WorldWideScience

Sample records for volcanically driven hydrothermal

  1. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  2. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function

    Directory of Open Access Journals (Sweden)

    Diana Linhares

    2015-01-01

    Full Text Available The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area. Odds ratio (OR and 95% confidence intervals (CIs were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD in the hydrothermal area was 4.4 (95% CI 1.78–10.69 and 3.2 (95% CI 1.82–5.58, respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases.

  3. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    Science.gov (United States)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  4. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  5. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough

    Science.gov (United States)

    Yamasaki, T.

    2015-12-01

    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  6. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc

    Science.gov (United States)

    Dando, P. R.; Hughes, J. A.; Leahy, Y.; Niven, S. J.; Taylor, L. J.; Smith, C.

    1995-07-01

    Gas seeps were located, by echo sounding, SCUBA divers and ROV observations, at hydrothermal sites around the island of Milos, in the Hellenic Volcanic Arc. Samples were collected by SCUBA divers and by a ROV from water depths between 3 and 110 m. Fifty-six flow rates from 39 individual seeps were measured and these ranged from 0.2 to 18.51 h -1 at the depth of collection. The major component, 54.9-91.9% of the gas, was carbon dioxide. Hydrogen (≤3%), methane (≤9.7%) and hydrogen sulphide (≤8.1%) were also measured. Hydrothermal free gas fluxes from the submarine hydrothermal areas around Milos were estimated to be greater than 10 10 moles y -1. It was concluded that submarine gas seeps along volcanic island arcs may be an important carbon dioxide source.

  7. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    Science.gov (United States)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  8. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    Science.gov (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. ?? 1994.

  9. Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption

    NARCIS (Netherlands)

    Gollner, S.; Govenar, B.; Martinez Arbizu, P.; Mills, S.; Le Bris, N.; Weinbauer, M.; Shank, T.M.; Bright, M.

    2015-01-01

    Deep-sea hydrothermal vents and the surrounding basalt seafloor are subject to major natural disturbance events such as volcanic eruptions. In the near future, anthropogenic disturbance in the form of deep-sea mining could also significantly affect the faunal communities of hydrothermal vents. In th

  10. The hydrothermal system of Volcan Puracé, Colombia

    Science.gov (United States)

    Sturchio, Neil C.; Williams, Stanley N.; Sano, Yuji

    1993-05-01

    This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation ˜4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have δD values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1 7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4-CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.

  11. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy

    Science.gov (United States)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.

    2007-12-01

    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.

  12. Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany

    Science.gov (United States)

    Weisenberger, Tobias Björn; Spürgin, Simon; Lahaye, Yann

    2014-11-01

    The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine-augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

  13. Miocene fossil hydrothermal system associated with a volcanic complex in the Andes of central Chile

    Science.gov (United States)

    Fuentes, Francisco; Aguirre, Luis; Vergara, Mario; Valdebenito, Leticia; Fonseca, Eugenia

    2004-11-01

    Cenozoic deposits in the Andes of central Chile have been affected by very low-grade burial metamorphism. At about 33°S in the Cuesta de Chacabuco area, approximately 53 km north of Santiago, two Oligocene and Miocene volcanic units form a ca. 1300-m-thick rock pile. The Miocene unit corresponds to a volcanic complex composed of two eroded stratovolcanoes. Secondary mineral assemblages in both units were studied petrographically and using X-ray diffraction and electron microprobe analyses. Most of the igneous minerals are wholly or partially preserved, and the ubiquitous secondary minerals are zeolites and mafic phyllosilicates. The alteration pattern observed is characterized by a lateral zonation in secondary mineralogy related to a lateral increase in temperature but not to stratigraphic depth. The following three zones were established, mainly based on the distribution of zeolites: zone I comprises heulandite, thomsonite, mesolite, stilbite and tri-smectite; zone II contains laumontite, yugawaralite, prehnite, epidote and chlorite; and zone III comprises wairakite, epidote, chlorite, diopside, biotite and titanite. For each zone, the following temperature ranges were estimated: zone I, 100-180 °C; zone II, 180-270 °C; and zone III, 245-310 °C. The alteration episode was characterized by a high Pfluid/ Ptotal ratio (ca. 1.0), although slightly variable, a high geothermal gradient of ca. 160 °C km -1 and fluid pressures below 500 bars. Although temperature was the main control on the mineral zonation, several interrelated parameters, mainly fluid composition, porosity and permeability, were also important. Hot, near neutral to slightly alkaline pH, alkali chloride hydrothermal fluids with very low dissolved CO 2 contents deposited the secondary minerals. The alteration pattern is the result of depositing fluids in outflow regions from a hydrothermal system developed inside a volcanic complex during the Miocene. The hydrothermal system has been eroded to a

  14. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    Science.gov (United States)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic

  15. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  16. Source Dynamics of Long-Period Seismicity in Volcanic and Hydrothermal Systems

    Science.gov (United States)

    Chouet, B. A.

    2006-12-01

    Long-period (LP) seismicity, including individual LP events and tremor, is widely observed in relation to magmatic and hydrothermal activities in volcanic areas and is recognized as a precursory phenomenon for eruptive activity. The waveform of the LP event is characterized by simple decaying harmonic oscillations except for a brief interval at the event onset. This characteristic event signature is commonly interpreted as oscillations of a fluid-filled resonator in response to a time-localized excitation. By the same token, tremor may be viewed as oscillations of the same resonator in response to a sustained excitation. Because the properties of the resonator system at the source of the LP event can be inferred from the complex frequencies of the decaying harmonic oscillations in the tail of the seismogram, these events are particularly important in the quantification of volcanic and hydrothermal processes. The damped oscillations in the LP coda are characterized by two parameters, T and Q, where T is the period of the dominant mode of oscillation, and Q is the quality factor of the oscillatory system representing the combined effects of radiation and intrinsic losses. Typical periods observed for LP events are in the range 0.2 - 2 s, while observed Q range from values near 1 to values larger than 100. Waveform inversions of LP signals carried out so far point to a crack geometry at the source of these events. Detailed investigations of the oscillating characteristics of LP sources based on the fluid-filled crack model suggest source dimensions ranging from tens to several hundred meters. Such studies further indicate that dusty gases and bubbly basalt are the most common types of fluids involved at the source of LP events in magmatic systems, while misty gases, steam and bubbly water commonly represent LP events of hydrothermal origin. Observations carried out in different volcanic settings point to a wide variety of LP excitation mechanisms. At Stromboli

  17. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  18. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia

    Science.gov (United States)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.

    2008-06-01

    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  19. Alkanes and alkenes in Mediterranean volcanic-hydrothermal systems: origins and geothermometry

    Science.gov (United States)

    Fiebig, Jens; D'Alessandro, Walter; Tassi, Franco; Woodland, Alan

    2010-05-01

    It is still a matter of debate if nature provides conditions for abiogenic production of hydrocarbons. Methane (C1) and the C2+ alkanes emanating from ultramafic hydrothermal systems such as Lost City have been considered to be abiogenic in origin, mainly because of the occurrence of an isotopic reversal between methane and the C2+hydrocarbons and C1/C2+ ratios >1000 [1]. Abiogenic production of methane has been postulated to occur under the relatively oxidizing redox conditions of continental-hydrothermal systems, too. It was observed that temperatures received from the H2-H2O-CO-CO2-CH4 geoindicator were coincident with temperatures derived from carbon isotope partitioning between CO2 and CH4in gases released from the Mediterranean volcanic-hydrothermal systems of Nisyros (Greece), Vesuvio and Ischia (both Italy) [2]. Such equilibrium pattern, if not fortuitous, can only be obtained if mantle- and marine limestone-derived CO2 is reduced to CH4. At Nisyros, observed C1/C2+ ratios from 300-4000 are in agreement with an abiogenic origin of the methane. Ethane and propane, however, were shown to be non-genetic with CO2 and methane. C1/C2 and C2/C3 distribution ratios may point to the admixture of small amounts of hydrocarbons deriving from the thermal decomposition of organic matter along with abiogenically equilibrated methane essentially devoid of the higher hydrocarbons [3]. Here, we provide new isotopic and hydrocarbon concentration data on several Mediterranean volcanic-hydrothermal systems, including Nisyros, Vesuvio, Ischia, Vulcano, Solfatara and Pantelleria. Wherever possible, we have extended our data set for the hydrogen isotope composition of CH4 and H2, n-alkane- and alkene/alkane-distribution ratios. At Nisyros, measured alkene/alkane- and H2/H2O concentration ratios confirm the attainment of equilibrium between CO2 and CH4. CO2 and CH4 appear to have equilibrated in the liquid phase at temperatures of ~360° C and redox conditions closely corresponding

  20. Response of hydrothermal system to stress transients at Lassen Volcanic Center, California, inferred from seismic interferometry with ambient noise

    Science.gov (United States)

    Taira, Taka'aki; Brenguier, Florent

    2016-10-01

    Time-lapse monitoring of seismic velocity at volcanic areas can provide unique insight into the property of hydrothermal and magmatic fluids and their temporal variability. We established a quasi real-time velocity monitoring system by using seismic interferometry with ambient noise to explore the temporal evolution of velocity in the Lassen Volcanic Center, Northern California. Our monitoring system finds temporal variability of seismic velocity in response to stress changes imparted by an earthquake and by seasonal environmental changes. Dynamic stress changes from a magnitude 5.7 local earthquake induced a 0.1 % velocity reduction at a depth of about 1 km. The seismic velocity susceptibility defined as ratio of seismic velocity change to dynamic stress change is estimated to be about 0.006 MPa-1, which suggests the Lassen hydrothermal system is marked by high-pressurized hydrothermal fluid. By combining geodetic measurements, our observation shows that the long-term seismic velocity fluctuation closely tracks snow-induced vertical deformation without time delay, which is most consistent with an hydrological load model (either elastic or poroelastic response) in which surface loading drives hydrothermal fluid diffusion that leads to an increase of opening of cracks and subsequently reductions of seismic velocity. We infer that heated-hydrothermal fluid in a vapor-dominated zone at a depth of 2-4 km range is responsible for the long-term variation in seismic velocity[Figure not available: see fulltext.

  1. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  2. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C. [Univ. of Nevada, Reno, NV (United States)] [and others

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  3. Differentiating Hydrothermal, Pedogenic, and Glacial Weathering in a Cold Volcanic Mars-Analog Environment

    Science.gov (United States)

    Scudder, N. A.; Horgan, B.; Havig, J.; Rutledge, A.; Rampe, E. B.; Hamilton, T.

    2016-01-01

    Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range.

  4. Rapid laccolith intrusion driven by explosive volcanic eruption

    Science.gov (United States)

    Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves

    2016-11-01

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ~0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ~20-200 m and overpressures (~1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  5. Volcanic Lake System at Aso Volcano, Japan: Fluctuations in the Supply of Volcanic Fluid from the Hydrothermal System beneath the Crater Lake (Invited)

    Science.gov (United States)

    Terada, A.; Hashimoto, T.; Kagiyama, T.

    2010-12-01

    Hot crater lakes that develop upon active volcanoes generally overlie the magma-hydrothermal system. At hot crater lakes, most of the thermal energy and mass injected into the lake bottom is trapped in the lake water. It is therefore possible to detect even slight changes in subaqueous geothermal activity. The 1st crater of Nakadake, Aso volcano, Japan, contains a hot crater lake, locally called Yudamari, which is about 200 m in diameter. During a recent calm period, water temperature is around 60-70 °C, and heat discharge from lake surface is approximately constant at 200-300 MW. Historical documents report that Yudamari has repeatedly appeared and disappeared over the past 1,500 years. Changes in water level and temperature suggest that the state of Yudamari is related to volcanic activity, as also reported for Poás in Costa Rica and for Ruapehu in New Zealand. These changes in lake water are probably caused by changes in the input of volcanic fluid to the crater bottom. Therefore, precise observations and analysis of a hot crater lake would reveal the nature of variations in the input of volcanic fluid that originated from the underlying hydrothermal system. However, direct monitoring of the lake water at Yudamari is made difficult by the steep topography and high concentrations of SO2 gas. The recent compilation of a 1-mesh digital surface model (DSM) and installation of a commercial digital camera enabled precise and continuous monitoring of water level with an average accuracy of 10-20 cm. As a result we observed characteristic patterns of change in lake level that show no direct correlation with precipitation, suggesting fluctuations in the supply of volcanic fluid to lake water. To estimate temporal variations in flux and enthalpy from the lake bottom, we developed a numerical model of a hot crater lake applied to the precise observation data for the period from July 2006 to January 2009. The analyses revealed seasonal changes in mass flux (66-132 kg

  6. Tectonic localization of multi-plume hydrothermal fluid flow in a segmented rift system, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rowland, J. V.; Downs, D. T.; Scholz, C.; de P. S. Zuquim, M.

    2013-05-01

    High-temperature (>250°C) multi-plume hydrothermal systems occur in a range of tectonic settings, though most are extensional or transtensional. A key feature of such settings is their tendency to partition into discrete structural elements that scale with the thickness of the seismogenic zone. The late Miocene to present record of arc magmatism and rifting in the North Island of New Zealand illustrates the importance of structural segmentation and reactivation of inherited basement fabrics on the localisation of hydrothermal upflow. The 15 My record of similarly-oriented magmatism, rifting and hydrothermal activity associated with subduction of the Pacific Plate beneath the North Island of New Zealand. Lateral migration of the locus of arc magmatism, concomitant with roll-back of the subducting slab, is supported by the SE-directed younging of: 1) volcanism; 2) fault-controlled rift basins; and 3) hydrothermal activity, represented by the distribution of epithermal mineralisation within the ~15-3 Ma Coromandel Volcanic Zone (CVZ), and geothermal activity within the TVZ. Currently the TVZ is extending in a NW-SE direction at a rate that varies from ~3 mm/yr to ~15 mm/yr from SW to NE, respectively. The TVZ is partitioned into discrete rift segments, comprising arrays of NE-striking normal faults of ~20 km in length, as expected on mechanical grounds for the 6-8 km-thick seismogenic zone. Transfer zones between rift segments coincide with N-to-NW-trending alignments of geothermal fields, spaced ~ 30 km apart can be recognized elsewhere within the CVZ. The most productive epithermal deposits to date are localised where these inferred transfer zones intersect arc-parallel fault arrays. A similar tectonic configuration occurs in the Deseado Massif, Argentinian Patagonia, where interplay between transfer and rift faults is inferred to have localized hydrothermal fluids in small pull-apart basins and arrays of extension veins for durations >30 My.

  7. Halogens behaviours in Magma Degassing: Insights into Eruptive Dynamics, Hydrothermal Systems and Atmospheric Impact of Andesitic Volcanism

    Science.gov (United States)

    Villemant, B.; Balcone, H.; Mouatt, J.; Michel, A.; Komorowski, J.; Boudon, G.

    2007-12-01

    Shallow degassing of H2O in andesitic magmas determines the eruptive styles of volcanic eruptions and contributes to the hydrothermal systems developed around active volcanoes. Halogens behaviour during magma degassing primarily depends on their incompatible behaviour in the melts and on water solubility. Thus, residual contents of halogens in volcanic juvenile vitric clasts may be used as tracers of H2O degassing processes during explosive and effusive eruptions. Because of the large range of water-melt partition coefficients of halogens and their relatively low diffusion coefficients, a comparison of F, Cl, Br and I contents in volcanic clasts in function of their vesicularity and micro-cristallinity allows to precisely model the main degassing processes and to establish constraints on pre-eruptive conditions. Halogens acids (HCl, HBr and HI) extracted in the vapour phase have much more complex behaviours because of their high solubility in low temperature thermal waters, their variable condensation temperatures and their very high reactivity when mixed with low temperature and oxidizing atmospheric gases. A comparison of model compositions of high temperature gases with the composition of thermal waters, and gases from fumaroles or plumes of active volcanoes allows to characterise the shallow volcanic system and its evolutionary states. Variable halogen behaviours are discussed for a variety of eruption types (plinian, vulcanian and dome-forming) and active volcanic systems from the Lesser Antilles (Montagne Pelee, Soufrière of Guadeloupe, Soufriere Hills of Montserrat).

  8. Tunable diode laser measurements of hydrothermal/volcanic CO2 and implications for the global CO2 budget

    Science.gov (United States)

    Pedone, M.; Aiuppa, A.; Giudice, G.; Grassa, F.; Francofonte, V.; Bergsson, B.; Ilyinskaya, E.

    2014-12-01

    Quantifying the CO2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The calculated CO2 fluxes range from low (5.7 ± 0.9 t d-1; Krýsuvík) to moderate (524 ± 108 t d-1; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale.

  9. Tunable diode laser measurements of hydrothermal/volcanic CO2, and implications for the global CO2 budget

    Science.gov (United States)

    Pedone, M.; Aiuppa, A.; Giudice, G.; Grassa, F.; Francofonte, V.; Bergsson, B.; Ilyinskaya, E.

    2014-08-01

    Quantifying the CO2 flux sustained by low-temperature fumarolic fields in volcanic-hydrothermal environment has remained a challenge, to date. Here, we explored the potentiality of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted (between April 2013 and March 2014) at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross-sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The so-calculated CO2 fluxes range from low (5.7 ± 0.9 t day-1; Krýsuvík) to moderate (524 ± 108 t day-1; "La Fossa" crater, Vulcano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in hydrothermal stage of activity may be significant at global scale.

  10. Tunable diode laser measurements of hydrothermal/volcanic CO2, and implications for the global CO2 budget

    Directory of Open Access Journals (Sweden)

    M. Pedone

    2014-08-01

    Full Text Available Quantifying the CO2 flux sustained by low-temperature fumarolic fields in volcanic-hydrothermal environment has remained a challenge, to date. Here, we explored the potentiality of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted (between April 2013 and March 2014 at Nea Kameni (Santorini, Greece, Hekla and Krýsuvík (Iceland and Vulcano (Aeolian Islands, Italy. At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross-sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The so-calculated CO2 fluxes range from low (5.7 ± 0.9 t day−1; Krýsuvík to moderate (524 ± 108 t day−1; "La Fossa" crater, Vulcano. Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in hydrothermal stage of activity may be significant at global scale.

  11. Non-volcanic tremor driven by large transient shear stresses.

    Science.gov (United States)

    Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D

    2007-08-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress.

  12. Geochemical variability of hydrothermal emissions between three Pacific volcanic arc systems: Alaskan-Aleutian and Cascadian, North America and Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Blackstock, J. M.; Horton, T. W.; Gravley, D. M.; Deering, C. D.

    2013-12-01

    Knowledge of the source, transport, and fate of hydrothermal fluids in the upper crust informs our understanding and interpretation of ore-forming processes, volcanogenic hazards, geothermal resources, and volatile cycling. Co-variation between fluid inclusion CO2/CH4 and N2/Ar ratios is an established tracer of magmatic, meteoric, and crustal fluid end-members. Yet, this tracer has had limited application to macroscopic fluid reservoirs accessible via geothermal wells and hydrothermal features (e.g. pools). In this study, we compared the covariance CO2/CH4 and N2/Ar ratios of gases collected throughout the Taupo Volcanic Zone, New Zealand (TVZ), the Alaska-Aleutian Volcanic Arc, USA (AAVA), and the Cascadian Volcanic Arc, USA (CVA) with corresponding δ13C and 3He/4He values. Our findings show that there is good agreement between these proxies for different end-member contributions at coarse scales. However, some samples classified as meteoric water according to the CO2/CH4 and N2/Ar ratios also show more positive δ13C values (~ -7.0 per mil) and relatively higher 3He/4He ratios indicative of magmatic input from primarily mantle sources. This unexpected result may be related to magmatic fluids, CO2 in particular, mixing with predominantly meteoric derived waters. The potential to identify magmatic CO2 in groundwater samples overlying geothermal systems in differing volcanic arc settings using simple and cost-effective gas ratios is a promising step forward in the search for ';surface blind' but developable geothermal systems and volcanic monitoring. 3He/4He anomalies also support this inference and underscore the potential decoupling of thermal anomalies and magmatic-derived fluids in the Earth's crust. The general agreement between the co-variation of CO2/CH4 and N2/Ar ratios with other isotope and geochemical proxies for magmatic, meteoric, and crustal end-members is encouraging to employ expanded use of these ratios for both the exploration and monitoring of

  13. Characterization of the Hydrothermal System of the Tinguiririca Volcanic Complex, Central Chile, using Structural Geology and Passive Seismic Tomography

    Science.gov (United States)

    Pavez Orrego, Claudia; Tapia, Felipe; Comte, Diana; Gutierrez, Francisco; Lira, Elías; Charrier, Reynaldo; Benavente, Oscar

    2016-04-01

    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro - El Diablo fault system, corresponding to a high angle reverse faults of Oligocene - Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira- Energía Andina (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low - velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro - El Diablo fault system represents the local control for fluid mobility. This geometry coincides with surface hydrothermal manifestations and with available geochemical information of the area, which allowed us to generate a

  14. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    Science.gov (United States)

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  15. A multi-faceted approach to characterize acid-sulfate alteration processes in volcanic hydrothermal systems on Earth and Mars

    Science.gov (United States)

    Marcucci, Emma Cordts

    Acid-sulfate alteration is a dominant weathering process in high temperature, low pH, sulfur-rich volcanic environments. Additionally, hydrothermal environments have been proposed as locations where life could have originated on Earth. Based on the extensive evidence of flowing surface water and persistent volcanism, similar locations and processes could have existed on early Mars. Globally observed alteration mineral assemblages likely represent relic Martian hydrothermal settings. Yet the limited understanding of environmental controls, limits the confidence of interpreting the paleoconditions of these hydrothermal systems and assessing their habitability to support microbial life. This thesis presents a series of laboratory experiments, geochemical models, analog fieldwork, and Martian remote sensing to characterize distinguishing features and controls of acid-sulfate alteration. The experiments and models were designed to replicate alteration is a highly acidic, sulfurous, and hot field sites. The basaltic minerals were individually reacted in both experimental and model simulations with varying initial parameters to infer the geochemical pathways of acid-sulfate alteration on Earth and Mars. It was found that for a specific starting material, secondary mineralogies were consistent. Variations in pH, temperature and duration affected the abundance, shape, and size of mineral products. Additionally evaporation played a key role in secondary deposits; therefore, both alteration and evaporitic processes need to be taken into consideration. Analog volcanic sites in Nicaragua were used to supplement this work and highlight differences between natural and simulated alteration. In situ visible near-infrared spectroscopy demonstrated that primary lithology and gas chemistry were dominant controls of alteration, with secondary effects from environmental controls, such as temperature and pH. The spectroscopic research from the field was directly related to Mars

  16. The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences

    Science.gov (United States)

    Tassi, F.; Liccioli, C.; Agusto, M.; Chiodini, G.; Vaselli, O.; Calabrese, S.; Pecoraino, G.; Tempesti, L.; Caponi, C.; Fiebig, J.; Caliro, S.; Caselli, A.

    2016-12-01

    The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl--rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a hydrothermal reservoir located at relative shallow depth (400-600 m) possibly connected to a second deeper (2-3 km) reservoir. Reactive magmatic gases are completely scrubbed by the hydrothermal aquifer(s), whereas interaction of meteoric waters at the surface causes a significant air contamination and dilution of the fluid discharges located along the creeks at the foothill of the Cerro Domuyo edifice. Thermal discharges located at relatively high altitude ( 3150 m a.s.l.), namely Bramadora, are less affected by this process, as also shown by their relatively high R/Ra values (up to 6.91) pointing to the occurrence of an actively degassing magma batch located at an unknown depth. Gas and solute geothermometry suggests equilibrium temperatures up to 220-240 °C likely referred to the shallower hydrothermal reservoir. These results, confirming the promising indications of the preliminary surveys carried out in the 1980‧s, provide useful information for a reliable estimation of the geothermal potential of this extinct volcanic system, although a detailed geophysical measurements is required for the correct estimation of depth and dimensions of the fluid reservoir(s).

  17. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    Science.gov (United States)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  18. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    Energy Technology Data Exchange (ETDEWEB)

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  19. UV-light driven photocatalytic performance of hydrothermally-synthesized hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, Zhongqi; Zhang, Ke; Zhao, Heyun; Zhu, Jing

    2017-10-01

    Hexagonal CePO4 nanorods were synthesized via a simple hydrothermal method without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. UV-light driven photocatalytic activities of hexagonal CePO4 nanorods were detailedly demonstrated via degrading different organic dyes such as congo red (CR), organic rhodamine B (RB), methyl orange (MO) and methylene blue (MB) since these nanorods exhibit strong UV absorption with the cutoff edge of about 420 nm.

  20. Numerical modeling of the three-layered hydrothermal system in the Kuju volcanic region, central Kyushu, Japan

    Science.gov (United States)

    Araragi, K.; Ehara, S.; Fujimitsu, Y.

    2008-12-01

    Numerical modeling of hydrothermal systems beneath active volcanoes has been conducted. Their purposes were, however, confined to interpret individual geothermal systems. We constructed a numerical model of the Kuju volcanic region, central Kyushu, Japan using 3-D finite-difference code HYDROTHERM ver.2.2 (Hayba and Ingebritsen, 1994). The central part of Kuju volcano is categorized as an active magmatic hydrothermal system. Otake-Hatchobaru geothermal area, where two geothermal power plants are in operation, is known as a typical liquid dominated hydrothermal system. These two types of geothermal systems are closely located in the region. Moreover, subsurface horizontal temperature distributions in the Kuju volcanic region consist of a three-layered structure. A horizontal temperature anomaly at a depth of -2000m separates into two anomalies at depths of about 0m. Five anomalies appear in the horizontal temperature distribution of 80m depth. Geothermal systems or such characteristics of the thermal structure should be related to the influence of the magma chamber in the region. Existence of molten magma was suggested from seismic observations (Yoshikawa et al., 2005). Therefore, we presumed that the geothermal systems in Otake- Hatchobaru geothermal area and in the central part of Kuju volcano can be explained by a common magma chamber. We determined the calculation time as 40000 based on the age of the latest large pyroclastic flow deposit (Kamata, 1997). The temperature of the magma chamber in the model was maintained at a constant value during the calculation. Parameter studies of crustal permeabilities were conducted to reproduce temperature profiles obtained by logging at shallow depths (NEDO, 1987). The calculated results show that temperature anomalies in the basement rock seemed to be directly affected by the magma chamber. The results also indicate that molten materials have been continuously supplied from the bottom of the magma chamber of Kuju volcano

  1. Permeability Reduction in Passively Degassing Seawater-dominated Volcanic-hydrothermal systems: Processes and Perils on Raoul Island, Kermadecs (NZ)

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.

    2014-12-01

    The 2006 eruption from Raoul Island occurred apparently in response to local tectonic swarm activity, but without any precursory indication of volcanic unrest within the hydrothermal system on the island. The eruption released some 200 T of SO2, implicating the involvement of a deep magmatic vapor input into the system during/prior to the event. In the absence of any recognized juvenile material in the eruption products, previous explanations for this eruptive event focused on this vapor being a driving force for the eruption. In 2004, at least 80 T/d of CO2 was escaping from the hydrothermal system, but mainly through areas that did not correspond to the 2006 eruption vents. The lack of a pre-eruptive hydrothermal system response related to the seismic event in 2006 can be explained by the presence of a hydrothermal mineralogic seal in the vent area of the volcano. Evidence for the existence of such a seal was found in eruption deposits in the form of massive fracture fillings of aragonite, calcite and anhydrite. Fluid inclusion homogenization temperatures in these phases range from ca. 140 °C to 220 °C which, for pure water indicate boiling point depths of between 40 and 230 m assuming a cold hydrostatic pressure constraint. Elevated pressures behind this seal are consistent with the occurrence of CO2 clathrates in some inclusion fluids, indicating CO2 concentrations approaching 1 molal in the parent fluids. Reactive transport modeling of magmatic volatile inputs into what is effectively a seawater-dominated hydrothermal system provide valuable insights into seal formation. Carbonate mineral phases ultimately come to saturation along this flow path, but we suggest that focused deposition of the observed massive carbonate seal is facilitated by near-surface boiling of these CO2-enriched altered seawaters, leading to large degrees of supersaturation which are required for the formation of aragonite. As the seal grew and permeability declined, pore pressures

  2. Numerical modelling of gas-water-rock interactions in volcanic-hydrothermal environment: the Ischia Island (Southern Italy) case study.

    Science.gov (United States)

    Di Napoli, R.; Federico, C.; Aiuppa, A.; D'Antonio, M.; Valenza, M.

    2012-04-01

    Hydrothermal systems hosted within active volcanic systems represent an excellent opportunity to investigate the interactions between aquifer rocks, infiltrating waters and deep-rising magmatic fluids, and thus allow deriving information on the activity state of dormant volcanoes. From a thermodynamic perspective, gas-water-rock interaction processes are normally far from equilibrium, but can be represented by an array of chemical reactions, in which irreversible mass transfer occurs from host rock minerals to leaching solutions, and then to secondary hydrothermal minerals. While initially developed to investigate interactions in near-surface groundwater environments, the reaction path modeling approach of Helgeson and co-workers can also be applied to quantitative investigation of reactions in high T-P environments. Ischia volcano, being the site of diffuse hydrothermal circulation, is an ideal place where to test the application of reaction-path modeling. Since its last eruption in 1302 AD, Ischia has shown a variety of hydrothermal features, including fumarolic emissions, diffuse soil degassing and hot waters discharges. These are the superficial manifestation of an intense hydrothermal circulation at depth. A recent work has shown the existence of several superposed aquifers; the shallowest (near to boiling) feeds the numerous surface thermal discharges, and is recharged by both superficial waters and deeper and hotter (150-260°C) hydrothermal reservoir fluids. Here, we use reaction path modelling (performed by using the code EQ3/6) to quantitatively constrain the compositional evolution of Ischia thermal fluids during their hydrothermal flow. Simulations suggest that compositions of Ischia groundwaters are buffered by interactions between reservoir rocks and recharge waters (meteoric fluids variably mixed - from 2 to 80% - with seawater) at shallow aquifer conditions. A CO2 rich gaseous phase is also involved in the interaction processes (fCO2 = 0.4-0.6 bar

  3. Hydrothermal alteration in volcanic rocks, eastern part of the Lukavice Group, Železné Hory Mountains, Czech Republic

    Science.gov (United States)

    Pertold, Z.; Watkinson, D. H.; Novotný, L.

    1993-06-01

    Many rocks mapped as felsic metavolcanics in the eastern part of the Lukavice Group are shown to be altered mafic metavolcanics, similar to those in the Noranda and Flin Flon-Snow Lake mining districts, Canada. The relatively fresh rocks of the Lukavice Group are rhyolite, dacite-andesite, and andesite-basalt of calcalka-line character. Assuming no substantial volume change during alteration, Ti, P, La, Ce, Yb, Lu, Th (partly), Sc and V contents remained unchanged. Altered rocks are enriched in (Fe + Mg), K and Si and depleted in Na, Ca and Zr. Some elements show both increased and decreased contents in altered rocks (Mg, Ba, Sm, eu, Tb and Hf). Although hydrothermal alteration in the Lukavice Group is of large extent, it is of the proximal Kuroko style and not of regional ‘Amulet Rhyolite’ style. Implications for a large hydrothermal system within a volcanic pile are discussed in relation to the Ordovician Lukavice Group and its mineral deposits and to some other parts of the Bohemian Massif with volcanosedimentary sequences of the same age.

  4. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    Science.gov (United States)

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  5. Effects of heat-flow and hydrothermal fluids from volcanic intrusions ...

    African Journals Online (AJOL)

    The reservoir characteristics of the studied sandstone formations are highly ... fluids from volcanic intrusions on authigenic mineralization in sandstone ..... Chrono, litho-stratigraphic section and depositional environments and hydrocarbon .... Ketsela, and the Bulletin referees for their constructive and valuable reviews of the ...

  6. Basaltic continental intraplate volcanism as sustained by shear-driven upwelling

    Science.gov (United States)

    Ballmer, M. D.; Conrad, C. P.; Smith, E. I.

    2012-04-01

    While most volcanism on Earth occurs at plate boundaries, the study of intraplate basaltic volcanism may provide an opportunity to scrutinize the make-up and dynamics of the mantle. In continental settings, a range of mechanisms were proposed to sustain mantle decompression and hence to support such volcanism. These include mantle plumes, fertile melting anomalies, self-sustaining buoyant decompression melting, lithospheric dripping, and edge-driven small-scale convection. Recently, Conrad et al. showed that basaltic continental volcanism occurs more often where shear across the asthenosphere is greatest, and hence propose shear-driven upwelling (SDU) to support such volcanism¹. SDU does not require density heterogeneity to drive convection, in contrast to other mechanisms. Rather, it develops when rapid shear across the asthenosphere meets lateral viscosity variation2. For example, in a case with a low-viscosity pocket in the mantle, asthenospheric shear is accommodated in a different manner across the pocket than across the ambient mantle. This contrast drives vertical flow close to the margins of the pocket, and may be sufficient to sustain decompression melting, particularly if the viscosity anomaly is supported by higher water contents or temperatures2. Mantle melting is also expected for situations in which asthenospheric shear flow enters a lithospheric cavity, or decompresses across a step in lithospheric thickness3 - and even more so if a low-viscosity pocket is entrained in such a flow. Seismic observations indicate that sublithospheric topography, and heterogeneity in mantle viscosity are indeed common beneath continents (regardless of whether the imaged anomalies are thermal or compositional in origin). We use three-dimensional numerical models to explore shear-driven flow, and investigate a range of cases with pockets of variable viscosity contrast and shape, lithospheric steps of variable offset and spacing, and asthenospheric flow with variable

  7. Water and gas geochemistry of the Calatrava Volcanic Province (CVP) hydrothermal system (Ciudad Real, central Spain)

    Science.gov (United States)

    Vaselli, Orlando; Nisi, Barbara; Tassi, Franco; Giannini, Luciano; Grandia, Fidel; Darrah, Tom; Capecchiacci, Francesco; del Villar, Pèrez

    2013-04-01

    An extensive geochemical and isotopic investigation was carried out in the water and gas discharges of the Late Miocene-Quaternary Calatrava Volcanic Province (CVP) (Ciudad Real, Spain) with the aim reconstruct the fluid circulation in the area. CVP consists of a series of scattered (monogenetic) vents from where alkaline lava flows and pyroclastic deposits formed in two different periods. The first stage (8.7-6.4 Ma) mainly included ultra-potassic mafic extrusives, whilst the second stage (4.7-1.75 Ma) prevalently originated alkaline and ultra-alkaline volcanics. Both stages were followed by a volcanic activity that extended up to 1.3 and 0.7 Ma, respectively. This area can likely be regarded as one of the most important emitting zones of CO2 in the whole Peninsular Spain along with that of Selva-Emporda in northeastern Spain (Cataluña) and it can be assumed as one of the best examples of natural analogues of CO2 leakages in Spain. This latter aspect is further evidenced by the relatively common water-gas blast events that characterize the CCVF. In the last few years the presence of a CO2-pressurized reservoir at a relatively shallow level as indeed caused several small-sized explosion particularly during the drilling of domestic wells. The fluid discharging sites are apparently aligned along well-defined directions: NW-SE and NNW-SSE and subordinately, ENE-WSW, indicating a clear relationship between the thermal discharges and the volcanic centers that also distribute along these lineaments. The CVP waters are mostly hypothermal (up to 33 °C) and are generally Mg(Ca)-HCO3 in composition and occasionally show relatively high concentrations of Fe and Mn, with pH and electrical conductivity down to 5.5 and up to 6.5 mS/cm, respectively. The oxygen and hydrogen isotopes suggest a meteoric origin for these waters. The mantle source of these volcanic products is apparently preserved in the many CO2-rich (up to 990,000 mmol/mol) gas discharges that characterize CVP

  8. The NOAA/PMEL Vents Program - 1983 to 2013: A History of Deep-Sea Volcanic and Hydrothermal Exploration and Research

    Science.gov (United States)

    Hammond, S. R.; Baker, E. T.; Embley, R. W.

    2015-12-01

    Inspiration for the Vents program arose from two serendipitous events: the discovery of seafloor spreading-center hydrothermal venting on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and hydrothermal activity at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the Vents program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and hydrothermal venting. The Vents program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by Vents researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an active deep volcanic eruption in 1993. To continue the Vents mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the Vents tradition of pioneering ocean exploration and research.

  9. Hydrothermal alteration of plagioclase and growth of secondary feldspar in the Hengill Volcanic Centre, SW Iceland

    Science.gov (United States)

    Larsson, D.; Grönvold, K.; Oskarsson, N.; Gunnlaugsson, E.

    2002-05-01

    Dissolution of igneous feldspar and the formation and occurrence of secondary feldspar in tholeiitic basalts from the Hengill volcanic centre, in SW Iceland was studied by microprobe analysis of cuttings from two ca. 2000 m deep geothermal wells. Well NG-7 in Nesjavellir represents a geothermal system in a rift zone where the intensity of young, insignificantly altered intrusions increases with depth. Well KhG-1 in Kolviðarhóll represents the margin of a rift zone where the intensity of intrusives is lower and the intensity of alteration higher. This marginal well represents altered basaltic crust in an early retrograde state. The secondary plagioclase in both wells is mainly oligoclase, occurring in association with K-feldspar and chlorite±actinolite. The texture of this assemblage depends on the lithology and intensity of alteration. In Nesjavellir (NG-7) the composition of secondary albite-oligoclase is correlated with the host-rock composition. This connection is not apparent in more intensely altered samples from Kolviðarhóll (KhG-1). The influence of temperature on composition of secondary Na-feldspar is unclear in both wells although Ca is expected to increase with temperature. Any temperature dependence may be suppressed by the influence of rock composition in Nesjavellir and by retrograde conditions at Kolviðarhóll. The absence of clear compositional gradients between igneous plagioclase and secondary feldspar and between Na-feldspar and K-feldspar suggests that secondary feldspars formed by dissolution precipitation reactions.

  10. Signs of Recent Volcanism and Hydrothermal Activity Along the Eastern Segment of the Galapagos Spreading Center

    Science.gov (United States)

    Raineault, N.; Smart, C.; Mayer, L. A.; Ballard, R. D.; Fisher, C. R.; Marsh, L.; Shank, T. M.

    2016-12-01

    Since the initial discovery of the Galápagos Spreading Center (GSC) vents in 1977, large-scale disturbances resulting from eruptive and tectonic activity have both destroyed and created vent habitats along the GSC. In 2015, the E/V Nautilus returned to the GSC with remotely operated vehicles (ROVs) to explore 17 kilometers of the rift valley from the Rosebud site in the west, to a previously unexplored temperature anomaly east of the Tempus Fugit vent site. In the years to over a decade since scientists last visited the Rosebud, Rose Garden, and Tempus Fugit sites, there were many changes. Most notably, the Rosebud site, where scientists found a nascent vent community and left site markers in 2002, was apparently covered with glassy basaltic sheet flows. In addition to visual exploration, oceanographic sensor measurements and direct sampling, we used the ROV Hercules imaging suite, comprised of stereo cameras and a structured light laser sensor to map an area of diffuse flow in the Tempus Fugit field (100 m x 150 m). The centimeter-level photographic and bathymetric maps created with this system, along with ROV HD video, samples, and environmental sensors, documented hydrothermal activity and changes in biological community structure (e.g., Riftia tubeworms observed in nascent stages of community development in 2011 were now, in 2015, in greater abundance (with tubes almost 4 m in length). The detection of active venting and associated faunal assemblages will provide insight into the temporal and spatial variability of venting activity at the Tempus Fugit site. On a visual survey of the Rift east of the Tempus Fugit site, extinct sulfide chimney structures were discovered and sampled. There were several chimneys and sulfide deposits in a span of over 8 km that ranged in height from over a half meter to 1.5 m tall. Diffuse flow hosting white and blue bacterial mats was observed near the chimneys complexes. The base of a large chimney structure, venting white fluids

  11. Hydrothermal fabrication of selectively doped organic assisted advanced ZnO nanomaterial for solar driven photocatalysis.

    Science.gov (United States)

    Namratha, K; Byrappa, K; Byrappa, S; Venkateswarlu, P; Rajasekhar, D; Deepthi, B K

    2015-08-01

    Hydrothermal fabrication of selectively doped (Ag(+)+Pd(3+)) advanced ZnO nanomaterial has been carried out under mild pressure temperature conditions (autogeneous; 150°C). Gluconic acid has been used as a surface modifier to effectively control the particle size and morphology of these ZnO nanoparticles. The experimental parameters were tuned to achieve optimum conditions for the synthesis of selectively doped ZnO nanomaterials with an experimental duration of 4 hr. These selectively doped ZnO nanoparticles were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy and scanning electron microscopy (SEM). The solar driven photocatalytic studies have been carried out for organic dyes, i.e., Procion MX-5B dye, Cibacron Brilliant Yellow dye, Indigo Carmine dye, separately and all three mixed, by using gluconic acid modified selectively doped advanced ZnO nanomaterial. The influence of catalyst, its concentration and initial dye concentration resulted in the photocatalytic efficiency of 89% under daylight.

  12. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  13. Submarine Hydrothermal Sites in Arc Volcanic-Back Arc Environment: Insight from Recent Marine Geophysical Investigations in the Southern Tyrrhenian Sea.

    Science.gov (United States)

    Cocchi, L.; Ligi, M.; Bortoluzzi, G.; Petersen, S.; Plunkett, S.; Muccini, F.; Canese, S.; Caratori Tontini, F.; Carmisciano, C.

    2014-12-01

    Hydrothermal alteration processes involve mineralogical and chemical changes, which are reflected in a major modification of potential field patterns observed over hydrothermal areas. Basalt-hosted hydrothermal sites exhibit characteristic responses with magnetic lows and minima of the gravity field. Near bottom AUV (Autonomous Underwater Vehicle) based potential field surveys have become a very effective technique in deep sea exploration. Here we present results of recent ship-borne and near seafloor magnetic and gravity investigations at deep (Marsili and Palinuro seamounts) and shallow (Panarea, Basiluzzo and Secca del Capo) hydrothermal sites in the Southern Tyrrhenian Sea including multibeam bathymetry, seafloor reflectivity and seismic profiles. At Marsili seamount, a large Fe-Mn-oxyhydroxides-rich chimney field is located at the summit (500 m depth). This site is correlated with pronounced magnetic and gravity lows (0 A/m and 2.0 g/cm3). Deep tow magnetic survey (Cruise MAVA11) revealed strong association between the complicated magnetization pattern and the main volcano-tectonic features of the ridge. Hydrothermal manifestations at Palinuro seamount occur mainly on the western sector within the rim of a caldera structure at depth of 600m. Recent AUV based magnetic surveys (Cruise POS442, 2012 using AUV "Abyss") detailed a magnetization low interpreted to represent the local distribution of subseafloor hydrothermal alteration (potentially massive sulfide deposits), and also mapped previously undiscovered inactive chimney fields. Hydrothermal sites observed at the arc-related volcanic islands (Panarea, Basiluzzo, Eolo and Secca del Capo) are confined to shallow depths (less then 300m) and associated with large ochreaceous mounds, vents and chimney fields such as those observed E of Basiluzzo Island. At this site a recent magnetic survey (Cruise PANA13_ASTREA) combined with Remote Operated Vehicle (ROV) investigations revealed that the submarine geothermal

  14. Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate

    Science.gov (United States)

    Iyer, Karthik; Schmid, Daniel W.; Planke, Sverre; Millett, John

    2017-06-01

    Vent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for 'explosive' vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution

  15. Double, double, (but mostly) toil, and trouble: A multidisciplinary approach to quantify the permeability of an active volcanic hydrothermal system (Whakaari volcano, New Zealand)

    Science.gov (United States)

    Heap, Michael; Kennedy, Ben; Farquharson, Jamie; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, Albert; Scheu, Betty; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Art; Dingwell, Donald

    2016-04-01

    Our multidisciplinary approach, which combines field techniques and traditional laboratory methods, aims to better understand the permeability of an active volcanic hydrothermal system, a vital prerequisite for understanding and modelling the behaviour of hydrothermal systems worldwide. Whakaari volcano (an active stratovolcano located 48 km off New Zealand's North Island) hosts an open, highly reactive hydrothermal system (hot springs and mud pools, fumaroles, acid streams and lakes) and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. Due to the variable nature of these altered lithologies (mainly lavas and tuffs), we measured porosity-permeability for in excess of a hundred rock hand samples using field techniques. We also measured the permeability of recent, unconsolidated deposits using a field soil permeameter. Our field measurements were then groundtruthed on a subset of these samples (~40-50) using traditional laboratory techniques: helium pycnometry and measurements of permeability using a benchtop permeameter, including measurements under increasing confining pressure (i.e., depth). In all, our measurements highlight that the porosity of the materials at Whakaari can vary from ~0.01 to ~0.6, and permeability can vary by eight orders of magnitude. However, our data show no discernable trend between porosity and permeability. A combination of macroscopic and microscopic observations, chemistry (XRF), mineralogy (XRD), and mercury porosimetry highlight that the absence of a robust porosity-permeability relationship is the product of an insane variability in alteration and microstructure (pore size, particle size, pore connectivity, presence/absence of microcracks, layering, amongst others). While our systematic study offers the most complete porosity-permeability dataset

  16. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  17. Thermal mapping: the hydrothermal system of a volcano used to map faults and palaeostructures within stratified ground. The Yasur-Yenkahe volcanic complex (Vanuatu)

    Science.gov (United States)

    Amin Douillet, Guilhem; Peltier, Aline; Finizola, Anthony; Brothelande, Elodie; Garaebiti, Esline

    2014-05-01

    Subsurface thermal measurements provide a valuable tool to map hydrothermal-fluid release zones in activevolcanic areas. On explosive volcanoes, where ash fall layers deposit parallel to the ground surface, hydrothermal fluids are trapped in the stratification due to the variations in permeability in deposits of the different explosive phases. Thermal fluids thus travel parallel to the surface close to the ground. This horizontal flux can only escape when faults break the seals of stratification. On the Yasur-Yenkahe volcanic complex (Tanna Island, Vanuatu archipelago), fumaroles andhot springs abound, signs of upraising heat fluxes associated to a well-developed hydrothermal activity. Combinationof high resolution mapping of ground thermal anomalies with geomorphological analysis allows thecharacterization of the structural relationships between the active Yasur volcano and the Yenkahe resurgent dome. A complex system of heat release and hydrothermal fluid circulation below the Yasur-Yenkahe complex isevidenced. Circulation, though propagating vertically as a whole, is funneled by stratification. Thus, the main thermal fluid release is almost exclusively concentrated along structural limits that break the seals inducedby the stratified nature of the ground. Three types of medium/high temperature anomalies have beenevidenced: (1) broad hydrothermalized areas linked with planar stratification that favor lateral spreading,(2) linear segments that represent active faults, and (3) arcuate segments related to paleo-crater rims. Thelimit between the Yasur volcano and the Yenkahe resurgent dome is characterized by an active fault systemaccommodating both the rapid uplift of the Yenkahe block and the overloading induced by the volcanoweight. In such a setting, faults converge below the cone of Yasur, which acts as a focus for the faults. Evidenceof such structures, sometimes hidden in the landscape but detected by thermal measurements, iscritical for risk assessment of

  18. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  19. Discovery of double-peaking potassic volcanic rocks in Langshan Group of the Tanyaokou hydrothermal-sedimentary deposit, Inner Mongolia, and its indicating significance

    Institute of Scientific and Technical Information of China (English)

    PENG; Runmin; ZHAI; Yusheng; WANG; Zhigang; HAN; Xuefeng

    2005-01-01

    It is revealed that the protolith of gray-light brown potash-feldspar-leucogranulites and granulites in the 2nd formation of the LG in Tanyaokou deposit are quartz kerotophyre of synsedimentary eruption based on the following facts and features: (1) The rocks look compact and homogeneous without obvious crystals with naked eyes; (2) they contain blastoporphyritic or glomeroporphyritic and blasto-crystalloclastic crystals consisting of quartz with wavy extinction and albite with obvious alteration and deformation; (3) they also contain radiated and fibrous blasto-microspherulitic texture and swallow-tailed bifurcate and blasto-hollow-skeleton crystal texture, representing the rapid cooling characteristic of the magma during submarine volcanic eruption; (4) the major chemical compositions of the rocks are: SiO2 = 70.80%―76.00%, K2O (4.83%―6.22%)>Na2O(2.78%―3.80%), and K2O+Na2O = 8.63%―9.00%; and (5) their petrochemical diagrams indicate that they are volcanic rocks. Together with the characteristic that they occur in the same sequence with potassic spilite (SiO2 = 46.12%―50.68%, K2O = 4.23%―5.93%>Na2O = 2.15%―3.14%, K2O+Na2O = 6.51%―8.08%), it can be confirmed that the volcanics occurring in the 2nd Formation of the LG in Tanyaokou district are double-peaking potassic volcanic rocks. The discovery, together with the tuffs with ore minerals and the distribution of lead isotopic as well as the value of Co/Ni of pyrites >1 showing the obvious endogenic metalization, can prove that the Tanyaokou deposit is an untypical SEDEX-type deposit formed in the extension fault basin in the Mesoproterozonic aulacogen of the northern margin of the North China Platform, and its metallogenesis is related to the synsedimentary volcanic activities and the hydrothermal exhalation, and both the ore-forming material source and volcanics came from mantle or lower crust. These facts mentioned above, together with the meta-volcanic rocks (double-peaking) found in the

  20. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system

    Science.gov (United States)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.

    2016-10-01

    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  1. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  2. Screw-dislocation-driven growth of ZnO nanotubes seeded by self-perpetuating spirals during hydrothermal processing

    Science.gov (United States)

    Kim, Sojin; Kang, Hyon Chol

    2016-09-01

    We report the effects of precursor concentration on the characteristics of ZnO nanostructures during hydrothermal processing. Self-perpetuating surface spirals are fabricated at concentrations of 0.25 and 0.5 M, with samples grown at concentrations of 0.05 and 0.125 M exhibiting ZnO nanorods. This can be explained by a change in the growth mode from an initial columnar growth to a screw-dislocation-driven growth with decreased supersaturation. The screw dislocations nucleate at the V-shaped valleys of the columnar boundaries during the intermediate stage. We demonstrate that continuous screw-dislocation-driven growth leads to the formation of ZnO nanotubes having Burger's vectors of 1.45 nm.

  3. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    National Research Council Canada - National Science Library

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-01-01

    .... These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously...

  4. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    Science.gov (United States)

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  5. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    Science.gov (United States)

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  6. Testing a model-driven Geographical Information System for risk assessment during an effusive volcanic crisis

    Science.gov (United States)

    Harris, Andrew; Latutrie, Benjamin; Andredakis, Ioannis; De Groeve, Tom; Langlois, Eric; van Wyk de Vries, Benjamin; Del Negro, Ciro; Favalli, Massimiliano; Fujita, Eisuke; Kelfoun, Karim; Rongo, Rocco

    2016-04-01

    RED-SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modeling and response communities with experience in tracking volcanic effusive events. It is an informal working group that has evolved around the philosophy of combining global scientific resources, in the realm of physical volcanology, remote sensing and modeling, to better define and limit uncertainty. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. The main recommendation of the workshop in terms of modeling was that there is a pressing need for "real-time input of reliable Time-Averaged Discharge Rate (TADR) data with regular up-dates of Digital Elevation Models (DEMs) if modeling is to be effective; the DEMs can be provided by the radar/photogrammetry community." We thus set up a test to explore (i) which model source terms are needed, (ii) how they can be provided and updated, and (iii) how can models be run and applied in an ensemble approach. The test used two hypothetical effusive events in the Chaîne des Puys (Auvergne, France), for which a prototype Geographical Information System (GIS) was set up to allow loss assessment during an effusive crisis. This system drew on all immediately available data for population, land use, communications, utility and building-type. After defining lava flow model source terms (vent location, effusion rate, lava chemistry, temperature, crystallinity and vesicularity), five operational lava flow emplacement models were run (DOWNFLOW, FLOWGO, LAVASIM, MAGFLOW and VOLCFLOW) to produce a projection for likelihood of impact for all pixels within the area covered by the GIS, based on agreement between models. The test thus aimed not to assess the model output, but instead to examine overlapping output. Next, inundation maps and damage reports for impacted zones were produced. The exercise identified several

  7. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    Science.gov (United States)

    Guo, Qinghai; Kirk Nordstrom, D.; Blaine McCleskey, R.

    2014-11-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1-2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  8. Reaction-driven cracking in the TAG deep-sea hydrothermal field: Implications for serpentinization and carbonation of peridotite

    Science.gov (United States)

    Sohn, R. A.

    2013-12-01

    Tens of thousands of very small (-1.5 ≤ ML ≤ 0.5) microearthquakes were detected by a small-aperture (200 m) network of 5 ocean bottom seismometers during a 9-month deployment at the TAG active hydrothermal mound on the Mid-Atlantic Ridge (26°N). The earthquakes exhibit purely compressional phase arrivals, are clustered within a narrow depth interval extending from ~50 - 150 m below the seafloor, and are located just beyond the perimeter of the surface expression of the hydrothermal mound. Analyses of these events indicates that they are most likely generated by crack opening resulting from the deposition of anhydrite in the secondary circulation system of the active mound. This reaction-driven cracking is analogous to that expected from serpentinization and/or carbonation of peridotite, and suggests that a properly designed seismic experiment may be able to provide in-situ monitoring of these processes either on land or in the oceans. A straightforward test of this hypothesis could be obtained by deploying a borehole seismic network in a subaerial region, such as the ophiolite terrains of Oman, where serpentinization and carbonation of peridotite are active processes

  9. Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life

    Science.gov (United States)

    Sholes, Steven F.; Smith, Megan L.; Claire, Mark W.; Zahnle, Kevin J.; Catling, David C.

    2017-07-01

    Mars today has no active volcanism and its atmosphere is oxidizing, dominated by the photochemistry of CO2 and H2O. Mars experienced widespread volcanism in the past and volcanic emissions should have included reducing gases, such as H2 and CO, as well as sulfur-bearing gases. Using a one-dimensional photochemical model, we consider whether plausible volcanic gas fluxes could have switched the redox-state of the past martian atmosphere to reducing conditions. In our model, the total quantity and proportions of volcanic gases depend on the water content, outgassing pressure, and oxygen fugacity of the source melt. We find that, with reasonable melt parameters, the past martian atmosphere (∼3.5 Gyr to present) could have easily reached reducing and anoxic conditions with modest levels of volcanism, >0.14 km3 yr-1, which are well within the range of estimates from thermal evolution models or photogeological studies. Counter-intuitively we also find that more reducing melts with lower oxygen fugacity require greater amounts of volcanism to switch a paleo-atmosphere from oxidizing to reducing. The reason is that sulfur is more stable in such melts and lower absolute fluxes of sulfur-bearing gases more than compensate for increases in the proportions of H2 and CO. These results imply that ancient Mars should have experienced periods with anoxic and reducing atmospheres even through the mid-Amazonian whenever volcanic outgassing was sustained at sufficient levels. Reducing anoxic conditions are potentially conducive to the synthesis of prebiotic organic compounds, such as amino acids, and are therefore relevant to the possibility of life on Mars. Also, anoxic reducing conditions should have influenced the type of minerals that were formed on the surface or deposited from the atmosphere. We suggest looking for elemental polysulfur (S8) as a signature of past reducing atmospheres. Finally, our models allow us to estimate the amount of volcanically sourced atmospheric

  10. Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of an active caldera

    OpenAIRE

    Coco, A.; Gottsmann, J.; F. Whitaker; Rust, A; G. Currenti; A. Jasim; S. Bunney

    2015-01-01

    Ground deformation and gravity changes in active calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a nu...

  11. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  12. Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera

    Science.gov (United States)

    Coco, A.; Gottsmann, J.; Whitaker, F.; Rust, A.; Currenti, G.; Jasim, A.; Bunney, S.

    2016-04-01

    Ground deformation and gravity changes in restless calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide). Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling), which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains.Informed by constraints available for the Campi Flegrei caldera (Italy), a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value) of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas). Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of unrest

  13. Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of an active caldera

    Directory of Open Access Journals (Sweden)

    A. Coco

    2015-08-01

    Full Text Available Ground deformation and gravity changes in active calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide. Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling, which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains. Based on data for the Campi Flegrei caldera (Italy, a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas. Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of unrest, gravity

  14. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    Science.gov (United States)

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  15. The Ajo Mining District, Pima County, Arizona--Evidence for Middle Cenozoic Detachment Faulting, Plutonism, Volcanism, and Hydrothermal Alteration

    Science.gov (United States)

    Cox, Dennis P.; Force, Eric R.; Wilkinson, William H.; More, Syver W.; Rivera, John S.; Wooden, Joseph L.

    2006-01-01

    Introduction: The Ajo porphyry copper deposit and surrounding Upper Cretaceous rocks have been separated from their plutonic source and rotated by detachment faulting. Overlying middle Cenozoic sedimentary and volcanic rocks have been tilted and show evidence for two periods of rotation. Following these rotations, a granitic stock (23.7?0.2 Ma) intruded basement rocks west of the Ajo deposit. This stock was uplifted 2.5 km to expose deep-seated Na-Ca alteration.

  16. Hydrothermal Synthesis of Bi2MoO6 Visible-Light-Driven Photocatalyst

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2015-01-01

    Full Text Available Bismuth molybdate (Bi2MoO6 nanoplates were synthesized by the hydrothermal reaction of bismuth nitrate and sodium molybdate as starting materials at 120–180°C for 5–20 h. X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, Raman spectroscopy, and scanning electron microscopy (SEM were used to investigate the effect of reaction temperature and length of reaction time on phase and morphologies of the as-synthesized Bi2MoO6 samples. In this research, orthorhombic well-crystallized Bi2MoO6 nanoplates with the presence of stretching and bending vibrations of MoO6 and BiO6 octahedrons were detected, and the Bi2MoO6 nanoplates synthesized at 180°C for 5 h exhibit the highest photocatalytic efficiency over 96% within 100 min visible-light irradiation.

  17. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    Energy Technology Data Exchange (ETDEWEB)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  18. Hydrothermal Synthesis, Characterization, and Visible Light-Driven Photocatalytic Properties of Bi2WO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available In this research, the effects on reaction temperature and length of time on Bi2WO6 nanoplates by hydrothermal synthesis on morphologies and photocatalytic properties were studied. The products obtained at different reaction temperature and reaction time were characterized by XRD, Raman, FTIR, SEM, and TEM techniques. The photocatalytic properties of the samples were measured by decomposing the rhodamine-B organic dye. XRD pattern was specified as pure orthorhombic well-crystallized Bi2WO6 phase for the 180°C and 20 h synthesis. Its FTIR spectrum shows main absorption bands at 400–1000 cm−1, assigned to Bi–O stretching, W–O stretching, and W–O–W bridging stretching modes. SEM and TEM analyses show that the product was composed of nanoplates. Photocatalytic activity of Bi2WO6 nanoplates shows the 98.24% degradation of rhodamine-B under the Xe light irradiation within 100 min.

  19. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  20. Periodicities in sediment temperature time-series at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean)

    Science.gov (United States)

    Aliani, Stefano; Meloni, Roberto; Dando, Paul R.

    2004-05-01

    Time-series data sets of total bottom pressure (tidal plus atmospheric), seawater temperature and sediment temperature from a marine shallow hydrothermal vent (Milos, Hellenic Volcanic Arc, Aegean Sea) were studied to determine factors influencing periodicity at the vents. Bottom pressure and vent temperature were mainly opposite in phase, with the main fluctuations of vent temperature occurring at tidal frequencies. Although the fluctuations in atmospheric pressure were of the same order as those due to tidal pressure, the contribution of atmospheric pressure was considerably weaker at diurnal frequencies. Some sudden discontinuities in sediment temperature were recorded, at least one of these may have been caused by seismic events. Seawater temperature changes were not reflected in the sediment temperature record. Transient loadings, such as tidal loadings, barometric pressure and earth tides, may affect the pore pressure in sediments, influencing fluid expulsion and sediment temperature as a consequence. Most of the contribution to the fluctuations in sediment temperature depends on tidal loadings. Gravitational forces, in the form of earth tides, can also be involved and barometric pressure is probably responsible for long period temperature oscillations.

  1. Carbon fluxes from hydrothermal vents off Milos, Aegean Volcanic Arc, and the influence of venting on the surrounding ecosystem.

    Science.gov (United States)

    Dando, Paul; Aliani, Stefano; Bianchi, Nike; Kennedy, Hilary; Linke, Peter; Morri, Carla

    2014-05-01

    The island of Milos, in the Aegean Sea, has extensive hydrothermal fields to the east and southeast of the island with additional venting areas near the entrance to and within the central caldera. A calculation of the total area of the vent fields, based on ship and aerial surveys, suggested that the hydrothermal fields occupy 70 km2, twice the area previously estimated. The vents ranged in water depth from the intertidal to 300 m. As a result of the low depths there was abundant free gas release: in places water boiled on the seabed. The stream of gas bubbles rising through the sandy seabed drove a shallow re-circulation of bottom seawater. The majority of the water released with the gas, with a mean pH of 5.5, was re-circulated bottom water that had become acidified in contact with CO2 gas and was often diluted by admixture with the vapour phase from the deeper fluids. The major component of the free gas, 80%, was CO2, with an estimated total flux of 1.5-7.5 x 1012 g a-1. The methane flux, by comparison, was of the order of 1010 g a.-1 Using methane as a tracer it was shown that the major gas export from the vents was below the thermocline towards the southwest, in agreement with the prevailing currents. Areas of hydrothermal brine seepage occurred between the gas vents and occasional brine pools were observed in seabed depressions. Under relatively calm conditions, many of the brine seeps were covered by thick minero-bacterial mats consisting of silica and sulphur and surrounded by mats of diatoms and cyanobacteria. The minerals were not deposited in the absence of bacteria. Storms disrupted the mats, leading to an export of material to the surrounding area. Stable isotope data from sediments and sediment trap material suggested that exported POM was processed by zooplankton. The combined effects of the geothermal heating of the seabed, the large gas flux, variation in the venting and the effect of the brine seeps had a dramatic effect on the surrounding

  2. Experimental analysis of bubble-driven magma motion in a volcanic conduit and how it affects lava lake sustainability

    Science.gov (United States)

    Pansino, S. G.; Calder, E. S.; Menand, T.

    2013-12-01

    The effect of bubble ascent dynamics on magma motion within a conduit has not previously been well studied. Investigation of bubble dynamics is undertaken using an analogue model for magma convection in a volcanic conduit, representing the upper-most section where large bubbles or gas slugs can be present. In the experiments, bubbles rise through an initially stagnant medium in a cylindrical tube and the resulting liquid descent velocity (liquid flux) is measured. The effects of gas flux and liquid viscosity on liquid flux are determined. It is shown that liquid flux depends on gas flux and on the two-phase flow regime. The induced liquid flux is an order of magnitude higher when the two-phase flow regime is turbulent rather than laminar. For each flow regime, scaling analysis is used to describe how the liquid flux changes with gas flux (using experimentally-derived data). The liquid flux is roughly 15% of the gas flux in the turbulent regime and 1% of the gas flux in the laminar regime. These models are then applied to field and remote sensing data from selected volcanoes to determine how the magma flux estimation changes with consideration of bubble dynamics. Bubble-driven liquid motions can have a significant effect on magma convection in low-viscosity systems (less than 103 Pa*s), affecting the shallowest hundreds to tens of meters of magma in the conduit. In higher-viscosity magmas, these effects are more suppressed, causing laminar flow proportions of magma flux. Keywords: magma convection, lava lakes, bubble-driven convection, persistent volcanism, gas dynamics, two-phase flow, degassing

  3. Sill intrusion driven fluid flow and vent formation in volcanic basins: Modeling rates of volatile release and paleoclimate effects

    Science.gov (United States)

    Iyer, Karthik; Schmid, Daniel

    2016-04-01

    Evidence of mass extinction events in conjunction with climate change occur throughout the geological record and may be accompanied by pronounced negative carbon isotope excursions. The processes that trigger such globally destructive changes are still under considerable debate. These include mechanisms such as poisoning from trace metals released during large volcanic eruptions (Vogt, 1972), CO2 released from lava degassing during the formation of Large Igneous Provinces (LIPs) (Courtillot and Renne, 2003) and CH4 release during the destabilization of sub-seafloor methane (Dickens et al., 1995), to name a few. Thermogenic methane derived from contact metamorphism associated with magma emplacement and cooling in sedimentary basins has been recently gaining considerable attention as a potential mechanism that may have triggered global climate events in the past (e.g. Svensen and Jamtveit, 2010). The discovery of hydrothermal vent complexes that are spatially associated with such basins also supports the discharge of greenhouse gases into the atmosphere (e.g. Jamtveit et al., 2004; Planke et al., 2005; Svensen et al., 2006). A previous study that investigated this process using a fluid flow model (Iyer et al., 2013) suggested that although hydrothermal plume formation resulting from sill emplacement may indeed release large quantities of methane at the surface, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative δ13C excursions observed in the fossil record over short time scales observed in the fossil record. Here, we reinvestigate the rates of gas release during sill emplacement in a case study from the Harstad Basin off-shore Norway with a special emphasis on vent formation. The presented study is based on a seismic line that crosses multiple sill structures emplaced around 55 Ma within the Lower Cretaceous sediments. A single well-defined vent complex is interpreted above the termination of the

  4. Hydrothermal phlogopite and anhydrite from the SH2 well, Sabatini volcanic district, Latium, Italy: fluid inclusions and mineral chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, H.E.; Cavarretta, G.; De Vivo, B.; Tecce, F.

    The SH2 well (2498.7 m) was drilled vertically in 1982-1983 as an exploratory hole to assess the geothermal potential of the area north of Bracciano Lake, Latium, Italy, located in the Sabatini volcanic district. Microthermometry of primary and secondary two-phase and multiphase liquid-rich inclusions in anhydrite yields pressure-corrected temperatures of homogenization (trapping temperatures) that range from 144 to 304/sup 0/C and that are generally coincident with measured in-hole temperatures. The fluids have a variable salinity from 0.5 to 14.0 wt% NaCl equivalent and also contain Ca/sup 2 +/ at least. Rare liquid CO/sub 2/-bearing aqueous inclusions have been verified by laser Raman spectroscopy. Also, rare liquid hydrocarbons(.) have been observed. Clathrates have been observed upon freezing, and crushing studies reveal noncondensable gas at P > 1 atm in some inclusions. Microthermometry of primary two-phase inclusions yields pressure-corrected temperatures of homogenization (trapping temperatures) that range from 178 to 298/sup 0/C and are also generally coincident with in-hole measured temperatures. Freezing studies show a variable fluid salinity (0.2-7.8 wt% NaCl equiv.); the fluid contains Ca/sup 2 +/ at least. If one assumes that the current hydrologic regime existed during anhydrite and phlogopite formation, the pressure of formation ranged from 148 to 220 bars for phlogopite and 120 to 220 bars for anhydrite. The variation of fluid-inclusion salinities, the phlogopite zoning, and the chemical variation of the anhydrite and phlogopite suggest that different fluids and/or episodic conditions were operative in this geothermal system.

  5. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas

    Science.gov (United States)

    Su, Y.; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán.; Wright, Heather; Vazquez, Jorge

    2016-08-01

    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous "excess sulfur" problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the "petrologic estimate"), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of vapor

  6. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas

    Science.gov (United States)

    Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.

    2016-01-01

    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of

  7. True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars

    CERN Document Server

    Kite, Edwin S; Manga, Michael; Perron, J Taylor; Mitrovica, Jerry X

    2009-01-01

    The areal centroids of the youngest polar deposits on Mars are offset from those of adjacent paleopolar deposits by 5-10 degrees. We test the hypothesis that the offset is the result of true polar wander (TPW), the motion of the solid surface with respect to the spin axis, caused by a mass redistribution within or on the surface of Mars. In particular, we consider TPW driven by late-stage volcanism during the late Hesperian to Amazonian. There is observational and qualitative support for this hypothesis: in both North and South, observed offsets lie close to a great circle 90 degrees from Tharsis, as expected for polar wander after Tharsis formed. We calculate the magnitude and direction of TPW produced by mapped late-stage lavas for a range of lithospheric thicknesses, lava thicknesses, eruption histories, and prior polar wander events. If Tharsis formed close to the equator, the stabilizing effect of a fossil rotational bulge located close to the equator leads to predicted TPW of <2 degrees, too small to...

  8. Targeting organic molecules in hydrothermal environments on Mars

    Science.gov (United States)

    Parnell, J.; Bowden, S. A.; Lindgren, P.; Wilson, R.; Cooper, J. M.

    2008-09-01

    Hydrothermal deposits on Mars Hydrothermal systems are proposed as environments that could support organic synthesis, the evolution of life or the maintenance of life [1,2,3]. They have therefore been suggested as primary targets for exploration on Mars [1,2,4,].There is now confidence that hydrothermal deposits occur at the martian surface. This is based on a range of criteria that could point towards hydrothermal activity, including volcanic activity, magmatic-driven tectonism, impact cratering in icy terrains, hydrous alteration of minerals and typical hydrothermal mineralogies [4]. The proposals to search for evidence of life at martian hydrothermal sites have been focussed on seeking morphological evidence of microbial activity [5]. Here we discuss the potential to seek a chemical signature of organic matter in hydrothermal systems. Organics in terrestrial hydrothermal systems Terrestrial hydrothermal systems can have large quantities of organic matter because they intersect organic-rich sedimentary rocks or oil reservoirs. Thus the signatures that they contain reflect some preexisting concentration of fossil organic compounds, rather than life which was active in the hydrothermal system. If any extant life was incorporated in these hydrothermal systems, it is swamped by the fossil molecules. Examples of environments where organic materials may become entrained include subsurface hydrothermal mineral deposits, generation of hydrothermal systems by igneous intrusions, and hot fluid venting at the seafloor. Nevertheless, there is value in studying the interactions of hydrothermal systems with fossil organic matter, for information about the survivability of organic compounds, phase relationships between carbonaceous and noncarbonaceous materials, and where in hydrothermal deposits to find evidence of organic matter. Microbial colonization of hot spring systems is feasible at depth within the systems and at the surface where the hydrothermal waters discharge

  9. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    Science.gov (United States)

    Kauhikaua, Jim; Moore, R.B.; ,

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  10. Systematics of hydrothermal alteration at the volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) deposit - implications for ore genesis, structure and exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    Science.gov (United States)

    Kampmann, Tobias C.; Jansson, Nils J.; Stephens, Michael B.; Majka, Jarosław

    2016-04-01

    The Palaeoproterozoic, volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) sulphide deposit was mined for base and precious metals during several centuries, until its closure in 1992. The deposit is located in a 1.9 Ga ore district in the Bergslagen lithotectonic unit, Fennoscandian Shield, south-central Sweden. Both the ores and their host rock underwent polyphase ductile deformation, and metamorphism under amphibolite facies and later retrograde conditions at 1.9-1.8 Ga (Svecokarelian orogenic system). This study has the following aims: (i) Classify styles and intensities of alteration in the hydrothermally altered zone at Falun; (ii) identify precursor rocks to hydrothermally altered rocks and their spatial distribution at the deposit; (iii) evaluate the chemical changes resulting from hydrothermal alteration using mass change calculations; and (iv) assess the pre-metamorphic alteration assemblages accounting for the observed metamorphic mineral associations in the altered rocks at Falun. Results will have implications for both the ore-genetic and structural understanding of the deposit, as well as for local and regional exploration. Metamorphic mineral associations in the altered rocks include biotite-quartz-cordierite-(anthophyllite) and, more proximally, quartz-anthophyllite-(biotite-cordierite/almandine), biotite-cordierite-(anthophyllite) and biotite-almandine-(anthophyllite). The proximal hydrothermally altered zone corresponds to intense chlorite-style alteration. Subordinate dolomite or calcite marble, as well as calc-silicate (tremolite, diopside) rocks are also present at the deposit. Metavolcanic rocks around the deposit are unaltered, weakly sericitized or sodic-altered. Immobile-element (e.g. Zr, TiO2, Al2O3, REE) systematics of the silicate-rich samples at and around the deposit suggest that the precursors to the hydrothermally altered rocks at Falun were predominantly rhyolitic in composition, dacitic rocks being subordinate and mafic-intermediate rocks

  11. Hydrothermal synthesis of CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Yan, Xu; Liu, Chunbo; Hong, Yuanzhi; Zhu, Lin; Zhou, Mingjun; Shi, Weidong, E-mail: swd1978@ujs.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • The novel CdS/Bi{sub 2}MoO{sub 6} heterojunction were synthesized for the first time via a two-step hydrothermal process. • The CdS/Bi{sub 2}MoO{sub 6} heterojunction exhibited an excellent visible-light-driven photocatalytic activity for RhB degradation. • The photocatalytic activity of this heterojunction also evaluated by TC, MB degradation. • The mechanism of this photocatalysis system was firstly proposed. - Abstract: A novel CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts were successfully prepared via two-step hydrothermal methods. The prepared samples were characterized by various physicochemical techniques, such as XRD, SEM, TEM, HRTEM, XPS, UV–vis and PL. The obtained samples exhibited highly photocatalytic activity toward the degradation of the different kinds of organic dyes and tetracycline in aqueous solution under visible light irradiation (λ > 420 nm). The optimum photocatalytic efficiency of CdS-2 sample for the degradation rhodamine B (RhB) was about 25.3 and 3.7 times higher than that of individual CdS and Bi{sub 2}MoO{sub 6}, respectively. In addition, the possible photocatalytic mechanism was analyzed by different active species trapping experiments. The results indicated that the h{sup +} and ·O{sub 2}{sup −} were the main active species for the photocatalytic degradation of RhB. Moreover, the prepared sample shows good stability and recyclability properties which are beneficial for its practical application.

  12. Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory

    Science.gov (United States)

    Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (violence of these steam-driven events and highlight the predisposition of thermally unstable rocks in hydrothermal system to undergo sudden phreatic eruptions.

  13. On phase change in Marangoni-driven flows and its effects on the hydrothermal-wave instabilities

    Science.gov (United States)

    Sáenz, P. J.; Valluri, P.; Sefiane, K.; Karapetsas, G.; Matar, O. K.

    2014-02-01

    This paper investigates the effects of phase change on the stability of a laterally heated liquid layer for the first time. The interface is open to the atmosphere and vapor diffusion is the rate-limiting mechanism for evaporation. In this configuration, the planar layer is naturally vulnerable to the formation of travelling thermal instabilities, i.e., hydrothermal waves (HTWs), due to the presence of temperature gradients along the gas-liquid interface. Recent work carried out for deformable interfaces and negligible evaporation indicates that the HTWs additionally give rise to interface deformations of similar features, i.e., physical waves. The study presented here reveals that phase change plays a dual role through its effect on these instabilities: the latent energy required during the evaporation process tends to inhibit the HTWs while the accompanying level reduction enhances the physical waves by minimizing the role of gravity. The dynamics of the gas phase are also discussed. The HTW-induced convective patterns in the gas along with the travelling nature of the instabilities have a significant impact on the local evaporation flux and the vapor distribution above the interface. Interestingly, high (low) concentrations of vapor are found above cold (hot) spots. The phase-change mechanism for stable layers is also investigated. The Marangoni effect plays a major role in the vapor distribution generating a vacuum effect in the warm region and vapor accumulations at the cold boundary capable of inverting the phase change, i.e., the capillary flow can lead to local condensation. This work also demonstrates the inefficiencies of the traditional phase change models based on pure vapor diffusion to capture the dynamics of thermocapillary flows.

  14. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    Science.gov (United States)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  15. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality.

    Science.gov (United States)

    Chen, Jiazang; Yang, Hong Bin; Miao, Jianwei; Wang, Hsin-Yi; Liu, Bin

    2014-10-29

    In photoelectrochemical cells, there exists a competition between transport of electrons through the porous semiconductor electrode toward the conducting substrate and back-reaction of electrons to recombine with oxidized species on the semiconductor-electrolyte interface, which determines the charge collection efficiency and is strongly influenced by the density and distribution of electronic states in band gap and architectures of the semiconductor electrodes. One-dimensional (1D) anatase TiO2 nanostructures are promising to improve charge transport in photoelectrochemical devices. However, the conventional preparation of 1D anatase nanostructures usually steps via a titanic acid intermediate (e.g., H2Ti3O7), which unavoidably introduces electronic defects into the host lattice, resulting in undesired shielding of the intrinsic role of dimensionality. Here, we manage to promote the 1D growth of anatase TiO2 nanostructures by adjusting the growth kinetics, which allows us to grow single-crystalline anatase TiO2 nanorods through a one-step hydrothermal reaction. The synthesized anatase nanorods possess a lower density of trap states and thus can simultaneously facilitate the diffusion-driven charge transport and suppress the electron recombination. Moreover, the electronically boundary free nanostructures significantly enhance the trap-free charge diffusion coefficient of the anatase nanorods, which enables the emergence of the intrinsic superiority of dimensionality. By virtue of these merits, the anatase nanorods synthesized in this work take obvious advantages over the conventional anatase counterparts in photoelectrochemical systems (e.g., dye-sensitized solar cells) by showing more efficient charge transport and collection and higher energy conversion efficiency.

  16. Evolution of fluid-rock interactions: fluid inclusion, isotopic, and major/minor element chemistry of hydrothermally altered volcanic rock in core RN-17B, Reykjanes, Iceland

    Science.gov (United States)

    Fowler, A. P.; Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Fridleifsson, G. O.

    2011-12-01

    The Reykjanes Peninsula, Iceland, hosts a seawater-dominated geothermal system. Previous studies indicate an evolution of the system from meteoric to seawater. The inclined 4-inch diameter RN-17B drill core was collected from 2798.5 m to 2808.5 m (~2555 m below surface) at in situ temperature of approximately 330°C. Samples for this study were obtained from the Iceland Deep Drilling Project (IDDP). The core contains hydrothermally altered rocks of basaltic composition. Hydrothermal alteration ranges from upper greenschist to lower amphibolite grade, dependent on protolith size and composition. Veins in the core grade inward from radial epidote + acicular hornblende + titanite + pyrite, to clearer equant and compositionally zoned epidote vein centers. Felted amphibole replaces hyaloclastite and smaller crystalline clasts within the core, but is absent from the centers of crystalline pillow basalt fragments. Amphibole in vein selvages and vesicle fillings is green and acicular. Electron microprobe analyses of amphibole indicate it spans a compositional range of ferrohornblende through paragasite. The pistacite component (Xps) of vein epidote ranges from 16.5 to 36.7. The Xps component shows both normal and reverse zoning within single epidote crystals across this range, and follows no distinct pattern. Vein epidote adjacent to the wall rock has a higher aluminum concentration than vein centers. This may be due to mobilization of aluminum from plagioclase in the wall rock during albitization. Solutions flowing through open fractures may have lower Al-content and thus precipitate more Fe-rich epidote than those next to the fracture walls. Primary fluid inclusions in epidote range in size from <1 to 10 μm in diameter. Secondary fluid inclusions are <1 μm in diameter and not measurable. Calculated fluid inclusion salinities range from 0.5 to 7.6 weight percent NaCl, with lower salinities adjacent to the wall rock and higher salinities in the vein centers

  17. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  18. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  19. Stress-driven discovery of a cryptic antibiotic produced by Streptomyces sp. WU20 from Kueishantao hydrothermal vent with an integrated metabolomics strategy.

    Science.gov (United States)

    Shi, Yutong; Pan, Chengqian; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Wang, Kuiwu; Wu, Xiaodan; Ye, Ying; Wu, Bin

    2017-02-01

    Marine hydrothermal microorganisms respond rapidly to the changes in the concentrations and availability of metals within hydrothermal vent microbial habitats which are strongly influenced by elevated levels of heavy metals. Most hydrothermal vent actinomycetes possess a remarkable capability for the synthesis of a broad variety of biologically active secondary metabolites. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known compounds. Here, we report the identification of a novel antibiotic produced by Streptomyces sp. WU20 isolated from the metal-rich hydrothermal vents in Taiwan Kueishantao, following a strategy based on metal induction of silent genes combined with metabolomics analytical methods. HPLC-guided isolation by tracking the target peak resulted in the characterization of the novel compound 1 with antimicrobial activity against Bacillus subtilis. The stress metabolite 1 induced by nickel is structurally totally different compared with the normally produced compounds. This study underlines the applicability of metal induction combined with metabolic analytical techniques in accelerating the exploration of novel antibiotics and other medically relevant natural products.

  20. The Lassen hydrothermal system

    Science.gov (United States)

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  1. Hydrothermal monitoring data from the Cascade Range, northwestern United States

    Science.gov (United States)

    Ingebritsen, Steven E.; Gelwick, Katrina D.; Randolph-Flagg, Noah G.; Crankshaw, Ilana M.; Lundstrom, Elizabeth A.; McCulloch, Callum L.; Murveit, Anna M.; Newman, Alice C.; Mariner, Robert H.; Bergfeld, D.; Tucker, Dave S.; Schmidt, Mariek E.; Spicer, Kurt R.; Mosbrucker, Adam; Evans, William C.

    2013-01-01

    This database serves as a repository for hydrothermal-monitoring data collected at 25 sites in the U.S. portion of the Cascade Range volcanic arc. These data are intended to quantify baseline hydrothermal variability at most (10 of 12) of the highest-risk volcanoes in the Cascades, as defined by the U.S. Geological Survey’s (USGS’) National Volcanic Early Warning System (NVEWS) report (Ewert and others, 2005).

  2. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    Science.gov (United States)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  3. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  4. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  5. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  6. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  7. Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for methyl orange degradation.

    Science.gov (United States)

    Jiang, Haiyan; Dai, Hongxing; Meng, Xue; Zhang, Lei; Deng, Jiguang; Liu, Yuxi; Au, Chak Tong

    2012-01-01

    Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100 degrees C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160 degrees C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.

  8. Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation

    Institute of Scientific and Technical Information of China (English)

    Haiyan Jiang; Hongxing Dai; Xue Meng; Lei Zhang; Jiguang Deng; Yuxi Liu; Chak Tong Au

    2012-01-01

    Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy.The materials were characterized by means of the XRD,Raman,TGA/DSC,SEM,XPS,and UV-Vis techniques.The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation.It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product.Spherical BiV04 with porous structures,flower-cluster-like BiVO4,and flower-bundle-like BiVO4 were generated hydrothermally at lOO℃ with poly(vinyl pyrrolidone)(PVP)and urea(pH =2)and at 1600C with NaHCO3(pH =7 and 8),respectively.The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g)and narrower bandgap energies(2.45-2.49 eV).The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area,narrower bandgap energy,higher surface oxygen vacancy density,and unique porous architecture.

  9. Hydrothermal Manganese Mineralization Near the Samoan Hotspot

    Science.gov (United States)

    Hein, J. R.; Staudigel, H.; Koppers, A.; Hart, S. R.; Dunham, R.

    2006-12-01

    The thickest beds of hydrothermal manganese oxides recovered to date from the global ocean were collected from a volcanic cone in the south Pacific. In April 2005, samples were dredged aboard the R.V. Kilo Moana from a volcanic cone on the lower flank of Tulaga seamount (about 2,700 m water depth; 14° 39.222' S; 170° 1.730' W), located 115 km SW of Vailulu'u, the volcanically and hydrothermally active center of the Samoan hotspot. Additional hydrothermal manganese samples were collected off Ofu Island (dredge Alia 107), 72 km to the WSW of Vailulu'u. Manganese-oxide beds up to 9 cm thick are composed of birnessite and 10 Å manganates. Some layers consist of Mn-oxide columnar structures 4 cm long and 1 cm wide, which have not been described previously. The mean Mn and Fe contents of 18 samples are 51 weight percent and 0.76 weight percent, respectively. Elevated concentrations of Li (mean 0.11 wt. percent) are indicators of a hydrothermal origin, and distinguishes these samples, along with the high Mn and low Fe contents, from hydrogenetic Fe-Mn crusts. Other enriched elements include Ba (mean 0.14 percent), Cu (249 ppm), Mo (451 ppm), Ni (400 ppm), Zn (394 ppm), V (214 ppm), and W (132 ppm). Chondrite-normalized REE patterns show large negative Ce anomalies and LREE enrichments, both characteristic of hydrothermal Mn deposits. Small negative Eu anomalies are not typical of hydrothermal deposits and can be explained either by the absence of leaching of plagioclase by the hydrothermal fluids or by the precipitation of Eu-rich minerals, such as barite and anhydrite, at depth. The high base-metal contents indicate that sulfides are not forming deeper in the hydrothermal system or that such deposits are being leached by the ascending fluids. Textures of the thickest Mn deposits indicate that the Mn oxides formed below the seabed from ascending fluids during multiple phases of waxing and waning hydrothermal pulses. The deposits were later exposed at the seafloor by

  10. Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application.

    Science.gov (United States)

    Khan, Ibrahim; Ali, Shahid; Mansha, Muhammad; Qurashi, Ahsanulhaq

    2017-05-01

    Bismuth vanadate (BiVO4) is a well-known photocatalyst due to its lower bandgap (Eg) and visible electromagnetic light absorption capacity. Herein, we reported the pulse ultra-sonochemical assisted hydrothermal approach to synthesize S-BiVO4. For the comparison purpose, H-BiVO4 is also synthesized via conventional hydrothermal approach. The surface morphology of S-BiVO4 through scanning electron microscope (SEM) indicates condensed microarrays (MAs) having pseudo-flower shapes. The energy dispersive X-rays (EDX) spectrum also confirmed the elemental percent composition of Bi, V and O in BiVO4. X-rays diffraction (XRD) pattern further confirmed the monoclinic scheelite phase of S-BiVO4. Fourier transformed infrared (FTIR) spectrum showed Bi-O and Bi-V-O vibrational bands at 1382 and 1630cm(-1), respectively. The diffuse reflectance spectroscopy (DRS) indicated absorption edge at ∼515nm, corresponds to bandgap value (Eg) of 2.41eV, which is suitable range for water splitting applications. The photocurrent density from water splitting under artificial 1 SUN visible light source found at 60 and 50μA/cm(2) for S-BiVO4 and H-BiVO4, respectively. The stability test through chronoamperometry showed that S-BiVO4 was more stable than H-BiVO4. It can be depicted from the growth mechanism that ultrasonication played a definite role in the overall synthesis of pseudo-flower shaped S-BiVO4 MAs.

  11. Hydrothermalism in the Mediterranean Sea

    Science.gov (United States)

    Dando, P. R.; Stüben, D.; Varnavas, S. P.

    1999-08-01

    Hydrothermalism in the Mediterranean Sea results from the collision of the African and European plates, with the subduction of the oceanic part of the African plate below Europe. High heat flows in the resulting volcanic arcs and back-arc extensional areas have set-up hydrothermal convection systems. Most of the known hydrothermal sites are in shallow coastal waters, <200 m depth, so that much of the reported fluid venting is of the gasohydrothermal type. The hydrothermal liquids are of varying salinities, both because of phase separation as a result of seawater boiling at the low pressures and because of significant inputs of rainfall into the hydrothermal reservoirs at some sites. The major component of the vented gas is carbon dioxide, with significant quantities of sulphur dioxide, hydrogen sulphide, methane and hydrogen also being released. Acid leaching of the underlying rocks leads to the mobilisation of heavy metals, many of which are deposited sub-surface although there is a conspicuous enrichment of metals in surficial sediments in venting areas. Massive polymetalic sulphides have been reported from some sites. No extant vent-specific fauna have been described from Mediterranean sites. There is a reduced diversity of fauna within the sediments at the vents. In contrast, a high diversity of epifauna has been reported and the vent sites are areas of settlement for exotic thermophilic species. Large numbers of novel prokaryotes, especially hyperthermophilic crenarchaeota, have been isolated from Mediterranean hydrothermal vents. However, their distribution in the subsurface biosphere and their role in the biogeochemistry of the sites has yet to be studied.

  12. Sulfur isotopic composition of seafloor hydrothermal sediment from the Jade hydrothermal field in the central Okinawa Trough and its geological significance

    Institute of Scientific and Technical Information of China (English)

    曾志刚; 李军; 蒋富清; 翟世奎; 秦蕴珊; 侯增谦

    2002-01-01

    --Eighteen samples of hydrothermal sediments from the Jade hydrotherrnal field in the central Okinawa Trough have been analyzed. Sulfur isotopic values for 10 sulfide samples vary from 5.2 ×10-3to 7.2× 10-3, δ34S valUes for 7 sulfate samples vary from 16.3 × 10-3 to 22.3 × 10-3, and 1 native sulphur sample has a δ34S value of 8.2 × 10-3. The major sources of sulfur for hydrothermal sediment are intermediate to acid volcanic rocks and sea water sulfate, and it is possible that the partial sulfur of hydrothermal sediment is from the pelagic sediment by the interaction between hydrothermal fluid and sediment. The reasons of causing the distinct differences in sulfur isotopic values for sulfide samples from hydrothermal sediment ( compared with other hydrothermal fields), are the differences in the sources of sulfur, the magmatic activity and the tectonic evolution in different hydrothermal fields. The sulfur evolution is a long and complex process in the seafloor hydrothermal system, involving the ascending of heating sea water, the interaction between fluid and volcanic rocks, the mixing of sea water sulfate and sulfur from intermediate to acid volcanic rocks, and the fluid/pelagic-sediment interaction. And the interaction between sea water and intermediate to acid volcanic rocks is an important mechanism for the sulfur evolution in the Jade hydrothermal field.

  13. Novel Y doped Bi{sub 2}WO{sub 6} photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ranran [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Huang, Hongwei, E-mail: hhw@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Tian, Na [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Guo, Yuxi [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Tierui [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-03-15

    Visible-light-driven (VLD) Yttrium (Y) ion doped Bi{sub 2}WO{sub 6} photocatalyst has been synthesized via a facile hydrothermal route. Incorporation of Y{sup 3} {sup +} into Bi{sub 2}WO{sub 6} lattice was successfully confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ICP analysis. The microstructure and optical property of the as-prepared samples have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption isotherm and UV–vis diffuse reflectance spectra (DRS). The photocatalytic experiments indicated that the Y-Bi{sub 2}WO{sub 6} showed a much higher photocatalytic activity than the pristine Bi{sub 2}WO{sub 6} for the degradation of Rhodamine B (RhB) and photocurrent (PC) generation. This enhancement should be ascribed to the slightly increased band gap and the generated defects by Y{sup 3} {sup +} doping, thus resulting in a much lower recombination rate of the photoinduced electrons and holes. Such a process was verified by the photoluminescence (PL) spectroscopy. In addition, the active species trapping experiments indicated that holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) play important roles in the photocatalytic reaction. - Highlights: • Novel Y-Bi{sub 2}WO{sub 6} photocatalyst has been synthesized by a facile hydrothermal route. • Y-Bi{sub 2}WO{sub 6} exhibits a much higher photocatalytic activity than pristine Bi{sub 2}WO{sub 6}. • Holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) are the two main active species. • Y{sup 3} {sup +} ion can result in a low recombination of photogenerated electron and hole.

  14. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption

    Science.gov (United States)

    Jolly, A.D.; Jousset, P.; Lyons, J.J.; Carniel, R.; Fournier, R.; Fry, B.; Miller, C.

    2016-01-01

    The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250–1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the

  15. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  16. Hydrothermal synthesis of CdS/Bi2MoO6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance

    Science.gov (United States)

    Feng, Yi; Yan, Xu; Liu, Chunbo; Hong, Yuanzhi; Zhu, Lin; Zhou, Mingjun; Shi, Weidong

    2015-10-01

    A novel CdS/Bi2MoO6 heterojunction photocatalysts were successfully prepared via two-step hydrothermal methods. The prepared samples were characterized by various physicochemical techniques, such as XRD, SEM, TEM, HRTEM, XPS, UV-vis and PL. The obtained samples exhibited highly photocatalytic activity toward the degradation of the different kinds of organic dyes and tetracycline in aqueous solution under visible light irradiation (λ > 420 nm). The optimum photocatalytic efficiency of CdS-2 sample for the degradation rhodamine B (RhB) was about 25.3 and 3.7 times higher than that of individual CdS and Bi2MoO6, respectively. In addition, the possible photocatalytic mechanism was analyzed by different active species trapping experiments. The results indicated that the h+ and rad O2- were the main active species for the photocatalytic degradation of RhB. Moreover, the prepared sample shows good stability and recyclability properties which are beneficial for its practical application.

  17. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Science.gov (United States)

    Gao, Zhu-Qing; Li, Hong-Jin; Gu, Jin-Zhong; Zhang, Qing-Hua; Kirillov, Alexander M.

    2016-09-01

    Four new crystalline solids, namely [Co2(μ2-5-Clnic)2(μ3-5-Clnic)2(μ2-H2O)]n (1), [Co(5-Clnic)2(H2O)4]·2(5-ClnicH) (2), [Pb(μ2-5-Clnic)2(phen)]n (3), and [Cd(5-Clnic)2(phen)2]·3H2O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1-4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed.

  18. Pukala intrusion, its age and connection to hydrothermal alteration in Orivesi, southwestern Finland

    Directory of Open Access Journals (Sweden)

    Matti Talikka

    2005-01-01

    Full Text Available The Pukala intrusion is situated in the Paleoproterozoic Svecofennian domain of the Fennoscandian Shield in the contact region between the Central Finland Granitoid Complex and the Tampere Belt. The acid subvolcanic intrusion, which is in contact or close to severalaltered domains, mainly consists of porphyritic granodiorite and trondhjemite. The Pukala intrusion was emplaced into volcanic sequence in an island-arc or fore-arc setting before or during the early stages of the main regional deformation phase of the Svecofennian orogeny. On the basis of the geochemical data, the Pukala intrusion is a peraluminous volcanic-arc granitoid. After crystallisation at 1896±3 Ma, multiphase deformation and metamorphismcaused alteration, recrystallisation, and orientation of the minerals, and tilted the intrusion steeply towards south. The 1851±5 Ma U-Pb age for titanite is connected to the late stages of the Svecofennian tectonometamorphic evolution of the region. Several hydrothermally altered domains are located in the felsic and intermediate metavolcanic rocks of the Tampere Belt within less than one kilometre south of the Pukala intrusion. Alteration is divided into three basic types: partial silica alteration, chlorite-sericite±silica alteration, and sericite alteration in shear zones. The first two types probably formed during the emplacement and crystallisation of the Pukala intrusion, and the third is linked to late shearing. Intense sericitisation and comb quartz bands in the contact of theintrusion and the altered domain at Kutemajärvi suggest that the hydrothermal system was driven by the Pukala intrusion.

  19. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    -floor hydrothermal processes involving free circulation of seawater through ocean crust as convection. Heat flow, seafloor fracturing, permeability and fluid composition are the parameters governing the type and extent of mineralization. The chimney like... stream_size 23365 stream_content_type text/plain stream_name Refresher_Course_Mar_Geol_Geophys_2007_Lecture_Notes_78.pdf.txt stream_source_info Refresher_Course_Mar_Geol_Geophys_2007_Lecture_Notes_78.pdf.txt Content-Encoding UTF-8...

  20. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system

    Science.gov (United States)

    Pasquet, S.; Holbrook, W. S.; Carr, B. J.; Sims, K. W. W.

    2016-12-01

    The Yellowstone Plateau Volcanic Field, which hosts over 10,000 thermal features, is the world's largest active continental hydrothermal system, yet very little is known about the shallow "plumbing" system connecting hydrothermal reservoirs to surface features. Here we present the results of geophysical investigations of shallow hydrothermal degassing in Yellowstone. We measured electrical resistivity, compressional-wave velocity from refraction data, and shear wave velocity from surface-wave analysis to image shallow hydrothermal degassing to depths of 15-30 m. We find that resistivity helps identify fluid pathways and that Poisson's ratio shows good sensitivity to saturation variations, highlighting gas-saturated areas and the local water table. Porosity and saturation predicted from rock physics modeling provide critical insight to estimate the fluid phase separation depth and understand the structure of hydrothermal systems. Finally, our results show that Poisson's ratio can effectively discriminate gas- from water-saturated zones in hydrothermal systems.

  1. A new Bayesian Event Tree tool to track and quantify volcanic unrest and its application to Kawah Ijen volcano

    Science.gov (United States)

    Tonini, Roberto; Sandri, Laura; Rouwet, Dmitri; Caudron, Corentin; Marzocchi, Warner; Suparjan

    2016-07-01

    Although most of volcanic hazard studies focus on magmatic eruptions, volcanic hazardous events can also occur when no migration of magma can be recognized. Examples are tectonic and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g., Ontake eruption on September 2014) have demonstrated that phreatic eruptions are still hard to forecast, despite being potentially very hazardous. For these reasons, it is of paramount importance to identify indicators that define the condition of nonmagmatic unrest, in particular for hydrothermal systems. Often, this type of unrest is driven by movement of fluids, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic BET (Bayesian Event Tree) model, specifically developed to include the forecasting of nonmagmatic unrest and related hazards. The structure of the new event tree differs from the previous schemes by adding a specific branch to detail nonmagmatic unrest outcomes. A further goal of this work consists in providing a user-friendly, open-access, and straightforward tool to handle the probabilistic forecast and visualize the results as possible support during a volcanic crisis. The new event tree and tool are here applied to Kawah Ijen stratovolcano, Indonesia, as exemplificative application. In particular, the tool is set on the basis of monitoring data for the learning period 2000-2010, and is then blindly applied to the test period 2010-2012, during which significant unrest phases occurred.

  2. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhu-Qing, E-mail: zqgao2008@163.com [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Li, Hong-Jin [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, Qing-Hua [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Kirillov, Alexander M. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon (Portugal)

    2016-09-15

    Four new crystalline solids, namely [Co{sub 2}(µ{sub 2}-5-Clnic){sub 2}(µ{sub 3}-5-Clnic){sub 2}(µ{sub 2}-H{sub 2}O)]{sub n} (1), [Co(5-Clnic){sub 2}(H{sub 2}O){sub 4}]·2(5-ClnicH) (2), [Pb(µ{sub 2}-5-Clnic){sub 2}(phen)]{sub n} (3), and [Cd(5-Clnic){sub 2}(phen){sub 2}]·3H{sub 2}O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1–4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed. - Graphical abstract: A new series of crystalline solids was self-assembled and fully characterized; their structural, topological, luminescent and magnetic features were investigated. Display Omitted.

  3. Hydrothermal synthesis of a doped Mn-Cd-S solid solution as a visible-light-driven photocatalyst for H2 evolution.

    Science.gov (United States)

    Ikeue, Keita; Shiiba, Satoshi; Machida, Masato

    2011-02-18

    The effect of metal doping (i.e., with Cr, Fe, Ni, Cu, Zn, Ag and Sn) on the crystal structure of hydrothermally synthesized Mn(1-x)Cd(x) S (where x≈0.1) is studied with the aim of enhancing photocatalytic activity. In contrast to the low-crystalline, undoped solid solution Mn(1-x)Cd(x)S, Ni doping yields a well-crystallized wurtzite-type Mn-Cd-S solid solution, which precipitates as planar hexagonal facets of several hundred nanometers in size, together with much larger grains of α-MnS (>10 μm). By removing inactive α-MnS through sedimentation, a single phase with composition of Ni(0.01)Mn(0.56)Cd(0.43)S is obtained successfully. The Ni doping achieved a threefold higher photocatalytic activity for H(2) evolution from a 0.1 M Na(2)S/0.5 M Na(2)SO(3) solution under visible-light irradiation (λ≥420 nm). The apparent quantum yield of 1 wt % Pt-loaded Ni(0.01)Mn(0.56)Cd(0.43)S measured at λ=420 nm reached 25 %. The enhanced photocatalytic activity is most likely the result of a decreased concentration of defects, responsible for electron-hole recombination, in the active solid-solution phase and a slightly higher bandgap energy (2.4 eV).

  4. Exploring Hawaiian Volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  5. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  6. Volcanic lake systematics II. Chemical constraints

    Science.gov (United States)

    Varekamp, J.C.; Pasternack, G.B.; Rowe, G.L.

    2000-01-01

    A database of 373 lake water analyses from the published literature was compiled and used to explore the geochemical systematics of volcanic lakes. Binary correlations and principal component analysis indicate strong internal coherence among most chemical parameters. Compositional variations are influenced by the flux of magmatic volatiles and/or deep hydrothermal fluids. The chemistry of the fluid entering a lake may be dominated by a high-temperature volcanic gas component or by a lower-temperature fluid that has interacted extensively with volcanic rocks. Precipitation of minerals like gypsum and silica can strongly affect the concentrations of Ca and Si in some lakes. A much less concentrated geothermal input fluid provides the mineralized components of some more dilute lakes. Temporal variations in dilution and evaporation rates ultimately control absolute concentrations of dissolved constituents, but not conservative element ratios. Most volcanic lake waters, and presumably their deep hydrothermal fluid inputs, classify as immature acid fluids that have not equilibrated with common secondary silicates such as clays or zeolites. Many such fluids may have equilibrated with secondary minerals earlier in their history but were re-acidified by mixing with fresh volcanic fluids. We use the concept of 'degree of neutralization' as a new parameter to characterize these acid fluids. This leads to a classification of gas-dominated versus rock-dominated lake waters. A further classification is based on a cluster analysis and a hydrothermal speedometer concept which uses the degree of silica equilibration of a fluid during cooling and dilution to evaluate the rate of fluid equilibration in volcano-hydrothermal systems.

  7. The importance of shallow hydrothermal island arc systems in ocean biogeochemistry

    NARCIS (Netherlands)

    Hawkes, J.A.; Connelly, D.P.; Rijkenberg, M.J.A.; Achterberg, E.P.

    2014-01-01

    Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid-ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was

  8. Geologic Model of a Non-Volcanic Hydrothermal System: San Bartolome de Los Banos, Guanajuato, Mexico; Modelo geologico de un sistema hidrotermal no volcanico: San Bartolome de Los Banos, Guanajuato, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Hernandez, Aida [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-01-01

    The San Bartolome de Los Banos area is associated with a steeped hydraulic interconnected basins system, limited by regional Pliocene faults. The depressions are filled by sedimentary and volcanic products. The thermal manifestations, with temperatures over 90 degrees celsius, are associated to the main faults. The thermal anomaly is not related to recent volcanic activity, probably it is due to deep circulating water, moved by the hydraulic regional gradient. The thermal springs are discharges from the hydraulic system produced when the fluids are forced to flow up owing to hydraulic constrictions, that set up forced convection phenomena. [Espanol] La zona hidrotermal de San Bartolome de Los Banos esta formada por un sistema de cuencas escalonadas e interconectadas hidrologicamente, limitadas por fallas regionales originadas durante el Plioceno. Las estructuras afectaron a una secuencia de rocas volcanicas cuyas edades oscilan entre el Terciario Inferior y el Plioceno. Las depresiones estan rellenas por sedimentos y productos volcanicos. Existen manifestaciones termales asociadas a las zonas de debilidad, generadas por las fallas principales; las temperaturas superficiales son superiores a los 90 grados celsius. El termalismo en esta zona no esta asociado con actividad volcanica reciente, en apariencia se debe a la circulacion profunda de los fluidos, movidos por el gradiente hidraulico regional. Las manifestaciones termales corresponden a las zonas de descarga del sistema y se originan porque los fluidos son forzados a ascender al encontrar constricciones, produciendose una conveccion forzada.

  9. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  10. Hydrothermal Biogeochemistry

    Science.gov (United States)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.

    2006-12-01

    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  11. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano

    2013-11-01

    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  12. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    Science.gov (United States)

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob

    2007-01-01

    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in

  13. Shallow hydrothermal alteration and permeability changes in pyroclastic deposits: a case study at La Fossa cone (Vulcano island, Italy):

    Science.gov (United States)

    Cangemi, Marianna; Madonia, Paolo; Speziale, Sergio; Oliveri, Ygor

    2016-04-01

    La Fossa cone at Vulcano, the southernmost island of the Aeolian volcanic archipelago (Italy), has been characterized by an intense fumarolic activity since its last eruption dated 1888-90. Mineralogical alteration induced by shallow hydrothermal circulation has significantly reduced the permeability of the volcanic products, causing important feedbacks on the circulation of fluids in the shallowest portion of the volcanic edifice. The summit area of the cone is sealed by a quite continuous coating surface, fostering the condensation of hydrothermal fluids inside the volcanic edifice. The combination of fractures and volcano-stratigraphic discontinuities, conveying hydrothermal fluids, makes significant rock volumes prone to slide seaward, as occurred in 1988 during the main unrest experienced by Vulcano island since its last eruption. Similar instability conditions are found over the Forgia Vecchia crater rim area, formed by phreatic activity on the NE flank of the cone, where tensile fracturing and hydrothermal circulation interacts with mutual negative feedbacks. In the behalf of the DPC-INGV V3 Project 2012-15 we investigated the mineralogical composition and the hydraulic conductivity (under saturated conditions) of volcanic deposits potentially prone to hydrothermal fluid circulation, for evaluating their ability in retaining water, creating favourable conditions for gravitational instability. We also measured rainfall rate and volumetric soil moisture content in two automated stations located in different areas, with and without active hydrothermal circulation. We found that hydrothermal alteration transforms volcanic products into clay minerals, significantly reducing permeability of volcanic deposits. Argillified volcanic materials show background water contents, modulated by impulsive increments following rainfalls, higher than unaltered pyroclastic deposits, due to the combination of lower permeability and direct condensation of hydrothermal vapour. The

  14. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  15. Volcanic studies at Katmai

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  16. Submarine barite-opal rocks of hydrothermal origin.

    Science.gov (United States)

    Bertine, K K; Keene, J B

    1975-04-11

    Unusual submarine rocks consisting of barite, opal, and volcanic detritus were recovered from the Lau Basin northeast of Australia. It is proposed that these rocks were formed when hydrothermal solutions emanating from a fracture zone offsetting the active spreading center in the Lau Basin came into contact with cooler ocean waters.

  17. Petrology and oxygen isotope geochemistry of a fossil seawater hydrothermal system within the Solea graben, northern Troodos ophiolite, Cyprus

    Science.gov (United States)

    Schiffman, Peter; Smith, Brian M.

    1988-05-01

    Hydrothermal mineral zonations and O isotope patterns of the northern Troodos complex do not parallel the ophiolite pseudostratigraphy, but reflect the convective geometry of an Upper Cretaceous seawater hydrothermal system. Large areas of the sheeted intrusive complex (SIC), including the subaxial region of the Solea graben, are composed of 18O-rich, subgreenschist mineral assemblages and may represent regions of diffuse seawater recharge. Other areas of the SIC are recrystallized to distinctive epidosite rocks: granular, high-variance assemblages of epidote + quartz ± chlorite that are depleted in 18O, Al2O3, Na2O, K2O, Zr, Cu, and Zn and are enriched in CaO and Sr compared with other mafic volcanic and dike rocks of the Solea graben. Epidosite alteration occurred at temperatures of ˜310-370°C and involved fluids with δ18O values and salinities similar to those of Upper Cretaceous seawater. The epidosite zones are discordant with earlier, mineral/O isotope zonations and with the axis of spreading in the Solea graben, suggesting a postspreading, off-axis origin. The seawater hydrothermal system responsible for Solea graben massive sulfide deposits was probably driven by hypabyssal intrusions (not exposed), emplaced in a terminal, failed spreading episode. The geometries of O isotope surfaces within the Solea graben imply that the epidosites formed in fossil upflow and deep recharge conduits. Depletions in base metals show that epidosite alteration liberated Cu and Zn to mineralizing fluids within the fossil upflow zone.

  18. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    Science.gov (United States)

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and

  19. Hydrothermal iron flux variability following rapid sea level changes

    Science.gov (United States)

    Middleton, Jennifer L.; Langmuir, Charles H.; Mukhopadhyay, Sujoy; McManus, Jerry F.; Mitrovica, Jerry X.

    2016-04-01

    Sea level changes associated with Pleistocene glacial cycles have been hypothesized to modulate melt production and hydrothermal activity at ocean ridges, yet little is known about fluctuations in hydrothermal circulation on time scales longer than a few millennia. We present a high-resolution record of hydrothermal activity over the past 50 ka using elemental flux data from a new sediment core from the Mir zone of the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation. Our results, along with previous observations from Pacific and Atlantic spreading centers, indicate that rapid sea level changes influence hydrothermal output on mid-ocean ridges. Thus, climate variability may discretize volcanic processing of the solid Earth on millennial time scales and subsequently stimulate variability in biogeochemical interactions with volcanic systems.

  20. Using Spatial Density to Characterize Volcanic Fields on Mars

    Science.gov (United States)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  1. How temperature-dependent elasticity alters host rock/magmatic reservoir models: A case study on the effects of ice-cap unloading on shallow volcanic systems

    Science.gov (United States)

    Bakker, Richard R.; Frehner, Marcel; Lupi, Matteo

    2016-12-01

    In geodynamic numerical models of volcanic systems, the volcanic basement hosting the magmatic reservoir is often assumed to exhibit constant elastic parameters with a sharp transition from the host rocks to the magmatic reservoir. We assess this assumption by deriving an empirical relation between elastic parameters and temperature for Icelandic basalts by conducting a set of triaxial compression experiments between 200 °C and 1000 °C. Results show a significant decrease of Young's modulus from ∼38 GPa to less than 4.7 GPa at around 1000 °C. Based on these laboratory data, we develop a 2D axisymmetric finite-element model including temperature-dependent elastic properties of the volcanic basement. As a case study, we use the Snæfellsjökull volcanic system, Western Iceland to evaluate pressure differences in the volcanic edifice and basement due to glacial unloading of the volcano. First, we calculate the temperature field throughout the model and assign elastic properties accordingly. Then we assess unloading-driven pressure differences in the magma chamber at various depths in models with and without temperature-dependent elastic parameters. With constant elastic parameters and a sharp transition between basement and magma chamber we obtain results comparable to other studies. However, pressure changes due to surface unloading become smaller when using more realistic temperature-dependent elastic properties. We ascribe this subdued effect to a transition zone around the magma chamber, which is still solid rock but with relatively low Young's modulus due to high temperatures. We discuss our findings in the light of volcanic processes in proximity to the magma chamber, such as roof collapse, dyke injection, or deep hydrothermal circulation. Our results aim at quantifying the effects of glacial unloading on magma chamber dynamics and volcanic activity.

  2. Stable Isotopic Composition for Hydrothermal Vein Deposits, Southeastern Korea

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The southeast of Korea has attracted considerable attention in the geologic community because of its extensive igneous activity and associated mineralizations from the Late Cretaceous to the Early Tertiary (Cu, Pb-Zn, W-Mo, Bi and Au-Ag hydrothermal-vein deposits, porphyry, skarn and altered clay deposits). The southeast of Korea is composed of Cretaceous sedimentary Gyeongsan basin, volcanic and plutonic rocks. Most of the mines are either closed or incapable of producing more ores because of their poor reserves. The south of the Gyeongsang basin is famous for its hydrothermal altered clay deposits associated with volcanism. In order to locate more metal resources, many researches have been conducted into the gold-silver mineralization within hydrothermai-altered deposits in the past several years. The age of plutonism ranges from 112 Ma to 44 Ma, and that of volcanism from 74 Ma to 47 Ma.

  3. Hydrothermal organic synthesis experiments

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  4. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  5. Evidence for rapid epithermal mineralization and coeval bimodal volcanism, Bruner Au-Ag property, NV USA

    Science.gov (United States)

    Baldwin, Dylan

    The character of Au-Ag mineralization and volcanic/hydrothermal relationships at the underexplored Miocene-age Bruner low-sulfidation epithermal Au-Ag deposit are elucidated using field and laboratory studies. Bruner is located in central Nevada within the Great Basin extensional province, near several major volcanic trends (Western Andesite, Northern Nevada Rift) associated with world-class Miocene-age epithermal Au-Ag provinces. Despite its proximity to several >1 Moz Au deposits, and newly discovered high-grade drill intercepts (to 117 ppm Au/1.5m), there is no published research on the deposit, the style of mineralization has not been systematically characterized, and vectors to mineralization remain elusive. By investigating the nature of mineralization and time-space relationships between volcanic/hydrothermal activity, the deposit has been integrated into a regional framework, and exploration targeting improved. Mineralization occurs within narrow quartz + adularia +/- pyrite veins that manifest as sheeted/stockwork zones, vein swarms, and rare 0.3-2 m wide veins hosted by two generations of Miocene high-K, high-silica rhyolite flow dome complexes overlying an andesite flow unit. The most prominent structural controls on veining are N­striking faults and syn-mineral basalt/rhyolite dikes. Productive veins have robust boiling indicators (high adularia content, bladed quartz after calcite, recrystallized colloform quartz bands), lack rhythmic banding, and contain only 1-2 stages; these veins overprint, or occur separately from another population of barren to weakly mineralized rhythmically banded quartz-only veins. Ore minerals consist of coarse Au0.5Ag 0.5 electrum, fine Au0.7Ag0.3 electrum, acanthite, uytenbogaardtite (Ag3AuS2) and minor embolite Ag(Br,Cl). Now deeply oxidized, veins typically contain geothermal circulation along N-S structural fabric driven by heat from rhyolite domes; ~16.34 Ma, emplacement of NW trending basalt dikes, followed by violent

  6. Volcanic forcing in decadal forecasts

    Science.gov (United States)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe

    2016-04-01

    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  7. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  8. Sulfur isotopic composition of modern seafloor hydrothermal sediment and its geological significance

    Institute of Scientific and Technical Information of China (English)

    曾志刚; 李军; 蒋富清; 秦蕴珊; 翟世奎

    2002-01-01

    A total of 1 264 sulfur isotopic values for modem seafloor hydrothermel sediments from different hydrothermal fidds have been collected. On this basis, combining our sulfur isotpic data for surface hydrothermal sediments from the Jade hydrohtermal field in the Okinawa Trough and the TAG hydrothermal field in the Mid-Atlantic Ridge, respectively, and comparing the sulfur isotopic compositions and analyzing their sources of sulfur in seafloor hydrothermal sediments from different geologic-tectonic setting, the results show that: ( 1 ) sulfur isotopic values of sulfides and sulfates in modern seafloor hydrothermal sediments are concentrated in a narrow range, δ34S values of sulfides vary from l × 10-3 to 9 × 10- 3, with a mean of 4.5 × 10- 3 ( n = 1 042), δ34S values of sulfates vary from 19 × 10- 3 to 24× 10-3, with a mean of 21.3× 10-3 (n =217); (2) comparing the sulfur isotopic compositions of hydrothermal sediments from the sediment-hosted hydrothermal fields, the range of sulfur isotopic values for hydrothermal sediments from the sediment-free hydrothermal fields is narrow relatively; (3) the differences of sulfur isotopic compositions in sulfides from different hydrothermal fields show the differences in the sources of sulfur. The sulfur of hydrothermal sulfides in the sediment-free mid-ocean ridges is mainly from mid-ocean ridge basalt, and partially from the reduced seawater sulfate, and it is the result of partially reduced seawater sulfate mixed with basaltic sulfur. In the sediment-hosted nid-ocean ridges and the back-arc basins, the volcanics, the sediments and the organic matters also can offer their sulfur for forming hydrothermal sulfides; (4) the variations of sulfur isotopic compositions and the different sources of sulfur for hydrothermal sediments may be attributed to the various physical-chemical characteristics of hydrothermal fluids, the magmatic evolution and the different geologic-tectonic settings of seafloor hydrothermal systems.

  9. Volcanic rock properties control sector collapse events

    Science.gov (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio

    2017-04-01

    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  10. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  11. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    Science.gov (United States)

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  12. Experimental generation of volcanic lightning

    Science.gov (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  13. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  14. Super eruption environments make for "super" hydrothermal explosions: Extreme hydrothermal explosions in Yellowstone National Park

    Science.gov (United States)

    Morgan, L. A.; Shanks, W. P.; Pierce, K. L.

    2006-12-01

    Hydrothermal explosions are violent events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments over areas that range from a few meters in diameter up to several kilometers in diameter. Hydrothermal explosions occur where shallow interconnected reservoirs of steam-saturated fluids underlie thermal fields. Sudden reduction in pressure causes the fluids to flash to steam resulting in significant expansion, rock fragmentation, and debris ejection. In Yellowstone, at least 20 large (>100 meters in diameter) hydrothermal explosions have been identified, and the scale of the individual events dwarfs similar features in other hydrothermal and geothermal areas of the world. Large explosions in Yellowstone have occurred over the past 16 ka at an interval of ~1 per every 700 yrs and similar events are likely to occur in the future. Our studies of hydrothermal explosive events indicate: 1) none are associated with magmatic or volcanic events; 2) several have been triggered by seismic events coupled with other processes; 3) lithic clasts and matrix from explosion deposits are extensively altered, indicating long-term, extensive hydrothermal mineralization in areas that were incorporated into the explosion deposit; 4) many lithic clasts in explosion breccia deposits contain evidence of repeated fracturing and cementation; and 4) dimensions of many documented large hydrothermal explosion craters in Yellowstone are similar to the dimensions of currently active geyser basins or thermal areas in Yellowstone. The vast majority of active thermal areas in Yellowstone are characterized by 1) high-temperature hot-water systems in areas of high heat-flow, 2) extensive systems of hot springs, fumaroles, geysers, sinter terraces, mud pots, and, in places, small hydrothermal explosion craters, 3) widespread alteration of host rocks, 4) large areal dimensions (>several 100 m) and 5) intermittent but long-lived activity (40,000 to 300,000 years). Critical

  15. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    Science.gov (United States)

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  16. Geology and geothermal potential of Alid volcanic center, Eritrea, Africa

    Science.gov (United States)

    Clynne, Michael A.; Duffield, Wendell A.; Fournier, Robert O.; Giorgis, Leake W.; Janik, Cathy J.; Kahsai, Gabreab; Lowenstern, Jacob; Mariam, Kidane W.; Smith, James G.; Tesfai, Theoderos; ,

    1996-01-01

    Alid volcanic center, a 700-meter-tall mountain in Eritrea, northeast Africa, straddles the axis of an active crustal-spreading center called the Danakil Depression. Boiling-temperature fumaroles are common on Alid, and their gas compositions indicate a reservoir temperature of at least 250 ??C. The history of volcanism and the high reservoir temperature indicated by the Alid fumarole gases suggest that a geothermal resource of electrical grade lies beneath the mountain. Though drilling is needed to determine subsurface conditions, the process of dome formation and the ongoing crustal spreading can create and maintain fracture permeability in the hydrothermal system that feeds the Alid fumaroles.

  17. Sill induced hydrothermal venting: A summary of our current understanding

    Science.gov (United States)

    Jerram, Dougal; Svenesn, Henrik; Planke, Sverre; Millett, John; Reynolds, Pete

    2017-04-01

    Hydrothermal vent structures which are predominantly related with the emplacement of large (>1000 km3) intrusions into the sub-volcanic basins represent a specific style of piercement structure, where climate-forcing gases can be transferred into the atmosphere and hydrosphere. In this case, the types and volumes of gas produced by intrusions is heavily dependent on the host-rock sediment properties that they intrude through. The distribution of vent structures can be shown to be widespread in Large Igneous Provinces for example on both the Norwegian and the Greenland margins of the North Atlantic Igneous Province (NAIP). In this overview we assess the distribution, types and occurrence of hydrothermal vent structures associated with LIPs. There is particular focus on those within the NAIP using mapped examples from offshore seismic data as well as outcrop analogues, highlighting the variability of these structures and their deposits. As the availability of 3D data from offshore and onshore increases, the full nature of the volcanic stratigraphy from the subvolcanic intrusive complexes, through the main eruption cycles into the piercing vent structures, can be realised along the entirety of volcanic rifted margins and LIPs. This will help greatly in our understanding of the evolving palaeo-environments, and climate contributions during the evolution of these short lived massive volcanic events.

  18. Subaqueous environment and volcanic evolution of the Late Cretaceous Chelopech Au-Cu epithermal deposit, Bulgaria

    Science.gov (United States)

    Chambefort, Isabelle; Moritz, Robert

    2014-12-01

    A detailed field and petrographic study constrains the volcanic evolution and environment setting of the volcano-sedimentary-hosted Chelopech Cu-Au epithermal deposit, Bulgaria. Magmatic activity and associated high-sulfidation epithermal mineralization occurred at about 91 Ma in the Panagyurishte ore district of the Eastern European Banat-Timok-Srednogorie metallogenic belt. Volcanic and hydrothermal activity took place in a complex subaqueous setting, resulting in the intercalation of quartz sandstone with andesitic volcanic and volcaniclastic breccia. There are also hypabyssal andesite intrusion, phreatomagmatic breccia and interbeds of pyroclastic, oolithic and bioclastic rocks. The presence of altered cerebroid ooid-bearing sedimentary units characteristic of salty environment is in accordance with a lagoon environment predating the mineralization at Chelopech. Four principal stages of evolution for the Chelopech district are proposed based on field and petrographic observations. Initial volcanism occurred in a lake or in a coastal, shallow lagoon environment above crystalline basement. The Chelopech "phreatomagmatic" breccia and subsurface andesites were emplaced at this time. Subsequent hydrothermal activity produced the different hydrothermal breccia types, advanced argillic and quartz-phyllic alteration, and Au-Cu vein and replacement mineralization. The end of volcanism and hydrothermal activity was associated with opening of a pull-apart basin that covered the Chelopech environment with a sedimentary flysch. Tertiary compression faulting juxtaposed various rocks and tilted the ore deposit during the Alpine orogeny.

  19. Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador

    Science.gov (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.

    2017-04-01

    We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.

  20. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  1. Geology of the Early Archean Mid-Ocean Ridge Hydrothermal System in the North Pole Dome, Pilbara Craton, Western Australia

    Science.gov (United States)

    Kitajima, K.; Maruyama, S.

    2007-12-01

    An Archean hydrothermal system in the North Pole Dome, Pilbara Craton is associated with extensive fluid circulation driven by numerous extensional fracture systems and the underlying heat source. The fracture system is now occupied by abundant fine-grained quartz aggregate, hence we call this as silica dikes. Some of the fracture system extends deeper structural levels as listric normal faults down to 1000 m depth in the MORB crust. Barite-bearing fine-grained quartz predominant mineralogy indicates the extensive development of fracturing and quenching in a short time. Accompanying the fluid circulation, the extensive metasomatism proceeded to form the four different chemical courses, (1) silicification, (2) carbonation, (3) potassium-enrichment, and (4) Fe- enrichment. Silicification occurs along the silica dikes, carbonated greenstones are distributed relatively shallower level. Potassium-enriched (mica-rich) greenstones occur at the top of the greenstone sequence, and Fe-enriched (chlorite-rich) greenstones are distributed at lower part of the basaltic greenstones. The down going fluid precipitated carbonate-rich layer at shallow levels, whereas depleted in SiO2. Then, the fluid went down to more deeper level, and was dissolved SiO2 at high temperature (~350°C) and chlorite-rich greenstone was formed by water-rock interaction. The upwelling fluid precipitated dominantly SiO2 and formed silica dikes. Silica dikes cement the fractures formed by extensional faulting at earliest stage of development of oceanic crust. Therefore, the hydrothermal system must have related to normal fault system simultaneously with MORB volcanism. Particularly the greenish breccia with cherty matrix (oregano chert) was formed at positions by upwelling near ridge axis. After the horizontal removal of MORB crust from the ridge-axis with time, the propagating fracture into deeper levels, transports hydrothermal fluids into 500-1000 m depth range where metasomatic element exchange between

  2. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  3. Chaotic thermohaline convection in low-porosity hydrothermal systems

    NARCIS (Netherlands)

    Schoofs, Stan; Spera, Frank J.; Hansen, Ulrich

    2001-01-01

    Fluids circulate through the Earth's crust perhaps down to depths as great as 5^15 km, based on oxygen isotope systematics of exhumed metamorphic terrains, geothermal fields, mesozonal batholithic rocks and analysis of obducted ophiolites. Hydrothermal flows are driven by both thermal and chemical b

  4. Hydrothermal systems in small ocean planets.

    Science.gov (United States)

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  5. Impact of hydrothermal alteration on lava dome stability: a numerical modelling approach

    Science.gov (United States)

    Detienne, Marie; Delmelle, Pierre

    2016-04-01

    Lava domes are a common feature of many volcanoes worldwide. They represent a serious volcanic hazard as they are prone to repeated collapses, generating devastating debris avalanches and pyroclastic flows. While it has long been known that hydrothermal alteration degrades rock properties and weakens rock mass cohesion and strength, there is still little quantitative information allowing the description of this effect and its consequences for assessing the stability of a volcanic rock mass such as a lava dome. In this study, we use the finite difference numerical model FLAC 3D to investigate the impact of hydrothermal alteration on the stability of a volcanic dome lying on a flat surface. Different hydrothermal alteration distributions were tested to encompass the variability observed in natural lava domes. Rock shear strength parameters (minimum, maximum and mean cohesion "c" and friction angle "φ" values) representative of various degrees of hydrothermal rock alteration were used in the simulations. The model predicts that reduction of the basement rock's shear strength decreases the factor of safety significantly. A similar result is found by increasing the vertical and horizontal extension of hydrothermal alteration in the basement rocks. In addition, pervasive hydrothermal alteration within the lava dome is predicted to exert a strong negative influence on the factor of safety. Through reduction of rock porosity and permeability, hydrothermal alteration may also affect pore fluid pressure within a lava dome. The results of new FLAC 3D runs which simulate the effect of hydrothermal alteration-induced pore pressure changes on lava dome stability will be presented.

  6. One pot hydrothermal synthesis of a novel BiIO{sub 4}/Bi{sub 2}MoO{sub 6} heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Liu, Liyuan; Zhang, Yihe, E-mail: zyh@cugb.edu.cn; Tian, Na

    2015-01-15

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO{sub 4}/Bi{sub 2}MoO{sub 6} heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO{sub 4}/Bi{sub 2}MoO{sub 6} composites were synthesized by a one-step hydrothermal method. • The BiIO{sub 4}/Bi{sub 2}MoO{sub 6} composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h{sup +}) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO{sub 4}/Bi{sub 2}MoO{sub 6} heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO{sub 4} and Bi{sub 2}MoO{sub 6}, the BiIO{sub 4}/Bi{sub 2}MoO{sub 6} composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO{sub 4}/Bi{sub 2}MoO{sub 6} heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h{sup +}) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments.

  7. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  8. California's Vulnerability to Volcanic Hazards: What's at Risk?

    Science.gov (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.

    2015-12-01

    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  9. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of wat

  10. Hydrothermal Reactivity of Amines

    Science.gov (United States)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  11. Amazonian volcanism inside Valles Marineris on Mars

    Science.gov (United States)

    Brož, Petr; Hauber, Ernst; Wray, James J.; Michael, Gregory

    2017-09-01

    The giant trough system of Valles Marineris is one of the most spectacular landforms on Mars, yet its origin is still unclear. Although often referred to as a rift, it also shows some characteristics that are indicative of collapse processes. For decades, one of the major open questions was whether volcanism was active inside the Valles Marineris. Here we present evidence for a volcanic field on the floor of the deepest trough of Valles Marineris, Coprates Chasma. More than 130 individual edifices resemble scoria and tuff cones, and are associated with units that are interpreted as lava flows. Crater counts indicate that the volcanic field was emplaced sometime between ∼0.4 Ga and ∼0.2 Ga. The spatial distribution of the cones displays a control by trough-parallel subsurface structures, suggesting magma ascent in feeder dikes along trough-bounding normal faults. Spectral data reveal an opaline-silica-rich unit associated with at least one of the cones, indicative of hydrothermal processes. Our results point to magma-water interaction, an environment of astrobiological interest, perhaps associated with late-stage activity in the evolution of Valles Marineris, and suggest that the floor of Coprates Chasma is promising target for the in situ exploration of Mars.

  12. Seismicity at Lusi and the adjacent volcanic complex, Java, Indonesia

    Science.gov (United States)

    Obermann, Anne; Karyono, Karyono; Diehl, Tobias; Lupi, Matteo; Mazzini, Adriano

    2017-04-01

    We study the local seismicity around the spectacular Lusi eruption site, a sedimentary- hosted hydrothermal system in East Java. Lusi is located 10 km NE of the Arjuno-Welirang volcanic complex and is fed by both mantellic and hydrothermal fluids rising and mixing with those present in the sedimentary formations. During a period of 17 months, we observed 289 micro-seismic earthquakes with local magnitudes ranging from ML0.5 to ML1.7. The events predominantly nucleate at depths of 8-13 km below the Arjuno-Welirang volcanic complex. Despite the geological evidence of active tectonic deformation and faulting observed at the surface, little to no seismicity is observed in the sedimentary basin hosting Lusi. Although we cannot entirely rule out artifacts due to a significantly increased detection threshold in the sedimentary basin, the deficit in seismicity suggests aseismic deformation beneath Lusi due to the large amount of fluids that may lubricate the fault system. An analysis of focal mechanisms of seven selected events around the Arjuno-Welirang volcanic complex indicate predominantly strike-slip faulting activity in the region SW of Lusi. This type of activity is consistent the orientation and the movements observed for the Watukosek fault system that extends from the volcanic complex towards the NE of Java. Our results suggest that the tectonic deformation of the region is characterized by scattered faulting, rather than localized along a distinct fault plane.

  13. The Evidence from Inclusions in Pumices for the Direct Degassing of Volatiles from the Magma to the Hydrothermal Fluids in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    YU Zenghui; ZHAI Shikui; ZHAO Guangtao

    2002-01-01

    This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatilesreleasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the hydrothermal strippingof volatiles from the volcanic rocks.Laser Raman microprobe and stepped-heating techniques are employed to determine the compositions and contents of thevolatiles in pumices in the middle Okinawa Trough. The results show that the volatiles are similar to the gases in the hy-drothermal fluids and hydrothermal minerals in composition, the mean percent content of each component and variationtrend. This indicates the direct influence of magma degassing on the hydrothermal fluids. In addition, the contents ofvolatiles in pumices are rather low and do not support the hydrothermal stripping as the main mechanism to enrich the fluidswith gases. The results are consistent with the idea that the direct magma degassing is more important than hydrothermalstripping in supplying gases to the hydrothermal fluids in the Okinawa Trough.

  14. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    Science.gov (United States)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2013-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  15. Genesis of hydrothermal alterations using stable isotope geochemistry in Takestan area (Tarom zone

    Directory of Open Access Journals (Sweden)

    Batool Taghipou

    2015-12-01

    Full Text Available Hydrothermal alteration processes are extensively took place on volcanic and pyroclstics of Takestan area. Existence of abundant, deep fracturing and subvolcanic intrusions are enhanced extend hydrothermal alteration zones. The following alteration zones are determined: propylitic, argillic, advanced argillic and sillicic. There are outcropped and widespread in different size and limit. Formation of siliceous sinter, silicified tuffs with preserved primary sedimentary layering including pure mineralized alunite patches are most outstanding. Quartz, sussoritic plagioclase, chlorite, sericite and alunite are main mineral constituents in the volcanics. On the basis of geochemical data volcanic rocks are rhyolite, dacite, andesite, andesitic-basalt and basalt in composition. Acid-sulfate zone is the type of alteration in Tarom area and alunite is an index mineral of this zone. Results of 18O, D and 34S stable isotope geochemistry on altered minerals (muscovite, kaolinite and alunite, revealed that alteration fluids are magmatic in origin.

  16. Thermal vesiculation during volcanic eruptions

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  17. Zinc(II) and lead(II) metal-organic networks driven by a multifunctional pyridine-carboxylate building block: Hydrothermal synthesis, structural and topological features, and luminescence properties

    Science.gov (United States)

    Yang, Ling; Li, Yu; You, Ao; Jiang, Juan; Zou, Xun-Zhong; Chen, Jin-Wei; Gu, Jin-Zhong; Kirillov, Alexander M.

    2016-09-01

    4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a flexible, multifunctional N,O-building block for the hydrothermal self-assembly synthesis of two novel coordination compounds, namely 2D [Zn(μ3-HL)(H2O)]n·nH2O (1) and 3D [Pb2(μ5-HL)(μ6-HL)]n (2) coordination polymers (CPs). These compounds were obtained in aqueous medium from a mixture containing zinc(II) or lead(II) nitrate, H3L, and sodium hydroxide. The products were isolated as stable crystalline solids and were characterized by IR spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a 2D metal-organic layer with the fes topology, which is further extended into a 3D supramolecular framework via hydrogen bonds. In contrast, compound 2 features a very complex network structure, which was topologically classified as a binodal 5,6-connected net with the unique topology defined by the point symbol of (47.63)(49.66). Compounds 1 and 2 disclose an intense blue or green luminescent emission at room temperature.

  18. Seismic Tomography and Monitoring of Magmatic Geothermal and Natural Hydrothermal Systems in the South of Bandung, Indonesia

    OpenAIRE

    P. Jousset; R. Sule; W. Diningrat; Devy Kamil Syahbana; Alexandra Gassner; F. Akbar; Sebastien Guichard; Nicole Schuck; R. Ryannugroho; Andri Hendriyana; Y. Kusnadi; A. Nugraha; U. Muksin; M. Jaya; B. Pratomo

    2015-01-01

    We assess geothermal resources from our understanding of the structure and the dynamics of geothermal reservoirs and hydrothermal systems in the south of Bandung. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. We deployed a geophysical network starting with a network of 30 seismic stations including...

  19. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  20. Numerical simulation of magmatic hydrothermal systems

    Science.gov (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  1. Hydrothermal processes at Mount Rainier, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  2. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...

  3. Hydrothermal synthesis of hydroxyapatite

    Science.gov (United States)

    Earl, J. S.; Wood, D. J.; Milne, S. J.

    2006-02-01

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO3)2bold dot4H2O and (NH4)2HPO4 with distilled water, in a hydrothermal reactor at 200 °C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a secondary phase, monetite (CaHPO4). SEM examination of the treated powders displayed particles of rod-like morphology with dimensions 100-500 nm in length and 10-60 nm in diameter. Preliminary results on the use of the particles for the infiltration of dentine tubules are presented.

  4. Hydrothermal synthesis of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Earl, J S; Wood, D J; Milne, S J [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2006-02-22

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO{sub 3}){sub 2}{center_dot}4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4} with distilled water, in a hydrothermal reactor at 200 deg. C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a secondary phase, monetite (CaHPO{sub 4}). SEM examination of the treated powders displayed particles of rod-like morphology with dimensions 100-500 nm in length and 10-60 nm in diameter. Preliminary results on the use of the particles for the infiltration of dentine tubules are presented.

  5. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  6. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  7. The mineralogical characteristics of the hydrothermal types alteration from Nistru ore deposit, Baia Mare metallogenetic district

    Directory of Open Access Journals (Sweden)

    Floarea Damian

    2003-04-01

    Full Text Available The hydrothermal alteration types, which have affected intrusive and volcanic rocks from Nistru ore deposit, are related to fluids composition varied in their evolution within hydrothermal systems. The early stage of the hydrothermal activity has produced extensive propylitisation and potassic alteration (orthoclase, biotite, sericite associated with the central part of the quartz-micromonzodioritic porphyry stock. The late stage of the fluids differentiation is determined by the hydrogen-ion metasomatism (phyllic alteration, argillic alteration, characterized by a large vertical variation. The hydrogen-ion metasomatism is associated with the bor metasomatism, generated by acid solutions and at a high temperature. The vertical and lateral zoning character of the hydrothermal alterations is related to differences in rock composition and variation in physical-chemical conditions during the periods of subvolcanic intrusion and mineralization.

  8. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  9. The deep structure of a sea-floor hydrothermal deposit

    Science.gov (United States)

    Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.

    1998-01-01

    Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.

  10. Hydrothermal exploration of the Mariana Back Arc Basin: Chemical Characterization

    Science.gov (United States)

    Resing, J. A.; Chadwick, B.; Baker, E. T.; Butterfield, D. A.; Baumberger, T.; Buck, N. J.; Walker, S. L.; Merle, S. G.; Michael, S.

    2016-12-01

    In November and December 2015, we visited the Southern Mariana back-arc on R/V Falkor (cruise FK151121) to explore for hydrothermal and volcanic activity. We conducted our study using the SENTRY AUV, a CTD rosette designed to do tows and vertical casts into the deep back-arc, and a trace metal CTD-package for the upper 1000m of the water column to examine transport form the nearby arc. We conducted 7 SENTRY dives, 12 tow-yos, 7 vertical casts, and 14 trace metal casts. We also mapped 24,050 km2 of the seafloor using the Falkor EM 302 multibeam. We discovered four new hydrothermal vent sites, and at one of them we found that some of the venting was coming from recently erupted lava flows. That lava flow is the deepest contemporary eruption yet discovered (at 4100-4450 m), and the first to be documented on a slow-spreading ridge. In addition, we were able to map the previously known Alice Springs hydrothermal site in unprecedented detail with AUV Sentry. The distribution of hydrothermal activity as well as chemistry of the plumes above them will be discussed. Plume chemistry data will include , Fe, Mn, CH4, H2, and 3He. The ship time for this project was provided by the Schmidt Ocean Institute with science funding provided by NOAA-Ocean Exploration.

  11. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    Science.gov (United States)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately

  12. Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central Mexico. Exploratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Hernandez, Aida [Gerencia de Proyectos Geotermoelectricos, CFE, Alejandro Volta 655, 58290 Morelia, Michoacan (Mexico); Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico); Garcia-Estrada, Gerardo; Palma-Guzman, Hugo; Quijano-Leon, Jose L. [Gerencia de Proyectos Geotermoelectricos, CFE, Alejandro Volta 655, 58290 Morelia, Michoacan (Mexico); Aguirre-Diaz, Gerardo; Gonzalez-Partida, Eduardo [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)

    2009-09-15

    Mineral alteration and fluid inclusion studies of drill cuttings and core samples indicate that the sedimentary basement rocks and the volcanic rocks associated with Tulancingo-Acoculco Caldera Complex have been the site of two distinct and major hydrothermal events. The complex, located in the eastern portion of the Trans-Mexican Volcanic Belt, is formed by the Pliocene Tulancingo Caldera and the younger (Pleistocene) Acoculco Caldera, which developed within the older depression. The volcanic rocks are underlain by Cretaceous sedimentary rocks of the Sierra Madre Oriental. The earliest important hydrothermal event occurred during the emplacement of Mid-Tertiary granitic intrusions that metamorphosed the sedimentary rocks; these intrusives are not exposed at the surface. However, granitic rocks were encountered at the bottom of exploratory borehole EAC-1, drilled within the Caldera Complex. The second main event occurred during the formation of the Tulancingo and Acoculco Calderas. Both episodes lead to secondary mineralization that reduced the permeability of the reservoir rocks. A possible third hydrothermal event may be associated with the recent magmatic activity within the Acoculco Caldera.Thermal logs from well EAC-1 display a conductive thermal gradient with maximum temperatures exceeding 300 C at 2000 m depth. Although there are no active thermal springs in the area, there is extensive fossil surface hydrothermal alteration and cold gas discharges with high He{sup 3}/He{sup 4} ratios. (author)

  13. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry

    Science.gov (United States)

    He, Cong; Ji, Liming; Wu, Yuandong; Su, Ao; Zhang, Mingzhen

    2016-11-01

    Hydrothermal sedimentation occurred in the Triassic Yanchang Formation, Ordos Basin, China. However, their macroscopic features at the scale of the stratum and hydrothermal sources still lack correlational research. This paper performed element geochemical study on a large number of core samples collected from the Yanchang Formation of a new drilling well located in the south Ordos Basin. The SiO2/(K2O + Na2O) vs. MnO/TiO2 crossplot and Fe vs. Mn vs. (Cu + Co + Ni) × 10 ternary diagram demonstrate that the Yanchang stratum in the study area has, in general, hydrothermal components. The Al/(Al + Fe + Mn) and (Fe + Mn)/Ti ratios of the core samples range from 0.34 to 0.84 and 4.81 to 50.54, averaging 0.66 and 10.67, respectively, indicating that the stratum is a set of atypical hydrothermal sedimentation with much terrigenous input. Data analysis shows that the hydrothermal source in the study area was from the deep North Qinling Orogen around the south margin of the basin, where some active tectonic and volcanic activities took place, rather than from the relatively stable internal basin. Early Indosinian movement and volcanic activities activated basement faults around the southern margin of the basin, providing vents for the deep hydrothermal fluid upwelling. The hydrothermal indicators suggest that the study area experienced 4 episodes of relatively stronger hydrothermal activity, namely during the Chang 10, Chang 9-1, Chang 7-3 and Chang 6-2 periods. We also propose a new hydrothermal sedimentation model of hydrothermal fluids overflowing from basin margin faults, for the Yanchang Formation, which is reported here for the first time.

  14. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  15. Monitoring the hydrothermal system in Long Valley caldera, California

    Science.gov (United States)

    Farrar, C.D.; Sorey, M.L.

    1985-01-01

    An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.

  16. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California.

    Science.gov (United States)

    Evarts, R.C.; Schiffman, P.

    1983-01-01

    Metamorphic zonation overprinted on the volcanic member and overlying volcanogenic sediments of the ophiolite complex increases downward in grade and is characterized by the sequential appearance with depth of zeolites, ferric pumpellyite and pistacitic epidote. Metamorphic assemblages of the plutonic member of the complex are characterized by the presence of calcic amphibole. The overprinting represents the effects of hydrothermal metamorphism resulting from the massive interaction between hot igneous rocks and convecting sea-water in a submarine environment. A thermal gradient of 100oC/km is postulated to account for the zonal recrystallization effects in the volcanic member. The diversity and sporadic distribution of mineral assemblages in the amphibole zone are considered due to the limited availability of H2O in the deeper part of the complex. Details of the zonation and representative microprobe analyses are tabulated.-M.S.

  17. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  18. Silicalites of Hydrothermal Origin in the Lower Cambrian Black Rock Series of South China

    Institute of Scientific and Technical Information of China (English)

    李胜荣; 高振敏

    1996-01-01

    A silicalite bed was found in the hanging wall and foot wall of the sulfide-rich bed of the Lower Cambrian black rock series in South China.Its origin was not described before,On the oxide(SiO2-Al2O3,SiO2-MgO,SiO2-k2o+Na2O)diagrams for discriminating silicalites of chemical,biological and volcanic origins(Liu Xiufeng,1991),most of the data points of silicalites fall within the areas representing silicalites of chemical and volcanic origins.On the Al-Fe-Mn diagram for discriminating silicalites of hydrothermal and biological origins(Yamamoto,1987),the data points fall within the areas representing silicalites of hydrotermal and hydrothermal-biological origins.On the SiO2-Al2O3 diagram for discriminating silicalites of hydrothermal and hydrogenous origins(Bonatti,1975),the data points mostly fall within the hydrothermal area.The ratios of SiO2/Al2O3,SiO2/(K2O+Na2O),SiO2/MgO,and K2O/Na2O in the silicalites stand between those of volcanic sediments and of seafloor hydrothermal sediments.The total amount of rare-earth elements in the silicalites is low;the North american Shale-normalized REE patterns decline leftward with obvious negative Ce anomaly.The trace elements Mo,Zn,As,Sb,Se,U,and Ba are higher than those in non-hydrothermal sediments and U/Th≥1.The present authors think that the silicalites are derived from seafloor hot brines which had attracted elements from igneous rocks.

  19. Submarine Volcanic Morphology of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  20. Hydrothermal speleogenesis in carbonates and metasomatic silicites induced by subvolcanic intrusions: a case study from the Štiavnické vrchy Mountains, Slovakia

    Directory of Open Access Journals (Sweden)

    Pavel Bella

    2016-01-01

    Full Text Available Several caves of hydrothermal origin in crystalline limestones and metasomatic silicites were investigated in the central zone of the Štiavnica stratovolcano, Štiavnické vrchy Mountains, central Slovakia. Evidence of hydrothermal origin includes irregular spherical cave morphology sculptured by ascending thermal water, occurrence of large calcite crystals and hydrothermal alteration of host rocks, including hydrothermal clays. The early phases of speleogenesis in the crystalline limestone near Sklené Teplice Spa were caused by post-magmatic dissolution linked either to the emplacement of subvolcanic granodiorite intrusions during Late Badenian time or to the spatially associated Late Sarmatian epithermal system. Speleogenesis in metasomatic silicites in the Šobov area is related to hydrothermal processes associated with the pre-caldera stage of the Štiavnica stratovolcano in Late Badenian. Both localities are remarkable examples of hydrothermal speleogenesis associated with Miocene volcanic and magmatic activity in the Western Carpathians.

  1. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2009-06-01

    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  2. Lung problems and volcanic smog

    Science.gov (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  3. Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling

    Science.gov (United States)

    Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.

    2004-01-01

    Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.

  4. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong

    2000-01-01

    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  5. Deep structure of the Pyatigorsk volcanic center (Northern Caucasus)

    Science.gov (United States)

    Zhostkow, R. A.; Masurenkov, Yu. P.; Dudarov, Z. I.; Shevchenko, A. V.; Dolov, S. M.; Danilov, K. B.

    2012-04-01

    Pyatigorsk laccoliths show a perceptible circular arrangement of tectonic and petro-geochemical features that also manifested in specific properties of a hydrothermal system of the Caucasian Mineral Waters and can be described as direct and natural elements of a higher order system, namely, the fluid-magmatic system of the Pyatigorsk volcanic center. It has been shown that mentioned arrangement may be approximated by a system of concentric isolines forming an isometric shape with the center located approximately 10 km west from the top of the Mount Beshtau positioned over the crust-mantle boundary inflection zone, and concentration of hydro-carbonates in the center of the anomalous area is six times more than this concentration at the periphery. On the basis of petro-geochemical and geological studies the hydrothermal system with obvious features of juvenile origin has been outlined. An average lifespan of this system is estimated to be at least several millions of years. The results of geophysical studies at the Beshtau laccolith (Pyatigorsk volcanic center) which were carried out in 2011 using the method of low-frequency microseismic sounding are presented. Vertical geophysical profile down to a depth of 30 km using a modified algorithm for processing the original data that improved the results of the transcripts and outlines the deep geological structure in more detail in the subsequent interpretation are presented and discussed. Thus, relationship of hydro-chemical properties of the Caucasian Mineral Waters with respect to structural and petro-geochemical features of Pyatigorsk volcanic center and its fluid-magmatic system structure has been discovered. Affiliation of the Caucasian Mineral Waters with a hydrothermal element of this system has been proved to be correct. New data on the deep structure of the Beshtau laccolith were obtained, and their combined interpretation with previous results obtained in geological, geophysical and petro-geochemical studies

  6. Comparison between the chemistry of igneous and hydrothermal biotite in the igneous rocks of Sakhtehesar mountain

    Directory of Open Access Journals (Sweden)

    Farima Ayati

    2015-12-01

    Full Text Available Sakhtehesar mountain is located in Urumieh-Dokhtar magmatic belt and is composed of volcanic and subvolcanic rocks (Pliocene andesite to dacite which intruded the volcanics and pyroclastics of Paleocene age. Three alteration zones including potassic, phyllic and propylitic are recognized in the area. In this paper, the mineral chemistry of magmatic and primary biotite and the mineral chemistry of biotite in potassic and phyllic alteration zones have been studied. Investigations show that primary and secondary biotites are different from each other and hydrothermal fluids associated with the potassic alteration are distinctively different from the fluids associated with the phyllic alteration zone in the area.

  7. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  8. The Diversity of Martian Volcanic features as Seen in the MOC, THEMIS, and MOM Data Sets

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    This one-year project (which included one-year no-cost tension) focused on the evolution of the summit areas of Martian volcanoes. It extended the studies conducted under an earlier MDAP project (Grant NAG5-9576, Principal Investigator P. Mouginis- Mark). By using data collected from the Mars Orbiter Camera (MOC), Thermal Emission Imaging System (THEMIS), and the Mars Orbiter Laser Altimeter (MOLA) instruments, we tried to better understand the diversity of constructional volcanism on Mars, and hence further understand the eruption processes. By inspecting THEMIS and MOC data, we explored the following four questions: (1) Where might near-surface volatiles have been released at the summits of the Tharsis volcanoes? Is the trapping and subsequent remobilization of degassed volatiles [Scott and Wilson, 19991 adequate to produce eruptions responsible for extensive deposits such as the ones identified on Arsia Mons [Mouginis-Mark, 2002]? To answer this question, we investigated the diversity of eruption styles by studying the summit areas of Arsia, Pavonis and Ascraeus Montes. (2) What are the geomorphic characteristics of the valley system on Hecates Tholus, a volcano that we have previously proposed experienced explosive activity [Mouginis-Murk et al., 1982]? Our inspection of THEMIS data suggests that water release on the volcano took place over an extended period of time, suggesting that hydrothermal activity may have taken place here. (3) How similar are the collapse processes observed at Martian and terrestrial calderas? New THEMIS data provide a more complete view of the entire Olympus Mons caldera, thereby enabling the comparison with the collapse features at Masaya volcano, Nicaragua, to be investigated. (4) What can we learn about the emplacement of long lava flows in the lava plains of Eastern Tharsis? The result of this work provided a greater understanding of the temporal and spatial variations in the eruptive history of volcanoes on Mars, and the

  9. Paleosubmarine Volcanism and Mineralization from North Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper summarizes the history of tectono-magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic ocean basin opening and closing, the large scale marine volcanism and massive sulfide deposits controlled by sea floor hydrothermal circulation systems are the two sharpest features in the geological developing history of the orogenic belt, which are also the most two important aspects related to each other and should be given a special attention in the geological studies in the region.

  10. Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes

    Science.gov (United States)

    McGonigle, A. J. S.; Aiuppa, A.; Giudice, G.; Tamburello, G.; Hodson, A. J.; Gurrieri, S.

    2008-03-01

    We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d-1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d-1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydrothermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.

  11. Investigations of the geochemical controls on anomalous arsenic enrichment in the Santiago Peak Volcanics of Southern California: implications for arsenic distribution in volcanic arc systems

    Science.gov (United States)

    Johnston, E. C.; Pollock, M.; Cathcart, E. M.; AlBashaireh, A.; O'shea, B. M.

    2016-12-01

    The Santiago Peak Volcanics (SPV) of Southern CA and Northern Baja CA, Mexico are remnants of a Cretaceous subaerial volcanic arc system that underwent greenschist facies metamorphism contemporaneous with volcanism. Observed SPV exposed at the surface of Black Mountain Open Space Park (San Diego, CA) exhibit anomalous arsenic (As) enrichment (100 - 480,000 ppm) up to five orders of magnitude greater than average for igneous rocks (1.5 ppm). We hypothesize that these rocks underwent localized syn-volcanic hydrothermal alteration along a highly fractured zone that today trends between N10°W and N20°W, leading to anomalous As enrichment on the spatial scale of tens of meters. We suspect that such As has been further mobilized by modern water-rock interactions. Using standard geochemical techniques (e.g. XRD, XRF, EDX) and mass balance analyses, we aim to (1) summarize the extent of As enrichment in altered SPV, and (2) present an integrated view of the interactions between ancient hydrothermal volcanic arc processes, surficial weathering, and observed As anomalies. Alteration textures of samples range from partially altered phenocrysts (i.e. minimally altered) to massive hydrothermal replacement, in which virtually all primary phases are altered to new hydrothermal minerals such as epidote, Fe-rich chlorite, and sericite (i.e. highly altered). Highly altered rocks contain average As concentrations (mean = 37,680 +/- 15,396 ppm, n = 23) >10,000 times that of minimally altered SPV (mean = 26 +/- 6 ppm As, n = 19). In some rocks, As-rich iron oxide and gypsum containing up to 900 ppm As are present as surficial rinds, suggesting modern day remobilization of As from hydrothermal host minerals, like arsenopyrite. These findings indicate that such As is highly soluble and, therefore, may be further mobilized by physical and chemical weathering. No other trace metals (e.g. Pb, Cu, Ag, Au) are consistently enriched above upper-crustal averages, and As does not always occur

  12. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

    2008-09-20

    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

  13. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.

    Science.gov (United States)

    Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee

    2015-05-01

    We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg.

  14. Hydrothermal mixing: Fuel for life in the deep-sea

    Science.gov (United States)

    Hentscher, M.; Bach, W.; Amend, J.; McCollom, T.

    2009-04-01

    Deep-sea hydrothermal vent systems show a wide range of fluid compositions and temperatures. They reach from highly alkaline and reducing, like the Lost City hydrothermal field, to acidic and reducing conditions, (e. g., the Logatchev hydrothermal field) to acidic and oxidizing conditions (e. g., island arc hosted systems). These apparently hostile vent systems are generally accompanied by high microbial activity forming the base of a food-web that often includes higher organisms like mussels, snails, or shrimp. The primary production is boosted by mixing of chemically reduced hydrothermal vent fluids with ambient seawater, which generates redox disequilibria that serve as energy source for chemolithoautotrophic microbial life. We used geochemical reaction path models to compute the affinities of catabolic (energy-harvesting) and anabolic (biosynthesis) reactions along trajectories of batch mixing between vent fluids and 2 °C seawater. Geochemical data of endmember hydrothermal fluids from 12 different vent fields (Lost City, Rainbow, Logatchev, TAG, EPR 21 °N, Manus Basin, Mariana Arc, etc.) were included in this reconnaissance study of the variability in metabolic energetics in global submarine vent systems. The results show a distinction between ultramafic-hosted and basalt-hosted hydrothermal systems. The highest energy yield for chemolithotrophic catabolism in ultramafic-hosted hydrothermal systems is reached at low temperature and under slightly aerobic to aerobic conditions. The dominant reactions, for example at Rainbow or Lost City, are the oxidation of H2, Fe2+ and methane. At temperatures >60 °C, anaerobic metabolic reactions, e. g., sulphate reduction and methanogenesis, become more profitable. In contrast, basalt-hosted systems, such as TAG and 21 °N EPR uniformly indicate H2S oxidation to be the catabolically dominant reaction over the entire microbial-relevant temperature range. Affinities were calculated for the formation of individual cellular

  15. Understanding Hydrological and Climate Conditions on Early Mars Through Sulfate Cycling and Microbial Activity in Terrestrial Volcanic Systems

    Science.gov (United States)

    Szynkiewicz, A.; Mikucki, J.; Vaniman, D.

    2017-10-01

    Our study is a type of Earth-based investigation in a Mars-analog environment that allows for determination of how changing wet and dry conditions in active volcanic/hydrothermal system affect sulfate fluxes into surface water and groundwater.

  16. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  17. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Jamieson, J. W.; Clague, D. A.; Hannington, M. D.

    2014-06-01

    Hydrothermal sulfide deposits that form on the seafloor are often located by the detection of hydrothermal plumes in the water column, followed by exploration with deep-towed cameras, side-scan sonar imaging, and finally by visual surveys using remotely-operated vehicle or occupied submersible. Hydrothermal plume detection, however, is ineffective for finding hydrothermally-inactive sulfide deposits, which may represent a significant amount of the total sulfide accumulation on the seafloor, even in hydrothermally active settings. Here, we present results from recent high-resolution, autonomous underwater vehicle-based mapping of the hydrothermally-active Endeavour Segment of the Juan de Fuca Ridge, in the Northeast Pacific Ocean. Analysis of the ridge bathymetry resulted in the location of 581 individual sulfide deposits along 24 km of ridge length. Hydrothermal deposits were distinguished from volcanic and tectonic features based on the characteristics of their surface morphology, such as shape and slope angles. Volume calculations for each deposit results in a total volume of 372,500 m3 of hydrothermal sulfide-sulfate-silica material, for an equivalent mass of ∼1.2 Mt of hydrothermal material on the seafloor within the ridge's axial valley, assuming a density of 3.1 g/cm3. Much of this total volume is from previously undocumented inactive deposits outside the main active vent fields. Based on minimum ages of sulfide deposition, the deposits accumulated at a maximum rate of ∼400 t/yr, with a depositional efficiency (proportion of hydrothermal material that accumulates on the seafloor to the total amount hydrothermally mobilized and transported to the seafloor) of ∼5%. The calculated sulfide tonnage represents a four-fold increase over previous sulfide estimates for the Endeavour Segment that were based largely on accumulations from within the active fields. These results suggest that recent global seafloor sulfide resource estimates, which were based mostly

  18. Geochemical characteristics of sinking particles in the Tonga arc hydrothermal vent field, southwestern Pacific

    Science.gov (United States)

    Kim, Hyung Jeek; Kim, Jonguk; Pak, Sang Joon; Ju, Se-Jong; Yoo, Chan Min; Kim, Hyun Sub; Lee, Kyeong Yong; Hwang, Jeomshik

    2016-10-01

    Studies of sinking particles associated with hydrothermal vent fluids may help us to quantify mass transformation processes between hydrothermal vent plumes and deposits. Such studies may also help us understand how various types of hydrothermal systems influence particle flux and composition. However, the nature of particle precipitation out of hydrothermal vent plumes in the volcanic arcs of convergent plate boundaries has not been well studied, nor have the characteristics of such particles been compared with the characteristics of sinking particles at divergent boundaries. We examined sinking particles collected by sediment traps for about 10 days at two sites, each within 200 m of identified hydrothermal vents in the south Tonga arc of the southwestern Pacific. The total mass flux was several-fold higher than in the non-hydrothermal southwest tropical Pacific. The contribution of non-biogenic materials was dominant (over 72%) and the contribution of metals such as Fe, Mn, Cu, and Zn was very high compared to their average levels in the upper continental crust. The particle flux and composition indicate that hydrothermal authigenic particles are the dominant source of the collected sinking particles. Overall, our elemental ratios are similar to observations of particles at the divergent plate boundary in the East Pacific Rise (EPR). Thus, the nature of the hydrothermal particles collected in the south Tonga arc is probably not drastically different from particles in the EPR region. However, we observed consistent differences between the two sites within the Tonga arc, in terms of the contribution of non-biogenic material, the radiocarbon content of sinking particulate organic carbon, the ratios of iron to other metals (e.g. Cu/Fe and Zn/Fe), and plume maturity indices (e.g. S/Fe). This heterogeneity within the Tonga arc is likely caused by differences in physical environment such as water depth, phase separation due to subcritical boiling and associated sub

  19. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Schaltegger, Urs; Brooks, C. Kent; Naslund, H. Richard

    2012-11-01

    compaction-driven flow, explaining the existence of the most incompatible trace element rich horizon, ˜100 m above SH. As the Skaergaard intrusion is also the most classic example of a shallow meteoric hydrothermal system, this work documents the alternating processes in a life of an intrusion with periods of hydrothermal cooling, heating by new intrusions, and related remelting events, which cause the generation of low-δ18O magmas. Our precise temporal framework for intrusion crystallization also provides constraints for the timing of coeval flood basalt volcanism and its synchronicity with the Paleocene-Eocene thermal maximum.

  20. Volcanic jet noise: infrasonic source processes and atmospheric propagation

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; Ogden, D. E.

    2011-12-01

    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  1. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  2. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake

    Science.gov (United States)

    Yamamoto, M.; Miura, S.

    2014-12-01

    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  3. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    Science.gov (United States)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    dominant fragmentation mechanism. Unlike many locations of the IPB, fiamme-rich pyroclastic units were not identified at Lousal. The ore deposits occur in close proximity with this volcanic centre that may have driven hydrothermal circulation that led to ore formation. The volcanic rocks show intense chloritic alteration, indicating that the mineralizing event occurred after most of the rhyolitic units have emplaced. The massive sulfides show abundant sedimentary structures which is not typical in the massive sulfide deposits of the IPB. The Lousal 50 Mt massive sulfide deposit consists of at least 11 ore bodies and was exploited until 1988 mainly for pyrite. The ores mined averaged 0.7% Cu, 0.8%Pb e 1.4%Zn (Strauss, 1971). These relatively low base metal grades led to an evaluation of the contents and distribution of high-tech element in the ore bodies, which would improve the economic viability of mining the deposit. This evaluation is currently focusing on the distribution and mineralogy of selenium, as ores mined in the past were known to be rich in this element. This work benefits from research projects INCA (PTDC/CTE-GIN/67027/2006; Characterization of crucial mineral resources for the development of renewable energy technologies: The Iberian Pyrite Belt ores as a source of indium and other high-technology elements) and project ARCHYMEDES II (POCTI/CTA/45873/2002), both funded by the Fundação para a Ciência e Tecnologia. REFERENCES Strauss, G.K., 1970. Sobre la geologia de la provincia piritifera del Suroeste de la Peninsula Iberica y sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal): Memoria del IGME 77, 1-266. Tornos, F., 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews 28, 259-307.

  4. Thermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralization

    Science.gov (United States)

    Chesley, J.T.; Halliday, A.N.; Snee, L.W.; Mezger, K.; Shepherd, T.J.; Scrivener, R.C.

    1993-01-01

    The metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: 1. (1) exoskarns 2. (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias 3. (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization 4. (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar 39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar 39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210??C myr-1 to ~60??C myr-1 with a mean of 100??C myr-1. These slow cooling rates appear to reflect the addition of

  5. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  6. Investigation of Icelandic rift zones reveals systematic changes in hydrothermal outflow in concert with seismic and magmatic events: Implications for investigation of Mid-Ocean Ridge hydrothermal systems

    Science.gov (United States)

    Curewitz, D.; Karson, J. A.

    2010-12-01

    temporal resolution and allow more direct correlation between tectonic events and shallow crustal permeability changes. Refinement of this spatial and temporal investigation of hydrothermal flow behavior and linkages to tectonic and volcanic activity is being carried out using higher resolution, GIS-based data from these hydrothermal systems. Applying these techniques to seafloor hydrothermal systems along the RIDGE 2000 focus sites and other intensively studied hydrothermal areas along the mid-ocean ridge should reveal similar temporal and spatial correlative relationships between short-term geological events and the shallow architecture of the mid-ocean ridge crest.

  7. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  8. Characterization of Particles Created By Laser-Driven Hydrothermal Processing

    Science.gov (United States)

    2016-06-01

    the 30 MW/cm2 and 500 MW/cm2 intensity range using 15-ns, 351-nm laser pulses with an energy range of 1 J to 0.35 J to strike impure, non - metallic ... inclusions and particles rich in several transition elements, most notably iron and titanium. Analysis of liquid media collected after laser processing...The bulk and crushed obsidian and tektite samples contained inclusions and particles rich in several transition elements, most notably iron and

  9. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  10. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  11. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  12. System of Volcanic activity

    Directory of Open Access Journals (Sweden)

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  13. Gravimetric control of active volcanic processes

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2017-04-01

    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  14. Radon surveys and monitoring at active volcanoes: an open window on deep hydrothermal systems and their dynamics

    Science.gov (United States)

    Cigolini, Corrado; Laiolo, Marco; Coppola, Diego

    2017-04-01

    The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.

  15. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    Science.gov (United States)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  16. Hydrothermal Synthesis of Metal Silicates

    Institute of Scientific and Technical Information of China (English)

    Lii Kwang-Hwa

    2004-01-01

    Organically templated metal phosphates have been extensively studied because of interesting structural chemistry and potential applications in catalysis. However, in most cases the organic templates cannot be removed without collapse of the frameworks. This is in contrast to the high thermal stability and extensive applications of zeolites in refinery and petrochemical processes.Therefore, studies have been directed to the synthesis of transition metal silicates to produce more stable frameworks. Our synthetic methods are twofold, namely mild hydrothermal reactions in Teflon-lined autoclaves at 100-200 ℃ using organic amines as templates and high-temperature,high-pressure hydrothermal reactions in gold ampoules contained in a high-pressure reaction vessel at ca. 550 ℃ and 150 Mpa using alkali metal cations as templates. In this presentation I will report the high-temperature, high-pressure hydrothermal synthesis, crystal structures, and solid-state NMR spectroscopy of a number of new silicates of indium, uranium, and transition metals.

  17. Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust

    DEFF Research Database (Denmark)

    Jasiunas, Lukas; Pedersen, Thomas Helmer; Toor, Saqib Sohail

    2017-01-01

    The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due...

  18. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  19. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  20. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  1. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology

    Science.gov (United States)

    Phillips, Brennan T.

    2017-03-01

    Submarine hydrothermal vent fields introduce buoyant plumes of chemically altered seawater to the deep-sea water column. Chemoautotrophic microbes exploit this energy source, facilitating seafloor-based primary production that evidence suggests may transfer to pelagic consumers. While most hydrothermal plumes have relatively small volumes, there are recent examples of large-scale plume events associated with periods of eruptive activity, which have had a pronounced effect on water-column biology. This correlation suggests that hydrothermal plumes may have influenced basin-scale ocean chemistry during periods of increased submarine volcanism during the Phanerozoic eon. This paper synthesizes a growing body of scientific evidence supporting the hypothesis that hydrothermal plumes are the energetic basis of unique deep-sea pelagic food webs. While many important questions remain concerning the biology of hydrothermal plumes, this discussion is not present in ongoing management efforts related to seafloor massive sulfide (SMS) mining. Increased research efforts, focused on high-resolution surveys of midwater biology relative to plume structures, are recommended to establish baseline conditions and monitor the impact of future mining-based disturbances to the pelagic biosphere.

  2. Microwave Hydrothermal Synthesis PZT of Nanometer Crystal

    Institute of Scientific and Technical Information of China (English)

    Hongxing LIU; Hong DENG; Yan LI; Yanrong LI

    2004-01-01

    It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthesis system was established and the PZT piezoelectric ceramic powder was synthesized. XRD and TEM have been used to characterize the products in detail. The diameter of the PZT powder particle is from 40 to 60 nm.

  3. Revisiting the observed surface climate response to large volcanic eruptions

    Science.gov (United States)

    Wunderlich, Fabian; Mitchell, Daniel M.

    2017-01-01

    In light of the range in presently available observational, reanalysis and model data, we revisit the surface climate response to large tropical volcanic eruptions from the end of the 19th century until present. We focus on the dynamically driven response of the North Atlantic Oscillation (NAO) and the radiative-driven tropical temperature response. Using 10 different reanalysis products and the Hadley Centre Sea Level Pressure observational dataset (HadSLP2) we confirm a positive tendency in the phase of the NAO during boreal winters following large volcanic eruptions, although we conclude that it is not as clear cut as the current literature suggests. While different reanalyses agree well on the sign of the surface volcanic NAO response for individual volcanoes, the spread in the response is often large (˜ 1/2 standard deviation). This inter-reanalysis spread is actually larger for the more recent volcanic eruptions, and in one case does not encompass observations (El Chichón). These are all in the satellite era and therefore assimilate more atmospheric data that may lead to a more complex interaction for the surface response. The phase of the NAO leads to a dynamically driven warm anomaly over northern Europe in winter, which is present in all datasets considered. The general cooling of the surface temperature due to reduced incoming shortwave radiation is therefore disturbed by dynamical impacts. In the tropics, where less dynamically driven influences are present, we confirm a predominant cooling after most but not all eruptions. All datasets agree well on the strength of the tropical response, with the observed and reanalysis response being statistically significant but the modelled response not being significant due to the high variability across models.

  4. Ambient Noise Surface Wave Tomography of the volcanic systems of eastern Iceland

    Science.gov (United States)

    Green, R. G.; Priestley, K. F.; White, R. S.

    2015-12-01

    The Vatnajökull region of central-east Iceland lies above the head of the Iceland mantle plume where the crust is thickest due to enhanced melt supply. As a result the region contains a high density of volcanic rift systems, with six large subglacial central volcanoes. Due to the ice cover, the geological structure of the area and the location of past eruptions are poorly known. Imaging of the crustal velocity heterogeneities beneath the ice sheet aims to reveal much in terms of the structure of these volcanic plumbing systems. Mapping of significant velocity changes through time may also be indicative of movement of melt around the central volcanoes; one of which (Bárðarbunga) experienced a major rifting event in August 2014 (Sigmundsson et al. Nature 2015, Green et al. Nature Geosci. 2015). We present results from tomographic imaging of the volcanic systems in the region, using continuous data from a local broadband seismic network in central-east Iceland which provides excellent ray path coverage of the volcanic systems. This is supplemented by data from the HOTSPOT and ICEMELT experiments and the permanent monitoring stations of the Icelandic Meteorological Office. We process the continuous data following Benson et al. 2007 and automatic frequency-time analysis (FTAN) routines are used to extract more than 9000 dispersion measurements. We then generate Rayleigh wave group velocity maps which we present here. We find low velocity regions beneath the Vatnajökull icecap which are bounded by the surface expression of the volcanic rift systems. The lower velocities also extend north-west to the volcanic system under the Hofsjökull ice cap, and northwards towards Askja and the volcanic systems of the northern volcanic zone. We also produce locations and focal mechanisms of earthquakes caused by magmatic and hydrothermal activity to correlate structure with the activity of the volcanic systems.

  5. Aluminum speeds up the hydrothermal alteration of olivine

    Science.gov (United States)

    Andreani, Muriel; Daniel, Isabelle; Pollet-Villard, Marion

    2014-05-01

    The reactivity of ultramafic rocks toward hydrothermal fluids controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. Although aluminum is common in geological environments and in hydrothermal systems in particular, its role in serpentinization or olivine dissolution has not been investigated under hydrothermal conditions. Nevertheless, abundant Al supply is expected in fluids released from dehydration of metapelites in subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean ridges. Aluminum was also abundant in primitive environments of both the Earth and Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas. We have investigated the role of Al on the hydrothermal alteration of olivine in a series of experiments performed in a low-pressure diamond anvil cell while following the reaction progress in situ by optical imaging and Raman spectroscopy. Experiments were run for 4.5 to 7.5 days with two olivine grains reacted in saline water (0.5 molal NaCl) at 200°C and 300°C, and P=200 MPa. After two days, olivine crystals were fully transformed to an aluminous serpentine, also enriched in iron. The presence of Al in the hydrothermal fluid increases the rate of olivine serpentinization by more than one order of magnitude by enhancing olivine solubility and serpentine precipitation. The mechanism responsible for this increased solubility

  6. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano-hydrothermal

  7. Influence of hydrothermal alteration on phreatic eruption processes in Solfatara (Campi Flegrei)

    Science.gov (United States)

    Mayer, K.; Scheu, B.; Montanaro, C.; Isaia, R.; Dingwell, D. B.

    2014-12-01

    The strong hydrothermal activity exhibited at Campi Flegrei by the Solfatara and Pisciarelli fumaroles points to a significant risk for phreatic eruptions in this densely populated area. Phreatic eruptions, triggered by various processes are hardly predictable in occurrence time and size. Despite their hazard potential, these eruptions, as well as the influence of hydrothermal alteration on their likelihood, magnitude and style, have so far been largely overlooked in experimental volcanology. The physical properties and the mechanical behavior of volcanic rocks are highly dependent on their original magmatic microstructure and on any eventual alteration of those microstructures due to hydrothermal reactions. We have therefore investigated the potential effects of hydrothermal alteration on rock microstructure and, as a consequence, on fragmentation dynamics. Rock samples from the vicinity of the Solfatara fumaroles have been characterized 1) geochemically (X-ray fluorescence, X-ray diffraction), 2) physically (density, porosity, permeability and elastic wave velocity) and 3) mechanically (uniaxial compressive strength, tensile strength). We have investigated the effects of hydrothermal alteration on fragmentation processes using a shock-tube apparatus, operating with Argon gas, water vapor and superheated water at temperatures up to 400°C and maximum pressures of 20 MPa. The three different energy sources within the pores initiating fragmentation, have been investigated: overpressure by 1) Argon gas; or 2) water vapor and due to 3) steam flashing of water. Fragmentation speed, fragmentation efficiency and fragmented particle ejection velocity were measured. Our results indicate, that steam flashing provides the highest energy - resulting in increased particle ejection velocity and higher fragmentation efficiency. Based on our results, we aim to constrain the influence of hydrothermal alteration on the dynamics of phreatic explosions and the effect on the amount of

  8. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  9. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models

    Science.gov (United States)

    Miller, Craig A.; Williams-Jones, Glyn

    2016-06-01

    A new 3D geophysical model of the Mt Tongariro Volcanic Massif (TgVM), New Zealand, provides a high resolution view of the volcano's internal structure and hydrothermal system, from which we derive implications for volcanic hazards. Geologically constrained 3D inversions of potential field data provides a greater level of insight into the volcanic structure than is possible from unconstrained models. A complex region of gravity highs and lows (± 6 mGal) is set within a broader, ~ 20 mGal gravity low. A magnetic high (1300 nT) is associated with Mt Ngauruhoe, while a substantial, thick, demagnetised area occurs to the north, coincident with a gravity low and interpreted as representing the hydrothermal system. The hydrothermal system is constrained to the west by major faults, interpreted as an impermeable barrier to fluid migration and extends to basement depth. These faults are considered low probability areas for future eruption sites, as there is little to indicate they have acted as magmatic pathways. Where the hydrothermal system coincides with steep topographic slopes, an increased likelihood of landslides is present and the newly delineated hydrothermal system maps the area most likely to have phreatic eruptions. Such eruptions, while small on a global scale, are important hazards at the TgVM as it is a popular hiking area with hundreds of visitors per day in close proximity to eruption sites. The model shows that the volume of volcanic material erupted over the lifespan of the TgVM is five to six times greater than previous estimates, suggesting a higher rate of magma supply, in line with global rates of andesite production. We suggest that our model of physical property distribution can be used to provide constraints for other models of dynamic geophysical processes occurring at the TgVM.

  10. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    Science.gov (United States)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and

  11. Geochemistry of coastal sands of Eastern Mediterranean: The case of Nisyros volcanic materials

    DEFF Research Database (Denmark)

    Tzifas, I.T.; Misaelides, P.; Godelitsas, A.

    2017-01-01

    Coastal sand samples collected from the northern part of Nisyros volcanic island (Dodecanese, Greece) were investigated for first time for their potential in strategic metals and compared with parental rocks of the island which are Quaternary volcanics with alternating lava flows, pyroclastic...... layers and lava domes and relevant materials located near granitoids of Northern Greece. The PXRD and SEM-EDS study of the sands revealed enhanced content of feldspars, Fe-Mn oxides, magnetite, tourmaline, pyroxenes, ilmenites, along with zircons, apatite and sulfide inclusions. The fresh hydrothermally...... (mainly ilmenite), and strategic metals including V (1920 mg/kg) and Nb (245 mg/kg), in the coastal sand. The low REE concentration(ΣREE + Y = 240 mg/kg) could be attributed to the absence of REE-rich minerals. Moreover, the sandsexhibit different geochemical patterns compared to the volcanic source rocks...

  12. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  13. High-resolution Topography of PACMANUS and DESMOS Hydrothermal Fields in the Manus Basin through ROV "FAXIAN"

    Science.gov (United States)

    Luan, Z.; Ma, X.; Yan, J.; Zhang, X.; Zheng, C.; Sun, D.

    2016-12-01

    High-resolution topography can help us deeply understand the seabed and related geological processes (e.g. hydrothermal/cold spring systems) in the deep sea areas. However, such studies are rare in China due to the limit of deep-sea detection technology. Here, we report the advances of the application of ROV in China and the newly measured high-resolution topographical data in PACMANUS and DESMOS hydrothermal fields. In June 2015, the ROV "FAXIAN" with a multibeam system (Kongsberg EM2040) was deployed to measure the topography of PACMANUS and DESMOS hydrothermal fields in the Manus basin. A composite positioning system on the ROV provided long baseline (LBL) navigation and positioning during measurements, giving a high positioning accuracy (better than 0.5m). The raw bathymetric data obtained were processed using CARIS HIPS (version 8.1). Based on the high-resolution data, we can describe the topographical details of the PACMANUS and DESMOS hydrothermal fields. High-resolution terrain clearly shows the detailed characters of the topography in the PACMANUS hydrothermal field, and some cones are corresponding to the pre discovered hydrothermal points and volcanic area. Most hydrothermal points in the PACMANUS hydrothermal field mainly developed on the steep slopes with a gradient exceeding 30 °. In contrast, the DESMOS field is a caldera that is approximately 250 m deep in the center with an E-W diameter of approximately1 km and a N-S diameter of approximately 2 km. The seafloor is much steeper on the inner side of the circular fracture. Two highlands occur in the northern and the southern flanks of the caldera. Video record indicated that pillow lava, sulfide talus, breccia, anhydrite, outcrops, and sediment all appeared in the DESMOS field. This is the first time for the ROV "FAXIAN" to be used in near-bottom topography measurements in the hydrothermal fields, opening a window of deep-sea researches in China.

  14. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.

    2012-01-01

    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed...

  15. Electricity generation from hydrothermal vents

    Science.gov (United States)

    Aryadi, Y.; Rizal, I. S.; Fadhli, M. N.

    2016-09-01

    Hydrothermal vent is a kind of manifestation of geothermal energy on seabed. It produces high temperature fluid through a hole which has a diameter in various range between several inches to tens of meters. Hydrothermal vent is mostly found over ocean ridges. There are some 67000 km of ocean ridges, 13000 of them have been already studied discovering more than 280 sites with geothermal vents. Some of them have a thermal power of up to 60 MWt. These big potential resources of energy, which are located over subsea, have a constraint related to environmental impact to the biotas live around when it becomes an object of exploitation. Organic Rankine Cycle (ORC) is a method of exploiting heat energy to become electricity using organic fluid. This paper presents a model of exploitation technology of hydrothermal vent using ORC method. With conservative calculation, it can give result of 15 MWe by exploiting a middle range diameter of hydrothermal vent in deep of 2000 meters below sea level. The technology provided here really has small impact to the environment. With an output energy as huge as mentioned before, the price of constructing this technology is low considering the empty of cost for drilling as what it should be in conventional exploitation. This paper also presents the comparison in several equipment which is more suitable to be installed over subsea.

  16. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.

    2012-01-01

    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed that th...

  17. HYDROTHERMAL CRACKING OF RESIDUAL OILS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrothermal cracking of heavy oils, such as Canadian oil sand bitumen and Arabian heavy vacuum residue, as well as their model compound were performed over sulfided Ni/Al2O3 and NiMo/Al2O3 catalysts under 663~703 K and 6.0~8.0 MPa of hydrogen pressure in a batch autoclave reactor. According to the reaction mechanism of hydrothermal cracking, a small amount of free redical initiators, such as di-tert-peroxide, sulfur, etc., was added into the feed to generate free redicals at lower temperature, and obviously showed promotional effect on the conversion of hydrocarbons. The reaction mechanisms of hydrothermal cracking as well as the enhancing effect of initiators were studied by a probe reaction with 1-phenyldodecane as a model compound. The hydrothermal cracking of hydrocarbon proceeded via free redical mechanism and hydrogenating quench. The initiators might easily generate free redicals under reaction temperature, these redicals might abstract H from hydrocarbon molecule and reasonably initiate the chain reactions, therefore, promote the conversion of hydrocarbon even at lower reaction temperature.

  18. Hydrothermal alteration and melting of the crust during the Columbia River Basalt-Snake River Plain transition and the origin of low-δ18O rhyolites of the central Snake River Plain

    Science.gov (United States)

    Colón, Dylan P.; Bindeman, Ilya N.; Ellis, Ben S.; Schmitt, Axel K.; Fisher, Christopher M.

    2015-05-01

    -δ18O (0-1‰) and more radiogenic εHf. We suggest that the shallow crust's low-δ18O composition is the result of hydrothermal alteration which was driven by a combination of normal faulting and high heat fluxes from intruding Yellowstone plume-derived basalts shortly prior to the onset of silicic magmatism. Furthermore, zircon diversity in the J-P Desert units suggests rapid assembly of zircon-bearing melts of varying isotopic composition prior to eruption, creating well-mixed magmas with heterogeneous zircons. We suggest that this hydrothermal priming of the crust followed by remelting upon further heating may be a common feature of intraplate mantle plume volcanism worldwide.

  19. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    The extensive Quaternary volcanism in the Payenia volcanic province, Mendoza, Argentina, is investigated in this study by major and trace element analyses, Sr, Nd, Hf and Pb-isotopic analyses and Zr-Hf isotope dilution data on samples from almost the entire province. The samples are mainly...... in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...

  20. Earthquakes increase hydrothermal venting and nutrient inputs into the Aegean

    Science.gov (United States)

    Dando, P. R.; Hughes, J. A.; Leahy, Y.; Taylor, L. J.; Zivanovic, S.

    1995-05-01

    Areas of submarine gas and water venting around the island of Milos, in the Hellenic volcanic island arc, were mapped. Water samples were collected from five stations in the geothermally active Paleohori Bay on 15 March 1992. Seismic events, of M s 5.0 and 4.4, occurred south of the Bay on 20 March and the sampling was repeated after these. Phosphate and manganese in the water column increased by 360% after the seismic activity. Analysis of water samples collected from gas and water seeps and of interstitial water from sediment cores showed that the hot sediment in the Bay was enriched in phosphate, to a mean concentration of 65 μmol l -1 in the interstitial water. The number of geothermally active areas in the Aegean, together with the extent of venting and the frequency of earthquakes suggests that the hydrothermal areas may be an important source of phosphate in this oligotrophic Sea.

  1. Synthesis of hydrogen cyanide under simulated hydrothermal conditions

    Science.gov (United States)

    Pinedo-González, Paulina

    Nitrogen is a fundamental element for life, where is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Atmospheric and planetary models suggest that nitrogen was abundant in the early atmospheres of Earth as dinitrogen (N2 ), an inert gas under normal atmospheric conditions. To be available for prebiotic synthesis it must be converted into hydrogen cyanide (HCN), ammonia (NH3 ) and/or nitric oxide (NO), in a process referred to as nitrogen fixation. Due to the strength of the triple bond in N2 , nitrogen fixation, while thermodynamically favored is kinetically restricted. In a reducing atmosphere dominated by CH4 -N2 , thunderstorm lightning efficiently produces HCN and NH3 (Stribling and Miller, 1987). Nevertheless, photochemical and geochemical constraints strongly suggest that the early atmosphere was weakly reducing, dominated by CO2 and N2 with traces of CH4 , CO, and H2 (Kasting, 1993). Under these conditions, HCN is no longer synthesized in the lightning channel and instead NO is formed (Navarro-Gonźlez, et al., 2001). In volcanic plumes, where magmatic gases a were more reducing than in the atmosphere, NO can also be formed by the lava heat (Mather et al., 2004) or volcanic lightning (Navarro-Gonźlez et al., 1998). Surprisingly, dinitrogen can be a reduced to NH3 in hydrothermal systems (Brandes et al., 1998), but the formation of HCN and its derivates were not investigated. The present work explores the possibility of the formation of HCN as well as other nitrile derivatives catalyzed by mineral surfaces in hydrothermal vents. To simulate a hydrothermal atmosphere, the experiments were carried out in a stainless steel Parr R minireactor with a 0.1 M NH4 HCO3 solution (200 ml) with or without a mineral surface exposed at 1 bar at temperatures ranging from 100 to 375° C. Different mineral matrices are been investigated. Our preliminary results

  2. Hydrothermal Processes in the Solar System:A Review

    Institute of Scientific and Technical Information of China (English)

    Franco PIRAJNO; Martin J. Van KRANENDONK; Long XIAO

    2008-01-01

    最近美国航空与空间计划署(NASA)开展的卡西尼-惠更斯外空探测计划发现,在直径为500 km的卫星--土卫二上存在水冰和间隙泉的喷发活动.这一现象和在火星上工作的"机遇号"和"勇气号"漫游车所发现的液态水一起,证明了除地球以外的其他星球上过去和现在都存在水,其中的一些星体还有火山活动的证据,这意味着这些星球上可能存在过热液活动地质过程.讨论了火星、木卫二和土卫二可能存在的热液系统类型.这些热液系统类型是根据地球上的构造背景进行相似性研究后得出的,例如海底、火山和裂谷系统.将东非裂谷和贝加尔湖裂谷系统与火星Tharsis高原上巨大的水手大峡谷进行了对比,这些地区都是由地幔柱作用下构造-热液活动导致的地壳抬升、火山和裂谷作用.在火星上,地下冰或低温层会在火山活动和(或)小行星或彗星撞击作用下溶解而形成热液对流.%Recent images from the NASA Cassini-Huygens mission to the outer planets have shown evidence of water ice and gey ser-like jets on Enceladus, a Saturnian moon, only about 500 km across. This, together with the data provided by numerous mis sions to Mars, including the Spirit and Opportunity rovers, are evidence that liquid water is, and was, present on planetary bodies other than the Earth in the solar system. Some of these bodies also contain evidence of volcanism, signifying that hydrothermal processes are, or may have been, active in their geological history. In this paper, we speculate on the types of hydrothermal sys tems that could have been and/or may be present on Mars, Europa (a moon of Jupiter) and Enceladus. These hydrothermal sys tems are modelled on terrestrial analogues, such as those on the seafloor, volcanic edifices, and in rift structures. Analogies are proposed between the East African Rift System and the Baikal Rift System with the Tharsis regi on of Mars, including the

  3. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  4. Influence of hydrothermal flux on arsenic geochemical balance of seawater. Kaisuichu no hiso no chikyu kagaku balance ni taisuru nessui no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, N. (Keio University, Tokyo (Japan). Faculty of Science and Technology)

    1993-11-05

    It was recently confirmed that a large quantity of hydrothermal solution has been gushing out at back-arc basins and ocean ridges. Therefore, effects of the hydrothermal solution on the seawater composition have been studied in many ways. In this report, balance of arsenic in seawater is investigated since arsenic has a higher concentration in hydrothermal solution than in seawater. Trial calculations are conducted based on the arsenic concentration in hydrothermal solution and the seawater/hydrothermal-solution circulation amount. As a result, it is assumed that the hydrothermal input flux from island-arc/back-arc basins into seawater is much higher than that from ocean ridges. The total hydrothermal input flux is (0.28-5.36) [times] 10[sup 11]g/year, which is equivalent to or higher than that of river flux. The total input flux of arsenic including input from volcanic gas is in the same order as the output flux of arsenic due to the pyrite formation within submarine sediment. It is estimated that the subduction flux into the depth of the crust is lower than the hydrothermal flux from island-arc/back-arc basins. Therefore, it is inferred that most of the arsenic subducted into the crust would be circulated in the ocean. 23 refs., 2 tabs.

  5. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  6. Io. [theories concerning volcanic activity

    Science.gov (United States)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  7. Origin of native copper in the Paraná volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach

    Science.gov (United States)

    Baggio, Sérgio Benjamin; Hartmann, Léo Afraneo; Lazarov, Marina; Massonne, Hans-Joachim; Opitz, Joachim; Theye, Thomas; Viefhaus, Tillmann

    2017-06-01

    Different hypotheses exist on the origin of native copper mineralization in the Paraná volcanic province that invoke magmatic, late magmatic, or hydrothermal events. The average copper content in the host basalts is 200 ppm. Native copper occurs as dendrites in cooling joints, fractures, and cavities within amygdaloidal crusts. Cuprite, tenorite, chrysocolla, malachite, and azurite occur in breccias at the top of the lava flows. Chemical analyses, X-ray diffraction, Raman spectrometry, electron microprobe analyses, LA-ICP-MS, and Cu isotope analyses were used to evaluate the origin of native copper in the volcanic province. Copper contents in magnetite of the host basalt are close to 1 wt.%, whereas clinopyroxene contains up to 0.04 wt.% Cu. Cretaceous hydrothermal alteration of magnetite and clinopyroxene released copper to generate hydrothermal copper mineralization. The isotopic composition of the native copper in the Paraná volcanic province varies from -0.9‰ in the southeastern portion (Rio Grande do Sul state) to 1.9‰ in the central portion (Paraná state) of the province. This study supports a hydrothermal origin followed by supergene enrichment for native copper in the Paraná volcanic province.

  8. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, J.D.; Wood, B.J. (Bristol Univ. (England))

    1991-01-01

    The aim of this paper is to evaluate the factors which control the partitioning of alkaline earth elements (Ba and Sr) between plagioclase feldspar and silicate melts, specifically the respective role of crystal chemistry, melt chemistry, and temperature. We have selected plagioclase because of the wealth of volcanic and experimental data, the compositional simplicity of plagioclase, and its relevance to many petrological problems. We begin our study by examining experimental data on Sr partitioning between plagioclase and hydrothermal solutions in an attempt to constrain the role of crystal chemistry. We establish a simple thermodynamic model for trace element partitioning between plagioclase and hydrothermal solutions. This treatment is then extended to the plagioclase-melt system using available data from both experimental and volcanic systems in order to derive a general equation for Sr and Ba partitioning. Finally we consider the geochemical applications and implications of our findings.

  9. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    Science.gov (United States)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-05-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  10. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    Science.gov (United States)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  11. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    Science.gov (United States)

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-05-09

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  12. Hydrothermal precious-metal deposits related to graben-calderas of the Sierra Madre Occidental

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Labarthe-Hernandez, G.; Nieto-Obregon, J.; Tristan-Gonzalez, M.; Gonzalez-Partida, E.

    2007-05-01

    The Sierra Madre Occidental (SMO) covers the NW portion of Mexico and it is the host for several important precious metal mine operations, such as Tayoltita, Cienega, Topia, Fresnillo, Zacatecas, Guanajuato and Bolaños, just to mention a few. The southern part of the Basin and Range extension affected also NW Mexico and formed NW- to NE-trending normal faults that bound many large grabens, which are particularly long and deep in the southern SMO. Both graben formation and mid-Tertiary silicic volcanic activity coincided in space and time, particularly for the 38-23 Ma period, the Ignimbrite Flare-up event, but this activity dates back to Eocene and was as young as Miocene. This volcanism included large rhyolitic domes, too. At the southern SMO, the vents of this silicic volcanism are related to graben's master faults and we have named them graben-calderas. Evidences include large pyroclastic dikes and post-ignimbrite aligned rhyolitic domes and lava dikes. All these features were found along the graben-caldera walls or on the graben's shoulders. Some of these vents are related to gold and silver hydrothermal mineralization. In most cases a paleo-lake filled the graben-caldera for a period of time, either during the ignimbrite emplacement or after it. Some of the graben-caldera ignimbrites were deposited in subaqueous environments and post-ignimbrite rhyolitic domes and dikes were intruded in non-consolidated water-saturated tuffs or sedimentary deposits. This lacustrine environment provided the necessary water for the hydrothermal system. The combination of all these factors in space and time, grabens+volcanism+water, resulted in the development of precious-metal hydrothermal ore deposits. Bolaños mine in the Bolaños graben represent our case-study, but we have confirmed the same tectono-volcanic-lake relationship at other mine-districts along the SMO. We conclude that locating the fissural vents of the silicic ignimbrites by means of just geologic mapping is be

  13. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China

    Institute of Scientific and Technical Information of China (English)

    CHEN Chentung A; WANG Bingjye; HUANG Jungfu; LOU Jiannyuh; KUO Fuwen; TU Yuehyuan; TSAI Hsienshiow

    2005-01-01

    Kueishan Tao (24°51'N, 121 °55′E) is located at a tectonic junction of the fault system extension of Taiwan and the southern rifting end of the Okinawa Trough. A cluster of over 30 vents, at a water depth of about 10~20 m off the eastern tip of the tao emits hydrothermal fluids and volcanic gases such as H2S. A sulfur chimney or mound, formed by condensation of the sulfur contained in the hydrothermal fluid, can usually be seen around the vents. The tallest chimney reaches 6 m. Vents discharging a yellowish fluid have temperatures between 92 and 116 ℃ and flow rates as high as 158 t/h; vents discharging a whitish fluid have lower temperatures of between 48 and 62 ℃ and lower flow rates of about 7.0 t/h. These world-record, breaking low pH (as low as 1.52) fluids are totally different from those found in the black and white-chimneys of the mid-ocean ridges. Magnesium and SiO2 data indicate that these hydrothermal fluids probably originate from a depth of 915~1 350 m below the surface.While the ratios of major ions relative to the sodium of these hydrothermal fluids are quite similar to open ocean water, the ratios of SO4 and chloride to sodium seem to be higher for some of the vents. It is suggested that the volcanic gases contribute SO4 and ohlorine to the fluids, hence increasing their ratios relative to sodium. Some hydrothermal fluids, however, are found to be depleted of the major elements which can have been caused by phase separation. The concentrations of iron and manganese in the fluids are much lower than those found in the mid-ocean ridges, while the aluminium content is higher. Four species of benthos (Xenograpsus testudinatus, a snail, a sea anemone, and a Sipuncala), 1 species of algae (Corallinaceae), and 1 species of fish (Siganus fusescens) were recorded near the hydrothermal vents. A mitoehondria DNA sequence comparison of Xenograpsus testudinatus with 6 other decapod species shows the greatest number of nitrogen base differences in the

  14. REE and Sr-Nd isotope characteristics of hydrothermal chimney at Jade area in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    LIU Yanguang; MENG Xianwei; FU Yunxia

    2004-01-01

    Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. 87Sr/86Sr and 143Nd/144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREEenriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.

  15. Geochemistry of the Koshelev Volcano-Hydrothermal System, Southern Kamchatka, Russia

    Science.gov (United States)

    Taran, Y.; Kalacheva, E.

    2015-12-01

    Koshelev is the southernmost volcano of the Kamchatkan volcanic front where magmatic plumbing systems of the Kamchatkan subduction zone cross a thick layer of the oil-gas-bearing Neogene sedimentary strata of Western Kamchatka. The volcanic massive hosts a powerful hydrothermal system, which has been drilled in early 1980s. Deep wells tapped a hot (ca. 300ºC) saline solution (up to 40 g/L of Cl), whereas the upper part of the system is a typical steam cap with temperature close to 240ºC. Two hydrothermal fields of the volcano (Upper and Lower) discharge saturated or super-heated (up to 150ºC) steam and are characterized by numerous hot pools and low flow-rate springs of steam-heated waters enriched in boron and ammonia. There is also a small lateral group of warm Na-Ca-Cl-SO4 springs (40ºC). We report here our data and review the literature geochemical data on the chemical and isotopic composition of waters and hydrothermal vapours of the Koshelev system. Data on the gas composition include He and C isotopes, as well as the chemical and isotopic composition of light hydrocarbons. Water geochemistry includes literature data on water isotopes of the deep brine and trace elements and REE of steam-heated waters. A conceptual model of the system is presented and discussed.

  16. The Magma-Hydrothermal System at Mutnovsky Volcano, Kamchatka Peninsula, Russia

    Directory of Open Access Journals (Sweden)

    Alexey Kiryukhin

    2009-03-01

    Full Text Available What is the relationship between the kinds of volcanoes that ring the Pacific plate and nearby hydrothermal systems? A typical geometry for stratovolcanoes and dome complexes is summit fumaroles and hydrothermal manifestations on and beyond their flanks. Analogous subsurface mineralization is porphyry copper deposits flanked by shallow Cu-As-Au acid-sulfate deposits and base metal veins. Possible reasons for this association are (1 upward and outward flow of magmatic gas and heat from the volcano’s conduit and magma reservoir, mixing with meteoric water; (2 dikes extending from or feeding towards the volcano that extend laterally well beyond the surface edifice, heating a broad region; or (3 peripheral hot intrusions that are remnants of previous volcanic episodes, unrelated to current volcanism. These hypotheses are testable through a Mutnovsky Scientific Drilling Project (MSDP that was discussed in a workshop during the last week of September 2006 at a key example, the Mutnovsky Volcano of Kamchatka. Hypothesis (1 was regarded as the most likely. It is also the most attractive since it could lead to a new understanding of themagma-hydrothermal connection and motivate global geothermal exploration of andesitic arc volcanoes.

  17. The hydrothermal system in central Twin Falls County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Young, H.W.

    1989-01-01

    This report describes the results of a study to define the areal extent and thickness of the hydrothermal reservoir in Twin Falls County and to propose a generalized conceptual model of the system. Specific objectives of the study, done in cooperation with the Idaho Department of Water Resources, were to evaluate the existing resource as to its volume, temperature, pressure, and water chemistry, and to determine the effects of present development on the resource. The study was limited to Twin Falls County. Some geologic, geochemical, and hydrologic data for the hydrothermal system were available from earlier studies. However, information about the subsurface at depths greater than 1000 feet was sparse. One well for which data were available was drilled to 2525 feet; several others were drilled to depths between 1200 and 2200 feet. Direct-current electrical resistivity soundings conducted during the summer of 1985 as part of the study provided valuable information about the subsurface at depths less than about 6000 feet. Interpretation of computer-generated subsurface profiles constructed from the soundings provided the basis for determining the thickness of the Idavada Volcanics over much of the study area. 42 refs., 9 figs., 3 tabs.

  18. An authoritative global database for active submarine hydrothermal vent fields

    Science.gov (United States)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  19. Hydrothermal activity on the summit of Loihi Seamount, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, H.; Tsubota, H.; Nakai, T.; Ishibashi, J.; Akagi, T.; Gamo, T.; Tilbrook, B.; Igarashi, G.; Kodera, M.; Shitashima, K.

    1987-01-01

    Loihi Seamount is located about 30km southeast of the Island of Hawaii; it rises from the sea floor at a depth of 4000m and reaches a maximum elevation of 1000m blow sea level. Oceanographic studies including CTD survey of warm sites and bottom photography confirmed several hydrothermal fields on the summit of the seamount. The summit is covered with hydrothermal plumes which are extremely rich in methane, helium, carbon dioxide, iron and manganese; the maximum concentration of helium is 91.8 n1/1, the highest so far reported for open-ocean water. The /sup 3/He//sup 4/He ratio of helium injected into seawater is 14 times the atmospheric level. The 3He/heat and CO/sub 2//heat ratios in the plumes are one to two orders of magnitude greater than those at oceanic spreading centers, implying a more primitive source region for hotspot volcanism. The plumes also show negative pH anomalies up to half a pH unit from ambient owing to the high injection rate of CO/sub 2/. (4 figs, 3 photos, 1 tab, 31 refs)

  20. Microbial Geochemistry in Shallow-Sea Hydrothermal Systems

    Science.gov (United States)

    Amend, J. P.; Pichler, T.

    2006-12-01

    Shallow-sea hydrothermal systems are far more ubiquitous than generally recognized. Approximately 50-60 systems are currently known, occurring world-wide in areas of high heat flow, such as, volcanic island arcs, near-surface mid-ocean ridges, and intraplate oceanic volcanoes. In contrast to deep-sea systems, shallow- sea vent fluids generally include a meteoric component, they experience phase separation near the sediment- water interface, and they discharge into the photic zone (type locality" for numerous cultured hyperthermophiles, including the bacteria Aquifex and Thermotoga, the crenarchaeon Pyrodictium, and the Euryarchaeota Archaeoglobus and Pyrococcus. Isotope-labeled incubation experiments of heated sediments and an array of culturing studies have shown that simple organic compounds are predominantly fermented or anaerobically respired with sulfate. 16S rRNA gene surveys, together with fluorescent in situ hybridization studies, demonstrated the dominance of key thermophilic bacteria and archaea (e.g., Aquificales, Thermotogales, Thermococcales, Archaeoglobales) in the sediments and the presence of a broad spectrum of mostly uncultured crenarchaeota in several vent waters, sediment samples, and geothermal wells. Thermodynamic modeling quantified potential energy yields from aerobic and anaerobic respiration reactions and fermentation reactions. In contrast to their deep-sea counterparts, shallow-sea hydrothermal systems are often characterized by high arsenic concentrations of more than 500-times seawater levels. The arsenic, generally present as arsenite (As^{III}) in the vent fluid, feeds local biogeochemical arsenic cycles. Thus, shallow sites are excellent hunting grounds for novel extremophiles that may gain metabolic energy by catalyzing arsenic redox reactions. Particularly the Ambitle site, where hydrothermal fluids contain up to 1,000 μg/L arsenite, has proven to be exceptional. There, the arsenic has a wide-ranging impact on micro-, meio-, and

  1. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    Science.gov (United States)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  2. Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust

    DEFF Research Database (Denmark)

    Jasiunas, Lukas; Pedersen, Thomas Helmer; Toor, Saqib Sohail

    2017-01-01

    The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due...... to its organic nature (e.g. straw, horse manure and sphagnum) and ample availability with an annual production of over 3.4 million metric tonnes, globally. Locally acquired samples were analyzed and converted hydrothermally. A biocrude yield of 48% on dry ash-free (DAF) basis was obtained...

  3. Geology and geothermal potential of Alid Volcanic Center, Eritrea, Africa

    Energy Technology Data Exchange (ETDEWEB)

    Clynne, M.A.; Duffield, W.A.; Fournier, R.O.; Janik, C.J. [and others

    1996-12-31

    Alid volcanic center is a 700-meter-tall mountain in Eritrea, northeast Africa. This mountain straddles the axis of an active crustal-spreading center called the Danakil Depression. Though volcanism associated with this crustal spreading is predominantly basaltic, centers of silicic volcanism, including Alid, are present locally. Silicic centers imply a magma reservoir in the crust and thus a possible potent shallow heat source for a hydrothermal-convection system. Boiling-temperature fumaroles are common on Alid, and their gas compositions indicate a reservoir temperature of at least 250{degrees}C. Alid is a 7-km x 5-km structural dome. The domed rocks, in decreasing age, are Precambrian schist and granite, a sequence of intercalated sedimentary rocks and basaltic lavas, and a sequence of basaltic and rhyolitic lava flows. Though isotopic ages are not yet determined, the domed volcanic rocks of Alid appear to be late Tertiary and/or Quaternary. Doming was likely caused by intrusion of relatively low density silicic magma into the upper crust. Subsequent to dome formation, a substantial volume of this magma was erupted from a vent near the west end of the summit area of the dome. This eruption produced a blanket of plinian rhyolite pumice over most, if not all, of the dome and fed pyroclastic flows that covered the part of the Danakil Depression around the base of the dome. The pumice deposits contain abundant inclusions of granophyric, miarolitic pyroxene granite, chemically indistinguishable from the pumice. This granite likely represents the uppermost part of the magma reservoir, which crystallized just prior to the pumice eruption.

  4. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Sander, S.G.; Jayachandran, S.; Nath, B.N.; Nagaraju, G.; Chennuri, K.; Vudamala, K.; Lathika, N.; Mascarenhas-Pereira, M.B.L.

    version: Environ. Pollut., vol.194; 2014; 138-144 Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin Parthasarathi Chakraborty*1, Sylvia G. Sander2, Saranya Jayachandran1, B. Nagender Nath1, , G... sulphide deposits on the seafloor. Mining companies are exploring underwater volcanic vents, hoping to extract metals such as gold (Au), copper (Cu), zinc (Zn), rare earth element etc (Birney et al., 2006). The initial stages of exploration are still...

  5. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  6. Los volcanes y los hombres

    OpenAIRE

    García, Carmen

    2007-01-01

    Desde las entrañas de la tierra, los volcanes han creado la atmósfera, el agua de los océanos, y esculpido los relieves del planeta: son, pues, los zahoríes de la vida. Existen volcanes que los hombres explotan o cultivan, y otros sobre los cuales se han construido observatorios en los que se llevan a cabo avanzadas investigaciones científicas.

  7. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  8. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  9. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta

    2011-01-01

    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  10. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, J. R.; Mangan, M. T.; McPhee, D.; Wannamaker, P. E.

    2016-08-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2-5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5-10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5-10% basaltic partial melt.

  11. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    Science.gov (United States)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  12. Surface tension driven processes densify and retain permeability in magma and lava

    Science.gov (United States)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    densification and permits continued outgassing. We propose a regime diagram of the relative dominance of surface tension and gravitational compaction that illustrates the interplay between viscosity, permeability, lengthscale and timescale. We contend that surface tension-driven magma densification is an as-yet overlooked phenomenon that extends our volcanological, geothermal and hydrothermal knowledge of how gas can escape densifying volcanic plugs and why dense lavas remain permeable.

  13. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  14. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  15. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-03-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  16. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    Science.gov (United States)

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  17. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    Science.gov (United States)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site

  18. Impact Hydrothermal Alteration of Terrestrial Basalts: Explaining the Rock Component of the Martian Soil

    Science.gov (United States)

    Nelson, M. J.; Newsom, H. E.

    2003-01-01

    The large energy in terrestrial impacts can create hydrothermal systems and consequently produce hydrothermal alteration materials. In this study we consider the chemistry of impact and volcanic hydrothermal alteration under relatively low water/rock ratios in basaltic or a somewhat more evolved protolith. Our work on the Lonar and Mistastin craters suggests that Fe-rich clays, including Fe-rich saponite can be produced. We postulate that similar alteration materials are produced on Mars and could be a component of the martian soil or regolith, contrary to some earlier studies. The martian regolith is a globally homogenized product of various weathering processes. The soil [1] is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine [2, 3]. In this study we consider the contributions of impacts and consequent hydrothermal processes to the rock component of the martian soil.

  19. Sustainable carbon materials from hydrothermal processes

    CERN Document Server

    Titirici, Maria-Magdalena

    2013-01-01

    The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application fo

  20. LANDSAT detection of hydrothermal alteration in the Nogal Canyon Cauldron, New Mexico

    Science.gov (United States)

    Vincent, R. K.; Rouse, G.

    1977-01-01

    In 1974 a circular-shaped iron oxide anomaly was observed in an image of a LANDSAT frame centered near Truth or Consequences, New Mexico. Field examination of the anomaly has shown that it coincides with a zone of hydrothermal alteration on the northern edge of the Nogal Canyon Cauldron. The altered area contains clay minerals ranging in colors from white to vivid red, the latter presumably resulting from hematite staining. In situ gas measurements showed no evidence of active hydrogen sulfide seepage. Preliminary geochemical analyses of grab samples have detected no significant amounts of mineralization. Whereas this area does not at present appear to be economically important, it provides an example of how LANDSAT can be utilized in reconnaissance mapping for cauldrons, calderas, and other volcanic features which display hydrothermal alteration.

  1. The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park: Chapter H in Integrated geoscience studies in Integrated geoscience studies in the Greater Yellowstone Area—Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem

    Science.gov (United States)

    Rye, Robert O.; Truesdell, Alfred Hemingway; Morgan, Lisa A.

    2007-01-01

    problematical. The designation of source areas depends on assumptions about the age of the deep water, which in turn depend on assumptions about the nature of the deep thermal system. Modeling, based on published chloride-flux studies of thermal waters, suggests that for a 0.5- to 4-km-deep reservoir the residence time of most of the thermal water could be less than 1,900 years, for a piston-flow model, to more than 10,000 years, for a well-mixed model. For the piston-flow model, the deep system quickly reaches the isotopic composition of the recharge in response to climate change. For this model, stable-isotope data and geologic considerations suggest that the most likely area of recharge for the deep thermal water is in the northwestern part of the Park, in the Gallatin Range, where major north-south faults connect with the caldera. This possible recharge area for the deep thermal water is at least 20 km, and possibly as much as 70 km, from outflow in the thermal areas, indicating the presence of a hydrothermal system as large as those postulated to have operated around large, ancient igneous intrusions. For this model, the volume of isotopically light water infiltrating in the Gallatin Range during our sampling period is too small to balance the present outflow of deep water. This shortfall suggests that some recharge possibly occurred during a cooler time characterized by greater winter precipitation, such as during the Little Ice Age in the 15th century. However, this scenario requires exceptionally fast flow rates of recharge into the deep system. For the well-mixed model, the composition of the deep reservoir changes slowly in response to climate change, and a significant component of the deep thermal water could have recharged during Pleistocene glaciation. The latter interpretation is consistent with the recent discovery of warm waters in wells and springs in southern Idaho that have δD values 10–20 ‰ lower than the winter snow for their present-day high

  2. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    Science.gov (United States)

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  3. Sulfur isotopic characteristics of volcanic products from the September 2014 Mount Ontake eruption, Japan

    Science.gov (United States)

    Ikehata, Kei; Maruoka, Teruyuki

    2016-07-01

    Components and sulfur isotopic compositions of pyroclastic materials from the 2014 Mt. Ontake eruption were investigated. The volcanic ash samples were found to be composed of altered volcanic fragments, alunite, anhydrite, biotite, cristobalite, gypsum, ilmenite, kaolin minerals, native sulfur, orthopyroxene, plagioclase, potassium feldspar, pyrite, pyrophyllite, quartz, rutile, and smectite, and most of these minerals were likely derived from the acidic alteration zones of Mt. Ontake. The absence of juvenile material in the eruptive products indicates that the eruption was phreatic. The sulfur isotopic compositions of the water-leached sulfate, hydrochloric acid-leached sulfate, acetone-leached native sulfur, and pyrite of the samples indicate that these sulfur species were produced by disproportionation of magmatic SO2 in the hydrothermal system at temperatures of 270-281 °C. This temperature range is consistent with that inferred from the hydrothermal mineral assemblage (e.g., pyrophyllite and rutile) in the 2014 pyroclastic materials (200-300 °C). Except for the sulfur isotopic compositions of anhydrite, which may have been altered by incorporation of sulfate minerals in a fumarolic area with lower sulfur isotopic values into the underground materials during the 1979 eruption, no significant differences in the mineral assemblages and sulfur isotopic compositions of the pyroclastic materials were identified between the products of the 2014 and 1979 Ontake phreatic eruptions, which suggests geochemical similarities in the underlying hydrothermal systems before the 2014 and 1979 eruptions.

  4. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2014-06-01

    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  5. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  6. Seismic tomography and dynamics of geothermal and natural hydrothermal systems in the south of Bandung, Indonesia

    Science.gov (United States)

    Jousset, Philippe; Sule, Rachmat; Diningrat, Wahyuddin; Syahbana, Devy; Schuck, Nicole; Akbar, Fanini; Kusnadi, Yosep; Hendryana, Andri; Nugraha, Andri; Ryannugroho, Riskiray; Jaya, Makki; Erbas, Kemal; Bruhn, David; Pratomo, Bambang

    2015-04-01

    The structure and the dynamics of geothermal reservoirs and hydrothermal systems allows us to better assess geothermal resources in the south of Bandung. A large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. We deployed a geophysical network around geothermal areas starting with a network of 30 seismic stations including high-dynamic broadband Güralp and Trillium sensors (0.008 - 100 Hz) and 4 short-period (1 Hz) sensors from October 2012 to December 2013. We extended the network in June 2013 with 16 short-period seismometers. Finally, we deployed a geodetic network including a continuously recording gravity meter, a GPS station and tilt-meters. We describe the set-up of the seismic and geodetic networks and we discuss observations and results. The earthquakes locations were estimated using a non-linear algorithm, and revealed at least 3 seismic clusters. We perform joint inversion of hypo-center and velocity tomography and we look at seismic focal mechanisms. We develop seismic ambient noise tomography. We discuss the resulting seismic pattern within the area and relate the structure to the distribution of hydrothermal systems. We aim at searching possible structural and dynamical links between different hydrothermal systems. In addition, we discuss possible dynamical implications of this complex volcanic systems from temporal variations of inferred parameters. The integration of those results allows us achieving a better understanding of the structures and the dynamics of those geothermal reservoirs. This approach contributes to the sustainable and optimal exploitation of the geothermal resource in Indonesia.

  7. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    Science.gov (United States)

    Schiffman, P.; Williams, A.E.; Evarts, R.C.

    1984-01-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.

  8. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, P.; Williams, A.E. (California Univ., Riverside (USA). Dept. of Earth Sciences); Evarts, R.C. (Geological Survey, Menlo Park, CA (USA))

    1984-10-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock delta/sup 18/O compositions decrease progressively down section (with increasing metamorphic grade): +22.4per mille (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to 5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock delta/sup 18/O can be best explained by isotopic exchange with discharging /sup 18/O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500/sup 0/C. /sup 18/O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpel-lyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.

  9. Geochemistry and solute fluxes from volcano-hydrothermal system of Ketoy, Kuril Island arc

    Science.gov (United States)

    Kalacheva, Elena; Taran, Yuri; Voloshina, Ekaterina; Tarasov, Kirill; Kotenko, Tatiana

    2017-04-01

    Ketoy is a volcanic island in the middle of the Kuril Island arc. With an area of ˜70 km2 it consists of two volcanic structures of different ages. The younger Pallas cone (960 m asl) is characterized by a strong fumarolic activity with maximum temperature of 720˚ C (August 2016) and hosts a cold acid crater lake in the summit crater. The older Ketoy cone (1172 m) at the NE of the island is cut by the erosion crater that open to the east and known as a canyon of Gorchichny Stream. There is a strong hydrothermal activity within the canyon with boiling springs and steam vents. We present our data obtained during the fieldwork in August 2016 on the chemical (major and trace elements including REE) and isotopic (H, O, C, S) composition of thermal fluids from both Gorchichny canyon and thermal fields on the slopes of the Pallas cone. Thermal field of the Gorchichny Stream discharges acid Ca-SO4 and near neutral unusual, Cl-poor, Na-Ca-SO4 hot-to-boiling waters with TDS 2-3 g/L. Thermal field of the summit plateau at the base of the Pallas cone discharges acid Ca-SO4 warm water that can be the seepage from the crater lake. Isotopic compositions of thermal waters are close to the meteoric water line but with a clear positive shift in both δ18O and δD with a trend directed to the isotopic composition of condensates of fumarolic gases of the Pallas cone. For the first time the outflow rates of the draining streams have been measured and hydrothermal solute fluxes from the volcano-hydrothermal system have been estimated. The total hydrothermal flux of chloride and sulfate from Ketoy Island is estimated as 8.5 t/d of Cl and 30 t/d of SO4. This work was supported by the RSF grant #15-17-20011.

  10. Structure of the Nemrut caldera (Eastern Anatolia, Turkey) and associated hydrothermal fluid circulation

    Science.gov (United States)

    Ulusoy, İnan; Labazuy, Philippe; Aydar, Erkan; Ersoy, Orkun; Çubukçu, Evren

    2008-07-01

    Plio-Quaternary volcanism played an important role in the present physical state of Eastern Anatolia. Mount Nemrut, situated to the west of Lake Van is one of the main volcanic centers in the region, with a spectacular summit caldera 8.5 × 7 km in diameter. The most recent eruptions of the volcano were in 1441, 1597 and 1692. Nemrut Lake covers the western half of the caldera; it is a deep, half-bowl-shaped lake with a maximum depth of 176 m. Numerous eruption centers are exposed within the caldera as a consequence of magma-water interaction. Current activity of Nemrut caldera is revealed as hot springs, fumaroles and a small, hot lake. Self-potential and bathymetric surveys carried out in the caldera were used to characterize the structure of the caldera and the associated hydrothermal fluid circulation. In addition, analyses based on digital elevation models and satellite imagery were used to improve our knowledge about the structure of the caldera. According to SP results, the flanks of the volcano represent "the hydrogeologic zone", whereas the intra-caldera region is an "active hydrothermal area" where the fluid circulation is controlled by structural discontinuities. There is also a northern fissure zone which exhibits hydrothermal signatures. Nemrut caldera collapsed piecemeal, with three main blocks. Stress controlling the collapse mechanism seems to be highly affected by the regional neotectonic regime. In addition to the historical activity, current hydrothermal and hydrogeologic conditions in the caldera, in which there is a large lake and shallow water table, increase the risk of the quiescent volcano.

  11. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  12. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  13. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: victoria@geofisica.unam.mx [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)

    2010-08-15

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  14. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    Science.gov (United States)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  15. Large Igneous Province Volcanism, Ocean Anoxia and Marine Mass Extinction

    DEFF Research Database (Denmark)

    Ruhl, Micha; Bjerrum, Christian J.; Canfield, Donald

    2013-01-01

    -Triassic (~252 Ma) boundaries, which coincide with Central Atlantic Magmatic Province (CAMP) and Siberian Trap volcanism, respectively. The Triassic-Jurassic mass extinction is often contributed to carbon release driven ocean acidification while the Permian-Triassic mass extinction is suggested to be related...... to widespread ocean anoxia. We compare Permian-Triassic and Triassic-Jurassic ocean redox change along continental margins in different geographic regions (Permian-Triassic: Greenland, Svalbard, Iran; Triassic-Jurassic: UK, Austria) and discuss its role in marine mass extinction. Speciation of iron [(FeHR/ Fe...... extinctions however shows 2 phases of euxinia along continental margins, with an initial short peak at the onset of volcanism followed by a shift to ferruginous conditions, possibly due to a strongly diminished ocean sulphate reservoir because of massive initial pyrite burial. D34Spyrite suggests...

  16. Geothermal Fields on the Volcanic Axis of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  17. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Carey, S.; Papanikolaou, D.; Croff Bell, K.; Sakellariou, D.; Alexandri, M.; Bejelou, K.

    2012-06-01

    The seafloor northeast of Santorini volcano in Greece consists of a small, elongated rifted basin that has been the site of recent submarine volcanism. This area lies within the Cyclades back-arc region of the present Hellenic subduction zone where the seafloor of the eastern Mediterranean Sea is descending beneath the Aegean microplate. The Cycladic region and the Aegean Sea as a whole are known to be regions of north-south back-arc extension and thinning of continental crust. Nineteen submarine volcanic cones occur within this small rift zone, the largest of these being Kolumbo which last erupted explosively in 1650 AD, causing significant damage and fatalities on the nearby island of Santorini. Previous SEABEAM mapping and seismic studies from HCMR indicate that many of the smaller v'olcanic cones have been built above the present seafloor, while others are partly buried, indicating a range of ages for the activity along this volcanic line. None of the cones to the northeast of Kolumbo had been explored in detail prior to a cruise of the E/V Nautilus (NA007) in August 2010. The ROV Hercules was used to explore the slopes, summits and craters of 17 of the 19 centers identified on multibeam maps of the area. Water depths of the submarine volcano's summits ranged from 18 to 450 m. In general, the domes/craters northeast of Kolumbo were sediment covered and showed little evidence of recent volcanic activity. Outcrops of volcanic rock were found in the crater walls and slopes of some of the cones but they typically consisted of volcanic fragments of pumice and lava that have been cemented together by biological activity, indicative of the lack of recent eruptions. Geochemical analysis of samples collected on the northeast cones showed evidence of low temperature hydrothermal circulation on the summit and upper flanks in the form of stream-like manganese precipitates emanating from pits and fractures.

  18. Size limits for rounding of volcanic ash particles heated by lightning.

    Science.gov (United States)

    Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  19. Aurorae and Volcanic Eruptions

    Science.gov (United States)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  20. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  1. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  2. Geochemical study for volcanic surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Panichi, C.; La Ruffa, G. [Consiglio Nazionale delle Ricerche, International Institute for Geothermal Research Ghezzano, PI (Italy)

    2000-07-01

    For years, geologists have been striving to reconstruct volcanic eruptions from the analysis of pyroclastic deposits and lava flows on the surface of the earth and in the oceans. This effort has produced valuable information on volcanic petrology and magma generation, separation, mixing, crystallisation, and interaction with water in phreatomagmatic and submarine eruptions. The volcanological process are tied to the dynamics of the earth's crust and lithosphere. The mantle, subducted oceanic crust, and continental crust contain different rock types and are sources of different magmas. Magmas consist primarily of completely or partially molten silicates containing volatile materials either dissolved in the melt or as bubbles of gas. The silicate and volatile portions affect the physical properties of magma and, therefore, the nature of a volcanic eruption.

  3. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  4. COVIS Detects Interconnections Between Atmospheric, Oceanic and Geologic systems at a Deep Sea Hydrothermal Vent

    Science.gov (United States)

    Bemis, K. G.; Xu, G.; Lee, R.

    2015-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor focused and diffuse flows from deep-sea hydrothermal vent clusters. From 9/2010 to 9/2015, COVIS was connected to the NEPTUNE observatory at Grotto vent in the Main Endeavour Field, JdFR. COVIS monitored plumes and diffuse discharge by transmitting high-frequency (200-400 kHz), pulsed acoustic waves and recording the backscattered signals to yield time series of plume heat and volume transports, plume bending, and diffuse flow area. Temporal variations indicate the rate of hydrothermal plume mixing with the ambient seawater increases with the magnitude of ocean currents. Such current-driven entrainment links the dynamics of a deep-sea hydrothermal plume with oceanic and atmospheric processes. We estimate the direction and relative amplitude of the local bottom currents from the bending angles of the plumes. A comparison with currents from an ADCP (~80 m south of Grotto) reveals significant complexity in the mean bottom flow structure within a hydrothermal vent field. Diffuse flow area, temperature, and faunal densities vary periodically reflecting some combination of tidal pressure and current interactions. The heat transport time series suggests the heat source driving the plume remained relatively steady for 41 months. Local seismic data reveals that increased heat transport in 2000 followed seismic events in 1999 and 2000 and the steady heat flux from 10/2011 to 2/2015 coincided with quiescent seismicity. Such a correlation points to the close linkage of a seafloor hydrothermal system with geological processes. These findings demonstrate the intimate interconnections of seafloor hydrothermal systems with processes spanning the Earth's interior to the sea surface. Further, they (and the time-series acquired by COVIS) testify to the effectiveness and robustness of employing an acoustic-imaging sonar for long-term monitoring of a seafloor hydrothermal

  5. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  6. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  7. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  8. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    Science.gov (United States)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  9. Mineralogical study on volcanic ash of the eruption on September 27, 2014 at Ontake volcano, central Japan: correlation with porphyry copper systems

    Science.gov (United States)

    Minami, Yusuke; Imura, Takumi; Hayashi, Shintaro; Ohba, Tsukasa

    2016-04-01

    The volcanic ash of the eruption on September 27, 2014 at Ontake volcano consists mostly of altered rock fragments. The ash contains partly altered volcanic rock fragments consisting of primary igneous minerals (plagioclase, orthopyroxene, titanomagnetite, and feldspars) and volcanic glass accompanied by alteration minerals to some extents, and contains no juvenile fragments. These features indicate that the eruption was a non-juvenile hydrothermal eruption that was derived from the hydrothermal system developed under the crater. The major minerals derived from hydrothermal alteration zones are silica mineral, kaolin-group mineral, smectite, pyrophyllite, muscovite, alunite, anhydrite, gypsum, pyrite, K-feldspar, albite, and rutile. Minor chlorite, biotite, and garnet are accompanied. Five types of alteration mineral associations are identified from observations on individual ash particles: silica-pyrite, silica-pyrite ± alunite ± kaolin, silica-pyrophyllite-pyrite, silica-muscovite ± chlorite, and silica-K-feldspar ± albite ± garnet ± biotite. The associations indicate development of advanced argillic, sericite, and potassic alteration zones under the crater. Occurrence of anhydrite veinlet and the set of alteration zones indicate hydrothermal alteration zones similar to late-stage porphyry copper systems. Comparing the mineral associations with the geologic model of the late-stage porphyry copper systems, the source depths of mineral associations are estimated to range from near surface to >2 km. The depths of advanced argillic alteration, sericite, and potassic zones are 0 to ~2, ~1.5 to ~2, and >2 km, respectively.

  10. Three-dimensional seismic velocity tomography of the upper crust in Tengchong volcanic area, Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    楼海; 王椿镛; 皇甫岗; 秦嘉政

    2002-01-01

    Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low velocity zone (LVZ) in the upper crust beneath the Tengchong volcanic area. The LVZ is in the depth of 7~8 km and may be a small magma chamber or a partial melting body. The result also shows that the LVZ is in the northeastern side of the Rehai hydrothermal field, which is located in another LVZ near the surface. The shallow LVZ may represent a well-developed fracture zone. The strong hydrothermal activity in Rehai area can attribute to the existence of fractures between two LVZs. These fractures are the channels for going upwards of the deep hot fluid.

  11. A quantitative model for volcanic hazard assessment

    OpenAIRE

    W. Marzocchi; Sandri, L.; Furlan, C

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  12. Integrating volcanic gas monitoring with other geophysical networks in Iceland

    Science.gov (United States)

    Pfeffer, Melissa A.

    2017-04-01

    The Icelandic Meteorological Office/Icelandic Volcano Observatory is rapidly developing and improving the use of gas measurements as a tool for pre- and syn-eruptive monitoring within Iceland. Observations of deformation, seismicity, hydrological properties, and gas emissions, united within an integrated approach, can provide improved understanding of subsurface magma movements. This is critical to evaluate signals prior to and during volcanic eruptions, issue timely eruption warnings, forecast eruption behavior, and assess volcanic hazards. Gas measurements in Iceland need to be processed to account for the high degree of gas composition alteration due to interaction with external water and rocks. Deeply-sourced magmatic gases undergo reactions and modifications as they move to the surface that exercise a strong control on the composition of surface emissions. These modifications are particularly strong at ice-capped volcanoes where most surface gases are dissolved in glacial meltwater. Models are used to project backwards from surface gas measurements to what the magmatic gas composition was prior to upward migration. After the pristine magma gas composition has been determined, it is used together with fluid compositions measured in mineral hosted melt inclusions to calculate magmatic properties to understand magma storage and migration and to discern if there have been changes in the volcanic system. The properties derived from surface gas measurements can be used as input to models interpreting deformation and seismic observations, and can be used as an additional, independent observation when interpreting hydrological and seismic changes. An integrated approach aids with determining whether observed hydro/geological changes can be due to the presence of shallow magma. Constraints on parameters such as magma gas content, viscosity and compressibility can be provided by the approach described above, which can be utilized syn-eruptively to help explain

  13. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    Science.gov (United States)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the

  14. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the

  15. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    Science.gov (United States)

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

    The Bodie Hills is a ~40 by ~30 kilometer volcanic field that straddles the California-Nevada state boundary between Mono Lake and the East Walker River. Three precious metal mining districts and nine alteration zones are delineated in Tertiary-Quaternary volcanic and Mesozoic granitic and metamorphic rocks that comprise the volcanic field. Cumulative production from the mining districts, Bodie, Aurora, and Masonic, is 3.4 million ounces of gold and 28 million ounces of silver. Small amounts of mercury were produced from the Potato Peak, Paramount-Bald Peak, and Cinnabar Canyon-US 395 alteration zones; a native sulfur resource in the Cinnabar Canyon-US 395 alteration zone has been identified by drilling. There are no known mineral resources in the other six alteration zones, Red Wash-East Walker River, East Brawley Peak, Sawtooth Ridge, Aurora Canyon, Four Corners, and Spring Peak. The mining districts and alteration zones formed between 13.4 and 8.1 Ma in predominantly ~15–9 Ma volcanic rocks of the Bodie Hills volcanic field. Ages of hydrothermal minerals in the districts and zones are the same as, or somewhat younger than, the ages of volcanic host rocks.

  16. Geophysical characterization of hydrothermal systems and intrusive bodies, El Chichón volcano (Mexico)

    Science.gov (United States)

    Jutzeler, Martin; Varley, Nick; Roach, Michael

    2011-04-01

    The 1982 explosive eruptions of El Chichón volcano (Chiapas, Mexico) destroyed the inner dome and created a 1-km-wide and 180-m-deep crater within the somma crater. A shallow hydrothermal system was exposed to the surface of the new crater floor and is characterized by an acid crater lake, a geyser-like Cl-rich spring (soap pool), and numerous fumarole fields. Multiple geophysical surveys were performed to define the internal structure of the volcanic edifice and its hydrothermal system. We carried out a high-resolution ground-based geomagnetic survey in the 1982 crater and its surroundings and 38 very low frequency (VLF) transects around the crater lake. A 3-D inversion of the ground-based magnetic data set highlighted three high-susceptibility isosurfaces, interpreted as highly magnetized bodies beneath the 1982 crater floor. Inversion of a digitized regional aeromagnetic map highlighted four major deeply rooted cryptodomes, corresponding to major topographic highs and massive lava dome outcrops outside and on the somma rim. The intracrater magnetic bodies correspond closely to the active hydrothermal vents and their modeled maximum basal depth matches the elevation of the springs on the flanks of the volcano. Position, dip, and vertical extent of active and extinct hydrothermal vents identified by VLF-EM surveys match the magnetic data set. We interpret the shallow lake spring hydrothermal system to be mostly associated with buried remnants of the 550 BP dome, but the Cl-rich soap pool may be connected to a small intrusion emplaced at shallow depth during the 1982 eruption.

  17. Soil CO2 flux in hydrothermal areas of the Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Wen, Hsin-Yi; Yang, Tsanyao F.; Lan, Tefang F.; Lee, Hsiao-Fen; Lin, Cheng-Horng; Sano, Yuji; Chen, Cheng-Hong

    2016-07-01

    We measured soil CO2 flux in the representative hydrothermal areas of the Tatun Volcano Group (TVG), to better understand the volcano's dynamic nature, and to estimate its soil CO2 degassing output. Results show that the average soil CO2 fluxes obtained at Da-You-Keng (DYK), Geng-Tze-Ping (GTP), She-Haung-Ping (SHP), and Tatun Natural Park (TNP) were 128 g m- 2 d- 1, 518 g m- 2 d- 1, 420 g m- 2 d- 1, and 25 g m- 2 d- 1, respectively. The range is comparable to other active volcanic/hydrothermal areas in the world. Along with Liu-Huang-Ku (LHK), where the soil CO2 flux is known, the total soil CO2 output from measured areas is evaluated at 82 t d- 1. Furthermore, a first total soil CO2 output from the whole hydrothermal areas of the TVG is roughly estimated at 113 t d- 1, which includes 15 t d- 1 mantle contribution. Considering the mantle-derived CO2 flux and H2O/CO2 ratio of fumarolic gas, thermal energy associated with the diffuse degassing at the TVG hydrothermal area is estimated at 8.2 MW. Carbon (δ13C) and helium (3He/4He) isotopic ratios of soil samples of the studied areas ranged from - 4.4 to - 6.7‰, and 2.45 to 6.98 RA, respectively. The extent of air involvement in the soil-degassing system, as constrained by the helium and carbon isotopic compositions, provides essential information for depicting regional degassing features of the hydrothermal areas.

  18. Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand

    Science.gov (United States)

    Cronin, Shane J.; Neall, V. E.; Lecointre, J. A.; Hedley, M. J.; Loganathan, P.

    2003-03-01

    The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m 3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995-1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF 6 phases, demonstrated to be the carriers of 'available' F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF 2, AlF 3 and Ca 5(PO 4) 3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.

  19. Sulfate Saturated Hydrous Magmas Associated with Hydrothermal Gold Ores

    Science.gov (United States)

    Chambefort, I.; Dilles, J. H.; Kent, A. J.

    2007-12-01

    Hydrothermal ore deposits associated with arc magmatism represent important sulfur anomalies. During degassing of magmatic systems the volatile may transport metals and sulfur and produce deposits. The ultimate origin of the magma-derived sulfur is still uncertain. The Yanacocha high-sulfidation epithermal Au deposit, Peru, is hosted by a Miocene volcanic succession (ca. 16 to 8 Ma). Magmatic rocks are highly oxidized >NNO+2 and show a range of composition from andesite to dacite. Two populations of amphibole occur in the Yanacocha dacitic ignimbrite deposits (~7 and 12 wt% Al2O3). Low Al amphiboles crystallized at ~ 1.5-2 kbar and 800°C (Plag-Hb thermobarometry) in equilibrium with plagioclase and pyroxene. High Al amphiboles only contain inclusions of anhydrite associated with apatite (up to 1.2 wt% SO3), and have a higher Cr2O3 content (up to 1000 ppm). We estimate these amphiboles form near the magma's liquidus at P(H2O)> 3kbar and 950 to 1000°C of a basaltic, basaltic andesite ascending magma. Low Al amphibole presents an REE pattern with negative anomalies in Sr, Ti and Eu, characteristic of plagioclase and titanite fractionation in the magma. High Al amphiboles are less enriched in REE and have no Sr, Ti, or Eu anomaly. Rare crystals of high Al amphibole display a low Al rim marked by higher REE contents compared to the core and a negative Eu anomaly. Magmatic sulfate occurrences have been discovered through the 8 m.y. volcanic sequence. Rounded anhydrite crystals are found included within clinopyroxene and both high and low Al amphibole. The rare high Al amphiboles (from the sample RC6) contain up to ~10 vol.%, ~5-80 micrometer-long anhydrite as irregularly shaped (amoeboid) blebs that do not show crystallographic forms and do not follow host cleavages. Extremely rare sulfide inclusions are found in plagioclase (Brennecka, 2006). The major and trace element contents of Yanacocha magmatic anhydrite have been analyzed by electron microprobe and LA

  20. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    Science.gov (United States)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor

  1. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  2. Volcanic-hosted massive sulfide deposits in the Murchison greenstone belt, South Africa

    Science.gov (United States)

    Schwarz-Schampera, Ulrich; Terblanche, Hennie; Oberthür, Thomas

    2010-02-01

    The Archean Murchison greenstone belt, Limpopo Province, South Africa, represents a rifted epicontinental arc sequence containing the largest volcanic-hosted massive sulfide (VMS) district in Southern Africa. The so-called Cu-Zn line is host to 12 deposits of massive sulfide mineralization including: Maranda J, LCZ, Romotshidi, Mon Desir, Solomons, and Mashawa with a total tonnage of three million metric tons of very high grade Zn, subordinate Cu, and variable Pb and Au ore. The deposits developed during initial phases of highly evolved felsic volcanism between 2,974.8 ± 3.6 and 2,963.2 ± 6.4 Ma and are closely associated with quartz porphyritic rhyolite domes. Elevated heat supply ensured regional hydrothermal convection along the entire rift. Recurrent volcanism resulted in frequent disruption of hydrothermal discharge and relative short-lived episodes of hydrothermal activity, probably responsible for the small size of the deposits. Stable thermal conditions led to the development of mature hydrothermal vent fields from focused fluid discharge and sulfide precipitation within thin layers of felsic volcaniclastic rocks. Two main ore suites occur in the massive sulfide deposits of the “Cu-Zn line”: (1) a low-temperature venting, polymetallic assemblage of Zn, Pb, Sb, As, Cd, Te, Bi, Sn, ±In, ±Au, ±Mo occurring in the pyrite- and sphalerite-dominated ore types and (2) a higher temperature suite of Cu, Ag, Au, Se, In, Co, Ni is associated with chalcopyrite-bearing ores. Sphalerite ore, mineralogy, and geochemical composition attest to hydrothermal activity at relatively low temperatures of ≤250 °C for the entire rift, with short-lived pulses of higher temperature upflow, reflected by proportions of Zn-rich versus Cu-rich deposits. Major- and trace-metal composition of the deposits and Pb isotope signatures reflect the highly evolved felsic source rock composition. Geological setting, host rock composition, and metallogenesis share many similarities not

  3. Bedout basement rise, offshore northwestern Australia: evidence of an unshocked mafic volcanic hyaloclastite volcanic breccia

    Science.gov (United States)

    Glikson, A.

    2004-12-01

    maskelynite and volcanic meta-glass are indicated by Becker et al. (2004). As PDF formation (10-35 GPa) necessarily precedes diaplectic transformation into maskelynite (35-45 GPa) (French, 1998), a presence of maskelynite is inconsistent with the absence of PDF in the plagioclase _u a phase prone to the development of shock effects (e.g. Mory, 2000). Little evidence exists for the hydrothermal activity which typically follows impact events. However, thanks to a partial development of a rim syncline-like structure in Triassic sediments around the Bedout rise, further testing of the origin of this remarkable structure is warranted. Amstutz, G.C., 1974, Spilites and Spilitic Rocks, Springer-Verlag, Berlin; Becker, L. et al., 2004, Science Express, 13.5.04; BVSP - Basaltic Volcanism Study Project, 1981, Pergamon; French, B.M., 1998, Traces of Catastrophe, Lunar and Planetary Contributions 954; Mory et al., 2000, Earth and Planetary Science, 177, 119-128; Wedepohl, K.H., Handbook of Geochemistry, Springer-Verlag, 1978.

  4. Geophysics of Volcanic Landslide Hazards: The Inside Story

    Science.gov (United States)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.

    2013-05-01

    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in lahars and floods. Ice thickness measurements critical for flood and mudflow hazards studies are very sparse on most volcanoes. The HEM data are used to estimate ice thickness over portions of Mount Baker and Mount Adams volcanoes. The best estimates for ice thickness are obtained over relatively low resistivity (<600 ohm-m) ground for the main ice cap on Mount Adams and over most of the summit of Mount Baker. The modeled distribution of

  5. Influence of aluminum on the hydrothermal alteration rate of olivine

    Science.gov (United States)

    Andreani, M.; Daniel, I.; Pollet-Villard, M.

    2013-12-01

    presence of Al in the hydrothermal fluid increases the rate of olivine serpentinization by more than one order of magnitude by increasing olivine solubility and enhancing serpentine precipitation. The mechanism responsible for this increased solubility has to be investigated further but this result motivates a re-evaluation of the natural rates of olivine serpentinization and of olivine hydrolysis in general in a wide range of settings where olivines or peridotites are intimately associated with Al-providers. Such a fast reaction rate may affect the contribution of reaction-enhanced processes at the micrometer-scale, such as reaction-driven cracking, already proposed for enhancing serpentinization or carbonation of olivine. The effect of Al on lower crust and upper mantle metasomatism is expected to be even stronger at higher pressure in subduction zones where those reactions control the rheology and physical properties of the subducting plate and mantle wedge. Finally, this study also provides a way to accelerate serpentinization reactions towards economically feasible time-scale and temperature for industrial H2 production and/or CO2 remediation.

  6. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    Science.gov (United States)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted

  7. Nitrogen-doped hydrothermal carbons

    Energy Technology Data Exchange (ETDEWEB)

    Titirici, Maria-Magdalena; White, Robin J. [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; Zhao, Li [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; National Center for Nanoscience and Technology, Beijing (China)

    2012-07-01

    Nitrogen doped carbon materials are now playing an important role in cutting edge innovations for energy conversion and storage technologies such as supercapacitors and proton exchange membrane fuel cells as well as in catalytic applications, adsorption and CO{sub 2} capture. The production of such materials using benign aqueous based processes, mild temperatures and renewable precursors is of great promise in addressing growing environmental concerns for cleaner power sources at a time of increasing global demand for energy. In this perspective, we show that nitrogen doped carbons prepared using sustainable processes such as ''Hydrothermal Carbonisation'' has advantages in many applications over the conventional carbons. We also summarize an array of synthetic strategies used to create such nitrogen doped carbons, and discuss the application of these novel materials. (orig.)

  8. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    Large explosive volcanoes eject megatons of sulfur dioxide into the lower stratosphere where it spreads around the world within months and is oxidized slowly to form a sulfuric-acid aerosol with particle sizes that grow large enough to reflect and scatter solar radiation, cooling Earth ~0.5C for up to 3 years. Explosive eruptions also deplete total column ozone ~6% causing up to 3C winter warming at mid-latitudes over continents. Global cooling predominates. Extrusive, basaltic volcanoes deplete ozone ~6% but do not eject much sulfur dioxide into the lower stratosphere, causing net global warming. Anthropogenic chlorofluorocarbons (CFCs) deplete ozone ~3% for up to a century while each volcanic eruption, even small ones, depletes ozone twice as much but for less than a decade through eruption of halogens and ensuing photochemical processes. The 2010 eruption of Eyjafjallajökull, the 2011 eruption of Grímsvötn, plus anthropogenic CFCs depleted ozone over Toronto Canada 14% in 2012, causing an unusually warm winter and drought. Total column ozone determines how much solar ultraviolet energy with wavelengths between 290 and 340 nanometers reaches Earth where it is absorbed most efficiently by the ocean. A 25% depletion of ozone increases the amount of this radiation reaching Earth by 1 W m-2 for overhead sun and 0.25 W m-2 for a solar zenith angle of 70 degrees. The tropopause is the boundary between the troposphere heated from below by a sun-warmed Earth and the stratosphere heated from above by the Sun through photodissociation primarily of oxygen and ozone. The mean annual height of the tropopause increased ~160 m between 1980 and 2004 at the same time that northern mid-latitude total column ozone was depleted by ~4%, the lower stratosphere cooled ~2C, the upper troposphere warmed ~0.1C, and mean surface temperatures in the northern hemisphere rose ~0.5C. Regional total ozone columns are observed to increase as rapidly as 20% within 5 hours with an associated 5

  9. Deformation of a Volcanic Edifice by Pore Pressurization: An Analog Approach

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.

    2015-12-01

    Volcanic flank destabilization, preceded by pressurization-induced surface deformation or weakening, presents a significant hazard at stratovolcanoes with ample supply of magmatic volatiles or preexisting hydrothermal systems as in Bezymianny- and Bandai-type eruptions, respectively. Deformation is also an important sign of the nature of unrest at large calderas such as Long Valley, USA. Previous studies of volcanic inflation have focused primarily on the role of ascending magma. Relatively few studies have centered on surface deformation caused by pressurization from other volcanic fluids, including exsolved volatiles and pressurized hydrothermal systems. Most investigations of pore-pressurization have focused on numerical modelling of pore pressure transients. In analog experiments presented here, pore-filling fluids are injected into the base of a damp sand medium without exceeding dike propagating pressures, simulating the pressurization and bulk-permeable flow of volatile fluids through volcanic systems. The experiments examine surface deformation from a range of source depths and pressures as well as edifice geometries. 3D imaging is possible through use of the Microsoft® Kinect™ sensor, which allows for the generation of high-resolution, high frame rate, lab-scale Digital Elevation Models (DEMs). After initial processing to increase signal-to-noise ratio, surface deformation is measured using the DEM time-series generated by the Kinect™. Analysis of preliminary experiments suggests that inflation is possible up to approx. 10 % of pressure source depth. We also show that the Kinect™ sensor is useful in analog volcanological studies, an environment to which it is well-suited.

  10. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    Science.gov (United States)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  11. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    Science.gov (United States)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-26

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  12. What Defines a Separate Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Lawless, J.V.; Bogie, I.; Bignall, G.

    1995-01-01

    Separate hydrothermal systems can be defined in a variety of ways. Criteria which have been applied include separation of heat source, upflow, economic resource and geophysical anomaly. Alternatively, connections have been defined by the effects of withdrawal of economically useful fluid and subsidence, effects of reinjection, changes in thermal features, or by a hydrological connection of groundwaters. It is proposed here that: ''A separate hydrothermal system is one that is fed by a separate convective upflow of fluid, at a depth above the brittle-ductile transition for the host rocks, while acknowledging that separate hydrothermal systems can be hydrologically interconnected at shallower levels''.

  13. Hydrothermal origin of halogens at Home Plate, Gusev Crater

    Science.gov (United States)

    Schmidt, M.E.; Ruff, S.W.; McCoy, T.J.; Farrand, W. H.; Johnson, J. R.; Gellert, Ralf; Ming, D. W.; Morris, R.V.; Cabrol, N.; Lewis, K.W.; Schroeder, C.

    2008-01-01

    In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered elastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mo??ssbauer Spectrometer, Miniature Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mo??ssbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (??Fe ?? Ca ?? CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate. Copyright 2008 by the American Geophysical Union.

  14. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  15. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  16. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  17. Anomalous diffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2015-01-01

    Volcanic seismicity at Mt. Etna is studied. It is found that the associated stochastic process exhibits a subdiffusive phenomenon. The jump probability distribution well obeys an exponential law, whereas the waiting-time distribution follows a power law in a wide range. Although these results would seem to suggest that the phenomenon could be described by temporally-fractional kinetic theory based on the viewpoint of continuous-time random walks, the exponent of the power-law waiting-time distribution actually lies outside of the range allowed in the theory. In addition, there exists the aging phenomenon in the event-time averaged mean squared displacement, in contrast to the picture of fractional Brownian motion. Comments are also made on possible relevances of random walks on fractals as well as nonlinear kinetics. Thus, problems of volcanic seismicity are highly challenging for science of complex systems.

  18. Cathodoluminescence (CL) features of the Anatolian agates, hydrothermally deposited in different volcanic hosts from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Hatipoglu, Murat, E-mail: murat.hatipoglu@deu.edu.t [Dokuz Eylul University, IMYO, Izmir Multidisciplinary Vocational School, Gemmology and Jewellery Programme, TR-35380 Buca-Izmir (Turkey); Ajo, David [Institute of Inorganic Chemistry and Surfaces, CNR, Corso Stati Uniti 4, I-35127 Padova (Italy); SMATCH (Scientific Methodologies Applied to Cultural Heritage), Largo Ugo Bartolomei 5, I-00136 Rome (Italy); Sezai Kirikoglu, M. [Istanbul Technical University, Faculty of Mine, Department of Geological Engineering, TR-34469 Maslak-Istanbul (Turkey)

    2011-06-15

    Two different types of multi-colored gem-quality agate samples were investigated. They are both found in the same area in the Cubuk-Ankara region of Turkey although the first group is morphologically and geologically distinct from the second, being nodular-shaped agates occurring in cavity-spaces of a rhyolite host rock with an acidic character. They generally do not have any macroscopic inclusions, but the second group of rather block-shaped agates occurs in the fracture-spaces of an andesite host rock with a more neutral character, i.e. of lower free silica content, and they may display pseudomorphic bar-like macroscopic inclusions. Cathodoluminescence results at room temperature were obtained using measurements with alternating current (AC) (at energies of 14 and 24 keV) as well as direct current (DC) (at 14 keV energy), and they display remarkably different patterns between the two types of agates. It reveals a relation between the CL emissions and the presence of some transition metal elements. It is obvious that all trace elements do not play a direct role. Gaussian fitting of the cathodoluminescence AC experimental data at 14 keV energy obtained from the agates of rhyolite host indicates that there are three major spectral emissions, the dominant one being in the longer-visible wavelength region (red region) at about 690 nm. Additionally, two lesser emission lines occur in the middle-visible wavelength region (yellow region) at about 590 nm, and in the smaller-visible wavelength region (blue region) at about 430 nm. In spite of these, the same data from the agates of andesite host indicate that there is only one remarkable spectral emission which is in the in the middle-visible wavelength region (yellow region) at about 590 nm. On the other hand, Gaussian fitting of the cathodoluminescence AC experimental data at 24 keV energy obtained from the agates of rhyolite host indicates that these initial spectral emissions shift from the red and yellow regions to the orange and green regions respectively, even though the emission in the blue region is nearly constant. In spite of these, Gaussian fitting of the cathodoluminescence AC experimental data at 24 keV energy obtained from the agates of andesite host indicates that the initial spectral emission shifts from the yellow region to the green region, but also that a new minor emission develops in the blue region at about 430 nm. It is interpreted that these changes represent a maturation reaction in the microcrystalline quartz structure consisting of a condensation reaction eliminating water between neighboring paired silanol (Si-OH) groups to develop a strained Si-O-Si bond. - Research highlights: {yields} Two different types of multi-colored gem-quality agate samples were investigated. They are both found in the same area in the Cubuk-Ankara region of Turkey. {yields} A combined study of X-ray diffraction (XRD), chemical analyses (XRF and ICP-AES), and cathodoluminescence (CL). {yields} Cathodoluminescence results at room temperature were obtained using measurements with alternating current (AC) (at energies of 14 and 24 keV) as well as direct current (DC) (at 14 keV energy), and they display remarkably different patterns between the two types of agates. {yields} Genesis and characterization.

  19. Hydrothermal system of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements

    Science.gov (United States)

    Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra

    2017-07-01

    Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.

  20. Formation of a Hydrothermal Kaolinite Deposit from Rhyolitic Tuff in Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    Ye Yuan; Guanghai Shi; Mengchu Yang; Yinuo Wu; Zhaochong Zhang; Anjie Huang; Jiajing Zhang

    2014-01-01

    The Longmen kaolinite deposit is one of the largest hydrothermal clay deposits of Ganxi volcanic basin (northern Wuyi Mountain area, China). The pristine host rocks are rhyolitic crystal-vitric tuff and minor lapilli tuff from the Late Jurassic Ehuling Formation. The ore consists of kaolin-group minerals (kaolinite, dickite), pyrophyllite with minor quartz, sericite, pyrite, etc.. From the host rocks to the transition zones (altered rocks) then to the vein ores, contents of SiO2 and TFe2O3 decrease, whereas Al2O3 and LOI increase, consistent with the contents increase of kaolin minerals and pyrophyllite in the samples. The total REE abundances of the ores are much lower than that of the host and altered rocks, Rb, Nb, Nd, Zr, Ti and Y are significantly depleted. Apparent zoning features of bulk geochemistry and mineral component reflect that the kaolinite deposit occurred at the expense of the host rock by ascending hydrothermal fluids with distinct removal of SiO2, TFe2O3, Na2O, K2O. According to the mineral assemblage, the formation temperature of this deposit falls within the range of 270-350 ℃. With regard to the industrial applications, the kaolinized ores are suitable for use in ceramics and gemologic materials crafted for seal stones. Moreover, in mineralogical terms, this deposit is also proved to be an excellent example for studying channeled hydrothermal alterations of rhyolitic tuff.

  1. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    Science.gov (United States)

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.

    2015-12-01

    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  2. Mercury Anomaly in the Okinawa Trough Sediments—An Indicator of Modern Seafloor Hydrothermal Activity

    Institute of Scientific and Technical Information of China (English)

    赵一阳; 鄢明才

    1995-01-01

    The Okinawa Trough is located between the shelf-sea area of the East China Sea and the deep-sea area of western Pacific Ocean.More than 60 chemical elements in the sediments from the shelf area of the East China Sea,the Okinawa Trough and western Pacific Ocean were determined by advanced techniques including neutron acti-vation analysis,X-ray fluorescence spectrometry,atomic fluorescence spectrometry and atomic absorption spectrometry.Quantitative comparisons of the element abundances of the sediments were made in terms of the enrichment coefficients(K) of the elements.K>1.5 indicates enrichment (K=1.5-2, weak enrichment;K=2-4,strong enrichment) and K>4,anomalous enrichment.The results show that the Okinawa Trough sediments are characterized by Hg anomaly and the enrichment of such elements as Au,Ag,Se,Te,Sb,Cd,Mn,Mo,etc.Detailed studies show that the excess Hg comes from hydrothermal solutions rather than from the continent,sea water ,marine organisms,cosmic dust or vol-canic rocks.Attributed to modern hydrothermal activities on the sea floor ,Hg anomaly can be used as a geochemical indicator of modern seafloor hydrothermal activity.

  3. Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    Science.gov (United States)

    Jackson, M. D.; Gudmundsson, M. T.; Bach, W.; Cappelletti, P.; Coleman, N. J.; Ivarsson, M.; Jónasson, K.; Jørgensen, S. L.; Marteinsson, V.; McPhie, J.; Moore, J. G.; Nielson, D.; Rhodes, J. M.; Rispoli, C.; Schiffman, P.; Stefánsson, A.; Türke, A.; Vanorio, T.; Weisenberger, T. B.; White, J. D. L.; Zierenberg, R.; Zimanowski, B.

    2015-12-01

    A new International Continental Drilling Program (ICDP) project will drill through the 50-year-old edifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963-1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions. Abstracts of research projects are posted at http://surtsey.icdp-online.org.

  4. Hydrothermal system of Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Lewis, R.E.; Olmsted, F.H.

    1978-01-01

    The geologic and hydrologic setting of the hydrothermal system are described. The geochemical and thermal characteristics of the system are presented. A mathematical model of the Long Valley caldera is analyzed. (MHR)

  5. Dissolubility of Hydroxyapatite Powder under Hydrothermal Condition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dissolubility of hydroxyapatite(HA) in the hydrothermal solution was investigated in Morey-type autoclave over a temperature range of 150 to 350 ℃ and the pH value range of 5 to 9. It is shown that the dissolubility of HA is determined as a function of temperature and time under a constant filling ratio of autoclave, and the temperature coefficient for the solubility of HA is positive. The equilibrium time attained in the hydrothermal solution is shortened with the increase of hydrothermal temperature, and the effect of temperature on the solubility is obviously stronger than that of pH value. The solubility data suggest that HA has higher dissolubility in the HA-H2O system under the hydrothermal condition than that under the normal temperature-pressure.

  6. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  7. Hydrothermal industrialization: direct heat development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  8. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    Science.gov (United States)

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  9. Particle sedimentation and diffusive convection in volcanic ash-clouds

    Science.gov (United States)

    Carazzo, G.; Jellinek, A. M.

    2013-04-01

    Understanding the longevity of volcanic ash-clouds generated by powerful explosive eruptions is a long standing problem for assessing volcanic hazards and the nature and time scale of volcanic forcings on climate change. It is well known that the lateral spreading and longevity of these clouds is influenced by stratospheric winds, particle settling and turbulent diffusion. Observations of the recent 2010 Eyjafjallajökull and 2011 Grimsvötn umbrella clouds, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process governing the cloud dynamics is the production of internal layering. Here, we use analog experiments on turbulent particle-laden umbrella clouds to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability. Where umbrella clouds are particularly enriched in fine ash, this "particle diffusive convection" strongly influences the cloud longevity. More generally, cloud residence time will depend on fluxes due to both individual settling and diffusive convection. We develop a new sedimentation model that includes both sedimentation processes, and which is found to capture real-time measurements of the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. A key result is that these combined sedimentation processes enhance the fallout of fine particles relative to expectations from individual settling suggesting that particle aggregation is not the only mechanism required to explain volcanic umbrella longevity.

  10. Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)

    Science.gov (United States)

    Konn, C.; Fourré, E.; Jean-Baptiste, P.; Donval, J. P.; Guyader, V.; Birot, D.; Alix, A. S.; Gaillot, A.; Perez, F.; Dapoigny, A.; Pelleter, E.; Resing, J. A.; Charlou, J. L.; Fouquet, Y.

    2016-10-01

    The study area is close to the Wallis and Futuna Islands in the French EEZ. It exists on the western boundary of the fastest tectonic area in the world at the junction of the Lau and North-Fiji basins. At this place, the unstable back-arc accommodates the plate motion in three ways: (i) the north Fiji transform fault, (ii) numerous unstable spreading ridges, and (iii) large areas of recent volcanic activity. This instability creates bountiful opportunity for hydrothermal discharge to occur. Based on geochemical (CH4, TDM, 3He) and geophysical (nephelometry) tracer surveys: (1) no hydrothermal activity could be found on the Futuna Spreading Centre (FSC) which sets the western limit of hydrothermal activity; (2) four distinct hydrothermal active areas were identified: Kulo Lasi Caldera, Amanaki Volcano, Fatu Kapa and Tasi Tulo areas; (3) extensive and diverse hydrothermal manifestations were observed and especially a 2D distribution of the sources. At Kulo Lasi, our data and especially tracer ratios (CH4/3He 50×106 and CH4/TDM 4.5) reveal a transient CH4 input, with elevated levels of CH4 measured in 2010, that had vanished in 2011, most likely caused by an eruptive magmatic event. By contrast at Amanaki, vertical tracer profiles and tracer ratios point to typical seawater/basalt interactions. Fatu Kapa is characterised by a substantial spatial variability of the hydrothermal water column anomalies, most likely due to widespread focused and diffuse hydrothermal discharge in the area. In the Tasi Tulo zone, the hydrothermal signal is characterised by a total lack of turbidity, although other tracer anomalies are in the same range as in nearby Fatu Kapa. The background data set revealed the presence of a Mn and 3He chronic plume due to the extensive and cumulative venting over the entire area. To that respect, we believe that the joined domain composed of our active area and the nearby active area discovered in the East by Lupton et al. (2012) highly contribute to the

  11. A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations

    Science.gov (United States)

    Xia, Fang; Qian, Gujie; Brugger, Joël; Studer, Andrew; Olsen, Scott; Pring, Allan

    2010-10-01

    A hydrothermal cell with 320 ml internal volume has been designed and constructed for in situ neutron diffraction studies of hydrothermal crystallizations. The cell design adopts a dumbbell configuration assembled with standard commercial stainless steel components and a zero-scattering Ti-Zr alloy sample compartment. The fluid movement and heat transfer are simply driven by natural convection due to the natural temperature gradient along the fluid path, so that the temperature at the sample compartment can be stably sustained by heating the fluid in the bottom fluid reservoir. The cell can operate at temperatures up to 300 °C and pressures up to 90 bars and is suitable for studying reactions requiring a large volume of hydrothermal fluid to damp out the negative effect from the change of fluid composition during the course of the reactions. The capability of the cell was demonstrated by a hydrothermal phase transformation investigation from leucite (KAlSi2O6) to analcime (NaAlSi2O6ṡH2O) at 210 °C on the high intensity powder diffractometer Wombat in ANSTO. The kinetics of the transformation has been resolved by collecting diffraction patterns every 10 min followed by Rietveld quantitative phase analysis. The classical Avrami/Arrhenius analysis gives an activation energy of 82.3±1.1 kJ mol-1. Estimations of the reaction rate under natural environments by extrapolations agree well with petrological observations.

  12. Powering hydrothermal activity on Enceladus

    Science.gov (United States)

    Tobie, Gabriel; Choblet, Gael; Sotin, Christophe; Behounkova, Marie; Cadek, Ondrej; Postberg, Frank; Soucek, Ondrej

    2017-04-01

    A series of evidence gathered by the Cassini spacecraft indicates that the intense activity at the South Pole of Saturn's moon Enceladus is related to a subsurface salty water reservoir associated with seafloor hydrothermal activity (Hsu et al. 2015, Waite et al. 2017). The observation of an elevated libration implies that this reservoir is global with a thin ice shell (20-25 km in average (Thomas et al. 2016) and 90 °C) mostly in the polar regions, explaining strongly localized ice shell thinning. Owing to strong dissipation in Saturn (Lainey et al. 2017), we show that circulation of hot waters in the core may last at least 20-25 million years and that 10 to 100% of the oceanic volume may be processed in the core at temperature higher than 90°C on this timescale. Whether this has been sufficient for the emergence of life can be explored by future spacecraft missions (Mitri et al., this meeting; Lunine et al. 2017).

  13. The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia

    Science.gov (United States)

    Chiodini, Giovanni; Liccioli, Caterina; Vaselli, Orlando; Calabrese, Sergio; Tassi, Franco; Caliro, Stefano; Caselli, Alberto; Agusto, Mariano; D'Alessandro, Walter

    2014-03-01

    A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina), where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L- 1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s- 1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco from upstream to downstream was observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g- 1), the thermal energy release can be estimated as high as 1.1 ± 0.2 GW, a value that is much higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.

  14. Thermal Waters in Maguarichi, Chihuahua, Mexico: Influence on Volcanic Rocks Alteration

    Science.gov (United States)

    Mascote, C. R.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.

    2013-05-01

    Piedras de Lumbre, Maguarichi, is located 294 km. to the SW of Chihuahua city, in northern Mexico, in the Sierra Madre Occidental (SMO). The study area is composed of a set of igneous volcanic rocks affected by hydrothermal flows, which apparently run along a fault. Outcrops of hot springs, going out with high pressure, are active all over the year and have no seasonal flow changes. The hydrothermal flows, approximately 20, that reach the surface area at Piedras de Lumbre, are altering the volcanic rocks that surround the hot springs. The study area is highly altered, and evidenced by a variety range of colors in the rock surfaces. The rock samples collected at the region show a crystal growth due to the influence of the salts from the thermal water. The rocks closest to the water openings have a change in its mineralogy, with the mafic minerals, present in andesites, been replaced by carbonates and sulfates, leaving only the clear mineral pseudomorphs. On the crust of the rocks a white layer of material (salts), product of the thermal waters has precipitated. The alteration is perceived only about 5 m. or less around the hot springs. The water, which has high contents of arsenic and sulfates has exerted a strong alteration in rhyolitic and andesitic rocks.

  15. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  16. Evaluating the Consequences of Edifice Instability-Related Processes in Hydrothermal Ore Genesis at Composite Volcanoes

    Science.gov (United States)

    Szakacs, A.

    2009-05-01

    Composite volcanoes intrinsically evolve toward instability, which is resolved through sudden (e.g. flank/edifice failure) or gradual (e.g. volcano-basement interaction) processes. They commonly host hydrothermal systems and related ore deposits within their edifices and shallow basement. The nature and extent of the influence instability-related processes exert on these hydrothermal systems and ore genesis are as yet poorly understood. Short-term effects are basically related to sudden depressurization of the system. The key factors determining the response of the hydrothermal system are its depth and maturity, and amount of depressurization. Deep excavation will lead to evisceration of the edifice-hosted hydrothermal system, dispersion of its volatiles in the atmosphere and incorporation of solid-phase components in the resulting debris avalanche deposit (DAD). When mature, such a system may provide DAD-hosted ore deposits. The fate of the deeper, basement-hosted hydrothermal system depends on its maturity. The evolution of an immature system will be aborted as a consequence of premature depressurization-driven boiling, and no ore-grade mineralization forms. Mature systems, however, will benefit from pressure drop and induced boiling by massive deposition of pressure-sensitive ore minerals and formation of high-grade ore. Long-range effects of edifice-failure are related to increase of the meteoric input into the hydrothermal system due to the formation of a large depression and reorganization of the surface hydrologic regime. Shift from high-T vapor-dominated regime to low-T dilute hydrothermal regime is its expected outcome. The influence of gradual release of edifice instability by volcano spreading and related phenomena on the hydrothermal system has not been studied so far. Deformation induced in both edifice and basement would result in change of fluid pathways according to the shift of local stress regimes between compressional and tensional, in turn

  17. Nephelometric Dropsonde for Volcanic Ash Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  18. Effect of hydrothermal circulation on slab dehydration for the subduction zone of Costa Rica and Nicaragua

    Science.gov (United States)

    Rosas, Juan Carlos; Currie, Claire A.; Harris, Robert N.; He, Jiangheng

    2016-06-01

    Dehydration of subducting oceanic plates is associated with mantle wedge melting, arc volcanism, intraslab earthquakes through dehydration embrittlement, and the flux of water into the mantle. In this study, we present two-dimensional thermal models of the Costa Rica-Nicaragua subduction zone to investigate dehydration reactions within the subducting Cocos plate. Seismic and geochemical observations indicate that the mantle wedge below Nicaragua is more hydrated than that below Costa Rica. These trends have been hypothesized to be due to a variation in either the thermal state or the hydration state of the subducting slab. Despite only small variations in plate age along strike, heat flow measurements near the deformation front reveal significantly lower heat flow offshore Nicaragua than offshore Costa Rica. These measurements are interpreted to reflect an along-strike change in the efficiency of hydrothermal circulation in the oceanic crust. We parameterize thermal models in terms of efficient and inefficient hydrothermal circulation and explore their impact on slab temperature in the context of dehydration models. Relative to models without fluid flow, efficient hydrothermal circulation reduces slab temperature by as much at 60 °C to depths of ∼75 km and increases the predicted depth of eclogitization by ∼15 km. Inefficient hydrothermal circulation has a commensurately smaller influence on slab temperatures and the depth of eclogitization. For both regions, the change in eclogitization depth better fits the observed intraslab crustal seismicity, but there is not a strong contrast in the slab thermal structure or location of the main dehydration reactions. Consistent with other studies, these results suggest that observed along-strike differences in mantle wedge hydration may be better explained by a northwestward increase in the hydration state of the Cocos plate before it is subducted.

  19. Formation Sequences of Iron Minerals in the Acidic Alteration Products and Variation of Hydrothermal Fluid Conditions

    Science.gov (United States)

    Isobe, H.; Yoshizawa, M.

    2008-12-01

    Iron minerals have important role in environmental issues not only on the Earth but also other terrestrial planets. Iron mineral species related to alteration products of primary minerals with surface or subsurface fluids are characterized by temperature, acidity and redox conditions of the fluids. We can see various iron- bearing alteration products in alteration products around fumaroles in geothermal/volcanic areas. In this study, zonal structures of iron minerals in alteration products of the geothermal area are observed to elucidate temporal and spatial variation of hydrothermal fluids. Alteration of the pyroxene-amphibole andesite of Garan-dake volcano, Oita, Japan occurs by the acidic hydrothermal fluid to form cristobalite leaching out elements other than Si. Hand specimens with unaltered or weakly altered core and cristobalite crust show various sequences of layers. XRD analysis revealed that the alteration degree is represented by abundance of cristobalite. Intermediately altered layers are characterized by occurrence including alunite, pyrite, kaolinite, goethite and hematite. A specimen with reddish brown core surrounded by cristobalite-rich white crust has brown colored layers at the boundary of core and the crust. Reddish core is characterized by occurrence of crystalline hematite by XRD. Another hand specimen has light gray core, which represents reduced conditions, and white cristobalite crust with light brown and reddish brown layers of ferric iron minerals between the core and the crust. On the other hand, hornblende crystals, typical ferrous iron-bearing mineral of the host rock, are well preserved in some samples with strongly decolorized cristobalite-rich groundmass. Hydrothermal alteration experiments of iron-rich basaltic material shows iron mineral species depend on acidity and temperature of the fluid. Oxidation states of the iron-bearing mineral species are strongly influenced by the acidity and redox conditions. Variations of alteration

  20. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  1. Water in volcanic glass: From volcanic degassing to secondary hydration

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  2. Geochemical Characteristics and Metallogenesis of Volcanic Rocks as Exemplified by Volcanic Rocks in Ertix,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘铁庚; 叶霖

    1997-01-01

    Volcanic rocks in Ertix,Xinjiang,occurring in the collision zone between the Siberia Plate and the Junggar Plate,are distributed along the Eritix River Valley in northern Xinjiang.The volcanic rocks were dated at Late Paleozoic and can be divided into the spilite-keratophyre series and the basalt-andesite series.The spilite-keratophyre series volcanic rocks occur in the Altay orogenic belt at the southwest margin of the Siberia Plate.In addition to sodic volcanic rocks.There are also associated potassic-sodic volcanic rocks and potassic volcanic rocks.The potassic-sodic volcanic rocks occur at the bottom of the eruption cycle and control the distribution of Pb and Zn deposits.The potassic volcanic rocks occur at the top of the eruption cycle and are associated with Au and Cu mineralizations.The sodic volcanic rocks occur in the middle stage of eruption cycle and control the occurrence of Cu(Zn) deposits.The basalt-andesite series volcanic rocks distributed in the North Junggar orogenic belt at the north margin of the Junggar-Kazakstan Plate belong to the potassic sodic volcain rocks.The volcanic rocks distributed along the Ulungur fault are relatively rich in sodium and poor in potassium and are predominated by Cu mineralization and associated with Au mineralization.Those volcanic rocks distributed along the Ertix fault are relatively rich in K and poor in Na,with Au mineralization being dominant.

  3. Hydrothermal zeolitisation controlled by host-rock lithofacies in the Periadriatic (Oligocene) Smrekovec submarine composite stratovolcano, Slovenia

    Science.gov (United States)

    Kralj, Polona

    2016-05-01

    Hydrothermal zeolites (laumontite, yugawaralite, analcime, heulandite, clinoptilolite), prehnite and pumpellyite have been recognised in a succession of volcanic, autoclastic, pyroclastic, resedimented volcaniclastic and mixed siliciclastic-volcaniclastic deposits. In cone-building lithofacies association attaining 310 m, the alteration minerals commonly change within a single normally graded depositional unit or alternate in the section on a dm- to m-scale, according to the host-rock lithofacies. Fine-grained deposits rich in juvenile glassy pyroclasts are altered to heulandite and clinoptilolite or analcime, and laumontite widely occurs in coarse-grained host-rocks (lapilli tuff, hyaloclastite breccia, volcaniclastic breccia, hyaloclastites) and fracture systems. In near-vent lithofacies association attaining 420 m, prehnite-laumontite, laumontite-analcime, and laumontite-heulandite-clinoptilolite zones developed as a result of superimposed thermal regime generated by the emplacement of an over 200 m thick sill. The recognised dependence of alteration on porosity, permeability and fracturing of the host-rock is closely related to hydrological conditions in the stratovolcano-hosted hydrothermal system with convective-advective flow regime. After separation of steam and gases from convecting hydrothermal fluids, denser liquids outflowed intermittently, preferentially through steeply inclined (20-30°) high-permeability layers in the stratovolcano edifice. In low-permeability layers the flow was slow and thermal conditions were mainly attained by conduction. Zeolites developed only in coarse- and fine-grained vitroclastic tuffs, presumably by the dissolution of volcanic glass. The interstratified siliciclastic siltstones, tuffites and resedimented deposits with low content of glassy particles are devoid of zeolites and indicate compositional constraint on zeolitisation. Lava flows, cooling in a submarine environment and undergoing disintegration and mingling with

  4. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems

    Science.gov (United States)

    Caricchi, Luca; Biggs, Juliet; Annen, Catherine; Ebmeier, Susanna

    2014-02-01

    Deformation of volcanic edifices is typically attributed to the movement of magma within the volcanic plumbing system, but a wide range of magmatic processes are capable of producing significant volume variations and may also produce deformation. In order to understand the evolution of magmatic systems prior to eruption and correctly interpret monitoring signals, it is necessary to quantify the patterns and timescales of surface deformation that processes such as crystallisation, degassing and expansion of the hydrothermal system can produce. We show how the combination of petrology and thermal modelling can be applied to geodetic observations to identify the processes occurring in a magmatic reservoir during volcanic unrest. Thermal modelling and petrology were used to determine the timescales and volumetric variations associated with cooling, crystallisation and gas exsolution. These calculations can be performed rapidly and highlight the most likely processes responsible for the variation of a set of monitoring parameters. We then consider the magnitude and timescales of deformation produced by other processes occurring within the vicinity of an active magma system. We apply these models to a time series of geodetic data spanning the period between the 1997 and 2008 eruptions of Okmok volcano, Aleutians, examining scenarios involving crystallisation, degassing and remelting of the crystallising shallow magmatic body and including a viscoelastic shell or hydrothermal system. The geodetic observations are consistent with the injection of a water-saturated basalt, followed by minor crystallisation and degassing. Other scenarios are not compatible either with the magnitude or rate of the deformation signals.

  5. Surficial extent and conceptual model of hydrothermal system at Mount Rainier, Washington

    Science.gov (United States)

    Frank, David

    1995-04-01

    A once massive hydrothermal system was disgorged from the summit of Mount Rainier in a highly destructive manner about 5000 years ago. Today, hydrothermal processes are depositing clayey alteration products that have the potential to reset the stage for similar events in the future. Areas of active hydrothermal alteration occur in three representative settings: (1) An extensive area (greater than 12,000 m 2) of heated ground and slightly acidic boiling-point fumaroles at 76-82 °C at East and West Craters on the volcano's summit, where alteration products include smectite, halloysite and disordered kaolinite, cristobalite, tridymite, opal, alunite, gibbsite, and calcite. (2) A small area (less than 500 m 2) of heated ground and sub-boiling-point fumaroles at 55-60 °C on the upper flank at Disappointment Cleaver with smectite alteration and chalcedony, tridymite, and opal-A encrustations. Similar areas probably occur at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls. (3) Sulfate- and carbon dioxide-enriched thermal springs at 9-24 °C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers, where calcite, opal-A, and gypsum are being deposited. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers. Maximum spring temperatures of 19-25 °C and 38-50 °C, respectively, and extensive travertine deposits have developed in these more distant localities. The heat flow, distribution of thermal activity, and nature of alteration minerals and fluids suggest a conceptual model of a narrow, central hydrothermal system within Mount Rainier, with steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 km of the summit. The lateral extent of the hydrothermal system is marked by discharge of

  6. Gas-driven eruptions at Mount Ruapehu, New Zealand: towards a coherent model of eruption

    Science.gov (United States)

    Kilgour, G. N.; Mader, H. M.; Mangan, M.; Blundy, J.

    2010-12-01

    Mt. Ruapehu is an andesitic cone volcano situated at the southern end of the Taupo Volcanic Zone. The summit plateau at Ruapehu consists of three craters (South, Central and North). Historical activity has consisted of frequent small phreatic and phreatomagmatic eruptions from South Crater. The active vents of South Crater are submerged beneath Crater Lake - a warm, acidic lake. The most recent eruption at Ruapehu occurred on 25th September, 2007 that generated a moderate steam column to about 4.5 km above Crater Lake, and a directed ballistic and surge deposit of coarse blocks and ash to the north of Crater Lake. It also initiated lahars in two catchments. The eruption occurred during the ski season and it resulted in the temporary closure of the three ski fields. Seismicity for the main eruption lasted for about 4 minutes and included an explosive phase which lasted for less than 1 minute and a post-explosion phase which probably indicated resonance in the conduit together with signals generated from lahars and vent stabilisation. Preceding seismicity occurred ~ 10 min before the eruption. The 2007 eruption appears strikingly similar to phreatic/phreatomagmatic eruptions of 1969 and 1975. In those eruptions, limited precursory seismicity was recorded, the bulk of the erupted deposits were accidental lithics, including lake sediments and older lavas, and only a small amount of juvenile material was erupted (~ 5%). It is likely that all three eruptions were driven by magmatic gases, either stored and pressurised beneath a hydrothermal seal, or rapidly exsolved during a gas release event. This poster outlines the plan that we will use to model this common type of eruption at Ruapehu. We will analyse the volatile content of phenocryst-hosted melt inclusions to determine the degassing depth of historic eruptions. This will allow us to identify where the magmas have been or are degassing beneath Crater Lake. Analogue modelling of gas and fluid flow through a visco

  7. Seafloor doming driven by active mantle degassing offshore Naples (Italy)

    Science.gov (United States)

    Ventura, Guido; Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Caliro, Stefano; Chiodini, Giovanni; Sacchi, Marco; Rizzo, Andrea

    2016-04-01

    Structures and processes associated with shallow water hydrothermal fluid discharges on continental shelves are poorly known. We report geomorphological, geophysical, and geochemical evidences of a 5.5 x 5.3 km seabed doming located 5 km offshore the Naples harbor (Italy). The dome lies between 100 and 170 m of water depth and it is 15-20 m higher than the surrounding seafloor. It is characterized by a hummocky morphology due to 280 sub-circular to elliptical mounds, about 660 cones, and 30 pockmarks. The mounds and pockmarks alignments follow those of the main structural discontinuity affecting the Gulf of Naples. The seafloor swelling and breaching require relatively low pressures (about 2-3 MPa), and the sub-seafloor structures, which consists of 'pagodas' affecting the present-day seabed, record the active upraise, pressurization, and release of magmatic fluids. The gas composition of the sampled submarine emissions is consistent with that of the emissions from the hydrothermal systems of Ischia, CampiFlegrei and Somma-Vesuvius active volcanoes, and CO2 has a magmatic/thermometamorphic origin. The 3He/4He ratios (1.66-1.96 Ra) are slightly lower than in the Somma-Vesuvius and Campi Flegrei volcanoes (~2.6-3.0 Ra) indicating the contamination of fluids originated from the same magmatic source by crustal-derived radiogenic 4He. All these evidences concur to hypothesize an extended magmatic reservoir beneath Naples and its offshore. Seabed doming, faulting, and hydrothermal discharges are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. We conclude that seabed deformations and hydrothermal discharge must be included in the coastal hazard studies.

  8. Analysis of volcanic threat from Nisyros Island, Greece, with implications for aviation and population exposure

    Science.gov (United States)

    Kinvig, H. S.; Winson, A.; Gottsmann, J.

    2010-06-01

    Nisyros island in the South Aegean volcanic arc, Greece, is a Quaternary composite volcano with a 3.8 km wide caldera that in 1996 entered a volcano-seismic crisis, which heralded the islands' return to a state of unrest. The caldera has been the locus of at least thirteen phreatic eruptions in historical times, the most recent in 1888, and the system is still presently affected by considerable hydrothermal activity. Although the recent unrest waned off without eruption, there are still open questions relating to the current threat of volcanic activity from the island. Here, we perform a detailed and systematic assessment of the volcanic threat of Nisyros using a threat analysis protocol established as part of the USGS National Volcano Early Warning System (NVEWS). The evaluation involves a methodical assessment of fifteen hazard and exposure factors, and is based on a score system, whereby the higher the score, the higher the threat is. Uncertainty in assessment criteria are expressed by allowing for a conservative and an extreme score for each factor. We draw our analysis from published data as well as from results of our research on Nisyros over the past years. Our analysis yields a conservative threat score of 163 and an extreme score of 262. The most adverse exposure factors include significant scores relating to aviation and population exposure to volcanic hazards from Nisyros. When looked at in comparison to US volcanoes both scores place Nisyros in the "Very High Threat (VHT)" category, grouping it with volcanoes such as Redoubt, Mount Ranier and Crater Lake. We identify a short-fall in recommended surveillance efforts for VHT volcanoes given existing monitoring capabilities on the island. We discuss potential pitfalls of applying the NVEWS scheme to Nisyros and suggest potential adaptation of analysis scheme to match industrial and societal conditions in Europe. At the same time, our findings indicate that that volcanic threat posed by Nisyros volcano may

  9. Analysis of volcanic threat from Nisyros Island, Greece, with implications for aviation and population exposure

    Directory of Open Access Journals (Sweden)

    H. S. Kinvig

    2010-06-01

    Full Text Available Nisyros island in the South Aegean volcanic arc, Greece, is a Quaternary composite volcano with a 3.8 km wide caldera that in 1996 entered a volcano-seismic crisis, which heralded the islands' return to a state of unrest. The caldera has been the locus of at least thirteen phreatic eruptions in historical times, the most recent in 1888, and the system is still presently affected by considerable hydrothermal activity. Although the recent unrest waned off without eruption, there are still open questions relating to the current threat of volcanic activity from the island. Here, we perform a detailed and systematic assessment of the volcanic threat of Nisyros using a threat analysis protocol established as part of the USGS National Volcano Early Warning System (NVEWS. The evaluation involves a methodical assessment of fifteen hazard and exposure factors, and is based on a score system, whereby the higher the score, the higher the threat is. Uncertainty in assessment criteria are expressed by allowing for a conservative and an extreme score for each factor. We draw our analysis from published data as well as from results of our research on Nisyros over the past years. Our analysis yields a conservative threat score of 163 and an extreme score of 262. The most adverse exposure factors include significant scores relating to aviation and population exposure to volcanic hazards from Nisyros. When looked at in comparison to US volcanoes both scores place Nisyros in the "Very High Threat (VHT" category, grouping it with volcanoes such as Redoubt, Mount Ranier and Crater Lake. We identify a short-fall in recommended surveillance efforts for VHT volcanoes given existing monitoring capabilities on the island. We discuss potential pitfalls of applying the NVEWS scheme to Nisyros and suggest potential adaptation of analysis scheme to match industrial and societal conditions in Europe. At the same time, our findings indicate that that volcanic threat posed by

  10. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada

    Science.gov (United States)

    Lode, Stefanie; Piercey, Stephen J.; Layne, Graham D.; Piercey, Glenn; Cloutier, Jonathan

    2016-04-01

    Metalliferous sedimentary rocks (mudstones, exhalites) associated with the Cambrian precious metal-bearing Lemarchant Zn-Pb-Cu-Au-Ag-Ba volcanogenic massive sulphide (VMS) deposit, Tally Pond volcanic belt, precipitated both before and after VMS mineralization. Sulphur and Pb isotopic studies of sulphides within the Lemarchant exhalites provide insight into the sources of S and Pb in the exhalites as a function of paragenesis and evolution of the deposit and subsequent post-depositional modification. In situ S isotope microanalyses of polymetallic sulphides (euhedral and framboidal pyrite, anhedral chalcopyrite, pyrrhotite, galena and euhedral arsenopyrite) by secondary ion mass spectrometry (SIMS) yielded δ34S values ranging from -38.8 to +14.4 ‰, with an average of ˜ -12.8 ‰. The δ34S systematics indicate sulphur was predominantly biogenically derived via microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation and microbial disproportionation of intermediate S compounds. These biogenic processes are coupled and occur within layers of microbial mats consisting of different bacterial/archaeal species, i.e., sulphate reducers, sulphide oxidizers and those that disproportionate sulphur compounds. Inorganic processes or sources (i.e., thermochemical sulphate reduction of seawater sulphate, leached or direct igneous sulphur) also contributed to the S budget in the hydrothermal exhalites and are more pronounced in exhalites that are immediately associated with massive sulphides. Galena Pb isotopic compositions by SIMS microanalysis suggest derivation of Pb from underlying crustal basement (felsic volcanic rocks of Sandy Brook Group), whereas less radiogenic Pb derived from juvenile sources leached from mafic volcanic rocks of the Sandy Brook Group and/or Tally Pond group. This requires that the hydrothermal fluids interacted with juvenile and evolved crust during hydrothermal circulation, which is consistent with the existing

  11. S/Se ratio of pyrite from eastern Australian VHMS deposits: implication of magmatic input into volcanogenic hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Huston, D.L. [Geological Survey of Canada, Ottawa, ON (Canada); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Cooke, D.R. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    The proton microprobe was used to determine the concentrations of over twenty trace elements in pyrite grains from four volcanic-hosted massive sulphide (VHMS) deposits in eastern Australia. Of the elements determined, Se has the most potential in resolving important problems in the genesis of this class of ore deposits. This paper summarises analytical conditions, describes the distribution of Se in pyrite in VHMS deposits as determined in this and other studies, discusses the speciation of Se in hydrothermal fluids, and presents a genetic model on the relative contribution of magmatic versus sea water Se (and S) in VHMS systems. 2 refs., 1 fig.

  12. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    Energy Technology Data Exchange (ETDEWEB)

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  13. Peptide synthesis in early earth hydrothermal systems

    Science.gov (United States)

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  14. High-resolution AUV-based near bottom magnetic surveys at Palinuro volcanic complex (Southern Tyrrhenian Sea)

    Science.gov (United States)

    Cocchi, L.; Plunkett, S.; Augustin, N.; Petersen, S.

    2013-12-01

    In this paper we present the preliminary results of new near bottom magnetic datasets collected during the recent POS442 cruise using the autonomous underwater vehicle (AUV) Abyss. The Southern Tyrrhenian basin is characterized by deep seafloor interspersed with huge volcanic seamounts (e.g Vavilov and Marsili and those associated to the Aeolian volcanic arc), which were formed during eastward roll back of the Apennine subduction system. These submarine edifices often are affected by significant hydrothermal activity and associated mineral deposits such as those observed at Marsili, Palinuro and Panarea. The western part of the Palinuro volcanic complex is characterized by a half rim of a caldera-like structure and hosts hydrothermal barite-pyrite deposits. Until recently, the full extent of the hydrothermal system remained poorly defined, as exploration has been limited to a few specific sites. In November 2012, a set of high resolution near seafloor geophysical surveys were carried out using GEOMAR's AUV Abyss to attempt to better define the hydrothermal mineralization at Palinuro. Five AUV dives were performed, mapping a total area of 3.7 km2 over the western part of Palinuro. Geomar's Abyss AUV (a Remus6000 class vehicle) was equipped with an Applied Physics Systems flux gate magnetometer, writing to a stand alone data logger, powered by the AUV's main batteries. The 5 dives were performed within the same area but with different primary geophysical sensors (multibeam, sidescan sonar, subbottom profiler), survey altitudes above seafloor (100m, 40m) and line spacing (150m, 100m, 20m). Magnetic data was collect on all five dives. At the beginning of each dive, the AUV performed a set of calibration manoeuvres, involving a 360 degree heading variation, a set of three upwards/downwards pitches, and three port and starboard yaws. This magnetic data reveals the magnetization features of the seafloor in unprecedented detail, highlighting a complex pattern mostly due to

  15. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    Science.gov (United States)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the

  16. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for the low-δ18O magmatism of the Snake River Plain-Yellowstone hotspot and other low-δ18O large igneous provinces

    Science.gov (United States)

    Blum, Tyler B.; Kitajima, Kouki; Nakashima, Daisuke; Strickland, Ariel; Spicuzza, Michael J.; Valley, John W.

    2016-11-01

    The Snake River Plain-Yellowstone (SRP-Y) hotspot track represents the largest known low-δ18O igneous province; however, debate persists regarding the timing and distribution of meteoric hydrothermal alteration and subsequent melting/assimilation relative to hotspot magmatism. To further constrain alteration relations for SRP-Y low-δ18O magmatism, we present in situ δ18O and U-Pb analyses of zircon, and laser fluorination δ18O analyses of phenocrysts, from the Lake Owyhee volcanic field (LOVF) of east-central Oregon. U-Pb data place LOVF magmatism between 16.3 and 15.4 Ma, and contain no evidence for xenocrystic zircon. LOVF δ18O(Zrc) values demonstrate (1) both low-δ18O and high-δ18O caldera-forming and pre-/post-caldera magmas, (2) relative increases in δ18O between low-δ18O caldera-forming and post-caldera units, and (3) low-δ18O magmatism associated with extension of the Oregon-Idaho Graben. The new data, along with new compilations of (1) in situ zircon δ18O data for the SRP-Y, and (2) regional δ18O(WR) and δ18O(magma) patterns, further constrain the thermal and structural associations for hydrothermal alteration in the SRP-Y. Models for low-δ18O magmatism must be compatible with (1) δ18O(magma) trends within individual SRP-Y eruptive centers, (2) along axis trends in δ18O(magma), and (3) the high concentration of low-δ18O magmas relative to the surrounding regions. When considered with the structural and thermal evolution of the SRP-Y, these constraints support low-δ18O magma genesis originating from syn-hotspot meteoric hydrothermal alteration, driven by hotspot-derived thermal fluxes superimposed on extensional tectonics. This model is not restricted to continental hotspot settings and may apply to several other low-δ18O igneous provinces with similar thermal and structural associations.

  17. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    Science.gov (United States)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  18. Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems

    Science.gov (United States)

    Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.

    2007-12-01

    High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low

  19. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  20. Hydrothermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions.

  1. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    Hydrothermal processing has evolved as an alternative processing technology for wet biomass and waste materials in recent years. Using hot-compressed water as a reaction medium at temperatures of 200–500°C, materials with increased energy density can be obtained. The technology is particularly......). Each of these hydrothermal routes results in energy densification by removal of oxygen to produce hydrochar (HTC), biocrude (HTL), or syngas (HTG). The process chemistry and reactions in hydrothermal media are described for each process. Suitable feedstocks and their considerations are reviewed...... as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  2. Hydrothermal processing of radioactive combustible waste

    Energy Technology Data Exchange (ETDEWEB)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-09-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

  3. Characterization of advanced preprocessed materials (Hydrothermal)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  4. Hydrothermally reduced graphene oxide as a supercapacitor

    Science.gov (United States)

    Johra, Fatima Tuz; Jung, Woo-Gwang

    2015-12-01

    The supercapacitance behavior of hydrothermally reduced graphene oxide (RGO) was investigated for the first time. The capacitive behavior of RGO was characterized by using cyclic voltammetry and galvanostatic charge-discharge methods. The specific capacitance of hydrothermally reduced RGO at 1 A/g was 367 F/g in 1 M H2SO4 electrolyte, which was higher than that of RGO synthesized via the hydrazine reduction method. The RGO-modified glassy carbon electrode showed excellent stability. After 1000 cycles, the supercapacitance was 107.7% of that achieved in the 1st cycle, which suggests that RGO has excellent electrochemical stability as a supercapacitor electrode material. The energy density of hydrothermal RGO reached 44.4 W h/kg at a power density of 40 kW/kg.

  5. Depolymerization of sulfated polysaccharides under hydrothermal conditions.

    Science.gov (United States)

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

    2014-01-30

    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  6. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  7. Metal flux from hydrothermal vents increased by organic complexation

    Science.gov (United States)

    Sander, Sylvia G.; Koschinsky, Andrea

    2011-03-01

    Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.

  8. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  9. Petrology of hydrothermal alteration in the Vargeão basaltic impact structure (South Brazil)

    Science.gov (United States)

    Yokoyama, E.; Nédélec, A.; Trindade, R. I.; Baratoux, D.; Berger, G.

    2011-12-01

    Impact cratering process is of primary importance in the evolution of solid bodies of the Solar System. But craters on basaltic rocks, which are the best analog for the surface of other planets and satellites, are rare on Earth. Most studies to date were done in the Lonar crater, a simple crater 1.8 km in diameter, formed on the basaltic flows of the Deccan Province (India). Recently, one medium-size complex crater was identified on volcanic rocks of the Paraná basin (south Brazil) and may provide additional analog to the craters of most rocky planets and satellites. The 12 km wide Vargeão is a very well-preserved impact structure formed on basaltic and subordinately rhyodacites flows of the Serra Geral Formation (about 133-131 Ma), which are locally intertrapped by eolian-sandstones of Botucatu Formation. The impact-related features are represented by shatter cones, breccia-veins and planar deformation features in quartz (few occurrence in the sandstones). This work is focused on the petrogenesis of the centimeter breccia-veins that are found in all lithologies. We conducted a detailed petrological study (petrography, microprobe, SEM, Raman spectroscopy, Spectroscopy of reflectance and XRD) on these veins and their host-rocks. Our results show that the veins were strongly affected by the post-impact hydrothermal fluids. The hydrothermal alteration varies geographically in the structure. On the rim area this alteration consists of total or partial substitution of the melt matrix by quartz, calcite, iron oxides and clay minerals. At the central area, the alteration mineral assembly is composed of quartz, iron oxides, zeolites, clay minerals and rarely calcite. Usually, the alteration shows a zoned setting, which also varies locally. The nature of occurrence of second mineral identified in the context of post-impact hydrothermal alteration of impact craters on basalt represent a critical interpretation to interpret alteration signature of impact craters and the old

  10. Resistivity structure of the Furnas hydrothermal system (Azores archipelago, Portugal) from AMT and ERT imaging.

    Science.gov (United States)

    Byrdina, Svetlana; Vandemeulebrouck, Jean; Rath, Volker; Silva, Catarina; Hogg, Colin; Kiyan, Duygu; Viveiros, Fatima; Eleuterio, Joana; Gresse, Marceau

    2016-04-01

    The Furnas volcanic complex is located in the eastern part of the São Miguel Island and comprises a 5 km × 8 km summit depression filled by two nested calderas with several craters and a lake. Present-day volcanic activity of Furnas volcano is mostly located in the northern part of the caldera, within the Furnas village and north to Furnas Lake, where hydrothermal manifestations are mainly fumarolic fields, steam vents, thermal springs, and intense soil diffuse degassing. Considering the Furnas volcano as a whole, the total integrated CO2 efflux is extremely high, with a total amount of CO2 close to 1000 ton per day (Viveiros et al., 2009). We present the first results of an electrical resistivity tomography (ERT), combined with audio-magneto-telluric (AMT) measurements aligned along two profiles inside the caldera. The purpose of this survey is to delimit the extent, the geometry, and the depth of the hydrothermal system and to correlate the deep resistivity structure with high resolution cartography of diffuse CO2 flux (Viveiros et al, 2015). The ERT and AMT methods are complementary in terms of resolution and penetration depth: ERT can image the structural details of shallow hydrothermal system (down to 100 m in our study) while AMT can image at lower resolution deeper structures at the roots of a volcano (down to 4 km in our study). Our first independent 2D inversions of the ERT-AMT data show a good agreement between the surficial and deeper features. Below the main fumarole area we observe a low resistivity body (less than 1 Ohmm) which corresponds well to the high CO2 flux at the surface and is associated with an extended conductive body at larger depth. These results strongly suggest the presence of hydrothermal waters at depth or/and the presence of altered clay-rich material. On a larger scale however, the geometry of the conducting zones differs slightly from what was expected from earlier surface studies, and may not be directly related to fault zones

  11. Lakshmi Planum: A distinctive highland volcanic province

    Science.gov (United States)

    Roberts, Kari M.; Head, James W.

    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.

  12. Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand

    Science.gov (United States)

    Lube, Gert; Breard, Eric C. P.; Cronin, Shane J.; Procter, Jonathan N.; Brenna, Marco; Moebis, Anja; Pardo, Natalia; Stewart, Robert B.; Jolly, Arthur; Fournier, Nicolas

    2014-10-01

    The 6 August 2012 Te Maari eruption produced violent and widespread "cold" Pyroclastic Density Currents (PDCs) following unroofing of the pressurized hydrothermal system. Despite an erupted volume of only ~ 5 × 105 m3, and lacking any juvenile component, the 340,000 m3 of PDCs spread over an area of 6.1 km2 and had mobilities that were on the order of volcanic blasts or blast-like PDCs. This great mobility was due to strong lateral focussing of explosion energy, producing jets with initial velocities > 100 m/s. We present a type-stratigraphy for these hydrothermal-derived low-temperature PDCs that show a tripartite deposit sequence. Each of the deposit units dominates respectively three outward-gradational sedimentary facies, reflecting transitions in the propagating PDC transport and depositional mechanisms. The largest PDCs, directed west and east of the Upper Te Maari area were generated from outer-cone breccias and tuffs that were mostly highly hydrothermally altered. Landsliding and the geometry of the hydrothermal area led to the directed jetting. Initial particle-laden jets laid sheets, grading into lobes of proximal massive sand to gravel-rich facies dominated by unit A and extending up to 1 km from the vents. As the jets were collapsing, a vertically and longitudinally stratified PDC developed within the first few hundred metres from source. Exponential thinning and coarse-tail grading-dominated fining with radial distance of massive unit A resulted from fast deposition and progressive depletion of the most concentrated flow region behind the PDC head. Markedly slower tractional sedimentation from the passing PDC body and tail deposited the highly stratified and ripple-bedded fine-coarse ash of unit B. This formed distinctive dune fields of the medial dune-bedded ash-rich facies. Upwards in depositional sequences the waning of the current can be seen, by replacement of higher-energy bedforms to progressively lower ones. Downstream progressive waning and

  13. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  14. Pre-biotic organic molecules in hydrothermal quartz veins from the Archaean Yilgarn province, Australia

    Science.gov (United States)

    Mayer, Christian; Schreiber, Ulrich; Dyker, Gerald; Kirnbauer, Thomas; Mulder, Ines; Sattler, Tobias; Schöler, Heinfried; Tubbesing, Christoph

    2013-04-01

    result would be the first indication for pre-biotic organic chemistry. In contrast, almost no organic compounds have been detected inside fluid inclusions from impact-generated quartz veins of the Shoemaker-Crater (its geological age is estimated between 1.6 and 1.0 Ga), even though they partially have formed in stromatolite-bearing sedimentary rocks. Some of them occur in Precambrian gneisses. We interpret the absence of organic compounds as a consequence of the different genesis of the quartzes near the Shoemaker-crater: the impact-induced hydrothermal system had no connection to the Earth's mantle and hence, no contact to rising volcanic fluids. Our analytical results prove the presence of complex organic molecules in fluid inclusions trapped in quartz veins from the Archaean Yilgarn craton in Australia. They allow a more detailed understanding of the synthetic processes which have occurred in rising hydrothermal fluids in the upper crust of the earth and which may have led to the formation of early pre-biotic organic molecules. Based on the findings, laboratory experiments will be designed to reproduce these processes and to yield further understanding on their mechanism. Furthermore, they should yield a collection of possible products which may have formed the basis for the first biomolecules in Earth's history.

  15. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  16. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  17. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    Science.gov (United States)

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.

  18. Overview of electromagnetic methods applied in active volcanic areas of western United States

    Science.gov (United States)

    Skokan, Catherine K.

    1993-06-01

    A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example — Mt. Konocti in the Mayacamas Mountains, California — gravity, magnetic, and seismic, as well as electromagnetic methods have all been used in an attempt to gain a better understanding of the subsurface structure. In each of these volcanic regions, anomalous zones were mapped. When conductive, these anomalies were interpreted to be correlated with hydrothermal activity and not to represent a magma chamber. Electrical and electromagnetic geophysical methods can offer valuable information in the understanding of volcanoes by being the method which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in prediction of eruptions.

  19. The Origin of Life in Alkaline Hydrothermal Vents.

    Science.gov (United States)

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  20. A Case for Hydrothermal Gray Hematite in Aram Chaos

    Science.gov (United States)

    Catling, D. C.; Moore, J. M.

    2003-01-01

    The Thermal Emission Spectrometer (TES) on Mars Global Surveyor has detected deposits of coarsegrained, gray crystalline hematite in Sinus Meridiani, Aram Chaos, and Vallis Marineris [1]. Detailed features in the hematite spectral signature of the Sinus Meridiani region show that the spectrum is consistent with emission dominated by crystal c-faces of hematite, implying that the hematite is specular [2]. Gray specular hematite (also known as specularite ) is a particular gray crystalline form that has intergrown, hexagonal plates with a silvery metallic luster. We believe that the key to the origin of specularite is that it requires crystallization at temperatures in excess of about 100 C. In reviewing the occurrence of gray hematite on Earth, we find no exceptions to this warm temperature requirement [3]. Thermal crystallization on Mars could occur (1) as diagenesis at a depth of a few kilometers of sediments originally formed in lowtemperature waters, or (2) as direct precipitation from hydrothermal solution. Aram Chaos has unique chaotic terrain that offers more clues to the formation of the hematite than the relatively featureless flat terrain (as seen from orbit) of Sinus Meridiani. Aram Chaos provides the opportunity to look at a combination of TES data, Mars Orbiter Camera images, and Mars Orbiter Laser Altimeter (MOLA) topography. This combination of data suggests that high concentrations of hematite were formed in planar strata and have since been exposed by erosion of an overlying light-toned, caprock. Lesser concentrations of hematite are found adjacent to these strata at lower elevations, which we interpret as perhaps a lag deposit. The topography and the collapsed nature of the chaotic terrain favor a hydrothermally charged aquifer as the original setting where the hematite formed. An alternative sedimentary origin requires post-depositional burial to a depth of 3-5 km to induce thermally driven recrystallization of fine-grained iron oxides to coarse

  1. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  2. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  3. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    Science.gov (United States)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  4. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System.

    Science.gov (United States)

    Gomez-Saez, Gonzalo V; Pop Ristova, Petra; Sievert, Stefan M; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I

    2017-01-01

    The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe(2+). Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of (13)C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased (13)C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total (13)C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study

  5. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  6. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  7. The influence of volcanic activity in the Campi Flegrei coastal depositional system

    Science.gov (United States)

    Violante, Crescenzo; Esposito, Eliana; Molisso, Flavia; Porfido, Sabina; Sacchi, Marco

    2010-05-01

    The Campi Flegrei coastal area includes the bay of Pozzuoli, Procida and Ischia islands, characterized by active tectonics and volcanism since the Pleistocene. Numerous monogenic volcanoes occur close to the shoreline and volcanic debris interpreted as submarine counterpart of subaerial flows and surges, have been detected offshore. In the Pozzuoli area the most recent eruptive volcanic activity occurred from 10.0 to 8.0 ky B.P and 4.5 to 3.7 ky B.P. followed by the September 1538 Monte Nuovo eruption. Here magma-related activity is testified by extensive hydrothermalism, and recent episodes (1970-71 and 1982-84 on Pozzuoli coast) of shallow seismicity and ground deformation, exceeding rates of 100 cm/year in the years 1983-1984. The most recent volcanic activity on Ischia island starts around 10.0 ky B.P. to which associates several eruptive centres mostly located in the western sector. The last eruption dates back to Arso flow in 1302. Nevertheless the landscape of Ischia is dominated by Mount Epomeo in the central part of the island, which is the highest peak (788 m). It is a volcano-tectonic structure that raised above sea level between 33 and 28 ka BP, due to the intrusion of magma at shallow depth. Procida island is composed of five monogenic Volcanoes (Vivara, Terra Murata, Pozzo Vecchio, Fiumicello and Solchiaro) that have been active over the last 80 ky producing pyroclastic deposits and a lava dome. A sixth volcanic structure has been reported recently off P.ta Serra by marine investigations and confirmed by airborne magnetic surveys. The emplacement of large amount of volcanoclastic material from volcanic and volcano-tectonic activity in the Campi Flegrei coastal area produced extensive avalanche deposits off Ischia island, seafloor instabilities in the form of creep/slump, channelled sediment flow and deep sedimentary fans, and is largely responsible for aggradation/progradation of the coastal area during the Quaternary. Moreover, numerous volcanic bank

  8. Non-eruptive ice melt driven by internal heat at glaciated stratovolcanoes

    Science.gov (United States)

    Hemmings, Brioch; Whitaker, Fiona; Gottsmann, Joachim; Hawes, Molly C.

    2016-11-01

    Mudflows, floods and lahars from rapid snow and ice melting present potentially devastating hazards to populations surrounding glacial stratovolcanoes. Most ice-melt induced lahars have resulted from eruptive processes. However, there is evidence for non-eruptive hydrothermal volcanic unrest generating rapid and hazardous glacial melt. Here, we use TOUGH2 numerical fluid flow simulations to explore ice melt potential associated with hydrothermal perturbation. Our simulations are loosely based on Cotopaxi Volcano, Ecuadorian Andes. We show that dynamic permeability has a strong control on ice melt response to perturbation. In the absence of concurrent permeability increases, the delay time between onset of a deep hydrothermal perturbation and a response in surface heat flow is on the order of many 10s of years. When increased hot fluid influx at depth is combined with permeability enhancement, the surface heat flow response can be immediate. However, our results suggest that melt rates resulting from such hydrothermal perturbation are still orders of magnitude lower than those induced by eruptive processes; potentially hazardous melt volumes take many months to accumulate, compared to minutes for eruption induced melting. Additional mechanisms, such as glacier destabilisation, meltwater impounding and hydrothermal outburst, may be required to generate volumes of water similar to those associated with catastrophic eruption initiated ice-melt lahars.

  9. Chronic exposure to volcanic air pollution and DNA damage in Furnas Volcano (São Miguel Island, Azores, Portugal) inhabitants

    Science.gov (United States)

    Linhares, Diana; Garcia, Patricia; Silva, Catarina; Ferreira, Teresa; Barroso, Joana; Camarinho, Ricardo; Rodrigues, Armindo

    2015-04-01

    Many studies in volcanic air pollution only have in consideration the acute toxic effects of gas or ash releases however the impact of chronic exposure to ground gas emissions in human health is yet poorly known. In the Azores archipelago (Portugal), São Miguel island has one of the most active and dangerous volcanoes: Furnas Volcano. Highly active fumarolic fields, hot springs and soil diffuse degassing phenomena are the main secondary volcanic phenomena that can be seen at the volcano surroundings. One of the main gases released in these diffuse degassing areas is radon (222Rn), which decay results in solid particles that readily settle within the airways. These decay particles emit alpha radiation that is capable of causing severe DNA damage that cumulatively can eventually cause cancer. Previous studies have established that chronic exposure to chromosome-damaging agents can lead to the formation of nuclear anomalies, such as micronuclei that is used for monitoring DNA damage in human populations. The present study was designed to evaluate whether chronic exposure to volcanic air pollution, associated to 222Rn, might result in DNA damage in human oral epithelial cells. A cross sectional study was performed in a study group of 142 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area), and a reference group of 368 individuals inhabiting an area without these secondary manifestations of volcanism (non-hydrothermal area). For each individual, 1000 buccal epithelial cells were analyzed for the frequency of micronucleated cells (MNc) and the frequency of cells with other nuclear anomalies (ONA: pyknosis, karyolysis and karyorrhexis), by using the micronucleus assay. Information on lifestyle factors and an informed consent were obtained from each participant. Assessment of indoor radon was performed with the use of radon detectors. Data were analyzed with logistic regression models, adjusted

  10. Regional mapping of hydrothermally altered igneous rocks along the Urumieh-Dokhtar, Chagai, and Alborz Belts of western Asia using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operators: a tool for porphyry copper exploration and assessment: Chapter O in Global mineral resource assessment

    Science.gov (United States)

    Mars, John L.; Zientek, M.L.; Hammarstrom, J.M.; Johnson, K.M.; Pierce, F.W.

    2014-01-01

    Regional maps of phyllic and argillic hydrothermal alteration were compiled using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. The area mapped extends from northwestern Iran to southeastern Pakistan and includes volcanic and magmatic arcs that make up the Urumieh-Dokhtar volcanic belt (UDVB), the Chagai volcanic belt (CVB), and the central part of the Alborz magmatic belt (AMB). The volcanic belts span the Zagros-Makran transform zone and the present day Baluchistan (Makran) volcanic arc. ASTER visible near infrared (VNIR) data contain three bands between 0.52 and 0.86 micrometers (μm) and the short-wave infrared (SWIR) data consist of six bands spanning 1.6 to 2.43 μm with 15-meter (m), and 30-m resolution, respectively.

  11. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia

    Science.gov (United States)

    Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.

    2014-05-01

    The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and

  12. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  13. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  14. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    tool for the construction of materials containing unique structures and special ... Recently, we reported hydrothermal synthesis of binuclear Co(II) complex [19] and a new .... to two neighboring ones, through four µ2-oxo bridges, to form infinite ...

  15. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  16. Formation of zirconia polymorphs under hydrothermal conditions

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yanqing(郑燕青); SHl; Erwei(施尔畏); Li; Wenjun(李汶军); CHEN; Zhizhan(陈之战); ZHONG; Weizhuo(仲维卓); HUXingfang(胡行方)

    2002-01-01

    Using zirconium oxychloride solution as precursor, monoclinic zirconia crystallites withnarrow distribution of nanosize were obtained in the hydrothermal reaction. However, when thereaction was in weak acidic medium or base medium, whether directly using the colloidal precipi-tate prepared from zirconium salt solutions with base solution as precursor added, or using theprecipitate after filtrating, washing and drying treatments as precursor, the product of the hydro-thermal reaction was the mixture of both monoclinic and tetragonal polymorphs. As the pH of themedium rises, the content of tetragonal phase in the product, the morphologies and size of thecrystallites all change. There are three types of formation mechanisms under hydrothermal condi-tion, which can be called as saturation-precipitation mechanism in homogeneous solution, dissolu-tion-crystallization mechanism and in-situ crystallization mechanism, respectively. The formationmechanism of crystallites varies with different hydrothermal conditions, such as the states of theprecursor and the pH of the medium, which lead to changes in the phases, morphologies andsizes of the resulting crystallites.

  17. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  18. Reccurent Early Triassic marine anoxia, impacts of volcanics?

    Science.gov (United States)

    Grasby, Stephen; Beauchamp, Benoit; Sanei, Hamed

    2014-05-01

    NW Pangea records a complex history of recurrent development of anoxia through the Permo-Triassic Biotic Crises. The Early Triassic record from the Smithian strato-type in the Sverdrup Basin, as well as for the more open ocean setting of Svalbard, have organic carbon isotope records that closely correspond to major fluctuations in the inorganic carbon records from the Tethys, demonstrating truly global perturbations of the carbon cycle occurred during this time. Geochemical proxies for anoxia are strongly correlated with carbon isotopes, whereby negative shifts in ?13Corg are associated with shifts to more anoxic to euxinic conditions, and positive shifts are related to return to more oxic conditions. Rather than a delayed or prolonged recovery, the Early Triassic is characterized better by a series of aborted biotic recoveries related to shifts back to ocean anoxia, potentially driven by recurrent volcanism.

  19. Major transitions in evolution linked to thermal gradients above hydrothermal vents

    CERN Document Server

    Muller, Anthonie W J

    2012-01-01

    The emergence of the main divisions of today's life: (1) unicellular prokaryotes, (2) unicellular eukaryotes, (3) multicellular eukaryotes, and (4) metazoans, are examples of the--still unexplained--major transitions in evolution. Regarding the origin of life, I have proposed that primordial life functioned as heat engine (thermosynthesis) while thermally cycled in convecting volcanic hot springs. Here I argue for a role of thermal gradients above submarine hydrothermal vents (SHV) in several major transitions. The last decade has witnessed the emergence of phononics, a novel discipline in physics based on controlled heat transport in thermal gradients. It builds thermal analogs to electronic devices: the thermal diode, the thermal transistor, the thermal switch, the thermal amplifier, the thermal memory--the thermal computer has been proposed. Encouraged by (1) the many similarities between microtubules (MT) and carbon nanotubes, which have a very high thermal conductivity, and (2) the recent discovery of a ...

  20. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  1. Deformation in volcanic areas: a numerical approach for their prediction in Teide volcano (Tenerife, Canary Islands); Deformaciones en areas volcanicas: una aproximacin numerica para su prediccion en el volcan Teide (Tenerife, Islas Canarias)

    Energy Technology Data Exchange (ETDEWEB)

    Charco, M.; Galan del Sastre, P.

    2011-07-01

    Active volcanic areas study comprises both, observation of physical changes in the natural media and the interpretation of such changes. Nowadays, the application of spatial geodetic techniques, such as GPS (Global Positioning System) or InSAR (Interferometry with Synthetic Aperture Radar), for deformation understanding in volcanic areas, revolutionizes our view of this geodetic signals. Deformation of the Earth's surface reflects tectonic, magmatic and hydrothermal processes at depth. In this way, the prediction of volcanic deformation through physical modelling provides a link between the observation and depth interior processes that could be crucial for volcanic hazards assessment. In this work, we develop a numerical model for elastic deformation study. The Finite Element Method (FEM) is used for the implementation of the numerical model. FEM allows to take into account different morphology, structural characteristics and the mechanical heterogeneities of the medium. Numerical simulations of deformation in Tenerife (Canary Islands) taking into account different medium hypothesis allow us to conclude that the accuracy of the predictions depends on how well the natural system is described. (Author) 22 refs.

  2. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons

    1998-01-01

    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  3. Toward Forecasting Volcanic Eruptions using Seismic Noise

    CERN Document Server

    Brenguier, Florent; Campillo, Michel; Ferrazzini, Valerie; Duputel, Zacharie; Coutant, Olivier; Nercessian, Alexandre

    2007-01-01

    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.

  4. Voltammetric Investigation Of Hydrothermal Iron Speciation

    Directory of Open Access Journals (Sweden)

    Charlotte eKleint

    2016-05-01

    Full Text Available Hydrothermal vent fluids are highly enriched in iron (Fe compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world`s surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE - AdCSV with salicylaldoxime (SA as the artificial ligand. Our results for total dissolved Fe (dFe in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1% and 11.8% being chemically labile. Iron binding ligand concentrations ([L] were found in µM level with strong conditional stability constants up to log K[L],Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.

  5. On the global distribution of hydrothermal vent fields: One decade later

    Science.gov (United States)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with Antarctic Ridge, and the intermediate spreading Pacific-Antarctic Ridge. Although a greater percentage of the ~11,000 km of BASCs has been surveyed for hydrothermal activity, the discoveries at BASCs in the past decade were mainly at segments with intermediate to fast spreading rates. Using the same equation for F_s vs. u_s, we predicted 71 vent fields remaining to be discovered at BASCs, and most are likely to be found at ultra-slow and slow spreading segments (e.g., Andaman Basin, and central to northern Mariana Trough). With 2/3 of our overall predicted total vent fields at spreading ridges remaining to be discovered, we expect that the next decade of exploration will continue to yield new discoveries, leading to new insights into biogeography of vent fauna and the global impacts of fluxes of heat and

  6. Subaque