. These transient pulses of gas and heat from the deeper magmatic system generate both phreatic eruptions and the observed short-term changes in gas composition, because at high gas flux scrubbing of sulfur by the hydrothermal system is both kinetically and thermodynamically inhibited whereas CO2gas is always essentially inert in hyperacid conditions. Thus, the SO2/CO2 of lake emissions approaches magmatic values as gas and power supply to the sub-limnic hydrothermal system increase, vaporizing fluids and priming the hydrothermal system for eruption. Our results suggest that high-frequency real-time gas monitoring could provide useful short-term eruptive precursors at volcanoes prone to phreatic explosions.

  16. Time-varying autoregressive model for spectral analysis of microseismic experiments and long-period volcanic events

    Science.gov (United States)

    Tary, J. B.; Herrera, R. H.; van der Baan, M.

    2014-01-01

    Recent studies show that the frequency content of continuous passive recordings contains useful information for the study of hydraulic fracturing experiments as well as longstanding applications in volcano and global seismology. The short-time Fourier transform (STFT) is usually used to obtain the time-frequency representation of a seismic trace. Yet, this transform has two main disadvantages, namely its fixed time-frequency resolution and spectral leakage. Here, we describe two methods based on autoregressive (AR) models: the short-time autoregressive method (ST-AR) and the Kalman smoother (KS). These two methods allow for the AR coefficients to vary over time in order to follow time-varying frequency contents. The outcome of AR methods depends mainly on the number of AR coefficients. We use a robust approach to estimate the optimum order of the AR methods that best matches the spectral comparison between Fourier and AR spectra. Comparing the outcomes of the three methods on a synthetic signal, a long-period volcanic event, and microseismic data, we show that the STFT and both AR methods are able to track fast changes in frequency content. The STFT provides reasonable results even for noisy data using a simple and effective algorithm. The coefficients of the AR filter are defined at all time in the case of the KS. However, its better time resolution is slightly offset by a lower frequency resolution and its computational complexity. The ST-AR has a high spectral resolution and the lowest sensitivity to background noises, facilitating the identification of the various frequency components. The estimated AR coefficients can also be used to extract parts of the signal. The study of long-term phenomena, such as resonance frequencies, or transient events, such as long-period events, could help to gain further insight on reservoir deformation during hydraulic fracturing experiments as well as global or volcano seismological signals.

  17. Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994

    Directory of Open Access Journals (Sweden)

    Priatna Priatna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20074Volcanic gases, collected from Gendol and Woro solfatara fields, the summit of Merapi Volcano during 1990-1994, show an increase in chemical composition of H , CO, CO , SO , and HCl prior to the volcanic events, on the contrary to the drastic decreasing water vapour. The carbon/sulfur ratio of the volcanic gases lies between 1.5 and 5.7 which means that they were derived from the fresh magma. The Apparent Equilibrium Temperature (AET which is calculated from chemical compositions of volcanic gases using reaction of SO +3H = H S+2H O showed an increasing value prior to the volcanic events. The Merapi activities lasted during August 1990 to November 1994 showed a significant increase in ratio SO /H S prior to the November 1994 pyroclastic flow. The isotopic composition of volcanic gas condensates indicates that water vapour in Gendol is directly derived from the fresh magma. On the other hand, the contamination and cooling by the subsurface water occurred around the Woro field at a shallow part. 

  18. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  19. Deep coronal hole associated with quiescent filament

    Science.gov (United States)

    Kesumaningrum, Rasdewita; Herdiwidjaya, Dhani

    2014-03-01

    We present a study of the morphology of quiescent filament observed by H-alpha Solar Telescope at Bosscha Observatory in association with coronal hole observed by Atmospheric Imaging Assembly (AIA) instrument in 193 Å from Solar Dynamics Observatory. H-alpha images were processed by imaging softwares, namely Iris 5.59 and ImageJ, to enhance the signal to noise ratio and to identify the filament features associated with coronal hole. For images observed on October 12, 2011, November 14, 2011 and January 2, 2012, we identified distinct features of coronal holes above the quiescent filaments. This associated coronal holes have filament-like morphology with a thick long thread as it's `spine', defined as Deep Coronal Hole. Because of strong magnetic field of sunspot, these filaments and coronal holes emerged far from active region and lasted for several days. It is interesting as for segmented filament, deep coronal holes above the filaments lasted for a quite long period of time and merged. This association between filament and deep coronal hole can be explained by filament magnetic loop.

  20. Technical progress report of biological research on the Volcanic Island Surtsey and its environs for the period 1965--1978

    Energy Technology Data Exchange (ETDEWEB)

    Fridriksson, S.

    1978-01-01

    Progress is reported on the following research projects: changes in shoreline and surface of the island due to volcanic activity; colonization of microorganisms, algae, lichens, and vascular plants; introduction of insects and other arthropods by wind, water, and man; transport of invertebrates to the island by flotsam of the sea; species and nesting habits of birds on the island; behavior of seals on beaches of the island; and future trends of Surtsey ecosystems. (HLW)

  1. Relationship between volcanic ash fallouts and seismic tremor: quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador

    Science.gov (United States)

    Bernard, Benjamin; Battaglia, Jean; Proaño, Antonio; Hidalgo, Silvana; Vásconez, Francisco; Hernandez, Stephen; Ruiz, Mario

    2016-11-01

    Understanding the relationships between geophysical signals and volcanic products is critical to improving real-time volcanic hazard assessment. Thanks to high-frequency sampling campaigns of ash fallouts (15 campaigns, 461 samples), the 2015 Cotopaxi eruption is an outstanding candidate for quantitatively comparing the amplitude of seismic tremor with the amount of ash emitted. This eruption emitted a total of 1.2E + 9 kg of ash ( 8.6E + 5 m3) during four distinct phases, with masses ranging from 3.5E + 7 to 7.7E + 8 kg of ash. We compare the ash fallout mass and the corresponding cumulative quadratic median amplitude of the seismic tremor and find excellent correlations when the dataset is divided by eruptive phase. We use scaling factors based on the individual correlations to reconstruct the eruptive process and to extract synthetic Eruption Source Parameters (daily mass of ash, mass eruption rate, and column height) from the seismic records. We hypothesize that the change in scaling factor through time, associated with a decrease in seismic amplitudes compared to ash emissions, is the result of a more efficient fragmentation and transport process. These results open the possibility of feeding numerical models with continuous geophysical data, after adequate calibration, in order to better characterize volcanic hazards during explosive eruptions.

  2. Hazardous indoor CO2 concentrations in volcanic environments.

    Science.gov (United States)

    Viveiros, Fátima; Gaspar, João L; Ferreira, Teresa; Silva, Catarina

    2016-07-01

    Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.

  3. Time Variation of SiO Masers in VX Sagittarii over an Optically Quiescent Phase

    Science.gov (United States)

    Kamohara, Ryuichi; Deguchi, Shuji; Miyoshi, Makoto; Shen, Zhi-Qiang

    2005-04-01

    The time variation of SiO masers in a semi-regular variable, VX Sgr, was investigated in the period between 1994 and 2004 when the optical light curve exhibited an ˜6-yr quiescent phase intercepting a regularly pulsating era. The quiescent period occurred with a delay of several years after a decrease in the SiO maser flux. VLBA observations of SiO masers made during this period showed no drastic spatial variation except for emission features being shifted from south-west to north-east. The SiO maser flux decrease, and a succeeding optical quiescent phase, may indicate that the stellar mass-loss rate diminished over a few years around 1994. A SiO maser flare occurring in 1999 may be a reminiscence of a final gas blow, which resulted in the optically quiescent period.

  4. Satellite observations of atmospheric SO 2 from volcanic eruptions during the time-period of 1996-2002

    Science.gov (United States)

    Khokhar, M. F.; Frankenberg, C.; Van Roozendael, M.; Beirle, S.; Kühl, S.; Richter, A.; Platt, U.; Wagner, T.

    In this article, we present satellite observations of atmospheric sulfur dioxide (SO 2) from volcanic eruptions. Global ozone monitoring experiment (GOME) data for the years 1996-2002 is analyzed using a DOAS based algorithm with the aim of retrieving SO 2 slant column densities (SCD). The retrieval of SO 2 SCD in the UV spectral region is difficult due to strong and interfering ozone absorptions. It is also likely affected by instrumental effects. We investigated these effects in detail to obviate systematic biases in the SO 2 retrieval. A quantitative study of about 20 volcanoes from Italy, Iceland, Congo/Zaire, Ecuador, Japan, Vanuatu Island and Mexico is presented. The focus is on both eruption and out gassing scenarios. We prepared a 7-year mean map (1996-2002) of SO 2 SCD observed by GOME and tabulated the ratios of the maximum SO 2 SCD observed to the average SO 2 SCD as seen in the 7-year mean map. The further aim of this study is to provide information about unknown volcanic eruptions, e.g., Bandai Honshu Japan, Central Islands Vanuatu, Piton de la Fournaise Réunion Island France, Kamchatka region of Russia and from Indonesia especially. The results demonstrate a high sensitivity of the GOME instrument towards SO 2 emissions during both eruption and degassing episodes.

  5. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  6. A detailed seismic anisotropy study during the 2011-2012 unrest period in the Santorini Volcanic Complex

    Science.gov (United States)

    Kaviris, G.; Papadimitriou, P.; Kravvariti, Ph.; Kapetanidis, V.; Karakonstantis, A.; Voulgaris, N.; Makropoulos, K.

    2015-01-01

    The Santorini Volcanic Complex (SVC) is an area in the Southern Aegean (Greece) which has been characterized by low seismicity rates for the last decades, especially in the Santorini Caldera where they have been very low until 2010. This pattern changed completely in February 2011, when intense microseismic activity was initiated within the Caldera. During the manual analysis of the events, the shear-wave splitting phenomenon was observed, revealing the existence of an anisotropic upper crust in the SVC area. A detailed anisotropy study has been conducted using 231 events within the shear-wave window that fulfilled the selection criteria. The polarization direction of the fast shear-wave, the time-delay between the two split shear-waves and the source polarization direction were calculated after visual inspection, using both the polarigram and the hodogram representations. This procedure, applied for eight local stations, resulted in the determination of 340 splitting parameters. The obtained mean anisotropy directions are not homogeneous, revealing a complex regime in the activated area. Nevertheless, these results are explained by the APE model, related to the stress-sensitive behavior of fluid-saturated microcracked rocks. A detailed analysis of the temporal evolution of both the time-delay and anisotropy direction was carried out. The time-delays measured in the “band-1” window exhibit gradual increase and sudden drop that can be related to imminent bursts of seismicity, as well as to the major Mw = 5.1 and 5.2 events which took place about 40 km SW of Santorini on 26 and 27 January 2012, respectively. On the other hand, no significant temporal variations or 90° flips of the Sfast polarization direction were observed.

  7. The formation of massive, quiescent galaxies at cosmic noon

    CERN Document Server

    Feldmann, Robert; Quataert, Eliot; Faucher-Giguere, Claude-Andre; Keres, Dusan

    2016-01-01

    The cosmic noon (z~1.5-3) marked a period of vigorous star formation for most galaxies. However, about a third of the more massive galaxies at those times were quiescent in the sense that their observed stellar populations are inconsistent with rapid star formation. The reduced star formation activity is often attributed to gaseous outflows driven by feedback from supermassive black holes, but the impact of black hole feedback on galaxies in the young Universe is not yet definitively established. We analyze the origin of quiescent galaxies with the help of ultra-high resolution, cosmological simulations that include feedback from stars but do not model the uncertain consequences of black hole feedback. We show that dark matter halos with specific accretion rates below ~0.25-0.4 per Gyr preferentially host galaxies with reduced star formation rates and red broad-band colors. The fraction of such halos in large dark matter only simulations matches the observed fraction of massive quiescent galaxies (~10^10-10^1...

  8. Spatio-temporal evolution of the Tuxtla Volcanic Field

    Science.gov (United States)

    Kobs Nawotniak, S. E.; Espindola, J.; Godinez, L.

    2010-12-01

    Mapping of the Tuxtla Volcanic Field (TVF), located in Veracruz, Mexico, through the use of digital elevation models, aerial photography, and field confirmation has found 353 distinct cones, 4 large composite volcanoes, and 42 maars. Eruptive activity in the TVF began in the late Miocene, underwent a quiescent period approximately 2.6-0.8 Ma, and continues into historic times with the most recent eruption occurring at San Martín Tuxtla volcano in 1793. The covariance of the minimum cone separation in the TVF indicates that, despite the influence of clear vent alignments following regional faulting trends, the field as a whole is anticlustered. Dividing the cones by morphometric age shows that while the older cones have an anti-clustered distribution, the younger cones (Catemaco. These areas of concentrated volcanism roughly correspond to the locations of two gravity anomalies previously identified in the area. While the average height/width ratio is equal between the two clusters, the cones in the eastern group are significantly smaller than their counterparts in the western group. The maars of the TVF are mostly located within the younger volcanic series, west of Laguna Catemaco, and have an anticlustered distribution; many of the maars are evenly spaced along curved lines, where they are weakly grouped according to crater diameter. Results indicate volcanism TVF has undergone continued spatial restriction over time, concentrating in the western half of the TVF with the onset of the eruption of the younger volcanic series 0.8 Ma and further contracting along the principle fault system within the last 50 Ka.

  9. Periodicities in sediment temperature time-series at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean)

    Science.gov (United States)

    Aliani, Stefano; Meloni, Roberto; Dando, Paul R.

    2004-05-01

    Time-series data sets of total bottom pressure (tidal plus atmospheric), seawater temperature and sediment temperature from a marine shallow hydrothermal vent (Milos, Hellenic Volcanic Arc, Aegean Sea) were studied to determine factors influencing periodicity at the vents. Bottom pressure and vent temperature were mainly opposite in phase, with the main fluctuations of vent temperature occurring at tidal frequencies. Although the fluctuations in atmospheric pressure were of the same order as those due to tidal pressure, the contribution of atmospheric pressure was considerably weaker at diurnal frequencies. Some sudden discontinuities in sediment temperature were recorded, at least one of these may have been caused by seismic events. Seawater temperature changes were not reflected in the sediment temperature record. Transient loadings, such as tidal loadings, barometric pressure and earth tides, may affect the pore pressure in sediments, influencing fluid expulsion and sediment temperature as a consequence. Most of the contribution to the fluctuations in sediment temperature depends on tidal loadings. Gravitational forces, in the form of earth tides, can also be involved and barometric pressure is probably responsible for long period temperature oscillations.

  10. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  11. Functional characterization and multimodal imaging of treatment-naive "quiescent" choroidal neovascularization.

    Science.gov (United States)

    Querques, Giuseppe; Srour, Mayer; Massamba, Nathalie; Georges, Anouk; Ben Moussa, Naima; Rafaeli, Omer; Souied, Eric H

    2013-10-21

    To investigate the multimodal morphological and functional characteristics of treatment-naïve "quiescent" choroidal neovascularization (CNV) secondary to AMD. Eleven patients with treatment-naïve "quiescent" CNV that consecutively presented over a 6-month period, underwent multimodal morphological and functional assessment (including indocyanine green angiography [ICGA], spectral-domain optical coherence tomography [SD-OCT], microperimetry, and preferential hyperacuity perimeter [PHP]). For the purpose of this study, asymptomatic previously untreated CNVs showing absence of intraretinal/subretinal exudation in two consecutive visits (at least 6 months apart) were defined as treatment-naïve "quiescent" CNV. Eleven eyes of 11 patients (9 females; mean age 76.5 ± 8.5 years) were included. On fluorescein angiography (FA), "quiescent" CNVs appeared as late speckled hyperfluorescent lesions lacking well-demarcated borders. Mid-late phase ICGA allowed visualizing the hyperfluorescent "quiescent" CNV network and delineating the plaque. Mean lesion area (mid-late phase ICGA) appeared larger compared with earliest previous examination performed 23.8 ± 16.0 months before (3.24 ± 2.51 mm(2) vs. 3.52 ± 2.46 mm(2), respectively; P = 0.01). SD-OCT revealed, at the site of "quiescent" CNV, an irregularly slightly elevated RPE, without hyporeflective intraretinal/subretinal fluid, showing a major axis in the horizontal plane, which was characterized by collections of moderately reflective material in the sub-RPE space and clear visualization of the hyperreflective Bruch's membrane. Hypergeometric distribution revealed a significant correlation between microperimetry and PHP with respect to locations of "affected areas" (P = 0.001). "Quiescent" CNVs are sub-RPE CNVs secondary to AMD, showing absence of intraretinal/subretinal exudation on repeated OCT. "Quiescent" CNVs enlarge over time and may contribute to local reduced retinal sensitivity and metamorphopsia.

  12. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  13. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  14. Stirring faces: mixing in a quiescent fluid

    CERN Document Server

    Brunton, Steven L

    2012-01-01

    This fluid dynamics video depicts the mixing that occurs as a two-dimensional flat plate plunges sinusoidally in a quiescent fluid. Finite-time Lyapunov exponents reveal sets that are attracting or repelling. As the flow field develops, strange faces emerge.

  15. The excitation and characteristic frequency of the long-period volcanic event: An approach based on an inhomogeneous autoregressive model of a linear dynamic system

    Science.gov (United States)

    Nakano, M.; Kumagai, H.; Kumazawa, M.; Yamaoka, K.; Chouet, B.A.

    1998-01-01

    We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles

  16. A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, A. [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8471 (Japan); Morton, R. J. [Mathematics and Information Science, Northumbria University, Pandon Building, Camden Street, Newcastle upon Tyne NE1 8ST (United Kingdom); Erdélyi, R., E-mail: andrew@kwasan.kyoto-u.ac.jp [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2013-12-20

    The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s{sup –1}. The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency.

  17. Relationship between heart rate and quiescent interval of the cardiac cycle in children using MRI.

    Science.gov (United States)

    Zhang, Wei; Bogale, Saivivek; Golriz, Farahnaz; Krishnamurthy, Rajesh

    2017-07-25

    Imaging the heart in children comes with the challenge of constant cardiac motion. A prospective electrocardiography-triggered CT scan allows for scanning during a predetermined phase of the cardiac cycle with least motion. This technique requires knowing the optimal quiescent intervals of cardiac cycles in a pediatric population. To evaluate high-temporal-resolution cine MRI of the heart in children to determine the relationship of heart rate to the optimal quiescent interval within the cardiac cycle. We included a total of 225 consecutive patients ages 0-18 years who had high-temporal-resolution cine steady-state free-precession sequence performed as part of a magnetic resonance imaging (MRI) or magnetic resonance angiography study of the heart. We determined the location and duration of the quiescent interval in systole and diastole for heart rates ranging 40-178 beats per minute (bpm). We performed the Wilcoxon signed rank test to compare the duration of quiescent interval in systole and diastole for each heart rate group. The duration of the quiescent interval at heart rates bpm and >90 bpm was significantly longer in diastole and systole, respectively (Pbpm [P=.02]). For heart rates 80-89 bpm, diastolic interval was longer than systolic interval, but the difference was not statistically significant (P=.06). We created a chart depicting optimal quiescent intervals across a range of heart rates that could be applied for prospective electrocardiography-triggered CT imaging of the heart. The optimal quiescent interval at heart rates bpm is in diastole and at heart rates ≥90 bpm is in systole. The period of quiescence at heart rates 80-89 bpm is uniformly short in systole and diastole.

  18. Relationship between Volcanic Rocks and Hydrocarbon Accumulation during Dominant Period of Basin Formation in Liaohe Depression%主成盆期火山岩与油气成藏关系探讨

    Institute of Scientific and Technical Information of China (English)

    陈振岩; 仇劲涛; 王璞珺; 李湃; 张培先; 刘鑫; 郝涛; 聂桂民

    2011-01-01

    The dominant period of basin formation is defined as the period with the strongest tectonic movements,the largest extent of subsidence and the best development of source rocks.The sedimentary period of the 3rd member(Shasan,E2s3) and 4th member(Shasi,E2s4) of Shahejie Formation is the dominant period for basin formation.There were many episodes of volcanic movements during Cenozoic in Liaohe Depression,forming distribution of volcanic rocks with many series and types,which changes with the tectonic center and has the less strong activity in the earlier stages.The volcanic movements in the dominant period of Liaohe depression are abnormally strong and the appearances of volcanic rocks are frequent.The reservoirs which are altered by structural fractures and the corrosion and dissolution by formation water are favorable for oil and gas accumulation.The superposition in plane and the alternation in profile provide enough provision conditions of oil and gas sources for volcanic rock reservoirs.Furthermore,the volcanic rocks from dominant period of basin are of large thickness,widespread distribution and various traps and accumulation types,owning many advantages for oil and/or gas accumulation in many respects.The volcanic rock reservoirs for oil and/or gas in the areas of Huangshatuo and Oulituozi are typical representations among the above favorable reservoirs.The volcanic rocks from the dominant period of basin formation with favorable combination of oil and/or gas accumulation,enriching the content of oil and /or gas accumulation and the types of oil and /or gas exploration,are the important field for hydrocarbon discovery and exploration.%裂陷盆地的主成盆期是构造活动性最强、沉降幅度最大、烃源岩发育最好的时期,辽河坳陷的主成盆期是E2s4~E2s3时期。辽河坳陷新生代发生了多期火山活动,形成了多套、多类型的火山岩分布,火山活动总体上具有早强晚弱、平面上具有随沉降中

  19. Lidar Observations of Aerosol Disturbances of the Stratosphere over Tomsk (56.5∘N; 85.0∘E in Volcanic Activity Period 2006–2011

    Directory of Open Access Journals (Sweden)

    Oleg E. Bazhenov

    2012-01-01

    Full Text Available The lidar measurements (Tomsk: 56.5∘N; 85.0∘E of the optical characteristics of the stratospheric aerosol layer (SAL in the volcanic activity period 2006–2011 are summarized and analyzed. The background SAL state with minimum aerosol content, observed since 1997 under the conditions of long-term volcanically quiet period, was interrupted in October 2006 by series of explosive eruptions of volcanoes of Pacific Ring of Fire: Rabaul (October 2006, New Guinea; Okmok and Kasatochi (July-August 2008, Aleutian Islands; Redoubt (March-April 2009, Alaska; Sarychev Peak (June 2009, Kuril Islands; Grimsvötn (May 2011, Iceland. A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions. Trends of variations in the total ozone content are also considered.

  20. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes

    Science.gov (United States)

    Hinkley, T.K.; Lamothe, P.J.; Wilson, S.A.; Finnegan, David L.; Gerlach, T.M.

    1999-01-01

    Measurements of a large suite of metals (Pb, Cd, Cu, Zn and several others) and sulfur at Kilauea volcano over an extended period of time has yielded a detailed record of the atmospheric injection of ordinarily-rare metals from this quiescently degassing volcano, representative of an important type. We have combined the Kilauea data with data of recent studies by others (emissions from volcanoes in the Indonesian arc; the large Laki eruption of two centuries ago; Etna: estimates of total volcanic emissions of sulfur) to form the basis for a new working estimate of the rate of worldwide injection of metals to the atmosphere by volcanoes. The new estimate is that volcanoes inject a substantially smaller mass of ordinarily-rare metals into the atmosphere than was stated in a widely cited previous estimate [J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals, Nature 338 (1989) 47-49]. Our estimate, which is an upper limit, is an annual injection mass of about 10,000 tons of the metals considered, versus the earlier estimate of about 23,000 tons. Also, the proportions of the metals are substantially different in our new estimate.

  1. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2009-06-01

    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  2. A quantitative model for volcanic hazard assessment

    OpenAIRE

    W. Marzocchi; Sandri, L.; Furlan, C

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  3. Compact Quiescent Galaxies at Intermediate Redshifts

    CERN Document Server

    Hsu, Li-Yen; Shih, Hsin-Yi

    2014-01-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have identified objects that have properties similar to those of the luminous quiescent compact galaxies found at z > 2. Here we present our results of 22 galaxies between z ~ 0.4 and z ~ 0.9 based on observations with the Keck I, Keck II and Subaru telescopes on Mauna Kea. By exploring sizes, morphologies, and stellar populations of these galaxies, we found that most of the galaxies we identified actually formed most of their stars at z 2 in the literature. Several of these young objects appear to be disk-like or possibly prolate. This lines up with several previous studies, which found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disks, their formation would be more likely caused by gas accretion than by major mergers. On the other hand, if these galaxies were to be confirmed to be...

  4. Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy

    Science.gov (United States)

    2015-10-01

    AD_________________ (Leave blank) Award Number: W81XWH-14-1-0350 TITLE: Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After...30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTILE Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy 5a. CONTRACT NUMBER...Innovative reporter gene systems are designed to mark quiescent or proliferating lung cancer cells (Aim 1) and then used to track and trace the dynamics of

  5. Modeling Chemical Reactors I: Quiescent Reactors

    CERN Document Server

    Michoski, C E; Schmitz, P G

    2010-01-01

    We introduce a fully generalized quiescent chemical reactor system in arbitrary space $\\vdim =1,2$ or 3, with $n\\in\\mathbb{N}$ chemical constituents $\\alpha_{i}$, where the character of the numerical solution is strongly determined by the relative scaling between the local reactivity of species $\\alpha_{i}$ and the local functional diffusivity $\\mathscr{D}_{ij}(\\alpha)$ of the reaction mixture. We develop an operator time-splitting predictor multi-corrector RK--LDG scheme, and utilize $hp$-adaptivity relying only on the entropy $\\mathscr{S}_{\\mathfrak{R}}$ of the reactive system $\\mathfrak{R}$. This condition preserves these bounded nonlinear entropy functionals as a necessarily enforced stability condition on the coupled system. We apply this scheme to a number of application problems in chemical kinetics; including a difficult classical problem arising in nonequilibrium thermodynamics known as the Belousov-Zhabotinskii reaction where we utilize a concentration-dependent diffusivity tensor $\\mathscr{D}_{ij}(...

  6. The Quiescent Neutron Star and Hierarchical Triple, 4U2129+47

    Science.gov (United States)

    Nowak, Michael; Chakrabarty, Deepto; Wilms, Joern; Kühnel, Matthias

    2016-04-01

    4U 2129+47 is a quiescent, eclipsing neutron star that 35 years ago showed typical "Accretion Disk Corona" (ADC) behavior akin to the prototype of the class, X1822-371. Now faded, 4U 2129+47 provides tests of neutron star quiescent emission. It has shown low temperature thermal emission (the neutron star surface), a power law tail (of unknown origin, although possibly due to a pulsar wind interacting with an incoming accretion stream; Campana et al. 1998), and sinusoidally modulated absorption (the disk) as well as periodic X-ray eclipses. Subsequent XMM-Newton and Chandra observations, taken 2007 through Fall 2015, indicate that the hard tail and sinusoidal modulation disappeared, as if the accretion stream and disk have vanished. With the intiial loss of the hard tail, the soft X-ray flux also dropped, but since has remained steady, showing no signs of further neutron star cooling in the subsequent 8 years. We compare this behavior to recent NuSTAR observations of the quiescent neutron star Cen X-4, where the hard tail seems to persist over a wider range of quiescent flux, and correlate with the soft X-ray. It also has been speculated that 4U 2129+47 is part of a hierarchical triple system, with the third body in a much longer orbit. We use the Chandra and XMM-Newton eclipse ephemeris residuals to describe this third body orbit.

  7. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  8. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  9. Ultrastructure of quiescent oocytes of Cebus albifrons.

    Science.gov (United States)

    Barton, B R; Hertig, A T

    1975-11-01

    Quiescent oocytes of the monkey Cebus albifrons were examined with the electron microscope. In many respects the ultrastructure of these cells was similar to that of other mammalian species. Elongate and oval mitochondria, lamellar Golgi complexes, small profiles of smooth endoplasmic reticulum, and vacuolar organelles were randomly distributed around a round nucleus which usually contained a nucleolus and clumps of heterochromatin. Among the unusual morphological characteristics of these oocytes are 'membranous aggregates', membrane-bound organelles containing a complex of convoluted membranes, some very dense rod-like structures and a droplet of moderate density which resembles lipid. A similar droplet is frequently found in mitochondria. Rough endoplasmic reticulum is abundant in many of these oocytes, forming parallel arrays and concentric rings around the nucleus. Folded membrane complexes, apparent elaborations of smooth endoplasmic reticulum, are frequently found in the cytoplasm in continuity with cisternae of smooth and rough endoplasmic reticulum and associated with vesicles which often contain flocculent material. The morphology of Cebus oocytes suggests a greater rate of steroid and protein synthesis, transport, and storage than is usually indicated by the ultrastructure of other mammalian oocytes.

  10. The "quiescent" black hole in M87

    CERN Document Server

    Reynolds, C S; Fabian, A C; Hwang, U; Canizares, C R

    1996-01-01

    It is believed that most giant elliptical galaxies possess nuclear black holes with masses in excess of $10^8\\Msun$. Bondi accretion from the interstellar medium might then be expected to produce quasar-like luminosities from the nuclei of even quiescent elliptical galaxies. It is a puzzle that such luminosities are not observed. Motivated by this problem, Fabian & Rees have recently suggested that the final stages of accretion in these objects occurs in an advection-dominated mode with a correspondingly small radiative efficiency. Despite possessing a long-known active nucleus and dynamical evidence for a black hole, the low radiative and kinetic luminosities of the core of M87 provide the best illustration of this problem. We examine an advection-dominated model for the nucleus of M87 and show that accretion at the Bondi rate is compatible with the best known estimates for the core flux from radio through to X-ray wavelengths. The success of this model prompts us to propose that FR-I radio galaxies and ...

  11. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  12. Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy

    Science.gov (United States)

    2016-12-01

    AD_________________ Award Number: W81XWH-14-1-0350 TITLE: Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy PRINCIPAL...30 Sep 2014 - 29 Sep 2016 4. TITLE AND SUBTILE Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy 5a. CONTRACT NUMBER... cancer . To eradicate chemoresistant tumor cells, it is important to identify the subset of tumor cells that can survive from chemotherapy and

  13. Quiescent thermal emission from neutron stars in LMXBs

    CERN Document Server

    Turlione, Anabela; Pons, José A

    2013-01-01

    The quiescent thermal emission from neutron stars in low mass X-ray binaries after active periods of intense activity in x-rays (outbursts) has been monitored. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust and envelope composition and transport properties, depending on the astrophysical scenarios assumed. We perform numerical simulations of the neutron star crust thermal evolution and compare them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We also present stationary envelope models to be used as a boundary condition for the crustal cooling models. We obtain a relation between the mass accretion rate and the temperature reached at the crust-envelope interface at the end of the active phase that accounts for early observations and reduces the number of free parameters of the problem. With this relation we are also able to set constraints to the env...

  14. SO2 flux and the thermal power of volcanic eruptions

    Science.gov (United States)

    Henley, Richard W.; Hughes, Graham O.

    2016-09-01

    A description of the dynamics, chemistry and energetics governing a volcanic system can be greatly simplified if the expansion of magmatic gas can be assumed to be adiabatic as it rises towards the surface. The conditions under which this assumption is valid are clarified by analysis of the transfer of thermal energy into the low conductivity wallrocks traversed by fractures and vents from a gas phase expanding over a range of mass flux rates. Adiabatic behavior is predicted to be approached typically within a month after perturbations in the release of source gas have stabilized, this timescale being dependent upon only the characteristic length scale on which the host rock is fractured and the thermal diffusivity of the rock. This analysis then enables the thermal energy transport due to gas release from volcanoes to be evaluated using observations of SO2 flux with reference values for the H2O:SO2 ratio of volcanic gas mixtures discharging through high temperature fumaroles in arc and mantle-related volcanic systems. Thermal power estimates for gas discharge are 101.8 to 104.1 MWH during quiescent, continuous degassing of arc volcanoes and 103.7 to 107.3 MWH for their eruptive stages, the higher value being the Plinean Pinatubo eruption in 1991. Fewer data are available for quiescent stage mantle-related volcanoes (Kilauea 102.1 MWH) but for eruptive events power estimates range from 102.8 MWH to 105.5 MWH. These estimates of thermal power and mass of gas discharges are commensurate with power estimates based on the total mass of gas ejected during eruptions. The sustained discharge of volcanic gas during quiescent and short-lived eruptive stages can be related to the hydrodynamic structure of volcanic systems with large scale gaseous mass transfer from deep in the crust coupled with episodes of high level intrusive activity and gas release.

  15. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  16. Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Caliro, S. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy)]. E-mail: caliro@ov.ingv.it; Chiodini, G. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Avino, R. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Cardellini, C. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy); Frondini, F. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy)

    2005-06-15

    A geochemical model is proposed for water evolution at Somma-Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological-volcanological setting of the volcano forces the waters infiltrating at Somma-Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO{sub 2} groundwaters. Reaction path modelling applied to this conceptual model, involving gas-water-rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO{sub 2} transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO{sub 2} emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO{sub 2} diffusely degassed from the crater area.

  17. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  18. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  19. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  20. Characterisation of plasma synthetic jet actuators in quiescent flow

    Science.gov (United States)

    Zong, Haohua; Kotsonis, Marios

    2016-08-01

    An experimental characterisation study of a large-volume three-electrode plasma synthetic jet actuator (PSJA) is presented. A sequential discharge power supply system is used to activate the PSJA. Phase-locked planar particle image velocimetry (PIV) and time-resolved Schlieren imaging are used to characterise the evolution of the induced flow field in quiescent flow conditions. The effect of orifice diameter is investigated. Results indicate three distinct features of the actuator-induced flow field. These are the initial shock waves, the high speed jet and vortex rings. Two types of shock waves with varied intensities, namely a strong shock wave and a weak shock wave, are issued from the orifice shortly after the ignition of the discharge. Subsequently, the emission of a high speed jet is observed, reaching velocities up to 130 m s-1. Pronounced oscillation of the exit velocity is caused by the periodical behaviour of capacitive discharge, which also led to the formation of vortex ring trains. Orifice diameter has no influence on the jet acceleration stage and the peak exit velocity. However, a large orifice diameter results in a rapid decline of the exit velocity and thus a short jet duration time. Vortex ring propagation velocities are measured at peak values ranging from 55 m s-1-70 m s-1. In the case of 3 mm orifice diameter, trajectory of the vortex ring severely deviates from the actuator axis of symmetry. The development of this asymmetry in the flow field is attributed to asymmetry in the electrode configuration.

  1. Spatial Damping of Linear Compressional Magnetoacoustic Waves in Quiescent Prominences

    Indian Academy of Sciences (India)

    K. A. P. Singh

    2006-06-01

    We study the spatial damping of magnetoacoustic waves in an unbounded quiescent prominence invoking the technique of MHD seismology. We consider Newtonian radiation in the energy equation and derive a fourth order general dispersion relation in terms of wavenumber . Numerical solution of dispersion relation suggests that slow mode is more affected by radiation. The high frequency waves have been found to be highly damped. The uncertainty in the radiative relaxation time, however, does not allow us to conclude if the radiation is a dominant damping mechanism in quiescent prominence.

  2. Evaluation of Risk from Volcanic Ashfalls at the Los Tuxtlas Region, Veracruz, Mexico

    Science.gov (United States)

    Espindola, J. M.; Godinez, M. L.; Zamora-Camacho, A.

    2014-12-01

    The Los Tuxtlas region is an area in the eastern Mexican State of Veracruz, located over the Tuxtla volcanic field and surroundings. This field is composed of 353 distinct cones, 4 large composite volcanoes, and 42 maars. Eruptive activity in the TVF began in the late Miocene, underwent a quiescent period approximately 2.6-0.8 Ma, and continues into historic times with the most recent eruptions occurring at San Martín Tuxtla volcano in 1640 and 1793. Due to the historical occurrence of these eruptions, the volcano is considered hazardous. Although no casualties were derived from those eruptions, the population in the area has grown at a fast pace and a similar eruption occurring today would cause enormous social problems. According to INEGI, the country's organism in charge of demographic studies, there are some 200,000 people settled 20 km around the volcano. Furthermore, since the volcanic field is basaltic, the magma's transfer time from depth to surface is short, and volcanic eruptions such as that of 1793 occur without much warning time. These aspects point out to the need for an estimation of the effects of a similar eruption in our days. Espindola et al. (2010; JVGR, 197, 188-208) estimated the isopachs of the ash deposited during that eruption of 1793; we used these isopachs to the 1 cm contour to evaluate some of those effects. The 1 cm isopach spans an area of 541 km2 of which 385 km2 is grazing lands and plantations, more than 149 km2 are covered by dense vegetation and 5 km2 are occupied by settlements of various sizes. There are about 34 km of paved roads that are also the main communication access to the southern State of Veracruz. These figures are a basis for the estimation of the cost of the assistance to the region in case of an eruption and the elaboration of plan of contingency in case of eruption.

  3. Modeling selective elimination of quiescent cancer cells from bone marrow.

    Science.gov (United States)

    Cavnar, Stephen P; Rickelmann, Andrew D; Meguiar, Kaille F; Xiao, Annie; Dosch, Joseph; Leung, Brendan M; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E; Takayama, Shuichi; Luker, Gary D

    2015-08-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Massive Quiescent Disk Galaxies in the CANDELS survey

    Science.gov (United States)

    Kesseli, Aurora; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    Using data from the GOODS-S field of the CANDELS survey, we find evidence for an increasing fraction of disk-dominated galaxies at high-redshift ( 2) among the quiescent, or non-star-forming galaxy population, in agreement with a growing body of evidence from recent results in the literature. We selected all galaxies with mass M>1010 Msun within the redshift range 0.5 ≤ z ≤ 2.5, and imposed a two-color selection criteria using rest-frame U, V, and J-band flux to separate quiescent from star-forming galaxies. From this sample, we performed a qualitative visual classification and a quantitative classification using the galaxy-fitting program Galfit. Of the original 140 quiescent galaxies, 23 have a disk component that contributes 50% or more of the total integrated galaxy light, and most of these are at high-redshift. At a redshift of z ~ 2 a significant fraction of all quiescent galaxies showed strong disk components with 30% being disk-dominated. We also find that massive disk galaxies seem to live in less densely populated environments while massive ellipticals live in environments with more neighbors, which leads us to believe that there are two mechanisms for the creation of massive quiescent galaxies. For the disks, the lower density environment and the disk nature of these galaxies lead us to favor cold streams over the major merger model of galaxy formation. The ellipticals, which live in higher density environments, could be assembled through major mergers of already aged stellar populations (e.g., dry mergers). This research is supported by the Clare Boothe Luce Foundation.

  5. Chronological dating and tectonic implications of late Cenozoic volcanic rocks and lacustrine sequence in Oiyug Basin of southern Tibet

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks that span much of the Cenozoic and has great potential for further studying this issue. However, these strata were poorly dated. This paper presents a chronological study of the 145 m thick and horizontally-distributed lacustrine sequence using paleomagnetic method as well as a K-Ar dating of the underlying volcanic rocks. Based on these dating results, a chronostratigraphic framework and the basin-developmental history have been established for the past 15 Ma, during which three tectonic stages are identified. The period of 15-8.1 Ma is characterized by intense volcanic activities involving at least three major eruptions. Subsequently, the basin came into a tectonically quiescent period and a lacustrine sedimentary sequence was developed. Around 2.5 Ma, an N-S fault occurred across the southern margin of the basin, leading to the disappearance of the lake environment and the development of the Oiyug River. The Gyirong basin on northern slope of the Himalayas shows a similar basin developmental history and thus there is a good agreement in tectonic activities between the Himalayan and Gangdise orogenic belts. Therefore, the tectonic evolution stages experienced by the Oiyug Basin during the past 15 Ma could have a regional significance for southern Tibet. The chronological data obtained from this study may provide some constraints for further studies with regard to the tectonic processes and environmental changes in southern Tibetan Plateau.

  6. Toward Forecasting Volcanic Eruptions using Seismic Noise

    CERN Document Server

    Brenguier, Florent; Campillo, Michel; Ferrazzini, Valerie; Duputel, Zacharie; Coutant, Olivier; Nercessian, Alexandre

    2007-01-01

    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.

  7. A Decade of Volcanic Observations from Aura and the A-Train

    Science.gov (United States)

    Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer

    2014-01-01

    Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.

  8. Sub-millimeter galaxies as progenitors of compact quiescent galaxies

    CERN Document Server

    Toft, S; Magnelli, B; Karim, A; Zirm, A; Michalowski, M; Capak, P; Sheth, K; Schawinski, K; Krogager, J -K; Wuyts, S; Sanders, D; Man, A W S; Lutz, D; Staguhn, J; Berta, S; Mccracken, H; Krpan, J; Riechers, D

    2014-01-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are consistent with being the progenitors of z=2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. As...

  9. The evolution of star formation histories of quiescent galaxies

    CERN Document Server

    Pacifici, Camilla; Weiner, Benjamin J; Holden, Bradford; Gardner, Jonathan P; Faber, Sandra M; Ferguson, Henry C; Koo, David C; Primack, Joel R; Bell, Eric F; Dekel, Avishai; Gawiser, Eric; Giavalisco, Mauro; Rafelski, Marc; Simons, Raymond C; Barro, Guillermo; Croton, Darren J; Dave, Romeel; Fontana, Adriano; Grogin, Norman A; Koekemoer, Anton M; Lee, Seong-Kook; Salmon, Brett; Somerville, Rachel; Behroozi, Peter

    2016-01-01

    Although there has been much progress in understanding how galaxies evolve, we still do not understand how and when they stop forming stars and become quiescent. We address this by applying our galaxy spectral energy distribution models, which incorporate physically motivated star formation histories (SFHs) from cosmological simulations, to a sample of quiescent galaxies at $0.2quiescent galaxies with multi-band photometry spanning rest-frame ultraviolet through near-infrared wavelengths are selected from the CANDELS dataset. We compute median SFHs of these galaxies in bins of stellar mass and redshift. At all redshifts and stellar masses, the median SFHs rise, reach a peak, and then decline to reach quiescence. At high redshift, we find that the rise and decline are fast, as expected because the Universe is young. At low redshift, the duration of these phases depends strongly on stellar mass. Low-mass galaxies ($\\log(M_{\\ast}/M_{\\odot})\\sim9.5$) grow on average slowly, take a lo...

  10. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Directory of Open Access Journals (Sweden)

    Juan Emilio Palomares-Rius

    2016-02-01

    Full Text Available Plant-parasitic nematodes (PPN need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN (Globodera pallida and G. rostochiensis are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium, while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules.

  11. Quiescent Superhumps Detected in the Dwarf Nova V344 Lyrae by Kepler

    CERN Document Server

    Still, Martin; Wood, Matt A; Cannizzo, John K; Smale, Alan P

    2010-01-01

    The timing capabilities and sensitivity of Kepler, NASA's observatory to find Earth-sized planets within the habitable zone of stars, are well matched to the timescales and amplitudes of accretion disk variability in cataclysmic variables. This instrumental combination provides an unprecedented opportunity to test and refine stellar accretion paradigms with high-precision, uniform data, containing none of the diurnal or season gaps that limit ground-based observations. We present a 3-month, 1 minute cadence Kepler light curve of V344 Lyr, a faint, little-studied dwarf nova within the Kepler field. The light curve samples V344 Lyr during five full normal outbursts and one superoutburst. Surprisingly, the superhumps found during superoutburst continue to be detected during the following quiescent state and normal outburst. The fractional excess of superhump period over the presumed orbital period suggests a relatively high binary mass ratio in a system where the radius of the accretion disk must vary by less th...

  12. Distinct cell stress responses induced by ATP restriction in quiescent human fibroblasts

    Directory of Open Access Journals (Sweden)

    Nirupama Yalamanchili

    2016-10-01

    Full Text Available Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated transcription factors and altered transcription factor subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases.

  13. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    Science.gov (United States)

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-07

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  14. Volcanic geology of Admiralty Bay, King George Island, Antarctica

    Institute of Scientific and Technical Information of China (English)

    邢光福; 王德滋; 金庆民; 沈渭洲; 陶奎元

    2002-01-01

    At Admiralty Bay of central King George Island, Keller Peninsula, Ullman Spur and Point Hennequin are main Tertiary volcanic terranes. Field investigation and isotopic datings indicate that, there occurred three periods of eruptions ( three volcanic cycles) and accompanying N-toward migration of the volcanic center on Keller Peninsula. After the second period of eruptions, the crater collapsed and a caldera was formed, then later eruptions were limited at the northern end of the peninsula and finally migrated to Ullman Spur. Thus Keller Peninsula is a revived caldera, and its volcanism migrated toward E with time. Point Hennequin volcanism happened more or less simultaneously with the above two areas, but has no clear relation in chemical evolution with them, frequently it belongs to another independent volcanic center.

  15. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  16. The Quiescent Neutron Star and Hierarchical Triple: 4U 2129+47

    Science.gov (United States)

    Nowak, Michael; Wilms, Joern; Kühnel, Matthias; Chakrabarty, Deepto

    2017-08-01

    After a period of active accretion, neutron stars can enter a phase where their X-ray emission is dominated by thermal emission from their surface. The rate of cooling of this emission can yield insight into neutron star structure. Furthermore, emission models may help determine the neutron star radius. A number of questions arise when modeling such X-ray spectra as observed by Chandra or XMM-Newton. Is there ongoing, low level active accretion that is contributing to the observed soft X-ray emission? In a number of cases, a hard X-ray tail is also observed. What is the origin of this hard tail? The quiescent neutron star system 4U 2129+47 presents a unique opportunity to study these questions. This system is viewed nearly edge on, as evidenced by a periodic, total eclipse that lasts 1585 seconds out of the 5.24 hour orbit. As we are viewing this system edge on, both observed neutral column variations and an observed hard X-ray tail in year 2000 Chandra observations indicated ongoing active accretion. Subsequent XMM and Chandra observations over the next 15 years showed that both the neutral column variability and the hard X-ray tail vanished. Thus, these later observations may represent a true quiescent, cooling neutron star state. We assess the evidence for cooling in the 4U 2129+47 system. Furthermore, we use the timing of the X-ray eclipses to discuss evidence for a third body in the system, and derive likely orbital periods. Finally, we discuss how future X-ray missions, e.g., Athena and Lynx, could place more stringent limits on neutron star cooling and the presence of a hard tail (i.e., active accretion) in this system.

  17. Submillimeter galaxies as progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); Smolčić, V.; Krpan, J. [Physics Department, University of Zagreb, Bijenička cesta 32, 10002 Zagreb (Croatia); Magnelli, B.; Karim, A. [Argelander Institute for Astronomy, Auf dem Hügel 71, Bonn, D-53121 (Germany); Michalowski, M. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Capak, P. [Spitzer Science Center, 314-6 Caltech, 1201 East California Boulevard, Pasadena, CA 91125 (United States); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Schawinski, K. [ETH Zurich, Institute for Astronomy, Department of Physics, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S. [MPE, Postfach 1312, D-85741 Garching (Germany); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Mccracken, H. [Institut dAstrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Riechers, D., E-mail: sune@dark-cosmology.dk [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)

    2014-02-20

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42{sub −29}{sup +40} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  18. Fine structure and oscillations of a quiescent prominence

    Science.gov (United States)

    Petrov, N.; Duchlev, P.; Rompolt, B.; Rudawy, P.

    Series of H_alpha spectra and slit-jaw H_alpha filtergrams of a quiescent prominence (QP) taken at Pic du Midi Observatory on 7 November 1977 are studied. The image processing of the H_alpha filtergrams reveals an internal structure of the prominence consisting of several arches. Series of high-resolution H_alpha spectra obtained with the slit located on selected parts of one of the prominence arches chosen for Doppler shift analysis. The prominence arch show cyclic displacement along the line-of-sight (L.O.S.) direction implying Alfven string-mode oscillations.

  19. Structure, internal motion and oscillation of a quiescent prominence.

    Science.gov (United States)

    Dermendjiev, V. N.; Detchev, M.; Petrov, N.; Rompolt, B.

    Series of Hα spectra and slit-jaw Hα filtergrams of a quiescent prominence are studied. The prominence consists of several arches. One of the arches oscillates with a frequency ω = 3·10-4s and shows displacement of ±55.8 km in the line of sight direction. Its internal velocity variations are larger near the periphery of the arch. The sign and magnitude of the velocity depend strongly on the position along the slit. For interpretation of these results a model of secondary plasma flow generated by bending oscillation propagating along the arch is developed.

  20. Settling of an asymmetric dumbbell in a quiescent fluid

    CERN Document Server

    Candelier, F

    2015-01-01

    We compute the hydrodynamic torque on a dumbbell (two spheres linked by a massless rigid rod) settling in a quiescent fluid at small but finite Reynolds number. The spheres have the same mass densities but different sizes. When the sizes are quite different the dumbbell settles vertically, the largest sphere first. But when the size difference is sufficiently small then its steady-state angle is determined by a competition between the size difference and the Reynolds number. When the sizes of the spheres are exactly equal we recover a result derived by Khayat & Cox (1989) for slender bodies: the dumbbell settles horizontally owing to fluid inertia effects.

  1. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    km decrease in tropopause height. Changes in the rates and types of volcanism have been the primary cause of climate change throughout geologic time. Large explosive volcanoes erupting as frequently as once per decade increment the world into ice ages. Extensive, effusive basaltic volcanism warms the world out of ice ages. Twelve of the 13 dated basaltic table mountains in Iceland experienced their final eruptive phase during the last deglaciation when deposits of sulfate and volcanic ash fell over Greenland at their highest rates. Massive flood basalts are typically accompanied by extreme warming, ozone depletion, and major mass extinctions. The Paleocene-Eocene Thermal Maximum occurred when subaerial extrusion of basalts related to the opening of the Greenland-Norwegian Sea suddenly increased to rates greater than 3000 cubic km per km of rift per million years. Dansgaard-Oeschger sudden warming events are contemporaneous with increased volcanism especially in Iceland and last longer when that volcanism lasts longer. Sudden influxes of fresh water often observed in the North Atlantic during these events are most likely caused by extensive sub-glacial volcanism. The Medieval Warm Period, Little Ice Age, major droughts, and many sudden changes in human civilization began with substantial increases in volcanism. Extensive submarine volcanism does not affect climate directly but is linked with increases in ocean acidity and anoxic events.

  2. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  3. Search for Signs of a New Outburst in the Quiescent State of CH CYG

    Science.gov (United States)

    Kotnik-Karuza, D.; Sepic, R. J.

    Our high-resolution optical spectroscopic survey of the symbiotic star CH Cyg, extending over the quiescent period 1987 - 1989 between two outbursts, shows that the spectrum did not completely lose its symbiotic character. Moreover, signs of radiation of the hot source were present, not only as remnants from the previous outburst, but also as an indication of a new one. Some of the evidences which support this idea are following: 1. Variation of excitation and vibration temperatures of neutral metals and TiO moleculs respectively 2. Untypical microturbulent velocity dependance of the excitation potential of the lower state for Fe I 3. Double-peaked Balmer profiles of Ha and Hb with temporary disappearance of the central absorption 4. Presence of forbbiden emission lines [FeII] [ SII] [NeIII] together with OIII with complex profile and variable intensity.

  4. 松辽盆地火山岩高含CO2气藏包裹体特征及成藏期次%Inclusions Characteristics and Pool-Forming Periods of High CO2 Volcanic Gas Reservoirs in Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    魏立春; 鲁雪松; 宋岩; 柳少波; 洪峰

    2012-01-01

    On the basis of detailed observation of petrography, and this study defined the types, periods and compositions of fluid inclusions in the volcanic rocks of the Yingcheng Formation in Songliao basin, using the characteristics of fluid inclusion, homogenization temperature, gas composition and carbon isotopes. In addition, the pool-forming periods of volcanic gas reservoirs with a high content of CO2 were analyzed. Integrated geological and geochemical evidence shows that hydrocarbon accumulation features in the volcanic CO2 -bearing reservoir in Songliao basin contain two accumulation periods characterized by-successive recharging process, I. E. , sedimentary period of Quantou-Qingshankou formations and the middle-late stage of Nenjiang Formation deposition. CO- was recharged in the Himalaya period, later than hydrocarbon gas.%在详细岩相学观察的基础上,充分利用包裹体的岩相学特征、均一温度特征、气体组分特征以及碳同位素特征等,确定了松辽盆地营城组火山岩中包裹体的类型、期次和成分特征,并对火山岩高含CO2气藏的成藏期次进行了分析.综合各种地质地化证据,确定松辽盆地火山岩高含CO2气藏中烃类气成藏特征是连续充注基础上的两期成藏,即泉头组—青山口组沉积时期和嫩江组沉积中后期;CO2充注发生在喜山期,CO2的充注晚于烃类气的充注.

  5. Ices in the Quiescent IC 5146 Dense Cloud

    CERN Document Server

    Chiar, J E; Allamandola, L J; Boogert, A C A; Ennico, K; Greene, T P; Geballe, T R; Keane, J V; Lada, C J; Mason, R E; Roellig, T L; Sandford, S A; Tielens, A G G M; Werner, M W; Whittet, D C B; Decin, L; Eriksson, K

    2011-01-01

    This paper presents spectra in the 2 to 20 micron range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASA's Infrared Telescope Facility (IRTF) SpeX instrument and the Spitzer Space Telescope's Infrared Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H2O-ice threshold extinction is 4.03+/-0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH3OH and NH3 in the ices, present at the ~2% and ~5% levels, respectively, relative to H2O-ice. The correlation of the silicate feature with the E(J-K) color excess is found...

  6. The Fraction of Quiescent Massive Galaxies in the Early Universe

    CERN Document Server

    Fontana, A; Grazian, A; Pentericci, L; Fiore, F; Castellano, M; Giallongo, E; Menci, N; Salimbeni, S; Cristiani, S; Nonino, M; Vanzella, E

    2009-01-01

    Aims: The aim of this work is to collect a complete, mass--selected sample of galaxies with very low specific star formation rate, for a comparison with the prediction of recent theoretical models. Method: We use the 24/K flux ratio, complemented by the SED fitting to the full 0.35-8.0 mum spectral distribution, to select quiescent galaxies from z~0.4 to z~4 in the GOODS--MUSIC sample. Our observational selection can be translated into thresholds on the specific star formation rate SFR/M_*, that can be used to compare with the theoretical predictions. Results: We find that, in the framework of the well known global decline of the quiescent fraction with redshift, a non-negligible fraction ~15-20% of massive galaxies with very low specific star formation rate exists up to z~4, including a tail of "Red&Dead" galaxies with SFR/M_*<10^{-11}/yr. Recent theoretical models vary to a large extent in the prediction of the fraction of galaxies with very low specific star formation rates, and are unable to provid...

  7. Incidencia de infecciones quiescentes de Botrytis cinerea en flores y

    Directory of Open Access Journals (Sweden)

    MolinaG. Gilma Sandra

    2004-12-01

    Full Text Available

    Se aisló Botrytis cinerea de flores y frutos asintomáticos de mora de castilla ( Rubus glaucus Benth. en  seis estados fenológicos desde botón cerrado hasta fruto maduro. Estas infecciones quiescentes ocurrieron raramente en botones florales cerrados, pero cuando éstos abren las estructuras florales aparecen colonizadas. La alta frecuencia de infecciones quiescentes en frutos en desarrollo y frutos maduros es atribuible a infecciones tempranas en estructuras florales. Inoculaciones hechas con conidias de B. cinerea marcadas con calcofluor produjeron infecciones en todos los estados fenológicos; la germinación de conidias en los seis estados fenológicos se inició a las 10 horas después de

  8. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  9. Stability of nanofluids in quiescent and shear flow fields

    Directory of Open Access Journals (Sweden)

    Chen Haisheng

    2011-01-01

    Full Text Available Abstract An experimental study was conducted to investigate the structural stability of ethylene glycol-based titanium dioxide nanoparticle suspensions (nanofluids prepared by two-step method. The effects of particle concentration, fluid temperature, shear rate and shear duration were examined. Particle size and thermal conductivity measurements in quiescent state indicated the existence of aggregates and that they were stable in temperatures up to 60°C. Shear stability tests suggested that the structure of nanoparticle aggregates was stable in a shear interval of 500-3000 s-1 measured over a temperature range of 20-60°C. These findings show directions to resolve controversies surrounding the underlying mechanisms of thermal conduction and convective heat transfer of nanofluids.

  10. Volatilization of hydrogen sulfide from a quiescent surface.

    Science.gov (United States)

    de Cassia Feroni, Rita; Santos, Jane Meri; Reis, Neyval Costa

    2012-01-01

    Air-water mass transfer of hydrogen sulfide from a shallow tank with a quiescent surface under the influence of weak wind stress on the water surface was studied numerically using a two-dimensional model. The flow field in the tank was investigated using a computational code based on a finite volume, which is used to numerically solve momentum, mass and continuity conservation equations. The results show that water phase flow field is strongly dependent on the wind-induced surface velocity and the aspect ratio of the tank. Based on the numerical study, the liquid-side mass transfer coefficient is correlated with Reynolds number (R(e)), tank aspect ratio (AR) and Schmidt number (S(c)). Overall mass transfer coefficient (K(L)) values extend further downstream as the R(e) number increases.

  11. Amiloride, protein synthesis, and activation of quiescent cells.

    Science.gov (United States)

    Lubin, M; Cahn, F; Coutermarsh, B A

    1982-11-01

    Amiloride is known to inhibit both influx of sodium ions and activation of quiescent cells by growth factors. The coincidence of these effects has been cited to support the proposal that influx of sodium ions acts as a mitogenic signal. Although it was noted that amiloride inhibited protein synthesis, this was attributed to an action on transport of amino acids, particularly those coupled to sodium fluxes. We find, however, that amiloride directly inhibits polypeptide synthesis in a reticulocyte lysate. In Swiss 3T3 cells, concentrations of amiloride and of cycloheximide that are nearly matched in their degree of inhibition of protein synthesis, produce about the same degree of inhibition of transit of cells from G0 to S. Inhibition of protein synthesis is sufficient to explain the effect of amiloride on mitogenesis; the drug, therefore, is not suitable for testing the hypothesis that sodium influx is a mitogenic signal.

  12. On the Evolution of the Central Density of Quiescent Galaxies

    Science.gov (United States)

    Tacchella, Sandro; Carollo, C. Marcella; Faber, S. M.; Cibinel, Anna; Dekel, Avishai; Koo, David C.; Renzini, Alvio; Woo, Joanna

    2017-07-01

    We investigate the origin of the evolution of the population-averaged central stellar mass density (Σ1) of quiescent galaxies (QGs) by probing the relation between stellar age and Σ1 at z ˜ 0. We use the Zurich ENvironmental Study (ZENS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the Σ1-M ⋆ plane, which we refer to as Σ1 ridgeline. Colors of (B - I) and (I - J) are used to divide QGs into three age categories: young (4 Gyr). At fixed stellar mass, old QGs on the Σ1 ridgeline have higher Σ1 than young QGs. This shows that galaxies landing on the Σ1 ridgeline at later epochs arrive with lower Σ1, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at z = 0 with the zeropoint of the quiescent population 4 Gyr back in time, at z = 0.37. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the Σ1 ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower Σ1 at later times (“progenitor bias”). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age-Σ1 trend for central galaxies.

  13. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures

    NARCIS (Netherlands)

    Allen, Chris; Büttner, Sabrina; Aragon, Anthony D.; Thomas, Jason A.; Meirelles, Osorio; Jaetao, Jason E.; Benn, Don; Ruby, Stephanie W.; Veenhuis, Marten; Madeo, Frank; Werner-Washburne, Margaret

    2006-01-01

    Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast

  14. Quiescent X-ray emission from Cen X-4: a variable thermal component

    NARCIS (Netherlands)

    E.M. Cackett; E.F. Brown; J.M. Miller; R. Wijnands

    2010-01-01

    The nearby neutron star low-mass X-ray binary, Cen X-4, has been in a quiescent state since its last outburst in 1979. Typically, quiescent emission from these objects consists of thermal emission (presumably from the neutron star surface) with an additional hard power-law tail of unknown nature. Va

  15. Silent Waters Run Deep. Quiescent stem cells in homeostasis and cancer

    NARCIS (Netherlands)

    S.G. Roth (Sabrina)

    2012-01-01

    markdownabstract__Abstract__ The Introduction summarizes the current literature on quiescence in adult stem cell niches and the various methods for the isolation of quiescent stem cells, outlines the complexity of the intestinal stem cell niche, and formulates the hypothesis that quiescent

  16. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  17. A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy

    Science.gov (United States)

    Cassinis, R.; Lechi, G. M.

    1973-01-01

    The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks.

  18. A massive, quiescent, population II galaxy at a redshift of 2.1

    Science.gov (United States)

    Kriek, Mariska; Conroy, Charlie; van Dokkum, Pieter G.; Shapley, Alice E.; Choi, Jieun; Reddy, Naveen A.; Siana, Brian; van de Voort, Freeke; Coil, Alison L.; Mobasher, Bahram

    2016-12-01

    Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]) in spectra, which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at a redshift of z ≈ 1.4, with [Mg/Fe] = . A slightly earlier epoch (z ≈ 1.6) was probed by combining the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] = 0.31 ± 0.12 (ref. 7). However, the relatively low signal-to-noise ratio of the data and the use of index analysis techniques for both of these studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z > 2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at a redshift of z = 2.1, when the Universe was three billion years old. With [Mg/Fe] = 0.59 ± 0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1 to 0.5 billion years—characteristics that are similar to population II stars in the Milky Way. With an average past star

  19. Geodetic Monitoring System Operating On Neapolitan Volcanic Area (southern Italy)

    Science.gov (United States)

    Pingue, F.; Ov-Geodesy Team

    The Neapolitan volcanic area is located in the southern sector of the Campanian Plain Graben including three volcanic active structures (Somma-Vesuvius, Campi Flegrei and Ischia). The Somma-Vesuvius complex, placed East of Naples, is a strato-volcano composed by a more ancient apparatus (Mt. Somma) and a younger cone (Mt. Vesu- vius) developed inside Somma caldera. Since last eruption (1944) it is in a quiescent state characterised by a low level seismicity and deformation activity. The Campi Fle- grei, located West of Naples, are a volcanic field inside an older caldera rim. The last eruption, occurred in the 1538, built up the Mt. Nuovo cone. The Campi Flegrei are subject to a slow vertical deformation, called bradyseism. In the 1970-1972 and 1982-1984 they have been affected by two intense episodes of ground upheaval (ac- companied by an intense seismic activity)0, followed by a subsidence phase, slower than uplift and still active. Though such phenomenon has not been followed by erup- tive events, it caused serious damages, emphasizing the high volcanic risk of the phle- grean caldera. The Ischia island, located SW of Naples, has been characterised by a volcanic activity both explosive and effusive, occurred mainly in the last 50,000 years. These events modelled the topography producing fault systems and structures delim- iting the Mt. Epomeo resurgent block. The last eruption has occurred on 1302. After, the dynamics of the island has been characterised by seismic activity (the strongest earthquake occurred on 1883) and by a meaningful subsidence, on the S and NW sec- tors of the island. The concentration of such many active volcanoes in an area with a dense urbanization (about 1,500,000 inhabitants live) needs systematic and contin- uous monitoring of the dynamics. These information are necessary in order to char- acterise eruptive precursors useful for modelling the volcanoes behaviour. Insofar, the entire volcanic Neapolitan area, characterised by a

  20. Preferential gene expression in quiescent human lung fibroblasts.

    Science.gov (United States)

    Coppock, D L; Kopman, C; Scandalis, S; Gilleran, S

    1993-06-01

    The exit from the proliferative cell cycle into a reversible quiescence (G0) is an active process that is not yet well understood at the molecular level. Investigation of G0-specific gene expression is an important step in studying the mechanism regulating the entrance to quiescence. Using the human embryo lung fibroblast (WI38) as a model system, we have isolated complementary DNA clones that are expressed at a higher level in quiescent cells than in logarithmically growing cells. We have identified complementary DNAs from eight genes including collagen alpha 1(VI), collagen alpha 1(III), decorin, complement C1r, collagen alpha 1(I), collagen alpha 2(I), and two novel genes, Q6 and Q10. We have named this class of quiescence-inducible genes quiescins. Expression of these genes was induced just as proliferation slowed, as indicated by the level of histone H2B mRNA, [3H]-thymidine incorporation, and cell number. The level of expression of the novel genes, Q6 and Q10, increased at the same time as the other genes. Q6 has two mRNAs of 3 and 4 kb, whereas Q10 mRNA is about 1.0 kb. The expression of the quiescins was not induced by blocking the cell cycle in S phase with aphidicolin or in G1 with lovastatin. However, the genes were highly induced by trypsinization or scraping of the cells during logarithmic growth. This induction was not blocked by inhibitors of RNA synthesis. The expression of decorin and Q6 was very low in SV40-transformed cells (VA13) either in logarithmic growth or at high density, whereas the gene Q10 was expressed more highly in VA13 than in WI38 cells. The finding that expression of some components of the extracellular matrix is induced as cells enter G0 suggests that they may have a role in both the induction and the maintenance of the quiescent state. The quiescins will serve as molecular markers for the investigation of mechanisms that regulate the onset of quiescence.

  1. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  2. Visualising volcanic gas plumes with virtual globes

    Science.gov (United States)

    Wright, T. E.; Burton, M.; Pyle, D. M.; Caltabiano, T.

    2009-09-01

    The recent availability of small, cheap ultraviolet spectrometers has facilitated the rapid deployment of automated networks of scanning instruments at several volcanoes, measuring volcanic SO 2 gas flux at high frequency. These networks open up a range of other applications, including tomographic reconstruction of the gas distribution which is of potential use for both risk mitigation, particularly to air traffic, and environmental impact modelling. Here we present a methodology for visualising reconstructed plumes using virtual globes, such as Google Earth, which allows animations of the evolution of the gas plume to be displayed and easily shared on a common platform. We detail the process used to convert tomographically reconstructed cross-sections into animated gas plume models, describe how this process is automated and present results from the scanning network around Mt. Etna, Sicily. We achieved an average rate of one frame every 12 min, providing a good visual representation of the plume which can be examined from all angles. In creating these models, an approximation to turbulent diffusion in the atmosphere was required. To this end we derived the value of the turbulent diffusion coefficient for quiescent conditions near Etna to be around 200- 500m2s-1.

  3. Lung problems and volcanic smog

    Science.gov (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  4. Winter speed-up of ice flow at quiescent surge-type glaciers in Yukon, Canada

    Science.gov (United States)

    Furuya, M.; Abe, T.

    2013-12-01

    Glacier surge exhibits order-of-magnitude faster velocity and km-scale terminus advance during its short active phase after a long quiescent period. The observations of glacier surge are still limited, and the mechanisms of glacier surge cycle remain elusive. Moreover, with the exception of several well-examined glaciers, the glacier dynamics during their quiescent periods remains even more uncertain due to the paucity of surface velocity measurement data. Here we examined spatial-temporal changes in the ice surface velocity of surge-type glaciers in the St. Elias Mountains near the border of Alaska and Yukon during the period from December 2006 to March 2011. We applied the offset-tracking (feature-tracking) technique to the L-band synthetic aperture radar (SAR) images derived from the Japanese Advanced Land Observation Satellite (ALOS). The Chitina, Anderson, Walsh, and Logan Glaciers, the major subpolar surge-type glaciers of the Chitina River valley system, could be examined with the highest temporal resolution because of the overlap of multiple satellite tracks. We have found significant upstream accelerations from fall to winter at a number of glaciers during their quiescence. Moreover, whereas the upstream propagating summer speed-up was observed, the winter speed-up propagated from upstream to downglacier. Although the winter speed-up seems to be at odds with the well-known summer speed-up, these observations are consistent with the fragmentary but well-known fact of glacier surge that often initiates in winter, suggesting that some of the mechanisms would be valid even during quiescent phases. Ice surface velocity at mountain glaciers and ice sheets typically exhibits the greatest acceleration from spring to early summer, followed by deceleration in mid-summer to fall, and is slowest in winter. These short-term velocity changes are attributed to subglacial slip associated with water pressure changes that occur because of the seasonal variability of

  5. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong

    2000-01-01

    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  6. Quiescent and proliferative fibroblasts exhibit differential p300 HAT activation through control of 5-methoxytryptophan production.

    Directory of Open Access Journals (Sweden)

    Huei-Hsuan Cheng

    Full Text Available Quiescent fibroblasts possess unique genetic program and exhibit high metabolic activity distinct from proliferative fibroblasts. In response to inflammatory stimulation, quiescent fibroblasts are more active in expressing cyclooxygenase-2 and other proinflammatory genes than proliferative fibroblasts. The underlying transcriptional mechanism is unclear. Here we show that phorbol 12-myristate 13-acetate (PMA and cytokines increased p300 histone acetyltransferase activity to a higher magnitude (> 2 fold in quiescent fibroblasts than in proliferative fibroblasts. Binding of p300 to cyclooxygenase-2 promoter was reduced in proliferative fibroblasts. By ultrahigh-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometer and enzyme-immunoassay, we found that production of 5-methoxytryptophan was 2-3 folds higher in proliferative fibroblasts than that in quiescent fibroblasts. Addition of 5-methoxytryptophan and its metabolic precursor, 5-hydroxytryptophan, to quiescent fibroblasts suppressed PMA-induced p300 histone acetyltransferase activity and cyclooxygenase-2 expression to the level of proliferative fibroblasts. Silencing of tryptophan hydroxylase-1 or hydroxyindole O-methyltransferase in proliferative fibroblasts with siRNA resulted in elevation of PMA-induced p300 histone acetyltransferase activity to the level of that in quiescent fibroblasts, which was rescued by addition of 5-hydroxytryptophan or 5-methoxytryptophan. Our findings indicate that robust inflammatory gene expression in quiescent fibroblasts vs. proliferative fibroblasts is attributed to uncontrolled p300 histone acetyltransferase activation due to deficiency of 5-methoxytryptophan production. 5-methoxytryptophan thus is a potential valuable lead compound for new anti-inflammatory drug development.

  7. Is volcanic phenomena of fractal nature?

    Science.gov (United States)

    Quevedo, R.; Lopez, D. A. L.; Alparone, S.; Hernandez Perez, P. A.; Sagiya, T.; Barrancos, J.; Rodriguez-Santana, A. A.; Ramos, A.; Calvari, S.; Perez, N. M.

    2016-12-01

    A particular resonance waveform pattern has been detected beneath different physical volcano manifestations from recent 2011-2012 period of volcanic unrest at El Hierro Island, Canary Islands, and also from other worldwide volcanoes with different volcanic typology. This mentioned pattern appears to be a fractal time dependent waveform repeated in different time scales (periods of time). This time dependent feature suggests this resonance as a new approach to volcano phenomena for predicting such interesting matters as earthquakes, gas emission, deformation etc. as this fractal signal has been discovered hidden in a wide typical volcanic parameters measurements. It is known that the resonance phenomenon occurring in nature usually denote a structure, symmetry or a subjacent law (Fermi et al., 1952; and later -about enhanced cross-sections symmetry in protons collisions), which, in this particular case, may be indicative of some physical interactions showing a sequence not completely chaotic but cyclic provided with symmetries. The resonance and fractal model mentioned allowed the authors to make predictions in cycles from a few weeks to months. In this work an equation for this waveform has been described and also correlations with volcanic parameters and fractal behavior demonstration have been performed, including also some suggestive possible explanations of this signal origin.

  8. The quiescent state of the accreting X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Reig, P; Zezas, A

    2014-01-01

    We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be star's circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L_X~10^{33} erg/s. This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT=1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.

  9. The Hβ Chromospheric Magnetic Field in a Quiescent Filament

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We observed the line-of-sight magnetic field in the chromosphereandphotosphere of a large quiescent filament on the solar disk on September 6, 2001using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. Thechromospheric and photospheric magnetograms together with Hβ filtergrams of thefilament were examined. The filament was located on the neutral line of the largescale longitudinal magnetic field in the photosphere and the chromosphere. Thelateral feet of the filament .were found to be related to magnetic structures with op-posite polarities. Two small lateral feet are linked to weak parasitic polarity. Thereis a negative magnetic structure in the photosphere under a break of the filament.At the location corresponding to the filament in the chromospheric magnetograms,the magnetic strength is found to be about 40-70 Gauss (measuring error about 39Gauss). The magnetic signal indicates the amplitude and orientation of the internalmagnetic field in the filament. We discuss several possible causes which may pro-duce such a measured signal. A twisted magnetic configuration inside the filamentis suggested .

  10. Synchronous observation of rising soluble bubble through quiescent solution

    Institute of Scientific and Technical Information of China (English)

    Yifu ZHANG; Shuai TIAN; Weizhong LI; Yongchen SONG

    2009-01-01

    An experimental method using computer image processing technology (CIPT) was proposed to observe and investigate the velocity, deformation, heat and mass transfer, etc. of a rising soluble gas (CO2) bubble through a quiescent hot water. A model was set up to describe the behavior of the bubble in a visual experi-mental system in which a high-speed camera rose instantaneously with the movement of the bubble. A series of trajectory videos about the bubble were recorded by a computer linked to the camera. The trajectory, volume changes and rate of mass transfer of the bubble were obtained by the CIPT. It is found that the single bubble follows a rolling trajectory at the initial stage when there is mass transfer. With the volume decreasing, the disturbed behavior of the bubble becomes tempered. When the rising velocity of the bubble reaches the maximum, the velocity is nearly at a constant. The experimental and analysis results show that this method is useful for the research on the mass transfer and the movement of rising bubbles in liquid.

  11. An autonomous sperm-like propulsor in a quiescent flow

    Science.gov (United States)

    Kim, Boyoung; Park, Sung Goon; Sung, Hyung Jin

    2016-11-01

    Flapping motions of flexible fins are widespread in nature. Birds, fish, and insects use their wings, fins, or bodies to stay afloat and to advance forward in the surrounding fluids. It is important to understand the physics of the flapping motions to utilize them for the biomimetic machines. In the present study, we introduce a sperm-like propulsor that consists of a rigid head containing genetic information and a flapping flexible tail for propulsion. The head gives a sinusoidal torque to the leading edge of the tail, and the flexible tail flaps along the leading edge. In other words, the sperm-like propulsor is moved by an oscillating relative angle between the head and the leading edge of the tail. Unlike self-propelled heaving and pitching fins, the 'autonomous' sperm-like propulsor has no prescribed motion or constraint referenced from outside coordinates. The penalty method and the immersed boundary method are used to solve the autonomous sperm-like propulsor in a quiescent flow. The cruising speed and the propulsive efficiency of the propulsor are explored as a function of the head size (D/ L) , the pitching angle (θ0) , the pitching frequency (f) , and the distance from the wall (G/ L) .

  12. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    KAUST Repository

    Marston, Jeremy

    2011-06-20

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.

  13. Response of Quiescent Cerebral Cortical Astrocytes to Nanofibrillar Scaffold Properties

    Science.gov (United States)

    Ayres, Virginia; Mujdat Tiryaki, Volkan; Xie, Kan; Ahmed, Ijaz; Shreiber, David I.

    2013-03-01

    We present results of an investigation to examine the hypothesis that the extracellular environment can trigger specific signaling cascades with morphological consequences. Differences in the morphological responses of quiescent cerebral cortical astrocytes cultured on the nanofibrillar matrices versus poly-L-lysine functionalized glass and Aclar, and unfunctionalized Aclar surfaces were demonstrated using atomic force microscopy (AFM) and phalloidin staining of F-actin. The differences and similarities of the morphological responses were consistent with differences and similarities of the surface polarity and surface roughness of the four surfaces investigated in this work, characterized using contact angle and AFM measurements. The three-dimensional capability of AFM was also used to identify differences in cell spreading. An initial quantitative immunolabeling study further identified significant differences in the activation of the Rho GTPases: Cdc42, Rac1, and RhoA, which are upstream regulators of the observed morphological responses: filopodia, lamellipodia, and stress fiber formation. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family with demonstrable morphological consequences for cerebral cortical astrocytes. The support of NSF PHY-095776 is acknowledged.

  14. CANDELS: The progenitors of compact quiescent galaxies at z~2

    CERN Document Server

    Barro, Guillermo; Perez-Gonzalez, Pablo G; Koo, David C; Williams, Christina C; Kocevski, Dale D; Trump, Jonathan R; Mozena, Mark; McGrath, Elizabeth; van der Wel, Arjen; Wuyts, Stijn; Bell, Eric F; Croton, Darren J; Dekel, Avishai; Ashby, M L N; Ferguson, Henry C; Fontana, Adriano; Giavalisco, Mauro; Grogin, Norman A; Guo, Yicheng; Hathi, Nimish P; Hopkins, Philip F; Huang, Kuang-Han; Koekemoer, Anton M; Kartaltepe, Jeyhan S; Lee, Kyoung-Soo; Newman, Jeffrey A; Porter, Lauren A; Primack, Joel R; Ryan, Russell E; Rosario, David; Somerville, Rachel S

    2012-01-01

    We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are r...

  15. UV Extinction Towards a Quiescent Molecular Cloud in the SMC

    CERN Document Server

    Apellániz, J Maíz

    2012-01-01

    Context: The mean UV extinction law for the Small Magellanic Cloud (SMC) is usually taken as a template for low-metallicity galaxies. However, its current derivation is based on only five stars, thus placing doubts on its universality. An increase in the number of targets with measured extinction laws in the SMC is necessary to determine its possible dependence on parameters such as metallicity and star-forming activity. Aims: To measure the UV extinction law for several stars in the quiescent molecular cloud SMC B1-1. Methods: We obtained HST/STIS slitless UV spectroscopy of a 25"x25" field of view and we combined it with ground-based NIR and visible photometry of the stars in the field. The results were processed using the Bayesian photometric package CHORIZOS to derive the visible-NIR extinction values for each star. The unextinguished Spectral Energy Distributions (SEDs) obtained in this way were then used to derive the UV extinction law for the four most extinguished stars. We also recalculated the visib...

  16. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  17. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  18. Are local communities prepared to face a future volcanic emergency at Vesuvius?

    Science.gov (United States)

    Carlino, S.; Somma, R.; Mayberry, G. C.

    2009-04-01

    The Vesuvius represents, undoubtedly, the icon of volcanic threats, since more than 600,000 people live very close to the volcano. This image is strengthened by the presence of the archaeological ruins of Pompeii and Herculaneum, buried by the 79 A.D. plinian eruption, testifying nowadays the highly destructive impact on humans, buildings and environments. Nevertheless, many young people live in the Vesuvian area show an inadequate preparedness to face the next eruption. This is inferred by the results of a multiple choice questionnaire, distributed to 400 high-school students in three municipalities located close to the volcano during the 2007. The questionnaire was aimed to understand the level of risk perception and preparedness of at-risk communities during the current quiescent period. The interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). This result suggests that, during a future eruption of Vesuvius, there may not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The lack of knowledge about NEPVA is a sign of the absence of well-tested communication strategies and effective information dissemination in the study area. This lack of knowledge also means there is little interest in participating in risk-reduction activities. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to increase the risk perception of youth in local communities. In the absence of adequate preparedness measures, an evacuation could become "enforced" or even worse, a "failure."

  19. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Harrington, C. [Los Alamos National Lab., NM (USA); Turrin, B.; Champion, D. [US Geological Survey (US); Wells, S.; Perry, F.; McFadden, L.; Renault, C. [New Mexico Univ., Albuquerque, NM (USA)

    1989-12-31

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located between 8 and 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10-8 to 10-10 yr-1. These bounds are currently being reexamined based on new developments in the understanding of the evolution of small volume, basaltic volcanic centers including: Many of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity, The centers may be active for time spans exceeding 105 yrs, There is a decline in the volume of eruptions of the centers through time, and Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene. The authors classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 103 to 105 yrs. magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes.

  20. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-05-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1}. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10{sup 5} yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10{sup 3} to 10{sup 5} yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs.

  1. Bubble formation in a quiescent pool of gold nanoparticle suspension.

    Science.gov (United States)

    Vafaei, Saeid; Wen, Dongsheng

    2010-08-11

    This paper begins with an extensive review of the formation of gas bubbles, with a particular focus on the dynamics of triple lines, in a pure liquid and progresses into an experimental study of bubble formation on a micrometer-sized nozzle immersed in a quiescent pool of aqueous gold nanofluid. Unlike previous studies of triple line dynamics in a nanofluid under evaporation or boiling conditions, which are mainly caused by the solid surface modification due to particle sedimentation, this work focuses on the roles of nanoparticles suspended in the liquid phase. The experiments are conducted under a wide range of flow rates and nanoparticle concentrations, and many interesting phenomena are revealed. It is observed that nanofluids prevent the spreading of the triple line during bubble formation, i.e. the triple line is pinned somewhere around the middle of the tube wall during the rapid bubble formation stage whereas it spreads to the outer edge of the tube for pure water. A unique 'stick-slip' movement of the triple line is also observed for bubbles forming in nanofluids. At a given bubble volume, the radius of the contact line is found to be smaller for higher particle concentrations, but a reverse trend is found for the dynamic bubble contact angle. With the increase of particle concentration, the bubble frequency is raised and the bubble departure volume is decreased. The bubble shape is found to be in a good agreement with the prediction from Young-Laplace equation for given flow rates. The influence of nanoparticles on other detailed characteristics related to bubble growth inside, including the variation of bubble volume expansion rate, the radius of the curvature at the apex, the bubble height and bubble volume, is revealed. It is suggested that the variation of surface tensions and the resultant force balance at the triple line might be responsible for the modified dynamics of the triple line.

  2. Using large galaxy surveys to distinguish z~0.5 quiescent galaxy models

    CERN Document Server

    Cohn, J D

    2013-01-01

    One of the most striking properties of galaxies is the bimodality in their star-formation rates. A major puzzle is why any given galaxy is star-forming or quiescent, and a wide range of physical mechanisms have been proposed as solutions. We consider how observations, such as might be available in upcoming large galaxy surveys, might distinguish different galaxy quenching scenarios. To do this, we combine an N-body simulation and multiple prescriptions from the literature to create several quiescent galaxy mock catalogues. Each prescription uses a different set of galaxy properties (such as history, environment, centrality) to assign individual simulation galaxies as quiescent. We find how and how much the resulting quiescent galaxy distributions differ from each other, both intrinsically and observationally. In addition to tracing observational consequences of different quenching mechanisms, our results indicate which sorts of quenching models might be most readily disentangled by upcoming observations and w...

  3. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis

    NARCIS (Netherlands)

    Koning, Merel; Werker, Paul M N; van Luyn, Marja J A; Krenning, Guido; Harmsen, Martin C

    2012-01-01

    During myogenesis, human satellite cells differentiate and form multinucleated myotubes, while a fraction of the human satellite cells enter quiescence. These quiescent satellite cells are able to activate, proliferate and contribute to muscle regeneration. Post-transcriptional regulation of

  4. Noise-induced variability of volcanic extrusions

    Science.gov (United States)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-11-01

    Motivated by important physical applications, we study a non-linear dynamics of volcanic extrusions on the basis of a simple pressure-mass flow model. We demonstrate that the deterministic phase portrait represents either the bulbous-type curves or closed paths stretched to their left depending on the initial conditions. The period of phase trajectories therewith increases when the pressure drop between the conduit top and bottom compensates the lava column pressure in it. Stochastic forcing changes the system dynamics drastically. We show that a repetitive scenario of volcanic behaviour with intermittency of stochastic oscillations of different extrusion amplitudes and frequencies appears in the presence of noises. As this takes place, the mean values of interspike intervals characterizing the system periodicity have a tendency to grow with increasing the noise intensity. The probability distribution functions confirming this dynamic behaviour are constructed.

  5. Exploring Hawaiian Volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  6. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  7. Measurements of H-beta, He D3, and Ca/+/ 8542-A line emission in quiescent prominences

    Science.gov (United States)

    Landman, D. A.; Edberg, S. J.; Laney, C. D.

    1977-01-01

    Measurements of H-beta, He D3, and Ca(+) 8542-A line emission in 18 quiescent prominences are presented which were performed with a 25-cm coronagraph/coude spectrograph system and an optical multichannel analyzer utilizing a Si-vidicon detector assembly mounted at the single-pass spectrograph port. The data obtained show that the line profiles deviate in the wings from those calculated on the basis of an isothermal atmosphere and a Gaussian absorption coefficient. Both a non-Gaussian microturbulence component and a temperature gradient from prominence-core to coronal values can successfully account for this phenomenon. The line widths from a given line of sight of prominence material are reduced on the basis of a common core emitting region with a temperature of 7500 to 11,600 K and a microturbulent velocity of 4.5 to 7.1 km/s for the isothermal model (these values are 5% to 10% less for the two-temperature model). It is noted that long-period low-amplitude oscillations in the D3 line width and intensity were observed when a specific line of sight in a quiescent prominence was followed. These oscillations are found to remain coherent for as many as 3 or 4 cycles and to be associated with prominence structural activation.

  8. Constraining Metallicity and Age for Massive Quiescent Galaxies in a Redshift Range of 1

    Science.gov (United States)

    Estrada-Carpenter, Vicente; Papovich, Casey J.; Momcheva, Ivelina G.; Brammer, Gabriel; Bridge, Joanna; Dickinson, Mark; Closson Ferguson, Henry; finlator, kristian; Finkelstein, Steven L.; Giavalisco, Mauro; Gosmeyer, Catherine; Livermore, Rachael C.; Long, James; Lotz, Jennifer M.; Kawinwanichakij, Lalitwadee; Pirzkal, Norbert; Quadri, Ryan; Salmon, Brett W.; Tilvi, Vithal; Trump, Jonathan R.; Weiner, Benjamin J.

    2017-01-01

    Using HST/WFC3 grism spectroscopy from the CANDELS Lyman-alpha Emission at Reionization (CLEAR) survey, we constrain the metallicities and ages of massive quiescent galaxies, at z ~ 1.5. CLEAR provides deep spectroscopy (12 HST orbits per pointing) with the WFC3/G102 grism over the wavelength range ~ 7,500 break, Balmer-series lines, and Hg+G features. We stack the G102 spectra of a stellar-mass limited sample of 34 quiescent galaxies, with log(M*/M⊙) > 10 and 1 10.9. The model fits favor higher metallicity for the more massive quiescent galaxies, with Z/Z⊙ ~ 1, with some systematics possibly leading from differences in the stellar population models. Therefore, there is no evidence for significant evolution in metallicity for the most massive quiescent galaxies since z ~ 1.5. The model fits to the lower mass quiescent galaxies favor lower metallicites, Z/Z⊙ ~ 0.4, with an offset of ~ 0.3 dex from the present-day relation (e.g., Galazzi et al. 2005). For quiescent galaxies in this mass range, 10.0 1), or a combination of the two.

  9. Comparison of quiescent inflow single-shot and native space for nonenhanced peripheral MR angiography.

    Science.gov (United States)

    Ward, Emily V; Galizia, Mauricio S; Usman, Asad; Popescu, Andrada R; Dunkle, Eugene; Edelman, Robert R

    2013-12-01

    To evaluate two nonenhanced MRA methods: quiescent-interval single-shot (QISS) and Native SPACE (NATIVE = Non-contrast Angiography of the Arteries and Veins; SPACE = Sampling Perfection with Application Optimized Contrast by using different flip angle Evolution), using contrast-enhanced MR angiography (CEMRA) as a reference standard. Twenty patients (14 male; mean, 69.3 years old) referred for lower extremity MRA were recruited in a HIPAA-compliant prospective study. QISS and Native SPACE of the lower extremities were performed at 1.5 Tesla with a hybrid dual-injection contrast-enhanced MRA as reference. Image quality and stenosis severity were assessed in segments by two blinded radiologists. Methods were compared with logistic regression for correlated data for diagnostic accuracy. Of 496 arterial segments, 24 were considered nondiagnostic on the Native SPACE images. There were no QISS or CEMRA imaging segments considered to be nondiagnostic. Image quality was significantly higher for QISS than for Native SPACE. QISS stenosis sensitivity (84.9%) was not significantly different from Native SPACE (87.3%). QISS had better specificity (95.6%) than Native SPACE (87.0%), P = 0.0041. In comparison with QISS, Native SPACE proved less robust for imaging of the abdominal and pelvic segments. Native SPACE and QISS were sensitive for hemodynamically significant stenosis in this pilot study. QISS NEMRA demonstrated superior specificity and image quality, and was more robust in the abdominal and pelvic regions. Copyright © 2013 Wiley Periodicals, Inc.

  10. Cretaceous Volcanic Events in Southeastern Jilin Province, China: Evidence from Single Zircon U-Pb Ages

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuejun; SUN Chunlin; SUN Yuewu; SUN Wei

    2008-01-01

    Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also otters important information of Mesozoic volcanism in northeastern China.

  11. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  12. Burst conditions of explosive volcanic eruptions recorded on microbarographs

    Science.gov (United States)

    Morrissey, M.M.; Chouet, B.A.

    1997-01-01

    Explosive volcanic eruptions generate pressure disturbances in the atmosphere that propagate away either as acoustic or as shock waves, depending on the explosivity of the eruption. Both types of waves are recorded on microbarographs as 1- to 0.1-hertz N-shaped signals followed by a longer period coda. These waveforms can be used to estimate burst pressures end gas concentrations in explosive volcanic eruptions and provide estimates of eruption magnitudes.

  13. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  14. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  15. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  16. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  17. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  18. System of Volcanic activity

    Directory of Open Access Journals (Sweden)

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  19. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  20. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  1. Volcanic impact on the Atlantic ocean over the last millennium

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2011-08-01

    Full Text Available The oceanic response to volcanic eruptions over the last 1000 years is investigated with a focus on the North Atlantic Ocean, using a fully coupled AOGCM forced by a realistic time series of volcanic eruptions, total solar irradiance (TSI and atmospheric greenhouse gases concentration. The model simulates little response to TSI variations but a strong and long-lasting thermal and dynamical oceanic adjustment to volcanic forcing, which is shown to be a function of the time period of the volcanic eruptions, probably due to their different seasonality. The thermal response consists of a fast tropical cooling due to the radiative forcing by the volcanic eruptions, followed by a penetration of this cooling in the subtropical ocean interior one to five years after the eruption, and propagation of the anomalies toward the high latitudes. The oceanic circulation first adjusts rapidly to low latitude anomalous wind stress induced by the strong cooling. The Atlantic Meridional Overturning Circulation (AMOC shows a significant intensification 5 to 10 years after the eruptions of the period post-1400 AD, in response to anomalous atmospheric momentum forcing, and a slight weakening in the following decade. In response to the stronger eruptions occurring between 1100 and 1300, the AMOC shows no intensification and a stronger reduction after 10 years. This study thus stresses the diversity of AMOC response to volcanic eruptions in climate models and tentatively points to an important role of the seasonality of the eruptions.

  2. Investigating Variability of Quiescent Neutron Stars in the Globular Clusters NGC 6440 and Terzan 5

    CERN Document Server

    Walsh, A R; Bernardini, F

    2014-01-01

    The quiescent spectrum of neutron star low-mass X-ray binaries typically consists of two components - a thermal component associated with emission from the neutron star surface, and a non-thermal power-law component whose origin is not well understood. Spectral fitting of neutron star atmosphere models to the thermal component is one of the leading methods for measuring the neutron star radius. However, it has been known for years that the X-ray spectra of quiescent neutron stars vary between observations. While most quiescent variability is explained through a variable power-law component, the brightest and best-studied object, Cen X-4, requires a change in the thermal component and such thermal variability could be a problem for measuring neutron star radii. In this paper, we significantly increase the number of sources whose quiescent spectra have been studied for variability. We examine 9 potential quiescent neutron stars with luminosities <1E34 erg/s over the course of multiple Chandra observations of...

  3. Quiescent and Active Tear Protein Profiles to Predict Vernal Keratoconjunctivitis Reactivation

    Directory of Open Access Journals (Sweden)

    Alessandra Micera

    2016-01-01

    Full Text Available Objective. Vernal keratoconjunctivitis (VKC is a chronic recurrent bilateral inflammation of the conjunctiva associated with atopy. Several inflammatory and tissue remodeling factors contribute to VKC disease. The aim is to provide a chip-based protein analysis in tears from patients suffering from quiescent or active VKC. Methods. This study cohort included 16 consecutive patients with VKC and 10 controls. Participants were subjected to clinical assessment of ocular surface and tear sampling. Total protein quantification, total protein sketch, and protein array (sixty protein candidates were evaluated. Results. An overall increased Fluorescent Intensity expression was observed in VKC arrays. Particularly, IL1β, IL15, IL21, Eotaxin2, TACE, MIP1α, MIP3α, NCAM1, ICAM2, βNGF, NT4, BDNF, βFGF, SCF, MMP1, and MMP2 were increased in quiescent VKC. Of those candidates, only IL1β, IL15, IL21, βNGF, SCF, MMP2, Eotaxin2, TACE, MIP1α, MIP3α, NCAM1, and ICAM2 were increased in both active and quiescent VKC. Finally, NT4, βFGF, and MMP1 were highly increased in active VKC. Conclusion. A distinct “protein tear-print” characterizes VKC activity, confirming some previously reported factors and highlighting some new candidates common to quiescent and active states. Those candidates expressed in quiescent VKC might be considered as predictive indicators of VKC reactivation and/or exacerbation out-of-season.

  4. Quiescent and Active Tear Protein Profiles to Predict Vernal Keratoconjunctivitis Reactivation

    Science.gov (United States)

    Micera, Alessandra; Di Zazzo, Antonio; Esposito, Graziana; Sgrulletta, Roberto; Calder, Virginia L.; Bonini, Stefano

    2016-01-01

    Objective. Vernal keratoconjunctivitis (VKC) is a chronic recurrent bilateral inflammation of the conjunctiva associated with atopy. Several inflammatory and tissue remodeling factors contribute to VKC disease. The aim is to provide a chip-based protein analysis in tears from patients suffering from quiescent or active VKC. Methods. This study cohort included 16 consecutive patients with VKC and 10 controls. Participants were subjected to clinical assessment of ocular surface and tear sampling. Total protein quantification, total protein sketch, and protein array (sixty protein candidates) were evaluated. Results. An overall increased Fluorescent Intensity expression was observed in VKC arrays. Particularly, IL1β, IL15, IL21, Eotaxin2, TACE, MIP1α, MIP3α, NCAM1, ICAM2, βNGF, NT4, BDNF, βFGF, SCF, MMP1, and MMP2 were increased in quiescent VKC. Of those candidates, only IL1β, IL15, IL21, βNGF, SCF, MMP2, Eotaxin2, TACE, MIP1α, MIP3α, NCAM1, and ICAM2 were increased in both active and quiescent VKC. Finally, NT4, βFGF, and MMP1 were highly increased in active VKC. Conclusion. A distinct “protein tear-print” characterizes VKC activity, confirming some previously reported factors and highlighting some new candidates common to quiescent and active states. Those candidates expressed in quiescent VKC might be considered as predictive indicators of VKC reactivation and/or exacerbation out-of-season. PMID:26989694

  5. Colors, Star formation Rates, and Environments of Star forming and Quiescent Galaxies at the Cosmic Noon

    CERN Document Server

    Feldmann, Robert; Hopkins, Philip F; Faucher-Giguère, Claude-André; Kereš, Dušan

    2016-01-01

    We analyze the SFRs, stellar masses, galaxy colors, and dust extinctions of galaxies in massive (10^12.5-10^13.5 M_sun) halos at z~2 in high-resolution, cosmological zoom-in simulations as part of the Feedback in Realistic Environments (FIRE) project. The simulations do not model feedback from AGN but reproduce well the observed relations between stellar and halo mass and between stellar mass and SFR. About half of the simulated massive galaxies at z~2 have broad-band colors classifying them as `quiescent', and the fraction of quiescent centrals is steeply decreasing towards higher redshift, in agreement with observations. However, our simulations do not reproduce the reddest of the quiescent galaxies observed at z~2. While simulated quiescent galaxies are less dusty than star forming galaxies, their broad band colors are often affected by moderate levels of interstellar dust. The star formation histories of the progenitors of z~2 star forming and quiescent galaxies are typically bursty, especially at early t...

  6. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  7. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  8. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  9. The Assembly Histories of Quiescent Galaxies since z=0.7 from Absorption Line Spectroscopy

    CERN Document Server

    Choi, Jieun; Moustakas, John; Graves, Genevieve J; Holden, Bradford P; Brodwin, Mark; Brown, Michael J I; van Dokkum, Pieter G

    2014-01-01

    We present results from modeling the optical spectra of a large sample of quiescent galaxies between 0.11 indicate the inhomogeneous nature of the z<0.7 quiescent population. The data also permit the addition of newly-quenched galaxies at masses below ~10^10.5 Msun at z<0.7. Additionally, we analyze very deep Keck DEIMOS spectra of the two brightest quiescent galaxies in a cluster at z=0.83. There is tentative evidence that these galaxies are older than their counterparts in low-density environments. In an Appendix, we demonstrate that our full spectrum modeling technique allows for accurate and reliable modeling of galaxy spectra to low S/N and/or low spectral resolution.

  10. Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain.

    Science.gov (United States)

    Berg, Daniel A; Kirkham, Matthew; Beljajeva, Anna; Knapp, Dunja; Habermann, Bianca; Ryge, Jesper; Tanaka, Elly M; Simon, András

    2010-12-01

    In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.

  11. Differentiating quiescent cancer cell populations in heterogeneous samples with fluorescence lifetime imaging

    Science.gov (United States)

    Heaster, Tiffany M.; Walsh, Alex J.; Skala, Melissa C.

    2016-03-01

    Measurement of relative fluorescence intensities of NAD(P)H and FAD with fluorescence lifetime imaging (FLIM) allows metabolic characterization of cancerous populations and correlation to treatment response. However, quiescent populations of cancer cells introduce heterogeneity to the tumor and exhibit resistance to standard therapies, requiring a better understanding of this influence on treatment outcome. Significant differences were observed between proliferating and quiescent cell populations upon comparison of respective redox ratios (pFAD lifetimes (p<0.05) across monolayers and in mixed samples. These results demonstrate that metabolic activity may function as a marker for separation and characterization of proliferating and quiescent cancer cells within mixed samples, contributing to comprehensive investigation of heterogeneity-dependent drug resistance.

  12. Volcanism-sedimentation interaction in the Campo de Calatrava Volcanic Field (Spain): a magnetostratigraphic and geochronological study

    Science.gov (United States)

    Herrero-Hernández, Antonio; López-Moro, Francisco Javier; Gallardo-Millán, José Luis; Martín-Serrano, Ángel; Gómez-Fernández, Fernando

    2015-01-01

    This work focuses on the influence of Cenozoic volcanism of the Campo de Calatrava volcanic field on the sedimentation of two small continental basins in Spain (Argamasilla and Calzada-Moral basins). The volcanism in this area was mainly monogenetic, according to the small-volume volcanic edifices of scoria cones that were generated and the occurrence of tuff rings and maars. A sedimentological analysis of the volcaniclastic deposits led to the identification of facies close to the vents, low-density (dilute) pyroclastic surges, secondary volcanic deposits and typical maar deposits. Whole-rock K/Ar dating, together with palaeomagnetic constraints, yielded an age of 3.11-3.22 Ma for the onset of maar formation, the deposition finished in the Late Gauss-Early Matuyana. Using both techniques and previous paleontological data allowed it to be inferred that the maar formation and the re-sedimentation stage that occurred in Argamasilla and Calzada-Moral basins were roughly coeval. The occurrence of syn-eruption volcaniclastic deposits with small thicknesses that were separated by longer inter-eruption periods, where fluvial and lacustrine sedimentation was prevalent, together with the presence of small-volume volcanic edifices indicated that there were short periods of volcanic activity in this area. The volcanic activity was strongly controlled by previous basement faults that favoured magma feeding, and the faults also controlled the location of volcanoes themselves. The occurrence of the volcanoes in the continental basins led to the creation of shallow lakes that were related to the maar formation and the modification of sedimentological intra-basinal features, specifically, valley slope and sediment load.

  13. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  14. Are quiescent galaxies truly devoid of star formation? The mid-, far-infrared and radio properties of quiescent galaxies at z = 0.1 - 3

    Science.gov (United States)

    Man, Allison W. S.

    Quiescent galaxy candidates are typically identified by their low unobscured star formation rates from deep field photometric surveys. However, their selection technique relies on the assumption of a universal dust attenuation curve. It is important to verify the selection through independent SFR indicators at longer wavelengths. Current mid-, far-infrared and radio surveys are limited to detecting only galaxies with very strong star formation or AGN activity. Here, I present the first comprehensive stacking results across mid-, far-infrared and radio wavelengths using Spitzer, Herschel and VLA data in the COSMOS field (Man et al. 2014). We find that the rest-frame NUV-r and r-J color criteria, combined with low 24 μm emission, provides a robust selection of truly quiescent galaxies out to z = 3. Additionally, we find evidence of radio emission in excess of the expected total star formation in quiescent galaxies at z ~ 0-1.5, indicative of a ubiquitous presence of low-luminosity radio AGN among them.

  15. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

    Directory of Open Access Journals (Sweden)

    Michio Tomura

    Full Text Available A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120 accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.

  16. Evidence for widespread active galactic nucleus activity among massive quiescent galaxies at z ~ 2

    DEFF Research Database (Denmark)

    Olsen, K.P.; Rasmussen, J.; Toft, S.;

    2013-01-01

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M > 5 × 10 M ) sample of 123 star-forming and quiescent galaxies at 1.5 = z = 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% ± 7% of the galaxies are detected directly in X-rays, 22% ± ......%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z ~ 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution. © 2013. The American Astronomical Society. All rights reserved.....

  17. Volcanic studies at Katmai

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  18. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    The extensive Quaternary volcanism in the Payenia volcanic province, Mendoza, Argentina, is investigated in this study by major and trace element analyses, Sr, Nd, Hf and Pb-isotopic analyses and Zr-Hf isotope dilution data on samples from almost the entire province. The samples are mainly...... in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...

  19. Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: Periodic (Nemrut) vs. episodic (Süphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka

    Science.gov (United States)

    Schmincke, Hans-Ulrich; Sumita, Mari

    2014-09-01

    Fifteen Lateglacial to Holocene rhyolitic, dominantly primary tephra layers piston-cored and drilled (ICDP Paleovan drilling project) in western Lake Van (eastern Anatolia, Turkey) were precisely correlated to either of the two adjacent and active large volcanoes Nemrut and Süphan based on shard textures, mineralogy and mineral and glass compositions. The young peralkaline (comenditic to pantelleritic) primary rhyolitic Nemrut tephras are characterized by anorthoclase, hedenbergitic to augitic clinopyroxene, fayalitic olivine, minor quartz, and rare accessory chevkinite and zircon. Phenocrysts in subalkaline primary rhyolitic Süphan tephras are chiefly oligoclase-labradorite, with minor K-rich sanidine in some, biotite, amphibole, hypersthene, rare augitic clinopyroxene, relatively common allanite and rare zircon. Two contrasting explosive eruptive modes are distinguished from each other: episodic (Süphan) and periodic (Nemrut). The Lateglacial Süphan tephra swarm covers a short time interval of ca. 338 years between ca. 13,078 vy BP and 12,740 vy BP, eruptions having occurred statistically every ca. 42 years with especially short intervals between V-11 (reworked) and V-14. Causes for the strongly episodic Süphan explosive behavior might include seismic triggering of a volcano-magma system unable to erupt explosively without the benefit of external triggering, as reflected in pervasive faulting preceding the Süphan tephra swarm. Seismic triggering may have caused the rise of more mafic ("trachyandesitic") parent magma, heating near-surface pockets of highly evolved magma - that might have formed silicic domes during this stage of volcano evolution - resulting in ascent and finally explosive fragmentation of magma essentially by external factors, probably significantly enhanced by magma-water/ice interaction. Explosive eruptions of the Nemrut volcano system, interpreted to be underlain by a large fractionating magma reservoir, follow a more periodic mode of (a

  20. Io. [theories concerning volcanic activity

    Science.gov (United States)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  1. The soft quiescent spectrum of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on the quiescent X-ray properties of the recently discovered transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5. Using two archival Chandra observations, we demonstrate that the quiescent spectrum of this neutron star low-mass X-ray binary is soft and can be fit to a

  2. Environmental Changes Associated With Deccan Volcanism: evidences from the red bole record

    Science.gov (United States)

    Nikhil, Sharma; Valentin, Sordet; Thierry, Adatte; Gerta, Keller; Eric, Font; Blair, Schoene; Kyle, Samperton; Syed, Khadri

    2017-04-01

    Recent studies indicate that the bulk (80%) of Deccan trap eruptions occurred over a relatively short time interval in magnetic polarity C29r. U-Pb zircon geochronology shows that the main phase-2 began 250 ky before the Cretaceous-Tertiary (KT) mass extinction and continued into the early Danian suggesting a cause-and-effect relationship. Closer to the eruption center, the lava flows are generally separated by red weathered horizons known as red boles that mark quiescent periods between basalt flows. A typical red bole begins with the fresh underlying basalt and evolves into weathered basalt, then, a layer of basalt in a rounded shape called 'bole' surrounded by clays at the top, which is overlain by the next lava flow. Red boles have increasingly attracted the attention of researchers to understand the climatic and paleoenvironmental impact of Continental Flood Basalts (CFB). Recent advances in U-Pb dating of Deccan lava flows, studies of weathering patterns and paleoclimatic information gained from multiproxy analyses of red bole beds (e.g., lithology, mineralogy, geochemistry) yield crucial evidence of environmental changes triggered by volcanic activity. Red boles consist mainly of red silty clays characterized by concentrations of immobile elements such as Al and Fe3+ ions that are typical of paleo-laterites, which probably developed during the short periods of weathering between eruptions. Clay minerals consist mostly of smectite suggesting semi-arid monsoonal conditions. At least 30 thick red bole layers are present in C29r below the KT boundary between lava flows of phase-2 that erupted over a time span of about 250 ky. The short duration exposures of these red boles are reflected in the mineralogical and geochemical data that indicate rapid weathering (high CIA) linked to increasing acid rains. ∂D and ∂18O measured on smectite clays from the red boles approximate the meteoric water composition that prevailed during Deccan eruptions. Isotopic data from

  3. Unique Organization of the Nuclear Envelope in the Post-natal Quiescent Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Arantxa Cebrián-Silla

    2017-07-01

    Full Text Available Neural stem cells (B1 astrocytes; NSCs in the adult ventricular-subventricular-zone (V-SVZ originate in the embryo. Surprisingly, recent work has shown that B1 cells remain largely quiescent. They are reactivated postnatally to function as primary progenitors for neurons destined for the olfactory bulb and some corpus callosum oligodendrocytes. The cellular and molecular properties of quiescent B1 cells remain unknown. Here we found that a subpopulation of B1 cells has a unique nuclear envelope invagination specialization similar to envelope-limited chromatin sheets (ELCS, reported in certain lymphocytes and some cancer cells. Using molecular markers, [3H]thymidine birth-dating, and Ara-C, we found that B1 cells with ELCS correspond to quiescent NSCs. ELCS begin forming in embryonic radial glia cells and represent a specific nuclear compartment containing particular epigenetic modifications and telomeres. These results reveal a unique nuclear compartment in quiescent NSCs, which is useful for identifying these primary progenitors and study their gene regulation.

  4. PRIMUS: Effect of Galaxy Environment on the Quiescent Fraction Evolution at z < 0.8

    CERN Document Server

    Hahn, ChangHoon; Moustakas, John; Coil, Alison L; Cool, Richard J; Eisenstein, Daniel J; Skibba, Ramin A; Wong, Kenneth C; Zhu, Guangtun

    2014-01-01

    We investigate the effects of galaxy environment on the evolution of the quiescent fraction ($f_\\mathrm{Q}$) from z =0.8 to 0.0 using spectroscopic redshifts and multi-wavelength imaging data from the PRIsm MUlti-object Survey (PRIMUS) and the Sloan Digitial Sky Survey (SDSS). Our stellar mass limited galaxy sample consists of ~14,000 PRIMUS galaxies within z = 0.2-0.8 and ~64,000 SDSS galaxies within z = 0.05-0.12. We classify the galaxies as quiescent or star-forming based on an evolving specific star formation cut, and as low or high density environments based on fixed cylindrical aperture environment measurements on a volume-limited environment defining population. For quiescent and star-forming galaxies in low or high density environments, we examine the evolution of their stellar mass function (SMF). Then using the SMFs we compute $f_\\mathrm{Q}(M_{*})$ and quantify its evolution within our redshift range. We find that the quiescent fraction is higher at higher masses and in denser environments. The quie...

  5. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry

    Science.gov (United States)

    Alsyouri, Hatem M.; Abu-Daabes, Malyuba A.; Alassali, Ayah; Lin, Jerry YS

    2013-11-01

    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed.

  6. Evidence for Widespread AGN Activity among Massive Quiescent Galaxies at z ~ 2

    CERN Document Server

    Olsen, Karen Pardos; Toft, Sune; Zirm, Andrew W

    2012-01-01

    We quantify the presence of Active Galactic nuclei (AGN) in a mass-complete (M_* >5e10 M_sun) sample of 123 star-forming and quiescent galaxies at 1.5 3e42 ergs/s). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGN are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGN. Among the quiescent galaxies, the excess suggests that as many as 70-100% of these contain low- or high-luminosity AGN, while the corresponding fraction is lower among star-forming galaxies (43-65%). The ubiquitous presence of AGN in massive, q...

  7. Vortex flow formation during dielectric barrier discharge initiation in quiescent air

    NARCIS (Netherlands)

    Golub, V. V.; Saveliev, A. S.

    2010-01-01

    The structure of vortex flows generated by dielectric barrier discharge initiated in quiescent air at atmospheric pressure has been studied by the methods of particle image velocimetry and schlieren photography. The flow parameters have been measured as functions of the time past the electric discha

  8. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers

    NARCIS (Netherlands)

    Munoz, J.; Stange, D.E.; Schepers, A.G.; van de Wetering, M.; Koo, B.K.; Itzkovitz, S.; Volckmann, R.; Kung, K.S.; Koster, J.; Radulescu, S.; Myant, K.; Versteeg, R.; Sansom, O.J.; van Es, J.H.; Barker, N.; van Oudenaarden, A.; Mohammed, S.; Heck, A.J.R.; Clevers, H.

    2012-01-01

    Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent '+4' cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5(+) CBC cells. Transcriptional profiling of FACS-sorted Lgr5

  9. Detection of abundant CO2 ice in the quiescent dark cloud medium toward Elias 16

    NARCIS (Netherlands)

    Whittet, DCB; Gerakines, PA; Tielens, AGGM; Adamson, AJ; Boogert, ACA; Chiar, JE; de Graauw, T; Ehrenfreund, P; Prusti, T; Schutte, WA; Vandenbussche, B; van Dishoeck, EF

    1998-01-01

    We report the first detection of solid carbon dioxide (CO2) in quiescent regions of a dark cloud in the solar neighborhood, a result that has important implications for models of ice formation and evolution in the interstellar medium. The K-type field star Elias 16 was previously known to display

  10. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  11. Los volcanes y los hombres

    OpenAIRE

    García, Carmen

    2007-01-01

    Desde las entrañas de la tierra, los volcanes han creado la atmósfera, el agua de los océanos, y esculpido los relieves del planeta: son, pues, los zahoríes de la vida. Existen volcanes que los hombres explotan o cultivan, y otros sobre los cuales se han construido observatorios en los que se llevan a cabo avanzadas investigaciones científicas.

  12. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  13. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  14. Fundamental Plane of Black Hole Activity in the Quiescent Regime

    Science.gov (United States)

    Xie, Fu-Guo; Yuan, Feng

    2017-02-01

    A correlation among the radio luminosity ({L}{{R}}), X-ray luminosity ({L}{{X}}), and black hole (BH) mass ({M}{BH}) in active galactic nuclei (AGNs) and BH binaries is known to exist and is called the “fundamental plane” of BH activity. Yuan & Cui predict that the radio/X-ray correlation index, {ξ }{{X}}, changes from {ξ }{{X}}≈ 0.6 to {ξ }{{X}}≈ 1.2{--}1.3 when {L}{{X}}/{L}{Edd} decreases below a critical value of ∼ {10}-6. While many works favor such a change, there are also several works claiming the opposite. In this paper, we gather from the literature the largest quiescent AGN (defined as {L}{{X}}/{L}{Edd}≲ {10}-6) sample to date, consisting of 75 sources. We find that these quiescent AGNs follow a {ξ }{{X}}≈ 1.23 radio/X-ray relationship, in excellent agreement with the Yuan & Cui prediction. The reason for the discrepancy between the present result and some previous works is that their samples contain not only quiescent sources but also “normal” ones (i.e., {L}{{X}}/{L}{Edd}≳ {10}-6). In this case, the quiescent sources will mix up with those normal ones in {L}{{R}} and {L}{{X}}. The value of {ξ }{{X}} will then be between 0.6 and ∼1.3, with the exact value being determined by the sample composition, i.e., the fraction of the quiescent and normal sources. Based on this result, we propose that a more physical way to study the fundamental plane is to replace {L}{{R}} and {L}{{X}} with {L}{{R}}/{L}{Edd} and {L}{{X}}/{L}{Edd}, respectively.

  15. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W., E-mail: karen@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  16. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  17. Estimation of volcanic ash refractive index from satellite infrared sounder data

    Science.gov (United States)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  18. QUIESCENT NUCLEAR BURNING IN LOW-METALLICITY WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Miller Bertolami, Marcelo M.; Althaus, Leandro G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina); García-Berro, Enrique [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, E-08860 Castelldefels (Spain)

    2013-09-20

    We discuss the impact of residual nuclear burning in the cooling sequences of hydrogen-rich (DA) white dwarfs with very low metallicity progenitors (Z = 0.0001). These cooling sequences are appropriate for the study of very old stellar populations. The results presented here are the product of self-consistent, fully evolutionary calculations. Specifically, we follow the evolution of white dwarf progenitors from the zero-age main sequence through all the evolutionary phases, namely the core hydrogen-burning phase, the helium-burning phase, and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. This is done for the most relevant range of main-sequence masses, covering the most usual interval of white dwarf masses—from 0.53 M {sub ☉} to 0.83 M {sub ☉}. Due to the low metallicity of the progenitor stars, white dwarfs are born with thicker hydrogen envelopes, leading to more intense hydrogen burning shells as compared with their solar metallicity counterparts. We study the phase in which nuclear reactions are still important and find that nuclear energy sources play a key role during long periods of time, considerably increasing the cooling times from those predicted by standard white dwarf models. In particular, we find that for this metallicity and for white dwarf masses smaller than about 0.6 M {sub ☉}, nuclear reactions are the main contributor to the stellar luminosity for luminosities as low as log (L/L {sub ☉}) ≅ –3.2. This, in turn, should have a noticeable impact in the white dwarf luminosity function of low-metallicity stellar populations.

  19. Timing, tempo and paleoenvironmental implications of Deccan volcanism relative to the KTB extinction, what we can learn from the red bole record?

    Science.gov (United States)

    Adatte, Thierry; Sordet, Valentin; Keller, Gerta; Schoene, Blair; Samperton, Kyle; Khadri, Syed

    2016-04-01

    Deccan Traps erupted in three main phases with 6% total Deccan volume in phase-1 (C30n), 80% in phase-2 (C29r) and 14% in phase-3 (C29n). Recent studies indicate that the bulk (80%) of Deccan trap eruptions (phase-2) occurred over a relatively short time interval in magnetic polarity C29r. U-Pb zircon geochronology shows that the main phase-2 began 250 ky before the Cretaceous-Tertiary (KT) mass extinction and continued into the early Danian suggesting a cause-and-effect relationship. In India a strong floral response is observed as a direct consequence of volcanic phase-2. Shortly after the onset of Deccan phase-2, the floral association dominated by gymnosperms and angiosperms was decimated as indicated by a sharp decrease in pollen and spores coupled with the appearance of fungi, which mark increasing stress conditions as a direct result of volcanic activity. The inter-trappean sediments deposited in phase-2 are characterized by the highest alteration CIA index values suggesting increased acid rains due to SO2 emissions. In addition, a sharp decrease in pollen and spores coupled with the appearance of fungi mark increasing stress conditions, which are likely a direct result of volcanic activity. Bulk organic geochemistry points to a strong degradation of the indigenous organic matter, suggesting that the biomass was oxidized in acidic conditions triggered by intense volcanic activity. Closer to the eruption center, the lava flows are generally separated by red weathered horizons known as red boles that mark quiescent periods between basalt flows. Red boles have increasingly attracted the attention of researchers to understand the climatic and paleoenvironmental impact of Continental Flood Basalts (CFB). Recent advances in U-Pb dating of Deccan lava flows, studies of weathering patterns and paleoclimatic information gained from multiproxy analyses of red bole beds (e.g., lithology, mineralogy, geochemistry) yield crucial evidence of environmental changes

  20. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  1. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    Science.gov (United States)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  2. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  3. Long-lived volcanism within Argyre basin, Mars

    Science.gov (United States)

    Williams, Jean-Pierre; Dohm, James M.; Soare, Richard J.; Flahaut, Jessica; Lopes, Rosaly M. C.; Pathare, Asmin V.; Fairén, Alberto G.; Schulze-Makuch, Dirk; Buczkowski, Debra L.

    2017-09-01

    The Argyre basin, one of the largest impact structures on Mars with a diameter >1200 km, formed in the Early Noachian ∼3.93 Ga. The basin has collected volatiles and other material through time, and experienced partial infilling with water evident from stratigraphic sequences, crater statistics, topography, and geomorphology. Although volcanism has not been previously associated with the Argyre basin, our study of the northwest portion of the basin floor has revealed landforms suggesting volcanic and tectonic activity occurred including Argyre Mons, a ∼50 km wide volcanic-structure formed ∼3 Ga. Giant polygons with a similar surface age are also identified on terrain adjacent to the base of Argyre Mons, indicating the structure may have formed in a water-rich environment. In addition to Argyre Mons, cones, vents, mounds, dikes, and cavi or hollows, many of which are associated with extensional tectonics, are observed in the region. Multiple features appear to disrupt icy (and largely uncratered) terrain indicating a relatively young, Late Amazonian, formation age for at least some of the volcanic and tectonic features. The discovery of Argyre Mons, along with additional endogenic modification of the basin floor, suggests that the region has experienced episodes of volcanism over a protracted period of time. This has implications for habitability as the basin floor has been a region of elevated heat flow coupled with liquid water, water ice, and accumulation of sediments of diverse provenance with ranging geochemistry, along with magma-water interactions.

  4. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  5. Detection and Classification of Volcanic Earthquakes/Tremors in Central Anatolian Volcanic Province

    Science.gov (United States)

    Kahraman, Metin; Arda Özacar, A.; Bülent Tank, S.; Uslular, Göksu; Kuşcu, Gonca; Türkelli, Niyazi

    2017-04-01

    Central Anatolia has been characterized by active volcanism since 10 Ma which created the so called Central Anatolia Volcanic Province (CAVP) where a series of volcanoes are located along the NE-SW trend. The petrological investigations reveal that the magma source in the CAVP has both subduction and asthenospheric signature possibly due to tearing of ongoing northward subduction of African plate along Aegean and Cyprus arcs. Recently, a temporary seismic array was deployed within the scope of Continental Dynamics: Central Anatolian Tectonics (CD-CAT) project and provided a unique opportunity to study the deep seismic signature of the CAVP. Passive seismic imaging efforts and magnetotellurics (MT) observations revealed low velocity and high conductivity zones supporting the presence of localized partial melt bodies beneath the CAVP at varying depths, especially around Mt. Hasan which exhibits both geological and archeological evidences for its eruption around 7500 B.C. In Central Anatolia, local seismicity detected by the CD-CAT array coincides well with the active faults zones. However, active or potentially active volcanoes within CAVP are characterized by the lack of seismic activity. In this study, seismic data recorded by permanent stations of Regional Earthquake-Tsunami Monitoring Center were combined with temporary seismic data collected by the CD-CAT array to improve sampling density across the CAVP. Later, the continuous seismic waveforms of randomly selected time intervals were manually analyzed to identify initially undetected seismic sources which have signal characters matching to volcanic earthquakes/tremors. For candidate events, frequency spectrums are constructed to classify the sources according to their physical mechanisms. Preliminary results support the presence of both volcano-tectonic (VT) and low-period (LT) events within the CAVP. In the next stage, the spectral and polarization analyses techniques will be utilized to the entire seismic

  6. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  7. Role of volcanic forcing on future global carbon cycle

    Science.gov (United States)

    Tjiputra, J. F.; Otterå, O. H.

    2011-06-01

    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where

  8. Tephrochronology of the Mont-Dore volcanic Massif (Massif Central, France): new 40Ar/39Ar constraints on the Late Pliocene and Early Pleistocene activity

    Science.gov (United States)

    Nomade, Sébastien; Pastre, Jean-François; Nehlig, Pierre; Guillou, Hervé; Scao, Vincent; Scaillet, Stéphane

    2014-03-01

    ky. The occurrence of only one pumice deposit in the 800-ky period between 1.9 and 1.1 Ma suggests that volcanic explosive activity was strongly reduced or quiescent.

  9. Aurorae and Volcanic Eruptions

    Science.gov (United States)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  10. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  11. A Preliminary Study of the Types of Volcanic Earthquakes and Volcanic Activity at the Changbaishan Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    Ming Yuehong; Su Wei; Fang Lihua

    2006-01-01

    Since 2002, a significant increase in seismicity, obvious ground deformation and geochemical anomalies have been observed in the Changbaishan Tianchi volcanic area. A series felt earthquakes occur near the caldera, causing great influence to society. In this paper, the types of volcanic earthquakes recorded by the temporal seismic network since 2002 have been classified by analyzing the spectrum, time-frequency characteristics and seismic waveforms at different stations. The risk of volcano eruptions was also estimated. Our results show that almost all earthquakes occurring in Tianchi volcano are volcanic-tectonic earthquakes. The low frequency seismic waveforms observed at a few stations may be caused by local mediums, and have no relation with long-period events. Although the level of seismicity increased obviously and earthquake swarms occurred more frequently than before, we considered that the magma activity is still in its early stage and the eruption risk of Changbaishan Tianchi volcano is still iow in the near future.

  12. Geochemical study for volcanic surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Panichi, C.; La Ruffa, G. [Consiglio Nazionale delle Ricerche, International Institute for Geothermal Research Ghezzano, PI (Italy)

    2000-07-01

    For years, geologists have been striving to reconstruct volcanic eruptions from the analysis of pyroclastic deposits and lava flows on the surface of the earth and in the oceans. This effort has produced valuable information on volcanic petrology and magma generation, separation, mixing, crystallisation, and interaction with water in phreatomagmatic and submarine eruptions. The volcanological process are tied to the dynamics of the earth's crust and lithosphere. The mantle, subducted oceanic crust, and continental crust contain different rock types and are sources of different magmas. Magmas consist primarily of completely or partially molten silicates containing volatile materials either dissolved in the melt or as bubbles of gas. The silicate and volatile portions affect the physical properties of magma and, therefore, the nature of a volcanic eruption.

  13. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  14. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia: preventing the danger of volcanic eruptions to aviation.

    Science.gov (United States)

    Girina, O.; Neal, Ch.

    2012-04-01

    The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the

  15. AP-1 is a component of the transcriptional network regulated by GSK-3 in quiescent cells.

    Directory of Open Access Journals (Sweden)

    John W Tullai

    Full Text Available BACKGROUND: The protein kinase GSK-3 is constitutively active in quiescent cells in the absence of growth factor signaling. Previously, we identified a set of genes that required GSK-3 to maintain their repression during quiescence. Computational analysis of the upstream sequences of these genes predicted transcription factor binding sites for CREB, NFκB and AP-1. In our previous work, contributions of CREB and NFκB were examined. In the current study, the AP-1 component of the signaling network in quiescent cells was explored. METHODOLOGY/PRINCIPAL FINDINGS: Using chromatin immunoprecipitation analysis, two AP-1 family members, c-Jun and JunD, bound to predicted upstream regulatory sequences in 8 of the 12 GSK-3-regulated genes. c-Jun was phosphorylated on threonine 239 by GSK-3 in quiescent cells, consistent with previous studies demonstrating inhibition of c-Jun by GSK-3. Inhibition of GSK-3 attenuated this phosphorylation, resulting in the stabilization of c-Jun. The association of c-Jun with its target sequences was increased by growth factor stimulation as well as by direct GSK-3 inhibition. The physiological role for c-Jun was also confirmed by siRNA inhibition of gene induction. CONCLUSIONS/SIGNIFICANCE: These results indicate that inhibition of c-Jun by GSK-3 contributes to the repression of growth factor-inducible genes in quiescent cells. Together, AP-1, CREB and NFκB form an integrated transcriptional network that is largely responsible for maintaining repression of target genes downstream of GSK-3 signaling.

  16. The Ultraviolet Spectral Energy Distributions of Quiescent Black Holes and Neutron Stars

    Science.gov (United States)

    Hynes, R. I.; Robinson, E. L.

    2012-04-01

    We present Hubble Space Telescope/Advanced Camera for Surveys ultraviolet photometry of three quiescent black hole X-ray transients, X-ray Nova Muscae 1991 (GU Mus), GRO J0422+32 (V518 Per), and X-ray Nova Vel 1993 (MM Vel), and one neutron star system, Aql X-1. These are the first quiescent UV detections of these objects. All are detected at a much higher level than expected from their companion stars alone and are significant detections of the accretion flow. Three of the four UV excesses can be characterized by a blackbody of temperature 5000-13, 000 K, hotter than expected for the quiescent outer disk. A good fit could not be found for MM Vel. The source of the blackbody-like emission is most likely a heated region of the inner disk. Contrary to initial indications from spectroscopy, there does not appear to be a systematic difference in the UV luminosity or spectral shape between black holes and neutron star systems. However, combining our new data with earlier spectroscopy and published X-ray luminosities, there is a significant difference in the X-ray to UV flux ratios, with the neutron stars exhibiting L X/L UV about 10 times higher than the black hole systems. This is consistent with earlier comparisons based on estimating non-stellar optical light, but since both bandpasses we use are expected to be dominated by accretion light, we present a cleaner comparison. This suggests that the difference in X-ray luminosities cannot simply reflect differences in quiescent accretion rates and so the UV/X-ray ratio is a more robust discriminator between the black hole and neutron star populations than the comparison of X-ray luminosities alone.

  17. Morphometric characterization of monogenetic volcanic cones of the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico

    Science.gov (United States)

    Zarazua-Carbajal, Maria Cristina; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    Morphometric characterization of volcanic edifices is one of the main approaches providing information about a volcano eruptive history, whether it has one or more eruptive vents or if it had any sector collapses. It also provides essential information about the physical processes that modify their shapes during periods of quietness, and quite significantly, about the volcanoes' ages. In the case of monogenetic activity, a volcanic field can be characterized by the size and slope distributions, and other cone's morphometric parameter distributions that may provide valuable information about the temporal evolution of the volcanic field. The increasingly available high-resolution digital elevation models and the continuously developing computer tools have allowed a faster development and more detailed morphometric characterization techniques. We present here a methodology to readily obtain diverse volcanic cone shape parameters from the contour curves such as mean slope, slope distribution, dimensions of the cone and crater, crater location within the cone, orientation of the cone's principal axis, eccentricity, and other morphological features using an analysis algorithm that we developed, programmed in Python and ArcPy. Preliminary results from the implementation of this methodology to the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico have permitted a preliminary estimation of the age distribution of some of the cones with an acceptable correlation with the available radiometric ages. A large part of the Chichinautzin region DEM was obtained from a LIDAR survey by the Mexican National Institute of Statistics and Geography (INEGI).

  18. Spectral Energy Distribution of Markarian 501: Quiescent State Versus Extreme Outburst

    Science.gov (United States)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Huang, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.; VERITAS Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinović, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Paneque, D.; Hayashida, M.

    2011-03-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.

  19. Spectral Energy Distribution of Markarian 501: Quiescent State vs. Extreme Outburst

    CERN Document Server

    Acciari, V A; Aune, T; Beilicke, M; Benbow, W; Böttcher, M; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Cannon, A; Cesarini, A; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Errando, M; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Huang, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Madhavan, A S; Maier, G; McArthur, S; McCann, A; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pichel, A; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Steele, D; Swordy, S P; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wood, M; Zitzer, B; Aleksić, J; Antonelli, L A; Antoranz, P; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Camara, M; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fonseca, M V; Font, L; López, R J García; Garczarczyk, M; Gaug, M; Giavitto, G; Godinović, N; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Jogler, T; Klepser, S; Krähenbühl, T; Kranich, D; Krause, J; La Barbera, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moralejo, A; Nieto, D; Nilsson, K; Orito, R; Oya, I; Paoletti, R; Paredes, J M; Partini, S; Pasanen, M; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Storz, J; Strah, N; Struebig, J C; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Torres, D F; Vankov, H; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Paneque, D; Hayashida, M

    2010-01-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Markarian 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Markarian 501 was coordinated in March 2009, focusing around a multi-day observation with the Suzaku X-ray satellite and including {\\gamma}-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Markarian 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of April 16, 1997, with the goal of examining variability of the spectral energy distribution between the two states. The derived broadband spectral energy distribution shows the characteristic doub...

  20. Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2

    Science.gov (United States)

    Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan

    2015-01-01

    Compact quiescent galaxies in the redshift range 0.6 histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  1. Evaluation of bacteriology of middle ear in early quiescent stage of chronic otitis media

    Directory of Open Access Journals (Sweden)

    Ramesh Bhandari

    2013-09-01

    Full Text Available Objectives The objectives of this study were to determine whether any organism does exist in middle ear cavity during the early quiescent stage of chronic otitis media and to isolate their types. Materials and methods Forty-seven patients of age 13 years and above with diagnosis of chronic otitis media mucosal type in early quiescent stage were included. Swab was collected from middle ear cavity for culture and sensitivity in operation theatre prior to middle ear surgery and brought to microbiology laboratory within half an hour to inoculate in Blood agar, Chocolate agar and Mac Conkey agar. The isolates were identified with the use of standard bacteriological technique. Results Aerobic bacteria were isolated from 15 cases (31.9%. Staphylococcus aureus isolated in 12(80%, Pseudomonas aeruginosa in 2(13.3% and E. coli in 1(6.7%. Conclusion Aerobic bacteria were isolated from middle ear cavity in quiescent stage of chronic otitis media in 15(32% cases. Staphylococcus aureus was the most common organism. Journal of College of Medical Sciences-Nepal, 2012, Vol-8, No-4, 22-26 DOI: http://dx.doi.org/10.3126/jcmsn.v8i4.8696

  2. Suppressing star formation in quiescent galaxies with supermassive black hole winds

    CERN Document Server

    Cheung, Edmond; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-01-01

    Quiescent galaxies with little or no ongoing star formation dominate the galaxy population above $M_{*}\\sim 2 \\times 10^{10}~M_{\\odot}$, where their numbers have increased by a factor of $\\sim25$ since $z\\sim2$. Once star formation is initially shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat subsequently accreted gas from stellar mass loss or mergers that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centers of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized gas velocity gradients from which we infer the presence of centrally-driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies ar...

  3. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  4. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  5. A 780-year record of explosive volcanism from DT263 ice core in east Antarctica

    Institute of Scientific and Technical Information of China (English)

    ZHOU Liya; LI Yuansheng; Jihong Cole-da; TAN Dejun; SUN BO; REN Jiawen; WEI Lijia; WANG Henian

    2006-01-01

    Ice cores recovered from polar ice sheet Received and preserved sulfuric acid fallout from explosive volcanic eruptions. DT263 ice core was retrieved from an east Antarctic location. The ice core is dated using a combination of annual layer counting and volcanic time stratigraphic horizon as 780 years (1215-1996 A.D.). The ice core record demonstrates that during the period of approximately 1460-1800 A.D., the accumulation is sharply lower than the levels prior to and after this period. This period coincides with the most recent neoglacial climatic episode, the "Little Ice Age (LIA)", that has been found in numerous Northern Hemisphere proxy and historic records.The non-sea-salt SO2-4 concentrations indicate seventeen volcanic events in DT263 ice core. Compared with those from previous Antarctic ice cores, significant discrepancies are found between these records in relative volcanic flux of several well-known events. The discrepancies among these records may be explained by the differences in surface topography, accumulation rate, snow drift and distribution which highlight the potential impact of local glaciology on ice core volcanic records, analytical techniques used for sulfate measurement, etc. Volcanic eruptions in middle and high southern latitudes affect volcanic records in Antarctic snow more intensively than those in the Iow latitudes.

  6. The assembly histories of quiescent galaxies since z = 0.7 from absorption line spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jieun; Conroy, Charlie [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, Loudonville, NY 12110 (United States); Graves, Genevieve J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Holden, Bradford P. [UCO/Lick Observatories, University of California, Santa Cruz, CA 95064 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Van Dokkum, Pieter G. [Department of Astrophysical Sciences, Yale University, New Haven, CT 06520 (United States)

    2014-09-10

    We present results from modeling the optical spectra of a large sample of quiescent galaxies between 0.1 < z < 0.7 from the Sloan Digital Sky Survey (SDSS) and the AGN and Galaxy Evolution Survey (AGES). We examine how the stellar ages and abundance patterns of galaxies evolve over time as a function of stellar mass from 10{sup 9.6}-10{sup 11.8} M {sub ☉}. Galaxy spectra are stacked in bins of mass and redshift and modeled over a wavelength range from 4000 Å to 5500 Å. Full spectrum stellar population synthesis modeling provides estimates of the age and the abundances of the elements Fe, Mg, C, N, and Ca. We find negligible evolution in elemental abundances at fixed stellar mass over roughly 7 Gyr of cosmic time. In addition, the increase in stellar ages with time for massive galaxies is consistent with passive evolution since z = 0.7. Taken together, these results favor a scenario in which the inner ∼0.3-3 R {sub e} of massive quiescent galaxies have been passively evolving over the last half of cosmic time. Interestingly, the derived stellar ages are considerably younger than the age of the universe at all epochs, consistent with an equivalent single-burst star formation epoch of z ≲ 1.5. These young stellar population ages coupled with the existence of massive quiescent galaxies at z > 1 indicate the inhomogeneous nature of the z ≲ 0.7 quiescent population. The data also permit the addition of newly quenched galaxies at masses below ∼10{sup 10.5} M {sub ☉} at z < 0.7. Additionally, we analyze very deep Keck DEIMOS spectra of the two brightest quiescent galaxies in a cluster at z = 0.83. There is tentative evidence that these galaxies are older than their counterparts in low-density environments. In the Appendix, we demonstrate that our full spectrum modeling technique allows for accurate and reliable modeling of galaxy spectra to low S/N (∼20 Å{sup –1}) and/or low spectral resolution (R ∼ 500).

  7. Automatic classification of seismo-volcanic signatures

    Science.gov (United States)

    Malfante, Marielle; Dalla Mura, Mauro; Mars, Jérôme; Macedo, Orlando; Inza, Adolfo; Métaxian, Jean-Philippe

    2017-04-01

    The prediction of volcanic eruptions and the evaluation of their associated risks is still a timely and open issue. For this purpose, several types of signals are recorded in the proximity of volcanoes and then analysed by experts. Typically, seismic signals that are considered as precursor or indicator of an active volcanic phase are detected and manually classified. In this work, we propose an architecture for automatic classification of seismo-volcanic waves. The system we propose is based on supervised machine learning. Specifically, a prediction model is built from a large dataset of labelled examples by the means of a learning algorithm (Support Vector Machine or Random Forest). Four main steps are involved: (i) preprocess the signals, (ii) from each signal, extract features that are useful for the classes discrimination, (iii) use an automatic learning algorithm to train a prediction model and (iv) classify (i.e., assign a semantic label) newly recorded and unlabelled examples. Our main contribution lies in the definition of the feature space used to represent the signals (i.e., in the choice of the features to extract from the data). Feature vectors describe the data in a space of lower dimension with respect to the original one. Ideally, signals are separable in the feature space depending on their classes. For this work, we consider a large set of features (79) gathered from an extensive state of the art in both acoustic and seismic fields. An analysis of this feature set shows that for the application of interest, 11 features are sufficient to discriminate the data. The architecture is tested on 4725 seismic events recorded between June 2006 and September 2011 at Ubinas, the most active volcano of Peru. Six main classes of signals are considered: volcanic tremors (TR), long period (LP), volcano-tectonic (VT), explosion (EXP), hybrids (HIB) and tornillo (TOR). Our model reaches above 90% of accuracy, thereby validating the proposed architecture and the

  8. Supercomputer modeling of volcanic eruption dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  9. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    Science.gov (United States)

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-10-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  10. Volcanic forcing in decadal forecasts

    Science.gov (United States)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe

    2016-04-01

    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  11. Experimental generation of volcanic lightning

    Science.gov (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  12. Apical meristem organization and lack of establishment of the quiescent center in Cactaceae roots with determinate growth.

    Science.gov (United States)

    Rodríguez-Rodríguez, José Fernando; Shishkova, Svetlana; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2003-10-01

    Some species of Cactaceae from the Sonoran Desert are characterized by a determinate growth pattern of the primary root, which is important for rapid lateral-root formation and seedling establishment. An analysis of the determinate root growth can be helpful for understanding the mechanism of meristem maintenance in plants in general. Stenocereus gummosus (Engelm.) Gibson & Horak and Pachycereus pringlei (S. Watson) Britton & Rose are characterized by an open type of root apical meristem. Immunohistochemical analysis of 5-bromo-2'-deoxyuridine incorporation into S. gummosus showed that the percentage of cells passing through the S-phase in a 24-h period is the same within the zone where a population of relatively slowly proliferating cells could be established and above this zone in the meristem. This indicated the absence of the quiescent center (QC) in S. gummosus. During the second and the third days of growth, in the distal meristem portion of P. pringlei roots, a compact group of cells that had a cell cycle longer than in the proximal meristem was found, indicating the presence of the QC. However, later in development, the QC could not be detected in this species. These data suggest that during post-germination the absence of the establishment of the QC within the apical meristem and limited proliferative activity of initial cells are the main components of a determinate developmental program and that establishment of the QC is required for maintenance of the meristem and indeterminate root growth in plants.

  13. Quiescent Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1972-01-01

    The Conference was sponsored by the European Physical Society and by the Danish Atomic Energy Commission. The latter also gave financial support. The meeting was organized by members of the Q-machine group at Risø in collaboration with an international advisory committee consisting of Dr. N. D'An...

  14. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  15. Tree Rings and Volcanic Eruptions: Reviewing the Potential of Dendrochemistry for the Absolute Dating of Past Volcanism

    Science.gov (United States)

    Pearson, C.; Manning, S. W.; Coleman, M.; Jarvis, K.

    2003-12-01

    Investigations of volcanic impact on human society and the environment are presently restrained by a lack of secure absolute dates for eruptions prior to the last few hundred years. The degree of impact and recovery, and the scope of any sociological repercussions, can only be fully explored if working from a precise, known, starting point and against a secure absolute timescale. A potential means to high resolution dating for the majority of the Holocene lies with globally available, absolutely dated tree ring chronologies. Many of these have been shown to record short term climatic alterations in periods following volcanic eruptions of known or approximate date. This argument however, has been based on an apparent correlation between the dates of specific tree ring growth anomalies and the dates of a number of eruptions in the recent historical period. The statistical correlation is less than decisive and the exact volcano-climate-tree growth linkage is by no means universally agreed. It has been suggested that a potential means to solve this problem and to attach absolute dates to volcanic eruptions via tree rings may lie in the chemistry of the annual woody increment. This paper assesses the potential of conventional Inductively Coupled Plasma Mass Spectrometry (ICP-MS) versus laser ablation ICP-MS (LA-ICP-MS) in terms of exploring this research objective. It also reviews the prospects for a dendrochemical resolution to the problem of attributing an absolute date to the volcanic eruptions of prehistory.

  16. The Role of Authigenic Volcanic Ash in Marine Sediment

    Science.gov (United States)

    Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.

    2016-12-01

    Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.

  17. Paleoarchean trace fossils in altered volcanic glass

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-01-01

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas. PMID:26038543

  18. Paleoarchean trace fossils in altered volcanic glass.

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-06-02

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.

  19. Tilt signals at Mount Melbourne, Antarctica: evidence of a shallow volcanic source

    Directory of Open Access Journals (Sweden)

    Salvatore Gambino

    2016-06-01

    Full Text Available Mount Melbourne (74°21′ S, 164°43′ E is a quiescent volcano located in northern Victoria Land, Antarctica. Tilt signals have been recorded on Mount Melbourne since early 1989 by a permanent shallow borehole tiltmeter network comprising five stations. An overall picture of tilt, air and permafrost temperatures over 15 years of continuous recording data is reported. We focused our observations on long-term tilt trends that at the end of 1997 showed coherent changes at the three highest altitude stations, suggesting the presence of a ground deformation source whose effects are restricted to the summit area of Mount Melbourne. We inverted these data using a finite spherical body source, thereby obtaining a shallow deflation volume source located under the summit area. The ground deformation observed corroborates the hypothesis that the volcanic edifice of Mount Melbourne is active and should be monitored multidisciplinarily.

  20. Volcanic hazard zonation of the Nevado de Toluca volcano, México

    Science.gov (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.

    2008-10-01

    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  1. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    Science.gov (United States)

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  2. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  3. Recent seismicity detection increase at Santorini' s volcanic islands

    Science.gov (United States)

    Chouliaras, G.; Drakatos, G.; Makropoulos, K.; Melis, N. S.

    2012-04-01

    Santorini is the most active volcano in the southern Aegean volcanic arc. To improve the seismological network detectability of the Santorini seismicity, the Institute of Geodynamics of the National Observatory of Athens (NOA) installed 6 new seismological stations. The addition of these stations which begun in the year 2010 has significantly improved the detectability and reporting of the local seismic activity in NOA's instrumental seismicity catalog. Anomalous spatial and temporal changes in the b-value of the frequency-magnitude relationship and changes in the seismicity rate have been reported for many active volcanoes and have been used for the mapping of active magma chambers. In this study we present the results from a quantitative analysis of the seismicity in the Santorini volcanic complex using the seismicity catalog of NOA. From these results we observe a significant detection increase after the year 2010 mainly for events of small magnitudes and an increase in the seismicity rate by more than 100%. The statistical significance of this rate change is determined and mapped with the z-value method and it is found that the seismicity rate increases significantly within the two main active fault zones of the volcanic complex, in a zone perpendicular to the extensive tectonic regime that characterizes this region. Temporal variations in the b-value for different time periods indicate a rather homogeneous behaviour of the frequency-magnitude curves. The spatial distribution of the b-value is shown to vary around the volcanic complex exhibiting low b-values in the two main regions of seismic activity. A b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. The results from this study are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for

  4. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    Science.gov (United States)

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  5. The Impact of Surface Temperature Inhomogeneities on Quiescent Neutron Star Radius Measurements

    Science.gov (United States)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.; Bogdanov, S.; Stevens, A. L.

    2016-08-01

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 in the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.

  6. Suppressing star formation in quiescent galaxies with supermassive black hole winds

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; SDSS-IV/MaNGA

    2016-01-01

    In the last 10 billion years (i.e., since redshift z ~2) the number of quiescent galaxies with little to no ongoing star formation has grown by a factor ~25. This is challenging to understand since galaxy formation models predict that these galaxies will continue to accrete fresh gas over their lifetimes, relatively little of which is required to reignite measurable star formation. It is thought that feedback from fresh gas accreting onto a central active galactic nucleus (AGN) might help such galaxies maintain their quiescence, but observational evidence for such ``maintenance mode feedback'' remains sparse. Using novel imaging spectroscopy from the SDSS-IV MaNGA Survey (Sloan Digital Sky Survey IV: Mapping Nearby Galaxies at Apache Point Observatory), we present evidence for a new maintenance mode phenomenon we term ``red geysers,'' a potentially episodic but relatively low-power AGN driven wind present in typical quiescent field galaxies of moderate mass and spheroidal morphology. We examine an archetypal red geyser that appears to be accreting gas from a low-mass companion but has no corresponding star formation. Instead, we find evidence for a galaxy-scale ionized wind with outflow velocities reaching more than 300 km/s and high velocity dispersions. We also detect a narrow biconical pattern of strong emission line equivalent widths consistent with fast shocks. Given additional confirmation of a radio AGN present in the galaxy, we propose that red geysers such as this may be a common mode in which gas accretion activates an ionized wind feedback mechanism that prevents star formation and helps moderate luminosity quiescent galaxies maintain their quiescence.

  7. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Science.gov (United States)

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  8. A massive, quiescent galaxy at a redshift of 3.717

    Science.gov (United States)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  9. Transport of gaseous pollutants around a human body in quiescent indoor environment

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Mioduszewski, Pawel

    2014-01-01

    (CBL) to transport the pollution in quiescent indoor environment. A human body is resembled by a thermal manikin with a body shape and surface temperature distribution of a real person. The objective of the study is to examine the impact of the pollutant location around the human body on the pollution...... concentration levels in the breathing zone. The results show that the location of the pollution source has a considerable influence of the breathing zone concentrations. This is contributed to the human CBL, as it pulls the pollution emitted close to the human body and transports it to the breathing zone...... the human body should be recognized in ventilation design practice....

  10. Suppressing star formation in quiescent galaxies with supermassive black hole winds

    OpenAIRE

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E.; Heckman, Timothy M.; Drory, Niv; Law, David R.; Masters, Karen L.; Thomas, Daniel; Wake, David A.

    2016-01-01

    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group. Quiescent galaxies with little or no ongoing star formation dominate the galaxy population above M∗ ∼ 2×10^10 M , where their numbers have increased by a factor of ∼ 25 since z ∼ 2. Once star formation is initially shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat subseq...

  11. STABILITY AND MIXING CHARACTER FOR BUOYANT JETS IN QUIESCENT SHALLOW WATER

    Institute of Scientific and Technical Information of China (English)

    ZENG Yu-hong

    2005-01-01

    The near field stability and mixing characteristics of buoyant jets produced by thermal diffuse in quiescent shallow water are investigated numerically to predict under what combinations of discharge and ambient characteristics the near field will be stable or unstable.Analyses for different discharging types show that the discharge stability is purely dependent on the near-field behavior of the jets, or the dynamic interaction of the buoyant jet region, the surface impingement region and the internal hydraulic jump region, and is independent of the far-field geometry of the receiving water.The stability criterion is a function of the relative submerged depth, and source densimetric Froude number.

  12. Quasi-Quiescent Radio Emission from the First Radio-Emitting T Dwarf

    CERN Document Server

    Williams, Peter K G; Zauderer, B Ashley

    2013-01-01

    Radio detections of ultracool dwarfs provide insight into their magnetic fields and the dynamos that maintain them, especially at the very bottom of the main sequence, where other activity indicators dramatically weaken. Until recently, the coolest brown dwarf detected in the radio was only of spectral type L3.5, but this has changed with the Arecibo detection of rapid polarized flares from the T6.5 dwarf 2MASS J10475385+2124234. Here, we report the detection of quasi-quiescent radio emission from this source at 5.8 GHz using the Karl G. Jansky Very Large Array. The luminosity is {\

  13. Anomalous diffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2015-01-01

    Volcanic seismicity at Mt. Etna is studied. It is found that the associated stochastic process exhibits a subdiffusive phenomenon. The jump probability distribution well obeys an exponential law, whereas the waiting-time distribution follows a power law in a wide range. Although these results would seem to suggest that the phenomenon could be described by temporally-fractional kinetic theory based on the viewpoint of continuous-time random walks, the exponent of the power-law waiting-time distribution actually lies outside of the range allowed in the theory. In addition, there exists the aging phenomenon in the event-time averaged mean squared displacement, in contrast to the picture of fractional Brownian motion. Comments are also made on possible relevances of random walks on fractals as well as nonlinear kinetics. Thus, problems of volcanic seismicity are highly challenging for science of complex systems.

  14. Global Volcanism on Mercury at About 3.8 Ga

    Science.gov (United States)

    Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.

    2014-12-01

    Smooth plains occupy c. 27% of the surface of Mercury. Embayment relations, spectral contrast with surroundings, and morphologic characteristics indicate that the majority of these plains are volcanic. The largest deposits are located in Mercury's northern hemisphere and include the extensive northern plains (NP) and the Caloris interior and exterior plains (with the latter likely including basin material). Both the NP and Caloris deposits are, within statistical error, the same age (~3.8-3.9 Ga). To test whether this age reflects a period of global volcanism on Mercury, we determined crater size-frequency distributions for four smooth plains units in the planet's southern hemisphere interpreted to be volcanic. Two deposits are situated within the Beethoven and Tolstoj impact basins; two are located close to the Debussy and the Alver and Disney basins, respectively. Each deposit hosts two populations of craters, one that postdates plains emplacement and one that consists of partially to nearly filled craters that predate the plains. This latter population indicates that some time elapsed between formation of the underlying basement and plains volcanism, though we cannot statistically resolve this interval at any of the four sites. Nonetheless, we find that the age given by the superposed crater population in each case is ~3.8 Ga, and crater density values are consistent with those for the NP and Caloris plains. This finding supports a global phase of volcanism near the end of the late heavy bombardment of Mercury and may indicate a period of widespread partial melting of Mercury's mantle. Notably, superposition relations between smooth plains, degraded impact structures, and contractional landforms suggest that by this time interior cooling had already placed Mercury's lithosphere in horizontal compression, tending to inhibit voluminous dike-fed volcanism such as that inferred responsible for the NP. Most smooth plains units, including the Caloris plains and our

  15. Seismicity at Lusi and the adjacent volcanic complex, Java, Indonesia

    Science.gov (United States)

    Obermann, Anne; Karyono, Karyono; Diehl, Tobias; Lupi, Matteo; Mazzini, Adriano

    2017-04-01

    We study the local seismicity around the spectacular Lusi eruption site, a sedimentary- hosted hydrothermal system in East Java. Lusi is located 10 km NE of the Arjuno-Welirang volcanic complex and is fed by both mantellic and hydrothermal fluids rising and mixing with those present in the sedimentary formations. During a period of 17 months, we observed 289 micro-seismic earthquakes with local magnitudes ranging from ML0.5 to ML1.7. The events predominantly nucleate at depths of 8-13 km below the Arjuno-Welirang volcanic complex. Despite the geological evidence of active tectonic deformation and faulting observed at the surface, little to no seismicity is observed in the sedimentary basin hosting Lusi. Although we cannot entirely rule out artifacts due to a significantly increased detection threshold in the sedimentary basin, the deficit in seismicity suggests aseismic deformation beneath Lusi due to the large amount of fluids that may lubricate the fault system. An analysis of focal mechanisms of seven selected events around the Arjuno-Welirang volcanic complex indicate predominantly strike-slip faulting activity in the region SW of Lusi. This type of activity is consistent the orientation and the movements observed for the Watukosek fault system that extends from the volcanic complex towards the NE of Java. Our results suggest that the tectonic deformation of the region is characterized by scattered faulting, rather than localized along a distinct fault plane.

  16. Pore Structure of Cement Pastes Blended with Volcanic Rock

    Institute of Scientific and Technical Information of China (English)

    YU Lehua; ZHOU Shuangxi; LI Liling

    2016-01-01

    The pore parameters of cement pastes blended with volcanic rock at the curing age of 1, 28 and 90 d were de-termined by a mercury intrusion porosimetry. The pore structure of the pastes was characterized through the analysis of porosity, average pore diameter, the most probable pore aperture, pore size distribution, as well as total pore volume. For the improvement of mechanical property and durability of cement-based material, the correlation of the formed pore structure with hydration time and replacement level of volcanic rock for cement was revealed. The results indicate that volcanic rock can diminish porosity and reduce pore size in cement paste when curing time prolongs, which is particu-larly prominent with replacement level of less than 20% in late period. The more harmful pores (i.e., capillary pore) are gradually transformed into harmless pore (i.e., gel pores or micropore), even fully filled and disappeared when hydration products increase. The pore structure of the cement paste is thus refined. The beneficial effect of volcanic rock on the pore structure of cement paste could enhance the mechanical property and durability of cement-based material.

  17. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the c. 1450s eruption of Kuwae, Vanuatu

    Directory of Open Access Journals (Sweden)

    C. T. Plummer

    2012-05-01

    Full Text Available Volcanic eruptions are an important cause of natural climate variability. In order to improve the accuracy of climate models, precise dating and magnitude of the climatic effects of past volcanism are necessary. Here we present a 2000-yr record of Southern Hemisphere volcanism recorded in ice cores from the high accumulation Law Dome site, East Antarctica. The ice cores were analyzed for a suite of chemistry signals and are independently dated via annual layer counting, with 11 ambiguous years by the end of the record. Independently dated records are important to avoid circular dating where volcanic signatures are assigned a date from some external information rather than using the date it is found in the ice core. Forty-five volcanic events have been identified using the sulfate chemistry of the Law Dome record. Comparisons between Law Dome and NGRIP (Greenland volcanic records suggest Law Dome is the most accurately dated Antarctic volcanic dataset and allows for the records to be synchronized with NGRIP, leading to an improved global volcanic forcing dataset. Volcanic sulfate deposition estimates are important for modeling the climatic response to eruptions. The largest volcanic sulfate events in our record are dated at 1458 CE (Kuwae, Vanuatu, 1257 and 423 CE (unidentified. Using our record we refine the dating of previously known volcanic events and present evidence for two separate eruptions during the period 1450–1460 CE, potentially causing confusion in the assignment of the Kuwae (Vanuatu eruption to volcanic signatures during this time interval.

  18. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  19. THE MEANING OF VOLCANIC ASH CHARACTERISTICS FOUND IN THE ARCHAEOLOGICAL POTTERY OF CHICHEN ITZA, YUCATAN, MEXICO

    OpenAIRE

    Chung, Heajoo; Song, Youngsun

    2014-01-01

    The Yucatan peninsula is a limestone based karst region. However, most of the pottery fragments from the Mayan Postclassic period of Chichen Itza, Yucatan, Mexico, contain volcanic materials as temper. Petrographic thin section analysis of pottery from Chichen Itza and related Yucatan archaeological sites shows that volcanic materials in the paste composition have two distinguishing characteristics. The glass shards and pumice frag-ments found in the pottery are fresh in form, mineralogically...

  20. Alkali Basalts From the Galatia Volcanic Complex, NW Central Anatolia, Turkey

    OpenAIRE

    Tankut, Ayla; GÜLEÇ, Nilgün

    2014-01-01

    Alkali basalts occur as small lava flows associated with the andesitic lava flows and pyroclastics of Early to Middle Miocene age which are the main constituents of the Galatia volcanic complex. The northern margin of the complex is bordered by the North Anatolian Fault wher eas the southern margin is surrounded by a continental sedimentary sequence which interfingers with the volcanics. New K-Ar age determinations of the basalts reveal that alkali basalts erupted at two differ ent periods ...

  1. The impact of stratospheric volcanic aerosol on decadal-scale climate predictions

    Science.gov (United States)

    Timmreck, Claudia; Pohlmann, Holger; Illing, Sebastian; Kadow, Christopher

    2016-04-01

    The possibility of a large future volcanic eruption provides arguably the largest uncertainty concerning the evolution of the climate system on the time scale of a few years; but also the greatest opportunity to learn about the behavior of the climate system, and our models thereof. So the question emerges how large will the uncertainty be for future decadal climate predictions if no volcanic aerosol is taken into account? And how strong has volcanic aerosol affected decadal prediction skill on annual and multi-year seasonal scales over the CMIP5 hindcast period? To understand the impact of volcanic aerosol on multi-year seasonal and decadal climate predictions we performed CMIP5-type hindcasts without volcanic aerosol using the German MiKlip prediction system system baseline 1 from 1961 to 1991 and compared them to the corresponding simulations including aerosols. Our results show that volcanic aerosol significantly affects the prediction skill for global mean surface air temperature in the first five years after strong volcanic eruptions. Also on the regional scale a volcanic imprint on decadal-scale variability is detectable. Neglecting volcanic aerosol leads to a reduced prediction skill over the tropical and subtropical Atlantic, Indic and West Pacific but to an improvement over the tropical East-Pacific, where the model has in general no skill. Multi-seasonal differences in the skill for seasonal-mean temperatures are evident over Continental Europe with significant skill loss due to neglection of volcanic aerosol in boreal winter over central Europe, Scandinavia and over south-eastern Europe and the East-Mediterranean in boreal summer.

  2. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  3. Synchronization of globally coupled two-state stochastic oscillators with a state-dependent refractory period

    Science.gov (United States)

    Escaff, Daniel; Harbola, Upendra; Lindenberg, Katja

    2012-07-01

    We present a model of identical coupled two-state stochastic units, each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition.

  4. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  5. The SPLASH survey: Quiescent galaxies are more strongly clustered but are not necessarily located in high-density environments

    CERN Document Server

    Lin, Lihwai; Laigle, C; Ilbert, O; Hsieh, Bau-Ching; Jian, Hung-Yu; Lemaux, B C; Silverman, J D; Coupon, Jean; McCracken, H J; Hasinger, G; Fevre, O Le; Scoville, N

    2015-01-01

    We use the stellar mass-selected catalog from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) in the COSMOS field to study the environments of galaxies via galaxy density and clustering analyses up to $z \\sim 2.5$. The clustering strength of quiescent galaxies exceeds that of star-forming galaxies, implying that quiescent galaxies are preferentially located in more massive halos. When using local density measurement, we find a clear positive quiescent fraction -- density relation at $z 1.5$, the quiescent fraction depends little on the local density, even though clustering shows that quiescent galaxies are in more massive halos. We argue that at high redshift the typical halo size falls below $10^{13}$ solar mass, where intrinsically the local density measurements are so varied that they do not trace the halo mass. Our results thus suggest that in the high-redshift Universe, halo mass may be the key in quenching the star formation in galaxies, rather than the conventionally measured galaxy dens...

  6. Isolation and characterization of ischemia-derived astrocytes (IDA with ability to transactivate quiescent astrocytes

    Directory of Open Access Journals (Sweden)

    Alejandro eVillarreal

    2016-06-01

    Full Text Available Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDA were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation (OGD. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis.

  7. Accretion and nuclear activity of quiescent supermassive black holes. II: optical study and interpretation

    CERN Document Server

    Soria, R; Fabbiano, G; Baldi, A; Elvis, M; Jerjen, H; Pellegrini, S; Siemiginowska, A; Soria, Roberto; Graham, Alister W.; Fabbiano, Giuseppina; Baldi, Alessandro; Elvis, Martin; Jerjen, Helmut; Pellegrini, Silvia; Siemiginowska, Aneta

    2006-01-01

    Our X-ray study of the nuclear activity in a new sample of six quiescent early-type galaxies, and in a larger sample from the literature, confirmed (Soria et al., Paper I) that the Bondi accretion rate of diffuse hot gas is not a good indicator of the supermassive black hole (SMBH) X-ray luminosity. Here we suggest that a more reliable estimate of the accretion rate must include the gas released by the stellar population inside the sphere of influence of the SMBH, in addition to the Bondi inflow of hot gas across that surface. We use optical surface-brightness profiles to estimate the mass-loss rate from stars in the nuclear region: we show that for our sample of galaxies it is an order of magnitude higher (~ 10^{-4} - 10^{-3} M_sun/yr) than the Bondi inflow rate of hot gas, as estimated from Chandra (Paper I). Only by taking into account both sources of fuel can we constrain the true accretion rate, the accretion efficiency, and the power budget. Radiatively efficient accretion is ruled out, for quiescent SM...

  8. Quiescent and Eruptive Prominences at Solar Minimum: A Statistical Study via an Automated Tracking System

    Science.gov (United States)

    Loboda, I. P.; Bogachev, S. A.

    2015-07-01

    We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304Å line taken close to the solar minimum of 2008-2009 and mainly focus on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25×25 to 150×500 Mm2 in size and obtain distributions of many of their spatial characteristics, such as latitudinal position, height, size, and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to rarely exceed 3 km/s. In addition, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to estimate the total mass and gravitational energy of all simultaneously existing prominences (1012 - 1014 kg and 1029 - 1031 erg). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive it to be a power-law of index -1.1 ± 0.2.

  9. Quiescent and Eruptive Prominences at Solar Minimum: A Statistical Study via an Automated Tracking System

    CERN Document Server

    Loboda, I P

    2015-01-01

    We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304 A line taken close to the solar minimum of 2008-2009 and focus mainly on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25x25 to 150x500 Mm in size and obtain distributions of many their spatial characteristics, such as latitudinal position, height, size and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to be rarely exceeding 3 km/s. Besides, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to evaluate the total mass and gravitational energy of all simultaneously existing prominences (10e12-10e14 kg and 10e29-10e31 erg, respectively). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive...

  10. Timing the Evolution of Quiescent and Star-forming Local Galaxies

    Science.gov (United States)

    Pacifici, Camilla; Oh, Sree; Oh, Kyuseok; Lee, Jaehyun; Yi, Sukyoung K.

    2016-06-01

    Constraining the star formation histories (SFHs) of individual galaxies is crucial for understanding the mechanisms that regulate their evolution. Here, we combine multi-wavelength (ultraviolet, optical, and infrared) measurements of a very large sample of galaxies (˜230,000) at z motivated models of galaxy spectral energy distributions to extract constraints on galaxy physical parameters (such as stellar mass and star formation rate) as well as individual SFHs. In particular, we set constraints on the timescales in which galaxies form a certain percentage of their total stellar mass (namely, 10%, 50%, and 90%). The large statistics allows us to average such measurements over different populations of galaxies (quiescent and star-forming) and in narrow ranges of stellar mass. As in the downsizing scenario, we confirm that low-mass galaxies have more extended SFHs than high-mass galaxies. We also find that at the same observed stellar mass, galaxies that are now quiescent evolve more rapidly than galaxies that are currently still forming stars. This suggests that stellar mass is not the only driver of galaxy evolution, but plays along with other factors such as merger events and other environmental effects.

  11. The Fundamental Plane of massive quiescent galaxies out to z~2

    CERN Document Server

    van de Sande, Jesse; Franx, Marijn; Bezanson, Rachel; van Dokkum, Pieter G

    2014-01-01

    The Fundamental Plane (FP) of early-type galaxies, relating the effective radius, velocity dispersion, and surface brightness, has long been recognized as a unique tool for analyzing galaxy structure and evolution. With the discovery of distant quiescent galaxies and the introduction of high sensitivity near-infrared spectrographs, it is now possible to explore the FP out to z~2. In this Letter we study the evolution of the FP out to z~2 using kinematic measurements of massive quiescent galaxies ($M_{*}>10^{11} M_{\\odot}$). We find preliminary evidence for the existence of an FP out to z~2. The scatter of the FP, however, increases from z~0 to z~2, even when taking into account the larger measurement uncertainties at higher redshifts. We find a strong evolution of the zero point from z~2 to z~0: $\\Delta\\log_{10}M/L_g\\propto(-0.49\\pm0.03)~z$. In order to assess whether our spectroscopic sample is representative of the early-type galaxy population at all redshifts, we compare their rest-frame g-z colors with th...

  12. Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    CERN Document Server

    Jonker, P G

    2007-01-01

    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient CenX-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to t...

  13. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells

    Science.gov (United States)

    Ottone, Cristina; Krusche, Benjamin; Whitby, Ariadne; Clements, Melanie; Quadrato, Giorgia; Pitulescu, Mara E.; Adams, Ralf H.; Parrinello, Simona

    2014-01-01

    The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment. PMID:25283993

  14. Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation

    Science.gov (United States)

    Wirth, Karin G.; Ricci, Romeo; Giménez-Abián, Juan F.; Taghybeeglu, Shahryar; Kudo, Nobuaki R.; Jochum, Wolfram; Vasseur-Cognet, Mireille; Nasmyth, Kim

    2004-01-01

    The anaphase-promoting complex or cyclosome (APC/C) is an ubiquitin protein ligase that together with Cdc20 and Cdh1 targets mitotic proteins for degradation by the proteosome. APC–Cdc20 activity during mitosis triggers anaphase by destroying securin and cyclins. APC–Cdh1 promotes degradation of cyclins and other proteins during G1. We show that loss of APC/C during embryogenesis is early lethal before embryonic day E6.5 (E6.5). To investigate the role of APC/C in quiescent cells, we conditionally inactivated the subunit Apc2 in mice. Deletion of Apc2 in quiescent hepatocytes caused re-entry into the cell cycle and arrest in metaphase, resulting in liver failure. Re-entry into the cell cycle either occurred without any proliferative stimulus or could be easily induced. We demonstrate that the APC has an additional function to prevent hepatocytes from unscheduled re-entry into the cell cycle. PMID:14724179

  15. Timing the evolution of quiescent and star-forming local galaxies

    CERN Document Server

    Pacifici, Camilla; Oh, Kyuseok; Lee, Jaehyun; Yi, Sukyoung K

    2016-01-01

    Constraining the star formation histories (SFHs) of individual galaxies is crucial to understanding the mechanisms that regulate their evolution. Here, we combine multi-wavelength (ultraviolet, optical, and infrared) measurements of a very large sample of galaxies (~230,000) at z<0.16, with physically motivated models of galaxy spectral energy distributions to extract constraints on galaxy physical parameters (such as stellar mass and star formation rate) as well as individual SFHs. In particular, we set constraints on the timescales in which galaxies form a certain percentage of their total stellar mass (namely, 10, 50 and 90%). The large statistics allows us to average such measurements over different populations of galaxies (quiescent and star-forming) and in narrow ranges of stellar mass. As in the downsizing scenario, we confirm that low-mass galaxies have more extended SFHs than high-mass galaxies. We also find that at the same observed stellar mass, galaxies that are now quiescent evolve more rapidl...

  16. Limits on thermal variations in a dozen quiescent neutron stars over a decade

    CERN Document Server

    Bahramian, Arash; Degenaar, Nathalie; Chomiuk, Laura; Wijnands, Rudy; Strader, Jay; Ho, Wynn C G; Pooley, David

    2015-01-01

    In quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars, the origin of the thermal X-ray component may be either release of heat from the core of the neutron star, or continuing low-level accretion. In general, heat from the core should be stable on timescales $<10^4$ years, while continuing accretion may produce variations on a range of timescales. While some quiescent neutron stars (e.g. Cen X-4, Aql X-1) have shown variations in their thermal components on a range of timescales, several others, particularly those in globular clusters with no detectable nonthermal hard X-rays (fit with a powerlaw), have shown no measurable variations. Here, we constrain the spectral variations of 12 low mass X-ray binaries in 3 globular clusters over $\\sim10$ years. We find no evidence of variations in 10 cases, with limits on temperature variations below 11% for the 7 qLMXBs without powerlaw components, and limits on variations below 20% for 3 other qLMXBs that do show non-thermal emission. However, in 2 ...

  17. The impact of surface temperature inhomogeneities on quiescent neutron star radius measurements

    CERN Document Server

    Elshamouty, K; Morsink, S; Bogdanov, S; Stevens, A

    2016-01-01

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 in the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90\\% confidence upper limits on their pulsed fractions below 16\\%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to...

  18. Pre-eruption Oscillations in Thin and Long Features in a Quiescent Filament

    Science.gov (United States)

    Joshi, Anand D.; Hanaoka, Yoichiro; Suematsu, Yoshinori; Morita, Satoshi; Yurchyshyn, Vasyl; Cho, Kyung-Suk

    2016-12-01

    We investigate the eruption of a quiescent filament located close to an active region. Large-scale activation was observed in only half of the filament in the form of pre-eruption oscillations. Consequently only this half erupted nearly 30 hr after the oscillations commenced. Time-slice diagrams of 171 Å images from the Atmospheric Imaging Assembly were used to study the oscillations. These were observed in several thin and long features connecting the filament spine to the chromosphere below. This study traces the origin of such features and proposes their possible interpretation. Small-scale magnetic flux cancellation accompanied by a brightening was observed at the footpoint of the features shortly before their appearance, in images recorded by the Helioseismic and Magnetic Imager. A slow rise of the filament was detected in addition to the oscillations, indicating a gradual loss of equilibrium. Our analysis indicates that a change in magnetic field connectivity between two neighbouring active regions and the quiescent filament resulted in a weakening of the overlying arcade of the filament, leading to its eruption. It is also suggested that the oscillating features are filament barbs, and the oscillations are a manifestation during the pre-eruption phase of the filaments.

  19. The self regulating star formation of gas rich dwarf galaxies in quiescent phase

    CERN Document Server

    Kobayashi, M A R; Kobayashi, Masakazu A.R.; Kamaya, Hideyuki

    2004-01-01

    The expected episodic or intermittent star formation histories (SFHs) of gas rich dwarf irregular galaxies (dIrrs) are the longstanding puzzles to understand their whole evolutional history. Solving this puzzle, we should grasp what physical mechanism causes the quiescent phase of star formation under the very gas rich condition after the first starburst phase. We consider that this quiescent phase is kept by lack of H2, which can be important coolant to generate the next generation of stars in the low-metal environment like dIrrs. Furthermore, in dIrrs, H2 formation through gas-phase reactions may dominate the one on dust-grain surfaces because their interstellar medium (ISM) are very plentiful and the typical dust-to-gas ratio of dIrrs (D_dIrrs = 1.31 x 10^-2 D_MW, where D_MW is its value for the local ISM) is on the same order with a critical value D_cr ~ 10^-2 D_MW. We show that the lack of H2 is mainly led by H- destruction when gas-phase H2 formation dominates since H- is important intermediary of gas-p...

  20. Paleomagnetic data from the Trans-Mexican Volcanic Belt: implications for tectonics and volcanic stratigraphy

    Science.gov (United States)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Ferrari, L.; Rosas-Elguera, J.; Urrutia-Fucugauchi, J.; Zamorano-Orozco, J. J.

    2000-07-01

    We report a paleomagnetic and rock-magnetic study of Miocene volcanic rocks from the Trans-Mexican Volcanic Belt. A total of 32 sites (238 oriented samples) were collected from three localities: Queretaro, Guadalajara and Los Altos de Jalisco basaltic plateaux, which span from 11 to 7.5 Ma. Several rock-magnetic experiments were carried out in order to identify the magnetic carriers and to obtain information about their paleomagnetic stability. Microscopic observation of polished sections shows that the main magnetic mineral is Ti-poor titanomagnetite associated with exsolved ilmenite. Continuous susceptibility measurements with temperature yield in most cases reasonably reversible curves with Curie points close to that of magnetite. Judging from the ratios of hysteresis parameters, it seems that all samples fall in the pseudo-single domain (PSD) grain size region, probably indicating a mixture of multidomain (MD) and a significant amount of single domain (SD) grains. Based on our paleomagnetic and available radiometric data, it seems that the volcanic units have been emplaced during a relatively short time span of 1 to 2 My at each locality. The mean paleomagnetic directions obtained from each locality differ significantly from that expected for the Middle Miocene. The mean paleomagnetic direction calculated from 28 sites discarding those of intermediate polarity is I= 32.46°, D= 341.2°, k= 7.2 and a95= 11.6°. Comparison with the expected direction indicates some 20° anticlockwise tectonic rotations for the studied area, in accordance with the proposed left-lateral transtensional tectonic regime already proposed for this period.

  1. Precursory volcanic CO2 signals from space

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  2. Volcanic risk perception of young people in the urban areas of Vesuvius: Comparisons with other volcanic areas and implications for emergency management

    Science.gov (United States)

    Carlino, S.; Somma, R.; Mayberry, G.C.

    2008-01-01

    More than 600 000 people are exposed to volcanic risk in the urban areas near the volcano, Vesuvius, and may need to be evacuated if there is renewed volcanic activity. The success of a future evacuation will strongly depend on the level of risk perception and preparedness of the at-risk communities during the current period of quiescence. The volcanic risk perception and preparedness of young people is of particular importance because hazard education programs in schools have been shown to increase the clarity of risk perception and students often share their knowledge with their parents. In order to evaluate young people's risk perception and preparedness for a volcanic crisis, a multiple choice questionnaire was distributed to 400 high-school students in three municipalities located close to the volcano. The overall results suggest that despite a 60-year period of quiescence at Vesuvius, the interviewed students have an accurate perception of the level of volcanic risk. On the other hand, the respondents demonstrate a clear lack of understanding of volcanic processes and their related hazards. Also, the interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). The latter result suggests that in comparison with volcanic crises in other regions, during a future eruption of Vesuvius, there may not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to improve the accuracy of risk perception of youth in local communities. ?? 2008.

  3. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  4. Period Cramps

    Science.gov (United States)

    ... Too Tall or Too Short All About Puberty Period Cramps KidsHealth > For Kids > Period Cramps Print A ... re a girl who gets them. What Are Period Cramps? Lots of girls experience cramps before or ...

  5. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    Directory of Open Access Journals (Sweden)

    D. Streets

    2012-09-01

    Full Text Available Two historical emission inventories of black carbon (BC, primary organic carbon (OC, and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  6. The Global Water Cycle Drives Volcanism on Seasonal to Millennial Timescales

    Science.gov (United States)

    Pyle, D. M.; Mason, B. G.; Jupp, T. E.; Dade, W. B.

    2005-05-01

    Global rates of occurrence of volcanic eruptions show periodic behaviour on timescales ranging from 106 years. At long timescales (>106 to 107 years), rates of eruption are controlled by plate tectonics. At shorter timescales, the periodic nature of volcanism is forced by the global water cycle. Historical records of the rates of onset of eruption for the past 300 years are dominated by small-scale activity at a number of persistently, or repeatedly, active volcanoes around the world. This record shows statistically significant evidence for `seasonality': globally, rates of eruption are about 18% higher during northern hemisphere winter than northern hemisphere summer. This pattern of seasonality is strong for volcanoes at high northern latitudes; but also exists for volcanic regions in the southern hemisphere (e.g. Chile) and at specific volcanoes (e.g. Sakurajima, Japan). Seasonality is weak at certain ocean-island volcanoes (e.g. Hawaii), and certain volcanic regions (e.g. Mediterranean). The only external parameters that account for the periodic nature of small-scale volcanism (i.e. the observation that eruption rates peak between November and March in both hemispheres) are those related to the global water cycle. Movement of water (including atmospheric vapour; soil moisture; snow and ice) between the northern-hemisphere continents and the world's oceans is responsible for an annual deformation of Earth's surface that is weakly defined in equatorial regions, and stronger at higher latitudes. This external modulation of the Earth's surface has an amplitude of the order of centimetres, and an associated (vertical) strain rate of ~ 10-16 s-1. This deformation is slow enough to be felt by the Earth's interior, and is of the same order of magnitude as the (horizontal) strain rates experienced in tectonically active continental regions. This modulation effectively applies a time-dependence to the `threshold' point at which a volcano will begin to erupt. In this way

  7. Deccan volcanism, the KT mass extinction and dinosaurs

    Indian Academy of Sciences (India)

    G Keller; A Sahni; S Bajpai

    2009-11-01

    Recent advances in Deccan volcanic studies indicate three volcanic phases with the phase-1 at 67.5 Ma followed by a 2 m.y. period of quiescence. Phase-2 marks the main Deccan volcanic eruptions in Chron 29r near the end of the Maastrichtian and accounts for ∼80% of the entire 3500 m thick Deccan lava pile. At least four of the world’s longest lava flows spanning 1000 km across India and out into the Gulf of Bengal mark phase-2. The final phase-3 was smaller, coincided with the early Danian Chron 29n and also witnessed several of the longest lava flows. The KT boundary and mass extinction was first discovered based on planktic foraminifera from shallow marine intertrappean sediments exposed in Rajahmundry quarries between the longest lava flows of the main volcanic phase-2 and smaller phase-3. At this locality early Danian (zone P1a) planktic foraminiferal assemblages directly overlie the top of phase-2 eruptions and indicate that the masse extinction coincided with the end of this volcanic phase. Planktic foraminiferal assemblages also mark the KT boundary in intertrappean sediments at Jhilmili, Chhindwara, where freshwater to estuarine conditions prevailed during the early Danian and indicate the presence of a marine seaway across India at KT time. Dinosaur bones, nesting sites with complete eggs and abundant eggshells are known from central India surrounding the hypothesized seaway through the Narmada-Tapti rift zone. A Maastrichtian age is generally assigned to these dinosaur remains. Age control may now be improved based on marine microfossils from sequences deposited in the seaway and correlating these strata to nearby terrestrial sequences with dinosaur remains.

  8. Deccan volcanism, the KT mass extinction and dinosaurs

    Indian Academy of Sciences (India)

    G Keller; A Sahni; S Bajpai

    2010-03-01

    Recent advances in Deccan volcanic studies indicate three volcanic phases with the phase-1 at 67.5 Ma followed by a 2 m.y. period of quiescence. Phase-2 marks the main Deccan volcanic eruptions in Chron 29r near the end of the Maastrichtian and accounts for ∼80% of the entire 3500 m thick Deccan lava pile. At least four of the world’s longest lava flows spanning 1000 km across India and out into the Gulf of Bengal mark phase-2. The final phase-3 was smaller, coincided with the early Danian Chron 29n and also witnessed several of the longest lava flows. The KT boundary and mass extinction was first discovered based on planktic foraminifera from shallow marine intertrappean sediments exposed in Rajahmundry quarries between the longest lava flows of the main volcanic phase-2 and smaller phase-3. At this locality early Danian (zone P1a) planktic foraminiferal assemblages directly overlie the top of phase-2 eruptions and indicate that the masse extinction coincided with the end of this volcanic phase. Planktic foraminiferal assemblages also mark the KT boundary in intertrappean sediments at Jhilmili, Chhindwara, where freshwater to estuarine conditions prevailed during the early Danian and indicate the presence of a marine seaway across India at KT time. Dinosaur bones, nesting sites with complete eggs and abundant eggshells are known from central India surrounding the hypothesized seaway through the Narmada-Tapti rift zone. A Maastrichtian age is generally assigned to these dinosaur remains. Age control may now be improved based on marine microfossils from sequences deposited in the seaway and correlating these strata to nearby terrestrial sequences with dinosaur remains.

  9. K—Ar Geochronology and Evolution of Cenozoic Volcanic Rocks in Eastrn China

    Institute of Scientific and Technical Information of China (English)

    王慧芬; 杨学昌; 等

    1989-01-01

    Cenozoic volcanic rocks widespread in eastern China constitute an important part of the circum-Pacific volcanic belt.This paper presents more than 150K-Ar dates and a great deal of petrochemical analysis data from the Cenozoic volcanic rocks distributed in Tengchong,China's southeast coast,Shandong,Hebei,Nei Monggol and Northeast China.An integrated study shows that ubiquitous but uneven volcanic activities prevailed from the Eogene to the Holocene,characterized as being multi-eqisodic and multicycled.For example,in the Paleocene(67-58Ma),Eocene(57-37.5Ma),Miocene(22-18,16-19Ma),Pliocene(8-3Ma),and Early Pleistocene-Middle Pleistocene(1.2-0.5Ma) there were upsurges of volcanism,while in the Oligocene there was a repose period.In space,the older Eogene volcanic rocks are distributed within the region or in the central part of the NE-NNE-striking fault depression,while the younger Neogene and Quaternary volcanic rocks are distributed in the eastern and western parts.Petrologically,they belong essentially to tholeiite-series and alkali-series basalts,with alkalinity in the rocks increasing from old to youg.The above regularities are controlled by both global plate movement and regional inherent tectonic pattern.

  10. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  11. Nephelometric Dropsonde for Volcanic Ash Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  12. Thermal vesiculation during volcanic eruptions

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  13. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  14. Water in volcanic glass: From volcanic degassing to secondary hydration

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  15. Geochemical Characteristics and Metallogenesis of Volcanic Rocks as Exemplified by Volcanic Rocks in Ertix,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘铁庚; 叶霖

    1997-01-01

    Volcanic rocks in Ertix,Xinjiang,occurring in the collision zone between the Siberia Plate and the Junggar Plate,are distributed along the Eritix River Valley in northern Xinjiang.The volcanic rocks were dated at Late Paleozoic and can be divided into the spilite-keratophyre series and the basalt-andesite series.The spilite-keratophyre series volcanic rocks occur in the Altay orogenic belt at the southwest margin of the Siberia Plate.In addition to sodic volcanic rocks.There are also associated potassic-sodic volcanic rocks and potassic volcanic rocks.The potassic-sodic volcanic rocks occur at the bottom of the eruption cycle and control the distribution of Pb and Zn deposits.The potassic volcanic rocks occur at the top of the eruption cycle and are associated with Au and Cu mineralizations.The sodic volcanic rocks occur in the middle stage of eruption cycle and control the occurrence of Cu(Zn) deposits.The basalt-andesite series volcanic rocks distributed in the North Junggar orogenic belt at the north margin of the Junggar-Kazakstan Plate belong to the potassic sodic volcain rocks.The volcanic rocks distributed along the Ulungur fault are relatively rich in sodium and poor in potassium and are predominated by Cu mineralization and associated with Au mineralization.Those volcanic rocks distributed along the Ertix fault are relatively rich in K and poor in Na,with Au mineralization being dominant.

  16. Stochastic Modelling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2017-04-01

    It is customary to have continuous monitoring of volcanoes showing signs of unrest that might lead to an eruption threatening local populations. Despite scientific progress in estimating the probability of an eruption occurring, the concept of continuously tracking eruption probability remains a future aspiration for volcano risk analysts. During some recent major volcanic crises, attempts have been made to estimate the eruption probability in real time to support government decision-making. These include the possibility of an eruption of Katla linked with the eruption of Eyjafjallajökull in 2010, and the Santorini crisis of 2011-2012. However, once a crisis fades, interest in analyzing the probability that there might have been an eruption tends to wane. There is an inherent outcome bias well known to psychologists: if disaster was avoided, there is perceived to be little purpose in exploring scenarios where a disaster might have happened. Yet the better that previous periods of unrest are understood and modelled, the better that the risk associated with future periods of unrest will be quantified. Scenarios are counterfactual histories of the future. The task of quantifying the probability of an eruption for a past period of unrest should not be merely a statistical calculation, but should serve to elucidate and refine geophysical models of the eruptive processes. This is achieved by using a Bayesian Belief Network approach, in which monitoring observations are used to draw inferences on the underlying causal factors. Specifically, risk analysts are interested in identifying what dynamical perturbations might have tipped an unrest period in history over towards an eruption, and assessing what was the likelihood of such perturbations. Furthermore, in what ways might a historical volcano crisis have turned for the worse? Such important counterfactual questions are addressed in this paper.

  17. Volcanic hazards and their mitigation: Progress and problems

    Science.gov (United States)

    Tilling, Robert I.

    1989-05-01

    At the beginning of the twentieth century, volcanology began to emerge as a modern science as a result of increased interest in eruptive phenomena following some of the worst volcanic disasters in recorded history: Krakatau (Indonesia) in 1883 and Mont Pelée (Martinique), Soufrière (St. Vincent), and Santa María (Guatemala) in 1902. Volcanology is again experiencing a period of heightened public awareness and scientific growth in the 1980s, the worst period since 1902 in terms of volcanic disasters and crises. A review of hazards mitigation approaches and techniques indicates that significant advances have been made in hazards assessment, volcano monitoring, and eruption forecasting. For example, the remarkable accuracy of the predictions of dome-building events at Mount St. Helens since June 1980 is unprecedented. Yet a predictive capability for more voluminous and explosive eruptions still has not been achieved. Studies of magma-induced seismicity and ground deformation continue to provide the most systematic and reliable data for early detection of precursors to eruptions and shallow intrusions. In addition, some other geophysical monitoring techniques and geochemical methods have been refined and are being more widely applied and tested. Comparison of the four major volcanic disasters of the 1980s (Mount St. Helens, U.S.A. (1980), El Chichón, Mexico (1982); Galunggung, Indonesia (1982); and Nevado del Ruíz, Colombia (1985) illustrates the importance of predisaster geoscience studies, volcanic hazards assessments, volcano monitoring, contingency planning, and effective communications between scientists and authorities. The death toll (>22,000) from the Ruíz catastrophe probably could have been greatly reduced; the reasons for the tragically ineffective implementation of evacuation measures are still unclear and puzzling in view of the fact that sufficient warnings were given. The most pressing problem in the mitigation of volcanic and associated hazards on

  18. Observational evidence for volcanic impact on sea level and the global water cycle.

    Science.gov (United States)

    Grinsted, A; Moore, J C; Jevrejeva, S

    2007-12-11

    It has previously been noted that there are drops in global sea level (GSL) after some major volcanic eruptions. However, observational evidence has not been convincing because there is substantial variability in the global sea level record over periods similar to those at which we expect volcanoes to have an impact. To quantify the impact of volcanic eruptions we average monthly GSL data from 830 tide gauge records around five major volcanic eruptions. Surprisingly, we find that the initial response to a volcanic eruption is a significant rise in sea level of 9 +/- 3 mm in the first year after the eruption. This rise is followed by a drop of 7 +/- 3 mm in the period 2-3 years after the eruption relative to preeruption sea level. These results are statistically robust and no particular volcanic eruption or ocean region dominates the signature we find. Neither the drop nor especially the rise in GSL can be explained by models of lower oceanic heat content. We suggest that the mechanism is a transient disturbance of the water cycle with a delayed response of land river runoff relative to ocean evaporation and global precipitation that affects global sea level. The volcanic impact on the water cycle and sea levels is comparable in magnitude to that of a large El Niño-La Niña cycle, amounting to approximately 5% of global land precipitation.

  19. High level triggers for explosive mafic volcanism: Albano Maar, Italy

    Science.gov (United States)

    Cross, J. K.; Tomlinson, E. L.; Giordano, G.; Smith, V. C.; De Benedetti, A. A.; Roberge, J.; Manning, C. J.; Wulf, S.; Menzies, M. A.

    2014-03-01

    Colli Albani is a quiescent caldera complex located within the Roman Magmatic Province (RMP), Italy. The recent Via dei Laghi phreatomagmatic eruptions led to the formation of nested maars. Albano Maar is the largest and has erupted seven times between ca 69-33 ka. The highly explosive nature of the Albano Maar eruptions is at odds with the predominant relatively mafic (SiO2 = 48-52 wt.%) foiditic (K2O = 9 wt.%) composition of the magma. The deposits have been previously interpreted as phreatomagmatic, however they contain large amounts (up to 30%vol) of deep seated xenoliths, skarns and all pre-volcanic subsurface units. All of the xenoliths have been excavated from depths of up to 6 km, rather than being limited to the depth at which magma and water interaction is likely to have occurred, suggesting an alternative trigger for eruption. High precision geochemical glass and mineral data of fresh juvenile (magmatic) clasts from the small volume explosive deposits indicate that the magmas have evolved along one of two evolutionary paths towards foidite or phonolite. The foiditic melts record ca. 50% mixing between the most primitive magma and Ca-rich melt, late stage prior to eruption. A major result of our study is finding that the generation of Ca-rich melts via assimilation of limestone, may provide storage for significant amounts of CO2 that can be released during a mixing event with silicate magma. Differences in melt evolution are inferred as having been controlled by variations in storage conditions: residence time and magma volume.

  20. Mode switching in volcanic seismicity: El Hierro 2011-2013

    Science.gov (United States)

    Roberts, Nick S.; Bell, Andrew F.; Main, Ian G.

    2016-05-01

    The Gutenberg-Richter b value is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. Such studies typically analyze discrete time windows or phases, but the choice of such windows is subjective and can introduce significant bias. Here we minimize this sample bias by iteratively sampling catalogs with randomly chosen windows and then stack the resulting probability density functions for the estimated b>˜ value to determine a net probability density function. We examine data from the El Hierro seismic catalog during a period of unrest in 2011-2013 and demonstrate clear multimodal behavior. Individual modes are relatively stable in time, but the most probable b>˜ value intermittently switches between modes, one of which is similar to that of tectonic seismicity. Multimodality is primarily associated with intermittent activation and cessation of activity in different parts of the volcanic system rather than with respect to any systematic inferred underlying process.

  1. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards.

    Science.gov (United States)

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C

    2012-08-21

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.

  2. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards

    Science.gov (United States)

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.

    2012-01-01

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  3. Center for Volcanic and Tectonic Studies: 1992--1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings.

  4. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  5. Volcanic tremor at Mt Vesuvius associated with low frequency shear failures

    Science.gov (United States)

    La Rocca, Mario; Galluzzo, Danilo

    2016-05-01

    Mt Vesuvius has been dormant since the eruption occurred in 1944, after which the conduit closed and the volcano entered a quiescent state. Only a minor seismic activity, characterized by low magnitude volcano-tectonic (VT) earthquakes, testifies that the magmatic system is still active. In this paper we report the fist quantitative analysis of volcanic tremor discovered at Vesuvius through the analysis of array data. A seismic array installed in 2012 improved the monitoring performance of the local network, permitting the identification of low amplitude coherent signals. Many of such coherent signals recorded during the last few years have been classified as volcanic tremor. We selected 22 tremor events based on their amplitude and on the number of available stations, and performed detailed analysis aimed at location and characterization of the source. They are characterized by low frequency, duration of a few minutes, and the strongest episodes are recorded at distance up to 90 km from the volcano. In many cases we could identify P-S wave pairs in the seismograms that allowed a precise location of the source depth, which is in the range between 5 km and 6.5 km below the crater. Waveform features, spectral analysis, and comparison with VT earthquakes located at the same depth indicate that the source mechanism of the Vesuvius non-eruptive tremor is a sequence of low frequency shear failures.

  6. Volcanic processes on early-forming asteroids.

    Science.gov (United States)

    Wilson, L.; Keil, K.

    2011-12-01

    A variety of meteorite groups represent samples of asteroids that formed while 26Al was still the dominant heat source in Solar System materials. These bodies differentiated to varying degrees beyond the temperature of FeNi-FeS melting, with sufficient silicate melting to allow metal core formation. The silicate melts segregated upward from the interiors to suffer various fates: intrusion at shallow levels, eruption onto the surface, or ejection into space in explosive eruptions in which the eruption speed exceeded the escape speed. These three styles of plutonic/volcanic activity were not mutually exclusive; their relative importance was a function of asteroid size and composition, with the major compositional factor being the total available volatile inventory. Much research has been concerned with whether silicate melts were extracted from the mantle during the period of mantle heating or while the mantle was cooling after reaching its peak temperature and degree of partial melting (a "magma ocean" stage). Traditionally, the relevant arguments have been based on the petrology and geochemistry of the meteorites sampling these bodies. Instead, we focus on the fluid dynamic aspects of eruption and intrusion processes and show how these impose additional limitations on various aspects of the igneous activity. For example, 40% melting of bodies the size of 4 Vesta (~250 km radius) and the Ureilite Parent Body (UPB, ~100 km radius) over the course of a 0.5 Ma heating period represent melt volume production rates of ~350 and 20 cubic meters per second, respectively, in each of what we demonstrate should have been ~4 volcanic provinces on each body. All differentiated asteroids must of necessity have had a surface layer ~10 km thick at sub-solidus temperatures controlled by conductive cooling. To erupt magma at the surface (or intrude magma at very shallow depth) through such a crust would have required the propagation of dikes within which the combination of dike width

  7. Assessing the Altitude and Dispersion of Volcanic Plumes Using MISR Multi-angle Imaging from Space: Sixteen Years of Volcanic Activity in the Kamchatka Peninsula, Russia

    Science.gov (United States)

    Flower, Verity J. B.; Kahn, Ralph A.

    2017-01-01

    Volcanic eruptions represent a significant source of atmospheric aerosols and can display local, regional and global effects, impacting earth systems and human populations. In order to assess the relative impacts of these events, accurate plume injection altitude measurements are needed. In this work, volcanic plumes generated from seven Kamchatka Peninsula volcanoes (Shiveluch, Kliuchevskoi, Bezymianny, Tolbachik, Kizimen, Karymsky and Zhupanovsky), were identified using over 16 years of Multi-angle Imaging SpectroRadimeter (MISR) measurements. Eighty-eight volcanic plumes were observed by MISR, capturing 3-25% of reported events at individual volcanoes. Retrievals were most successful where high intensity events persisted over a period of weeks to months. Compared with existing ground and airborne observations, and alternative satellite-based reports compiled by the Global Volcanism Program (GVP), MISR plume height retrievals showed general consistency; the comparison reports appear to be skewed towards the region of highest concentration observed in MISR-constrained vertical plume extent. The report observations display less discrepancy with MISR toward the end of the analysis period, with improvements in the suborbital data likely the result of the deployment of new instrumentation. Conversely, the general consistency of MISR plume heights with conventionally reported observations supports the use of MISR in the ongoing assessment of volcanic activity globally, especially where other types of volcanic plume observations are unavailable. Differences between the northern (Shiveluch, Kliuchevskoi, Bezymianny and Tolbachik) and southern (Kizimen, Karymsky and Zhupanovsky) volcanoes broadly correspond to the Central Kamchatka Depression (CKD) and Eastern Volcanic Front (EVF), respectively, geological sub-regions of Kamchatka distinguished by varying magma composition. For example, by comparison with reanalysis-model simulations of local meteorological conditions

  8. Novel Slope Source Term Treatment for Preservation of Quiescent Steady States in Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Khawar Rehman

    2016-10-01

    Full Text Available This paper proposes a robust method for modeling shallow-water flows and near shore tsunami propagation, applicable for both simple and complex geometries with uneven beds. The novel aspect of the model includes the introduction of a new method for slope source terms treatment to preserve quiescent equilibrium over uneven topographies, applicable to both structured and unstructured mesh systems with equal accuracy. Our model is based on the Godunov-type finite volume numerical approximation. Second-order spatial and temporal accuracy is achieved through high resolution gradient reconstruction and the predictor-corrector method, respectively. The approximate Riemann solver of Harten, Lax, and van Leer with contact wave restoration (HLLC is used to compute fluxes. Comparisons of the model’s results with analytical, experimental, and published numerical solutions show that the proposed method is capable of accurately predicting experimental and real-time tsunami propagation/inundation, and dam-break flows over varying topographies.

  9. Giant coronal loops dominate the quiescent X-ray emission in rapidly rotating M stars

    CERN Document Server

    Cohen, O; Garraffo, C; Saar, S H; Wolk, S J; Kashyap, V L; Drake, J J; Pillitteri, I

    2016-01-01

    Observations indicate that magnetic fields in rapidly rotating stars are very strong, on both small and large scales. What is the nature of the resulting corona? Here we seek to shed some light on this question. We use the results of an anelastic dynamo simulation of a rapidly rotating fully-convective M-star to drive a physics-based model for the stellar corona. We find that due to the several kilo Gauss large-scale magnetic fields at high latitudes, the corona and its X-ray emission are dominated by star-size large hot loops, while the smaller, underlying colder loops are not visible much in the X-ray. Based on this result we propose that, in rapidly rotating stars, emission from such coronal structures dominates the quiescent, cooler but saturated X-ray emission.

  10. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  11. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  12. Fine structure and Alfven string-mode oscillations of a quiescent prominence

    Science.gov (United States)

    Petrov, Nicola; Duchlev, Peter; Rompolt, Bogdan; Rudawy, Pawel

    Series of Hα spectra and slit-jaw Hα filtergrams of a quiescent prominence taken at Pic du Midi Observatory on November 7, 1977, are studied. The image processing of the Hα filtergrams reveals an internal structure of the prominence consisting of several arches. Series of high-resolution Hα spectra obtained with the slit position located on a selected part of one of the prominence arches have been chosen for Doppler shift analysis. We got a good correspondence between the prominence structural elements identified in the Hα filtergrams and the corresponding spectral cuts. The prominence arch shows cyclic displacement along the line-of-sight direction implying Alfvén string-mode oscillations.

  13. The X-Ray Polarization Signature of Quiescent Magnetars: Effect of Magnetospheric Scattering and Vacuum Polarization

    CERN Document Server

    Fernández, Rodrigo

    2011-01-01

    In the magnetar model, the quiescent non-thermal soft X-ray emission from Anomalous X-ray Pulsars and Soft-Gamma Repeaters is thought to arise from resonant comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. In this paper we calculate how resonant cyclotron scattering would modify the observed polarization signal relative to the surface emission, using a multidimensional Monte Carlo radiative transfer code that accounts for the gradual coupling of polarization eigenmodes as photons leave the magnetosphere. We employ a globally-twisted, self-similar, force-free magnetosphere with a power-law momentum distribution, assume a blackbody spectrum for the seed pho...

  14. NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism

    Science.gov (United States)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2017-02-01

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  15. Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma

    Science.gov (United States)

    Vanner, Robert J.; Remke, Marc; Gallo, Marco; Selvadurai, Hayden J.; Coutinho, Fiona; Lee, Lilian; Kushida, Michelle; Head, Renee; Morrissy, Sorana; Zhu, Xueming; Aviv, Tzvi; Voisin, Veronique; Clarke, Ian D.; Li, Yisu; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Jones, Steven J.M.; Marra, Marco A.; Malkin, David; Northcott, Paul A.; Kool, Marcel; Pfister, Stefan M.; Bader, Gary; Hochedlinger, Konrad; Korshunov, Andrey; Taylor, Michael D.; Dirks, Peter B.

    2015-01-01

    SUMMARY Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2+ cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2+ cells produce rapidly cycling doublecortin+ progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2+ cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2+ cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2+ cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2+ cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma. PMID:24954133

  16. Winter speed-up of quiescent surge-type glaciers in Yukon, Canada

    Science.gov (United States)

    Abe, T.; Furuya, M.

    2015-06-01

    Glacier surges often initiate in winter, but the mechanism remains unclear in contrast to the well-known summer speed-up at normal glaciers. To better understand the mechanism, we used radar images to examine spatial-temporal changes in the ice velocity of surge-type glaciers near the border of Alaska and the Yukon, focusing on their quiescent phase. We found significant accelerations in the upstream region from autumn to winter, regardless of surging episodes. Moreover, the winter speed-up propagated from upstream to downstream. Given the absence of surface meltwater input in winter, we suggest the presence of water storage near the base that does not directly connect to the surface, yet can promote basal sliding through increased water pressure. Our findings have implications for the modelling of glacial hydrology in winter, which may help us better understand glacier dynamics.

  17. Cerebral magnetic resonance imaging in quiescent Crohn’s disease patients with fatigue

    Science.gov (United States)

    van Erp, Sanne; Ercan, Ece; Breedveld, Perla; Brakenhoff, Lianne; Ghariq, Eidrees; Schmid, Sophie; van Osch, Matthias; van Buchem, Mark; Emmer, Bart; van der Grond, Jeroen; Wolterbeek, Ron; Hommes, Daniel; Fidder, Herma; van der Wee, Nic; Huizinga, Tom; van der Heijde, Désirée; Middelkoop, Huub; Ronen, Itamar; van der Meulen-de Jong, Andrea

    2017-01-01

    AIM To evaluate brain involvement in quiescent Crohn’s disease (CD) patients with fatigue using quantitative magnetic resonance imaging (MRI). METHODS Multiple MRI techniques were used to assess cerebral changes in 20 quiescent CD patients with fatigue (defined with at least 6 points out of an 11-point numeric rating scale compared with 17 healthy age and gender matched controls without fatigue. Furthermore, mental status was assessed by cognitive functioning, based on the neuropsychological inventory including the different domains global cognitive functioning, memory and executive functioning and in addition mood and quality of life scores. Cognitive functioning and mood status were correlated with MRI findings in the both study groups. RESULTS Reduced glutamate + glutamine (Glx = Glu + Gln) concentrations (P = 0.02) and ratios to total creatine (P = 0.02) were found in CD patients compared with controls. Significant increased Cerebral Blood Flow (P = 0.05) was found in CD patients (53.08 ± 6.14 mL/100 g/min) compared with controls (47.60 ± 8.62 mL/100 g/min). CD patients encountered significantly more depressive symptoms (P < 0.001). Cognitive functioning scores related to memory (P = 0.007) and executive functioning (P = 0.02) were lower in CD patients and both scores showed correlation with depression and anxiety. No correlation was found subcortical volumes between CD patients and controls in the T1-weighted analysis. In addition, no correlation was found between mental status and MRI findings. CONCLUSION This work shows evidence for perfusion, neurochemical and mental differences in the brain of CD patients with fatigue compared with healthy controls. PMID:28246475

  18. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  19. Discriminating among stellar population synthesis models of the TP-AGB phase in early quiescent galaxies

    Science.gov (United States)

    MacDougall, Mason; Newman, Andrew; Belli, Sirio; Ellis, Richard S.

    2017-01-01

    Galactic evolution at high redshifts is largely understood through stellar population synthesis (SPS) modeling of spectra and photometry integrated over all starlight of a galaxy. However, complex and poorly understood stellar phases like the unstable thermally-pulsating asymptotic giant branch (TP-AGB) phase make SPS modeling a difficult task. Recent models fail to agree on the TP-AGB contribution to the infrared luminosity, leading to significant discrepancy among the properties derived from modern SPS models when applied to early galaxies. Here we provide a thorough assessment of each of the most widely used SPS models by comparing their results and assessing their accuracy in modeling our unique dataset. We combine high-resolution spectroscopic observations from Keck/MOSFIRE with photometric data for 21 early quiescent galaxies with redshifts of z ~ 2. These galaxies are around the age of peak TP-AGB activity, between ~0.3 and 2 Gyr, and therefore provide an ideal test of the models. We find that models with a “light” TP-AGB contribution provide much better descriptions of our galaxies at ages of ~1 Gyr or less. This is true at high statistical significance and holds for models with or without dust reddening. However, contrary to previous studies, the model-dependent photometrically estimated ages are similar among the models, but they show only moderate agreement with the more model-independent spectroscopic ages derived from stellar absorption lines. The largest discrepancies are found for the Charlot & Bruzual (2007) models which show an artificial clustering of ages around 1 Gyr. The TP-AGB “light” models require more reddening, which can be independently tested by examining dust emission in the mid-infrared. The modeled fluxes are also mostly consistent with mid-infrared observations, with the exception of one model. Resolving these differences among the models will substantially strengthen our estimates of the properties of early quiescent

  20. Identification of quiescent, stem-like cells in the distal female reproductive tract.

    Directory of Open Access Journals (Sweden)

    Yongyi Wang

    Full Text Available In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs. To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP in a Tet-inducible fashion were administered doxycycline (pulse which was thereafter withdrawn from the drinking water (chase. Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks LRCs. The LT-LRCs are negative for estrogen receptor-α and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are induced to differentiate and form glandular structures which express markers of mature műllerian epithelial cells. Overall, the results indicate that quiescent cells located in the distal oviduct have stem-like properties and can differentiate into distinct cell lineages specific of endometrium, proximal and distal oviduct. Future lineage-tracing studies will elucidate the role played by these cells in homeostasis, tissue injury and cancer of the female reproductive tract in the mouse and eventually in man.

  1. Harvey Prize Lecture: The calm before the storm: the link between quiescent cavities and CMEs

    Science.gov (United States)

    Gibson, S. E.

    2005-05-01

    Coronal mass ejections (CMEs) are thought to be driven by magnetic energy, stored in twisted or sheared magnetic fields. Magnetic clouds, which are interplanetary manifestations of CMEs, are commonly modeled as flux ropes of twisted magnetic field. It has also become quite standard to model the erupting CME as a flux rope. However, the question of whether the flux rope is formed during the eruption, or whether the flux rope existed prior to the eruption, remains controversial. CMEs often possess a three-part morphology in white light observations of a bright front, followed by a relatively dark cavity, and lastly a bright core associated with an erupting prominence. The three-part structure of CMEs has been shown in a variety of models to be a consequence of a magnetic flux rope topology. The same physical reasons for the presence of the cavity system in eruption hold true in quiescence, and so it is significant that the three-part structure, in the form of helmet-streamer/cavity/prominence-core often exists quiescently in the corona. I will present an analysis of a few case studies of white light quiescent cavities as observed by the HAO Mauna Loa Solar Observatory Mk4 coronagraph. In particular I will consider the 3D structure and evolution of these cavities, and how these are related to CMEs. Finally, I will discuss the implications that these observations may have for the state of the corona just prior to a CME, and more generally for the nature of coronal MHD equilibria.

  2. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    volcanic breccia reservoir more easily leached by fresh water or groundwater, leading to secondary erosion pores. Volcanic rock weathering obviously has control on reservoir properties, and while the thickness of the weathering crust is 200–300 m, the properties of volcanic rock reservoir are the best. This is attributed mainly to the period during and after the volcano eruption, in which tectonism made the brittle volcanic rock develop a large number of fractures and micro cracks. This has led to the increased permeability of volcanic rock reservoir, the weathering and leaching effect of volcanic rock diagenetic late phase (which also formed lots of secondary pores, and greatly improved reservoir conditions. The overlying Permian Wutonggou formation mudstone provided high-quality cap rock for oil and gas accumulation.

  3. Non-Quiescent X-ray Emission from Neutron Stars and Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Tournear, Derek M

    2003-08-18

    X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last for days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs

  4. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  5. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  6. Aerosol optical thickness of Mt. Etna volcanic plume retrieved by means of the Airborne Multispectral Imaging Spectrometer (MIVIS

    Directory of Open Access Journals (Sweden)

    L. Merucci

    2003-06-01

    Full Text Available Within the framework of the European MVRRS project (Mitigation of Volcanic Risk by Remote Sensing Techniques, in June 1997 an airborne campaign was organised on Mt. Etna to study different characteristics of the volcanic plume emitted by the summit craters in quiescent conditions. Digital images were collected with the Airborne Multispectral Imaging Spectrometer (MIVIS, together with ground-based measurements. MIVIS images were used to calculate the aerosol optical thickness of the volcanic plume. For this purpose, an inversion algorithm was developed based on radiative transfer equations and applied to the upwelling radiance data measured by the sensor. This article presents the preliminary results from this inversion method. One image was selected following the criteria of concomitant atmospheric ground-based measurements necessary to model the atmosphere, plume centrality in the scene to analyse the largest plume area and cloudless conditions. The selected image was calibrated in radiance and geometrically corrected. The 6S (Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model was used to invert the radiative transfer equation and derive the aerosol optical thickness. The inversion procedure takes into account both the spectral albedo of the surface under the plume and the topographic effects on the refl ected radiance, due to the surface orientation and elevation. The result of the inversion procedure is the spatial distribution of the plume optical depth. An average value of 0.1 in the wavelength range 454-474 nm was found for the selected measurement day.

  7. The hard quiescent spectrum of the neutron-star X-ray transient EXO 1745-248 in the globular cluster Terzan 5

    CERN Document Server

    Wijnands, R; Pooley, D; Edmonds, P D; Lewin, W H G; Grindlay, J E; Jonker, P G; Miller, J M; Wijnands, Rudy; Heinke, Craig O.; Pooley, David; Edmonds, Peter D.; Lewin, Walter H. G.; Grindlay, Jonathan E.; Jonker, Peter G.; Miller, Jon M.

    2003-01-01

    We present a Chandra observation of the globular cluster Terzan 5 during times when the neutron-star X-ray transient EXO 1745-248 located in this cluster was in its quiescent state. We detected the quiescent system with a (0.5-10 keV) luminosity of ~2 x 10^{33} ergs/s. This is similar to several other neutron-star transients observed in their quiescent states. However, the quiescent X-ray spectrum of EXO 1745--48 was dominated by a hard power-law component instead of the soft component that usually dominates the quiescent emission of other neutron-star X-ray transients. This soft component could not conclusively be detected in EXO 1745-248 and we conclude that it contributed at most 10% of the quiescent flux in the energy range 0.5-10 keV. EXO 1745-248 is only the second neutron-star transient whose quiescent spectrum is dominated by the hard component (SAX J1808.4-3658 is the other one). We discuss possible explanations for this unusual behavior of EXO 1745-248, its relationship to other quiescent neutron-st...

  8. Lakshmi Planum: A distinctive highland volcanic province

    Science.gov (United States)

    Roberts, Kari M.; Head, James W.

    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.

  9. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  10. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center.

    Science.gov (United States)

    Ponce, G; Luján, R; Campos, M E; Reyes, A; Nieto-Sotelo, J; Feldman, L J; Cassab, G I

    2000-06-01

    The quiescent center is viewed as an architectural template in the root apical meristem of all angiosperm and gymnosperm root tips. In roots of Arabidopsis thaliana (L.) Heynh., the quiescent center inhibits differentiation of contacting initial cells and maintains the surrounding initial cells as stem cells. Here, the role of the quiescent center in the development of the maize (Zeca mays L.) root cap has been further explored. Three maize root-specific genes were identified. Two of these were exclusively expressed in the root cap and one of them encoded a GDP-mannose-4,6-dehydratase. Most likely these two genes are structural, tissue-specific markers of the cap. The third gene, a putative glycine-rich cell wall protein, was expressed in the cap and in the root epidermis and, conceivably is a positional marker of the cap. Microsurgical and molecular data indicate that the quiescent center and cap initials may regulate the positional and structural expression of these genes in the cap and thereby control root cap development.

  11. Effects of dehydroepiandrosterone on fatigue and well-being in women with quiescent systemic lupus erythematosus : a randomised controlled trial

    NARCIS (Netherlands)

    Hartkamp, A.; Geenen, R.; Godaert, G. L. R.; Bijl, M.; Bijlsma, J. W. J.; Derksen, R. H. W. M.

    Objective Dehydroepiandrosterone (DHEA) has been reported to improve fatigue and reduced well-being. Both are major problems in patients with systemic lupus erythematosus (SLE), even with quiescent disease. Low serum DHEA levels are common in SLE. The present work investigates the effects of DHEA

  12. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary

    NARCIS (Netherlands)

    Skelhon, T.S.; Grossiord, N.; Morgan, A.R.; Bon, S.A.F.

    2012-01-01

    We demonstrate a route toward the preparation of healthier fruit juice infused chocolate candy. Up to 50 wt% of the fat content in chocolate, that is cocoa butter and milk fats, is replaced with fruit juice in the form of emulsion droplets using a quiescent Pickering emulsion fabrication strategy.

  13. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...

  14. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary

    NARCIS (Netherlands)

    Skelhon, T.S.; Grossiord, N.; Morgan, A.R.; Bon, S.A.F.

    2012-01-01

    We demonstrate a route toward the preparation of healthier fruit juice infused chocolate candy. Up to 50 wt% of the fat content in chocolate, that is cocoa butter and milk fats, is replaced with fruit juice in the form of emulsion droplets using a quiescent Pickering emulsion fabrication strategy. F

  15. Boundary layer flow on a moving surface in otherwise quiescent pseudo-plastic non-Newtonian fluids

    Institute of Scientific and Technical Information of China (English)

    Liancun Zheng; Liu Ting; Xinxin Zhang

    2008-01-01

    A theoretical analysis for the boundary layer flow over a continuous moving surface in an otherwise quiescent pseudo-plastic non-Newtonian fluid medium was presented. The types of potential flows necessary for similar solutions to the boundary layer equations were determined and the solutions were numerically presented for different values of power law exponent.

  16. CANDELS+3D-HST: Compact SFGs at z ~ 2-3, the Progenitors of the First Quiescent Galaxies

    NARCIS (Netherlands)

    Barro, G.; Faber, S. M.; Pérez-González, P. G.; Pacifici, C.; Trump, J. R.; Koo, D. C.; Wuyts, S.; Guo, Y.; Bell, E.; Dekel, A.; Porter, L.; Primack, J.; Ferguson, H.; Ashby, M. L. N.; Caputi, K.; Ceverino, D.; Croton, D.; Fazio, G. G.; Giavalisco, M.; Hsu, L.; Kocevski, D.; Koekemoer, A.; Kurczynski, P.; Kollipara, P.; Lee, J.; McIntosh, D. H.; McGrath, E.; Moody, C.; Somerville, R.; Papovich, C.; Salvato, M.; Santini, P.; Tal, T.; van der Wel, A.; Williams, C. C.; Willner, S. P.; Zolotov, A.

    2014-01-01

    We analyze the star-forming and structural properties of 45 massive (log(M/M ⊙) >10) compact star-forming galaxies (SFGs) at 2 quiescent galaxies at z ~ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are

  17. CANDELS+3D-HST : Compact SFGs at z~2-3, the progenitors of the first quiescent galaxies

    NARCIS (Netherlands)

    Barro, G.; Faber, S. M.; Perez-Gonzalez, P. G.; Pacifici, C.; Trump, J. R.; Koo, D. C.; Wuyts, S.; Guo, Y.; Bell, E.; Dekel, A.; Porter, L.; Primack, J.; Ferguson, H.; Ashby, M. L. N.; Caputi, K.; Ceverino, D.; Croton, D.; Fazio, G. G.; Giavalisco, M.; Hsu, L.; Kocevski, D.; Koekemoer, A.; Kurczynski, P.; Kollipara, P.; Lee, J.; McIntosh, D. H.; McGrath, E.; Moody, C.; Somerville, R.; Papovich, C.; Salvato, M.; Santini, P.; Tal, T.; van der Wel, A.; Williams, C.C.; Willner, S. P.; Zolotov, A.

    2014-01-01

    We analyze the star-forming and structural properties of 45 massive (log(M/M-circle dot) > 10) compact star-forming galaxies (SFGs) at 2 quiescent galaxies at z similar to 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that mos

  18. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary

    NARCIS (Netherlands)

    Skelhon, T.S.; Grossiord, N.; Morgan, A.R.; Bon, S.A.F.

    2012-01-01

    We demonstrate a route toward the preparation of healthier fruit juice infused chocolate candy. Up to 50 wt% of the fat content in chocolate, that is cocoa butter and milk fats, is replaced with fruit juice in the form of emulsion droplets using a quiescent Pickering emulsion fabrication strategy. F

  19. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  20. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  1. The Effect of Degassing Efficiency on the Fragmentation Behavior of Volcanic Rocks

    Science.gov (United States)

    Mueller, S.; Scheu, B.; Spieler, O.; Dingwell, D. B.

    2005-12-01

    The degassing efficiency of volcanic rocks is a decisive measure for the eruptive style and thus the explosivity of a volcano, since it directly affects magma fragmentation behaviour. Vesicles in ascending magma may bear overpressure if the relevant magma viscosity entails a relaxation time scale which is significantly larger than the time scale of ambient pressure reduction due to magma ascent. As long as this overpressure does not overcome the tensile strength of the magma, the system is in a structurally stable state, eventually degassing quiescently via an interconnected pore network. However, if a decompressive event (e.g. sector collapse) disturbs this stable pressure situation, two possible scenarios are conceivable: (1) An interconnected pore network has been established whose permeability is sufficiently high, so vesicle overpressure can be reduced efficiently by gas filtration. (2) The permeability of the network (or cluster of isolated pores, respectively) is low and gas overpressure can not be reduced within the required time scale. In this case the expansion of the pressurized gas may cause bubble wall failure and magma fragmentation into pyroclasts. This study compares experimentally derived fragmentation threshold values of volcanic rock samples, determined with a shock-tube based setup, to unsteady-state permeability values of the same sample sets. In order to cover a wide range in rock properties, we analysed samples from a broad variety of volcanic deposits. Among the treated volcanoes were Colima (Mexico), Bezymianny (Russia), Krakatoa and Merapi, (both Indonesia), Unzen (Japan), Lipari and Campi Flegrei (both Italy), Pinatubo (Philippines), and Santorini (Greece). The correlation of extensive databases of both investigated parameters revealed that permeabilities above a transition zone between 10-13 and 10-12 m2 shift the fragmentation threshold towards higher values. By means of this dataset the influence of the permeability on fragmentation

  2. Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy)

    Science.gov (United States)

    Carapezza, M. L.; Lelli, M.; Tarchini, L.

    2008-12-01

    Lake Albano, located 20 km to the SE of Rome, is hosted within the most recent crater of the quiescent Alban Hills volcanic complex that produced hydromagmatic eruptions in Holocene times. Stratigraphic, archaeological and historical evidence indicates that the lake level underwent important variations in the Bronze Age. Before the IV century B.C. several lahars were generated by water overflows from the lake and in the IV century B.C. Romans excavated a drainage tunnel. The lake is located above a buried carbonate horst that contains a pressurized medium-enthalpy geothermal reservoir from which fluids escape to the surface to produce many important gas manifestations of mostly CO 2. Previous studies recognized the presence of gas emissions also from the crater bottom. In 1997 the possibility of a Nyos-type event triggered by a lake rollover was considered very low, because the CO 2 water concentration at depth was found to be far from saturation. However, considering the high population density nearby, the Italian Civil Protection Department recommended that periodical monitoring be carried out. To this scope we initiated in 2001 a systematic geochemical study of the lake. Thirteen vertical profiles have been repeatedly carried out in 2001-2006, especially in the deepest part of the lake (167 m in 2006), measuring T, pH, dissolved O 2 and electrical conductivity. Water samples were collected from various depths and chemically and isotopically analysed. Two similar profiles have been measured also in the nearby Nemi crater lake. Results indicate that in the 4.5 years of monitoring the pressure of gas dissolved in the Lake Albano deep waters remained much lower than the hydrostatic pressure. A CO 2 soil survey carried out on the borders of the two lakes, indicates the presence of some zones of anomalous degassing of likely magmatic origin. A water overturn or a heavy mixing of deep and shallow waters likely occurred in winter 2003-2004, when cold rainfall cooled the

  3. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake

    Science.gov (United States)

    Yamamoto, M.; Miura, S.

    2014-12-01

    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  4. Spatial evaluation of volcanic ash forecasts using satellite observations

    Science.gov (United States)

    Harvey, N. J.; Dacre, H. F.

    2016-01-01

    The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD) models. In this paper the fractions skill score has been used for the first time to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash. This objective measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealized scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200-700 (km)2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite-retrieved ash data and evaluate VATD forecasts over a long time period.

  5. Spatial evaluation of volcanic ash forecasts using satellite observations

    Directory of Open Access Journals (Sweden)

    N. J. Harvey

    2015-09-01

    Full Text Available The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD models. In this paper an objective metric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The metric is based on the fractions skill score (FSS. This measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700 km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.

  6. Link of volcanic activity and climate change in Altai studied in the ice core from Belukha Mountain

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2013-01-01

    Full Text Available In the present research we discuss a role of volcanic activity in Altai thermal regime. Here we analyses the sulfate and temperature data reconstructed from the natural paleoarchive – ice core from the Belukha Mountain saddle. Sulfate ice-core reconstructions can serve as volcanic markers. The both – sulfate and temperature reconstructions – are for the last 750 years. As the characteristic of volcanic activity we consider Volcanic Explosivity Index (VEI, Dust Veil Index (DVI and Ice core volcanic index (IVI. The analysis was done using wavelet analysis and analysis of wavelet cross coherence and phase. As the result, we conclude that observed increases in the values of the indexes VEI, DVI, IVI basically correspond to decreases of temperature and increases of sulfate concentrations. This confirms the dependence of changes in the thermal regime of the Altai from volcanic activity. But in the 1750–1850 years period there is a delay of the changes in temperature with respect to the changes in volcanic activity. We suggest that it can be due to the superposition of the influence of solar and volcanic activity on changes in the thermal regime of Altai.

  7. Observations of volcanic earthquakes and tremor at Deception Island - Antarctica

    Directory of Open Access Journals (Sweden)

    J. Morales

    1999-06-01

    Full Text Available Deception Island - South Shetlands, Antarctica is site of active volcanism. Since 1988 field surveys have been carried out with the aim of seismic monitoring, and in 1994 a seismic array was set up near the site of the Spanish summer base in order to better constrain the source location and spectral properties of the seismic events related to the volcanic activity. The array was maintained during the Antarctic summer of 1995 and the last field survey was carried out in 1996. Data show the existence of three different groups (or families of seismic events: 1 long period events, with a quasi-monochromatic spectral content (1-3 Hz peak frequency and a duration of more than 50 s, often occurring in small swarms lasting from several minutes to some day; 2 volcanic tremor, with a spectral shape similar to the long period events but with a duration of several minutes (2-10; 3 hybrid events, with a waveform characterised by the presence of a high frequency initial phase, followed by a low frequency phase with characteristics similar to those of the long period events. The high frequency phase of the hybrid events was analysed using polarisation techniques, showing the presence of P waves. This phase is presumably located at short epicentral distances and shallow source depth. All the analysed seismic events show back-azimuths between 120 and 330 degrees from north (corresponding to zones of volcanic activity showing no seismic activity in the middle of the caldera. Particle motion, Fourier spectral and spectrogram analysis show that the low frequency part of the three groups of the seismic signals have similar patterns. Moreover careful observations show that the high frequency phase which characterises the hybrid events is present in the long period and in the tremor events, even with lower signal to noise ratios. This evidence suggests that long period events are events in which the high frequency part is simply difficult to observe, due to a very

  8. The Dras arc: two successive volcanic events on eroded oceanic crust

    Science.gov (United States)

    Reuber, Ingrid

    1989-04-01

    The Dras arc is recognized as a volcanic arc system in the western part of the Indus suture zone and it constitutes the link between the Ladakh batholith and the Kohistan arc. This study is based on detailed mapping of the area between Dras, Kargil and Sanku which revealed the following: (1) The ultramafics of Dras and Thasgam can be followed across the Suru Dras ridge and are not intrusive into the arc volcanics, but instead constitute the most probably oceanic substratum of these volcanics. (2) Successive volcanic events are distinguished: (a) Dras I is a variable volcaniclastic series rich in slates and carbonates, which can probably be assigned to the Albo-Cenomanian, as dated by orbitolines. This series is intruded by gabbro, diorite and granite and is deformed, essentially in the northern part. It is unconformably overlain by (b) the Dras II pyroclastics which grade southward into volcanic breccia and thus enable the location of the centres of volcanic activity during this younger period.

  9. Climatic Impacts of a Volcanic Double Event: 536/540 CE

    Science.gov (United States)

    Toohey, M.; Krüger, K.; Sigl, M.; Stordal, F.; Svensen, H.

    2015-12-01

    Volcanic activity in and around the year 536 CE led to the coldest decade of the Common Era, and has been speculatively linked to large-scale societal crises around the world. Using a coupled aerosol-climate model, with eruption parameters constrained by recently re-dated ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from a sequence of two major volcanic eruptions in 536 and 540 CE. Comparing with a reconstruction of volcanic forcing over the past 1200 years, we estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic "double event" was larger than that of any known period. Earth system model simulations including the volcanic forcing are used to explore the temperature and precipitation anomalies associated with the eruptions, and compared to available proxy records, including maximum latewood density (MXD) temperature reconstructions. Special attention is placed on the decadal persistence of the cooling signal in tree rings, and whether the climate model simulations reproduce such long-term climate anomalies. Finally, the climate model results will be used to explore the probability of socioeconomic crisis resulting directly from the volcanic radiative forcing in different regions of the world.

  10. Developing a NASA strategy for sampling a major Pinatubo-like volcanic eruption

    Science.gov (United States)

    Newman, P. A.; Jucks, K. W.; Maring, H. B.

    2016-12-01

    Based on history, it is reasonable to expect a major volcanic eruption in the foreseeable future. By "major volcanic eruption", we mean an eruption that injects a substantial amount of material, gases and particles, into the stratosphere as a result of one eruption event. Such a volcanic eruption can impact weather, climate, and atmospheric chemistry on regional, hemispheric and global scales over significant time periods. Further, such an eruption can be an unintended analog for a number of geo-engineering schemes for mitigating greenhouse warming of the Earth. In order to understand and project the consequences of a major eruption, it is necessary to make a number of observations from a variety of perspectives. Such an eruption will occur, in the immediate sense, unexpectedly. Therefore, it is wise to have a thoughtfully developed plan for executing a rapid response that makes useful observations. A workshop was held on 17-18 May 2016 at NASA GSFC to develop a NASA observation strategy that could be quickly implemented in response to a major volcanic eruption, and would characterize the changes to atmospheric (especially stratospheric) composition following a large volcanic eruption. In this presentation we will provide an overview of the elements of this strategy with respect to satellite, balloon, ground, and aircraft observations. In addition, models simulations and forecasts will play a key role in any response strategy. Results will also be shown from a spectrum of simulations of volcanic eruptions that support this NASA strategy.

  11. Dating of the late Quaternary volcanic events using Uranium-series technique on travertine deposit: A case study in Ihlara, Central Anatolia Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Tonguç Uysal, İ.; Ünal-İmer, Ezgi

    2016-04-01

    Dating of late Quaternary volcanism is crucial to understanding of the recent mechanism of crustal deformation and future volcanic explosivity risk of the region. However, radiometric dating of volcanic products has been a major challenge because of high methodological error rate. In most cases, there are difficulties on discrimination of the volcanic lava flow relations in the field. Furthermore, there would be unrecorded and unpreserved volcanoclastic layers by depositional and erosional processes. We present a new method that allows precise dating of late Quaternary volcanic events (in the time range of 0-500,000 years before present) using the Uranium-series technique on travertine mass, which is thought to be controlled by the young volcanism. Since the high pressure CO2 in the spring waters are mobilized during crustal strain cycles and the carbonates are precipitated in the fissures act as conduit for hot springs, thus, travertine deposits provide important information about crustal deformation. In this study we studied Ihlara fissure ridge travertines in the Central Anatolia Volcanic Province. This region is surrounded by many eruption centers (i.e. Hasandaǧı, Acıgöl and Göllüdaǧı) known as the late Quaternary and their widespread volcanoclastic products. Recent studies have suggested at least 11 events at around Acıgöl Caldera for the last 180 ka and 2 events at Hasandaǧı Stratovolcano for the last 30 ka. Active travertine masses around Ihlara deposited from hotwaters, which rise up through deep-penetrated fissures in volcanoclastic products of surrounding volcanoes. Analyses of the joint systems indicate that these vein structures are controlled by the crustal deformation due to young volcanism in the vicinity. Thus, the geological history of Ihlara travertine mass is regarded as a record of surrounding young volcanism. We dated 9 samples from 5 ridge-type travertine masses around Ihlara region. The age distribution indicates that the crustal

  12. Periodic paralysis.

    Science.gov (United States)

    Fontaine, Bertrand

    2008-01-01

    Periodic paralyses are rare diseases characterized by severe episodes of muscle weakness concomitant to variations in blood potassium levels. It is thus usual to differentiate hypokalemic, normokalemic, and hyperkalemic periodic paralysis. Except for thyrotoxic hypokalemic periodic paralysis and periodic paralyses secondary to permanent changes of blood potassium levels, all of these diseases are of genetic origin, transmitted with an autosomal-dominant mode of inheritance. Periodic paralyses are channelopathies, that is, diseases caused by mutations in genes encoding ion channels. The culprit genes encode for potassium, calcium, and sodium channels. Mutations of the potassium and calcium channel genes cause periodic paralysis of the same type (Andersen-Tawil syndrome or hypokalemic periodic paralysis). In contrast, distinct mutations in the muscle sodium channel gene are responsible for all different types of periodic paralyses (hyper-, normo-, and hypokalemic). The physiological consequences of the mutations have been studied by patch-clamp techniques and electromyography (EMG). Globally speaking, ion channel mutations modify the cycle of muscle membrane excitability which results in a loss of function (paralysis). Clinical physiological studies using EMG have shown a good correlation between symptoms and EMG parameters, enabling the description of patterns that greatly enhance molecular diagnosis accuracy. The understanding of the genetics and pathophysiology of periodic paralysis has contributed to refine and rationalize therapeutic intervention and will be without doubts the basis of further advances.

  13. Characteristics of Mineralized Volcanic Centers in Javanese Sunda Island Arc, Indonesia

    Science.gov (United States)

    Setijadji, L. D.; Imai, A.; Watanabe, K.

    2007-05-01

    The subduction-related arc magmatism in Java island, Sunda Arc, Indonesia might have started in earliest Tertiary period, but the distinctively recognizable volcanic belts related with Java trench subduction occurred since the Oligocene. We compiled geoinformation on volcanic centers of different epochs, distribution of metallic mineral deposits, petrochemistry of volcanic rocks, geologic structures, and regional gravity image in order to elucidate characteristics of the known mineralized volcanic centers. Metallic deposits are present in various styles from porphyry-related, high-sulfidation, and low-sulfidation epithermal systems; all related with subaerial volcanism and subvolcanic plutonism. Only few and small occurrences of volcanigenic massive sulfides deposits suggest that some mineralization also occurred in a submarine environment. Most locations of mineral deposits can be related with location of Tertiary volcanic centers along the volcanic arcs (i.e. volcanoes whose genetic link with subduction is clear). On the other side there is no mineralization has been identified to occur associated with backarc magmatism whose genetic link with subduction is under debate. There is strong evidence that major metallic deposit districts are located within compressive tectonic regime and bound by coupling major, deep, and old crustal structures (strike-slip faults) that are recognizable from regional gravity anomaly map. So far the most economical deposits and the only existing mines at major industry scale are high-grade epithermal gold deposits which are young (Upper Miocene to Upper Pliocene), concentrated in Bayah dome complex in west Java, and are associated with alkalic magmatism-volcanism. On the other hand, known porphyry Cu-Au deposits are associated with old (Oligocene to Upper Miocene) stocks, and except for one case, all deposits are located in east Java. Petrochemical data suggest a genetic relationship between porphyry mineralization with low- to

  14. The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records

    Science.gov (United States)

    Watt, Sebastian F. L.; Pyle, David M.; Mather, Tamsin A.

    Several lines of evidence have previously been used to suggest that ice retreat after the last glacial maximum (LGM) resulted in regionally-increased levels of volcanic activity. It has been proposed that this increase in volcanism was globally significant, forming a substantial component of the post-glacial rise in atmospheric CO2, and thereby contributing to climatic warming. However, as yet there has been no detailed investigation of activity in glaciated volcanic arcs following the LGM. Arc volcanism accounts for 90% of present-day subaerial volcanic eruptions. It is therefore important to constrain the impact of deglaciation on arc volcanoes, to understand fully the nature and magnitude of global-scale relationships between volcanism and glaciation. The first part of this paper examines the post-glacial explosive eruption history of the Andean southern volcanic zone (SVZ), a typical arc system, with additional data from the Kamchatka and Cascade arcs. In all cases, eruption rates in the early post-glacial period do not exceed those at later times at a statistically significant level. In part, the recognition and quantification of what may be small (i.e. less than a factor of two) increases in eruption rate is hindered by the size of our datasets. These datasets are limited to eruptions larger than 0.1 km3, because deviations from power-law magnitude-frequency relationships indicate strong relative under-sampling at smaller eruption volumes. In the southern SVZ, where ice unloading was greatest, eruption frequency in the early post-glacial period is approximately twice that of the mid post-glacial period (although frequency increases again in the late post-glacial). A comparable pattern occurs in Kamchatka, but is not observed in the Cascade arc. The early post-glacial period also coincides with a small number of very large explosive eruptions from the most active volcanoes in the southern and central SVZ, consistent with enhanced ponding of magma during

  15. Volcanic Seismicity - The Power of the b-value

    Science.gov (United States)

    Main, I. G.; Roberts, N.; Bell, A. F.

    2016-12-01

    The Gutenberg-Richter `b-value' is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. It is `well known' that the b-value tends to be high or very high for volcanic earthquake populations relative to b = 1 for those of tectonic earthquakes, and that b varies significantly with time during periods of unrest. Subject to suitable calibration the b-value also allows us to quantify and characterise earthquake distributions of both ancient and currently-active populations, as a measure of the frequency-size distribution of source rupture area or length. Using a new iterative sampling method (Roberts et al. 2016), we examine data from the El Hierro seismic catalogue during a period of unrest in 2011-2013, and quantify the resulting uncertainties. The results demonstrate commonly-applied methods of assessing uncertainty in b-value significantly underestimate the total uncertainty, particularly when b is high. They also show clear multi-modal behaviour in the evolution of the b-value. Individual modes are relatively stable in time, but the most probable b-value intermittently switches between modes, one of which is similar to that of tectonic seismicity, and some are genuinely higher within the total error. A key benefit of this approach is that it is able to resolve different b-values associated with contemporaneous processes, even in the case where some generate high rates of events for short durations and others low rates for longer durations. These characteristics that are typical for many volcanic processes. Secondly, we use a range field observations from the exhumed extinct magma chamber on the Isle of Rum, NW Scotland, to infer an equivalent a b-value for the `frozen' fracture system that would have been active at the time of volcanism 65Ma ago. Using measurements from millimetre-scale fractures to lineation's on satellite imagery over 100m in length, we estimate b=1.8, significantly greater than

  16. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre

  17. SHRIMP zircon U-Pb dating for volcanic rocks of the Dasi Formation in southeast Hubei Province, middle-lower reaches of the Yangtze River and its implications

    Institute of Scientific and Technical Information of China (English)

    XIE Guiqing; MAO Jingwen; LI Ruiling; ZHOU Shaodong; YE Huishou; YAN Quanren; ZHANG Zusong

    2006-01-01

    The Jinniu Basin in southeast Hubei,located at the westernmost part of middle-lower valley of the Yangtze River, is one of the important volcanic basins in East China. Volcanic rocks in the Jinniu Basin are distributed mainly in the Majiashan Formation, the Lingxiang Formation and the Dasi Formation, consisting of rhyolite, basalt and basaltic andesite, (trachy)-basalt and basaltic trachy-andesite and (trachy)-andesite and (trachy)-dacite and rhyolite respectively, in which the Dasi volcanism is volumetrically dominant and widespread. The Dasi volcanic rocks were selected for SHRIMP zircon U-Pb dating to confirm the timing of volcanism. The results indicate that there exist a large amount of magmatic zircons characterized by high U and Th contents in the volcanic rocks. The concordia ages for 13 points are 128±1Ma (MSWD = 3.0). On account of the shape of zircons and Th/U ratios, this age is considered to represent the crystallization time of the Dasi volcanism. The volcanic rocks in the Dasi, Majiashan and Lingxiang Formations share similar trace element and REE partition patterns as well as Sr-Nd isotopic compositions. In combination with the regional geology, it is proposed that the southeast Hubei volcanic rocks were formed mainly during the Early Cretaceous, just like other volcanic basins in middle-lower Yangtze valley. A lithospheric extension is also suggested for tectonic regime in this region in the Cretaceous Period.

  18. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons

    1998-01-01

    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  19. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    Energy Technology Data Exchange (ETDEWEB)

    Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Altieri, Bruno [European Space Astronomy Centre (ESAC)/ESA, Villanueva de la Cañada, 28691, Madrid (Spain); Brammer, Gabriel B. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Dickinson, Mark; Inami, Hanae [National Optical Astronomy Observatory, Tucson, AZ (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan, E-mail: straatman@strw.leidenuniv.nl [Carnegie Observatories, Pasadena, CA 91101 (United States); and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  20. CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Faber, S. M.; Koo, David C.; Kocevski, Dale D.; Trump, Jonathan R.; Mozena, Mark; McGrath, Elizabeth; Cheung, Edmond; Fang, Jerome [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Perez-Gonzalez, Pablo G. [Departamento de Astrof isica, Facultad de CC F isicas, Universidad Complutense de Madrid, F. CC. Fisicas, E-28040 Madrid (Spain); Williams, Christina C. [Astronomy Department, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003 (United States); Van der Wel, Arjen [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Wuyts, Stijn [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Croton, Darren J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Ceverino, Daniel; Dekel, Avishai [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fontana, Adriano [INAF Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio, Rome (Italy); and others

    2013-03-10

    We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M{sub *} > 10{sup 10} M{sub Sun }) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z {approx}> 2, cSFGs present SFR = 100-200 M{sub Sun} yr{sup -1}, yet their specific star formation rates (sSFR {approx} 10{sup -9} yr{sup -1}) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times ({approx}30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10{sup 8} yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z {approx} 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z {approx}> 2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z {approx}< 2) path in which larger SFGs form extended QGs without passing through a compact state.

  1. Analogue Models Of Volcanic Spreading At Mt. Vesuvius

    Science.gov (United States)

    De Matteo, Ada; Castaldo, Raffaele; D'Auria, Luca; James, Michael; Lane, Steve; Massa, Bruno; Pepe, Susi; Tizzani, Pietro

    2015-04-01

    Somma-Vesuvius is a quiescent strato-volcano of the Neapolitan district, southern Italy, for which various geophysical and geological evidences (e.g. geodetic measurements, geological and structural data, seismic profiles interpretations and surface deformation analysis with Differential Interferometric Synthetic Aperture Radar (DInSAR)) indicate ongoing spreading deformation. In this research we investigate the spreading deformation and associated surface deformation pattern by performing analogue experiments and comparing the results with actual ground deformation as measured using DInSAR data recorded between 1992 and 2010. Somma-Vesuvius consists of a volcanic cone (Gran Cono) lying within an asymmetric caldera (Somma). The Somma caldera is the result of at least 7 Plinian eruptions, the last of which was the 79 CE. Pompeii eruption. The current cone of Mt. Vesuvius grew within the caldera in the following centuries as the effect of continued explosive and effusive activity of the volcano. The volcano lies on a substratum consisting of a Mesozoic carbonatic basement, overlapped by Holocene clastic sediments and volcanic rocks. Our analogue models were built to simulate the shape of the Somma-Vesuvius top a scale of about 1:100000, emplaced on a sand layer (brittle behaviour) laid on a silicone layer (ductile behaviour). Models are based on the Fluid-dynamics Dimensionless Analysis (FDA), according to the Buckingham-Π theorem. In this context, we considered few dimensionless parameters that allowed the setting of a reliable scaled model. To represent the complex Somma-Vesuvius geometry, an asymmetric model was built by setting a truncated cone (mimicking the topography of Somma edifice) topped by another small cone (mimicking the Gran Cono) shifted off the axis of the main cone. Different experiments were carried out in which the thickness of the basal sand layer and of the silicone one were varied. To quantify the vertical and horizontal displacements the

  2. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  3. Paleosubmarine Volcanism and Mineralization from North Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper summarizes the history of tectono-magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic ocean basin opening and closing, the large scale marine volcanism and massive sulfide deposits controlled by sea floor hydrothermal circulation systems are the two sharpest features in the geological developing history of the orogenic belt, which are also the most two important aspects related to each other and should be given a special attention in the geological studies in the region.

  4. Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland

    Science.gov (United States)

    Eason, Deborah E.; Sinton, John M.; Grönvold, Karl; Kurz, Mark D.

    2015-06-01

    New observations and geochemical analyses of volcanic features in the 170-km-long Western Volcanic Zone (WVZ) of Iceland constrain spatial and temporal variations in volcanic production and composition associated with the last major deglaciation. Subglacial eruptions represent a significant portion of the late Quaternary volcanic budget in Iceland. Individual features can have volumes up to ˜48 km3 and appear to be monogenetic. Subaqueous to subaerial transition zones provide minimum estimates of ice sheet thickness at the time of eruption, although water-magma interactions and fluctuating lake levels during eruption can lead to complex lithological sequences. New major and trace element data for 36 glacial and postglacial eruptive units, combined with observations of lava surface quality, passage zone heights, and 3He exposure ages of some glacial units, indicate a maximum in volcanic production in the WVZ during the last major ice retreat. Anomalously high volcanic production rates continue into the early postglacial period and coincide with significant incompatible element depletions and slightly higher CaO and SiO2 and lower FeO content at a given MgO. Subglacial units with strong incompatible element depletions also have lava surfaces that lack evidence of subsequent glaciation. These units likely formed after the onset of deglaciation, when rapidly melting ice sheets increased decompression rates in the underlying mantle, leading to anomalously high melting rates in the depleted upper mantle. This process also can explain the eruption of extremely depleted picritic lavas during the early postglacial period. These new observations indicate that the increased volcanic activity associated with glacial unloading peaked earlier than previously thought, before Iceland was completely ice free.

  5. Time trend analysis of basaltic volcanism for the Yucca Mountain site

    Science.gov (United States)

    Ho, Chih-Hsiang

    1991-05-01

    The possible recurrence of volcanic activity near the proposed nuclear waste repository at Yucca Mountain, Nevada, U.S.A. is evaluated by estimating the instantaneous recurrence rate using a nonhomogeneous Poisson process with Weibull intensity and by using a homogeneous Poisson process to predict future eruptions. Analysis on the post-6-Ma volcanism near the Yucca Mountain region indicates a moderate developing time trend ( p-value = 0.01) of volcanic activity. A similar time trend is obtained by trimming the observation period to 3.7 Ma and younger (period of the youngest episode). Data from the Quaternary basaltic volcanism also show a slight developing time trend, although the developing volcanic activity is not significant at the 0.05 level. Thus, it would oversimplify the assessment of the volcanic risk to the proposed Yucca Mountain repository site if a simple Poisson model were used to model the volcanism. Based on the Quaternary data, the estimated instantaneous recurrence rate is about 5.5 × 10 -6/yr. An estimate of the mean time to the next eruption is about 1.8 × 10 5 years from now, if it is assumed that the intensity remains constant thereafter. Also, the risk (probability of at least one major eruption during the projected time frame) increases approximately linearly with the time frame chosen as the required interval for radioactive waste to decay to an acceptable level. Our study concludes that the estimated risk for an isolation time of 10 4 years is about 5%, which increases to 42% if 10 5 years is used as the required isolation time.

  6. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer

    1999-06-01

    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  7. Observations of the gamma-ray emission from the Quiescent Sun with Fermi Large Area Telescope during the first 7 years in orbit

    Directory of Open Access Journals (Sweden)

    Rainó S.

    2017-01-01

    Full Text Available The high energy gamma-ray emission from the quiescent Sun is due to the interactions of cosmic ray (CR protons and electrons with matter and photons in the solar environment. Such interactions lead to two component gamma-ray emission: a disk-like emission due to the nuclear interactions of CR protons and nuclei in the solar atmosphere and a space extended emission due to the inverse Compton (IC scattering of CR electrons off solar photons in the whole heliosphere. The observation of these two solar emission components may give useful information about the evolution of the solar cycle by probing two different CR components (proton and electrons in regions not directly accessible by direct observations. We present the results of the observations of the Sun with Fermi-LAT in the first 7 years on orbit, with the exception of the flaring periods. Significantly large photon statistics and improved processing performance with respect to previous analysis allow us to explore both components of the emission in greater details and perform better comparisons of data with current models of the IC component. This allows us to probe CR electrons in the inner heliosphere which is not possible by other methods. Moreover, the longer period of observations allows us to study the variations of the emission between the maximum and the minimum of the solar cycle.

  8. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  9. Palaeoclimate: Volcanism caused ancient global warming

    Science.gov (United States)

    Meissner, Katrin J.; Bralower, Timothy J.

    2017-08-01

    A study confirms that volcanism set off one of Earth's fastest global-warming events. But the release of greenhouse gases was slow enough for negative feedbacks to mitigate impacts such as ocean acidification. See Letter p.573

  10. Volcanics in the Gulf Coast [volcanicg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The volcanic provinces are modified after Plate 2, Principal structural features, Gulf of Mexico Basin (compiled by T.E. Ewing and R.F. Lopez) in Volume J, The...

  11. Ages and metallicities for quiescent galaxies in the Shapley Supercluster: Driving parameters of the stellar populations

    CERN Document Server

    Smith, Russell J; Hudson, Michael J

    2009-01-01

    We use high signal-to-noise spectroscopy for a sample of 232 quiescent galaxies in the Shapley Supercluster, to investigate how their stellar populations depend on velocity dispersion, luminosity and stellar mass. The sample spans a large range in velocity dispersion (sigma from 30-300 km/s) and in luminosity (M_R from -18.7 to -23.2). Estimates of age, total metallicity (Z/H) and alpha-element abundance ratio (a/Fe) were derived from absorption-line analysis, using single-burst models. Age, Z/H and a/Fe are all correlated positively with velocity dispersion, but we also find significant residual trends with luminosity: at given sigma, the brighter galaxies are younger, less alpha-enriched, and have higher Z/H. At face value, these results might suggest that the stellar populations depend on stellar mass as well as on velocity dispersion. However, we show that the observed trends can be reproduced by models in which the stellar populations depend systematically only on sigma, and are independent of stellar ma...

  12. Observaciones del disco solar y de una protuberancia quiescente en radiación ultravioleta

    Science.gov (United States)

    Cirigliano, D.; Vial, J.-C.; Rovira, M.

    Observaciones del disco solar y de una protuberancia quiescente en el rango de longitudes de onda ultravioleta fueron obtenidas con el instrumento CDS (Coronal Diagnostic Spectrograph) y SUMER (Solar Ultraviolet Measurements of emitted radiation) a bordo de la sonda SOHO. El propósito es investigar las velocidades macroscópicas de varias especies metálicas que se observan tanto en el disco solar como en el plasma de las protuberancias. Para calcular las velocidades del disco solar aplicamos una técnica mixta para modelar la distribución de estructuras en UV en el Sol quieto. Las velocidades macroscópicas en las protuberancias se calcularon a partir de los corrimientos Doppler en cada línea espectral y luego se tomaron las del disco solar como referencia. Obtuvimos valores absolutos para las velocidades macroscópicas entre 5 y 40 km/seg. También detectamos comportamientos diferentes en las velocidades de las protuberancias en el centro con respecto a los bordes.

  13. Gas hydrate fast nucleation from melting ice and quiescent growth along vertical heat transfer tube

    Institute of Scientific and Technical Information of China (English)

    XIE; Yingming; GUO; Kaihua; LIANG; Deqing; FAN; Shuanshi

    2005-01-01

    During the observation of HCFC141b gas hydrate growth processes outside a vertical heat transfer tube, two exciting phenomena were found: fast nucleation of gas hydrate from melting ice, and the spontaneous permeation of water into the guest phases along the surface of heat transfer tube to form gas hydrate continuously. These two phenomena were explained with Zhou & Sloan's hypothesis and the theory of surface free energy respectively, and a novel method of gas hydrate formation was presented--gas hydrate fast nucleation from melting ice and quiescent growth along heat transfer tube. There is no mechanic stirring in this method, the formed gas hydrates are compact, the ratio of unreacted interstitial water is little, which overcome the drawback of high energy cost and high ratio of unreacted interstitial water among the formed gas hydrates in the system with mechanic stirring. This finding will benefit the gas hydrate application technologies such as natural gas storage technology or cool storage technology with gas hydrate.

  14. Peripheral monocyte functions and activation in patients with quiescent Crohn's disease.

    Directory of Open Access Journals (Sweden)

    David Schwarzmaier

    Full Text Available Recent developments suggest a causal link between inflammation and impaired bacterial clearance in Crohn's disease (CD due to alterations of intestinal macrophages. Studies suggest that excessive inflammation is the consequence of an underlying immunodeficiency rather than the primary cause of CD pathogenesis. We characterized phenotypic and functional features of peripheral blood monocytes of patients with quiescent CD (n = 18 and healthy controls (n = 19 by analyses of cell surface molecule expression, cell adherence, migration, chemotaxis, phagocytosis, oxidative burst, and cytokine expression and secretion with or without lipopolysaccharide (LPS priming. Peripheral blood monocytes of patients with inactive CD showed normal expression of cell surface molecules (CD14, CD16, CD116, adherence to plastic surfaces, spontaneous migration, chemotaxis towards LTB4, phagocytosis of E. coli, and production of reactive oxygen species. Interestingly, peripheral blood monocytes of CD patients secreted higher levels of IL1β (p<.05. Upon LPS priming we found a decreased release of IL10 (p<.05 and higher levels of CCL2 (p<.001 and CCL5 (p<.05. The expression and release of TNFα, IFNγ, IL4, IL6, IL8, IL13, IL17, CXCL9, and CXCL10 were not altered compared to healthy controls. Based on our phenotypic and functional studies, peripheral blood monocytes from CD patients in clinical remission were not impaired compared to healthy controls. Our results highlight that defective innate immune mechanisms in CD seems to play a role in the (inflamed intestinal mucosa rather than in peripheral blood.

  15. Low Gas Fractions Connect Compact Star-Forming Galaxies to their z ~ 2 Quiescent Descendants

    CERN Document Server

    Spilker, Justin S; Marrone, Daniel P; Weiner, Benjamin J; Whitaker, Katherine E; Williams, Christina C

    2016-01-01

    Early quiescent galaxies at z~2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z~2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions >~5 times lower and gas depletion times >~10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z>2, and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition t...

  16. Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid

    CERN Document Server

    Huisman, Sander G; Bourgoin, Mickaël; Chouippe, Agathe; Doychev, Todor; Huck, Peter; Morales, Carla E Bello; Uhlmann, Markus; Volk, Romain

    2016-01-01

    The settling of heavy spherical particles in a column of quiescent fluid is investigated. The performed experiments cover a range of Galileo numbers ($110 \\leq \\text{Ga} \\leq 310$) for a fixed density ratio of $\\Gamma = \\rho_p/\\rho_f = 2.5$. In this regime the particles are known (M. Jenny, J. Du\\v{s}ek and G. Bouchet, Journal of Fluid Mechanics 508, 201 (2004).) to show a variety of motions. It is known that the wake undergoes several transitions for increasing $\\text{Ga}$ resulting in particle motions that are successively: vertical, oblique, oblique oscillating, and finally chaotic. Not only does this change the trajectory of single, isolated, settling particles, but it also changes the dynamics of a swarm of particles as collective effects become important even for dilute suspensions, with volume fraction up to $\\Phi_V = \\mathcal{O}\\left(10^{-3}\\right)$, which are investigated in this work. Multi-camera recordings of settling particles are recorded and tracked over time in 3 dimensions. A variety of analy...

  17. The abundance of compact quiescent galaxies since z ˜ 0.6

    Science.gov (United States)

    Charbonnier, Aldée; Huertas-Company, Marc; Gonçalves, Thiago S.; Menéndez-Delmestre, Karín; Bundy, Kevin; Galliano, Emmanuel; Moraes, Bruno; Makler, Martín; Pereira, Maria E. S.; Erben, Thomas; Hildebrandt, Hendrik; Shan, Huan-Yuan; Caminha, Gabriel B.; Grossi, Marco; Riguccini, Laurie

    2017-08-01

    We set out to quantify the number density of quiescent massive compact galaxies at intermediate redshifts. We determine structural parameters based on i-band imaging using the Canada-France-Hawaii Telescope (CFHT) equatorial Sloan Digital Sky Survey (SDSS) Stripe 82 (CS82) survey (˜170 deg2) taking advantage of an exquisite median seeing of ˜0.6 arcsec. We select compact massive (M⋆ > 5 × 1010 M⊙) galaxies within the redshift range of 0.2 10. We systematically measure a factor of ˜5 more compacts at the same redshift than what was previously reported on smaller fields with Hubble Space Telescope (HST) imaging, which are more affected by cosmic variance. This means that the decrease in number density from z ˜ 1.5 to z ˜ 0.2 might be only of a factor of ˜2-5, significantly smaller than what was previously reported. This supports progenitor bias as the main contributor to the size evolution. This milder decrease is roughly compatible with the predictions from recent numerical simulations. Only the most extreme compact galaxies, with Reff 1010.7 M⊙, appear to drop in number by a factor of ˜20 and hence likely experience a noticeable size evolution.

  18. Further Constraints on Thermal Quiescent X-ray Emission from SAX J1808.4-3658

    CERN Document Server

    Heinke, C O; Wijnands, R; Deloye, C J; Taam, R E

    2008-01-01

    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power-law with photon index 1.74+-0.11 and unabsorbed X-ray luminosity L_X=7.9+-0.7*10^{31} ergs/s, for N_H=1.3*10^{21} cm^{-2}. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law, we constrain any thermally emitting neutron star with a hydrogen atmosphere to have a temperature less than 30 eV and L_{NS}(0.01-10 keV)<6.2*10^{30} ergs/s. A thermal plasma model also gives an acceptable fit to the continuum. Adding a neutron star component to the plasma model produces less stringent constraints on the neutron star; a temperature of 36^{+4}_{-8} eV and L_{NS}(0.01-10 keV)=1.3^{+0.6}_{-0.8}*10^{31} ergs/s. In the framework of the current theory of neutron star heating and cooling, the constraints on the thermal luminosity of 1808 and...

  19. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    CERN Document Server

    Hannah, I G; Smith, D M; Glesener, L; Krucker, S; Hudson, H S; Madsen, K K; Marsh, A; White, S M; Caspi, A; Shih, A Y; Harrison, F A; Stern, D; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Zhang, W W

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using NuSTAR, a focusing hard X-ray telescope capable of studying faint solar emission from high temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2~keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures $3.1-4.4$~MK and emission measures $1-8\\times 10^{46}$~cm$^{-3}$. We do not observe emission above 5~MK but our short effective exposure times restrict the spectral dynamic range. With few counts above 6~keV, we can place constraints on the presence of an additional hotter component between 5 and 12~MK of $\\sim 10^{46}$cm$^{-3}$ and $\\sim 10^{43}$ cm$^{-3}$, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar c...

  20. Observations and models of slow solar wind with Mg9+ ions in quiescent steamers

    CERN Document Server

    Ofman, Leon; Giordano, Silvio

    2012-01-01

    Quiescent streamers are characterized by a peculiar UV signature as pointed out by the results from the observations of the Ultraviolet and Coronograph Spectrometer (UVCS) on board SOHO: the intensity of heavy ion emission lines (such as OVI) show dimmer core relative to the edges. Previous models show that the structure of the heavy ion streamer emission relates to the acceleration regions of the slow solar wind at streamer legs and to gravitational settling processes in the streamer core. Observations of Mg9+ ion EUV emission in coronal streamers at solar minimum were first reported by the UVCS instrument. The Mg X 625A emission is an order of magnitude smaller than the OVI 1032A emission, requiring longer exposures to obtain statistically significant results. Here, MgX coronal observations are analyzed and compared, for the first time, with the solar minimum streamer structure in hydrogen and OVI emissions. We employ the 2.5D three-fluid model, developed previously to study the properties of O5+ ions in st...

  1. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling.

    Directory of Open Access Journals (Sweden)

    Joachim Kloehn

    2015-02-01

    Full Text Available Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days, but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ.

  2. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Liu, Ying D. [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Chen, P. F. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Su, Jiangtao, E-mail: ydshen@ynao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-11-20

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  3. Fine Magnetic Structure and Origin of Counter-Streaming Mass Flows in a Quiescent Solar Prominence

    CERN Document Server

    Shen, Yuandeng; Liu, Ying D; Chen, P F; Su, Jiangtao; Xu, Zhi; Liu, Zhong

    2015-01-01

    We present high-resolution observations of a quiescent solar prominence which was consisted of a vertical and a horizontal foot encircled by an overlying spine, and counter-streaming mass flows were ubiquitous in the prominence. While the horizontal foot and the spine were connecting to the solar surface, the vertical foot was suspended above the solar surface and supported by a semicircular bubble structure. The bubble first collapsed and then reformed at a similar height, finally, it started to oscillate for a long time. We find that the collapsing and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and a vertical foot, in which the horizontal foot was consisted of shorter field lines running partially along the spine and with the both ends connecting to the solar surface, while the v...

  4. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  5. Massive quiescent cores in Orion. IV. Their supercritical state revealed by high resolution ammonia maps

    CERN Document Server

    Li, D; Zhang, Q; Chen, W

    2012-01-01

    We present combined VLA and GBT images of \\ammonia\\ inversion transitions (1,1) and (2,2) toward OMC2 and OMC3. We focus on the relatively quiescent Orion cores, which are away from the Trapezium cluster and have no sign of massive protostars nor evolved star formation, such as IRAS source, water maser, and methanol maser. The 5\\arcsec\\ angular resolution and $0.6 \\rm{}km s^{-1}$ velocity resolution of these data enable us to study the thermal and dynamic state of these cores at $\\sim{}0.02 \\rm{}pc$ scales, comparable to or smaller than those of the current dust continuum surveys. We measure temperatures for a total of 30 cores, with average masses and radii of $11 \\Ms$ and $0.039 \\rm{}pc$, respectively. Compared to other Gould Belt dense cores, the Orion cores have an unusually high gravitational-to-inetic energy ratio (virial mass ratio $R_{vir} > >1$), resembling results for other clouds forming high--mass stars. This results from Orion cores having velocity dispersions similar to those in, e.g., Perseus a...

  6. A giant quiescent solar filament observed with high-resolution spectroscopy

    CERN Document Server

    Kuckein, C; Denker, C

    2016-01-01

    A giant, quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide on 2011 November 15. A mosaic of spectra (10 maps of 100" X 182") was recorded simultaneously in the chromospheric absorption lines H-alpha and Na I D2. Physical parameters of the filament plasma were derived using Cloud Model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I 10830 A, H-alpha, and Ca II K) of the Chromspheric Telescope (ChroTel) and full-disk magnetograms of HMI. The filament had extremely large linear dimensions (817"), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 H-alpha contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was larger. LOS velocity trends inferred...

  7. Evidence for rotational motions in the feet of a quiescent solar prominence

    CERN Document Server

    Suárez, D Orozco; Bueno, J Trujillo

    2012-01-01

    We present observational evidence of apparent plasma rotational motions in the feet of a solar prominence. Our study is based on spectroscopic observations taken in the He I 1083.0 nm multiplet with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope. We recorded a time sequence of spectra with 34 s cadence placing the slit of the spectrograph almost parallel to the solar limb and crossing two feet of an intermediate size, quiescent hedgerow prominence. The data show opposite Doppler shifts, +/- 6 km/s, at the edges of the prominence feet. We argue that these shifts may be interpreted as prominence plasma rotating counterclockwise around the vertical axis to the solar surface as viewed from above. The evolution of the prominence seen in EUV images taken with the Solar Dynamic Observatory provided us clues to interpret the results as swirling motions. Moreover, time-distance images taken far from the central wavelength show plasma structures moving parallel to the solar limb with ve...

  8. Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions

    CERN Document Server

    Gómez, Gilberto C; Shadmehri, Mohsen; Vázquez-Semadeni, Enrique

    2007-01-01

    We present numerical hydrodynamical simulations of the formation, evolution and gravitational collapse of isothermal molecular cloud cores induced by generic turbulent compressions in spherical geometry. A compressive wave is set up in a constant sub-Jeans density distribution. As the wave travels through the simulation grid, a shock-bounded layer is formed. The inner shock of this layer reaches and bounces off the center, leaving behind a central core with an initial almost uniform density distribution, surrounded by an envelope consisting of the material in the shock-bounded shell, with a power-law density profile with index close to -2 even in non-collapsing cases. The resulting density structure resembles a quiescent core of radius < 0.1 pc, with a Bonnor-Ebert-like (BE-like) profile, although it has significant dynamical differences: it is initially non-self-gravitating and confined by the ram pressure of the infalling material, and consequently, growing continuously in mass and size. With the appropi...

  9. Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles

    CERN Document Server

    De Ruiter, H R; Capetti, A; Fanti, R; Morganti, R; Santantonio, L

    2005-01-01

    We present a study of the optical brightness profiles of early type galaxies, using a number of samples of radio galaxies and optically selected elliptical galaxies. For the radio galaxy samples--B2 of Fanaroff-Riley type I and 3C of Fanaroff-Riley type II-- we determined a number of parameters that describe a "Nuker-law" profile, which were compared with those already known for the optically selected objects. We find that radio active galaxies are always of the "core" type (i.e. an inner Nuker law slope gamma 0.5). This difference is not due to any effect with absolute magnitude, since in a region of overlap in magnitude the dichotomy between radio active and radio quiescent galaxies remains. We speculate that core-type objects represent the galaxies that have been, are, or may become, radio active at some stage in their lives; active and non-active core-type galaxies are therefore identical in all respects except their eventual radio-activity: on HST scales we do not find any relationship between boxiness ...

  10. Submicron particle dynamics for different surfaces under quiescent and turbulent conditions

    Science.gov (United States)

    Vohra, Karn; Ghosh, Kunal; Tripathi, S. N.; Thangamani, I.; Goyal, P.; Dutta, Anu; Verma, V.

    2017-03-01

    Experiments were conducted using CsI aerosols in a small scale test chamber to simulate behaviour of aerosols in the containment of a nuclear reactor. The primary focus of the study was on submicron particles (14.3 nm-697.8 nm) due to their hazardous effect on human health. Different wall surfaces, viz., plexiglass, concrete and sandpaper were chosen to study the effect of surface roughness on dry deposition velocity under both quiescent and turbulent conditions. An analytical approach to calculate dry deposition velocity of submicron particles for rough surfaces has been proposed with an improvement in the existing parameterization for shift in the velocity boundary layer. The predicted deposition velocity with the improved parameterization was found to have better agreement with published measured data of Lai and Nazaroff (2005) compared to the existing parameterizations (Wood, 1981; Zhao and Wu, 2006b). There was a significant reduction in root mean square error (RMSE) between predicted, using the improved parameterization and measured deposition velocity (upto 100%) compared to earlier ones. The new analytical deposition approach was coupled with volume conserving semi-implicit coagulation model. This aerosol dynamic model was evaluated against explicit particle size distribution for the first time for rough surfaces. Normalized RMSE between simulated and measured particle size distribution varied in the range of 2%-20% at different instances. The model seems to closely predict submicron particle behaviour in indoor environment.

  11. Human mesenchymal stem cells promote survival of T cells in a quiescent state.

    Science.gov (United States)

    Benvenuto, Federica; Ferrari, Stefania; Gerdoni, Ezio; Gualandi, Francesca; Frassoni, Francesco; Pistoia, Vito; Mancardi, Gianluigi; Uccelli, Antonio

    2007-07-01

    Mesenchymal stem cells (MSC) are part of the bone marrow that provides signals supporting survival and growth of bystander hematopoietic stem cells (HSC). MSC modulate also the immune response, as they inhibit proliferation of lymphocytes. In order to investigate whether MSC can support survival of T cells, we investigated MSC capacity of rescuing T lymphocytes from cell death induced by different mechanisms. We observed that MSC prolong survival of unstimulated T cells and apoptosis-prone thymocytes cultured under starving conditions. MSC rescued T cells from activation induced cell death (AICD) by downregulation of Fas receptor and Fas ligand on T cell surface and inhibition of endogenous proteases involved in cell death. MSC dampened also Fas receptor mediated apoptosis of CD95 expressing Jurkat leukemic T cells. In contrast, rescue from AICD was not associated with a significant change of Bcl-2, an inhibitor of apoptosis induced by cell stress. Accordingly, MSC exhibited a minimal capacity of rescuing Jurkat cells from chemically induced apoptosis, a process disrupting the mitochondrial membrane potential regulated by Bcl-2. These results suggest that MSC interfere with the Fas receptor regulated process of programmed cell death. Overall, MSC can inhibit proliferation of activated T cells while supporting their survival in a quiescent state, providing a model of their activity inside the HSC niche. Disclosure of potential conflicts of interest is found at the end of this article.

  12. Translokin (Cep57) interacts with cyclin D1 and prevents its nuclear accumulation in quiescent fibroblasts.

    Science.gov (United States)

    Ruiz-Miró, Maria; Colomina, Neus; Fernández, Rita M H; Garí, Eloi; Gallego, Carme; Aldea, Martí

    2011-05-01

    Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.

  13. Origin of the concept of the quiescent centre of plant roots.

    Science.gov (United States)

    Barlow, Peter W

    2016-09-01

    Concepts in biology feed into general theories of growth, development and evolution of organisms and how they interact with the living and non-living components of their environment. A well-founded concept clarifies unsolved problems and serves as a focus for further research. One such example of a constructive concept in the plant sciences is that of the quiescent centre (QC). In anatomical terms, the QC is an inert group of cells maintained within the apex of plant roots. However, the evidence that established the presence of a QC accumulated only gradually, making use of strands of different types of observations, notably from geometrical-analytical anatomy, radioisotope labelling and autoradiography. In their turn, these strands contributed to other concepts: those of the mitotic cell cycle and of tissue-related cell kinetics. Another important concept to which the QC contributed was that of tissue homeostasis. The general principle of this last-mentioned concept is expressed by the QC in relation to the recovery of root growth following a disturbance to cell proliferation; the resulting activation of the QC provides new cells which not only repair the root meristem but also re-establish a new QC.

  14. Compact star forming galaxies as the progenitors of compact quiescent galaxies: Clustering result

    Science.gov (United States)

    Lin, Xiaozhi; Fan, Lulu; Kong, Xu; Fang, Guanwen

    2017-02-01

    We present a measurement of the spatial clustering of massive compact galaxies at 1.2 ≤ z ≤ 3 in CANDELS/3D-HST fields. We obtain the correlation length for compact quiescent galaxies (cQGs) at z ∼ 1.6 of r0 = 7.1-2.6+2.3 h-1 Mpc and compact star forming galaxies (cSFGs) at z ∼ 2.5 of r0 = 7.7-2.9+2.7 h-1 Mpc assuming a power-law slope γ = 1.8 . The characteristic dark matter halo masses MH of cQGs at z ∼ 1.6 and cSFGs at z ∼ 2.5 are ∼ 7.1 ×1012h-1M⊙ and ∼ 4.4 ×1012h-1M⊙ , respectively. Our clustering result suggests that cQGs at z ∼ 1.6 are possibly the progenitors of local luminous ETGs and the descendants of cSFGs and SMGs at z > 2. Thus an evolutionary connection involving SMGs, cSFGs, QSOs, cQGs and local luminous ETGs has been indicated by our clustering result.

  15. Compact star forming galaxies as the progenitors of compact quiescent galaxies: clustering result

    CERN Document Server

    Lin, Xiaozhi; Kong, Xu; Fang, Guanwen

    2016-01-01

    We present a measurement of the spatial clustering of massive compact galaxies at $1.2\\le z \\le 3$ in CANDELS/3D-HST fields. We obtain the correlation length for compact quiescent galaxies (cQGs) at $z\\sim1.6$ of $r_{0}=7.1_{-2.6}^{+2.3}\\ h^{-1}Mpc$ and compact star forming galaxies (cSFGs) at $z\\sim2.5$ of $r_{0}=7.7_{-2.9}^{+2.7}\\ h^{-1}Mpc$ assuming a power-law slope $\\gamma =1.8$. The characteristic dark matter halo masses $M_H$ of cQGs at $z\\sim1.6$ and cSFGs at $z\\sim2.5$ are $\\sim7.1\\times 10^{12}\\ h^{-1} M_\\odot$ and $\\sim4.4\\times10^{12}\\ h^{-1} M_\\odot$, respectively. Our clustering result suggests that cQGs at $z\\sim1.6$ are possibly the progenitors of local luminous ETGs and the descendants of cSFGs and SMGs at $z>2$. Thus an evolutionary connection involving SMGs, cSFGs, QSOs, cQGs and local luminous ETGs has been indicated by our clustering result.

  16. Volcanic rock properties control sector collapse events

    Science.gov (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio

    2017-04-01

    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  17. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  18. About the Mechanism of Volcanic Eruptions

    CERN Document Server

    Nechayev, Andrei

    2012-01-01

    A new approach to the volcanic eruption theory is proposed. It is based on a simple physical mechanism of the imbalance in the system "magma-crust-fluid". This mechanism helps to explain from unified positions the different types of volcanic eruptions. A criterion of imbalance and magma eruption is derived. Stratovolcano and caldera formation is analyzed. High explosive eruptions of the silicic magma is discussed

  19. Episodic Volcanism and Geochemistry in Western Nicaragua

    Science.gov (United States)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.

    2007-12-01

    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  20. Mapping the topography and cone morphology of the Dalinor volcanic swarm in Inner Mongolia with remote sensing and DEM data

    Science.gov (United States)

    Gong, Liwen; Li, Ni; Fan, Qicheng; Zhao, Yongwei; Zhang, Liuyi; Zhang, Chuanjie

    2016-09-01

    The Dalinor volcanic swarm, located south of Xilinhot, Inner Mongolia of China, was a result of multistage eruptions that occurred since the Neogene period. This swarm is mainly composed of volcanic cones and lava tablelands. The objective of this study is to map the topography and morphology of this volcanic swarm. It is based on a variety of data collected from various sources, such as the digital elevation model (DEM), Landsat images, and a 1:50,000 topographic map, in addition to various software platforms, including ArcGIS, Envi4.8, Global Mapper, and Google Earth for data processing and interpretation. The results show that the overall topography of the volcanic swarm is a platform with a central swell having great undulation, sizable gradient variations, a rough surface, and small terrain relief. According to the undulating characteristics of the line profile, the volcanic swarm can be divided into four stairs with heights of 1,280 m, 1,360 m, 1,440 m, and 1,500 m. The analysis of the swath profile characterizes the two clusters of volcanoes with different height ranges and evolution. The lava tablelands and volcanic cones are distributed in nearly EW-trending belts, where tableland coverage was delineated with superposed layers of gradients and degrees of relief. According to the morphology, the volcanic cones were classified into four types: conical, composite, dome, and shield. The formation causes and classification basis for each type of volcanic cone were analyzed and their parameters were extracted. The H/D ratios of all types of volcanic cones were then statistically determined and projected to create a map of volcanic density distribution. Based on the relationship between distribution and time sequence of the formation of different volcanic cones, it can be inferred that the volcanic eruptions migrated from the margins to the center of the lava plateau. The central area was formed through superposition of multi-stage eruptive materials. In addition

  1. The Relation between Galaxy Structure and Spectral Type: Implications for the Buildup of the Quiescent Galaxy Population at 0.5

    CERN Document Server

    Yano, Michael; van der Wel, Arjen; Whitaker, Katherine

    2016-01-01

    We present the relation between galaxy structure and spectral type, using a K-selected galaxy sample at 0.51.5 and significantly smaller than all other galaxy types at the same redshift. This result suggests that the suppression of star formation may be associated with significant structural evolution at z>1.5. At z<1, galaxy types with intermediate sSFRs (10^{-11.5}-10^{-10.5} yr^-1) do not have post-starburst SED shapes. These galaxies have similar sizes as older quiescent galaxies, implying that they can passively evolve onto the quiescent sequence, without increasing the average size of the quiescent galaxy population.

  2. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    least 1.3-1.5 Tg of SO2 (Krotkov et al 2011, Clarisse et al 2012). This was probably the largest sulfur yield from an explosive eruption since Pinatubo and Hudson in 1991 (Deshler et al 2006, Krotkov et al 2010). Within two weeks, volcanic aerosol had been detected at elevations of 15-20 km within the upper troposphere/lower stratosphere above north Africa and southern Eurasia; and within a month, the aerosol had been detected by lidar instruments on every continent in the northern hemisphere, from 20°-45°N. The aerosol, presumed to be dominated by sulfate, persisted for the period of observation (June-September 2011), and led to a small but significant stratospheric aerosol optical depth (AOD) perturbation (average ~0.02). While this is an order of magnitude lower than global AOD perturbations following the most significant eruptions of the 20th century (e.g. Stothers 1996), it is nonetheless substantially larger than estimates of the typical 'nonvolcanic' stratospheric aerosol background ( Bali, Indonesia) Bull. Volcanol. 74 1521-36 Smithsonian Institution 2011 Nabro. First historically observed eruption began 13 June 2011 Bull. Glob. Volcanism Netw. 36 (9) (www.volcano.si.edu/reports/bulletin/contents.cfm?issue=3609) Stohl A et al 2011 Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption Atmos. Chem. Phys. 11 4333-51 Stothers R B 1996 Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period 1881-1960 J. Geophys. Res. 101 3901-20 Symons G J (ed) 1888 The Eruption of Krakatoa and Subsequent Phenomena (London: Trubner and Co) Thomas H E and Prata A J 2011 Sulphur dioxide as a volcanic ash proxy during the April-May 2010 eruption of Eyjafjallajökull Atmos. Chem. Phys. 11 6871-80 Walker J C, Carboni E, Dudhia A and Grainger R G 2012 Improved detection of sulphur dioxide in volcanic plumes using satellite

  3. Volcanic loading: The dust veil index

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  4. Irregular Periods

    Science.gov (United States)

    ... blood become too low or too high. Some women have irregular periods because their bodies produce too much androgen, which is a hormone that causes increased muscle mass, facial hair, and deepening of the voice in males and ...

  5. Period Pain

    Science.gov (United States)

    ... You may also have other symptoms, such as lower back pain, nausea, diarrhea, and headaches. Period pain is not ... Taking a hot bath Doing relaxation techniques, including yoga and meditation You might also try taking over- ...

  6. Multi-wavelength observations of PKS 2142–75 during active and quiescent gamma-ray states

    Energy Technology Data Exchange (ETDEWEB)

    Dutka, Michael S. [The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Ojha, Roopesh [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Pottschmidt, Katja [Center for Research and Exploration in Space Science and Technology (CRESST), University of Maryland Baltimore Campus (UMBC) and NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Finke, Justin D. [Naval Research Laboratory, Space Science Division, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stevens, Jamie [CSIRO Astronomy and Space Science, Locked Bag 194, Narrabri, NSW 2390 (Australia); Edwards, Philip G. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Blanchard, Jay [Departamento de Astronoma, Universidad de Concepción, Casilla 160 C, 4089100 Concepción (Chile); Lovell, James E. J. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tas 7001 (Australia); Nesci, Roberto [INAF/IAPS, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Kadler, Matthias; Müller, Cornelia [Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer-Straße 31, D-97074 Würzburg (Germany); Wilms, Joern; Krauss, Felicia [Remeis Observatory and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); Tosti, Gino [University of Perugia, Piazza Università 1, I-06123 Perugia (Italy); Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma Santa Cruz de Tenerife (Spain); Gehrels, Neil, E-mail: ditko86@gmail.com [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States)

    2013-12-20

    PKS 2142–75 (a.k.a. 2FGL J2147.4–7534) is a flat-spectrum radio quasar that was observed quasi-simultaneously by a suite of instruments across the electromagnetic spectrum during two flaring states in 2010 April and 2011 August as well as a quiescent state from 2011 December through 2012 January. The results of these campaigns and model spectral energy distributions (SEDs) from the active and quiescent states are presented. The SED model parameters of PKS 2142–75 indicate that the two flares of the source are created by unique physical conditions. SED studies of flat-spectrum radio quasars are beginning to indicate that there might be two types of flares, those that can be described purely by changes in the electron distribution and those that require changes in other parameters, such as the magnetic field strength or the size of the emitting region.

  7. Late Pleistocene and Holocene activity of the Atacazo-Ninahuilca Volcanic Complex (Ecuador)

    NARCIS (Netherlands)

    Hidalgo, Silvana; Monzier, Michel; Almeida, Eduardo; Chazot, Gilles; Eissen, Jean-Philippe; van der Plicht, Johannes; Hall, Minard L.

    2008-01-01

    The Atacazo-Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data,

  8. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells.

    Science.gov (United States)

    Yao, Mu; Xie, Chanlu; Kiang, Mei-Yee; Teng, Ying; Harman, David; Tiffen, Jessamy; Wang, Qian; Sved, Paul; Bao, Shisan; Witting, Paul; Holst, Jeff; Dong, Qihan

    2015-10-27

    Cell cycle re-entry of quiescent cancer cells has been proposed to be involved in cancer progression and recurrence. Cytosolic phospholipase A2α (cPLA2α) is an enzyme that hydrolyzes membrane glycerophospholipids to release arachidonic acid and lysophospholipids that are implicated in cancer cell proliferation. The aim of this study was to determine the role of cPLA2α in cell cycle re-entry of quiescent prostate cancer cells. When PC-3 and LNCaP cells were rendered to a quiescent state, the active form of cPLA2α with a phosphorylation at Ser505 was lower compared to their proliferating state. Conversely, the phospho-cPLA2α levels were resurgent during the induction of cell cycle re-entry. Pharmacological inhibition of cPLA2α with Efipladib upon induction of cell cycle re-entry inhibited the re-entry process, as manifested by refrained DNA synthesis, persistent high proportion of cells in G0/G1 and low percentage of cells in S and G2/M phases, together with a stagnant recovery of Ki-67 expression. Simultaneously, Efipladib prohibited the emergence of Skp2 while maintained p27 at a high level in the nuclear compartment during cell cycle re-entry. Inhibition of cPLA2α also prevented an accumulation of cyclin D1/CDK4, cyclin E/CDK2, phospho-pRb, pre-replicative complex proteins CDC6, MCM7, ORC6 and DNA synthesis-related protein PCNA during induction of cell cycle re-entry. Moreover, a pre-treatment of the prostate cancer cells with Efipladib during induction of cell cycle re-entry subsequently compromised their tumorigenic capacity in vivo. Hence, cPLA2α plays an important role in cell cycle re-entry by quiescent prostate cancer cells.

  9. Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon

    Science.gov (United States)

    Feldmann, Robert; Quataert, Eliot; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-09-01

    We analyse the star formation rates (SFRs), colours and dust extinctions of galaxies in massive (1012.5 - 1013.5 M⊙) haloes at z ∼ 2 in high-resolution, cosmological zoom-in simulations as part of the Feedback In Realistic Environments (FIRE) project. The simulations do not model feedback from active galactic nuclei (AGNs) but reproduce well the observed relations between stellar and halo mass and between stellar mass and SFR. About half (a third) of the simulated massive galaxies (massive central galaxies) at z ∼ 2 have broad-band colours classifying them as 'quiescent', and the fraction of quiescent centrals is steeply decreasing towards higher redshift, in agreement with observations. The progenitors of z ∼ 2 quiescent central galaxies are, on average, more massive, have lower specific SFRs and reside in more massive haloes than the progenitors of similarly massive star-forming centrals. The simulations further predict a morphological mix of galaxies that includes disc-dominated, irregular and early-type galaxies. However, our simulations do not reproduce the reddest of the quiescent galaxies observed at z ∼ 2. We also do not find evidence for a colour bimodality, but are limited by our modest sample size. In our simulations, the star formation activity of central galaxies of moderate mass (Mstar ∼ 1010 - 1011 M⊙) is affected by a combination of two distinct physical processes. Outflows powered by stellar feedback result in a short-lived (experience a moderate reduction of their SFRs ('cosmological starvation'). The relative importance of these processes and AGN feedback is uncertain and will be explored in future work.

  10. Expression of herpes simplex virus 1 microRNAs in cell culture models of quiescent and latent infection.

    Science.gov (United States)

    Jurak, Igor; Hackenberg, Michael; Kim, Ju Youn; Pesola, Jean M; Everett, Roger D; Preston, Chris M; Wilson, Angus C; Coen, Donald M

    2014-02-01

    To facilitate studies of herpes simplex virus 1 latency, cell culture models of quiescent or latent infection have been developed. Using deep sequencing, we analyzed the expression of viral microRNAs (miRNAs) in two models employing human fibroblasts and one using rat neurons. In all cases, the expression patterns differed from that in productively infected cells, with the rat neuron pattern most closely resembling that found in latently infected human or mouse ganglia in vivo.

  11. Did the Nabro volcanic eruption directly overshoot the tropopause?

    Science.gov (United States)

    Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried; Brenot, Hugues; Rieckh, Therese

    2015-04-01

    During the night of 12 to 13 June 2011 an explosive eruption occurred at the Nabro volcano located in Eritrea (13.4°N, 41.7°E). This has been recognized as the largest volcanic eruption since Pinatubo 1991, ejecting ash and sulfur dioxide (SO2) into the atmosphere, spreading over more than 60 degrees in latitude and more than 100 degrees in longitude within a few days and lasting for more than 15 days. While there is agreement on the fact that the eruptive mass reached the stratosphere, the processes bringing the cloud to the lower stratosphere are still much debated. For solving this issue we used about 300 atmospheric profiles from Global Positioning System (GPS) Radio Occultation (RO) observations and analyzed the pre-eruption conditions and the impact of the eruption itself on the tropospheric and stratospheric thermal structure. The GPS RO technique enables measurements of the atmospheric parameters in nearly any meteorological condition, with global coverage, high vertical resolution and high accuracy, making RO data well suited to study the thermodynamic structure of volcanic clouds and their impact on climate. In the Nabro area there are no ground based measurements that can be used for such kind of studies and, in the period of the eruption, there are no acquisitions by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. By analyzing the RO bending angle anomaly in the volcanic cloud area, we evaluated the cloud top altitude and compared it to the tropopause altitude (also derived from RO) in the same area. Moreover, we analyzed the RO temperature profiles before and after the eruption. Our results show that the volcanic cloud directly overshoot the tropopause and that the injected SO2 warmed the lower stratosphere in an area of about 10x10 degrees in latitude and longitude for 6 months, which is consistent with the effect found on a larger scale for the Pinatubo eruption in 1991. This study shows the capabilities

  12. Quiescent Luminous Red Galaxies (LRGs) as Cosmic Chronometers: on the Significance of the Mass and Environmental Dependence

    CERN Document Server

    Liu, Gaochao; Xie, Lizhi; Chen, Xuelei; Zhao, Yongheng

    2016-01-01

    Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant. However, different LRGs may locate in different environments. The environmental effects may limit the use of the LRGs as cosmic chronometers. We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs selected from the Sloan Digital Sky Survey Date Release 8 and to pave the way for using the LRGs as cosmic chronometers. Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs weakly depend on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model, and fin...

  13. Stellar Velocity Dispersion for a Strongly-Lensed, Intermediate-Mass Quiescent Galaxy at z=2.8

    CERN Document Server

    Hill, Allison R; Franx, Marijn; van de Sande, Jesse

    2016-01-01

    Measuring stellar velocity dispersions of quiescent galaxies beyond $z\\sim2$ is observationally challenging. Such measurements require near-infrared spectra with a continuum detection of at least moderate signal-to-noise, often necessitating long integrations. In this paper, we present deep X-Shooter spectroscopy of one of only two known gravitationally-lensed massive quiescent galaxies at $z>2$. This galaxy is quadruply imaged, with the brightest images magnified by a factor of $\\sim5$. The total exposure time of our data is 9.8 hours on-source; however the magnification, and the slit placement encompassing 2 images, provides a total equivalent exposure time of 215 hours. From this deep spectrum we measure a redshift ($z_{\\mathrm{spec}}=2.756\\pm0.001$), making this one of the highest redshift quiescent galaxies that is spectroscopically confirmed. We simultaneously fit both the spectroscopic and photometric data to determine stellar population parameters and conclude this galaxy is relatively young, intermed...

  14. CANDELS+3D-HST: compact SFGs at z~2-3, the progenitors of the first quiescent galaxies

    CERN Document Server

    Barro, G; Perez-Gonzalez, P G; Pacifici, C; Trump, J R; Koo, D C; Wuyts, S; Guo, Y; Bell, E; Dekel, A; Porter, L; Primack, J; Ferguson, H; Ashby, M; Caputi, K; Ceverino, D; Croton, D; Fazio, G; Giavalisco, M; Hsu, L; Kocevski, D; Koekemoer, A; Kurczynski, P; Kollipara, P; Lee, J; McIntosh, D; McGrath, E; Moody, C; Somerville, R; Papovich, C; Salvato, M; Santini, P; Williams, C C; Willner, S; Zolotov, A

    2013-01-01

    We analyze the star-forming and structural properties of 45 massive (log(M/Msun)>10) compact star-forming galaxies (SFGs) at 2quiescent galaxies at z~2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray bright AGN. In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally-concentrated light profiles and spheroidal morphologies similar to quiescent galaxies, and are thus strikingly different from other SFGs. Most compact SFGs lie either within the SFR-M main sequence (65%) or below (30%), on the expected evolutionary path towards quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either expon...

  15. Venus volcanism - Classification of volcanic features and structures, associations, and global distribution from Magellan data

    Science.gov (United States)

    Head, James W.; Crumpler, L. S.; Aubele, Jayne C.; Guest, John E.; Saunders, R. S.

    1992-01-01

    A classification and documentation of the range of morphologic features and structures of volcanic origin on Venus, their size distribution, and their global distribution and associations are presented based on a preliminary analysis of Magellan data. Some of the major questions about volcanism on Venus are addressed.

  16. The Role of Magmatic and Volcanic Loads in Generating Seaward Dipping Reflector Structures on Volcanic Rifted Margins

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2016-12-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including a large portion that border the Atlantic Ocean. There is considerable controversy over whether their formation requires large offset (i.e. 10s of km) normal faults or not. Although there is some evidence for faulting in association with SDRs, we here show that a wide range of SDRs structures can be produced solely by volcanic loading. To do this we first derive a simple analytic description of a particular type of volcanic construct. We assume that the increase in density when fluid magma in a dike solidifies provides load at the rift center onto the end of a lithospheric plate. Extrusives are assumed to form flat-topped layers that fill in the flexural depression produced by the load of the solidified dike. The thin-plate flexure approximation is used to calculate the deflections due to the vertical load. This simple model produces structures similar to the observed SDRs. Expressions for the maximum thickness of the volcanic pile and the dip of an individual SDR are derived in terms of the flexure parameter and material densities. Asymmetry of SDR units seen across some conjugate margins can be explained with this model if periodic offsets, or jumps of the center of magmatism are included. In addition, we developed a numerical model of lithospheric extension, magma intrusion and volcanism with a temperature dependent elasto-viscous and brittle-plastic rheology. Results of these 2D cross-sectional models with fixed thermal structure confirm the qualitative predictions of the analytic model without the simplified uniform plate assumption. Preliminary results suggest that the rapid subsidence of SDRs, inferred for some rifted margins, can occur if magma is supplied only to the brittle upper layer and the hot weak lower crust is thinned by stretching. This numerical approach may also allow us to test

  17. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the

  18. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  19. The carbon inventory in a quiescent, filamentary molecular cloud in G328

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Michael G.; Ashley, Michael C. B.; Braiding, Catherine; Storey, John W. V. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Kulesa, Craig [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hollenbach, David J. [Carl Sagan Center, SETI Institute, 189 Bernado Avenue, Mountain View, CA 94043-5203 (United States); Wolfire, Mark [Astronomy Department, University of Maryland, College Park, MD 20742 (United States); Glück, Christian [KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Rowell, Gavin, E-mail: m.burton@unsw.edu.au [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia)

    2014-02-20

    We present spectral line images of [C I] 809 GHz, CO J = 1-0 115 GHz and H I 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C I] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H I data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ∼75 × 5 pc long with mass ∼4 × 10{sup 4} M {sub ☉} and a narrow velocity emission range of just 4 km s{sup –1}. The morphology and kinematics of this filament are similar in CO, [C I], and H I, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (T {sub Dust} < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.

  20. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    Science.gov (United States)

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  1. Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells.

    Science.gov (United States)

    Coll, Mar; El Taghdouini, Adil; Perea, Luis; Mannaerts, Inge; Vila-Casadesús, Maria; Blaya, Delia; Rodrigo-Torres, Daniel; Affò, Silvia; Morales-Ibanez, Oriol; Graupera, Isabel; Lozano, Juan José; Najimi, Mustapha; Sokal, Etienne; Lambrecht, Joeri; Ginès, Pere; van Grunsven, Leo A; Sancho-Bru, Pau

    2015-06-22

    Unveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNA regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs (aHSCs) were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNAs (n = 259), from which 47 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSC-associated miRNAs correlated with more than 6 altered target mRNAs (17,28 ± 10,7 targets/miRNA) whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSC activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSCs was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of the qHSC phenotype and form the basis for understanding the regulatory networks in HSCs.

  2. The quiescent intracluster medium in the core of the Perseus cluster

    Science.gov (United States)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall; Blandford, Roger; Brenneman, Laura; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Itoh, Masayuki; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kelley, Richard; Khangulyan, Dmitry; Kilbourne, Caroline; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Shu; Koyama, Katsuji; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Hang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Mehdipour, Missagh; Miller, Eric; Miller, Jon; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Moseley, Harvey; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stephane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sameshima, Hiroaki; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'Ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shin'Ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Watanabe, Shin; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-01

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

  3. Premalignant quiescent melanocytic nevi do not express the MHC class I chain-related protein A

    Directory of Open Access Journals (Sweden)

    Mercedes B. Fuertes

    2011-08-01

    Full Text Available The MHC class I chain-related protein A (MICA is an inducible molecule almost not expressed by normal cells but strongly up-regulated in tumor cells. MICA-expressing cells are recognized by natural killer (NK cells, CD8+ aßTCR and ?dTCR T lymphocytes through the NKG2D receptor. Engagement of NKG2D by MICA triggers IFN-? secretion and cytotoxicity against malignant cells. Although most solid tumors express MICA and this molecule is a target during immune surveillance against tumors, it has been observed that high grade tumors from different histotypes express low amounts of cell surface MICA due to a metalloprotease- induced shedding. Also, melanomas develop after a complex process of neotransformation of normal melanocytes. However, the expression of MICA in premalignant stages (primary human quiescent melanocytic nevi remains unknown. Here, we assessed expression of MICA by flow cytometry using cell suspensions from 15 primary nevi isolated from 11 patients. When collected material was abundant, cell lysates were prepared and MICA expression was also analyzed by Western blot. We observed that MICA was undetectable in the 15 primary nevi (intradermic, junction, mixed, lentigo and congenital samples as well as in normal skin, benign lesions (seborrheic keratosis, premalignant lesions (actinic keratosis and benign basocellular cancer. Conversely, a primary recently diagnosed melanoma showed intense cell surface MICA. We conclude that the onset of MICA expression is a tightly regulated process that occurs after melanocytes trespass the stage of malignant transformation. Thus, analysis of MICA expression in tissue sections of skin samples may constitute a useful marker to differentiate between benign and malignant nevi.

  4. PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jose Sebastian

    2015-03-01

    Full Text Available Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR and SCARECROW (SCR are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB, under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.

  5. HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots.

    Science.gov (United States)

    Kim, Eun-Sol; Choe, Goh; Sebastian, Jose; Ryu, Kook Hui; Mao, Linyong; Fei, Zhangjun; Lee, Ji-Young

    2016-06-01

    Root apical meristem (RAM) drives post-embryonic root growth by constantly supplying cells through mitosis. It is composed of stem cells and their derivatives, the transit-amplifying (TA) cells. Stem cell organization and its maintenance in the RAM are well characterized, however, their relationships with TA cells remain unclear. SHORTROOT (SHR) is critical for root development. It patterns cell types and promotes the post-embryonic root growth. Defective root growth in the shr has been ascribed to the lack of quiescent center (QC), which maintains the surrounding stem cells. However, our recent investigation indicated that SHR maintains TA cells independently of QC by modulating PHABULOSA (PHB) through miRNA165/6. PHB controls TA cell activity by modulating cytokinin levels and type B Arabidopsis Response Regulator activity, in a dosage-dependent manner. To further understand TA cell regulation, we conducted a shr suppressor screen. With an extensive mutagenesis screen followed by genome sequencing of a pooled F2 population, we discovered two suppressor alleles with mutations in HAWAIIAN SKIRT (HWS). HWS, encoding an F-box protein with kelch domain, is expressed, partly depending on SHR, in the root cap and in the pericycle of the differentiation zone. Interestingly, root growth in the shr hws was more active than the wild-type roots for the first 7 days after germination, without recovering QC. Contrary to shr phb, shr hws did not show a recovery of cytokinin signaling. These indicate that HWS affects QC-independent TA cell activities through a pathway distinctive from PHB. © 2016 Scandinavian Plant Physiology Society.

  6. Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion

    Science.gov (United States)

    Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat

    1989-01-01

    The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.

  7. The X-ray Polarization Signature of Quiescent Magnetars: Effect of Magnetospheric Scattering and Vacuum Polarization

    Science.gov (United States)

    Fernández, Rodrigo; Davis, Shane W.

    2011-04-01

    In the magnetar model, the quiescent non-thermal soft X-ray emission from anomalous X-ray pulsars and soft gamma repeaters is thought to arise from resonant Comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry, and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. In this paper, we calculate how resonant cyclotron scattering would modify the observed polarization signal relative to the surface emission, using a multidimensional Monte Carlo radiative transfer code that accounts for the gradual coupling of polarization eigenmodes as photons leave the magnetosphere. We employ a globally twisted, self-similar, force-free magnetosphere with a power-law momentum distribution, assume a blackbody spectrum for the seed photons, account for general relativistic light deflection close to the star, and assume that vacuum polarization dominates the dielectric properties of the magnetosphere. The latter is a good approximation if the pair multiplicity is not much larger than unity. Phase-averaged polarimetry is able to provide a clear signature of the magnetospheric reprocessing of thermal photons and to constrain mechanisms generating the thermal emission. Phase-resolved polarimetry, in addition, can characterize the spatial extent and magnitude of the magnetospheric twist angle at ~100 stellar radii, and discern between uni- or bidirectional particle energy distributions, almost independently of every other parameter in the system. We discuss prospects for detectability with the Gravity and Extreme Magnetism (GEMS) mission.

  8. Evaluation of Peripheral Arterial Disease with Nonenhanced Quiescent-Interval Single-Shot MR Angiography

    Science.gov (United States)

    Hodnett, Philip A.; Koktzoglou, Ioannis; Davarpanah, Amir H.; Scanlon, Timothy G.; Collins, Jeremy D.; Sheehan, John J.; Dunkle, Eugene E.; Gupta, Navyash; Carr, James C.

    2011-01-01

    Purpose: To assess the diagnostic performance of quiescent-interval single-shot (QISS) magnetic resonance (MR) angiography, a nonenhanced two-dimensional electrocardiographically gated single-shot balanced steady-state free precession examination for the evaluation of symptomatic chronic lower limb ischemia. Materials and Methods: For this prospective institutional review board–approved, HIPAA-compliant study, the institutional review board waived the requirement for informed patient consent. The QISS nonenhanced MR angiography technique was evaluated in a two-center trial involving 53 patients referred for lower extremity MR angiography for suspected or known chronic peripheral arterial disease (PAD), with contrast material–enhanced MR angiography serving as the noninvasive reference standard. The accuracy of stenosis assessments performed with the nonenhanced MR angiography sequence was evaluated relative to the reference standard. Per-segment, per-region, and per-limb sensitivities and specificities were calculated, and assessments were considered correct only if they were in exact agreement with the reference standard–derived assessments. Generalized estimating equation (GEE) modeling with use of an unstructured binomial logit analysis was used to account for clustering of multiple measurements per case. The sensitivity and specificity of QISS MR angiography for the determination of nonsignificant (MR angiography was found to be nearly equivalent to the diagnostic performances of contrast-enhanced MR angiography and digital subtraction angiography. Non-GEE segment-based analysis revealed that for the two reviewers, nonenhanced MR angiography had sensitivities of 89.7% (436 of 486 segments) and 87.0% (423 of 486 segments) and specificities of 96.5% (994 of 1030 segments) and 94.6% (973 of 1028 segments). Conclusion: QISS nonenhanced MR angiography offers an alternative to currently used imaging tests for symptomatic chronic lower limb ischemia, for which

  9. The quiescent intracluster medium in the core of the Perseus cluster

    Energy Technology Data Exchange (ETDEWEB)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall; Blandford, Roger; Brenneman, Laura; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Itoh, Masayuki; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kelley, Richard; Khangulyan, Dmitry; Kilbourne, Caroline; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Shu; Koyama, Katsuji; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Hang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Mehdipour, Missagh; Miller, Eric; Miller, Jon; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Moseley, Harvey; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O’Dell, Steve; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stephane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sameshima, Hiroaki; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin’ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shin’ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Watanabe, Shin; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-06

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes1 of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback2, 3, 4, 5, 6. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

  10. Potentially lethal damage repair by total and quiescent tumor cells following various DNA-damaging treatments

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Kinashi, Yuko; Takagaki, Masao [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Hori, Hitoshi; Kasai, Soko; Nagasawa, Hideko; Uto, Yoshihiro

    1999-08-01

    After continuous labeling of proliferating (P) cells with 5-bromo-2'-deoxyuridine (BrdU) for 5 days, SCC VII tumor-bearing mice received various kinds of DNA-damaging treatments: gamma-ray irradiation, tirapazamine (TPZ, hypoxia-specific cytotoxin) administration, or cisplatin injection. From 0.5 to 72 hr after treatment, tumors were excised, minced, and trypsinized. Single tumor cell suspensions were incubated for 48 hr with a cytokinesis-blocker, cytochalasin-B. Then, the micronucleus (MN) frequency for BrdU-unlabeled cells, quiescent (Q) cells at treatment, was determined using immunofluorescence staining for BrdU. The MN frequency for total (P+Q) cells was obtained from tumors that were not pretreated with BrdU labeling. The sensitivity to each DNA-damaging treatment was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). Treatment with gamma-rays or cisplatin resulted in a larger MN frequency in total cells than in Q cells. In contrast, TPZ treatment produced a smaller MN frequency in total cells than in Q cells. Regardless of the treatment used, Q cells showed greater repair capacities than total cells. However, TPZ caused much smaller repair capacity in both total and Q cells, compared with gamma-rays or cisplatin. Gamma-rays and cisplatin produced similar repair patterns. Differences in sensitivity between total and Q cells and repair patterns of the two cell populations were thought to depend on differences between the two cell populations in the toxicity of the DNA-damaging treatment and distribution pattern of the anticancer agent. (author)

  11. Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid

    Science.gov (United States)

    Huisman, Sander G.; Barois, Thomas; Bourgoin, Mickaël; Chouippe, Agathe; Doychev, Todor; Huck, Peter; Morales, Carla E. Bello; Uhlmann, Markus; Volk, Romain

    2016-11-01

    The settling of heavy spherical particles in a column of quiescent fluid is investigated. The performed experiments cover a range of Galileo numbers (110 ≤Ga≤310 ) for a fixed density ratio of Γ =ρp/ρf=2.5 . In this regime the particles are known to show a variety of motions [Jenny, Dušek, and Bouchet, Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid, J. Fluid Mech. 508, 201 (2004), 10.1017/S0022112004009164]. It is known that the wake undergoes several transitions for increasing Ga resulting in particle motions that are successively vertical, oblique, oblique oscillating, and finally chaotic. Not only does this change the trajectory of single, isolated, settling particles, but it also changes the dynamics of a swarm of particles as collective effects become important even for dilute suspensions with volume fraction up to ΦV=O (10-3) , which are investigated in this work. Multicamera recordings of settling particles are recorded and tracked over time in three dimensions. A variety of analyses are performed and show a strong clustering behavior. The distribution of the cell areas of the Voronoï tessellation in the horizontal plane is compared to that of a random distribution of particles and shows clear clustering. Moreover, a negative correlation was found between the Voronoï area and the particle velocity; clustered particles fall faster. In addition, the angle between adjacent particles and the vertical is calculated and compared to a homogeneous distribution of particles, clear evidence of vertical alignment of particles is found. The experimental findings are compared to simulations.

  12. Premalignant quiescent melanocytic nevi do not express the MHC class I chain-related protein A.

    Science.gov (United States)

    Fuertes, Mercedes B; Rossi, Lucas E; Peralta, Carlos M; Cabrera, Hugo N; Allevato, Miguel A; Zwirner, Norberto W

    2011-01-01

    The MHC class I chain-related protein A (MICA) is an inducible molecule almost not expressed by normal cells but strongly up-regulated in tumor cells. MICA-expressing cells are recognized by natural killer (NK) cells, CD8+ abTCR and gdTCR T lymphocytes through the NKG2D receptor. Engagement of NKG2D by MICA triggers IFN-g secretion and cytotoxicity against malignant cells. Although most solid tumors express MICA and this molecule is a target during immune surveillance against tumors, it has been observed that high grade tumors from different histotypes express low amounts of cell surface MICA due to a metalloprotease-induced shedding. Also, melanomas develop after a complex process of neotransformation of normal melanocytes. However, the expression of MICA in premalignant stages (primary human quiescent melanocytic nevi) remains unknown. Here, we assessed expression of MICA by flow cytometry using cell suspensions from 15 primary nevi isolated from 11 patients. When collected material was abundant, cell lysates were prepared and MICA expression was also analyzed by Western blot. We observed that MICA was undetectable in the 15 primary nevi (intradermic, junction, mixed, lentigo and congenital samples) as well as in normal skin, benign lesions (seborrheic keratosis), premalignant lesions (actinic keratosis) and benign basocellular cancer. Conversely, a primary recently diagnosed melanoma showed intense cell surface MICA. We conclude that the onset of MICA expression is a tightly regulated process that occurs after melanocytes trespass the stage of malignant transformation. Thus, analysis of MICA expression in tissue sections of skin samples may constitute a useful marker to differentiate between benign and malignant nevi.

  13. Advancing the Physics Basis of Quiescent H-mode through Exploration of ITER Relevant Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W. M. [PPPL; Burrell, K. H. [General Atomics; Fenstermacher, M. E. [LLNL; Garofalo, A. M. [General Atomics; Grierson, B. A. [PPPL; Loarte, A. [ITER; McKee, G. R. [U of Wisc, Madison; Nazikian, R. [PPPL; Snyder, B. P. [General Atomics

    2014-09-01

    Recent experiments on DIII-D have overcome a long-standing limitation in accessing quiescent H-mode (QH-mode), a high confinement state of the plasma that does not exhibit the explosive instabilities associated with edge localized modes (ELMs). In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (ηe ≈ 7 × 1019 m—3) and normalized Greenwald fraction (ηe/ηG > 0:7) . In these plasmas, the pedestal can evolve to very high pressures and current as the density is increased. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimental observed evolution with density. The comparison of the dependence of the maximum density threshold for QH-mode with plasma shape help validate the underlying theoretical peeling-ballooning models describing ELM stability. High density QH-mode operation with strong shaping has allowed stable access to a previously predicted regime of very high pedestal dubbed \\Super H-mode". In general, QH-mode is found to achieve ELM-stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E Χ B shear is observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for ITER's Q=10 mission.

  14. PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.

    Science.gov (United States)

    Sebastian, Jose; Ryu, Kook Hui; Zhou, Jing; Tarkowská, Danuše; Tarkowski, Petr; Cho, Young-Hee; Yoo, Sang-Dong; Kim, Eun-Sol; Lee, Ji-Young

    2015-03-01

    Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.

  15. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Porfiri, Maurizio [Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York 11201 (United States)

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  16. An interdisciplinary approach to volcanic risk reduction under conditions of uncertainty: a case study of Tristan da Cunha

    Science.gov (United States)

    Hicks, A.; Barclay, J.; Simmons, P.; Loughlin, S.

    2013-12-01

    This research project adopted an interdisciplinary approach to volcanic risk reduction on the remote volcanic island of Tristan da Cunha (South Atlantic). New data were produced that: (1) established no spatio-temporal pattern to recent volcanic activity; (2) quantified the high degree of scientific uncertainty around future eruptive scenarios; (3) analysed the physical vulnerability of the community as a consequence of their geographical isolation and exposure to volcanic hazards; (4) evaluated social and cultural influences on vulnerability and resilience. Despite their isolation and prolonged periods of hardship, islanders have demonstrated an ability to cope with and recover from adverse events. This resilience is likely a function of remoteness, strong kinship ties, bonding social capital, and persistence of shared values and principles established at community inception. While there is good knowledge of the styles of volcanic activity on Tristan, given the high degree of scientific uncertainty about the timing, size and location of future volcanism, a qualitative scenario planning approach was used as a vehicle to convey this information to the islanders. This deliberative, anticipatory method allowed on-island decision makers to take ownership of risk identification, management and capacity building within their community. This paper demonstrates the value of integrating social and physical sciences with development of effective, tailored communication strategies in volcanic risk reduction.

  17. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt (<4 Myr) of the NTS region and southern Death Valley area, California, indicate an enrichment in incompatible elements, with the exception of rubidium. The conditional probability of recurring basaltic volcanism and disruption of a repository by that event is bounded by the range of 10{sup -8} to 10{sup -10} as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes.

  18. Depositional model of Permian Luodianian volcanic island and its impact on the distribution of fusulinid assemblage in southern Qinghai, Northwest China

    Institute of Scientific and Technical Information of China (English)

    NIU ZhiJun; XU AnWu; WANG JianXiong; DUAN QiFa; ZHAO XiaoMing; YAO HuaZhou

    2008-01-01

    Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain,Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, deposited between volcanic islands (platform facies volcanic-limestone type). Based on the field mapping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depositional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal,platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina- Schwagerina assemblage occurred above or on edge of volcanic island, (2) Parafusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate conglomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary sequence

  19. Depositional model of Permian Luodianian volcanic island and its impact on the distribution of fusulinid assemblage in southern Qinghai,Northwest China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain, Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, de-posited between volcanic islands (platform facies volcanic-limestone type). Based on the field map-ping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depo-sitional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal, platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina-Schwagerina assemblage occurred above or on edge of volcanic island, (2) Para-fusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate con-glomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary

  20. Volcanic Gas Measurements During the 2004 Unrest at Mount St. Helens

    Science.gov (United States)

    McGee, K. A.; Gerlach, T. M.; Doukas, M. P.; Sutton, A. J.

    2004-12-01

    Volcanic gas observations during the 2004 unrest at Mount St. Helens began with helicopter measurements on September 27 and shifted to fixed-wing aircraft measurements on October 7. Helicopter measurements were done by downwind plume profiling at the crater rim and crater breach, orbiting the dome and cross traversing the top of the dome. Fixed-wing aircraft measurements consisted of profiling the downwind plume as it spilled over the crater rim. Target gases included CO2, SO2, and H2S measured by LI-COR, COSPEC and Interscan analyzers. These measurements defined three periods of volcanic degassing: (a) an initial period of negligible volcanic degassing characterized by scrubbing or sealing-in of all gases; (b) an intermediate period of wet volcanic degassing when gas scrubbing dominated volcanic degassing; and (c) a period of dry volcanic degassing when volcanic degassing exceeded gas scrubbing. Measurements during the September 27-30 period of negligible volcanic degassing showed little or no CO2 above atmospheric levels; SO2 and H2S were not detected. The absence of these gases implies fairly complete gas scrubbing at high water to gas mass ratios (greater than 100) or confinement of the gases by post-1986 sealing of gas transport channel ways. Scrubbing seems likely to have dominated sealing; the high rates of concurrent seismicity and deformation favored reestablishment of transport along fractures, and the unrest followed a period with an unusually large potential for groundwater recharge. No August-September interval since the cessation of dome-building eruptions in 1986 has had heavier rainfall than in 2004, and growth of the crater glacier since 1986 has increased the amount of water available for recharge in late summer. Measurements during the period of wet volcanic degassing that began on October 1 after the first steam and ash eruption showed an increase in the frequency and size of CO2 peaks together with the increasingly common detection of H2S

  1. Periodic behaviors

    CERN Document Server

    Napp, Diego; Shankar, Shiva

    2010-01-01

    This paper studies behaviors that are defined on a torus, or equivalently, behaviors defined in spaces of periodic functions, and establishes their basic properties analogous to classical results of Malgrange, Palamodov, Oberst et al. for behaviors on R^n. These properties - in particular the Nullstellensatz describing the Willems closure - are closely related to integral and rational points on affine algebraic varieties.

  2. PERIODIC BEHAVIORS

    NARCIS (Netherlands)

    Napp, Diego; Put, Marius van der; Shankar, Shiva

    2010-01-01

    This paper studies behaviors that are defined on a torus, or equivalently, behaviors defined in spaces of periodic functions, and establishes their basic properties analogous to classical results of Malgrange, Palamodov, Oberst et al. for behaviors on R(n). These properties-in particular the Nullste

  3. MOIRCS Deep Survey. X. Evolution of Quiescent Galaxies as a Function of Stellar Mass at 0.5

    CERN Document Server

    Kajisawa, Masaru; Yoshikawa, Tomohiro; Yamada, Toru; Onodera, Masato; Akiyama, Masayuki; Tanaka, Ichi

    2011-01-01

    We study the evolution of quiescent galaxies at 0.56 by performing SED fitting of the multi broad-band photometry from the U to Spitzer 5.8um bands with the population synthesis model of Bruzual & Charlot (2003) where exponentially decaying star formation histories are assumed. The number density of quiescent galaxies increases by a factor of ~3 from 1.0~ 1-1.5.

  4. The Early Andean Magmatic Province (EAMP): 40Ar/ 39Ar dating on Mesozoic volcanic and plutonic rocks from the Coastal Cordillera, northern Chile

    Science.gov (United States)

    Oliveros, Verónica; Féraud, Gilbert; Aguirre, Luis; Fornari, Michel; Morata, Diego

    2006-10-01

    The Early Andean Magmatic Province (EAMP), consists of about 150 000 km 3 of volcanic and plutonic units in the Coastal Cordillera of northern Chile and southern Peru and represents a major magmatic Mesozoic event in the world, for which the precise age of the thick volcanic series was unknown. Thirty 40Ar/ 39Ar analyses were carried out on primary mineral phases of volcanic and plutonic rocks from northern Chile (18°30'-24°S). Reliable plateau and "mini plateau" ages were obtained on plagioclase, amphibole and biotite from volcanic and plutonic rocks, despite widespread strong alteration degree. In the Arica, Tocopilla and Antofagasta (700 km apart) regions, the ages obtained on lava flows constrain the volcanic activity between 164 and 150 Ma and no N-S migration of volcanism is observed. The uppermost lava flows of the volcanic sequence at the type locality of the La Negra Formation extruded at ca. 153-150 Ma, suggesting the end of the volcanic activity of the arc at that time. The oldest volcanic activity occurred probably at ca. 175-170 Ma in the Iquique area, although no plateau age could be obtained. The plutonic bodies of the same regions were dated between ca. 160 and 142 Ma, indicating that they were partly contemporaneous with the volcanic activity. At least one volcanic pulse around 160 Ma is evidenced over the entire investigated reach of the EAMP, according to the ages found in Arica, Tocopilla, Michilla and Mantos Blancos regions. The episodic emplacement of huge amounts of subduction related volcanism is observed throughout the whole Andean history and particularly during the Jurassic (southern Peru, northern Chile and southern Argentina). These events probably correspond to periodic extensional geodynamic episodes, as a consequence of particular subduction conditions, such as change of obliquity of the convergence, change in the subduction angle, slab roll back effect or lower convergence rate, that remain to be precisely defined.

  5. Once daily versus conventional dosing of pH-dependent mesalamine long-term to maintain quiescent ulcerative colitis: Preliminary results from a randomized trial

    Directory of Open Access Journals (Sweden)

    Sunanda Kane

    2008-09-01

    Full Text Available Sunanda Kane1, William Holderman2, Peter Jacques2, Todd Miodek31Mayo Clinic College of Medicine, Rochester, MN, USA; 2Digestive Health Specialists, Tacoma, WA, USA; 3University of Chicago, Chicago, IL, USABackground and Aims: Multiple studies have demonstrated the efficacy of aminosalicylates in maintaining remission in ulcerative colitis (UC. A newer formulation of mesalamine can be administered once daily. We aimed to examine the efficacy and tolerability of pH-dependent mesalamine for long-term maintenance, and compare the rates of medication consumption between groups over a prolonged period.Methods: Subjects whose UC had been quiescent for at least 4 months, and who had been receiving mesalamine for maintenance only, were randomized to once daily or conventional dosing for 12 months. Disease activity and medication consumption was assessed every 3 months. The primary endpoint was the percentage of those with quiescent disease at 12 months.Results: We enrolled 20 patients, 12 to once daily and 8 to conventional dosing. Six of the 12 patients (50% in the once daily group compared with 5 of the 8 patients (62.5% in the conventional group experienced a flare (p = 0.31. Only 5 of the 12 (42% patients in the once daily group were adherent compared with 3 of 8 patients (37.5% in the conventional dosing group (p = NS. Median amount consumed in the once daily group was 63% (range 0%–100% and in the conventional group 55% (range 0%–100%, (p > 0.5. None of the adherent subjects in the once daily group experienced a flare, while 6 out of 7 (86% who were non-adherent experienced a flare (p < 0.01. In the conventional dosing group, 1 in 3 adherent patients (33% experienced a fl are compared with 4 out of 5 (80% in the non-adherent group (p < 0.01.Conclusion: Adherence, rather than medication regimen, appeared to be important in disease outcome at 12 months.Keywords: ulcerative colitis, mesalamine, aminosalicylates, remission

  6. The influence of volcanic activity on suspended sediment yield of rivers (Kamchatka, Russia)

    Science.gov (United States)

    Kuksina, Ludmila

    2014-05-01

    Kamchatka is specific region of suspended sediment yield formation. This fact is particularly connected with active volcanism in the territory. The influence of volcanism on suspended sediment yield characteristics was studied in various time scales - into-diurnal, seasonal and long-term ones. The study of spatial variability of these characteristics reveals the maximum values characterize river basins in zones of strong impact of volcanic eruptions, especially, rivers draining slopes and flanks of active volcanoes. Into-diurnal fluctuations were studied for rivers in volcanic areas. They are characterized by synchronous changes of water flow and turbidity. It's determined by weak erosion-preventive capacity of friable volcanic deposits and big slopes of channels (2.5 - 6.0 %). The maximum of water flow and turbidity is observed at the period between 12 and 6 pm. The air temperature reaches its maximum by that time, and consequently, the intensity of snow melting is also maximum one. The maximum of turbidity advances diurnal maximum of water flow a little, and it's connected with the features of flood wave moving and consecutive maximums of slopes, turbidity, velocity, water flow, and capacity of stream during flush. Into-diurnal fluctuations are determined by complicated and little-studied processes of mass transfer between stream and channel deposits. These processes are connected with into-diurnal changes of stream capacity and water transfer between channel and underflow. As the result water regime is pulsating. Rivers under the influence of volcanic eruptions transport the main amount of sediments during floods which usually occur in summer-autumn period (in the absence of extreme floods in winter-spring period during volcanic eruptions). Combination of maximum snow supply, significant precipitation in warm part of the year and weak erosion-preventive capacity of friable volcanic deposits on volcanoes slopes is the reason of the most intense erosion in this

  7. Role of volcanism in climate and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, D.I.

    1981-01-01

    Several major episodes of Tertiary explosive volcanism coincided with sharply lowered temperature as inferred from oxygen-isotope composition of foraminiferal tests in deep-sea cores. At these times, fossil floras in the western interior recorded significant changes. Reductions in taxa that required warmth occurred early in the Paleogene. Later, taxa that demand ample summer rain were reduced during a progressive change reflecting growth of the subtropic high. Other ecosystem changes that appear to have responded to volcanically induced climatic modifications include tachytely in Equidae (12 to 10 m.y. B.P.), rapid evolution of grasses (7 to 5 m.y. B.P.), evolution of marine mammals, and plankton flucuations. Although Lake Cretaceous extinctions commenced as epeiric seas retreated, the pulses of sharply lowered temperature induced by explosive volcanism, together with widespread falls of volcanic ash, may have led to extinction of dinosaurs, ammonites, cycadeoids, and other Cretaceous taxa. earlier, as Pangaea was assembled, Permian extinctions resulted not only from the elimination of oceans, epeiric seas, and shorelines, and the spread of more-continental climates, bu also from the climatic effects of major pulses of global volcanism and Gondwana glaciation.

  8. Volcanic activity: a review for health professionals.

    Science.gov (United States)

    Newhall, C G; Fruchter, J S

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  9. Global Volcano Model: progress towards an international co-ordinated network for volcanic hazard and risk

    Science.gov (United States)

    Loughlin, Susan

    2013-04-01

    GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. GVM is a network that aims to co-ordinate and integrate the efforts of the international volcanology community. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM. Activities currently include: design and development of databases of volcano data, volcanic hazards, vulnerability and exposure with internationally agreed metadata standards; establishment of methodologies for analysis of the data (e.g. hazard and exposure indices) to inform risk assessment; development of complementary hazards models and create relevant hazards and risk assessment tools. GVM acts through establishing task forces to deliver explicit deliverables in finite periods of time. GVM has a task force to deliver a global assessment of volcanic risk for UN ISDR, a task force for indices, and a task force for volcano deformation from satellite observations. GVM is organising a Volcano Best Practices workshop in 2013. A recent product of GVM is a global database on large magnitude explosive eruptions. There is ongoing work to develop databases on debris avalanches, lava dome hazards and ash hazard. GVM aims to develop the capability to anticipate future volcanism and its consequences.

  10. A Centrifugal Volcanism Mechanism for the AMO

    Science.gov (United States)

    Pratt, V. R.

    2016-12-01

    The Atlantic Multidecadal Oscillation has proved hard to isolate from both (i) global warming and (ii) faster oscillations. For (i), we showed [1] that by filtering all harmonics of a 63-year period, what remained could be explained remarkably accurately by the expected contribution of greenhouse warming along with the interesting increase in TSI during 1900-1950, leading to considerable confidence that global surface temperature averaged over 2069-2131 will be very close to 3 C above preindustrial. For (ii), principal component analysis of HadCRUT4 since 1850, Central England Temperature since 1659, and various other land and sea time series all show a distinct 21-year oscillation the start of whose downward swing is well synchronized with the maximum solar activity of the odd-numbered solar cycles, persisting even through the Maunder Minimum. After these are removed there remains a well-defined signal that has been associated with the so-called Atlantic Multidecadal Oscillation. There are two schools of thought, the AMO is of either radiative (RAD) or internal (INT) origin. RAD is explained in terms of aerosol fluctuations of volcanic origin. In [2] we gave what we felt was a knockdown argument against RAD. INT so far has been explained mainly in terms of instabilities in ocean currents such as the Atlantic Meridional Overturning Current. An interesting correlation between the AMO and Earth's Length of Day (LOD) has been noted by several authors. Missing is a plausible mechanism explaining this correlation. The mechanism we propose here is that magma welling up through ocean ridges is in a quasi-equilibrium that even small fluctuations in LOD can disturb significantly. Heat from emerging magma is carried up to the oceanic mixed layer in very large thermals. A simple model of this process leads to a correlation that is excellent except for the period 1940-1950. We propose to explain this difference in terms of a lifting of the crust by the excess magma developed

  11. SHRIMP dating of volcanic rock in the Zhangwu-Heishan area, West Liaoning province, China: Its relationship with coal-bearing strata

    Institute of Scientific and Technical Information of China (English)

    Cai Houan; Xu Debin; Li Baofang; Shao Longyi

    2011-01-01

    The Zhangwu-Heishan area is located to the east of the Fuxin-Yixian Basin and is mostly covered with volcanic rock.At various periods,different geologists had varying opinions about their age and periods of volcanic eruptions,especially on sequences between volcanic rock and main coal-beating strata,which affect the direction of searching for coal,as well as prospecting the entire research area.During our study,we carried out detailed field investigations in this research area; observed and recorded the main representative outcrops of volcanic rock.We collected over 20 volcanic rock samples and tested the Sensitive High Resolution Ion Microprobe Ⅱ (SHRIMP Ⅱ) U-Pb isotope age of 11 samples.The age of our volcanic rock samples ranged between 56.0 ± 2.9 and 132.3 ± 2.3 Ma.After taking earlier investigations into consideration,we concluded that,except for a suite of paleogene olivine basalt,the volcanic rock in the Zhangwu-Heishan area is younger than the coal-beating Shahai Formation.It is therefore most unlikely to find coal seams equivalent to those of the early Cretaceous Shahai Formation in Fuxin Basin below volcanic rock.

  12. Numerical modeling of volcanic arc development

    Science.gov (United States)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally

  13. Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature

    Science.gov (United States)

    Monerie, Paul-Arthur; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie

    2017-05-01

    Despite a continuous increase in well-mixed greenhouse gases, the global-mean surface temperature has shown a quasi-stabilization since 1998. This muted warming has been linked to the combined effects of internal climate variability and external forcing. The latter includes the impact of recent increase in the volcanic activity and of solar irradiance changes. Here we used a high-resolution coupled ocean-atmosphere climate model to assess the impact of the recent volcanic eruptions on the Earth's temperature, compared with the low volcanic activity of the early 2000s. Two sets of simulations are performed, one with realistic aerosol optical depth values, and the other with a fixed value of aerosol optical depth corresponding to a period of weak volcanic activity (1998-2002). We conclude that the observed recent increase in the volcanic activity led to a reduced warming trend (from 2003 to 2012) of 0.08 °C in ten years. The induced cooling is stronger during the last five-year period (2008-2012), with an annual global mean cooling of 0.04 °C (+/- 0.04 °C). The cooling is similar in summer (0.05 °C +/- 0.04 °C cooling) than in winter (0.03 °C +/- 0.04 °C cooling), but stronger in the Northern Hemisphere than in the Southern Hemisphere. Although equatorial and Arctic precipitation decreases in summer, the change in precipitation does not indicate robust changes at a local scale. Global heat content variations are found not to be impacted by the recent increase in volcanic activity.

  14. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  15. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  16. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    Science.gov (United States)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  17. Marine mesocosm bacterial colonisation of volcanic ash

    Science.gov (United States)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  18. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  19. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (Ga - 2.9 Ga). Our results indicate that Late Amazonian volcanism is more widespread in Tharsis than previously recognized. Based on our results it appears possible that Mars is volcanologically not dead yet. Ongoing work investigates the volumes of erupted products and implications for the outgassing history and atmospheric evolution of Mars. [1] Greeley R. (1982) JGR 87, 2705-2712. [2] Plescia J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  20. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    Science.gov (United States)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  1. Volcanic Pipe of the Namuaiv Mountain

    Directory of Open Access Journals (Sweden)

    Vladimir K. Karzhavin

    2011-12-01

    Full Text Available This research was aimed at reconstructing thermodynamic conditions required for the studied mineral assemblages to be created and exist in nature. The results of the investigations confirm to the recent ideas about an important, even leading, role of temperature, pressure and dioxide carbon in diamond formation in volcanic pipers. The results of this theoretical research allows assuming that one of the reasons for the absence of diamonds in the Namuaiv Mountain volcanic pipe may lie in the increased content of water and oxidizing environmental conditions of their formation

  2. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  3. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  4. Emplacement Scenarios for Volcanic Domes on Venus

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Steve M.; Stofan, Ellen R.

    2012-01-01

    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface.

  5. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  6. Ice and Dust in the Quiescent Medium of Isolated Dense Cores

    Science.gov (United States)

    Boogert, A. C. A.; Huard, T. L.; Cook, A. M.; Chiar, J. E.; Knez, C.; Decin, L.; Blake, G. A.; Tielens, A. G. G. M.; van Dishoeck, E. F.

    2011-03-01

    The relation between ices in the envelopes and disks surrounding young stellar objects (YSOs) and those in the quiescent interstellar medium (ISM) is investigated. For a sample of 31 stars behind isolated dense cores, ground-based and Spitzer spectra and photometry in the 1-25 μm wavelength range are combined. The baseline for the broad and overlapping ice features is modeled, using calculated spectra of giants, H2O ice and silicates. The adopted extinction curve is derived empirically. Its high resolution allows for the separation of continuum and feature extinction. The extinction between 13 and 25 μm is ~50% relative to that at 2.2 μm. The strengths of the 6.0 and 6.85 μm absorption bands are in line with those of YSOs. Thus, their carriers, which, besides H2O and CH3OH, may include NH+ 4, HCOOH, H2CO, and NH3, are readily formed in the dense core phase, before stars form. The 3.53 μm C-H stretching mode of solid CH3OH was discovered. The CH3OH/H2O abundance ratios of 5%-12% are larger than upper limits in the Taurus molecular cloud. The initial ice composition, before star formation occurs, therefore depends on the environment. Signs of thermal and energetic processing that were found toward some YSOs are absent in the ices toward background stars. Finally, the peak optical depth of the 9.7 μm band of silicates relative to the continuum extinction at 2.2 μm is significantly shallower than in the diffuse ISM. This extends the results of Chiar et al. to a larger sample and higher extinctions. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Using high-precision 40Ar/39Ar geochronology to understand volcanic hazards within the Rio Grande rift and along the Jemez lineament, New Mexico

    Science.gov (United States)

    Zimmerer, M. J.; McIntosh, W. C.; Heizler, M. T.; Lafferty, J.

    2014-12-01

    High-precision Ar/Ar ages were generated for late Quaternary volcanic fields in the Rio Grande rift and along the Jemez Lineament, New Mexico, to assess the time-space patterns of volcanism and begin quantifying volcanic hazards for the region. The published chronology of most late Quaternary volcanic centers in the region is not sufficiently precise, accurate, or complete for a comprehensive volcanic hazard assessment. Ar/Ar ages generated as part of this study were determined using the high-sensitivity, multi-collector ARGUS VI mass spectrometer, which provides about an order of magnitude more precise isotopic measurements compared to older generation, single-detector mass spectrometers. Ar/Ar ages suggest an apparent increase in eruption frequency during the late Quaternary within the Raton-Clayton volcanic field, northeastern NM. Only four volcanoes erupted between 426±8 and 97±3 ka. Contrastingly, four volcanoes erupted between 55±2 and 32±5 ka. This last eruptive phase displays a west to east migration of volcanism, has repose periods of 0 to 17 ka, and an average recurrence rate of 1 eruption per 5750 ka. The Zuni-Bandera volcanic field, west-central NM, is composed of the ~100 late Quaternary basaltic vents. Preliminary results suggest that most of the Chain of Craters, the largest and oldest part of the Zuni-Bandera field, erupted between ~100 and 250 ka. Volcanism then migrated to the east, where published ages indicate at least seven eruptions between 50 and 3 ka. Both volcanic fields display a west to east migration of volcanism during the last ~500 ka, although the pattern is more pronounced in the Zuni-Bandera field. A reassessment of low-precision published ages for other late Quaternary volcanic fields in region indicates that most fields display a similar west to east migration of volcanism during the last ~500 ka. One possible mechanism to explain the observed patterns of volcanism is the westward migration of the North American plate relative

  8. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    Full Text Available Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily. Sulphur dioxide (SO2, hydrogen sulphide (H2S, hydrogen chloride (HCl and hydrogen fluoride (HF concentrations in the volcanic plumes (typically several minutes to a few hours old were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 μg/m3at 0.1 km from Etna's vents down to ~7 μg/m3 at ~10 km distance, reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger

  9. Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy

    Science.gov (United States)

    Amorosi, Alessandro; Pacifico, Annamaria; Rossi, Veronica; Ruberti, Daniela

    2012-12-01

    Extensive illustration of depositional facies, ostracod and foraminiferal assemblages, and Late Quaternary stratigraphic architecture is offered for the first time from beneath the modern coastal plain of Volturno River, the longest river in southern Italy. Proximity to an active volcanic district, including quiescent Vesuvius Volcano, provides an easily identifiable stratigraphic marker (Campania Grey Tuff or CGT), up to 55 m thick, emplaced 39 ky cal BP by a large-volume explosive pyroclastic eruption. Identification of top CGT to a maximum depth of 30 m allows tracing out the shape of a 15-20 km wide Late Quaternary palaeovalley incised by Volturno River into the thick ignimbritic unit immediately after its deposition. A terraced palaeotopography of the valley flanks is reconstructed on the basis of core data. Above the basal fluvial deposits, the early Holocene transgressive facies consist of a suite of estuarine (freshwater to brackish) deposits. These are separated from overlying transgressive barrier sands by a distinctive wave ravinement surface. Upwards, a distinctive shallowing-upward succession of middle-late Holocene age is interpreted to reflect initiation and subsequent progradation of a wave-dominated delta system, with flanking strandplains, in response to reduced rate of sea-level rise. The turnaround from transgressive to highstand conditions is identified on the basis of subtle changes in the meiofauna. These enable tracking of the maximum flooding surface into its updip (lagoonal/estuarine) counterpart, thus highlighting the role of refined palaeontological criteria as a powerful tool for high-resolution sequence-stratigraphic studies.

  10. Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life

    Science.gov (United States)

    Sholes, Steven F.; Smith, Megan L.; Claire, Mark W.; Zahnle, Kevin J.; Catling, David C.

    2017-07-01

    Mars today has no active volcanism and its atmosphere is oxidizing, dominated by the photochemistry of CO2 and H2O. Mars experienced widespread volcanism in the past and volcanic emissions should have included reducing gases, such as H2 and CO, as well as sulfur-bearing gases. Using a one-dimensional photochemical model, we consider whether plausible volcanic gas fluxes could have switched the redox-state of the past martian atmosphere to reducing conditions. In our model, the total quantity and proportions of volcanic gases depend on the water content, outgassing pressure, and oxygen fugacity of the source melt. We find that, with reasonable melt parameters, the past martian atmosphere (∼3.5 Gyr to present) could have easily reached reducing and anoxic conditions with modest levels of volcanism, >0.14 km3 yr-1, which are well within the range of estimates from thermal evolution models or photogeological studies. Counter-intuitively we also find that more reducing melts with lower oxygen fugacity require greater amounts of volcanism to switch a paleo-atmosphere from oxidizing to reducing. The reason is that sulfur is more stable in such melts and lower absolute fluxes of sulfur-bearing gases more than compensate for increases in the proportions of H2 and CO. These results imply that ancient Mars should have experienced periods with anoxic and reducing atmospheres even through the mid-Amazonian whenever volcanic outgassing was sustained at sufficient levels. Reducing anoxic conditions are potentially conducive to the synthesis of prebiotic organic compounds, such as amino acids, and are therefore relevant to the possibility of life on Mars. Also, anoxic reducing conditions should have influenced the type of minerals that were formed on the surface or deposited from the atmosphere. We suggest looking for elemental polysulfur (S8) as a signature of past reducing atmospheres. Finally, our models allow us to estimate the amount of volcanically sourced atmospheric

  11. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador

    Science.gov (United States)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel

    2014-05-01

    A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the

  12. Geomagnetic imprint of the Persani volcanism

    Science.gov (United States)

    Besutiu, Lucian; Seghedi, Ioan; Zlagnean, Luminita; Atanasiu, Ligia; Popa, Razvan-Gabriel; Pomeran, Mihai; Visan, Madalina

    2016-04-01

    The Persani small volume volcanism is located in the SE corner of the Transylvanian Depression, at the north-western edge of the intra-mountainous Brasov basin. It represents the south-easternmost segment of the Neogene-Quaternary volcanic chain of the East Carpathians. The alkaline basalt monogenetic volcanic field is partly coeval with the high-K calc-alkaline magmatism south of Harghita Mountains (1-1.6 Ma). Its eruptions post-dated the calc-alkaline volcanism in the Harghita Mountains (5.3-1.6 Ma), but pre-dated the high-K calc-alkaline emissions of Ciomadul volcano (1.0-0.03 Ma). The major volcanic forms have been mapped in previous geological surveys. Still, due to the small size of the volcanoes and large extent of tephra deposits and recent sediments, the location of some vents or other volcanic structures has been incompletely revealed. To overcome this problem, the area was subject to several near-surface geophysical investigations, including paleomagnetic research. However, due to their large-scale features, the previous geophysical surveys proved to be an inappropriate approach to the volcanological issues. Therefore, during the summers of 2014 and 2015, based on the high magnetic contrast between the volcanic rocks and the hosting sedimentary formations, a detailed ground geomagnetic survey has been designed and conducted, within central Persani volcanism area, in order to outline the presence of volcanic structures hidden beneath the overlying deposits. Additionally, information on the rock magnetic properties was also targeted by sampling and analysing several outcrops in the area. Based on the acquired data, a detailed total intensity scalar geomagnetic anomaly map was constructed by using the recent IGRF12 model. The revealed pattern of the geomagnetic field proved to be fully consistent with the direction of magnetisation previously determined on rock samples. In order to enhance the signal/noise ratio, the results were further processed by

  13. Automatically Detecting and Tracking Coronal Mass Ejections. I. Separation of Dynamic and Quiescent Components in Coronagraph Images

    Science.gov (United States)

    Morgan, Huw; Byrne, Jason P.; Habbal, Shadia Rifai

    2012-06-01

    Automated techniques for detecting and tracking coronal mass ejections (CMEs) in coronagraph data are of ever increasing importance for space weather monitoring and forecasting. They serve to remove the biases and tedium of human interpretation, and provide the robust analysis necessary for statistical studies across large numbers of observations. An important requirement in their operation is that they satisfactorily distinguish the CME structure from the background quiescent coronal structure (streamers, coronal holes). Many studies resort to some form of time differencing to achieve this, despite the errors inherent in such an approach—notably spatiotemporal crosstalk. This article describes a new deconvolution technique that separates coronagraph images into quiescent and dynamic components. A set of synthetic observations made from a sophisticated model corona and CME demonstrates the validity and effectiveness of the technique in isolating the CME signal. Applied to observations by the LASCO C2 and C3 coronagraphs, the structure of a faint CME is revealed in detail despite the presence of background streamers that are several times brighter than the CME. The technique is also demonstrated to work on SECCHI/COR2 data, and new possibilities for estimating the three-dimensional structure of CMEs using the multiple viewing angles are discussed. Although quiescent coronal structures and CMEs are intrinsically linked, and although their interaction is an unavoidable source of error in any separation process, we show in a companion paper that the deconvolution approach outlined here is a robust and accurate method for rigorous CME analysis. Such an approach is a prerequisite to the higher-level detection and classification of CME structure and kinematics.

  14. What Turns Galaxies Off? the Different Morphologies of Star-Forming and Quiescent Galaxies Since z Approximates 2 from CANDELS

    Science.gov (United States)

    Bell, Eric F.; VanDerWel, Arjen; Papovich, Casey; Kocevski, Dale; Lotz, Jennifer; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Faber, S. M.; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman; Wuyts, Stijn; Cheung, Edmong; Conselice, Christopher J.; Dunlop, James S.; Giavalisco, Mauro; Herrington, Jessica; Koo, David; McGrath, Elizabeth J.; DeMello, Duilia; Rix, Hans-Walter; Robaina, Aday R.; Williams, Christina C.

    2011-01-01

    We use HST/WFC3 imaging from the CANDELS multicyc1e treasury survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses > 3 x 10(exp 10) Solar Mass from Z= 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and the structural parameters of galaxies as determined from parametric fits to the surface brightness profiles of galaxies. We confirm the dramatic evolution from z= 2.2 to the present day in the number density of non-star-forming galaxies above 3 x 10(exp 10) Solar Mass reported by other authors. We find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, mass divided by radius (a proxy for velocity dispersion), and stellar surface density. Quiescence correlates poorly with stellar mass at all z galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and, perhaps by association, a supermassive black hole) is a necessary but not sufficient condition for quenching star formation on galactic scales over the last 10 Gyr; such a result is qualitatively consistent with the expectations of the AGN feedback paradigm.

  15. UPDATE TO THE PROBABILISTIC VOLCANIC HAZARD ANALYSIS, YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Coppersmith

    2005-09-14

    A probabilistic volcanic hazard analysis (PVHA) was conducted in 1996 for the proposed repository at Yucca Mountain, Nevada. Based on data gathered by the Yucca Mountain Project over the course of about 15 years, the analysis integrated the judgments of a panel of ten volcanic experts using methods of formal expert elicitation. PVHA resulted in a probability distribution of the annual frequency of a dike intersecting the repository, which ranges from 10E-7 to 10E-10 (mean 1.6 x 10E-8). The analysis incorporates assessments of the future locations, rates, and types of volcanic dikes that could intersect the repository, which lies about 300 m below the surface. A particular focus of the analysis is the quantification of uncertainties. Since the 1996 PVHA, additional aeromagnetic data have been collected in the Yucca Mountain region, including a high-resolution low-altitude survey. A number of anomalies have been identified within alluvial areas and modeling suggests that some of these may represent buried eruptive centers (basaltic cinder cones). A program is currently underway to drill several of the anomalies to gain information on their origin and, if basalt, their age and composition. To update the PVHA in light of the new aeromagnetic and drilling data as well as other advancements in volcanic hazard modeling over the past decade, the expert panel has been reconvened and the expert elicitation process has been fully restarted. The analysis requires assessments of the spatial distribution of igneous events, temporal distributions, and geometries and characteristics of future events (both intrusive and extrusive). The assessments are for future time periods of 10,000 years and 1,000,000 years. Uncertainties are being quantified in both the conceptual models that define these elements as well as in the parameters for the models. The expert elicitation process is centered around a series of workshops that focus on the available data; alternative approaches to

  16. Fibrous dysplasia of the maxilla in an elderly female: Case report on a 14-year quiescent phase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Do; Lee, Wan; Park, Yong Chan; Choi, Moon Ki [College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Kim, Myong Hyoun [Dept. of Nuclear Medicine, Wonkwang University, School of Medicine and Institute of Wonkwang Medical Science, Iksan (Korea, Republic of); Yoon, Jung Hoon [Dept. of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon (Korea, Republic of)

    2016-12-15

    Fibrous dysplasia (FD) is an uncommon skeletal disorder in which normal bone is replaced by abnormal fibroosseous tissue. Mainly, FD is found in children, and by adulthood it usually becomes quiescent. Our case showed FD of more than 14-year duration in the left maxilla. Our evaluation was that growth ceased in adulthood and had achieved the static stage. Because FD cases in elderly patients are rarely reported, we hereby present a monostotic FD case in a 65-year-old female. We presented sequential radiographic images and scintigraphic images of this case, and combined them with a literature review that emphasized the progression of the disease.

  17. Fibrous dysplasia of the maxilla in an elderly female: Case report on a 14-year quiescent phase

    Science.gov (United States)

    Lee, Wan; Park, Yong-Chan; Kim, Myoung-Hyoun; Choi, Moon-Ki; Yoon, Jung-Hoon

    2016-01-01

    Fibrous dysplasia (FD) is an uncommon skeletal disorder in which normal bone is replaced by abnormal fibro-osseous tissue. Mainly, FD is found in children, and by adulthood it usually becomes quiescent. Our case showed FD of more than 14-year duration in the left maxilla. Our evaluation was that growth ceased in adulthood and had achieved the static stage. Because FD cases in elderly patients are rarely reported, we hereby present a monostotic FD case in a 65-year-old female. We presented sequential radiographic images and scintigraphic images of this case, and combined them with a literature review that emphasized the progression of the disease. PMID:28035304

  18. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis | Office of Cancer Genomics

    Science.gov (United States)

    The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation.

  19. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: petrology and mineral chemistry

    Directory of Open Access Journals (Sweden)

    Skála Roman

    2015-06-01

    Full Text Available Upper Cretaceous to Pleistocene volcanic rocks of the Bohemian Massif represent the easternmost part of the Central European Volcanic Province. These alkaline volcanic series include rare melilitic rocks occurring as dykes, sills, scoria cones and flows. They occur in three volcanic periods: (i the Late Cretaceous to Paleocene period (80–59 Ma in northern Bohemia including adjacent territories of Saxony and Lusatia, (ii the Mid Eocene to Late Miocene (32.3–5.9 Ma period disseminated in the Ohře Rift, the Cheb–Domažlice Graben, Vogtland, and Silesia and (iii the Early to Late Pleistocene period (1.0–0.26 Ma in western Bohemia. Melilitic magmas of the Eocene to Miocene and Pleistocene periods show a primitive mantle source [(143Nd/144Ndt=0.51280–0.51287; (87Sr/86Srt=0.7034–0.7038] while those of the Upper Cretaceous to Paleocene period display a broad scatter of Sr–Nd ratios. The (143Nd/144Ndt ratios (0.51272–0.51282 of the Upper Cretaceous to Paleocene rocks suggest a partly heterogeneous mantle source, and their (87Sr/86Srt ratios (0.7033–0.7049 point to an additional late- to post-magmatic hydrothermal contribution. Major rock-forming minerals include forsterite, diopside, melilite, nepheline, sodalite group minerals, phlogopite, Cr- and Ti-bearing spinels. Crystallization pressures and temperatures of clinopyroxene vary widely between ~1 to 2 GPa and between 1000 to 1200 °C, respectively. Nepheline crystallized at about 500 to 770 °C. Geochemical and isotopic similarities of these rocks occurring from the Upper Cretaceous to Pleistocene suggest that they had similar mantle sources and similar processes of magma development by partial melting of a heterogeneous carbonatized mantle source.

  20. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  1. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  2. Organic Entrainment and Preservation in Volcanic Glasses

    Science.gov (United States)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  3. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  4. Impact of Volcanic Activity on AMC Channel Operations

    Science.gov (United States)

    2014-06-13

    IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Matthew D... VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational Sciences...AFIT-ENS-GRP-14-J-11 IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS Matthew D. Meshanko, BS, MA Major, USAF

  5. Implications of volcanic erratics in Quaternary deposits of North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Larsen, Ole

    1982-01-01

    Erratic boulders, petrographically similar to the volcanics exposed around Kap Washington, are found on islands and along the coast much further to the east. Isotopic measurements on two such boulders show that these volcanic rocks are of the same age as the Kap Washington volcanics. The regional...

  6. Quiescent hydrogen sulfide and carbon dioxide degassing from Mount Baker, Washington

    Science.gov (United States)

    McGee, K.A.; Doukas, M.P.; Gerlach, T.M.

    2001-01-01

    Volcanic H2S emission rate data are scant despite their importance in understanding magma degassing. We present results from direct airborne plume measurements of H2S and CO2 on a 21-orbit survey at eleven different altitudes around Mount Baker volcano in September 2000 utilizing instrumentation mounted in a light aircraft. Measured emission rates of H2S and CO2 were 5.5 td-1 and 187 td-1 respectively. Maximum concentrations of H2S and CO2 encountered within the 4-km-wide plume were 75 ppb and 2 ppm respectively. Utilizing the H2S signal as a marker for the plume allows the corresponding CO2 signal to be more easily and accurately distinguished from ambient CO2 background. This technique is sensitive enough for monitoring weakly degassing volcanoes in a pre-eruptive condition when scrubbing by hydrothermal fluid or aquifers might mask the presence of more acid magmatic gases such as SO2.

  7. The stress field beneath a quiescent stratovolcano: The case of Mount Vesuvius

    Science.gov (United States)

    D'Auria, Luca; Massa, Bruno; Matteo, Ada De

    2014-02-01

    We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.

  8. Halogen Chemistry in Volcanic Plumes (Invited)

    Science.gov (United States)

    Roberts, Tjarda

    2017-04-01

    Volcanoes release vast amounts of gases and particles in the atmosphere. Volcanic halogens (HF, HCl, HBr, HI) are co-emitted alongside SO2, and observations show rapid formation of BrO and OClO in the plume as it disperses into the troposphere. The development of 1D and Box models (e.g. PlumeChem) that simulate volcanic plume halogen chemistry aims to characterise how volcanic reactive halogens form and quantify their atmospheric impacts. Following recent advances, these models can broadly reproduce the observed downwind BrO/SO2 ratios using "bromine-explosion" chemistry schemes, provided they use a "high-temperature initialisation" to inject radicals (OH, Cl, Br and possibly NOx) which "kick-start" the low-temperature chemistry cycles that convert HBr into reactive bromine (initially as Br2). The modelled rise in BrO/SO2 and subsequent plateau/decline as the plume disperses downwind reflects cycling between reactive bromine, particularly Br-BrO, and BrO-HOBr-BrONO2. BrCl is produced when aerosol becomes HBr-depleted. Recent model simulations suggest this mechanism for reactive chlorine formation can broadly account for OClO/SO2 reported at Mt Etna. Predicted impacts of volcanic reactive halogen chemistry include the formation of HNO3 from NOx and depletion of ozone. This concurs with HNO3 widely reported in volcanic plumes (although the source of NOx remains under question), as well as observations of ozone depletion reported in plumes from several volcanoes (Mt Redoubt, Mt Etna, Eyjafjallajokull). The plume chemistry can transform mercury into more easily deposited and potentially toxic forms, for which observations are limited. Recent incorporation of volcanic halogen chemistry in a 3D regional model of degassing from Ambrym (Vanuatu) also predicts how halogen chemistry causes depletion of OH to lengthen the SO2 lifetime, and highlights the potential for halogen transport from the troposphere to the stratosphere. However, the model parameter-space is vast and

  9. Lunar Pyroclastic Eruptions: Basin Volcanism's Dying Gasps

    Science.gov (United States)

    Kramer, G. Y.; Nahm, A.; McGovern, P. J.; Kring, D. A.

    2011-12-01

    The relationship between mare volcanism and impact basins has long been recognized, although the degree of influence basin formation has on volcanism remains a point of contention. For example, did melting of magma sources result from thermal energy imparted by a basin-forming event? Did basin impacts initiate mantle overturn of the unstable LMO cumulate pile, causing dense ilmenite to sink and drag radioactive KREEPy material to provide the thermal energy to initiate melting of the mare sources? Did the dramatically altered stress states provide pathways ideally suited for magma ascent? The chemistry of sampled lunar volcanic glasses indicates that they experienced very little fractional crystallization during their ascent to the surface - they have pristine melt compositions. Volatile abundances, including recent measurements of OH [1,2] suggest that the mantle source of at least the OH-analyzed glasses have a water abundance of ~700 ppm - comparable to that of Earth's upper mantle. More recently, [3] showed that the abundance of OH and other volatiles measured in these glasses is positively correlated with trace element abundances, which is expected since water is incompatible in a magma. Volatile enrichment in a deep mantle source would lower the melting temperature and provide the thrust for magma ascent through 500 km of mantle and crust [4]. We are exploring the idea that such basin-related lunar pyroclastic volcanism may represent the last phase of basaltic volcanism in a given region. Remote sensing studies have shown volcanic glasses are fairly common, and often found along the perimeter of mare-filled basins [5]. Recent modeling of the stresses related to the basin-forming process [6,7] show that basin margins provide the ideal conduit for low-volume lunar pyroclastic volcanism (compared with the high output of m