Sample records for volcanic rocks latitudes

  1. Volcanic Rocks and Features (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  2. Volcanic rock properties control sector collapse events (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio


    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  3. Compositional Differences between Felsic Volcanic rocks from the ...

    African Journals Online (AJOL)

    Pliocene felsic rift margin and Quaternary rift center volcanic rocks from the northern Main Ethiopian Rift (MER) exhibit contrasts in major and trace element contents and Sr-Nd isotopic ratios. Quaternary rift center felsic volcanic rocks are mainly peralkaline trachytes and rhyolites, whereas Pliocene felsic rift margin volcanic ...

  4. A Reconstruction of Paleo-Positions of Basin and Range Volcanic Rocks, and Implications for Tectonic Controls on Volcanism (United States)

    Platt, B. W.; Putirka, K. D.


    A key problem in understanding the tectonic triggers of Basin-and-Range magmatism relates to the fact that many volcanic rocks have been translated from the latitudes and longitudes at which they were erupted. We present a reconstruction of the paleo-latitudes and paleo-longitudes of volcanic rocks using the work of Snow and Wernicke (2000). These reconstructed volcanic rock positions are used to 1) test whether the formation and northward migration of the Mendocino Triple Junction (MTJ) may have initiated volcanism and 2) whether the demise of subduction processes may have affected volcanic compositions. We utilize Figure 13 from Snow and Wernicke (2000) in the reconstruction, which illustrates a deformation grid that covers the most extended parts of the Basin and Range in CA, NV and AZ. We apply deformation a vector to each grid point and assigned an age of initiation of deformation, which we allow to migrate from south to north based on field evidence for the initiation of extensional faulting in the map area (Anderson et al., 1988; Beratan and Nielsen, 1996; Fridrich et al., 1998; Faulds et al., 2002; Jacobsen et al., 2002; Busby and Putirka, 2009). Our model, derived from the field data, yields an initiation age (for extension) as a function of latitude: Age of initiation of deformation [Ma]=130.6 - 3.14[Latitude]. This reconstruction provides a consistency test for the extension model of Snow and Wernicke (2000) because our reconstruction yields strain rates for each grid point; we obtain a mean strain rate of 13 mm/year, which is consistent with strain rates obtained from field data. Interestingly, the latitudinal changes for volcanic rocks are mostly minimal; even though in the Walker Lane belt crustal components have experienced significant latitudinal displacement, most volcanic rocks erupted in the Walker Lane are too young to be greatly translated. However, many volcanic rocks are sufficiently old so that longitudinal positions are significantly

  5. Volcanic rocks cored on hess rise, Western Pacific Ocean (United States)

    Vallier, T.L.; Windom, K.E.; Seifert, K.E.; Thiede, Jorn


    Large aseismic rises and plateaus in the western Pacific include the Ontong-Java Plateau, Magellan Rise, Shatsky Rise, Mid-Pacific Mountains, and Hess Rise. These are relatively old features that rise above surrounding sea floors as bathymetric highs. Thick sequences of carbonate sediments overlie, what are believed to be, Upper Jurassic and Lower Cretaceous volcanic pedestals. We discuss here petrological and tectonic implications of data from volcanic rocks cored on Hess Rise. The data suggest that Hess Rise originated at a spreading centre in the late early Cretaceous (Aptian-Albian stages). Subsequent off-ridge volcanism in the late Albian-early Cenomanian stages built a large archipelago of oceanic islands and seamounts composed, at least in part, of alkalic rocks. The volcanic platform subsided during its northward passage through the mid-Cretaceousequatorial zone. Faulting and uplift, and possibly volcanism, occurred in the latest Cretaceous (Campanian-Maastrichtian stages). Since then, Hess Rise continued its northward movement and subsidence. Volcanic rocks from holes drilled on Hess Rise during IPOD Leg 62 (Fig. 1) are briefly described here and we relate the petrological data to the origin and evolution of that rise. These are the first volcanic rocks reported from Hess Rise. ?? 1980 Nature Publishing Group.

  6. Interpretation of magnetic fabrics in the Dalma volcanic rocks and ...

    Indian Academy of Sciences (India)


    SE trending Dalma volcano-sedimentary range of the East Indian Shield, extending from. Belpahari (West Midnapore district, West Bengal) in the east up to Chandil (East Singhbhum district, Jharkhand) in the west (Figure 2). The rock units consist of thick sequences of mafic- ultramafic volcanic rocks, lenses of basaltic ...

  7. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Addis Ababa capital city of Ethiopia at an elevation of about 2000 m above mean sea level is entirely covered with volcanic rocks, basalt, trachyte, ignimbrite and rhyolite. Construction industry makes use these rocks extensively and indiscriminately for structural loading, pavements, wall cladding, fencing, as cobblestone ...

  8. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling


    Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...... rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students...

  9. Geochemistry of volcanic rocks in a traverse through Nicaragua


    Nyström, Jan Olov; Levy, Beatriz; Troëng, Björn; Ehrenborg, Jan; Carranza, Giovanni


    Major element composition and preliminar trace element data for 138 samples of mainly basic and intermediate volcanic rocks from a cross section between the Pacific and Atlantic coasts of Nicaragua suggests that the present tectonic setting-subdution of an oceanic plate below the western margin of Central American can be extrapolated back to the middle Tertiary. The samples can be divided into three groups with regard to their chemistry: (a) the Recent to Tertiary volcanics from the entire tr...

  10. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole


    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes...... Peninsula, a tholeiite to rhyolitic rock series from Kerlingarfjöll, central Iceland, and an alkaline rock series from Jan Mayen that ranges from ankaramites to trachytes. Fluorine is not appreciably degassed during extrusion and appears to be insensitive to slight weathering. The olivine tholeiites from...... the Reykjanes Peninsula have F contents of 30–300 ppm and exhibit linear increases proportional to the incompatible elements K, P, and Ti. Such incompatible behaviour for F has been confirmed for the less evolved rocks of the other series. The tholeiites from Kerlingarfjöll (100–2000 ppm F) show a linear...

  11. Peralkaline silicic volcanic rocks in northwestern nevada. (United States)

    Noble, D C; Chipman, D W; Giles, D L


    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin.

  12. Compositional Differences between Felsic Volcanic Rocks from the ...

    African Journals Online (AJOL)


    Plateau unit is in fault contact with the overlying Intoto unit (22.2-22 Ma) (Morton et al. 1979;. Chernet et al. 1998). ... (1986). The alkaline-sub-alkaline boundary is from Irvine and Baragar (1971). .... Volume 1 (1): 4 – 35, 2009. Compositional differences exist between the rift margin and rift center volcanic rocks (Table 1;. Fig.

  13. The evolution of pore connectivity in volcanic rocks (United States)

    Colombier, Mathieu; Wadsworth, Fabian B.; Gurioli, Lucia; Scheu, Bettina; Kueppers, Ulrich; Di Muro, Andrea; Dingwell, Donald B.


    Pore connectivity is a measure of the fraction of pore space (vesicles, voids or cracks) in a material that is interconnected on the system length scale. Pore connectivity is fundamentally related to permeability, which has been shown to control magma outgassing and the explosive potential of magma during ascent in the shallowest part of the crust. Here, we compile a database of connectivity and porosity from published sources and supplement this with additional measurements, using natural volcanic rocks produced in a broad range of eruptive styles and with a range of bulk composition. The database comprises 2715 pairs of connectivity C and porosity ϕ values for rocks from 35 volcanoes as well as 116 products of experimental work. For 535 volcanic rock samples, the permeability k was also measured. Data from experimental studies constrain the general features of the relationship between C and ϕ associated with both vesiculation and densification processes, which can then be used to interpret natural data. To a first order, we show that a suite of rocks originating from effusive eruptive behaviour can be distinguished from rocks originating from explosive eruptive behaviour using C and ϕ. We observe that on this basis, a particularly clear distinction can be made between scoria formed in fire-fountains and that formed in Strombolian activity. With increasing ϕ, the onset of connectivity occurs at the percolation threshold ϕc which in turn can be hugely variable. We demonstrate that C is an excellent metric for constraining ϕc in suites of porous rocks formed in a common process and discuss the range of ϕc values recorded in volcanic rocks. The percolation threshold is key to understanding the onset of permeability, outgassing and compaction in shallow magmas. We show that this threshold is dramatically different in rocks formed during densification processes than in rocks formed in vesiculating processes and propose that this value is the biggest factor in

  14. Petrography and petrology of Quaternary volcanic rocks from Ghezel Ghaleh, northwest Qorveh

    Directory of Open Access Journals (Sweden)

    Alireza Bajelan


    Full Text Available Introduction In the east and northeast of Sanandaj in the Qorveh-Bijar-Takab axis, there are series of basaltic composition volcanoes with Quaternary age. The study area is part of the Sanandaj-Sirjan zone and is located between 47°52' and 47°57' E longitudes and 35°26 and '35°30' N latitudes. Due to the location of the volcanic cone on Pliocene clastic sediments and Quaternary travertine, the age of these volcanoes is considered to be Quaternary. The cones mostly consist of low scoria, ash, volcanic bombs, lapilli deposits and basaltic lava (Moein Vaziri and Aminsobhani, 1985. Petrological and geochemical studies have been carried out to evaluate Quaternary magmatism in the area and to determine the nature of the lithological characteristics, such as the evaluation of source rocks and magma type, degree of partial melting and the tectonic setting of Ghezel Ghaleh rocks (Moein Vaziri, 1997. Simplified geological map of the study area is characterized by ER-Mapper software. Materials and methods In the course of field studies in the region, 40 samples were taken, 30 thin sections were prepared and polished. XRD analyses were performed on some whole rock samples. All major, minor and trace elements were assessed by ICP-MS at Lab Weft Laboratory in Australia. Results Based on the classification of structural zones, the area is located in the Sanandaj-Sirjan zone, hundred kilometers away from the main Zagros thrust along the NW-SE direction. After early Cimmerian orogeny, andesitic volcanic activity took place (Moein Vaziri and Aminsobhani, 1985. A major secondary mineral in these rocks is iddingsite, formed by hydration and oxidation of the olivine (Shelley, 1993. According to SiO2 against Na2O + K2O (TAS diagram (Irvine and Baragar , 1971 and cationic R1 and R2 diagram (De La Roche et el., 1980, volcanic rocks of the area indicate alkaline series. Discussion To obtain more information on the tectonic setting of these rocks, the Zr/Y-Zr diagram

  15. A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah (United States)

    Koebli, D. J.; Germa, A.; Connor, C.; Atlas, Z. D.


    A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah Authors: Danielle Koebli, Dr. Aurelie Germa, Dr. Zackary Atlas, Dr. Charles Connor The San Rafael Volcanic Field (SRVF), Utah, is a 4Ma volcanic field located in the northwestern section of the Colorado Plateau. Alkaline magmas intruded into Jurassic sandstones , known as the Carmel, Entrada, Curtis and Summerville sandstone formations, and formed comagmatic dikes, sills and conduits that became uniquely well exposed as country rocks were eroded. The two rock types that formed from the melts are shonkinite (45.88 wt% SiO2) and syenite (50.84wt% SiO2); with dikes being predominantly shonkinite and sills exhibiting vertical alternation of shonkinite and syenite, a result of liquid immiscibility. The aim of this study is to determine magma temperatures, and mineral compositions which will be used for determining physical conditions for magma crystallization. Research is being conducted using an Electron Probe Micro Analyzer (EPMA) for single crystal analysis, and data were plotted using PINGU software through VHub cyberinfrastructure. EPMA data supports hydrated magma theories due to the large amounts of biotite and hornblende mixed in with olivine, feldspar and pyroxene. The data is also indicative of a calcium-rich magma which is further supported by the amount of pyroxene and plagioclase in the sample. Moreover, there are trace amounts orthoclase, quartz and k-feldspar due to sandstone inclusions from the magma intruding into the country rocks. The olivine crystals present in the samples are all chemically similar, having high Mg (Fo80-Fo90), which, coupled with a lower Fe content indicate a hotter magma. Comparison of mineral and whole-rock compositions using MELTs program will allow us to calculate magma viscosity and density so that the physical conditions for magma crystallization can be determined.

  16. Analysis of concentration patterns in volcanic rocks: Insights into dynamics of highly explosive volcanic eruptions (United States)

    Perugini, D.; Petrelli, M.; Poli, G.


    In this contribution we present new data resulting from the analysis of concentration patterns of mixed juvenile fragments ejected by a highly explosive volcanic eruption that occurred on Salina Island (Aeolian Islands, Italy) and our aim is to identify the fluid-dynamic regime characterizing the magma mixing process. Concentration patterns are studied by calculating the power spectrum of concentration variability along transects crossing the magma mixing structures. Results indicate that the slope of power spectrum has an average value of about -5/3, according to Kolmogorov law of turbulence, and suggest that the magma mixing process, in the studied conditions, can be approximated by considering the passive scalar mixing hypothesis in homogeneous isotropic turbulent flow. These results represent a first step towards a better understanding of magma mixing processes associated to highly explosive volcanic eruptions and this first step is taken by studying concentration patterns in volcanic rocks by coupling petrological and non-linear dynamics methods.

  17. Petrography, Geochemistry and Petrogenesis of Volcanic Rocks, NW Ghonabad, Iran

    Directory of Open Access Journals (Sweden)

    Sedigheh Zirjanizadeh


    Full Text Available Introduction The study area is located in NW Gonabad, Razavi Khorasan Province, northern Lut block and eastern Iran north of the Lut Block. Magmatism in NW Gonabad produced plutonic and volcanic rock associations with varying geochemical compositions. These rocks are related to the Cenozoic magmatic rocks in Iran and belong to the Lut Block volcanic–plutonic belt. In this study, petrogenesis of volcanic units in northwest Gonabad was investigated. The volcanic rocks are andesites/trachyandesites, rhyolites, dacites/ rhyodacites and pyroclastics.These rocks show porphyritic, trachytic and embayed textures in phenocrysts with plagioclase, sanidine and quartz (most notably in dacite and rhyolite, hornblende and rare biotite. The most important alteration zones are propylitic, silicification and argillic.Four kaolinite- bearing clay deposits have been located in areas affectedby hydrothermal alteration of Eocene rhyolite, dacite and rhyodacite. Analytical techniques Five samples were analyzed for major elements by wavelength dispersive X-ray fluorescence (XRF and six samples were analyzed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Laboratories, Vancouver (Canada.Sr and Nd isotopic compositions were determined for four whole-rock samples at the Laboratório de GeologiaIsotópica da Universidade de Aveiro, Portugal. Results Petrography. The rocks in this area are consist of trachyte, andesite/ trachyandesite, dacite/ rhyodacite, principally as ignimbrites and soft tuff. The textures of phenocrysts are mainly porphyritic, glomerophyric, trachytic and embayed textures in plagioclase, hornblende and biotite. The groundmasses consist of plagioclase and fine-grainedcrystals of hornblende. Plagioclase phenocrysts and microlitesare by far the most abundant textures in andesite - trachyandesites (>25% and in size from 0.01 to 0.1mm. Euhedral to subhedral hornblende phenocrysts areabundant (3-5%and 0.1 to 0

  18. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S


    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  19. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine (United States)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.


    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  20. Tectonic implications of paleomagnetic poles from Lower Tertiary Volcanic Rocks, south central Alaska (United States)

    Hillhouse, John W.; Grommé, C. Sherman; Csejtey, Bela, Jr.


    We have determined the paleolatitude of lower Tertiary volcanic rocks in southern Alaska to measure possible poleward translation of the Wrangellia and the Peninsular terranes after 50 m.y. ago. Previous paleomagnetic studies have shown that in Triassic and Jurassic time these terranes were located near the equator and have moved at least 3000 km poleward relative to the North American craton. Our sample localities are in the northern Talkeetna Mountains in mildly deformed andesite and dacite flows (50.4, 51.3, 53.9, and 56.3 m.y. by K-Ar) that overlap Lower Cretaceous flysch, Lower Permian volcanic rocks of Wrangellia, and Upper Triassic pillow basalt of the Susitna terrane. Results from 26 cooling units (23 of reversed polarity and 3 of normal polarity) give a mean paleomagnetic pole at 69.5°N, 179.6°E, α95 = 12.2°. Stratigraphic sections from opposite limbs of a syncline yield directional paths that pass the fold test, satisfying a necessary condition for primary origin of the magnetization. The corresponding mean paleolatitude (76°N) of the northern Talkeetna Mountains is 8°±10° higher than the latitude predicted from the Eocene reference pole for North America. Therefore, northward drift of the Talkeetna superterrane, which is the amalgamation of the Wrangellia and Peninsular terranes during and after Middle Jurassic time, was probably complete by 50 m.y. ago. Our results are consistent with paleomagnetic poles from uppermost Cretaceous and Paleocene volcanic sequences in Denali National Park, the Lake Clark region, northern Bristol Bay region, and near McGrath. These poles generally lie south of the cratonic poles, suggesting that the region between the Kaltag, Bruin Bay, and Castle Mountain faults has rotated counterclockwise relative to North America since the early Eocene.

  1. Late Cretaceous intraplate silicic volcanic rocks from the Lake Chad region: An extension of the Cameroon volcanic line? (United States)

    Shellnutt, J. G.; Lee, T.-Y.; Torng, P.-K.; Yang, C.-C.; Lee, Y.-H.


    Silicic volcanic rocks at Hadjer el Khamis, near Lake Chad, are considered to be an extension of the Cameroon volcanic line (CVL) but their petrogenetic association is uncertain. The silicic rocks are divided into peraluminous and peralkaline groups with both rock types chemically similar to within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma indicating the magmas erupted ˜10 million years before the next oldest CVL rocks (i.e., ˜66 Ma). The Sr isotopes (i.e., ISr = 0.7021-0.7037) show a relatively wide range but the Nd isotopes (i.e., 143Nd/144Ndi = 0.51268-0.51271) are uniform and indicate that the rocks were derived from a moderately depleted mantle source. Thermodynamic modeling shows that the silicic rocks likely formed by fractional crystallization of a mafic parental magma but that the peraluminous rocks were affected by low temperature alteration processes. The silicic rocks are more isotopically similar to Late Cretaceous basalts identified within the Late Cretaceous basins (i.e., 143Nd/144Ndi = 0.51245-0.51285) of Chad than the uncontaminated CVL rocks (i.e., 143Nd/144Ndi = 0.51270-0.51300). The age and isotopic compositions suggest the silicic volcanic rocks of the Lake Chad region are related to Late Cretaceous extensional volcanism in the Termit basin. It is unlikely that the silicic volcanic rocks are petrogenetically related to the CVL but it is possible that magmatism was structurally controlled by suture zones that formed during the opening of the Central Atlantic Ocean and/or the Pan-African Orogeny.

  2. Petrography, geochemistry and tectonic setting of Salmabad Tertiary volcanic rocks, southeast of Sarbisheh, eastern Iran

    Directory of Open Access Journals (Sweden)

    Masoumeh Goodarzi


    Full Text Available Introduction The area reviewed and studied in this paper is located 5 km southeast of Sarbisheh city at eastern border of the Lut block (Jung et al., 1983; Karimpour et al., 2011; Richards et al., 2012 in eastern Iran between 59° 47′ and 59° 53′ E longitude and 32°30′ and 32°34′ N latitude. The magmatic activity in the Lut block began in middle Jurassic (165-162 Ma and reached its peak in Tertiary (Jung et al., 1983. Volcanic and subvolcanic rocks of Tertiary age cover over half of Lut block with up to 2000 m thickness and formed due to subduction prior to the collision of the Arabian and Asian plates (Camp and Griffis, 1982; Tirrul et al., 1983; Berberianet et al., 1982. Most of magmatic activity in the Lut block formed in middle Eocene (Karimpour et al., 2011 The andesitic volcanics were erupted together with the dacites and rhyodacites during a time interval of some 50 Ma from early Cretaceous to early Neogene. It can be assumed that the intensity of the volcanic activity was varying significantly during this time span (Jung et al., 1983.Tertiary volcanic rocks (Eocene-Oligocene to Pliocene with intermediate composition associated with pyroclastic rocks cropped out in eastern parts of Salmabad village, southeast of Sarbisheh. The main purpose of this paper is better understand the tectono-magmatic setting of the Tertiary volcanic rocks in southeast of Sarbisheh, eastern Iran based on geochemical characteristics. Materials and methods Eleven samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the SGS Laboratories, Toronto, Canada. Results In the Salmabad area, Tertiary volcanic rocks with mainly intermediate (andesitic composition are exposed associated with pyroclastic deposits such as tuff, breccia and agglomerate

  3. Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    C. E. Sioris


    Full Text Available The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation and the Fourier Transform Spectrometer (ACE-FTS. The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue–Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12 % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of  ∼  1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue–Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.

  4. Fracture Detection in Geothermal Wells Drilled in Volcanic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gonfalini, Mauro; Chelini, Walter; Cheruvier, Etienne; Suau, Jean; Klopf, Werner


    The Phlegrean Fields, close to Naples, are the site of important geothermal activity. The formations are volcanic and mostly tuffites. They are originally very tight but the geothermal alteration locally produces fractures with large increase in permeability. The lack of geological markers makes well-to-well correlation quite difficult. Thus the local detection of fractured zones in each well is very important for the evaluation of its potential. The Mofete 8 D well is a typical example. A rather complete logging program was run for fracture detection. Standard methods turned out to be disappointing. However several non-standard detectors were found to be very consistent and, later on, in excellent agreement with the analysis of cuttings. They are derived from the Dual Laterolog, the SP, the Temperature log and, most particularly, the Acoustic Waveforms from the Long Spacing Sonic. The Dual Laterolog and the Temperature Log indicate invasion by fresh and cold mud filtrate; the SP behaves as in a typical Sand-Shale sequence. Sonic Waveforms were first analyzed by a purely empirical method derived from consistent log patterns. A practical algorithm compares the total energy measured in each of the two fixed time windows located the one before, the other after the fluid arrivals. The altered zones (i.e. fractured and permeable) are clearly shown by a complete reversal of the relative energy of these two windows. A more scientific method was then applied to the Waveforms; it is based on both logging experiments and physical considerations. The energy carried by the tube wave is separated by a frequency discrimination: it correlates very well with formation alteration, thus also with the other indicators including the empirical Waveform method. It should have two advantages: – It should permit at least a semi quantitative permeability evaluation – It seems to be promising in other formations: non-volcanic geothermal wells and even hydrocarbon-bearing rocks. 10 refs

  5. Evolution and genesis of volcanic rocks from Mutnovsky Volcano, Kamchatka (United States)

    Simon, A.; Yogodzinski, G. M.; Robertson, K.; Smith, E.; Selyangin, O.; Kiryukhin, A.; Mulcahy, S. R.; Walker, J. D.


    This study presents new geochemical data for Mutnovsky Volcano, located on the volcanic front of the southern portion of the Kamchatka arc. Field relationships show that Mutnovsky Volcano is comprised of four distinct stratocones, which have grown over that past 80 ka. The youngest center, Mutnovsky IV, has produced basalts and basaltic andesites only. The three older centers (Mutnovsky I, II, III) are dominated by basalt and basaltic andesite (60-80% by volume), but each has also produced small volumes of andesite and dacite. Across centers of all ages, Mutnovsky lavas define a tholeiitic igneous series, from 48-70% SiO2. Basalts and basaltic andesites have relatively low K2O and Na2O, and high FeO* and Al2O3 compared to volcanic rocks throughout Kamchatka. The mafic lavas are also depleted in the light rare earth elements (REEs), with chondrite-normalized La/Sm rocks worldwide. Radiogenic isotope ratios (Sr, Nd, Pb, Hf) are similar for samples from all four eruptive centers, and indicate that all samples were produced by melting of a similar source mixture. No clear age-progressive changes are evident in the compositions of Mutnovsky lavas. Mass balance and assimilation-fractional crystallization (AFC) modeling of major and rare earth elements (REEs) indicate that basaltic andesites were produced by FC of plagioclase, clinopyroxene and olivine from a parental basalt, combined with assimilation of a melt composition similar to dacite lavas present at Mutnovsky. This modeling also indicates that andesites were produced by FC of plagioclase from basaltic andesite, combined with assimilation of dacite. Dacites erupted from Mutnovsky I and II have low abundances of REEs, and do not appear to be related to mafic magmas by FC or AFC processes. These dacites are modeled as the products of dehydration partial melting at mid-crustal levels of a garnet-free, amphibole-bearing basaltic rock, which itself formed in the mid-crust by emplacement of magma that originated from

  6. Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction

    KAUST Repository

    Tiecher, Francieli


    Mesostasis material present in the interstices of volcanic rocks is the main cause of the alkali-aggregate reaction (AAR) in concretes made with these rock aggregates. Mesostasis often is referred to as volcanic glass, because it has amorphous features when analyzed by optical microscopy. However, this study demonstrates that mesostasis in the interstitials of volcanic rocks most often consists of micro to cryptocrystalline mineral phases of quartz, feldspars, and clays. Mesostasis has been identified as having different characteristics, and, thus, this new characterization calls for a re-evaluation of their influence on the reactivity of the volcanic rocks. The main purpose of this study is to correlate the characteristics of mesostasis with the AAR in mortar bars containing basalts and rhyolites. © 2012 Elsevier Ltd. All rights reserved.

  7. Geochemical characteristics of volcanic rocks from selected locations located in Idaho, USA and the Korean Peninsula (United States)

    Kim, K. J.; Heldmann, J. L.; Lim, D. S. S.; van Gasselt, S.; Sun, C.; Yi, E.; Lee, Y.


    We have been investigating the geochemical characteristics of volcanic rocks of selected regions located in Idaho, USA and compared them to the geochemistry of those found on the Korean Peninsula. In particular, we compare volcanic rocks from the Craters of the Moon (COM) and the King's Bowl (KB) volcanic fields to those of Mt. Baekdu and Ulueng Island in order to gather an understanding about the source of magma that is revealed at the current surface of those volcanic fields. Our preliminary investigation confirmed that the geochemical characteristics of volcanic rocks from KB compare well with the geochemical characteristics of returned lunar samples with respect to both low K2O+Na2O and low SiO2 contents exhibiting the geochemical characteristics of a mantle origin. This mantle geochemistry is also clearly observed in both regions of Ulueng Island and Mt. Baekdu. The magma sources of Ulueng Island and Mt. Baekdu are known to be located in a depth of about 30 and 5 10 km, respectively, with initial eruption dates at approximately 1.4 and 28 million years ago, respectively. Volcanic core samples taken at a depth of 4 km at Uleung Island and mantle source rock of Mt. Baekdu reveal geochemical characteristics of lunar basalts confirming even more that both magma source of and evolutionary processes on the Earth's moon closely compare to terrestrial volcanic processes associated with mantle sources. The mantle rock of Mt. Baekdu is a picrite basalt which shows close similarities to lunar basalts. It was also found that volcanic rocks from the COM and Mt. Baekdu show quite similar geochemical evolutionary features while rocks from Uleung Island reveal more alkaline characteristics. This presentation introduces aspects of the relationship between mantle sources and evolutionary features from lunar and terrestrial rocks from selected location.

  8. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.


    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  9. Petrographic features of Middle-Late Triassic volcanic rocks of the Transdanubian Range and their comparison to contemporaneous volcanic rocks of the Southern Alps (United States)

    Farics, Éva; Józsa, Sándor; Haas, János


    During the early stage of the Alpine plate tectonic cycle, the Transdanubian Range Unit was located close to the area of the Southern Alps; they were situated at the western margin of the Neotethys. Ocean began opening in the Middle Triassic. Our aim is to present and evaluate the petrographic characteristics of the Middle to Late Triassic volcanic rocks of the Transdanubian Range formed in an extensional regime of the ocean margin and compare them to coeval volcanic formations of the Southern Alps formed in similar geodynamic settings. Andesite (porphyric pilotaxitic texture, with plagioclase and hypersthene, subordinately augite and biotite phenocrysts) is the dominant volcanic rock type in the NE part of the Transdanubian Range (Eastern Bakony - Balatonfő and Buda Hills, which occur as dikes (Buda Hills) and lava flows (Szár Hill). Other volcanic rocks occur only as pebble populations in Eocene basal conglomerates in Buda Hills or Middle-Late Triassic volcanoclastites in the Eastern Bakony and Zsámbék basin. We defined the following rock types: amafitic andesite/microdiorite (consist of two populations of oriented plagioclase and only small abundant glassy groundmass); microdiorite (microophitic texture with large hypersthene, which has plagioclase inclusions in it); trachyte or latite (more primary K-feldspar and less plagioclase phenocrysts with microphenocrysts of augite and biotite); basalt (vesicular texture with pseudomorph after plagioclase, pyroxene and olivine phenocrysts); microdolerite (intergranular texture with pseudomorph after xenomorphic mafic minerals and plagioclase); aplite (microholocrystalline and micropoikilite texture with well-crystallized groundmass; quartz, K-feldspar and biotite crystals); rhyolite (dark and light flow banding and has poorly-developed micropoikilite texture with quartz, K-feldspar and biotite crystals); rhyolite tuff (ignimbrit texture with plagioclase, K-feldspar and biotite as well as lithic fragments - andesite

  10. Development of micro-scale joints in volcanic rocks under thermal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    mal stress induced joints under varying cooling conditions. 2. Micro-scale joints in the Rajmahal volcanics. To study the micro-scale joints in rock systems, fresh samples of olivine basalt were chosen from the Rajmahal Trap of eastern India. The rocks consist of phenocrysts of olivine, clino-pyroxene. (augite) and plagioclase ...

  11. Search for Magnetic Monopoles in Polar Volcanic Rocks

    DEFF Research Database (Denmark)

    Bendtz, K.; Milstead, D.; Hächler, H. -P.


    following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analyzed. No monopoles were found, and a 90% confidence level upper limit of 9.8 x...

  12. Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database (United States)

    Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu


    We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations

  13. Page 1 Geochemistry of Archaean volcanic rocks from Iron Ore ...

    Indian Academy of Sciences (India)

    constitute a significant component of the Eastern cration. In the Eastern Indian Craton petrogenesis of. Indian Craton. Dunn (1940) identified the supracrus- the sialic rocks have been studied in detail. (Baksi et all tal rocks as belonging to one stratigraphic unit named 1987; Sengupta et al 1983; Sengupta et al 1991; Saha ,.

  14. Evidence of crustal contamination, sediment, and fluid components in the campanian volcanic rocks (United States)

    Paone, A.


    The Campanian Volcanic Subprovince is part of the classic western potassic volcanic province of the Italian Peninsula. The Campanian volcanic products show the effects of shallow assimilation and fractional crystallisation, and the contribution of regional crustal sources (e.g., Hercynian basement-Calabrian crust). The Roccamonfina, Campi Flegrei, and Ventotene volcanic rocks are characterised by wide isotopic and geochemical variations. Such variations appear to reflect both AFC processes and chemical heterogeneity in the upper mantle that may be linked to subduction processes. Mixing curves (Th/Ce-, Ba/K- and Eu/Eu*-143Nd/144Nd) linking sediments and mantle end-members account for the variations in the Campanian Subprovince volcanic rocks with a sediment contribution of 2-10%. The upper mantle sources for the low- and high-K rocks at Roccamonfina have been constrained on the basis of a multi-element normalised diagram. The two sources require different amounts of sediment in the mantle wedge (LK???2% versus HK???10%) and a fluid component probably from altered ocean crust to explain the fluid mobile elements. Low-K Roccamonfina rocks are geochemically similar to those from Campi Flegrei, Ventotene, and Somma-Vesuvius, suggesting a similar proportion of sediment in their upper mantle source regions. ?? 2004 B.V. All rights reserved.

  15. Relationship between Los Angeles attrition test and Nordic abrasion test of volcanic rocks (United States)

    Krutilová, Kateřina; Prikryl, Richard


    Various volcanic rocks contribute significantly to the production of crushed stone in the Czech Republic. When used for road surfacing, results of Los Angeles attrition test (LA value below 25 or 30 depending on the mode of use) together with polished stone value are required. In the recent study, we have focused on the search for possible correlation between results obtained by Los Angeles attrition test and Nordic abrasion test, a test widely employed in Scandinavia. For the experimental study, a set of volcanic rocks from 36 active quarries was used. The rocks under study represent range of volcanic rocks from ultrabasic to acid members, formed form Neoproterozoic to Tertiary. The most favourable results of Los Angeles attrition test (i.e. the lowest LA values) were obtained for basalts (range of values 9.4-19.4) and spilites (range of values 8.4-14.9) which are in fact Neoproterozoic to Late Palaeozoic basalts affected by low grade metamorphism. Nordic abrasion test exhibited much broader range of values (6.4 to 36.9) with average value at 15.2 for basalts, resulting in weak coefficient of determination (0.19). . On contrary, narrow range of values from Nordic abrasion test of spilites (7.2-15.9), very similar to the range of LA values, is reflect in higher coefficient of determination (0.56). On contrary, the least favourable properties (LA values 12.3-29.2, Nordic abrasion 16.8-43.3) have been observed for a group of basic to intermediate rocks classified in older literature as melaphyres and diabases (ranging from basalts to trachyndesites and/or trachybasalts) of Palaeozoic age. However, in this specific group of volcanic rocks, the highest coefficient of determination (0.89) between both tests has been achieved. For volcanic rocks exhibiting acid composition (rhyolites and quartz porphyry), coefficient of determination between LA values (15.1-19.3) and Nordic abrasion test (7.3-21.9) is weak (0.42). The weakest relationship between LA values (14

  16. Geochemical study of volcanic and associated granitic rocks from ...

    Indian Academy of Sciences (India)

    Geochemical studies and modelling show that both volcanic and granitic magmas from the western part of the Johor National Park, Endau Rompin are different and probably have different sources. The geo- chemical plot suggests that both dacite/rhyolite and andesite probably have a common origin as in many.

  17. Geochemical study of volcanic and associated granitic rocks from ...

    Indian Academy of Sciences (India)

    Geochemical studies and modelling show that both volcanic and granitic magmas from the western part of the Johor National Park, Endau Rompin are different and probably have different sources. The geochemical plot suggests that both dacite/rhyolite and andesite probably have a common origin as in many of the ...

  18. Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks (United States)

    Johnson, C.M.; Czamanske, G.K.; Lipman, P.W.


    Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) ???25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23-25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19-23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole

  19. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change. (United States)

    Farris, David W; Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos


    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision with South America forming the observed Canal extensional

  20. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Claudete G., E-mail: [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Querol, Xavier [Institute of Environmental Assessment and Water Research (IDÆA-CSIC), C/Luis Solé y Sabarís s/n, 08028 Barcelona (Spain); Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Pires, Karen [Departamento Nacional de Produção Mineral (DNPM), Washington Luiz, 815, Centro, 90010-460 Porto Alegre, RS (Brazil); Kautzmann, Rubens M. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Oliveira, Luis F.S., E-mail: [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil)


    Mineralogical and geochemical characteristics of volcanic rock residue, from a crushing plant in the Nova Prata Mining District, State of Rio Grande do Sul (RS), Brazil, in this work named rock powder, were investigated in view of its potential application as soil ammendment in agriculture. Abaut 52,400 m{sup 3} of mining waste is generated annually in the city of Nova Prata without a proper disposal. The nutrients potentially available to plants were evaluated through leaching laboratory tests. Nutrient leaching tests were performed in Milli-Q water; citric acid solution 1% and 2% (AC); and oxalic acid solution 1% and 5% (AO). The bulk and leachable contents of 57 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Mining waste were made up by CaO, K{sub 2}O, SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, and P{sub 2}O{sub 5}. The analysis by X-ray diffraction (XRD) showed the major occurence of quartz, anorthite, cristobalite, sanidine, and augite. The water leachable concentrations of all elements studied were lower than 1.0 mg/kg, indicating their low solubility. Leaching tests in acidic media yield larger leachable fractions for all elements being studied are in the leachate of the AO 1%. These date usefulness of volcanic rock powder as potential natural fertilizer in agriculture in the mining district in Nova Prata, Rio Grande do Sul, Brazil to reduce the use of chemical fertilizers. - Highlights: • Volcanic rock powder as fertilizer in agriculture • Volcanic rock powder as a source of nutrients to plants • This technology may favor the use of volcanic rock in agriculture.

  1. The permeability of fractured rocks in pressurised volcanic and geothermal systems. (United States)

    Lamur, A; Kendrick, J E; Eggertsson, G H; Wall, R J; Ashworth, J D; Lavallée, Y


    The connectivity of rocks' porous structure and the presence of fractures influence the transfer of fluids in the Earth's crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.

  2. Search for magnetic monopoles in polar volcanic rocks

    CERN Document Server

    Bendtz, K; Hächler, H -P; Hirt, A M; Mermod, P; Michael, P; Sloan, T; Tegner, C; Thorarinsson, S B


    For a broad range of values of magnetic monopole mass and charge, the abundance of monopoles trapped inside the Earth would be expected to be enhanced in the mantle beneath the geomagnetic poles. A search for magnetic monopoles was conducted using the signature of an induced persistent current following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analysed. No monopoles were found and a 90% confidence level upper limit of $1.6\\cdot 10^{-28}$ is set on the monopole to nucleon ratio in the search samples.

  3. Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches (United States)

    Esteves, Hugo; Fernandes, Isabel; Janeiro, Ana; Santos Silva, António; Pereira, Manuel; Medeiros, Sara; Nunes, João Carlos


    Several concrete structures show signs of deterioration resulting from internal chemical reactions, such as the alkali-silica reaction (ASR). It is well known that these swelling reactions occur in the presence of moisture, between some silica mineral phases present in the aggregates and the alkalis of the concrete, leading to the degradation of concrete structures and consequently compromising their safety. In most of the cases, rehabilitation, demolition or even rebuilding of such structures is needed and the effective costs can be very high. Volcanic rocks are commonly used as aggregates in concrete, and they are sometimes the only option due to the unavailability of other rock types. These rocks may contain different forms of silica that are deleterious to concrete, such as opal, chalcedony, cristobalite, tridymite and micro- to cryptocrystalline quartz, as well as Si-rich volcanic glass. Volcanic rocks are typically very finegrained and their constituting minerals are usually not distinguished under optical microscopy, thus leading to using complementary methods. The objective of this research is to find the more adequate analytical methods to identify silica phases that might be present in volcanic aggregates and cause ASR. The complementary methods used include X-Ray Diffraction (XRD), mineral acid digestion and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry (SEM/EDS), as well as Electron Probe Micro-Analysis (EPMA).

  4. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: Petrology and mineral chemistry

    Czech Academy of Sciences Publication Activity Database

    Skála, Roman; Ulrych, Jaromír; Krmíček, Lukáš; Fediuk, F.; Balogh, K.; Hegner, E.


    Roč. 66, č. 3 (2015), s. 197-216 ISSN 1335-0552 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Cenozoic volcanism * isotope geochemistry * melilitic rock * mineralogy * petrology Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.523, year: 2015

  5. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)


    governed by petrographic composition, texture, particle shape, porosity, among others. ... Shaped and finished blocks, slabs, rough quarry blocks, and crushed and broken stones are embraced in construction stones. Construction stone has a wide variety of uses, but it is convenient ...... The role of rock and clast fabric in the.

  6. Isotopic composition of strontium in volcanic rocks from oahu. (United States)

    Powell, J L; Delong, S E


    Analysis of several well-documented specimens from each of the three volcanic series on Oahu gives the following mean ratios of Sr(87) to Sr(86): the Waianae series, 0.7030 +/- 0.00010 (sigma); the Koolau series, 0.70385+/- 0.00009 (sigma); and the Honolulu series, 0.7029 ++/- 0.00006 ( sigma). The mean ratio of Sr(87) to Sr(86) of the Koolau series specimens is significantly higher than the means of the other two series. With one exception, significant differences in Sr(87)/ Sr(86) within a series were not found, even though some large compositional differences existed.

  7. Mineral Chemistry and Geochemistry of Volcanic Rocks in The North of Pasinler (Erzurum

    Directory of Open Access Journals (Sweden)

    Oktay KILIÇ


    Full Text Available In the north of Pasinler (Erzurum, Upper Miocene-Pliocene volcanic rocks crop out. These volcanites are composed of basaltic andesite, andesite, dacite, rhyolite lavas and rhyolitic pyroclastics. The rocks show porphyritic, microlitic porphyritic, hyalo-microlitic porphyritic, vitrophyric, glomeroporphyritic, pilotaxitic and hyalopilitic textures. The investigated volcanites contain plagioclase (An29-80, olivine (Fo65-82, clinopyroxene (augite, orthopyroxene (enstatite, amphibole (Mg#: 0.57-0.71, biotite (phlogopite: 0.44-0.47, annite: 0.33-0.37, sanidine, quartz and opaque mineral (titano-magnetite and ilmenite. The volcanic rocks are calc-alkaline in character and have medium to high-K contents. Major oxide and trace element variations point out open-system magmatic differentiation in the evolution of rocks. Geochemical data indicate an important role of fractionation of phenocryst phases in the rocks during differentiation process. However, it is considered that assimilation±magma mixing might have accompanied to the process. High LILE (K, Rb, Ba, Th and relatively low HFSE (Nb, Ta, Hf, Zr contents of the rocks indicate that these rocks derived from parental magmas carrying subduction signature.

  8. The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements (United States)

    Carroll, R.D.


    A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.

  9. Correlations between silicic volcanic rocks of the St Mary's Islands (southwestern India) and eastern Madagascar

    DEFF Research Database (Denmark)

    Melluso, Leone; Sheth, Hetu C.; Mahoney, John J.


    The St Mary's, Islands (southwestern India) expose silicic volcanic and sub-volcanic rocks (rhyolites and granophyric dacites) emplaced contemporaneously with the Cretaceous igneous province of Madagascar, roughly 88-90 Ma ago. I he St Mary's Islands rocks have phenocrysts of plagioclase...... and isotopic Compositions very close to those of rhyolites exposed between Vatomandry Ilaka and Mananjary in eastern Madagascar, and are distinctly different from rhyolites front other sectors of the Madagascan province. We therefore postulate that the St Mary's and the Vatomandry-Ilaka Mananjary silicic rock...... outcrops were adjacent before the Late Cretaceous rifting that split Madagascar from India, If so, they provide a valuable tool to check and aid traditional Cretaceous India Madagascar reconstructions based on palaeomagnetism, matching Precambrian geological features, and geometric fitting of continental...

  10. Analysis on weathering characteristics of volcanic rocks in Dokdo, Korea based on accelerated weatehring experiments (United States)

    Woo, Ik; Song, Won-Kyong; Kim, Bok-Chul; Kang, Jinseok


    Dokdo consists of small volcanic islands located in the southern part of the East Sea. Accelerated weathering tests was performed to examine the physico-mechanical characteristics of volcanic rocks in Dokdo. Rock core specimens of trachyandesite, andesitic dyke and ash tuff were prepared, and double soxhlet extractors(DSE) and peristatic pumps were used for accelerating the weathering processes. The DSE was designed to perform cyclic leaching tests for rock core specimen using distilled water at seventy degrees centigrade. The core specimens which are classified according to pre-test weathering grades placed in the lower part of the DSE, and periodically exposed to hot distilled water at every ninety minutes. On the other hand the peristatic pumps were utilized to induce leaching by distilled or brine water at normal temperature. The physico-mechanical property changes including rock surface appearance, microscopic structure and rock strength were analyzed with the results obtained from both experiments performed for 120 days. The conducted research in this study have shown that the methodologies of artificial weathering experiments have strong capability to understand the weathering characteristics of the rocks effectively.

  11. Geochemistry and geochronology of Hangay Dome volcanic rocks: exploring the source of high topography and volcanism in an intracontinental setting (United States)

    Ancuta, L. D.; Carlson, R. W.; Idleman, B. D.; Zeitler, P. K.


    The Hangay dome in central Mongolia is an anomalous uplifted continental interior that is partially covered by diffuse Cenozoic basaltic rocks. Here we present new data on the geochemistry, stratigraphy, geomorphology and 40Ar/39Ar ages of the basaltic rocks to help elucidate the cause of the uplift and 33 Ma of volcanism in the region. 187Os/188Os ratios for the basaltic rocks range from 0.1363-0.3440. The higher values implicate crustal contamination, but the less radiogenic values limit the amount of contamination to the point where the Sr, Nd and Hf isotopic composition of the lavas are little affected, allowing them to be used as reliable tracers of the initial melt source. 87Sr/86Sr and 143Nd/144Nd ratios for the basaltic rocks from the region range from 0.7039-0.7050 and 0.5120-0.5127 respectively. These values are higher and lower, respectively, than Sr and Nd isotopic composition of the majority of spinel peridotite xenoliths contained in recent Hangay lavas, implicating a sub-lithospheric source for the magmas. The basalts have isotopic compositions approaching the EM-1 enriched mantle end member, similar to a number of other sites of young east Asian magmatism. An EM-1 type mantle source may have been generated regionally across East Asia by incorporation of pelagic sediments into the upper mantle during the protracted history of terrane accretion and subduction associated with the formation of the Central Asian orogenic system. New stratigraphically correlated 40Ar/39Ar ages for basalts from the Hangay region show that multiple episodes of laterally extensive flows occurred between 28.30×0.19 and 4.11×0.11 Ma. This first phase of volcanism was the most voluminous and long-lived. A later stage of valley-filling eruptions occurred between 3.28×0.50 Ma and 5 Ka. Flows across this range of ages occur in a number of locations within the Hangay, with no discernable age progression, indicating that the region has been the site of volcanism for over 30 Ma

  12. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: petrology and mineral chemistry

    Directory of Open Access Journals (Sweden)

    Skála Roman


    Full Text Available Upper Cretaceous to Pleistocene volcanic rocks of the Bohemian Massif represent the easternmost part of the Central European Volcanic Province. These alkaline volcanic series include rare melilitic rocks occurring as dykes, sills, scoria cones and flows. They occur in three volcanic periods: (i the Late Cretaceous to Paleocene period (80–59 Ma in northern Bohemia including adjacent territories of Saxony and Lusatia, (ii the Mid Eocene to Late Miocene (32.3–5.9 Ma period disseminated in the Ohře Rift, the Cheb–Domažlice Graben, Vogtland, and Silesia and (iii the Early to Late Pleistocene period (1.0–0.26 Ma in western Bohemia. Melilitic magmas of the Eocene to Miocene and Pleistocene periods show a primitive mantle source [(143Nd/144Ndt=0.51280–0.51287; (87Sr/86Srt=0.7034–0.7038] while those of the Upper Cretaceous to Paleocene period display a broad scatter of Sr–Nd ratios. The (143Nd/144Ndt ratios (0.51272–0.51282 of the Upper Cretaceous to Paleocene rocks suggest a partly heterogeneous mantle source, and their (87Sr/86Srt ratios (0.7033–0.7049 point to an additional late- to post-magmatic hydrothermal contribution. Major rock-forming minerals include forsterite, diopside, melilite, nepheline, sodalite group minerals, phlogopite, Cr- and Ti-bearing spinels. Crystallization pressures and temperatures of clinopyroxene vary widely between ~1 to 2 GPa and between 1000 to 1200 °C, respectively. Nepheline crystallized at about 500 to 770 °C. Geochemical and isotopic similarities of these rocks occurring from the Upper Cretaceous to Pleistocene suggest that they had similar mantle sources and similar processes of magma development by partial melting of a heterogeneous carbonatized mantle source.

  13. Petrogenesis of volcanic rocks that host the world-class Agsbnd Pb Navidad District, North Patagonian Massif: Comparison with the Jurassic Chon Aike Volcanic Province of Patagonia, Argentina (United States)

    Bouhier, Verónica E.; Franchini, Marta B.; Caffe, Pablo J.; Maydagán, Laura; Rapela, Carlos W.; Paolini, Marcelo


    We present the first study of the volcanic rocks of the Cañadón Asfalto Formation that host the Navidad world-class Ag + Pb epithermal district located in the North Patagonian Massif, Patagonia, Argentina. These volcanic and sedimentary rocks were deposited in a lacustrine environment during an extensional tectonic regime associated with the breakup of Gondwana and represent the mafic to intermediate counterparts of the mainly silicic Jurassic Chon Aike Volcanic Province. Lava flows surrounded by autobrecciated carapace were extruded in subaerial conditions, whereas hyaloclastite and peperite facies suggest contemporaneous subaqueous volcanism and sedimentation. LA-ICPMS Usbnd Pb ages of zircon crystals from the volcanic units yielded Middle Jurassic ages of 173.9 ± 1.9 Ma and 170.8 ± 3 Ma. In the Navidad district, volcanic rocks of the Cañadón Asfalto Formation show arc-like signatures including high-K basaltic-andesite to high-K dacite compositions, Rb, Ba and Th enrichment relative to the less mobile HFS elements (Nb, Ta), enrichment in light rare earth elements (LREE), Ysbnd Ti depletion, and high Zr contents. These characteristics could be explained by assimilation of crustal rocks in the Jurassic magmas, which is also supported by the presence of zircon xenocrysts with Permian and Middle-Upper Triassic ages (281.3 Ma, 246.5, 218.1, and 201.3 Ma) and quartz xenocrysts recognized in these volcanic units. Furthermore, Sr and Nd isotope compositions suggest a contribution of crustal components in these Middle Jurassic magmas. High-K basaltic andesite has initial 87Sr/86Sr ratios of 0.70416-0.70658 and ξNd(t) values of -5.3 and -4. High-K dacite and andesite have initial 87Sr/86Sr compositions of 0.70584-0.70601 and ξNd(t) values of -4,1 and -3,2. The range of Pb isotope values (206Pb/204Pb = 18.28-18.37, 207Pb/204Pb = 15.61-15.62, and 208Pb/204Pb = 38.26-38.43) of Navidad volcanic rocks and ore minerals suggest mixing Pb sources with contributions of

  14. Paralavas in the Cretaceous Paraná volcanic province, Brazil - A genetic interpretation of the volcanic rocks containing phenocrysts and glass. (United States)

    Baggio, Sérgio B; Hartmann, Léo A; Bello, Rosa M S


    The occurrences of glassy rocks containing long and curved phenocrysts in the Paraná volcanic province, South America, are here interpreted as paralavas. The large number of thin (0.1-0.5 m) dikes and sills of glassy volcanic rocks with hopper, hollow or curved, large crystals of clinopyroxene (up to 10 cm), plagioclase (up to 1 cm), magnetite and apatite are contained in the core of thick (>70 m) pahoehoe flows. They are strongly concentrated in the state of Paraná, coincident with the presence of the large number of dikes in the Ponta Grossa arch. These rocks were previously defined as pegmatites, although other names have also been used. A paralava is here interpreted as the product of melting of basaltic rocks following varied, successive processes of sill emplacement in high-kerogen bituminous shale and ascent of the resultant methane. As the gas reached the lower portion of the most recent lava flow of the volcanic pile, the methane reacted with the silicate and oxide minerals of the host volcanic rock (1,000 ºC) and thus elevated the local temperature to 1,600 ºC. The affected area of host rock remelted (possibly 75 wt.%) and injected buoyantly the central and upper portion of the core. This methane-related mechanism explains the evidence found in the paralavas from this volcanic province, one of the largest in the continents.

  15. Paralavas in the Cretaceous Paraná volcanic province, Brazil - A genetic interpretation of the volcanic rocks containing phenocrysts and glass

    Directory of Open Access Journals (Sweden)


    Full Text Available ABSTRACT The occurrences of glassy rocks containing long and curved phenocrysts in the Paraná volcanic province, South America, are here interpreted as paralavas. The large number of thin (0.1-0.5 m dikes and sills of glassy volcanic rocks with hopper, hollow or curved, large crystals of clinopyroxene (up to 10 cm, plagioclase (up to 1 cm, magnetite and apatite are contained in the core of thick (>70 m pahoehoe flows. They are strongly concentrated in the state of Paraná, coincident with the presence of the large number of dikes in the Ponta Grossa arch. These rocks were previously defined as pegmatites, although other names have also been used. A paralava is here interpreted as the product of melting of basaltic rocks following varied, successive processes of sill emplacement in high-kerogen bituminous shale and ascent of the resultant methane. As the gas reached the lower portion of the most recent lava flow of the volcanic pile, the methane reacted with the silicate and oxide minerals of the host volcanic rock (1,000 ºC and thus elevated the local temperature to 1,600 ºC. The affected area of host rock remelted (possibly 75 wt.% and injected buoyantly the central and upper portion of the core. This methane-related mechanism explains the evidence found in the paralavas from this volcanic province, one of the largest in the continents.

  16. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus


    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  17. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  18. Carbon storage potential in Pleistocene volcanic rocks of the Magnesia area (Central Greece) (United States)

    Koutsovitis, Petros; Koukouzas, Nikolaos; Magganas, Andreas


    The Porfyrio and Mikrothives volcanoes in the Magnesia area (SE Thessaly, Central Greece) are located a few km (˜8 and 12 km respectively) south-southwest of the industrial area of Volos city and are relatively small in size (˜3 and 10 km2 respectively). They are closely associated with other scattered volcanic centers of Late-Pleistocene-Quaternary age, appearing at the western shores of Pagasitikos gulf and at the Northern Euboikos gulf (e.g. Achilleion, Lichades, Agios Ioannis). This volcanic activity is attributed to back-arc extensional volcanism and may be further associated with propagation tectonics of the North Anatolian fault [1,2,3]. Volcanic rocks from the Porfyrio and Mikrothives mostly consist of basaltic and trachyandesitic lavas and pyroclastic tuffs. Porous basaltic lavas (10-15% porosity) exhibit porphyritic textures with a holocrystalline trachytic groundmass. The groundmass consists of lath-shaped plagioclase crystals, alkali feldspar, clinopyroxene, olivine, oxide minerals (ilmenite, titanomagnetite and magnetite), along with other accessory minerals such as quartz, calcite, apatite and pyrite. Phenocrysts are mostly subhedral and anhedral clinopyroxene crystals (mostly augite and less often diopside), olivine and less often plagioclase and quartz. Cr-spinel crystals have been identified within olivine phenocrysts. Pyroclastic tuffs exhibit vesicular textures, with their porosity varying between 20 and 40%. Their groundmass is hypocrystalline vesicular being either trachytic or aphanitic, often enriched in oxide minerals. Phenocrysts are less frequent compared to the lava samples, most often being feldspars. In some samples, pores are partially filled with secondary calcite. From recent literature it is well known that CO2 can be injected, trapped and retained within the pore spaces of volcanic rocks, forming chemically stable carbonate minerals [4,5,6,7]. The Porfyrio and Mikrothives volcanics can be considered as potential sites for

  19. Constraining the Origin of Basaltic Volcanic Rocks Observed by Opportunity Along the Rim of Endeavour Crater (United States)

    Bouchard, M. C.; Jolliff, B. L.; Farrand, W. H.; Mittlefehldt, D. W.


    The Mars Exploration Rover (MER) Opportunity continues its exploration along the rim of Endeavour Crater. While the primary focus for investigation has been to seek evidence of aqueous alteration, Opportunity has observed a variety of rock types, including some that are hard and relatively unaltered. These rocks tend to occur most commonly as "float rocks" or "erratics" where the geologic setting does not clearly reveal their origin. Along the rim of Endeavour crater (Fig. 1), such rocks, commonly noted in Panoramic Camera (Pancam) left eye composites as "blue rocks", are abundant components of some of the Endeavour crater rim deposits, scree slopes, and colluvium deposits. In this abstract, we examine the similarity of several of these rocks analyzed using Opportunity's Alpha Particle X-Ray Spectrometer (APXS), images and color from the Pancam, and textures observed with the Microscopic Imager (MI. At issue is the blue rocks origin; are they impact melt or volcanic, what is their age relative to Endeavour crater, and how they are related to each other?

  20. Mineral chemistry and petrogenesis of the Gurgur Mount volcanic rocks (Northeast Takab

    Directory of Open Access Journals (Sweden)

    Dariush Esmaeily


    Full Text Available Andesitic and andesitic-basaltic lavas are widespread over most of the ground surface of the Gurgur area altered mostly by the hydrothermal solutions. The main rock forming minerals in these rocks are plagioclase, pyroxene and olivine affected by the hydrothermal solutions. The altered rocks do contain minerals including calcite, sericite and chlorite. Given the results obtained and the mineral chemistry studies, the clinopyroxenes formed in the area are, chemically, calkalkaline and of diopside-augite type formed in subvolcanic to near surface levels contemporaneous with magma ascending. Plagioclase minerals show zoning textures and lie within the two andesine and albite-oligoclase fields. These units, in terms of total rock chemistry, are classified as the calk-alkaline volcanic rocks formed in the continental arcs. On the other hand, on the trace elements chondrite-normalized diagrams and enriched mantle-normalized multi- element diagrams, the LREE enrichment relative to the HREE is observed. The LILE (i.e. Rb, K and Th and the LREE (e.g. La, Ce and Nd show an enrichment in comparison to the HFSE (Zr, Hf, Nb, Yb, Y and Sm. Given the Nd/Th (1.42-1.15, Zr/Nb (12.27-21.22, Ba/La (18.64-29.77 as well as LILE enrichment associated with depletion in Nb, Ta and Ti, an environment related to the subduction zones can be proposed for the area under study. Moreover, the similarity between the REE distribution pattern and the incompatible elements point to the genetic relationship between these rocks. Finally, on the base of the obtained data, it can be concluded that the volcanic rocks in the Gurgur Mountain were likely formed during the extended magmatism of the Urumieh-Dokhtar in the Cenozoic.

  1. Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS. (United States)

    Gondal, Mohammed A; Nasr, Mohamed M; Ahmed, Zulfiqar; Yamani, Zain H


    Trace elements of environmental significance present in the volcanic rock samples collected from sites of the Cenozoic era flood basalt flows and eruptions were detected using locally developed laser-induced breakdown spectrometer. For spectro-chemical analysis of these samples, the plasma was generated by focusing a pulsed Nd: YAG laser radiation at 1064 nm wavelength on the target rock samples. These samples were collected from four widely separated locations surrounding the volcanic eruption sites belonging to the Harrat Hutaymah volcanic field in the vicinity of Taba town, situated to the east of Hail city of northern Saudi Arabia. These samples represent the scoria basalt lava flows as well as a large tuff-ring crater and it contains xenoliths. These flows occur widespread over the Earth's surface in this region, and their contained xenoliths are brought up from depths of a few tens of kilometers. This volcanic field has received much less attention in the previous geological studies; and consequently, its effects on the environment are not well defined. The concentration of different elements of environmental significance like Cr, Pb, Mn, Cd, Sr and other trace metals like Cu, Al, Ca, Mg, Zn, Ti and Fe in these rock samples were determined by spectral analysis. Parametric dependence for improvement of LIBS sensitivity for detection of these elements was also carried out. The highest concentration detected of environmentally significant elements like Cr, Mn, Pb, Sr and Ni are 1910, 1399, 90.5, 12412 and 461.5 ppm, respectively in four different lava samples which are considered to be much higher than the safe permissible limits. The LIBS results were compared with the results obtained using other analytical techniques such as the inductively coupled plasma atomic emission spectroscopy (ICP-AES).

  2. Tertiary volcanic rocks and the potassium content of Gulf Coast shales—The smoking gun (United States)

    Bloch, John; Hutcheon, Ian E.; de Caritat, Patrice


    The majority of Tertiary volcanic rocks of the western United States and Mexico are alkaline in composition and may contain as much as 50 wt% equivalent K-feldspar. Emplacement of these volcanic strata is coeval with Tertiary shale deposition in the Texas Gulf Coast, and they previously have been identified as likely sources of sediment for Gulf Coast shales. Evaluation of chemical trends in Gulf Coast shales, particularly K2O, indicates changes in sediment composition in the lower Eocene, Oligocene, and near the Oligocene-Miocene boundary. In particular, there is a 250% increase in K2O content from ˜2 wt% to ˜5 wt% from the late Eocene to the early Oligocene. Gulf Coast shale bulk-rock compositions are consistent with a Tertiary volcanic source. Estimates of erosion and mass balance calculations suggest that in the south Texas Gulf Coast, the Oligocene Frio Formation may contain between 60% and 85% volcanic detritus, and coeval Frio shales to the north contain ˜25%. Vertical and lateral compositional variations highlight variable abundances of source detritus and the effects of weathering and depositional processes on Gulf Coast shale composition. Trends of increasing K2O content with depth in Gulf Coast shales previously have been interpreted to result from open-system diagenesis and K-metasomatism at depth. The data presented herein suggest instead that these trends result from variable provenance and the influx of large volumes of Tertiary alkaline volcanic material. Therefore, diagenetic models that invoke a homogeneous initial shale composition and open-system behavior may be invalid.

  3. Petrogenesis and tectonic implications of Early Jurassic volcanic rocks of the Raohe accretionary complex, NE China (United States)

    Wang, Zhi-Hui; Ge, Wen-Chun; Yang, Hao; Bi, Jun-Hui; Ji, Zheng; Dong, Yu; Xu, Wen-Liang


    The Raohe accretionary complex, located at the border between the Russian Far East and Northeastern China, is a significant part of the western Pacific Oceanic tectonic regime. Due to lack of precise age and geochemical constraints, the tectonic setting and petrogenesis of the magmatic rocks in this area remain undefined, resulting in debate about crustal growth mechanisms and subduction-related accretionary processes in Northeastern China. Here, we report whole-rock major and trace element and Sr-Nd isotope data, together with zircon U-Pb ages and in situ zircon Hf isotope data for calc-alkaline andesites, dacites, rhyolites, rhyolitic crystal tuffs, Nb-enriched andesites and basaltic andesites, and high-Mg andesites of the Raohe accretionary complex in NE China. Samples were collected from Late Triassic to Early Jurassic strata. However, geochronological results in this study indicated that the studied magmatism occurred in the Early Jurassic (187-174 Ma). The calc-alkaline volcanic rocks possess geochemical characteristics typical of arc magmas that form at active continental margins, such as moderate enrichments in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depletions in high field strength elements (HFSEs). They have positive εHf(t) values of +3.4 to +10.6 and relatively high (87Sr/86Sr)i values of 0.7047-0.7102. While the Nb-enriched andesites and basaltic andesites have higher TiO2, Hf, Nb, and Zr contents and higher Nb/Ta (24.0-87.6), Nb/U (11.9-75.9), (Nb/Th)PM (0.67-2.70), and (Nb/La)PM (1.95-5.00) ratios than typical arc basalts. They have negative εNd(t) values (-5.5 to -6.0) and relatively variable (87Sr/86Sr)i values of 0.7047-0.7114, suggesting an origin via the partial melting of mantle wedge peridotite that had been metasomatized by slab-derived melt. The high-Mg volcanic rocks, characterized by high MgO and Mg#, TiO2, Al2O3, Cr, Ni, (La/Yb)N and (La/Sm)N, but low Ba/Th ratios, are geochemically similar to

  4. Quaternary Basanitic Rocks within the Eastern Anatolian Volcanism (Turkey): Petrological and Geochemical Constrains (United States)

    Özdemir, Yavuz; Mercan, Çaǧrı; Oyan, Vural; Atakul-Özdemir, Ayşe


    The Eastern Anatolian Cenozoic continental intraplate volcanism was initiated in Middle Miocene as a result of the convergence between the Arabian and Anatolian plates. The origin of Eastern Anatolian volcanism has been the focus of many petrological studies that have aimed to resolve the relative contributions of asthenospheric mantle and/or lithospheric mantle with/without subduction component in the genesis of magmas that compositionally have many affinities to ocean island basalts (OIB) and volcanic arcs. Volcanism in the region characterized by mainly stratovolcanoes, basaltic lava plateaus and are dominantly spread at the northern parts of Bitlis Pötürge Massif (BPM). Our study focuses on a small scale Quaternary basaltic system that firstly observed within the BPM. The volcanic rocks of our study located 50 km to the south of Lake Van and are basanitic in composition. They exposed along K-G striking tensional fissures and crosscut the Upper unit of the Bitlis Massif. Initial products of the volcanism are scoria fall deposits. Thick basanitic lava flows overly the pyroclastics and formed columnar structures. The basanites are generally fine-grained with phenocrysts of olivine+clinopyroxene. The groundmass is typically of clinopyroxene, olivine and Ti magnetite and Cr spinel with interstitial nepheline. The olivine phenocrysts are typically euhedral to subhedral with Forsterite contents of Fo73-83. Clinopyroxenes are highly calcic and show modest variations in Wo47-52-En34-42-Fs10-15 and are weakly zoned with mg# 89-87 at cores to 86-84 at rims. Nephelines occur as minor minerals within the networks of other groundmass minerals. Ti rich and Fe-Cr spinels occur as inclusions in olivine and clinopyroxenes as well as within the groundmass. LILE and LREE enrichments over HFSE and HREE suggest similarities with magmas generated from enriched mantle sources. EC-AFC modeling of trace element and isotope compositions indicates that assimilation of crustal

  5. Research on isotope geology: Isotopes ages of volcanic rocks from Ryeongnam Massif, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung; Kim, Yoo Sook [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)


    Chronostratigraphy of most volcanic rocks in the Ryeongnam Massif have been undefined or mis-classified in different geological maps due to total absence of reported isotope ages. Twenty-four new isotope ages are given for age-undefined volcanic units and some related igneous bodies. Most of volcanic rocks show high [La/Yb]n ratios and LREE enrichments which are characteristics of subduction-related high-K calc-alkali volcanic rocks occurred in the active continental margin. Preliminary results on carbon and oxygen stable isotope ratios({delta}{sup 13}C=-1.7{approx}-6.2 per mil; {delta}{sup 18} O=-21.6{approx}-24.7 per mil) of druse- or phenocryst-calcite from andesitic and basaltic rocks in the southern coastal region indicate a magmatic origin. Based on new K-Ar whole-rock ages, chronological guidelines are established as follows: 1) Gayasan andesite (78{+-}4Ma) - Gurye andesitic tuff (81{+-}4Ma); 2) Gurye andesite (68{+-}4Ma) - Suncheon andesitic tuff (67{+-}3Ma) - Yeosu basaltic andesite (67{+-}3Ma) - Narodo andesite (70{+-}3Ma); 3) Taebaeg Baegbyeongsan basaltic andesite (62{+-}3Ma) - Gurye Obongsan andesite (64{+-}3Ma) - Yeosu dacite (63{+-}3Ma) - Dolsando andesite (62{+-}3Ma) - Jangheung Buyongsan andesite (65{+-}3Ma); 4) Suncheon Joryedong andesite (55{+-}2Ma) - Goheung andesite (56{+-}3Ma); 5) Taebaeg Baegbyeonsan basaltic andesite (48{+-}2Ma) - Yeosu basalt (51{+-}3Ma). Resetted age (49{+-}2Ma) of an intrusive rhyolite implies the timing of thermal alteration in the Wondong Fe-Mine of the Taebaegsan Mineralized Belt. K-Ar hornblende ages of two hornblendite stocks in the southern Jangsu suggests apparent emplacement-ages of late Triassic (210{+-}9Ma) and early Permian (274{+-}10Ma), independently. K-Ar hornblende age (1023{+-}37Ma) of the Ogbang amphibolite implies a reduction of original age due to later thermal effect probably attributed to either later intrusion or regional metamorphism. (author). 56 refs., 19 tabs., 14 figs.

  6. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo


    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  7. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China

    Directory of Open Access Journals (Sweden)

    Tian H.S.


    Full Text Available The Yishu Fault Zone runs through the centre of Shandong Province (E China; it is a deep-seated large fault system that still is active. Two volcanic faulted basins (the Shanwang and Linqu Basins in the Linqu area, west of the fault zone, are exposed to rifting, which process is accompanied by a series of tectonic and volcanic earthquakes with a magnitude of 5-8. Lacustrine sediments in the basins were affected by these earthquakes so that seismites with a variety of soft-sediment deformation structures originated. The seismites form part of the Shanwang Formation of the Linqu Group. Semi-consolidated fluvial conglomerates became deformed in a brittle way; these seismites are present at the base of the Yaoshan Formation. Intense earthquakes triggered by volcanic activity left their traces in the form of seismic volcanic rocks associated with liquefied-sand veins in the basalt/sand intercalations at the base of the Yaoshan Formation. These palaeo-earthquake records are dated around 14-10 Ma; they are responses to the intense tectonic extension and the basin rifting in this area and even the activity of the Yishu Fault Zone in the Himalayan tectonic cycle.

  8. Magma mixing: origin of intermediate rocks and ``enclaves'' from volcanism to plutonism (United States)

    Cantagrel, Jean-Marie; Didier, Jean; Gourgaud, Alain


    Intermediate magmatic rocks are rarely homogeneous; a common example is the presence of magmatic "enclaves" Volcanic examples show that they are indications of magma mixing processes. Mixing events in the trachyandesitic suites from the Sancy Volcano (France). The volcanic activity from Sancy consists of several brief trachyandesitic cycles. Each of them begins with the eruption of highly heterogeneous benmoreites, followed by more homogeneous mugearites. Light porphyritic trachyandesites enclose numerous inclusions of varied darker lavas. The crenulated geometry of the contacts, the presence of chilled margins, the vesiculation of the core of the basic parts, suggest that these different rock types were magmatic at the same time although under marked thermal disequilibrium. Xenocrysts are common: partly resorbed sanidine rimmed with plagioclase in a basic matrix, reactional olivines in tridymite-bearing trachytes. This shows that the mixing occurred between partially crystallized and fractionated magmas. Chemical compositions are continuously variable from basalts to trachytes within the same eruptive cycle. All these facts might be interpreted as the result of a mechanical intermingling, more or less achieved, between two end-members of contrasting composition in the reservoir. In the Sancy Volcano this phenomenon occurred at least, 4 or 5 times during a 600 000 y span. Mixing evidence in Hercynian granodiorites from France. Similar observations may be described in granodioritic rocks. The more widespread "enclaves" exhibit the same characteristics as their volcanic equivalents. Although most of them are small, more important volumes of basic rocks may be associated in the same massif. In the neighbourhood of such large bodies, swarms of smaller enclaves recall the generation of basic pillows. The nature of the contact between small "microgranular enclaves" and their host rocks, the occurrence of xenocrysts with reaction rims (rapakivi feldspars and quartz ocelli

  9. A Backarc Basin Origin for the Eocene Volcanic Rocks North of Abbas Abad, East of Shahrud, Northeast Iran (United States)

    Khalatbari Jafari, M.; Mobasher, K.; Davarpanah, A.; Babaie, H.; La Tour, T.


    The region in northeastern Iran, bordered by the Miami fault and the Doruneh fault, mainly exposes the Eocene volcanic and Tertiary sedimentary rocks and sporadic outcrops of pre- Jurassic metamorphic rocks such as gneiss and mica-schist. We have divided the volcanic and volcanic-sedimentary rocks into six main units: E1 through the youngest E6. North of Abbas Abad, the Lower Eocene is conglomerate, sandstone, and red shale with lenses of nummulite-bearing limestone at the base, and dacitic lava (E1) at the top. The nummulites give an Early Eocene age for the limestone lenses. The E2 unit includes vesicular basalt, intercalated, intraformational conglomerate, and lenses of nummulite-bearing limestone. E3 is volcanic- sedimentary, and is made of green tuff, tuffite, shale, and nummulite bearing limestone. E4 includes basalt and vesicular trachy-basalt, and E5 is mostly sedimentary, made of tan marl, sandstone, shale, and lenses of Middle Eocene nummulite-bearing limestone. The E6 unit is the most extensive, with at least three levels of nummulite-bearing limestone lenses which give a Middle to Early Eocene age. The volcanic rocks of the E6 unit include few hundred meters of epiclastic to hyaloclastic breccia, with intercalations of lava at the base. These are overlain by four horizons of aphyric olivine basalt and basalt, and phyric trachy-andesite and trachy-basalt. The volume of the aphyric lavas decreases, and that of the phyric lavas increases upsection. The Eocene volcanic sequence is covered by turbidite; the marl washings give an Eocene-Oligocene age range. Chondrite-normalized multi-element plots indicate enrichment of the Eocene Abbas Abad volcanic rocks in the LILE elements, with variable ratios of La/Yb (4.36-19.33) and La/Sm (3.10-7.91). These plots show a gentle slope, and the volcanic rocks in the E1 to E4 units are less enriched than those in the E6 unit, probably reflecting the difference in the original source for the melt. The multi-element plots

  10. Clinopyroxene application in petrogenesis identification of volcanic rocks associated with salt domes from Shurab (Southeast Qom

    Directory of Open Access Journals (Sweden)

    Somayeh Falahaty


    Full Text Available Introduction The study area is located in the Shurab area that is about 50 Km Southeast of Qom. Volcanic rocks of the Shurab area have basaltic composition that is associated with salt and marl units. Igneous rocks of the Shurab area have not been comprehensively studied thus far. Clinopyroxene composition of volcanic rocks, and especially the phenocrysts show Magma chemistry and can help to identify magma series (Lebas, 1962; Verhooge, 1962; Kushiro, 1960, Leterrier et al., 1982, tectonic setting (Leterrier et al., 1982; Nisbet and Pearce, 1977 as well as temperature formation and pressure of rock formation. Some geologists have estimated temperature of clinopyroxene formation by clinopyroxene composition (Adams and Bishop, 1986 and clinopyroxene-olivine couple. So, clinopyroxene is used in this study in order to identify magma series, tectonic setting, plus the temperature and pressure of volcanic rocks of the Shurab. Material and method Clinopyroxene analyses were conducted by wavelength-dispersive EPMA (JEOL JXA-8800R at the Cooperative Centre of Kanazawa University (Japan. The analyses were performed under an accelerating voltage of 15 kV and a beam current of 20 nA. The ZAF program was used for data corrections. Natural and synthetic minerals of known composition were used as standards. The Fe3+ content in minerals was estimated by Droop method (Droop, 1987. Discussion In the Shurab area, the volcanic rocks area with basaltic composition are located 50 km Southeast of Qom. Their age is the early Oligocene and they are associated with the salty marl units of the Lower Red Formation (LRF. The hand specimens of the studied rocks look green. These rocks are intergranular, microlitic, porphyric, vitrophyric and amygdaloidal and they consist of olivine, pyroxene and plagioclase. Accessory minerals contain sphene, apatite and opaque. According to Wo-En-Fs diagram (Morimoto, 1988, clinopyroxenes indicate diopside composition. Clinopyroxenes are

  11. Paleomagnetism of Late Paleozoic and Mesozoic volcanic rocks of Southern Siberia (United States)

    Fedyukin, I.; Shatsillo, A.


    The main objects of the present study are late Permian and Mesozoic volcanic rocks from Selengin-Vitim volcano-plutonic belt (South Siberia). The belt was formed in the back area of Siberian continent active margin. Volcanic rocks are presented by contrastive volcanites more than 5 km thick. The deposits are subdivided into three suits: Ungurkuy (basalts and andesites), Chernoyar (basalts, andesites and tuffs) and Hilok (basalts, pyroclastic flows and tuffs). The age of Ungurkuy suite is deemed to be between Late Carboniferous and Late Permian. The age of Chernoyar suite is Middle-late Triassic. The age og Hilok suite is Late Jurassic. Volcanic deposits of the three suits were studied to create APWP for the Siberian craton. 250 oriented samples from 40 sites were collected from the Chikoy river valley within South Siberia. All samples were characterized by interpretable paleomagnetic signal. The Ungurkuy suite has different dip and strike: from subhorizontal to 40 degrees inclination and NE course. Chernoyar rocks were collected from monoclinal structure with the dip and strike around NW declination and 5-10 degrees inclination. Hilok suite represents large subhorizontal eruptive bodies. Volcanic rocks of Ungurkuy suite show mostly monopolar (normal polarity) magnetization direction between Early Permian and Permian-Triassic Siberian poles, which indicates its Late Permian age. The normal polarity of the deposits indicates its formation in the period between Kiama superchron, characterized by reversal polarity, and Illavara hyperchron with mixed polarity - 265 Ma. Direction from Chernoyar suite is well-correlated with Late Triassic APWP of Europe, directions of magnetization are bipolar. From Hilok suite several sites show direction of magnetization similar to directions revealed from Early Cretaceous volcanites from nearby area. The magnetization is metachronous. In the other sites the directions of magnetization well-correlated with Late Jurassic APWP of Europe

  12. A study on the characteristics of site-scale fracture system in granite and volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Chun Soo; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)


    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of conductive fractures in granite and volcanic rock mass. 10 refs., 32 figs., 13 tabs. (Author)

  13. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico (United States)

    Johnson, C.M.; Lipman, P.W.


    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  14. Comparison of geochemical characteristics and forming environment of volcanic rocks in Northern Xinjiang and the Songliao Basin, China

    Directory of Open Access Journals (Sweden)

    Yanzhao Wei


    Full Text Available The tectonic settings of Northern Xinjiang, Songliao Basin, and its peripheral areas all belong to the Paleoasian orogenic region. Their main structures are all composed of multiple continental segments and peripheral fold belts. Similar tectonic setting and complicated basement structure give rise to the similarities and differences in the forming environment and geochemical characteristics of volcanic rocks in the two regions. The similarities include lack of typical calc-alkalic volcanic rocks, inconsistent covariant relationship between oxide content and SiO2 with that of calc-alkalic volcanic rock in the consuming zone, the distribution pattern of trace elements featuring the enrichment of highly incompatible elements, Nb negative anomaly, La positive anomaly, Ba partially positive anomaly, as well as different enrichment degrees of light rare earth. The differences between the Northern Xinjiang and Songliao Basin are characterized by the developed alkalic basalt, rich highly incompatible elements and light rare earth. Volcanic rocks in Northern Xinjiang shows an increase in both total rare earth and light rare earth enrichment from south to north, whereas the total rare earth and light rare earth enrichment in Songliao Basin are also higher than the adjacent Daxing'anling. Generally, both the Carboniferous-Lower Permian volcanic rock in Northern Xinjiang and Mesozoic volcanic rock in Songliao Basin and its peripheral areas developed in the post-collision intracontinental extensional tectonic environment, indicating that the post-collision extensional basin in Junggar-Xingmeng Paleoasian Ocean orogenic region has promising oil-gas exploration potential for volcanic reservoirs.

  15. High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size

    Directory of Open Access Journals (Sweden)

    Francesco S. R. Pausata


    Full Text Available Large volcanic eruptions have strong impacts on both atmospheric and ocean dynamics that can last for decades. Numerical models have attempted to reproduce the effects of major volcanic eruptions on climate; however, there are remarkable inter-model disagreements related to both short-term dynamical response to volcanic forcing and long-term oceanic evolution. The lack of robust simulated behaviour is related to various aspects from model formulation to simulated background internal variability to the eruption details. Here, we use the Norwegian Earth System Model version 1 to calculate interactively the volcanic aerosol loading resulting from SO2 emissions of the second largest high-latitude volcanic eruption in historical time (the Laki eruption of 1783. We use two different approaches commonly used interchangeably in the literature to generate ensembles. The ensembles start from different background initial states, and we show that the two approaches are not identical on short-time scales (<1 yr in discerning the volcanic effects on climate, depending on the background initial state in which the simulated eruption occurred. Our results also show that volcanic eruptions alter surface climate variability (in general increasing it when aerosols are allowed to realistically interact with circulation: Simulations with fixed volcanic aerosol show no significant change in surface climate variability. Our simulations also highlight that the change in climate variability is not a linear function of the amount of the volcanic aerosol injected. We then provide a tentative estimation of the ensemble size needed to discern a given volcanic signal on surface temperature from the natural internal variability on regional scale: At least 20–25 members are necessary to significantly detect seasonally averaged anomalies of 0.5°C; however, when focusing on North America and in winter, a higher number of ensemble members (35–40 is necessary.

  16. A Comprehensive Study on Dielectric Properties of Volcanic Rock/PANI Composites (United States)

    Kiliç, M.; Karabul, Y.; Okutan, M.; İçelli, O.


    Basalt is a very well-known volcanic rock that is dark colored and relatively rich in iron and magnesium, almost located each country in the world. These rocks have been used in the refused rock industry, to produce building tiles, construction industrial, highway engineering. Powders and fibers of basalt rocks are widely used of radiation shielding, thermal stability, heat and sound insulation. This study examined three different basalt samples (coded CM-1, KYZ-13 and KYZ-24) collected from different regions of Van province in Turkey. Polyaniline (PANI) is one of the representative conductive polymers due to its fine environmental stability, huge electrical conductivity, as well as a comparatively low cost. Also, the electrical and thermal properties of polymer composites containing PANI have been widely studied. The dielectric properties of Basalt/Polyaniline composites in different concentrations (10, 25, 50 wt.% PANI) have been investigated by dielectric spectroscopy method at the room temperature. The dielectric parameters (dielectric constants, loss and strength) were measured in the frequency range of 102 Hz-106 Hz at room temperature. The electrical mechanism change with PANI dopant. A detailed dielectrically analysis of these composites will be presented.

  17. Hot climate inhibits volcanism on Venus: Constraints from rock deformation experiments and argon isotope geochemistry (United States)

    Mikhail, Sami; Heap, Michael J.


    The disparate evolution of sibling planets Earth and Venus has left them markedly different. Venus' hot (460 °C) surface is dry and has a hypsometry with a very low standard deviation, whereas Earth's average temperature is 4 °C and the surface is wet and has a pronounced bimodal hypsometry. Counterintuitively, despite the hot Venusian climate, the rate of intraplate volcano formation is an order of magnitude lower than that of Earth. Here we compile and analyse rock deformation and atmospheric argon isotope data to offer an explanation for the relative contrast in volcanic flux between Earth and Venus. By collating high-temperature, high-pressure rock deformation data for basalt, we provide a failure mechanism map to assess the depth of the brittle-ductile transition (BDT). These data suggest that the Venusian BDT likely exists between 2 and 12 km depth (for a range of thermal gradients), in stark contrast to the BDT for Earth, which we find to be at a depth of ∼25-27 km using the same method. The implications for planetary evolution are twofold. First, downflexing and sagging will result in the sinking of high-relief structures, due to the low flexural rigidity of the predominantly ductile Venusian crust, offering an explanation for the curious coronae features on the Venusian surface. Second, magma delivery to the surface-the most efficient mechanism for which is flow along fractures (dykes; i.e., brittle deformation)-will be inhibited on Venus. Instead, we infer that magmas must stall and pond in the ductile Venusian crust. If true, a greater proportion of magmatism on Venus should result in intrusion rather than extrusion, relative to Earth. This predicted lower volcanic flux on Venus, relative to Earth, is supported by atmospheric argon isotope data: we argue here that the anomalously unradiogenic present-day atmospheric 40Ar/36Ar ratio for Venus (compared with Earth) must reflect major differences in 40Ar degassing, primarily driven by volcanism. Indeed

  18. Petrology, Magnetic susceptibility, Tectonic setting and mineralization associated with Plutonic and Volcanic Rocks, Eastern Bajestan and Taherabad, Iran

    Directory of Open Access Journals (Sweden)

    Malihe Ghoorchi


    Full Text Available Study area is located in district of Bajestan and Ferdows cities, NE of Iran. Structurally, this area is part of Lut block. The oldest exposed rocks, to the north of intrusive rocks and in Eastern Bajestan, are meta-chert, slate, quartzite, thin-bedded crystalline limestone and meta-argillite. The sedimentary units are: Sardar Formation (Carboniferous, Jamal Formation (Permian, Sorkh Shale and Shotori Formations (Triassic, carbonateous rocks (Cretaceous and lithostratigraphically equivalent to Kerman conglomerate (Cretaceous-Paleocene are exposed in this area. Based on relative age, magmatism in eastern Bajestan and Taherabad started after Late Cretaceous and it has been active and repeated during Tertiary time. At least, three episodes of volcanic activities are recognized in this area. The first stage was mainly volcanic flow with mafic composition and minor intermediate. The second episode was mainly intermediate in composition. The third stage was changed to acid-intermediate in composition. Since the plutonic rocks intruded the volcanic rocks, therefore they may be Oligo-Miocene age. Bajestan intrusive rocks are granite-granodiorite-quartz monzonite. Taherabad intrusive rocks are diorite-quartz diorite- monzonite-latite. Bajestan intrusive rocks are reduced type (ilmenite series and Taherabad intrusive rocks are oxidized type (magnetite series.Based on geochemical analysis including trace elements, REE and isotopic data, Bajestan intrusive rocks formed in continental collision zone and the magma has crustal origin. Taherabad intrusive rocks were formed in subduction zone and magma originated from oceanic crust. Taherabad intrusive rock has exploration potential for Cu-Au and pb.

  19. Comparison of geochemical characteristics and forming environment of volcanic rocks in Northern Xinjiang and the Songliao Basin, China


    Yanzhao Wei; Xia Zhao; Shan Lu; Zhongying Zhao


    The tectonic settings of Northern Xinjiang, Songliao Basin, and its peripheral areas all belong to the Paleoasian orogenic region. Their main structures are all composed of multiple continental segments and peripheral fold belts. Similar tectonic setting and complicated basement structure give rise to the similarities and differences in the forming environment and geochemical characteristics of volcanic rocks in the two regions. The similarities include lack of typical calc-alkalic volcanic r...

  20. Geochemistry and mineral chemistry of pyroxenite xenoliths and host volcanic alkaline rocks from north west of Marand (NW Iran) (United States)

    Khezerlou, Ali Akbar; Amel, Nasir; Gregoire, Michel; Moayyed, Mohsen; Jahangiri, Ahmad


    The Plio-Quaternary alkaline volcanic rocks from the northwest of Marand (NW Iran) consist of trachy-andesites, trachy-basaltic andesites, leucite-tephrites and tephrites. They display a distinct LILE and LREE enrichment, a HFSE depletion (Ta, Ti, and Nb) and high Ba/Ta and Ba/Nb ratios, which are among the characteristics of subduction-derived magmatic rocks. The investigated clinopyroxenite xenoliths mostly occur within the trachy-andesites and more rarely within the trachy-basaltic andesite rocks. These xenoliths, which have a cumulate texture, are classified into four groups based on their mineralogical and chemical features. Group 1 contains clinopyroxene and amphibole as the main minerals. This group does not indicate a clear enrichment in incompatible trace elements in contrast with the Groups 2 and 4, where Ba, Th and U are enriched. Major element contents of clinopyroxenes and amphiboles of Group 1 xenoliths are similar to those of their counterparts of intermediate volcanic rocks. In addition, their contents of compatible elements such as Cr and Ni (whole rock) are also the same, implying a similar magmatic origin. Group 2 contains clinopyroxene and phlogopite as the main minerals. This group, similarly to potassic and ultrapotassic volcanic rocks, is enriched in LREE compared to HREE and unlike the intermediate volcanic rocks, does not contain amphibole. Their 143Nd/144Nd and 86Sr/87Sr ratios are also different. Given the Cr and Ni contents, the REE pattern shape and the chemical composition of clinopyroxene and phlogopite, it seems that the parental melt of this group is similar to the one of potassic and ultrapotassic volcanic rocks. Group 3 contains clinopyroxene and biotite as the main minerals. The REE pattern of this group, unlike those of Groups 1, 2 and 4, has a relatively flat slope. In addition, the content of compatible elements, such as Cr and Ni, also differ as well as the chemical composition of clinopyroxene and mica, which are also

  1. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. (United States)

    Ramos, Claudete G; Querol, Xavier; Oliveira, Marcos L S; Pires, Karen; Kautzmann, Rubens M; Oliveira, Luis F S


    Mineralogical and geochemical characteristics of volcanic rock residue, from a crushing plant in the Nova Prata Mining District, State of Rio Grande do Sul (RS), Brazil, in this work named rock powder, were investigated in view of its potential application as soil ammendment in agriculture. Abaut 52,400 m(3) of mining waste is generated annually in the city of Nova Prata without a proper disposal. The nutrients potentially available to plants were evaluated through leaching laboratory tests. Nutrient leaching tests were performed in Milli-Q water; citric acid solution 1% and 2% (AC); and oxalic acid solution 1% and 5% (AO). The bulk and leachable contents of 57 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Mining waste were made up by CaO, K2O, SiO2, Al2O3, Fe2O3, and P2O5. The analysis by X-ray diffraction (XRD) showed the major occurence of quartz, anorthite, cristobalite, sanidine, and augite. The water leachable concentrations of all elements studied were lower than 1.0mg/kg, indicating their low solubility. Leaching tests in acidic media yield larger leachable fractions for all elements being studied are in the leachate of the AO 1%. These date usefulness of volcanic rock powder as potential natural fertilizer in agriculture in the mining district in Nova Prata, Rio Grande do Sul, Brazil to reduce the use of chemical fertilizers. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Early Cretaceous bimodal volcanic rocks in the southern Lhasa terrane, south Tibet: Age, petrogenesis and tectonic implications (United States)

    Wang, Chao; Ding, Lin; Liu, Zhi-Chao; Zhang, Li-Yun; Yue, Ya-Hui


    Limited geochronological and geochemical data from Early Cretaceous igneous rocks of the Gangdese Belt have resulted in a dispute regarding the subduction history of Neo-Tethyan Ocean. To approach this issue, we performed detailed in-situ zircon U-Pb and Hf isotopic, whole-rock elemental and Sr-Nd isotopic analyses on Late Mesozoic volcanic rocks exposed in the Liqiongda area, southern Lhasa terrane. These volcanic rocks are calc-alkaline series, dominated by basalts, basaltic andesites, and subordinate rhyolites, with a bimodal suite. The LA-ICPMS zircon U-Pb dating results of the basaltic andesites and rhyolites indicate that these volcanic rocks erupted during the Early Cretaceous (137-130 Ma). The basaltic rocks are high-alumina (average > 17 wt.%), enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), showing subduction-related characteristics. They display highly positive zircon εHf(t) values (+ 10.0 to + 16.3) and whole-rock εNd(t) values (+ 5.38 to + 7.47). The silicic suite is characterized by low Al2O3 (oceanic lithosphere was flat-lying beneath the Lhasa terrane during the Early Cretaceous.

  3. Following the kinetics: iron-oxidizing microbial mats in cold icelandic volcanic habitats and their rock-associated carbonaceous signature. (United States)

    Cockell, Charles S; Kelly, Laura C; Summers, Stephen; Marteinsson, Viggo


    Icelandic streams with mean annual temperatures of less than 5 °C, which receive the cationic products of basaltic rock weathering, were found to host mats of iron-cycling microorganisms. We investigated two representative sites. Iron-oxidizing Gallionella and iron-reducing Geobacter species were present. The mats host a high bacterial diversity as determined by culture-independent methods. β-Proteobacteria, Actinobacteria, α-Proteobacteria, and Bacteroidetes were abundant microbial taxa. The mat contained a high number of phototroph sequences. The carbon compounds in the mat displayed broad G and D bands with Raman spectroscopy. This signature becomes incorporated into the weathered oxidized surface layer of the basaltic rocks and was observed on rocks that no longer host mats. The presence of iron-oxidizing taxa in the stream microbial mats, and the lack of them in previously studied volcanic rocks in Iceland that have intermittently been exposed to surface water flows, can be explained by the kinetic limitations to the extraction of reduced iron from rocks. This type of ecosystem illustrates key factors that control the distribution of chemolithotrophs in cold volcanic environments. The data show that one promising sample type for which the hypothesis of the existence of past life on Mars can be tested is the surface of volcanic rocks that, previously, were situated within channels carved by flowing water. Our results also show that the carbonaceous signatures of life, if life had occurred, could be found in or on these rocks.

  4. Early Paleozoic intracontinental orogeny and post-orogenic extension in the South China Block: Insights from volcanic rocks (United States)

    Zhang, Xi-Song; Xu, Xi-Sheng; Xia, Yan; Liu, Lei


    The early Paleozoic orogeny represents the first extensive Phanerozoic tectono-thermal event in the South China Block (SCB). Two distinct orogeny models, subduction-collision orogeny and intracontinental orogeny, have been proposed, and one of the key controversies is the nature and the tectonic implications of the associated early Paleozoic volcanic rocks in the SCB, which have not yet been systematically investigated. Zircon U-Pb dating results show that these volcanic rocks formed at 445-435 Ma, coeval with large-scale intrusive magmatism (446-420 Ma). The felsic volcanic rocks, which include the Mashan and Hekou dacites and rhyolites, show high SiO2, low MgO and low Fe2O3 contents. Whole-rock trace-element and isotopic compositions of the felsic volcanic rocks suggest that they were generated by partial melting of a Paleoproterozoic crustal component. The mafic volcanic rocks are represented by the Chayuanshan basalts, which are characterized by low SiO2, high MgO, Cr and Ni contents, enrichment in LILEs and depletion in HFSEs. The low Nb/La ratios, high Th/Yb ratios and negative whole-rock ɛNd(t) values suggest that the basalts were derived from partial melting of a metasomatized subcontinental lithospheric mantle (SCLM). The ;subduction signature; (calc-alkaline affinity, enriched LILEs and depleted HFSEs) of the Chayuanshan basalts was supposed to be inherited from the source and it didn't reflect their generation in a subduction-related arc setting. Asthenospheric mantle upwelling and basaltic magma underplating may have been responsible for the partial melting of the crust and the metasomatized SCLM, which produced the Hekou and Mashan dacites and rhyolites and Chayuanshan basalts, respectively. Activation of the pre-existing suture zones, asthenospheric mantle upwelling and extensive partial melting of the crust caused the intensive magmatism of the SCB in early Paleozoic.

  5. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping. (United States)

    Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio


    In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.

  6. Petrochemistry of late miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia (United States)

    Morgan, VI G.B.; London, D.; Luedke, R.G.


    Late Miocene peraluminous volcanic rocks of the Morococala field, Bolivia, define a layered stratigraphy of basal andalusite-, biotite-(?? Muscovite)-bearing rhyolite tuffs (AR), overlain by cordierite-, biotite-bearing rhyolite tuffs (CR), and capped by biotite-beanng quartz latite tuffs, lavas, and late domal flows (QL). Mineral and whole-rock compositions become more evolved from top to bottom, with differentiation reflected by decreasing Ca, Ba, Mg, Fe, and rare earth elements (REE) versus increasing F, Na/K, and aluminosity from QL to AR. Mineral, whole-rock, and glass inclusion compositions are consistent with derivation of all three rock types from a single stratified magma reservoir, but age and spatial relations between the three units make this unlikely. Genesis of the QL involved biotite-dehydration melting of an aluminous source at T > 750??C and P ??? 4-6 kbar. If not co-magmatic with QL, the other units were generated primarily by muscovite-dehydration melting at T = 730-750??C and P ??? 3??5-4??5 kbar for CR, and T ??? 750??C for AR with pre-emptive residence at low pressure (1??5-3??0 kbar). Low hematite contents (XHem ??? 0??06) of ilmenite grains in AR, CR, and early grains (as inclusions in plagioclase and sanidine cores) in QL indicate reduced conditions imposed by a graphite-bearing source. Compositional variability among texturally later oxides (ilmenite with XHem = 0??06-0??50, primary magnetite), however, apparently records progressive increases in pre-eruptive f(O2) in QL. Plagioclase-melt equilibria and electron microprobe analysis difference for quartz-hosted glass inclusions suggest pre-emptive melt H2O contents ??? 5-7 wt % for the AR, ???4-6 wt % for the CR, and ???3-5 wt % for the QL.

  7. Volcanological, petrographical and geochemical characteristics of Late Cretaceous volcanic rocks around Borçka-Artvin region (NE Turkey) (United States)

    Baser, Rasim; Aydin, Faruk; Oguz, Simge


    This study presents volcanological, petrographical and geochemical data for late Cretaceous volcanic rocks from the Borçka-Artvin region (NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent field studies, the late Cretaceous time in the study area is characterized by two different bimodal volcanic periods. The first bimodal period of the late Cretaceous volcanism is mainly represented by mafic rock series (basaltic-basaltic andesitic pillow lavas and hyaloclastites) in the lower part, and felsic rock series (dacitic lavas, hyaloclastites, and pyrite-bearing tuffs) in the upper part. The second bimodal period of the late Cretaceous volcanism begins with mafic rock suites (basaltic-andesitic lavas and dikes-sills) and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas and hyaloclastites), which are intercalated with hyaloclastites and red pelagic limestones. All volcano-sedimentary units are covered by Late Campanian-Paleocene clayey limestones and biomicrites with lesser calciturbidites. The mafic volcanic series of the study area, which comprise basaltic and andesitic rocks, generally show amygdaloidal and aphyric to porphyritic texture with phenocrysts of calcic to sodic plagioclase and augite in a hyalopilitic matrix of plag+cpx+mag. Zircon and magnetite are sometimes observed as accessory minerals, whereas chlorite, epidote and calcite are typical alteration products. On the other hand, the felsic volcanic series consisting of dacitic and rhyolitic rocks mostly display porphyritic and glomeroporphyritic textures with predominant feldspar, quartz and some biotite phenocrysts. The microgranular to felsophyric groundmass is mainly composed of aphanitic plagioclase, K-feldspar and quartz. Accessory minerals such as zircon, apatite and magnetite are common. Typical alteration products are sericite and clay minerals. Late Cretaceous Artvin-Borçka bimodal rock series generally display a

  8. Alteration of volcanic rocks: A new non-intrusive indicator based on induced polarization measurements (United States)

    Revil, A.; Murugesu, M.; Prasad, M.; Le Breton, M.


    Induced polarization is a geophysical method investigating the ability of rocks to store reversibly electrical charges under a slowly alternating electrical field. The material property of interest is a complex-valued electrical conductivity with an in-phase component associated with conduction and a quadrature component associated with polarization. We investigated the relationship between complex conductivity spectra over the frequency range 1 mHz-45 kHz and the specific surface area (SSA) of 28 volcanic core samples extracted from a wellbore drilled for the Humu´ula Groundwater Research Project in Hawaii. The specific surface area of these samples was determined through the Brunauer, Emmett and Teller (BET) method. Subcritical nitrogen adsorption experiments were conducted using two different instruments and the samples were prepared in both pellets and powder forms. The BET specific surface area is found to be highly correlated to the cation exchange capacity of the core samples measured by the cobalthexamine method. The in-phase conductivity itself can be decomposed as the sum of a bulk contribution associated with conduction in the bulk pore water and a surface conductivity associated with conduction in the electrical double layer coating the grains. The surface conductivity, the quadrature conductivity, and the normalized chargeability (defined as the difference between the in-phase conductivity at high and low frequencies) are observed to be linearly correlated to the specific surface area or the surface per volume ratio of the core samples, which can be considered as proxy of alteration. These trends are consistent with those shown by sedimentary rocks. This new data set demonstrates that the induced polarization method can be potentially used to image alteration in volcanic environments.

  9. Paleomagnetism of Late Permian volcanic rocks from South Transbaikalia: preliminary results (United States)

    Fedyukin, I.; Shatsillo, A.


    Tamir volcano-tectonic structure (VTS) is one of the largest Late Paleozoic rift related features within Selengin-Vitim volcano-plutonic belt. The belt was formed in the back area of Siberian continent active margin (Gordienko et al., 2010). Igneous-sedimentary rocks within Tamir VTS are presented by contrastive volcanites more than 5 km thick. The deposits are subdivided into three suits: Ungurkuy (mostly basaltic), Tamir (acidic volcanics and tuffs) and Chernoyar (presented mostly by basalts, andesites and tuffs, sandstones and conglomerates). The age of youngest suits (Tamir and Chernoyar) is Late Permian, Middle-late Triassic accordingly. The age of Ungurkuy suit is deemed to be between Late Carboniferous and Late Permian (Gordienko et al., 1998; Popeko et al., 2005). Volcanic deposits of the three suits were studied to create APWP for the Siberian craton. 200 oriented samples from 31 sites were collected from the Tamir, Shazaga, Kiret, Ungurkuy and Ara-Kiret river valleys within South Transbaikalia. A number of samples were characterized by interpretable paleomagnetic signal. Tamir and Chernoyar rocks were collected from monoclinal structure within Tamir river valley. 5 sites show direction of magnetization similar to directions revealed from Early Cretaceous volcanites from nearby area (Metelkin et al., 2004). The magnetization is metachronous. In the other 8 sites the directions of magnetization are bipolar. The magnetization direction is well-correlated with Triassic APWP of Europe (Torsvik, Cocks, 2005). The volcanites of Ungurkuy suite show mostly monopolar (normal polarity) magnetization direction (formed before crustal folding) between Early Permian and Permian-Triassic Siberian poles, which indicates its Late Permian age. The normal polarity of the deposits indicates its formation in the period between Kiama superchron, characterized by reversal polarity, and Illavara hyperchron with mixed polarity - 265 Ma. This work was supported by the Russian

  10. Physical Volcanology and Hazard Analysis of a Young Volcanic Field: Black Rock Desert, Utah, USA (United States)

    Hintz, A. R.


    The Black Rock Desert volcanic field, located in west-central Utah, consists of ~30 small-volume monogenetic volcanoes with compositions ranging from small rhyolite domes to large basaltic lava flow fields. The field has exhibited bimodal volcanism for > 9 Ma with the most recent eruption of Ice Springs volcano ˜ 600 yrs ago. Together this eruptive history along with ongoing geothermal activity attests to the usefulness of a hazard assessment. The likelihood of a future eruption in this area has been calculated to be ˜ 8% over the next 1 Ka (95% confidence). However, many aspects of this field such as the explosivity and nature of many of these eruptions are not well known. The physical volcanology of the Tabernacle Hill volcano, suggests a complicated episodic eruption that may have lasted up to 50 yrs. The initial phreatomagmatic eruptions at Tabernacle Hill are reported to have begun ~14 Ka. This initial eruptive phase produced a tuff cone approximately 150 m high and 1.5 km in diameter with distinct bedding layers. Recent mapping and sampling of Tabernacle Hill's lava field, tuff cone and intra-crater deposits were aimed at better constraining the eruptive history, physical volcanology, and explosive energy associated with this eruption. Blocks ejected during the eruption were mapped and analyzed to yield minimum muzzle velocities of 60 - 70 meters per second. These velocities were used in conjunction with an estimated shallow depth of explosion to calculate an energy yield of ˜ 0.5 kT.

  11. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.


    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  12. Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009 (United States)

    Wu, Xue; Griessbach, Sabine; Hoffmann, Lars


    Tropical volcanic eruptions have been widely studied for their significant contribution to stratospheric aerosol loading and global climate impacts, but the impact of high-latitude volcanic eruptions on the stratospheric aerosol layer is not clear and the pathway of transporting aerosol from high latitudes to the tropical stratosphere is not well understood. In this work, we focus on the high-latitude volcano Sarychev (48.1° N, 153.2° E), which erupted in June 2009, and the influence of the Asian summer monsoon (ASM) on the equatorward dispersion of the volcanic plume. First, the sulfur dioxide (SO2) emission time series and plume height of the Sarychev eruption are estimated with SO2 observations of the Atmospheric Infrared Sounder (AIRS) and a backward trajectory approach using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC). Then, the transport and dispersion of the plume are simulated using the derived SO2 emission time series. The transport simulations are compared with SO2 observations from AIRS and validated with aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The MPTRAC simulations show that about 4 % of the sulfur emissions were transported to the tropical stratosphere within 50 days after the beginning of the eruption, and the plume dispersed towards the tropical tropopause layer (TTL) through isentropic transport above the subtropical jet. The MPTRAC simulations and MIPAS aerosol data both show that between the potential temperature levels of 360 and 400 K, the equatorward transport was primarily driven by anticyclonic Rossby wave breaking enhanced by the ASM in boreal summer. The volcanic plume was entrained along the anticyclone flows and reached the TTL as it was transported southwestwards into the deep tropics downstream of the anticyclone. Further, the ASM anticyclone influenced the pathway of aerosols by isolating an aerosol hole inside of the ASM, which

  13. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Donald Sweetkind; Ronald M. Drake II


    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  14. Crystallisation condition of the Quaternary basanites of volcanic centre Black Rock, monogenetic field Lunar Crater (United States)

    Turova, Mariia; Plechov, Pavel; Scherbakov, Vasily; Larin, Nikolay


    The Lunar Crater volcanic field is located in a tension zone Basin and Range Province (USA). This tension is connected with dives oceanic plate under the continental plate [1]. Lunar Crater consists of flows basalt, basanite, trachybasalt has a different age [2]. In this work we investigate the youngest rock - basanite. The basanite is highly crystalline consisting of about megacrysts (3-10 cm) 30-60 wt% phenocrysts ( 800-1500 µm) and microphenocrysts (100-800 µm) and 40-60% microlites (Mathematical, Physical and Engineering Sciences. - 1981. - T. 300. - №. 1454. - C. 407-434. 2. Wood, X., and Keinle, Y., 1990, Volcanoes of North America: Cambridge,United Kingdom, Cambridge University Press, 354 p. 3. Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems //Contributions to Mineralogy and Petrology. - 1999. - T. 135. - №. 1. - C. 62-74. 4. Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle //Contributions to Mineralogy and Petrology. - 1991. - T. 107. - №. 1. - C. 27-40.

  15. Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones (United States)

    Karaman, Kadir; Kaya, Ayberk; Kesimal, Ayhan


    Ultrasonic P-wave velocity (UPV) is commonly used in different fields such as civil, mining, geotechnical, and rock engineering. One of the significant parameters which affect the UPV of rock materials is likely to be the length of test cores although it is not mentioned in the literature. In this study, in order to explore the influence of the specimen length on the UPV, rock samples were collected from eight different locations in Turkey. The NX-sized core specimens having different length of 50, 75, 100, 125, and 150 mm were prepared. Before the analyses, rocks were divided into two groups in terms of their geological origins such as volcanic and chemical sedimentary (limestone) rocks. The UPV tests were carried out under dry and saturated conditions for each 200 core specimens. By evaluating the test results, it was shown that the length of the specimens significantly affects the UPV values. Based on the regression analyses, a method was developed to determine the threshold specimen length of studied rocks. Fluctuations in UPVdry and UPVsat values were generally observed for cores smaller than the threshold specimen length. In this study, the threshold specimen length was determined as 79 mm for volcanic rocks and 109 mm for limestones.

  16. Mineral chemistry, Thermo-barometry and Crystal Size Distribution of volcanic rocks from Shirinak: Implication for genesis of volcanic rocks in the southeast of Urumieh-Dokhtar (Kerman province

    Directory of Open Access Journals (Sweden)

    Fatemeh Sepidbar


    Full Text Available The Shirinak volcanic rocks, known as Dahaj-Sarduieh belt in Kerman province, are exposed southeast of Urumieh-Dokhtar volcanic belt. Petrographically, the volcanic rocks are basalts and andesite, which consist mainly of plagioclase, clinopyroxene, olivine as well as calcite, quartz and chlorite as the secondary minerals.  All of these minerals set in fine grain matrix with porphyric and glomeroporphyric textures. Based on mineral chemistry data, plagioclases range from labradorite to bytownite and have been undergone compositional and thermal mixing. They mostly show sieve texture.  CSD (crystal size distribution study shows that the shape of plagioclase microlites is tablet with aspect ratio of 1:7:10 for short:intermediate:long axes, respectively. Moreover, three-dimensional shape of plagioclase crystals, nucleation and growth time were estimated 40.27 years, which is completely consistent with the nature of basalt. Based on dip of CSD diagram, magma mixing process has been clearly involved in the magma genesis. The pyroxenes studied are augite in composition that were physically crystalized in moderate to high pressure and temperature of 550-1110 ̊ C. They crystallized from a magma likely with about 10% fluid and in variable fO2 condition. On the base of pyroxene chemistry, the basic rocks from Shirinak belong to tholeiitic to calcalkaline series in volcanic arc setting (Neo-Tethys subduction.

  17. Paleomagnetism and Rock Magnetic Properties from Quaternary Lavas and Tuffs of the Yellowstone Plateau Volcanic Field (United States)

    Harlan, S. S.; Morgan, L. A.


    We report paleomagnetic and rock magnetic from rhyolite lava flows, ignimbrites, and basalt flows associated with the Yellowstone Caldera, within and surrounding Yellowstone National Park. These data were collected in order to understand sources of magnetic variations observed in high resolution aeromagnetic data reported by Finn and Morgan (2002), and to better understand the evolution of the Yellowstone magmatic system. Most paleomagnetic samples are from volcanic rocks of the third eruptive cycle (1.2 Ma to 0.070 Ma), including the ca. 0.640 Ma Lava Creek Tuff, postcaldera rhyolite flows, and contemporaneous marginal or post-caldera basalt flows. Magnetic intensities for samples ranged from 0.12 A/m to 5.9 A/m, with volume susceptibilities of 2.14x10-4 to 1.45x10-3 SI; Q ratios range from 0.67 to 23.8. As expected, most sites yield well-defined paleomagnetic directions of north declination and moderate positive inclination consistent with remanence acquisition during the Brunhes polarity chron. However, a few sites from older units such as the rhyolites of the Harlequin Lake (0.839 ± 0.007 Ma) and Lewis Canyon (0.853 ± 0.008 Ma) flows, and the basalts from the Junction Butte flow (at Tower Falls, 2.16 ± 0.04 Ma) and Hepburn Mesa (2.2 Ma) yield reverse polarity magnetizations (40Ar/39Ar dates from Obradovich, 1992, and Harlan, unpublished (Hepburn Mesa flow)). Rock magnetic behavior, including high coercivities during AF demagnetization, high laboratory unblocking temperatures, and susceptibility vs. temperature determinations indicate that remanence in the rhyolitic samples is carried by a combination of single or pseudo-single domain magnetite and/or hematite; in the basalt flows magnetite and high-Ti titanomagnetite carrys the remanence. Paleomagnetic results from 46 sites in 27 separate flows yields a grand mean direction with a declination of 356.9° and inclination of 61.9° (k = 35.2, α95 = 4.8°). VGPs calculated from the site-mean directions yield a

  18. Supracrustal rocks in the Kuovila area, Southern Finland: structural evolution, geochemical characteristics and the age of volcanism

    Directory of Open Access Journals (Sweden)

    Pietari Skyttä


    Full Text Available The supracrustal rocks of the Kuovila area in the Palaeoproterozoic Svecofennian Uusimaa Belt, southern Finland, consist mainly of volcaniclastic rocks associated with banded iron formations (BIFs and marbles. Small ZnS and PbS mineralizations are occasionally located within the marbles. Some primary features are well preserved in the sedimentary and volcanic rocks, including lamination in tuffites and banded iron formations. Geochemical results show that the volcanism was bimodal and it mainly had volcanic arc affinity. Specific geochemical indicators suggesting a volcanic arc origin for the Kuovila volcanic rocks include: 1 Enrichment of LILE over the HFSE elements and 2 Distinctly low Nb and Ta contents in relation to Th, Ce and LREE. Geochemistry of the Kuovila area volcanic rocks is very similar to those of the Orijärvi and Kisko formations, located ~15 km NE of Kuovila. Felsic tuff in the Kuovila area was dated at 1891±4 Ma by the U-Pb system on zircons. Consequently volcanism was contemporaneous with magmatism in the adjacent Orijärvi area, thus representing the earliest identified volcanic stage in the southern Svecofennian Uusimaa Belt. Early deformation structures within the Kuovila area are suggested to relate to low-metamorphic or localized low-angle thrusting during D1. F1 folds were recumbent and the S1 cleavages are generally weak. Thrusting was followed by approximately N–S contraction with upright, peak-metamorphic F2 folding overprinting D1 structures and defining the Kuovila synform. Two separate intrusive phases include a synvolcanic granodiorite-diorite-gabbro association and a weakly S2-foliated syn-D2 granodiorite. Anatectic granites and associated migmatizing veins are absent, therefore suggesting that D2 pre-dates the ~1.84–1.82 Ga metamorphic event in the Southern Svecofennian Arc Complex (SSAC. D2 structuresin the Kuovila area are suggested to correlate with the early structures with associated axial planar

  19. Spectral characterization of volcanic rocks in the VIS-NIR for martian exploration (United States)

    De Angelis, Simone; Carli, Cristian; Manzari, Paola; De Sanctis, Maria Cristina; Capaccioni, Fabrizio


    Igneous effusive rocks cover much of the surface of Mars [1,2,3]. Initially only two types of lithologies were thought to constitute the Martian crust, i.e. a basaltic one and a more andesitic one [1,2], while more evolved lithologies were ruled out.Nevertheless a more complex situation is appearing in the last years. Recently several observations have highlighted the presence of evolved, acidic rocks. High-silica dacite units were identified in Syrtis Major caldera by thermal IR data [4]. Outcrops in Noachis Terra were interpreted as constituted of felsic (i.e. feldspar-rich) rocks essentially by the observation of a 1.3-µm spectral feature in CRISM data, attributed to Fe2+ in feldspars [5]. However different interpretations exist, invoking plagioclase-enriched basalts [6] rather than felsic products.The increasing of high-resolution and in-situ rover-based observations datasets and the changing of the initial paradigm justify a new systematic spectral study of igneous effusive rocks. In this work we focus on the spectral characterization of volcanic effusive rocks in the 0.35-2.5-µm range. We are carrying out measurements and spectral analyses on a wide ensemble of effusive samples, from mafic to sialic, with variable alkali contents, following the classification in the Total-Alkali-Silica diagram, and discussing the influence on spectral characteristics of different mineral assemblages and/or texture ([7], [8]). [1] Bandfield J.L., et al., Science, 287, 1626, 2000; [2] Christensen P.R., et al., J. Geophys. Res., 105, N.E4, 9609-9621, 2000; [3] Ehlmann B.L. & Edwards C.S., Annu. Rev. Earth Planet. Sci., 42, 291-315, 2014; [4] Christensen P.R., et al., Nature, 436, 504-509, 2005; [5] Wray J.J., et al., 44th LPSC, abs. n.3065, 2013; [6] Rogers A.D. & Nekvasil H., Geophys. Res. Lett., 42, 2619-2626, 2015; [7] Carli C. and Sgavetti M.,Icarus, 211, 1034-1048, 2011; [7] Carli C. et al., SGL, doi 10.1144/SP401.19, 2015.

  20. Age, petrogenesis, and tectonic setting of the Permian bimodal volcanic rocks in the eastern Jiamusi Massif, NE China (United States)

    Bi, Jun-Hui; Ge, Wen-Chun; Yang, Hao; Wang, Zhi-Hui; Dong, Yu; Liu, Xi-Wen; Ji, Zheng


    We present new in situ zircon U-Pb and Hf isotope, whole-rock geochemical, and Sr-Nd isotopic data for volcanic rocks from the Jiejinkou and Baoqing areas in the eastern Jiamusi Massif. These volcanic rocks are bimodal and consist of basalts, basaltic andesites, rhyolites, and rhyolitic tuffs that can be subdivided into mafic and silicic groups. Zircon U-Pb dating by LA-ICP-MS indicates that these volcanic rocks were erupted between the Early and Middle Permian (290-267 Ma). The mafic rocks in this area have positive εNd(t) (+0.07 to +6.43) values, and are enriched in light rare earth elements (LREEs) and depleted in heavy REE, Nb, and Ta. From these rocks, the meta-basalt of Jinlu and basaltic andesite of Taipinggou and Haojiatun were derived from parental magmas generated by the partial melting of depleted mantle wedge material that was metasomatized by subduction-related melts. These magmas then underwent variable degrees of fractional crystallization and assimilated insignificant amounts of crustal material. The meta-basalt of Liming likely originated from the metasomatized mantle-derived melts hybridized by the convective asthenosphere during the evolution of the magmas. In comparison, the silicic rocks have negative εNd(t) and variable zircon εHf(t) values, are enriched in the large-ion lithophile elements (LILEs) and LREE, and are depleted in high-field-strength elements (e.g., Nb, Ta, and Ti), yielding arc-like geochemical signatures. The geochemical and zircon εHf(t) characteristics of Jiangfeng and Longtouqiao rhyolites are indicative of formation from magmas generated by the partial melting of mafic lower crustal material, whereas the Liming meta-rhyolite was probably produced from a source involving some depleted mantle components. The bimodal volcanic rocks provide convincing evidence that the Early-Middle Permian volcanism in the Jiamusi Massif occurred in an extensional environment probably associated with slab break-off during the westward

  1. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA) (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.


    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  2. Mapping local singularities using magnetic data to investigate the volcanic rocks of the Qikou depression, Dagang oilfield, eastern China

    Directory of Open Access Journals (Sweden)

    G. Chen


    Full Text Available The spatial structural characteristics of geological anomaly, including singularity and self-similarity, can be analysed using fractal or multifractal modelling. Here we apply the multifractal methods to potential fields to demonstrate that singularities can characterise geological bodies, including rock density and magnetic susceptibility. In addition to enhancing weak gravity and magnetic anomalies with respect to either strong or weak background levels, the local singularity index (α ≈ 2 can be used to delineate the edges of geological bodies. Two models were established to evaluate the effectiveness of mapping singularities for extracting weak anomalies and delineating edges of buried geological bodies. The Qikou depression of the Dagang oilfield in eastern China has been chosen as a study area for demonstrating the extraction of weak anomalies of volcanic rocks, using the singularity mapping technique to analyse complex magnetic anomalies caused by complex geological background. The results have shown that the singularities of magnetic data mapped in the paper are associated with buried volcanic rocks, which have been verified by both drilling and seismic survey, and the S–N and E–W faults in the region. The targets delineated for deeply seated faults and volcanic rocks in the Qikou depression should be further investigated for the potential application in undiscovered oil and gas reservoirs exploration.

  3. Petrology, mineral chemistry and tectono-magmatic setting of volcanic rocks from northeast Farmahin, north of Arak

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh


    Full Text Available Introduction The study area is a small part of the Urumieh-Dokhtar structural zone in the Markazi province, located in the northeastern part of the Farmahin, north of Arak (Hajian, 1970. The volcanic rocks studied from the area include andesite, dacite, rhyodacite, ignimbrite and tuff of Middle to Late Eocene age (middle Lutetian to upper Lutetian (Ameri et al., 2009. It seems that folding and faulting is caused in sedimentary basin and volcanic activities. On the other hand, except of orogeny maybe rifting had rule in eruption so that this case has seen in the other area such as Taft and Khezrabad in central Iran (Zarei Sahamieh et al., 2008. The oldest formation in the studied area is Triassic limestones. The dominant textures of these rocks are porphyritic, microlite porphyritic, microlitic and rarely sieve-texture. Sieve texture and dusty texture (dusty plagioclases indicates magma mixing. Mineralogically, they contain plagioclases, clinopyroxenes, amphiboles, quartz and biotite as the main constituents and zircon, apatite, and opaque minerals as accessories. Plagioclases in the andesitic and basaltic- andesite rocks are labradorite, bytownite and anorthite (based on electron microprobe .Moreover, plagioclases in andesitic rocks show that H2O is lesser than 2.5 precent. Amphibole is found in both plagioclases and groundmass. Materials and methods In this article are used different analyses methods such as XRF, ICP-MS and EPMA. Whole-rock major and trace element analyses were determined with ICP-MS method. The major and trace element composition of some rock was determined by electron probe micro-analysis (EPMA using a Cameca SX100 instrument in Iran Mineral Processing Research Center (IMPRC. Moreover, whole-rock major and some trace element analyses for some samples were obtained by X-ray fluorescence (XRF, using an ARL Advant-XP automated X-ray spectrometer. Results Chemical data based on electron micro probe studies of minerals indicate

  4. Petrology of the alkaline rocks of the Macau Volcanic Field, NE Brazil (United States)

    Ngonge, Emmanuel Donald; de Hollanda, Maria Helena Bezerra Maia; Pimentel, Márcio Martins; de Oliveira, Diógenes Custódio


    The Macau Volcanic Field (MVF) in the Borborema Province, NE Brazil, contains multiple centres of volcanic activity of Early to Late Cenozoic ages. We present element and Sr-Nd-Pb isotope geochemical data for four of the few most prominent basalt types of this volcanic field: Serrote Preto-type, Serra Aguda-type, Pico do Cabugi-type and Serra Preta-type, in order to assess their magmatic history from source to crystallization and the evolution of the mantle beneath the Borborema Province. The basalts are basically sodic nephelinitic-basanitic-alkali olivine basalts enriched in LILE and in Nb-Ta. The Serra Preta, Cabugi and Serra Aguda types demonstrate compositions close to primitive characteristics with 10% < MgO < 15 wt.% and 200 ppm < Ni < 500 ppm, and experienced limited fractional crystallization of olivine-clinopyroxene-plagioclase-oxides with negligible wall-rock assimilation. Rb/Sr and Ba/Rb constraints support the generation of SiO2-undersaturated magmas from mantle melting of amphibole-bearing peridotites with minor phlogopite. The source for the basanites and alkali basalts is estimated to be a garnet-bearing domain around the lithosphere-asthenosphere boundary (80-93 km deep), while the nephelinites are derived from the adiabatic asthenosphere at 105 km with temperatures of 1480 °C. Their incompatible trace element patterns and Sr-Nd-Pb isotopic compositions are similar to FOZO and EM-type OIB magmas. From the comparison of data with those of the Ceará-Mirim dyke swarm we propose that there is a ubiquitous FOZO reservoir in the SCLM beneath the Borborema Province. This FOZO signature characterized the upwelling asthenosphere during the lithospheric extension and thinning at the opening of the Equatorial Atlantic and is clearly represented in the Mesozoic olivine tholeiites of Ceará-Mirim. The upwelled asthenosphere cooled as a rigid SCLM since the Cretaceous and has preserved its FOZO signature evident in the Macau Cenozoic basalts. The EM signatures

  5. Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes – an example from Madeira island (Portugal

    Directory of Open Access Journals (Sweden)

    H. T. Nguyen


    Full Text Available This study focuses on the adoption of a modern, widely-used Terrestrial Laser Scanner (TLS application to investigate volcanic rock slopes in Ribeira de João Gomes valley (Funchal, Madeira island. The TLS data acquisition in May and December 2008 provided information for a characterization of the volcanic environment, detailed structural analysis and detection of potentially unstable rock masses on a slope. Using this information, it was possible to determine specific parameters for numerical rockfall simulations such as average block size, shape or potential sources. By including additional data, such as surface roughness, the results from numerical rockfall simulations allowed us to classify different hazardous areas based on run-out distances, frequency of impacts and related kinetic energy. Afterwards, a monitoring of hazardous areas can be performed in order to establish a rockfall inventory.

  6. Rocks of the Thirtynine Mile volcanic field as possible sources of uranium for epigenetic deposits in central Colorado, USA. (United States)

    Dickinson, K.A.


    The most likely volcanic source rock for uranium in epigenetic deposits of the Tallahassee Creek uranium district and nearby areas is the Wall Mountain Tuff. The widespread occurrence of the Tuff, its high apparent original uranium content, approx 11 ppm, and its apparent loss of uranium from devitrification and other alteration suggest its role in providing that element. An estimate of the original Th/U ratio is based on the present thorium and uranium contents of the basal vitrophyre of the Tuff from Castle Rock Gulch, Hecla Junction and other areas.-from Author

  7. Petrography, mineral chemistry and geochemistry of post-ophiolitic volcanic rocks in the Ratouk area (south of Gazik, east of Iran

    Directory of Open Access Journals (Sweden)

    Zahra Vahedi Tabas


    Full Text Available Introduction Basaltic volcanoes are one of the volcanisms that have occurred in different parts of the world. The study of these lavas is important for petrologists, because they are seen in different tectonic settings and therefore diverse mechanisms affect their formation (Chen et al., 2007. Young volcanic rocks such as Quaternary basalts are one of latest products of magmatism in Iran that are related to deep fractures and active faults in Quaternary (Emami, 2000. The study area is located at 140km east of Birjand at Gazik 1:100000 geological map (Guillou et al., 1981 and have 60̊ 11' to 60̊ 15 '27" eastward longitude and 32̊ 33' 24" to 32̊ 39' 10" northward latitude. On the basis of structural subdivisions of Iran, this area is located in the northern part of the Sistan suture zone (Tirrul et al., 1983. Because of the importance of basaltic rocks in Sistan suture, this research is done with the aim of investigating the petrography and mineralogy of basaltic lavas, the nature of basaltic and intermediate magmatism and finally determination of tectonomagmatic regime. Materials and methods After field studies and sampling, 85 thin sections were prepared and carefully studied. Then ten samples with the lowest alteration were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion at the Acme laboratories, Vancouver, Canada. Electron probe micro analyses of clinopyroxene and olivine were done at the Iranian mineral processing research center (IMPRC by Cameca SX100 machine. X-ray diffraction analysis of minerals was done at the X-ray laboratory of the University of Birjand. Results In 60km south of GaziK at the east of the southern Khorasan province and the northern part of the Sistan suture zone, volcanic rocks with intermediate (Oligomiocene and

  8. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars (United States)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.


    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  9. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough (United States)

    Yamasaki, T.


    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  10. Preliminary Results of Paleomagnetic Study on the Miocene - Quaternary Volcanic Rocks from the North of Lake Van, Turkey (United States)

    Kayın, Sercan; İşseven, Turgay


    Collision between the Arabian and the Eurasian plates initiated in Serravallian age (12-13 Ma). This collision caused a large plateau formation about 2 km elevation. Result of the collision, Eastern Anatolian Region still continious to evolve as a young mountain belt. East-West trending folds, thrust faults and strike-slip fault systems were developed due to the compressional tectonic regime in the region. After the formation of the plateau, volcanism took place occupying large areas. The thickness of this volcanic series reaches to 1 km. In order to determine tectonic evolution (rotational and latitudinal movements) of the North of the Lake Van, oriented paleomagnetic samples were collected from the volcanic rocks whose ages has already been determined from radiometric methods and ages range from Miocene to Quaternary times. The origin of the collected palaeomagnetic samples from different volcanic series were came from volcanic centers in this region such as the followings: Aladaǧ, Tendurek, Etrusk, Girekol Mounths and Pliocene plate basalts. Our preliminary results indicate that most of the clockwise and anticlockwise rotations and deformation occured during the Miocene- Pliocene times. However, in Pleistosene time there weren't any considerable rotations and deformations. The main reason of the deformations were related with the collision between the Arabian plate and the Eurasian plate and accomodated by regional faults and westards escape of Anatolia. Our results are in good agreement with previously done palaeomagnetic studies, seismological and GPS data in the region.

  11. Geochemistry and petrogenesis of the late Cretaceous potassic-alkaline volcanic rocks from the Amasya Region (northern Turkey) (United States)

    Gülmez, Fatma; Genç, Can; Tüysüz, Okan; Karacık, Zekiye; Roden, Mike; Billor, Zeki; Hames, Willis


    The Cretaceous Lokman Formation (Alp, 1972) , is a volcano-sedimantary unit that comprises high- to ultra high-K alkaline volcanic rocks in Amasya Region (40°N, 35°E). The volcanic rocks expose as small outcrops and interfingered with pyroclastic and epiclastic rocks, and are classified as leucitite, tephriphonolite (LT), lamprophyres, trachytes and rarely andesites. LT and lamprophyres occur as dikes cutting each other, and rare lava flows. Trachytes are observed as small domes in the field and lots of pebbles and blocks within the clastic deposits derived from the domes. Samples of LT comprise lct+cpx (diopsite)+plg+mag+ap and classified as leucite-basanite mineralogically and tephri-phonolite geochemically. Ar-Ar age dating from leucites show that the leucite-bearing volcanic activity formed 75.6±3.7 Ma. The mineralogic composition of melanokratic lamprophyre dikes are represented by Kfs+cpx+mica+ap+mag. They defined geochemically as phono-tephrite and phonolite. The Ar-Ar plateau ages from the phlogopites from two different outcrops are 76.78 and 77.48 Ma. The main minerals of trachytic rocks are amp + bt + pl + Kfs + spn + ap +opq. They are classified as alkaline trachyandesite, geochemically. Radiometric age data from Kfs minerals reveal that the trachytic volcanism occurred 75.83±0.09 Ma. Except one andesitic sample, lamprophyres and trachytes of the Lokman Formation are the high- and ultra high-K and alkaline rocks. LT and lamprophyres are characterized by relatively high MgO (3.25-7.04 wt.%), K2O (4.34-6.54 wt.%), Na2O (3.42-5.74 wt.%). Total analcimization of leucite minerals let to decreasing its K2O, and increasing the Na2O contents. Therefore, K2O/Na2O values for LT and the lamprophyres (0.92-2.27) are relatively low. Trachytic suite is also high-K and alkaline in nature. On MORB normalized plots, all of the volcanic rocks from Lokman Formation display enrichment of LIL elements significantly relative to HFSE, and depletions of Nb-Ta and Ti

  12. Geochemical and Sr-Nd isotopic characteristics of Upper Cretaceous (calc-alkaline) and Miocene (alkaline) volcanic rocks: Elazığ, Eastern Taurides, Turkey (United States)

    Kürüm, Sevcan; Tanyıldızı, Özge


    The massive volcanic suite of Upper Cretaceous Elazığ Magmatic Complex, and Miocene basic volcanic rocks of crop out to the southern vicinity of Elazığ. The petrographical studies indicated that the massive volcanic suite of Upper Cretaceous are of basalt, spilitic basalt, basaltic andesite, andesite, trachite, dacite/ryolithe and dolerite in composition, and the Miocene volcanic rocks are basalt in composition. According to the geochemical data, which are conformable with the petrographical ones, Upper Cretaceous volcanic rocks are of low and medium-K contaning types and calc-alkalin in general, and enriched with respect to LILE and HREE contents. They also contain low Ti, have negative Nb and Ta anomaly and low 143Nd/147Nd and high 87Sr/86Sr ratios. Geochemical and isotopic data for the massive volcanic suite point out that these volcanic rocks were originated from an upper mantle source (lithospheric) which undergone fractional crystallisation and crustal contamination and enriched by these processes and metasomatized within a subduction zone. Miocene volcanic rocks are of high-K alkaline type, alkali basalt/basanite in composition and products of intraplate volcanism. These rocks are richer in some major oxide contents such as Na2O, K2O, MgO and trace element contents such as Nb, Sr, Zr compared to the massive volcanic rocks of Upper Cretaceous, and they are also enriched with respect to their LILE and HREE contents. The remarkable decrease from LREE towards HREE in the REE/Chondrite-normalized variation diagram indicates a magmatic differentiation process. The MgO and Ni ratios of Miocene volcanic rocks are not conformable with those of primitive basalt composition. However, all the chemical and isotopic (low 87Sr/86Sr ratio and positive (+) εNd values) data indicate that the source magma of these volcanic rocks was derived from a depleted garnet free magma (astenospheric mantle) and was modified once again by the post collosional geodynamical events and

  13. Degassing of basaltic magma: decompression experiments and implications for interpreting the textures of volcanic rocks (United States)

    Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike


    Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.

  14. The origin of volcanic rock fragments in Upper Pliocene Grad Member of the Mura Formation, North-Eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj


    Full Text Available Fresh-water, coarse-grained and detritus-dominated Mura Formation in North Eastern Slovenia includes pyroclastic and volcaniclastic deposits originating from Upper Pliocene volcanic activity of basaltic geochemical character. Although localized in occurrence at the hamlet Grad, these pyroclastic and volcaniclastic sediments forma distinctive depositional unit, for which the term “Grad Member” is proposed and introduced in this paper.In the Grad area no lavas or cinder cones are preserved, and the origin of volcaniclastic fragments still uncertain. For this reason, chemical composition of basaltic rock fragments from the Grad Member volcaniclastics has been studied and compared with basaltic rocks from the neighboring locations at Klöch, Kindsberg, Dölling and Neuhaus. The Grad Member pyroclastic and volcaniclastic deposits seem to be fed from the same source which is different from the occurrences in Austria. That supports the idea about the existence of a local volcanic centre in the present Grad area. The old volcanic edificeswerepossiblydestroyed by the late-stage hydrovolcanic eruptions, and pyroclastic and volcaniclastic deposits subjected to constant reworking by fluvial currents in a dynamic sedimentary environment of alluvial fan and braided river systems.

  15. Dating and source determination of volcanic rocks from Khunik area (South of Birjand, South Khorasan using Rb-Sr and Sm-Nd isotopes

    Directory of Open Access Journals (Sweden)

    Somayeh Samiee


    Full Text Available The Khunik area is located in the south of Birjand, Khorasan province, in the eastern margin of Lut block. Tertiary volcanic rocks have andesite to trachy-andesite composition. Dating analyzing by Rb-Sr method on plagioclase and hornblende as well as whole-rock isochron method was performed on pyroxene-hornblende andesite rock unit. On this basis the emplacement age is Upper Paleocene (58±11 Ma. These rocks have initial 87Sr/86Sr and εNd 0.7046-0.7049 and 2.16-3.12, respectively. According to isotopic data, volcanic rocks originated from depleted mantle and have the least crust contamination while it was fractionated. Geochemically, Khunik volcanic rocks have features typical of calk-alkaline to shoshonite and are metaluminous. Enrichment in LILEs and typical negative anomalies of Nb and Ti are evidences that the volcanic rocks formed in a subduction zone and active continental margin. Modeling suggests that these rocks were derived dominantly from 1–5% partial melting of a mainly spinel garnet lherzolite mantle source that is metasomatized by slab-derived fluid.

  16. Experiments and Spectral Studies of Martian Volcanic Rocks: Implications for the Origin of Pathfinder Rocks and Soils (United States)

    Rutherford, Malcolm J.; Mustard, Jack; Weitz, Catherine


    The composition and spectral properties of the Mars Pathfinder rocks and soils together with the identification of basaltic and andesitic Mars terrains based on Thermal Emission Spectrometer (TES) data raised interesting questions regarding the nature and origin of Mars surface rocks. We have investigated the following questions: (1) are the Pathfinder rocks igneous and is it possible these rocks could have formed by known igneous processes, such as equilibrium or fractional crystallization, operating within SNC magmas known to exist on Mars? If it is possible, what P (depth) and PH2O conditions are required? (2) whether TES-based interpretations of plagioclase-rich basalt and andesitic terrains in the south and north regions of Mars respectively are unique. Are the surface compositions of these regions plagioclase-rich, possibly indicating the presence of old AI-rich crust of Mars, or are the spectra being affected by something like surface weathering processes that might determine the spectral pyroxene to plagioclase ratio?

  17. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite

    Directory of Open Access Journals (Sweden)

    Naresh C. Ghose


    Full Text Available The late Aptian (118–115 Ma continental flood basalts of the Rajmahal Volcanic Province (RVP are part of the Kerguelen Large Igneous Province, and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin. The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts, bentonite, grey and black shale/mudstone and oolite, whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material. At the eastern margin and the north-central sector of the RVP, the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites. The pyroclastic rocks are largely felsic in composition, and comprise ignimbrite as well as coarse-grained tuff with lithic clasts, and tuff breccia with bombs, lapilli and ash that indicate explosive eruption of viscous rhyolitic magma. The rhyolites/dacites (>68 wt.% are separated from the andesites (<60 wt.% by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma. On the other hand, partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma, crystallizing orthopyroxene at a pressure-temperature of ∼3 kb/1150 °C. In contrast, the northwestern sector of the RVP is devoid of felsic-intermediate rocks, and the volcaniclastic rocks are predominantly mafic (basaltic in composition. Here, the presence of fine-grained tuffs, tuff breccia containing sideromelane shards and quenched texture, welded tuff breccia, peperite, shale/mudstone and oolite substantiates a subaqueous environment. Based on these observations, we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions. The presence

  18. Geochemistry of the volcanic rocks from Bioko Island (“Cameroon Hot Line”: Evidence for plume-lithosphere interaction

    Directory of Open Access Journals (Sweden)

    Fadimatou Ngounouno Yamgouot


    Full Text Available Bioko Island (3008 m a.s.l is located in the presently more active volcanic zone of the Cameroon Line and composed essentially of alkaline basalts and hawaiites, and lesser mugearites. The rocks show microlitic porphyritic texture with phenocrysts of olivine (83% < Fo < 87% and clinopyroxene in a matrix of plagioclase, clinopyroxene and oxides. Hawaiites and mugearites also include phenocrysts of plagioclase (An62-67Ab35-32Or3-1. Major element variation diagrams show an increase in SiO2, Al2O3, Na2O and K2O with increasing MgO for the studied rock groups. The rocks are characterized by low (86Sr/87Sri ratios (0.70320–0.70406, high ɛNd(t values (2.56–4.33 and high (206Pb/204Pbi ratios (20.032–20.035 values. Basalts are enriched in LILE and LREE, and have (Hf/SmN = 0.57–1.16. These geochemical signatures are similar to those of the Mount Cameroon rocks, and might be attributed to low degrees of partial melting from a garnet-amphibole-bearing mantle source. The trace elements and isotopic compositions suggest that the parental magma source might have involved HIMU- and EM1-components.

  19. Late Ediacaran volcano-sedimentary successions of southern Sinai (Egypt): tracing the evolution from late- to post-collisional volcanism and its relation to A-type rocks (United States)

    Azer, Mokhles; Asimow, Paul; Obeid, Mohamed; Price, Jason; Wang, Max


    The Late Ediacaran post-collisional volcano-sedimentary successions exposed in southern Sinai (Egypt) represent the last stage of magmatic activity associated with assembly of the northernmost segment of the Neoproterozoic Arabian-Nubian Shield. To clarify the age and tempo of post-collisional activity, three volcanic successions from southern Sinai were selected for the present study: the Sahiya, Iqna Shar'a and Meknas volcanics. They comprise a series of intermediate to silicic volcanic flows and their pyroclastic rocks. New zircon U-Pb dating by SIMS of the lava flows from the three successions yielded ages ranging between ca. 619 to 600 Ma. Combined with field evidence and the geochemical data, the obtained SIMS zircon ages enable us to recognize two phases of volcanic activity in southern Sinai at ca. 619-615 Ma and 606-600 Ma. Both age groups were found within the more northerly volcanic successions at Iqna Shar'a and Meknas and in both these sequences the younger phase uncomformably overlies the older phase. Only the older ages, ca. 615-619 Ma, were found in the Sahiya volcanics, exposed at the southern tip of Sinai. The ages of the youngest calc-alkaline volcanics in the study areas are similar to or slightly younger than the earliest phases of alkaline volcanism in southern Sinai, indicating coeval extrusion of calc-alkalic and alkalic A-type rocks. This observation corroborates similar observations documenting cogenetic calc-alkalic and alkalic plutons in the surrounding areas in southern Sinai. Geochemically, the volcanic rocks of the three successions display large silica variations and are mostly medium- to high-K calc-alkaline rocks. The first phase, from ca. 619-615 Ma, observed in all three volcanic suites, comprises basaltic andesite, andesite and dacite, whereas the second phase, from ca. 606-600 Ma and observed only in the northern volcanic suites (Iqna Shar'a and Meknas), comprises dacite, rhyodacite and rhyolite. In the Sahiya succession basal

  20. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvari


    Full Text Available Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993 and Abbasi (Abbasi, 2012 have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternary travertine and recent alluvium (Emami, 1993. The volcanic and sub volcanic rocks of this area are composed of andesite, trachyandesite, dacite, rhyolite and porphyric pyroxene diorite along with pyroclastic rocks. Materials and methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, thin and polished thin sections were prepared. Some of the samples were selected for microprobe analysis and clinopyroxene minerals were analyzed by using JEOL- JXA-8800 analyzer with a voltage of 20 Kv and a current of 12 nA in the Kanazava University of Japan and Cameca-Sx100 analyzer with a voltage of 15 Kv and a current of 15 nA in the Iranian mineral processing research center, Karaj. Discussion On the basis of petrographic investigations, porphyritic, porphyroid, fluidal, amygdaloidal and porphyry with microlitic groundmass are common textures of these rocks. Also plagioclase, clinopyroxene, amphibole, biotite, sanidine and quartz are essential minerals, opaque, zircon and apatite as accessory minerals are observed in the studied rocks. Clinopyroxenes are observed with corona texture that resulted during the uralitization process. On the basis of minerals’ chemistry, pyroxenes are Fe- Mg- Ca type in composition (Morimoto et al., 1988. These clinopyroxenes are augite. Investigations indicate that mineral composition of clinopyroxene can be effectively used to evaluation the P-T conditions during crystallization. Previous research

  1. Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan

    Directory of Open Access Journals (Sweden)

    Mahshid Malekian Dastjerdi


    Full Text Available Introduction The study area is located 12km away from the north east of Sarbisheh at the eastern border of the Lut block (Karimpour et al., 2011; Richards et al., 2012. The magmatic activity in the Lut blockhas begun in the middle Jurassic (165-162 Ma and reached its peak in the Tertiary age (Jung et al., 1983; Karimpour et al., 2011. Volcanic and subvolcanic rocks in the Tertiary age cover over half of the Lut block with up to 2000 m thickness and they were formed due to subduction prior to the collision of the Arabian and Asian plates (Jung et al., 1983; Karimpour et al., 2011. In the Kangan area, the basaltic lavas cropped out beyond the above intermediate to acid volcanic rocks. In this area, bentonite and perlite deposits have an economic importance. The main purpose of this paper is to present a better understanding of the tectono-magmatic settings of volcanic rocks in the northeast of Sarbisheh, east of Iran based on their geochemical characteristics. Materials and methods Fifteen samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements by using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the Acme laboratories, Vancouver, Canada. Results The Kangan area is located at the northeast of Sarbishe, Southern Khorasan and the eastern border of the Lut block. In this area, basaltic lavas have cropped out above intermediate to acid lavas such as andesite, dacite, rhyolite (sometimes perlitic .The main minerals in the basalt are plagioclase, olivine and pyroxene, in andesite contain plagioclase, pyroxene, biotite and amphibole and in acid rocks include plagioclase, quartz, sanidine, biotite and amphibole. Intermediate to acid rocks have medium to high-K calc-alkaline nature and basalt is alkaline. Enrichment in LREE relative to HREE (Ce/Yb= 21.14-28.7, high ratio of Zr/Y(4.79- 10.81, enrichment in LILE

  2. Mineralogy of Rock Flour in Glaciated Volcanic Terrains: An Analog for a Cold and Icy Early Mars (United States)

    Rampe, E. B.; Horgan, B.; Scudder, N.; Smith, R. J.; Rutledge, A. M.


    Geomorphological and mineralogical data from early Martian surfaces indicate liquid water was present on ancient Mars. The relative surface temperatures, however, remain a subject of debate. Was early Mars warm and wet or cold and icy with punctuated periods of warmth and ice melt? By characterizing the mineralogy and geochemistry of modern icy mafic terrains on Earth, we can search for these characteristics in early Martian terrains to better constrain the early Martian climate. Here, we describe the mineralogy of glacial flour in a modern glaciated volcanic terrain in Oregon, USA. We are particularly interested in secondary phases that form in these environments, and we hypothesize that poorly crystalline phases may preferentially form in these terrains because of the low temperatures and the seasonality of melt water production. A description of the mineralogy of the moraines, the composition of the amorphous materials, and the geochemistry of the glacial melt waters are presented elsewhere. Glacial flour is made up of silt- and clay-sized particles that form from the physical weathering of rock underlying a wet-based glacier as the glacier slides over it. Flour is usually transported from underneath a glacier by melt water streams. The geochemistry of glacial melt water streams has been studied extensively and has been used to infer weathering reactions within glacial systems. However, the mineralogy of these environments, especially on mafic volcanic terrains, is not well studied. Rock flour is a ubiquitous physical weathering product in glaciated terrains and, therefore, affects microbial habitats, stream and lake chemistry, and chemical weathering processes. and by studying the mineralogy of glacial flour, we can better understand geochemical and microbiological processes in subglacial and proglacial terrains.

  3. Gravity and aeromagnetic constraints on the extent of Cenozoic volcanic rocks within the Nefza Tabarka region, northwestern Tunisia (United States)

    Jallouli, Chokri; Mickus, Kevin; Turki, Mohamed Moncef; Rihane, Chedly


    Bouguer gravity and aeromagnetic data are analyzed to determine the extent of Miocene magmatism in the Nefza and Tabarka regions of northwestern Tunisia. Construction of magnetic intensity and enhanced analytic signal (EAS) maps indicated the existence of at least two regions containing probable subsurface igneous bodies that correlate to the small scattered igneous outcrops in the Nefza and Tabarka regions. Because of the lack of lateral resolution of the EAS techniques, 3-D magnetic and 2.5-D gravity models were constructed over the anomalies at Nefza and Tabarka. The final models indicate that the maximum depths of the igneous bodies are between 2.5 and 2.7 km with maximum widths between 15 and 22 km. The final models also indicate that the bodies are tabular with a combination of laccolithic and lopolithic shapes and were probably emplaced in the shallow levels of the crust (at least 3 km). These widths greatly expand the region of known Miocene magmatism in northwestern Tunisia. Combined with geochemical and petrological data of the surface volcanic rocks, the gravity and magnetic models imply a wider range of Miocene volcanic activity in northern Tunisia, probably related to a subduction zone.

  4. Geochemical Evidence of Island-Arc Origin for Sumatra Island; A New Perspective based on Volcanic Rocks in Lampung Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Iskandar Zulkarnain


    Full Text Available DOI: 10.17014/ijog.v6i4.128Since decades, Sumatra Island is considered as the Eurasia continental margin where the Indian Ocean plate has been subducted oblique beneath the continental plate of Sumatra. But, the occurrences of volcanic rocks in almost all areas of Lampung Province in the southernmost of Sumatra Island, as the presence of the Quaternary Tanggamus Volcano in the western part of the province together with the Quaternary Rajabasa Volcano in the eastern area cannot be justified using the consideration. Spider diagrams of trace and rare earth elements of volcanic rocks from the western and eastern areas of the province reveal that the rocks come from three different tectonic settings, namely island-arc, active continental margin (ACM, and intra continental plate. All basalt and one dacite of western volcanic rocks show a character of island-arc origin, while the eastern volcanic rocks are reflecting characters of ACM and intra continental plate. Plot of the rocks in the diagram of Ta/Yb versus Ce/P and in Ta/Yb versus Th/Yb confirmed the tectonic environments and specifically classify the intra continental plate into Within Plate Volcanic Zone (WPVZ. The island-arc group is characterized by Ta/Yb ratio of less than 2.0 and Ce/P less than 1.8. The ACM group is recognized having Ta/Yb ratio between 2 and 4 with Ce/P more 1.8, while the WPVZ group is defined as a group having Ta/Yb more than 6 and Ce/P more than 1.0. The result indicates that the western part of Sumatra is an island-arc fragment and the eastern part belongs to the Eurasia continental margin. The concentration of volcanics having ACM character from areas around the Sumatra Fault System to the east indicates that the collision zone between the Sumatra island-arc fragments with the Eurasia continental margin is probably located along the SFS. More statistical data is still needed from other Sumatra volcanics to confirm this conclusion.

  5. Potassium metasomatism of volcanic and sedimentary rocks in rift basins, calderas and detachment terranes (United States)

    Chapin, C. E.; Lindley, J. I.

    The chemical, mineralogical, and oxygen-isotopic changes accompanying K-metasomatism are described. The similarities with diagenetic reactions in both deep marine and alkaline, saline-lake environments are noted. The common occurrence of K-metasomatism in upper-plate rocks of detachment terranes indicates that the early stage of severe regional extension causes crustal downwarping and, in arid to semi-arid regions, development of closed hydrographic basins.

  6. Geochemistry and Mineral Chemistry of Zeolites Bearing Basic Volcanic Rocks from the Boumehen-Roudehen Area, East of Tehran

    Directory of Open Access Journals (Sweden)

    Amir Ali Tabbakh Shabani


    Full Text Available Introduction The Upper Eocene basic volcanic rocks that have cropped out in Karaj formation in the Boumehen and Roudehen area in the east of Tehran are characterized by fibrous zeolites filling their vesicles, cavities and fractures creating amygdale texture. The study area is located structurally in the Central Alborz orogenic belt. The presence of large volumes of shoshonitic magma during the Middle to Late Eocene in southern–central Alborz implies that partial melting to produce shoshsonitic melts was not a local petrological event. Thus, their ages, formation processes, and interpretations are of regional tectonic significance. In this study, we present a detailed petrography, mineral chemistry, and whole-rock geochemistry of high-K (shoshonitic basic rocks to understand the petrogenesis and source region and to deduce the nature of the tectonomagmatic regime of the Alborz. Materials and methods In this study, we present new major and trace element data for a selection of 4 of the least altered samples by a combination of X-ray fluorescence (XRF and ICP-OES techniques at the Zarazma Mineral Studies Company. Mineral analyses were obtained by wavelength dispersive X-ray spectrometry on polished thin sections prepared from each rock sample described above for 12 elements using a Cameca SX-50 electron microprobe at the Istituto di Geologia e Geoingegneria Ambientale, C.N.R., University La Sapienza of Rome, Italy. Typical beam operating conditions were 15 kV and probe current of 15 nA. The accuracy of the analyses is 1% for major and 10% for minor elements. A total of 24 point analyses were collected. Results and Discussion The extent of alteration in the study rocks varies from slight to severe and shows porphyritic to glomeroporphyritic textures. Pyroxenes are generally subhedral to euhedral and occur as discrete crystals as well as aggregates. Olivine may occur only as relics filled with iddingsite, chlorite and calcite. Plagioclase is

  7. The Ediacaran volcanic rocks and associated mafic dykes of the Ouarzazate Group (Anti-Atlas, Morocco): Clinopyroxene composition, whole-rock geochemistry and Sr-Nd isotopes constraints from the Ouzellarh-Siroua salient (Tifnoute valley) (United States)

    Belkacim, Said; Gasquet, Dominique; Liégeois, Jean-Paul; Arai, Shoji; Gahlan, Hisham A.; Ahmed, Hassan; Ishida, Yoshito; Ikenne, Moha


    Belonging to the huge Ouarzazate volcanic Group that covered the whole Anti-Atlas during the late Ediacaran (580-545 Ma), the Tifnoute valley volcanic formations are mainly pyroclastic and show a large composition, from trachybasalt to rhyolite and are crosscut by dolerite dykes. The Tifnoute valley volcanic rocks are located within a rigid salient of the Anti-Atlas that gives them special extreme characteristics. Due to the heavy greenschist alteration that affects this volcanic group, we focused the more immobile elements, but as REE can also be affected, we used the composition of unaltered clinopyroxene crystals to determine the nature of these volcanic rocks. The clinopyroxene is an augite diopside in the basalt, an augite in the andesite and an augite-salite in the dolerite. Petrography of the Tifnoute mafic volcanic rocks and clinopyroxene compositions indicate the presence of two magmatic series: (i) older high-K calc-alkaline (alkali-calcic) andesite and basalt characterized by the early crystallization of Fe-Ti oxides and of the late fractionation of plagioclase, the modal proportion of the latter increasing from the basalt to the andesite and (ii) younger alkalic dolerite dykes. With clinopyroxene trace element compositions obtained using laser ablation ICP-MS, we calculated the composition of the melts in equilibrium with the pyroxenes. The volcanic rocks of the Tifnoute Valley have positive εNd570 (+1.7 to +5.0), low Sri (ages ranging from 0.80 to 1.14 Ga, indicating a mostly depleted Neoproterozoic source with limited involvement of the Eburnian lithosphere for the Tifnoute magmas. This depleted source is the young lithospheric mantle for the alkali-calcic series and the asthenosphere for the younger alkalic series. The Tifnoute Valley volcanic rocks emplaced in a Pan-African transtensive post-collisional environment that evolved towards the major rifting event that will give rise to the Rheic ocean, in a similar way to what occurred just after the

  8. Zircon geochronology of the Mashak volcanic rocks and the problem of the age of the lower-middle Riphean boundary (Southern Urals) (United States)

    Krasnobaev, A. A.; Kozlov, V. I.; Puchkov, V. N.; Busharina, S. V.; Sergeeva, N. D.; Paderin, I. P.


    In the type sections of the Riphean within the Bashkirian mega-anticlinorium (Southern Urals), the Mashak Formation represents a basal unit of the Middle Riphean erathem. The formation comprises throughout its area of distribution the alternation of volcanic, volcano-sedimentary, and sedimentary sequences and is divided into the lower, middle, and upper subformations. The volcanic rocks containing zircons (four samples, rhyodacite and rhyolite collected at Mashak, Berezyak, and Bolshoi Shatak ranges) are largely confined to the lower subformation. Analyses were performed using a SHRIMP II methodology, with special attention to the mineralogical characteristics of zircons, including their habit, morphology, preservation, and inclusions. All zircons show similarities in their mineral chemistry and geochemistry, which are indicative of the geochemical affinity of the volcanic rocks. At the same time, all zircon grains are characterized by specific typological parameters, which may equally reflect the parameters involved in the development of such volcanic rocks under different conditions. The integrated U-Pb age of zircons (SHRIMP II, VSEGEI, St. Petersbrug) from the four samples is 1383 ± 3 Ma. On the basis of the age of the Berdyaush gabbro-granitoid intrusion (up to 1410 Ma), the most likely age of this boundary is 1400 Ma, which is equated to the Calymmian and Ectasian of the International Stratigraphic Scale.

  9. Mobility of elements during K-metasomatism of volcanic rocks by alkaline, saline brines

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, C.E. (New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States))


    Silicic ignimbrites and interbedded mafic lavas of Oligocene age were altered by alkaline, saline brines in the Popotosa basin of the Rio Grande rift near Socorro, New Mexico. Alteration was toward a fine-grained assemblage of adularia + hematite [+-] quartz irrespective of initial rock composition. Elevated [delta][sup 18]O and the occurrence of zeolites, gypsum, and salt casts in overlying play a deposits indicates that the altering fluids were basin brines. Preliminary analysis of secondary inclusions in fractured quartz phenocrysts indicates temperatures near 100 C and salinities near 20 wt. % NaCl equivalent. To test element mobility, pairs of fresh and altered samples from each of 7 ignimbrite units plus 4 samples of interbedded mafic lavas were analyzed by XRF, INAA, and AA. The elements showing the greatest mobility during alteration of ignimbrites are listed below along with their enrichment factors (altered rock/fresh rock). Ignimbrites: enriched--K[sub 2]O 1.99, Rb 1.89, Ba 1.43, As 12.14, Sb 18.30, Pb 1.23; depleted--Na[sub 2]O 0.25, MgO 0.57, CaO 0.27, MnO 0.50, P[sub 2]O[sub 5] 0.75, Sr 0.54, Li 0.57, U 0.78, Br 0.67, Cu 0.90, Zn 0.69. The dramatic enrichment of As and Sb in both ignimbrites and mafic lavas indicates that these elements are highly mobile in oxidizing basin brine systems. K-metasomatism is a common type of alteration in rift basins, detachment terranes, aquifers through which brines have migrated.

  10. New records of rare lichenicolous and lichen-forming fungi from volcanic rocks in SW Poland

    Directory of Open Access Journals (Sweden)

    Katarzyna Szczepańska


    Full Text Available Records of two lichenicolous and nine lichen-forming fungi found in the southwestern part of Poland are presented. All of the reported species are very rare and they have only a few scattered localities in the country. One of them, Lecanora pannonica, is reported for the second time from Poland. Additionally, the new, contemporary records of Cercidospora macrospora, Rhizocarpon disporum, R. viridiatrum and Stereocaulon pileatum in Lower Silesia were noted. These species were known only from historical collections in the study area. Furthermore, Lecidea fuscoatra has been found a new host for Sagediopsis barbara. All of the localities of recorded species were found on natural outcrops of basalt rocks.

  11. Petrogenesis and geodynamic setting of Early Cretaceous felsic rocks in the Gan-Hang Belt, Southeast China: Constraints from geochronology and geochemistry of the tuffs and trachyandesitic rocks in Shengyuan volcanic Basin (United States)

    Shu, Xun; Yang, Shui-Yuan; Jiang, Shao-Yong; Ye, Mao


    The Late Mesozoic geology of the Gan-Hang Belt is characterized by extensive magmatism forming a belt of volcanic-intrusive complex. The geochronology, petrogenesis, and geodynamic setting of the Late Mesozoic magmatic rocks in the Gan-Hang Belt are still controversial. The Shengyuan volcanic Basin is located in the NW region of the belt and mainly contains crystal tuff, welded tuff, and trachyandesitic rocks. We integrate geochronological and geochemical data for these tuffs and trachyandesitic rocks, to explore the origin of these rocks and improve our understanding of the Late Mesozoic magmatic and tectonic evolution of the region. Zircon U-Pb dating shows that these samples were formed in the Early Cretaceous (135-137 Ma). All the tuffs have a pronounced A2-type geochemical signature and their chemical compositions are controlled by crystal fractionation. All trachyandesitic rocks exhibit high K2O contents and were attributed to the shoshonite series; they are characterized by arc-like trace element distribution patterns, with significant enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) but depletion in high field-strength elements (HFSE). Moreover, all the tuffs and trachyandesitic rocks were characterized by negative whole rock εNd(t) and zircon εHf(t). An integrated interpretation of all these geochemical data leads to the conclusion that the Shengyuan trachyandesitic rocks were primarily derived from mantle materials and oceanic crust-derived melt. The Shengyuan tuffs were formed by the partial melting of the Proterozoic orthometamorphic and parametamorphic rocks. Our studies together with previous published data suggest that the Early Cretaceous A-type felsic rocks, with ages between 138 Ma and 122 Ma, occurred along the Gan-Hang Belt, indicating an important Late Mesozoic extensional event in the Belt. This event represents a back-arc tectonic setting due to the rollback of the Paleo-Pacific plate.

  12. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari


    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  13. A large landslide in volcanic rock: failure processes, geometry and propagation (United States)

    Putu Krishna Wijaya, I.; Zangerl, Christian; Straka, Wolfgang; Mergili, Martin; Prasad Pudasaini, Shiva; Arifianti, Yukni


    The Jemblung landslide in Banjarnegara, Indonesia was one of the most destructive landslides in the country since 2006. This landslide caused at least 90 deaths while more than 1300 people were evacuated to safer areas. Concerning the failure mechanisms and type of material, the event can be characterized as a complex landslide (earth slide to earth flow). It originated in volcaniclastic soil/rock, i.e. andesites and lapilli-tuffs of varying degrees of weathering that lie above tuffaceous sandstones, conglomerates, as well as an alternation of shale and brown coal layers. Unmanned aerial vehicle (UAV) data from a secondary database are processed by using photogrammetric software to obtain an overview of the landslide geometry before and after the failure event. Stratigraphic field data and geoelectrical measurements are compared and correlated to build a geological-geometrical model and to estimate the volume of the landslide. Petrographical and XRD analysis are conducted to explain the mineral composition of parent rock and its weathering products. Rainfall as well as seismologic data are collected to study potential trigger and failure mechanisms. The geological-geometrical model of the landslide, digital terrain models of the process area and geotechnical soil properties are combined to model the initial sliding process by applying limit-equilibrium software products. Furthermore, the landslide propagation is simulated with the novel, GIS-based, two-phase mass flow modelling tool r.avaflow in order to improve the understanding of the dynamics of the Jemblung landslide.

  14. Relative Roles of Source Composition, Fractional Crystallization and Crustal Contamination in the Petrogenesis of Andean Volcanic Rocks (United States)

    Thorpe, R. S.; Francis, P. W.; O'Callaghan, L.


    There are well established differences in the chemical and isotopic characteristics of the calc-alkaline basalt--andesite--decite--rhyolite association of the northern (n.v.z.), central (c.v.z.) and southern volcanic zones (s.v.z.) of the South American Andes. Volcanic rocks of the alkaline basalt--trachyte association occur within and to the east of these active volcanic zones. The chemical and isotopic characteristics of the n.v.z. basaltic andesites and andesites and the s.v.z. basalts, basaltic andesites and andesites are consistent with derivation by fractional crystallization of basaltic parent magmas formed by partial melting of the asthenospheric mantle wedge containing components from subducted oceanic lithosphere. Conversely, the alkaline lavas are derived from basaltic parent magmas formed from mantle of `within-plate' character. Recent basaltic andesites from the Cerro Galan volcanic centre to the SE of the c.v.z. are derived from mantle containing both subduction zone and within-plate components, and have experienced assimilation and fractional crystallization (a.f.c.) during uprise through the continental crust. The c.v.z. basaltic andesites are derived from mantle containing subduction-zone components, probably accompanied by a.f.c. within the continental crust. Some c.v.z. lavas and pyroclastic rocks show petrological and geochemical evidence for magma mixing. The petrogenesis of the c.v.z. lavas is therefore a complex process in which magmas derived from heterogeneous mantle experience assimilation, fractional crystallization, and magma mixing during uprise through the continental crust. Active Andean volcanoes of the calc-alkaline basalt--andesite--dacite rhyolite association occur within a northern (n.v.z.), central (c.v.z.) and southern volcanic zone (s.v.z.) (figure 9). Alkaline volcanic rocks occur within and to the east of these zones. The n.v.z. and s.v.z. lavas have chemical and isotope characteristics consistent with an origin by

  15. Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy (United States)

    Ayuso, R.A.; de Vivo, B.; Rolandi, G.; Seal, R.R.; Paone, A.


    Alkaline volcanism produced by Monte Somma-Vesuvius volcano includes explosive plinian and subplinian activity in addition to effusive lava flows. Pumice, scoria, and lava (150 samples) exhibit major- and trace-element gradients as a function of SiO2 (58.9-47.2 wt%) and MgO (0-7.8 wt%); Mg value are ???50. Internally gradational chemical groups or cycles are distinguished by age: (1) 25 000 to 14 000 yr B.P.; (2) 8000 yr B.P. to A.D. 79; and (3) A.D. 79 to 1944. A small number of lavas, dikes and scora were also analysed from the Somma formation (~ 35 000 to 25 000 yr B.P.). Within each group, contents of Na2O + K2O increas with decreasing MgO along distinct rocks. Nb/Y values are variable from 0.66 to 3.14 (at SiO2 ??? 50 wt%) generally in the range of alkaline and ultra-alkaline rocks. Variations in contents of some majro elements (e.g., P and Ti), and trace elements (e.g., Th, Nb, Ta, Zr, Hf, Pb, La, and Sc), as well as contrasting trends in ratios of various elements (e.g., Ta/Yb, Hf/U, Th/Ta, Th/Hf, Th/Yb, etc.) are also generally consistent with the group subdivisions. For example, Th/Hf increases from ??? 5 to ??? 10 with decreasing age for the Vesuvius system as a whole, yielding similar compositions in the least evolved rocks (low-silica, high-MgO, imcompatible element-poor) erupted at the end of each cycle. Internal variations within individual eruptions also systematically changed generally towards a common mafic composition at the end of each cycle, thus reflecting the dominanit volume in the magma chamber. At the start of a new eruptive cycle, the rocks are relatively enriched in incompatible elements; younger groups also contain higher abundances than other groups. N-MORB-normalized multielement diagrams exhibit selective enrichments of Sr, K, Rb, Th, and the light rare-earth elements; deep Nb and Ta negative anomalies commonly seen in rocks generated at orogenic margins are absent in the light rare-earth elements; deep Nb and Ta netgative anomalies

  16. Volcanic Rocks Collected With ROV Tiburon From Rodriguez Seamount, Located at the Continental Slope of the California Borderland (United States)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.


    Volcanic rocks were collected from Rodriguez Seamount at the outer margin off the Continental Borderland with MBARI's ROV Tiburon in October 2003 and April 2004. Six dives recovered lava and volcaniclastic samples from the deep flanks ( ˜2120 m) to the summit at 630 m. Whole rock compositions of plagioclase-olivine-clionpyroxene bearing lava samples are predominantly alkalic basalt (<8% MgO) and hawaiite with minor mugearite (MgO=1.5%). Glass compositions of pillow rims and of volcaniclastic fragments in breccia and bedded sandstone are predominantly hawaiite, mugearite and minor evolved alkalic basalt. The lava samples include one rhyolite and one basaltic andesite with subduction-related chemistry; they are probably erratics. Other clearly identifiable erratics include granite, quartzite, amphibolite, and bored, erosion-sculpted sandstone, resembling typical beach deposits. Most of these erratics are pebble- to small cobble-size and occur in conglomerate and crossbedded sandstone that surround the summit at a break in slope that most likely marks the shoreline when Rodriguez was an island. The lava outcrops on the gently domed platform of the summit are dense, oxidized àà-like flows without glassy rinds. Sulfur content of glass, collected from the flanks of the volcano, ranges from 1300 ppm of a glass inclusion in an olivine crystal to ˜160 ppm of volcaniclastic grains, indicating extensive degassing. Petrographically and chemically these lavas are virtually identical to those erupted on Miocene seamounts offshore central California (e.g. Davidson, Guide, Pioneer, Gumdrop seamounts, Davis et al, 2002) as well as Northeast Bank on the continental shelf south of Rodriguez and seamounts farther offshore from the Continental Borderland (e.g. Little Joe, San Marcos, San Juan seamounts, Clague et al, unpublished; Davis et al., 1995). Trace element abundances and ratios (e.g. LREE, Zr/Nb, Ta/Nb) also completely overlap with those from the other sites, suggesting

  17. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise. (United States)

    Mougel, Berengere; Agranier, Arnaud; Hemond, Christophe; Gente, Pascal


    Radiogenic isotopes in oceanic basalts provide a window into the different geochemical components defining the composition of Earth's mantle. Here we report the discovery of a novel geochemical signature in volcanic glasses sampled at a sub-kilometre scale along the East Pacific Rise between 15°37'N and 15°47'N. The most striking aspect of this signature is its unradiogenic lead ((206)Pb/(204)Pb=17.49, (207)Pb/(204)Pb=15.46 and (208)Pb/(204)Pb=36.83). In conjunction with enriched Sr, Nd and Hf signatures, Pb isotopes depict mixing lines that trend away from any known mantle end-members. We suggest that this unradiogenic lead component sampled by magmatic melts corresponds to a novel upper mantle reservoir that should be considered in the Pb isotope budget of the bulk silicate Earth. Major, trace element and isotope compositions are suggestive of an ancient and lower continental origin for this unradiogenic lead component, possibly sulphide-bearing pyroxenites that were preserved even after prolonged stirring within the ambient upper mantle.

  18. Late sodic metasomatism evidences in bimodal volcanic rocks of the Acampamento Velho Alloformation, Neoproterozoic III, southern Brazil

    Directory of Open Access Journals (Sweden)

    Delia Del Pilar M. de Almeida


    Full Text Available A mineralogical study was carried out in mafic and felsic volcanic rocks of the Acampamento Velho Alloformation at Cerro do Bugio, Perau and Serra de Santa Bárbara areas (Camaquã Basin in southern Brazil. The Acampamento Velho bimodal event consists of two associations: lower mafic at the base and upper felsic at the top. Plagioclase and alkali-feldspar were studied using an electronic microprobe, and magnetite, ilmenite, rutile, illite and alkali-feldspar were investigated through scanning electron microscopy. The rocks were affected by a process of late sodic autometasomatism. In mafic rocks, Ca-plagioclase was transformed to albite and pyroxenes were altered. In felsic rocks, sanidine was partially pseudomorphosed, generating heterogeneous alkali-feldspar. In this association, unstable Ti-rich magnetite was replaced by rutile and ilmenite. In mafic rocks, the crystallization sequence was: (1 Ti-rich magnetite (?, (2 pyroxene and Ca-plagioclase, (3 albite (alteration to Ca-plagioclase, (4 sericite, chlorite and calcite (alteration to pyroxene, and kaolinite (alteration to plagioclase/albite. In felsic rocks: (1 zircon, (2 Ti-rich magnetite, (3 sanidine, (4 quartz. The introduction of late Na-rich fluids, generated the formation of (5 heterogeneous alkali-feldspar, (6 ilmenite and rutile from the Ti-rich magnetite, (7 albite in the spherulites. Finally, alteration of sanidine, vitroclasts and pumice to (8 illite.Um estudo mineralógico de detalhe foi realizado nas rochas vulcânicas da Aloformação Acampamento Velho nos Cerros do Bugio, Perau e Serra de Santa Bárbara (Bacia do Camaquã, sudeste do Brasil. Este evento bimodal é constituído por duas associações: máfica inferior na base e félsica superior no topo. Foram estudados grãos de plagioclásio e feldspato alcalino com o uso de microssonda eletrônica, sendo que, magnetita,ilmenita, rutilo e ilita além de feldspato alcalino foram pesquisados através do microscópio eletr

  19. The Eldivan ophiolite and volcanic rocks in the İzmir-Ankara-Erzincan suture zone, Northern Turkey: Geochronology, whole-rock geochemical and Nd-Sr-Pb isotope characteristics (United States)

    Çelik, Ömer Faruk; Chiaradia, Massimo; Marzoli, Andrea; Billor, Zeki; Marschik, Robert


    Gabbros and dolerite dikes of the Eldivan ophiolite and basaltic volcanic rocks of the ophiolitic mélange in the central part of the İzmir-Ankara-Erzincan (IAE) suture zone were investigated for their 40Ar/39Ar age and whole-rock-major-trace element and Sr-Nd-Pb isotope compositions. Based on geological and geochemical characteristics basaltic volcanic rocks in the ophiolitic mélange are subdivided into two groups (Groups I and II) with ocean island basalts or enriched mid-ocean ridge basalt characteristics, respectively. Gabbros and dolerite dikes of the Eldivan ophiolite (Groups III and IV) have instead geochemical compositions indicative of a subduction-related environment. The volcanic rocks of Group I have 87Sr/86Sr(i) between 0.7037 and 0.7044, ƐNd(i)-DM of - 4.5 to - 5.6, and 206Pb/204Pb(i) ranging between 18.35 and 18.75. Group II volcanic rocks have higher 87Sr/86Sr(i) values (0.7049-0.7055), ƐNd(i)-DM ranging between - 5.4 and - 6.0, and 206Pb/204Pb(i) between 18.14 and 18.62. The Nd isotopic signatures and 207Pb/204Pb(i) values of the volcanic rocks of both groups point to a different source with respect to those of the Eldivan ophiolite. The low 206Pb/204Pb(i) values relative to the ophiolitic rocks seem to exclude a significant contribution from a HIMU reservoir, whereas the 207Pb/204Pb(i) values slightly above the NHRL might indicate some contribution from an EM2-type reservoir. Gabbros (Group III) of the Eldivan ophiolite and dolerite dikes (Group IV) cross-cutting the ultramafic part of the ophiolite show 87Sr/86Sr(i) between 0.7038 and 0.7053, ƐNd(i)-DM from - 2 to - 3.6 and 206Pb/204Pb(i) between 18.10 and 18.80. The gabbros yield ca. 150 Ma 40Ar/39Ar amphibole-plateau ages, which, together with the geochemical data, indicate that they were produced above subducted oceanic lithosphere in the IAE ocean domain in Late Jurassic times. Therefore, the Eldivan ophiolite in the IAE suture zone constitutes a link between the Hellenide

  20. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase. (United States)

    Wan, Juan; Sun, Xiaowen; Liu, Cheng; Tang, Mengjun; Li, Lin; Ni, Hong


    A triplicate volcanic rock matrix-Bacillus thuringiensis-laccase WlacD (VRMs-Bt-WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn)2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn)2-WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9(34)-orthogonal test, Plackett-Burman test, steepest ascent method, and Box-Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L-1, which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs-Bt-WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs-Bt-WlacD toward an initial concentration of 500 mg L-1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g-100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs-Bt-WlacD and have the potential for large-scale or continuous operations.

  1. Quantifying effects of humans and climate on groundwater resources through modeling of volcanic-rock aquifers of Hawaii (United States)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.


    The volcanic-rock aquifers of Kauai, Oahu, and Maui are heavily developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and streamflow. A numerical modeling analysis using the most recently available data (e.g., information on recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) will substantially advance current understanding of groundwater flow and provide insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed relatively fast model run times without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), automated-parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and current (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and preliminary results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, reduction in stream base flow, and rise of the freshwater-saltwater interface.

  2. Insights into Magmatic Degassing at Merapi Volcano, Indonesia from Uranium-Series Disequilibria in Recently Erupted Volcanic Rocks (United States)

    Handley, Heather; Reagan, Mark; Gertisser, Ralf; Preece, Katie; Berlo, Kim; Barclay, Jenni; Herd, Richard


    We present new uranium-series isotopic data for the volcanic products of the 2006 and 2010 eruptions at Merapi to investigate magmatic degassing and the driving forces behind the recent unusual explosive behavior in 2010. The 2006 and 2010 Merapi whole-rock samples and plagioclase separates have U excesses ((238U/230Th) activity ratios > 1) and excess Ra ((226Ra//230Th) > 1) with no significant difference between the 2006 and 2010 whole-rock samples. Two samples, one from 2006 and one from 2010 have apparent (228Ra/232Th) values in excess of secular equilibrium, suggesting that the process causing the 226Ra enrichments over 230Th (possibly the interaction of magma with carbonate material in the crust) might have continued to shortly before eruption at least for some magmas. The 2010 Merapi rocks were variably degassed of 210Po upon eruption, showing no systematic temporal evolution. The variation observed in (210Pb/226Ra)0 for the 2006 and 2010 eruptions is comparable to the full range of ratios measured in the time period from 1981 to 1995, previously reported for the volcano. The 2006 and 2010 samples are largely characterised by 210Pb deficits ((210Pb/226Ra)0 secular equilibrium. The observed variability in (210Pb/226Ra)0 is attributed to variations in magmatic source depth as well as potential variable speed of ascent. The range of 210Pb deficits observed in the 2006 Merapi samples imply approximately 2-4 years of degassing prior to eruption. In the main 2010 dome-building phase, the three samples analysed show small 210Pb deficits to a small 210Pb excess and lie within error of secular equilibrium. This likely represents the arrival of fast moving magma that did not stall and degas for any significant amount of time since its last stagnation point. The higher (210Pb/226Ra)0 in samples erupted between 1 to 4 Nov 2010, compared to 2006, supports the previous model that periods of magmatic recharge are linked to rapid dome extrusion and, ultimately, more

  3. Early to Middle Devonian granitic and volcanic rocks from the central Gulf of Maine (United States)

    Barr, Sandra M.; Mortensen, James K.; Thompson, Margaret D.; Hermes, O. Don; White, Chris E.


    Cashes Ledge igneous suite in the central Gulf of Maine is represented by 10 granitic and two felsic tuff samples collected from bedrock outcrops using the submersible Alvin in 1971-1972 and archived at the Woods Hole Oceanographic Institute. Laser ablation ICP-MS analyses of zircon grains yielded crystallization ages of 414.9 ± 1.1 Ma and 399.7 ± 1.5 Ma for two alkali feldspar granite samples, 407.0 ± 1.9 Ma for a syenogranite sample, and 384.4 ± 2.3 Ma and 383.9 ± 1.6 Ma for two felsic tuff samples. The samples contain iron-rich mafic minerals, including aegirine-augite, grunerite/ferroedenite, and annite. Most of the samples are alkaline to slightly peralkaline, with high concentrations of SiO 2, Y, Zr, Nb, and REE, strong negative Eu anomalies, and positive epsilon Nd values (1.8 to 3.7). The suite resembles part of a belt of similar Silurian-Devonian rocks with ages between 426 and 370 Ma now recognized in the central part of Avalonia in southeastern New England. They formed in a long-lived, likely extensional regime linked to subduction and subsequent complex transcurrent motions among Ganderia, Avalonia, and Meguma, culminating in the closure of the Rheic Ocean.

  4. Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water

    Energy Technology Data Exchange (ETDEWEB)

    Alemayehu, Esayas, E-mail: [Institute for Land Use, Rostock University, Justus-Von-Liebig-Weg 6, 18059 Rostock (Germany); Lennartz, Bernd [Institute for Land Use, Rostock University, Justus-Von-Liebig-Weg 6, 18059 Rostock (Germany)


    This study was initiated to investigate the adsorption of cadmium from aqueous solution by two different rock types-Pumice (VPum) and Scoria (VSco), which are readily available in Ethiopia and other countries. The influence of operational conditions, such as particle size, adsorbent/solution ratio, contact time, cadmium initial concentration, and pH was analyzed. The competition between metals was also evaluated. The Cd(II) removal capacity was predominantly affected by the pH conditions, being increased under alkaline conditions. For both adsorbents, when particle size was 0.075-0.425 mm, the maximum Cd(II) adsorption was observed at pH 6.0 (contact time = 24 h, shaking speed = 200 rpm, adsorbent dose = 50 g L{sup -1}). Adsorption process revealed that the initial uptake was very fast during the first 1 h. The kinetics of the interactions follows pseudo second-order. Equilibrium assays confirm that VPum has a larger capacity and affinity for Cd(II) adsorption than VSco. Both Langmuir and Freundlich models described equally well the experimental data. VPum and VSco were found to be promising material for the removal of cadmium from metal bearing water.

  5. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for basalt and volcanic rocks (gwava-s_vrox) (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the presence or absence of basalt and volcanic rocks in the conterminous United States. The data set was used as an input data layer for a...

  6. Paleomagnetism and rock magnetism of Quaternary volcanic rocks and Late Paleozoic strata, VC-1 core hole, Valles Caldera, New Mexico, with emphasis on remagnetization of Late Paleozoic strata (United States)

    Geissman, John W.


    Paleomagnetic and rock magnetic data obtained from azimuthally unoriented core samples, collected at approximately 1- to 3-m intervals, of Continental Scientific Drilling Program core hole VC-1 have prompted reinterpretations of the Quaternary volcanic stratigraphy intersected by the bore and have aided in evaluating the thermal regime within late Paleozoic strata attending fluid circulation and mineral deposition during and after development of the Toledo and Valles calderas. The results from Quaternary units (Banco Bonito Obsidian: I = +35.4°, a95 = 2.8° (inclination only determinations), n = 33; Battleship Rock Tuff: D = 359.6°, I = +42.4°, a95 = 2.8°, n = 5 site means (surface sites); VC-1 Rhyolite: I = +39.2°, a95 = 12.8°, n = 7; Upper VC-1 Tuff: I = +37.2°, a95 = 10.7°, n = 13; Middle VC-1 Tuff: I = +42.1°, a95 = 2.1°, n = 39; South Mountain Rhyolite: D = 350.9°, I = +49.9°, a95 = 3.4°, n = 10 (one surface site)) are consistent with isotopic age data, indicating that the entire moat volcanic sequence intersected is less than 650 kyr. Monitoring of natural remanent magnetization (NRM) intensity, NRM directions, directions of magnetizations isolated during progressive demagnetization, median destructive forces, and rock magnetization parameters has identified systematic variations within the thick Banco Bonito Obsidian and VC-1 Tuff units. The Permian Abo Formation, Pennsylvanian to earliest Permian Madera Limestone, and Pennsylvanian Sandia Formation typically contain a moderate positive inclination magnetization component (Abo Formation: I = +52.2°, a95 = 7.4°, n = 16; Madera Limestone: I = +58.4°, a95 = 2.8°, n = 105; Sandia Formation: I = +53.9°, a95 = 4.8°, n = 21); when residing in magnetite, it is usually unblocked in the laboratory by 350°C; when carried by hematite it is unblocked by 550°C. A moderate negative inclination (e.g., Madera and Abo strata: D = 173.1°, I = -46.6°, a95 = 5.5°; n = 47 samples; assuming a north seeking

  7. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals (United States)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.


    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  8. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields (United States)

    Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli


    A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites

  9. Frictional processes during flank motion at Mount Etna (Italy): experimental characterisation of slip on similar and dissimilar volcanic and sedimentary rocks. (United States)

    Rozanski, Wojciech; Lavallee, Yan; Kendrick, Jackie; Castagna, Angela; Mitchell, Thomas; Heap, Michael; Vinciguerra, Sergio; Hirose, Takehiro; Dingwell, Donald


    The edifice of Mount Etna (Italy) is structurally unstable, exhibiting a near continuous ESE seaward sliding along a set of faults due to interplay between regional tectonics, gravity instability and magma intrusion. Continuous seismic and ground deformation monitoring reveals the resulting large-scale flank motion at variable rates. The mechanisms controlling this faulting kinetic remains, however, poorly constrained. Examination of the fault zones reveals a range of rock types along the different fault segments: fresh and altered basalt, clay and limestone. As lithological contrasts can jeopardise the structural stability of an edifice, we experimentally investigate the frictional properties of these rocks using low- to high-velocity-rotary shear tests on similar and dissimilar rocks to better understand episodes of slow flank motion as well as rapid and catastrophic sector collapse events. The first set of experiments was performed at velocities up to 1.2 m/s and at normal stresses of 1.5 MPa, commensurate with depths of the contacts seen in the Etna edifice. Friction experiments on clay gouge shows the strong rate-weakening dependence of slip in this material as well as the release of carbon dioxide. Friction experiments on solid rocks show a wider range of mechanical behaviour. At high velocity (>0.6 m/s) volcanic rocks tend to melt whereas the clay and limestone do not; rather they decarbonate, which prevents the rock from achieving the temperature required for melting. Experiments on dissimilar rocks clearly show that composition of host rocks affects the composition and viscosity of the resultant frictional melt, which can have a dramatic effect on shear stress leading to fault weakening or strengthening depending on the combination of host rock samples. A series of low- to moderate-slip velocity experiments is now being conducted to complement our dataset and provide a more complete rock friction model applicable to Mount Etna.

  10. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs (United States)

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.


    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle

  11. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: Implications for the late Palaeozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt (United States)

    Zhang, Zhicheng; Chen, Yan; Li, Ke; Li, Jianfeng; Yang, Jinfu; Qian, Xiaoyan


    Zircon U-Pb ages, geochemical data and Sr-Nd isotopic data are presented for volcanic rocks from the lower Permian Dashizhai Formation. These rocks are widely distributed in the south-eastern Central Asian Orogenic Belt in central Inner Mongolia, China. The volcanic rocks mainly consist of basaltic andesite and rhyolite, subordinate dacite and local andesite, and exhibit bimodal geochemical features. The results of zircon U-Pb dating indicate that the volcanic rocks formed during the early Permian (292-279 Ma). The mafic volcanic rocks belong to low-K tholeiitic to medium-K calc-alkaline series. These mafic volcanic rocks are also characterised by moderately enriched light rare earth element (LREE) patterns; high abundances of Th, U, Zr and Hf; negative Nb, Ta and Ti anomalies; initial 87Sr/86Sr ratios of 0.70514-0.70623; and positive εNd(t) values (+1.9 to +3.8). These features indicate that the mafic volcanic rocks were likely derived from the high-percentage partial melting of subduction-related metasomatised asthenospheric mantle. The felsic rocks show an A-type affinity, with enrichments in alkalis, Th, U and LREEs. The felsic rocks are depleted in Ba, Sr, Nb, Ta and Ti and exhibit moderately LREE-enriched patterns (LaN/YbN = 2.09-6.45) and strongly negative Eu anomalies (Eu/Eu∗ = 0.04-0.25). These features, along with the positive εNd(t) values (+2.6 to +7.7) and young TDM2 ages (TDM2 = 435-916 Ma), indicate that the felsic rocks were likely derived from a juvenile crustal source that mainly consisted of juvenile mid-ocean ridge basalt-related rocks. The volcanic association in this study and in previously published work widely distributed in central Inner Mongolia. The observations in this study suggest that the lower Permian volcanic rocks formed in an identical tectonic environment. The regional geological data indicate that the bimodal volcanic rocks from the lower Permian Dashizhai Formation in the study area formed in an extensional setting that was

  12. Numerical modelling of gas-water-rock interactions in volcanic-hydrothermal environment: the Ischia Island (Southern Italy) case study. (United States)

    Di Napoli, R.; Federico, C.; Aiuppa, A.; D'Antonio, M.; Valenza, M.


    Hydrothermal systems hosted within active volcanic systems represent an excellent opportunity to investigate the interactions between aquifer rocks, infiltrating waters and deep-rising magmatic fluids, and thus allow deriving information on the activity state of dormant volcanoes. From a thermodynamic perspective, gas-water-rock interaction processes are normally far from equilibrium, but can be represented by an array of chemical reactions, in which irreversible mass transfer occurs from host rock minerals to leaching solutions, and then to secondary hydrothermal minerals. While initially developed to investigate interactions in near-surface groundwater environments, the reaction path modeling approach of Helgeson and co-workers can also be applied to quantitative investigation of reactions in high T-P environments. Ischia volcano, being the site of diffuse hydrothermal circulation, is an ideal place where to test the application of reaction-path modeling. Since its last eruption in 1302 AD, Ischia has shown a variety of hydrothermal features, including fumarolic emissions, diffuse soil degassing and hot waters discharges. These are the superficial manifestation of an intense hydrothermal circulation at depth. A recent work has shown the existence of several superposed aquifers; the shallowest (near to boiling) feeds the numerous surface thermal discharges, and is recharged by both superficial waters and deeper and hotter (150-260°C) hydrothermal reservoir fluids. Here, we use reaction path modelling (performed by using the code EQ3/6) to quantitatively constrain the compositional evolution of Ischia thermal fluids during their hydrothermal flow. Simulations suggest that compositions of Ischia groundwaters are buffered by interactions between reservoir rocks and recharge waters (meteoric fluids variably mixed - from 2 to 80% - with seawater) at shallow aquifer conditions. A CO2 rich gaseous phase is also involved in the interaction processes (fCO2 = 0.4-0.6 bar

  13. The geochemistry of host arc volcanic rocks to the Co-O epithermal gold deposit, Eastern Mindanao, Philippines (United States)

    Sonntag, Iris; Kerrich, Robert; Hagemann, Steffen G.


    Mindanao is the second largest island of the Philippines and is located in the southern part of the archipelago. It comprises the suture zone between the Eurasian and the Philippine plate, which is displayed in the Philippine Mobile Belt. Eastern Mindanao is part of the Philippine Mobile Belt and outcropping rocks are mainly Eocene to Pliocene in age related to episodes of arc volcanism alternating with sedimentation. New high-precision elemental analysis of the Oligocene magma series, hosting the Co-O epithermal Au deposit, which represents an arc segment in the central part of Eastern Mindanao, revealed dominantly calc-alkaline rocks ranging in composition between basalt and dacites. Major element trends (MgO vs. TiO2 and Fe2O3) are comparable to other magmas in Central and Eastern Mindanao as well as other SW Pacific Islands such as Borneo. Rare earth and trace element distribution patterns display typical island arc signatures highlighted by the conjunction of LILE-enrichment with troughs at Nb, Ta, and Ti. Ratios of Zr/Nb in basalts vary between 17 and 39, signifying a depleted subarc mantle wedge comparable to the range of MORB, and other Indonesian island arc basalts. In basalts, Nb/Ta and Zr/Sm ratios are 12-37 and 14-27 respectively indicative of deep melts of rutile-eclogite subducted slab, as well as fluids, infiltrating the mantle wedge source of basalts. Moderate large ion lithophile element contents and low Th/La and Th/Ce ratios suggest no significant slab-derived components such as sediment or crustal fragments. The comparatively low Ce and Yb values in basalts, but also andesites and dacites, are consistent with a thin arc crust related to an intraoceanic convergent margin setting. This is further supported by Nb contents in basalts that range between 1 and 3 ppm and are within the range of modern oceanic convergent margin basalts. The range of HREE fractionation signifies that basaltic melts separated at deeper levels of the subarc wedge, possibly

  14. Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico (United States)

    Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.


    The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.

  15. New unspiked K Ar ages of volcanic rocks of the central and western sector of the Aeolian Islands: reconstruction of the volcanic stages (United States)

    De Rosa, Rosanna; Guillou, Hervè; Mazzuoli, Roberto; Ventura, Guido


    A geochronological study of the Filicudi, Salina, Lipari and Vulcano Islands (Aeolian Archipelago) using the unspiked potassium-argon technique provides new age data which, combined with stratigraphic correlation, better constrain the temporal evolution of volcanism. The unspiked K-Ar age of the oldest exposed lavas on Filicudi, 219±5 ka, is significantly younger than the previous estimation of 1.02 Ma. In the general context of Aeolian volcanism, this new date suggests that the volcanism of the western sector of the Aeolian Archipelago is younger than previously thought. Geochronological data point out on the rapid transition from calc-alkaline to potassic volcanism. The distribution of the K-Ar ages within the Salina-Lipari-Vulcano group shows that the volcanism started on Lipari and propagated over time northward on Salina and southward on Vulcano. Geochronological and geophysical data suggest that the onset of volcanism in the central sector of the Aeolian Arc may be due to a mantle upwelling structure located below Lipari. A change in the style of the eruptions occurred in the Salina-Lipari-Vulcano system at about 100 ka from the present. Low-energy magmatic eruptions occurred between 188 and about 100 ka. From about 100 ka to the present, higher-energy eruptions and low-energy events due to magma-water interaction also occurred. This change in the style of activity, together with the appearance of evolved products (i.e. rhyolites) during the last 50 ka, is consistent with the formation of magmatic reservoirs located at shallower depth with respect to those of the 188-100-ka period. The new geochronological data and available petrological models reveal that a change in the deep source of the primary magmas occurred in a relatively short time interval.

  16. Late Carboniferous bimodal volcanic rocks and coeval A-type granite in the Suman Khad area, Southwest Mongolia: Implications for the tectonic evolution (United States)

    Zhu, Mingshuai; Zhang, Fochin; Fan, Jingjing; Miao, Laicheng; Baatar, Munkhtsengel; Anaad, Chimedtseren; Yang, Shunhu; Li, Xingbo; Ganbat, Ariuntsetseg


    The volcanic rocks in the Suman Khad area in Southwest Mongolia form a bimodal suite consisting mainly of peralkaline rhyolites with subordinate basalts. The rhyolite sample collected from the bimodal suite yielded a SHRIMP zircon U-Pb age of 314 ± 5 Ma (MSWD = 1.41, n = 12), which was interpreted to represent formation time of the bimodal volcanic suite. The basalts were characterized by enrichment in LILE and LREE, and depletion in HFSE, indicating their formation was related to subduction processes. These features, together with their positive εNd (t) values (6.3-6.7), suggest that the basalts were likely derived from a depleted mantle source metasomatized by subduction-related fluids. In various tectonic discrimination diagrams, the basalts exhibited a transition from true arc basalts to intraplate basalts and thus were suggested to from in a back-arc tectonic setting. The rhyolites show a close affinity to A-type granites with enrichment in LILE and LREE, depletion in Nb, Ta and Ti and positive εNd (t) values (6.0-6.4). Considering the observed distinct compositional gap between the endmembers of the bimodal suite, the rhyolites are proposed to originate from partial melting of juvenile basaltic crustal rocks rather than fractional crystallization of basaltic melt. The granite associated with the bimodal volcanic rocks yielded a SHRIMP zircon U-Pb ages of 312 ± 5 Ma (MSWD = 0.75, n = 13), indicating that the granite is contemporaneous with the bimodal volcanic suite. The granite samples showed typical A-type granitic geochemical affinities and are considered to have been formed by partial melting of crustal rocks in a within-plate tectonic setting. Based on a combination of the available data, we suggest that the Late Carboniferous bimodal volcanic suite together with the coeval A-type granites in the Suman Khad region probably document a back-arc basin extensional environment, which probably related to the roll-back of the Paleo-Asian oceanic plate during

  17. Geochemistry and geochronology of late Mesozoic volcanic rocks in the northern part of the Eastern Pontide Orogenic Belt (NE Turkey): Implications for the closure of the Neo-Tethys Ocean (United States)

    Özdamar, Şenel


    This paper presents 40Ar/39Ar and U-Pb age data, Sr-Nd isotopes, whole-rock and mineral compositions of Upper Cretaceous volcanic rocks from the Ordu area of the Eastern Pontide Orogenic Belt (EPOB) in northeastern Turkey. The volcanic rocks exhibit a wide compositional range: basalt, basaltic-andesites, andesites and a rhyodacite suite; they are characterized by subparallel light rare earth element (LREE)-enrichment, relatively flat heavy rare earth element (HREE) patterns with Eu anomalies and moderate fractionation [average (La/Yb)N = 8.55]. The geochemical results show that the volcanic rocks have calc-alkaline affinity consistent with arc volcanic rocks erupted in an active continental margin. Initial 87Sr/86Sr values vary between 0.70569 and 0.70606, while initial 143Nd/144Nd values lie between 0.51244 and 0.51249. Crustal contamination affected the mantle-originated primary magma, as indicated by increased 87Sr/86Sr and decreased 143Nd/144Nd ratios with increasing SiO2. New precise laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 206Pb-238U age analyses of zircon and 40Ar/39Ar age data of plagioclase from the volcanics enable a more precise reconstruction of the EBOP. The ages provide insight into the timing of arc formation in this region, constrain the volcanic activity between 86 My (Coniacian) and 75 My (Campanian) and constrain the timing of closure of the Neo-Tethys.

  18. Assessing hydraulic connections across a complex sequence of volcanic rocks - Analysis of U-20 WW multiple-well aquifer test, Pahute Mesa, Nevada National Security Site, Nevada (United States)

    Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.


    Groundwater beneath Pahute Mesa flows through a complexly layered sequence of volcanic rock aquifers and confining units that have been faulted into distinct structural blocks. Hydraulic property estimates of rocks and structures in this flow system are necessary to assess radionuclide migration near underground nuclear testing areas. The U.S. Geological Survey (USGS) used a 12 month (October 1, 2008— October 1, 2009) intermittent pumping schedule of well U-20 WW and continuously monitored water levels in observation wells ER-20-6 #3, UE-20bh 1, and U-20bg as a multi-well aquifer test to evaluate hydraulic connections across structural blocks, bulk hydraulic properties of volcanic rocks, and the hydraulic significance of a major fault. Measured water levels were approximated using synthetic water levels generated from an analytical model. Synthetic water levels are a summation of environmental water-level fluctuations and a Theis (1935) transform of the pumping signal from flow rate to water-level change. Drawdown was estimated by summing residual differences between measured and synthetic water levels and the Theis-transformed pumping signal from April to September 2009. Drawdown estimates were used in a three‑dimensional numerical model to estimate hydraulic properties of distinct aquifers, confining units, and a major fault.

  19. Paleomagnetic and rock-magnetic study on volcanic units of the Valsequillo Basin: implications for early human occupation in central Mexico (United States)

    Goguitchaichvili, Avto; Pozzo, Ana Lillian Martin-Del; Rocha-Fernandez, Jose Luis; Urrutia-Fucugauchi, Jaime; Soler-Arechalde, Ana Maria


    Alleged human and animal footprints were found within the upper bedding surfaces of the Xalnene volcanic ash layer that outcrops in the Valsequillo Basin, south of Puebla, Mexico (Gonzalez et al, 2005). The ash has been dated at 40 ka by optically stimulated luminescence analysis, thereby providing new evidence that America was colonized earlier than the Clovis culture (about 13.5 Ma). We carried out paleomagnetic and rock magnetic analysis on 18 Xalnene ash block and core samples collected at two distinct localities and 19 standard paleomagnetic cores belonging to nearby monogenetic volcanoes. Our data provide evidence that both the volcanic lava flow and Xalnene ash were emplaced during the Laschamp geomagnetic event spanning from about 45 to 39 ka.


    Directory of Open Access Journals (Sweden)

    Donghai Zhang


    Full Text Available We report a paleomagnetic investigation on Permian volcanic rocks in the middle-east Inner Mongolia, NE China, aiming to puzzle out the timing and position of the final closure of the eastern Paleo-Asian ocean (PAO and further to better understand tectonic evolution of the Central Asian Orogenic Belt (CAOB. Two pre-folding characteristic components are isolated from the Sanmianjing and Elitu formations (~283–266 Ma in the northern margin of the North China block (NMNCB and the Dashizhai Formation (~280 Ma in the Songliao-Xilinhot block (SXB, respectively.

  1. The effect of Sinabung volcanic ash and rock phosphate nanoparticle on CEC (cation exchange capacity) base saturation exchange (K, Na, Ca, Mg) and base saturation at Andisol soils Ciater, West Java (United States)

    Yuniarti, Anni; Arifin, Mahfud; Sofyan, Emma Trinurasi; Natalie, Betty; Sudirja, Rija; Dahliani, Dewi


    Andisol, soil orders which covers an upland area dominantly. The aim of this research is to know the effect between the ameliorant of Sinabung volcanic ashes with the ameliorant of rock phosphatenanoparticle towards CEC and base saturation exchange (K, Na, Ca, Mg) and the base saturation on Ciater's Andisols, West Java. A randomized complete block design (RCBD) factorial with two factors was used in this research. The first factor is the volcanic ash and the second factor is rock phosphate which consists of four levels each amount of 0%, 2.5%, 5%, 7.5% with three replications. The result showed that there was no interaction between volcanic ash and rock phosphate nanoparticle formed in first month and fourth month towards the improvement of CEC and saturation base exchange rate unless magnesium cation exchange increased in fourth month. There was independent effect of volcanic ash formed nanoparticles towards base saturation exchange increased for 5% dose. There was independent effect of rock phosphate formed nanoparticles towards base saturation exchange and increased for 5% dose. The dose combination of volcanic ashes 7.5% with phosphate rock, 5% increased the base saturation in the first month incubation.

  2. Carboniferous-Permian volcanic evolution in Central Europe-U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Hoffmann, U.; Breitkreuz, Ch.; Breiter, Karel; Sergeev, S.; Stanek, K.; Tichomirowa, M.


    Roč. 102, č. 1 (2013), s. 73-99 ISSN 1437-3254 Institutional support: RVO:67985831 Keywords : pyroclastic rocks * dykes * stratigraphy * SHRIMP U/Pb ages * Pb/Pb single zircon age * Variscides Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.084, year: 2013

  3. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc (United States)

    Torró, Lisard; Proenza, Joaquín A.; Marchesi, Claudio; Garcia-Casco, Antonio; Lewis, John F.


    Metamorphosed basalts, basaltic andesites, andesites and plagiorhyolites of the Early Cretaceous, probably pre-Albian, Maimón Formation, located in the Cordillera Central of the Dominican Republic, are some of the earliest products of the Greater Antilles arc magmatism. In this article, new whole-rock element and Nd-Pb radiogenic isotope data are used to give new insights into the petrogenesis of the Maimón meta-volcanic rocks and constrain the early evolution of the Greater Antilles paleo-arc system. Three different groups of mafic volcanic rocks are recognized on the basis of their immobile element contents. Group 1 comprises basalts with compositions similar to low-Ti island arc tholeiites (IAT), which are depleted in light rare earth elements (LREE) and resemble the forearc basalts (FAB) and transitional FAB-boninitic basalts of the Izu-Bonin-Mariana forearc. Group 2 rocks have boninite-like compositions relatively rich in Cr and poor in TiO2. Group 3 comprises low-Ti island arc tholeiitic basalts with near-flat chondrite-normalized REE patterns. Plagiorhyolites and rare andesites present near-flat to subtly LREE-depleted chondrite normalized patterns typical of tholeiitic affinity. Nd and Pb isotopic ratios of plagiorhyolites, which are similar to those of Groups 1 and 3 basalts, support that these felsic lavas formed by anatexis of the arc lower crust. Geochemical modelling points that the parental basic magmas of the Maimón meta-volcanic rocks formed by hydrous melting of a heterogeneous spinel-facies mantle source, similar to depleted MORB mantle (DMM) or depleted DMM (D-DMM), fluxed by fluids from subducted oceanic crust and Atlantic Cretaceous pelagic sediments. Variations of subduction-sensitive element concentrations and ratios from Group 1 to the younger rocks of Groups 2 and 3 generally match the geochemical progression from FAB-like to boninite and IAT lavas described in subduction-initiation ophiolites. Group 1 basalts likely formed at magmatic

  4. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain) (United States)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta


    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  5. Application of Clinopyroxene Chemistry to Interpret the Physical Conditions of Ascending Magma, a Case Study of Eocene Volcanic Rocks in the Ghohrud Area (North of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari


    Full Text Available Introduction Volcanic rocks with a porphyritic texture have experienced two crystallization stages. The first is slow, resulting in phenocrysts, and the second, which took place at, or near the surface, or during intrusion into a cooler body of rock, result in a groundmass of glass, or fine crystals. The pressure and temperature history of a magma during crystallization is recorded in the chemical composition of the phenocrysts during both stages. These phenocrysts provide valuable data about the physicochemical conditions of the parent magma during the process of crystallization. The composition of clinopyroxene (cpx reflects not only the chemical condition and therefore the magmatic series, but also the physical conditions, i.e., temperature and pressure of a magma at the time when clinopyroxene crystallized. The Ghohrud area lies in the middle part of the Urumieh-Dokhtar Magmatic Arc , which is part of a much larger magmatic province extending in a vast region of convergence between Arabia and Eurasia north of the Zagros-Bitlis suture zone (Dilek et al., 2010. In the Ghohrud area, north of Isfahan, exposed Eocene volcanic rocks belong to the first pulse of Cenozoic volcanism of Iran (Sayari, 2015, ranging in composition from andesitic basalt to basalt. The basaltic rocks of the Ghohrud area are composed mainly of plagioclase phenocrysts surrounded by smaller crystals of clinopyroxene in a groundmass of microlites, glass and opaques. In this study, the clinopyroxene and plagioclase of these rocks were analyzed in order to estimate the physicochemical conditions of the parent magmas. Results Clinopyroxene and plagioclase phenocrysts of nineteen samples were analyzed with the electron microprobe. The chemical compositions of the clinopyroxenes were used to estimate both the chemical evolution and temperature and pressure conditions of the magmas during crystallization, using SCG, a specialized software for clinopyroxene thermobarometry (Sayari

  6. Geochemical, petrographic and physical characterizations and associated alterations of the volcanic rocks of the Romanesque San Nicola Church (Ottana, central Sardinia, Italy) (United States)

    Columbu, Stefano; Palomba, Marcella; Sitzia, Fabio


    In this research, the volcanic rocks belonging to the Sardinia Oligo-Miocene volcanic cycle (32 - 11 Ma) and building up the structure of the San Nicola church, one of the most representative churches of the Romanesque architecture, were studied. These stones were widely used in medieval architecture for the excellent workability, but they present some disadvantages, since they are greatly affected by alteration phenomena. The main objectives of this research are i) to focus the mineral, chemical and petrographic compositions of the San Nicola stones, ii) the chemical and physical alteration processes affecting these materials, and iii) to establish the exactly provenance of the volcanic rocks. Furthermore, a comparative study between the rocks from the ancient quarries and those forming the structure of the church was performed. In the ancient quarries, where presumably a more advanced alteration occurs due to the vertical alteration gradient, different facies of the same volcanic lithology, characterized by macroscopical evidences of chemical-physical degradation degree, were sampled. Petrographic, geochemical (both major elements that the traces) and physical-mechanical features of the collected samples were determined to highlight the compositional differences (density, porosity, water-absorption kinetics, mechanical resistance) as a function of the different alteration degree. Moreover, chemical-mineralogical analysis of the sample surfaces from the church, was performed, to highlight possible presence and nature of secondary newly-formed phases (e.g., salt efflorescence). Several methodologies were applied to carry out physical-chemical and petrographic analysis: X-Ray fluorescence (XRF) and Inductively Coupled Mass Spectrometry (ICP-MS), X-Ray Diffractometry (XRD) for chemical and mineral composition; Optical and Scanning Electron Microscopy (SEM) for textures, mineral assemblages and microstructures studies; He-picnometry, water-absorption and mechanical

  7. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (˜45°S, Chile) (United States)

    D'Orazio, M.; Innocenti, F.; Manetti, P.; Tamponi, M.; Tonarini, S.; González-Ferrán, O.; Lahsen, A.; Omarini, R.


    Major- and trace-element, Sr-Nd isotopes, and mineral chemistry data were obtained for a collection of volcanic rock samples erupted by the Cay and Maca Quaternary volcanoes, Patagonian Andes (˜45°S, Chile). Cay and Maca are two large, adjacent stratovolcanoes that rise from the Chiloe block at the southern end of the southern volcanic zone (SVZ) of the Andes. Samples from the two volcanoes are typical medium-K, calc-alkaline rocks that form two roughly continuous, largely overlapping series from subalkaline basalt to dacite. The overall geochemistry of the samples studied is very similar to that observed for most volcanoes from the southern SVZ. The narrow range of Sr-Nd isotope compositions ( 87Sr/ 86Sr=0.70389-0.70431 and 143Nd/ 144Nd=0.51277-0.51284) and the major- and trace-element distributions indicate that the Cay and Maca magmas differentiated by crystal fractionation without significant contribution by crustal contamination. This is in accordance with the thin (Maca magmas is investigated by means of the relative concentration of fluid mobile (e.g. Ba) and fluid immobile (e.g. Nb, Ta, Zr, Y) elements and other relevant trace-element ratios (e.g. Sr/Y). The results indicate that small amounts (Maca volcanoes and that, despite the very young age (Maca magma sources to the northern edge of the slab window generated by the subduction of the Chile ridge under the South American plate, we did not find any geochemical evidence for a contribution of a subslab asthenospheric mantle. However, this mantle has been used to explain the peculiar geochemical features (e.g. the mild alkalinity and relatively low ratios between large ion lithophile and high field strength elements) of the Hudson volcano, which is located even closer to the slab window than the Cay and Maca volcanoes are.

  8. Determination of volatiles in volcanic rocks and minerals with a Directly Coupled Evolved Gas Analyzing System (DEGAS -Part I: Interpretation of degassing profiles (DEGAS-profiles of minerals and rocks on the basis of melting experiments

    Directory of Open Access Journals (Sweden)

    C. M. Schmidt


    Full Text Available Volatile components in magma strongly influence many physical properties of melts and minerals. The temperature resolved degassing analysis of volcanic crystalline and vitreous rocks gives detailed information about volatile compounds in the melt. Aspecial high-temperature mass-spectrometry device in combination with a thermo-balance allows a quantitative determination of different volatile species. It enables a differentiation between the primary gas content in the magma and the gas released from decomposition of secondary alteration products. The gas release profiles give the following indications: i during the littoral explosions of Pahoehoe lava the content of volatiles is not changed by interaction with air or sea water; ii the degassing profiles of vitreous black sand verify the primary content of volatiles in the erupted melt, only CO2 was detected; iii the oxygen release profile gives significant indications for oxygen undersaturation of the erupted magma; iv remelting of black sand in air at 1450°C for 0.45 h causes an oxygen saturation of the basaltic melt; v remelting of black sand in argon atmosphere confirms the oxygen undersaturation of the melt; vi remelting of black sand-black shale mixtures affects a significant change in the degassing profiles, especially in CO2-release. With the first investigations we can demonstrate that gas release curves of volcanic rocks are qualified for a detection of the primary gas content of erupted magma; b detection of alteration processes of the igneous glass; c detection of contamination of the magma with adjacent rocks.

  9. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan


    Rezvan Mehvari; Moussa Noghreyan; Mortaza Sharifi; Mohammad Ali Mackizadeh; Seyed Hassan Tabatabaei; Ghodrat Torabi


    Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993) and Abbasi (Abbasi, 2012) have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternar...

  10. Volcanic ash in bare ice south of Sør Rondane Mountains, Antarctica: geochemistry, rock magnetism and nondestructive magnetic detection with SQUID gradiometer (United States)

    Oda, Hirokuni; Miyagi, Isoji; Kawai, Jun; Suganuma, Yusuke; Funaki, Minoru; Imae, Naoya; Mikouchi, Takashi; Matsuzaki, Takuya; Yamamoto, Yuhji


    Nondestructive magnetic detection of tephra layers in ice cores will be an important method to identify and correlate stratigraphic horizons of ice bearing volcanic ash particles. Volcanic ash particles were extracted from tephra-bearing ice samples collected from Nansen Ice Field south of the Sør Rondane Mountains, Antarctica. Particles are fresh glassy volcanic ash with diameters of ~50 μm, and chemical composition of the matrix glass belongs to a low-K basaltic andesite group, ranging from SiO2 60-62 wt% and K2O 0.40-0.50 wt%. Considering the grain size of ash particles and chemical composition of volcanic glass, the ash in tephra-bearing ice samples might be originated from the South Sandwich Islands located 2800 km northwest of the sampling sites. Correlations on major element concentrations with tephra layers associated with South Sandwich Islands in EPICA-Dome C, Vostok, and Dome Fuji ice cores show high similarity. Rock magnetic experiments show that the magnetic mineral is pseudo-single-domain titanomagnetite with ulvospinel content of 0.2-0.35 mixed with single-domain to superparamagnetic (titano)magnetite. Small blocks of the tephra-bering ice were measured with a SQUID gradiometer at 1-mm intervals with a spatial resolution of ~3 mm. With DC magnetic field of 25 mT, magnetic signal could be enhanced and detected for all the samples including the one with invisible amount of tephra particles. In order to simulate a thin ash layer in ice core, volcanic ash particles extracted from the tephra-bearing ice were used to fabricate a thin ash layer, which were subsequently magnetized, measured with the gradiometer. The noise level for Z axis gradiometer was about 0.6 pT. Detection limit for a half-cylinder with 29 mm radius and a thickness of 1 mm uniformly magnetized in X axis direction is ~9 × 10-5 A/m, which could be improved down to ~2 × 10-6 A/m by reducing the sensor-to-sample distance to 0.5 mm.

  11. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington (United States)

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.


    This geospatial database for a geologic map of the Cascades Range in Washington state is one of a series of maps that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of lithostratigraphic units. Geologic maps of the Eocene to Holocene Cascade Range in California and Oregon complete the series, providing a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanantion. The complete series will be useful for regional studies of volcanic hazards, volcanology, and tectonics.

  12. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)]. (United States)

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Small-scale lithospheric foundering beneath the Peruvian Altiplano: evidence from back arc potassic volcanic rocks and lower crustal and mantle xenoliths (United States)

    Chapman, A. D.; Ducea, M. N.


    Small-volume, Pliocene to Quaternary back arc high-K calc-alkaline to shoshonitic volcanic rocks and entrained xenoliths of southeastern Peru permit evaluation of models for the removal of crustal and mantle lithosphere beneath the northwestern Altiplano. Two distinct subsets of volcanic samples are apparent based on sample location, eruption age, geochemistry, and xenolith types. Suite 1 Quaternary mafic extrusives show: high K2O (1.3-8.4%), steep rare earth element patterns with La/Yb ranging from 17 to 161 and lacking Eu anomalies, and Sr-Nd isotope decoupling with 143Nd/144Nd from 0.5124 to 0.5129 at 87Sr/86Sr of 0.7095 to 0.7038. A second Plio-Quaternary suite shows small Eu anomalies, lower K2O (2.3-3.4%), a lower and narrower range of La/Yb (from 28 to 50), and Nd and Sr isotopic data follow an array from 143Nd/144Nd = 0.5125 to 0.5123 with corresponding range in 87Sr/86Sr from 0.7059 to 0.7072. Xenoliths from suite 2 lavas consist almost exclusively of clinopyroxene and plagioclase, whereas suite 1 inclusions are more diverse, containing clinopyroxenite (× garnet × plagioclase), garnet-bearing gabbro and diorite, aluminous garnet granulite gneiss; and rare spinel harzburgite. Thermobarometric, geochronologic, and Sr-Nd isotopic relations suggest a melting link between suite 1 xenoliths and volcanic rocks. Geochemical differences between back arc suites and frontal arc volcanic rocks strongly suggest that each was derived from a different source. Most notably, higher Nd isotopic values, younger depleted mantle model ages, and higher La/Yb in suite 1 vs. suite 2 lavas suggest an increased contribution of asthenospheric material and an increase in the depth to melting in the back arc region from Pliocene to Quaternary time. Variations in transition element ratios from the back arc to the frontal arc suggest a larger contribution of pyroxenitic material in the source of the former. Interactions between a downgoing lower crustal drip structure and upwelling

  14. Late Triassic Batang Group arc volcanic rocks in the northeastern margin of Qiangtang terrane, northern Tibet: partial melting of juvenile crust and implications for Paleo-Tethys ocean subduction (United States)

    Zhao, Shao-Qing; Tan, Jun; Wei, Jun-Hao; Tian, Ning; Zhang, Dao-Han; Liang, Sheng-Nan; Chen, Jia-Jie


    The Batang Group (BTG) volcanic rocks in the Zhiduo area, with NW-trending outcrops along the northeastern margin of the Qiangtang terrane (northern Tibet), are mainly composed of volcaniclastic rocks, dacite and rhyolite. Major and trace element, Sr and Nd isotope, zircon U-Pb and Hf isotope data are presented for the BTG dacites. Laser ablation inductively coupled plasma mass spectrometry zircon U-Pb dating constrains the timing of volcanic eruption as Late Triassic (221 ± 1 Ma). Major and trace element geochemistry shows that the BTG volcanic rocks are classified as calc-alkaline series. All samples are enriched in large-ion lithophile elements and light rare earth elements with negative-slightly positive Eu anomalies (Eu/Eu* = 0.47-1.15), and depleted in high field strength elements and heavy rare earth elements. In addition, these rocks possess less radiogenic Sr [(87Sr/86Sr) i = 0.7047-0.7078], much radiogenic Nd (ɛNd( t) = -4.2 to -1.3) and Hf (ɛHf( t) = 4.0-6.6) isotopes, suggesting that they probably originated from partial melting of a crustal source containing a mantle-derived juvenile component. The inferred magma was assimilated by crustal materials during ascending and experienced significant fractional crystallization. By combining previously published and the new data, we propose that the BTG volcanic rocks were genetically related to southwestward subduction of the Ganzi-Litang ocean (a branch of Paleo-Tethys) in the northeastern margin of the Qiangtang terrane. Given the coeval arc-affinity magmatic rocks in the region, we envisage that the Ganzi-Litang ocean may extend from the Zhongdian arc through the Yidun terrane to the Zhiduo area, probably even further northwest to the Tuotuohe area.

  15. Dual-porosity analysis of conservative tracer testing in saturated volcanic rocks at Yucca Mountain in Nye County, Nevada (United States)

    Fahy, M.F.


    A radially convergent conservative tracer injection test was conducted between boreholes UE-25 #2 and UE-25 c #3 of the C-hole complex at Yucca Mountain to determine effective porosity and longitudinal dispersivity. Approximately 47% of the tracer mass was recovered and a dual-porosity analytical model replicates the breakthrough curve. Fractured-rock analyses focus on the fracture-porosity and geometry as the controlling factors in transport.

  16. Magnetic fabrics and rock magnetism of the Xiong'er volcanic rocks and their implications for tectonic correlation of the North China Craton with other crustal blocks in the Nuna/Columbia supercontinent (United States)

    Xu, Huiru; Yang, Zhenyu; Peng, Peng; Ge, Kunpeng; Jin, Zhenmin; Zhu, Rixiang


    The tectonic background of the Paleoproterozoic Xiong'er volcanic rocks (XVR) is important for understanding the tectonic evolution of the North China Craton (NCC), as well as its paleogeographic position during the assembly of the Nuna/Columbia supercontinent. Here we report the results of the first anisotropy of magnetic susceptibility (AMS) study of the XVR, and use the interpreted flow directions to constrain the emplacement mechanism and to assess its geological significance for the reconstruction of the Nuna/Columbia supercontinent. Thirty lavas were sampled from three sections in western Henan Province. Detailed rock magnetic analyses, including measurements of hysteresis loops, magnetization versus temperature curves and first order reverse curves, were performed to identify the main magnetic phases and grain sizes. The inferred directions from the AMS results reveal a radial flow pattern with an eruption center probably located near Xiong'er Mountain. Our data suggest that the XVR may have been emplaced in a triple-conjugated continental rift on the south margin of the NCC, probably initiated from a paleoplume. Based on this interpretation, a comparison of geological and paleomagnetic results among the proposed crustal blocks in the Nuna/Columbia supercontinent suggests a close linkage of the NCC with São Francisco-Congo, Rio de la Plate and Siberia.

  17. Trace Elements in Olivine in Italian Potassic Volcanic Rocks Distinguish Between Mantle Metasomatism by Carbonatitic and Silicate Melts (United States)

    Foley, S. F.; Ammannati, E.; Jacob, D. E.; Avanzinelli, R.; Conticelli, S.


    The Italian Peninsula is the site of intense subduction-related potassic magmatism with bimodal character in terms of silica activity: Ca-poor silica-saturated lamproitic rocks and Ca-enriched silica-undersaturated leucitites. Lamproitic magmas formed in the early phases of magmatic activity and were followed by leucititic magmas. The primary magmas are generated in the sub-continental lithospheric mantle at the destructive plate margin, and both series have olivine as the first crystallizing phenocrysts. Trace elements in olivine phenocrysts are important in recognizing metasomatic effects on the mineralogy of the mantle source. Since Ni is the most compatible trace element in olivine, particularly in alkaline melts, modal changes of olivine in the source strongly affect its bulk partition coefficient, and therefore its content in primary melts and in olivine that crystallizes from them.The concentration of other compatible trace elements (e.g. Mn, Co) in olivine phenocrysts also depends on the abundance of olivine in the magma source. Ni contents in olivine of the Italian rocks show a clear bimodal distribution. Olivine from lamproitic samples has systematically higher Fo and Ni contents, whereas olivine from leucititic rocks never exceeds Fo92 and has markedly lower Ni, reaching among the lowest levels ever observed in olivine phenocrysts in primitive melts. The Mn/Fe ratio of olivine is also sensitive to changes of the modal abundance of olivine in the source, 100*Mn/Fe of olivine from lamproitic rocks never exceeds 2, while it is always >1.8 in leucititic rocks, meaning that the leucitite source regions are much richer in olivine. Lithium is generally enriched in the crust and in sediments compared to the lithospheric mantle and to mantle-derived melts,so that Li in olivine above 10 ppm is suggested to indicate recycled sediments. Li contents are up to 35 ppm in leucititic olivines and up to >50 ppm in lamproitic olivines, confirming the recycling of crustal

  18. Attempts of whole-rock K/Ar dating of mesozoic volcanic and hypabissal igneous rocks from the Central Subbetic (Southern Spain: A case of differential Argon loss related to very low-grade metamorphism

    Directory of Open Access Journals (Sweden)

    Sanz de Galdeano, C.


    Full Text Available 12 samples of basic intrusives within Triassic rocks «ophites» and 11 samples of volcanic and associated intrusives within Jurassic to Early Cretaceous sequences of the Subbetic Zone were subjected to whole-rock K/Ar dating in combination with chemical/petrological analysis. Satisfactory results were obtained only from a number of samples of volcanic rocks, however, analytical ages commonly agree, within about 10 relative percent, with those deduced from stratigraphic location. «Ophite» samples, on the other hand, may reveal considerably lower analytic ages than the volcanics and show much stronger scattering, even among samples collected within a small area. It is argued that the inferred loss of Ar results from very-low-grade alpine metamorphic alteration, which affected the «ophites» more intensely than the higher volcanic rocks. Other post-emplacement chemical changes, such as the degree of secondary oxidation of Fe, are also distintive among the two groups of samples, and are to some extent consistent with the above view in that the alteration environment of the ophites should have produced conditions for more penetrative fluid-rock interactions and homogeneous recrystallization. Overall, the magmatic activity from which the ophitic rocks originated might have started in the Late Triassic and continued in the Lower Jurassic. 80th, the «ophites» and the volcanics are though to be the result of magmatic events Collowing tensional to transtensive crustal movements affecting the external basins of the Betic Cordilleras Crom Late Triassic to Early Cretaceous times.Doce muestras de cuerpos básicos intrusivos en rocas triásicas («ofitas» y 11 muestras de volcanitas y rocas intrusivas asociadas en secuencias jurásico-cretáceas de la zona Subbética han sido objeto de datación radiométrica K/Ar (roca total en combinación con análisis químico-petrográfico. Las edades analíticas obtenidas son 's

  19. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater (United States)

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Frydenvang, Jens; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.


    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ˜40 wt.% crystalline and ˜60 wt.% X-ray amorphous material and a bulk composition with ˜74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (˜17 wt.% of bulk sample), tridymite (˜14 wt.%), sanidine (˜3 wt.%), cation-deficient magnetite (˜3 wt.%), cristobalite (˜2 wt.%), and anhydrite (˜1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (˜39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (˜5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

  20. Chlorine isotope composition of volcanic rocks and gases at Stromboli volcano (Aeolian Islands, Italy): Inferences on magmatic degassing prior to 2014 eruption (United States)

    Liotta, Marcello; Rizzo, Andrea L.; Barnes, Jaime D.; D'Auria, Luca; Martelli, Mauro; Bobrowski, Nicole; Wittmer, Julian


    Among the magmatic volatiles, chlorine (Cl) is degassed at shallow depths offering the opportunity to investigate the behavior of magmatic degassing close to the surface, and the possible occurrence of chemical and isotopic fractionation related to gas/melt partitioning. However, it is still unclear if the isotopic composition of Cl (δ37Cl) can be used as a proxy of magmatic degassing. In this work, we investigate the concentrations of chlorine and sulfur, and the Cl isotope composition of rocks and plume gases collected at Stromboli volcano, Aeolian Islands, Italy. This volcano was chosen because it is characterized by persistent eruptive activity (i.e., Strombolian explosions) and by the presence of magma at very shallow levels in the conduits. Rocks belonging to the different magmatic series erupted throughout the formation of the volcano have δ37Cl values ranging between - 1.0 and + 0.7‰. The isotopic composition seems independent of the Cl concentration of the rocks, but shows a negative correlation with SiO2 content. Plume gases have a greater isotopic compositional variability than the rocks (- 2.2‰ ≤ δ37Cl ≤ + 1.5‰) and the composition seems related to the level of volcanic activity at Stromboli. Gases collected in 2011-2013 during days of ordinary eruptive activity are characterized by δ37Cl values ranging from + 0.3 to + 1.5‰ and S/Cl molar ratios between 1.4 and 2.2, similar to previous S/Cl measurements performed at Stromboli with other techniques. Plume gases collected in July 2014, in days of high-level eruptive activity preceding the onset of the 2014 effusive eruption, have negative δ37Cl values (- 2.2‰ ≤ δ37Cl ≤ - 0.1‰) and S/Cl between 0.9 and 1.2, which are among the lowest S/Cl values measured at this volcano. The amplitude of the volcanic tremor and the variation in the inclination of very long period (VLP) seismic signal polarization clearly indicate that in July 2014 the intensity and frequency of Strombolian

  1. Geochemical and zircon isotopic evidence for extensive high level crustal contamination in Miocene to mid-Pleistocene intra-plate volcanic rocks from the Tengchong field, western Yunnan, China (United States)

    Li, Linlin; Shi, Yuruo; Williams, Ian S.; Anderson, J. Lawford; Wu, Zhonghai; Wang, Shubing


    SHRIMP zircon Pb/U dating of Cenozoic volcanic rocks in the Tengchong area, western Yunnan Province, China, shows that the dacite and andesitic breccia lavas from Qushi village were intruded at 480 ± 10 ka and 800 ± 40 ka, respectively. Moreover, Pb/U dating of trachyandesite from Tuantian village and olivine basalt from Wuhe village give weighted mean 206Pb/238U ages of 2.82 ± 0.08 Ma and 12.28 ± 0.30 Ma. Corrections for initial 230Th disequilibrium of zircon were used for the former two younger ages. The Tengchong volcanic rocks have a large range of SiO2 (48.6-66.9 wt.%) and mostly belong to a high-K calc-alkaline series. The lavas originated from heterogeneous sources and were modified by subsequent fractional crystallization. The REE and other trace element patterns of the Tengchong volcanic rocks resemble magmas having a large component of continental crust. All have similar degrees of LREE and HREE fractionation and are enriched in LILE, La, Ce and Pb, with depletions in Nb, Ta, Ti, Sr and P relative to primitive mantle. Zircon δ18O values of 6.96 ± 0.17 and 7.01 ± 0.24‰ and highly varied negative εHf(t) values of - 1.5 to - 11.0 and - 10.3 to - 13.7, as well as the presence of inherited zircon grains in the studied samples, indicate that the magmas contain crustal material on a large scale. The Tengchong volcanic rocks have HFSE ratios (e.g., Nb/Ta, La/Nb, Zr/Y) similar to continental flood basalts, indicative of an intra-plate extensional tectonic setting. Widespread distributed faults might have facilitated upwelling of mantle-derived melts and eruptions from shallow crustal magma chambers to form the large volcanic field.

  2. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14 (United States)

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.


    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend

  3. Mineralogy, Geochemistry and Fluid Inclusion Data from the Tumanpınarı Volcanic Rock-Hosted Fe-Mn-Ba Deposit, Balıkesir-Dursunbey, Turkey

    Directory of Open Access Journals (Sweden)

    Ali Haydar Gultekin


    Full Text Available The Tumanpınarı mineralization is a volcanic rock-hosted epithermal Fe-Mn-Ba deposit located in the southwestern part of Dursunbey, Balıkesir, Turkey. The deposit constitutes one of the most important deposits of the Havran-Dursunbey metallogenic sub-province in which numerous Early Miocene Fe-Mn-Ba deposits are distributed. The ore occurs as open-space fillings in faults, fractures, and breccias in the andesite. Early hydrothermal activity was responsible for four types of hypogene alteration in decreasing intensity: silicification, sericitization, hematization and argillic alteration. The mineral assemblage includes pyrolusite, psilomelane, hematite, and barite as well as minor magnetite, manganite, poliannite, limonite, braunite, bixbyite, galena, pyrite, and goethite. Mineralogically, three ore types are recognized as pyrolusite + psilomelane + hematite + barite ore, pyrolusite + psilomelane + poliannite ore and barite + pyrolusite + psilomelane + hematite ore (barite-dominant ore. In addition to Fe, Mn and Ba, the ore contains substantial quantities of Pb, Zn, As. Chemically, the transition from fresh to altered rocks has little effect on the elemental levels for Si, Al, Fe, Ca, Mg, K, Rb, Sr and H2O. The homogenization temperature of fluid inclusions hosted in the main stage quartz and barite ranged from 113 to 410 °C with salinities ranging from 0.4 to 14.9 eq. wt % NaCl, respectively. Overall, the available data suggest that the deposits formed as the result of the interaction of two aqueous fluids: a higher-salinity fluid (probably magmatic and a dilute meteoric fluid.

  4. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei


    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The generation of this belt was ascribed to subduction of the Paleo-Pacific Plate.

  5. Results of analyses performed on basalt adjacent to penetrators emplaced into volcanic rock at Amboy, California, April 1976 (United States)

    Blanchard, M.; Bunch, T.; Davis, A.; Shade, H.; Erlichman, J.; Polkowski, G.


    The physical and chemical modifications found in the basalt after impact of four penetrators were studied. Laboratory analyses show that mineralogical and elemental changes are produced in the powdered and crushed basalt immediately surrounding the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer, 0-2 mm thick, of glass and abraded iron alloy mixed with fractured mineral grains of basalt. Elemental analysis of the 0-2 mm layer revealed increased concentrations of Fe, Cr, Ni, No, and Mn, and reduced concentrations of Mg, Al, Si, and Ca. The Fe, Cr, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the basalt sediment next to the penetrator include the introduction of micron-size grains of alpha-iron, magnetite, and hematite. The newly formed silicate minerals include metastable phases of silica (tridymite and cristobalite). An increased concentration of Fe, Cr, Ni, and Mo occurred in the 2-mm to 1-cm layer of penetrator no. 1, which impacted at the highest velocity. No elemental concentration increase was noted for penetrators nos. 2 and 3 in the 2-mm to 1-cm layer. Contaminants introduced by the penetrator occur up to 1 cm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the crushed rock, no changes were observed beyond the 1-cm distance.

  6. Database for the Geologic Map of Upper Eocene to Holocene Volcanic and Related Rocks of the Cascade Range, Oregon (United States)

    Nimz, Kathryn; Ramsey, David W.; Sherrod, David R.; Smith, James G.


    Since 1979, Earth scientists of the Geothermal Research Program of the U.S. Geological Survey have carried out multidisciplinary research in the Cascade Range. The goal of this research is to understand the geology, tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanation. This map is one of three in a series that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of rock units distinguished by composition and age; map sheets of the Cascade Range in Washington (Smith, 1993) and California will complete the series. The complete series forms a guide to exploration and evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcano hazards, volcanology, and tectonics. This digital release contains all the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2569 (Sherrod and Smith, 2000). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2569.

  7. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere (United States)

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.


    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host

  8. Hydrothermal alterations of the meta volcanic rocks associated to the gold deposits from Pontes e Lacerda region, Mato Grosso State, Brazil; Alteracao hidrotermal das metavulcanicas associadas aos depositos auriferos de Pontes e Lacerda, MT

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, M.C.; Figueiredo, B.R. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Geociencias


    Geochemical changes due to hydrothermal alterations of volcanic rocks, which are associated with the gold deposits in the Pontes e Lacerda region, state of Mato Grosso, Brazil, are investigated in the present study. These rocks were analyzed for major and trace elements, including REE. Nd and Sr isotopes were used to trace the origin and tectonic environment of the magmatism. The volcanic rocks resemble ocean floor basalts in composition and their isotopic signature indicates a Sr depleted and Nd enriched source in the mantle. The hydrothermal process were responsible for enhanced concentration of K{sub 2} O, Rb, Ba and Fe{sub 2} O{sub 3} and for losses in Ca O, Sr, Mg O, and Fe O. The Zr; Y, Cr; Al{sub 2} O{sub 3} Si O{sub 2} and Ti O{sub 2} contents remained unchanged. Increasing REE contents in the altered volcanics may be due to a probable magmatic contribution to the fluids, which is also indicated by positive Ce anomalies in some altered basalts. The processes which were responsible for these geochemical changes are discussed. (author) 33 refs., 10 figs., 2 tab.

  9. Volcanic gas (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.


    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  10. Magma storage conditions and differentiation of the mafic Lower Pollara volcanics, Salina Island, Aeolian Islands, Italy: implications for the formation conditions of shoshonites and potassic rocks (United States)

    Beermann, Oliver; Holtz, François; Duesterhoeft, Erik


    Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950-1100 °C, in the H2O activity ( aH2O) range 0.3 to 1, and at two ranges of oxygen fugacity ( fO2) between FMQ to FMQ+1 and FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were 1050 °C, 2.8 wt% H2O in the melt ( aH2O 0.5), and relatively oxidizing ( FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions ( 5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing-mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (> 1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab

  11. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang


    ± 5.7 Ma in the shoshonitic volcanic rock is broadly coeval with main-stage U mineralization, which is probably attributable to a tectonothermal event related to the intrusion of the granite porphyries and further supports our genetic reinterpretation. It is thus concluded that the granite porphyry intrusions and associated magma may provide the fluids, ore components, and the thermal energy for U mineralization. However, some other types of fluids and metal sources (e.g., meteoric-derived fluids, which are yet to be identified could have been substantially involved in the mineralization process. Our new genetic explanation may point to significant potential for mid-Cretaceous granite-related hydrothermal U deposits in Jiangxi and other parts of Southeast China.

  12. From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution (United States)

    Cucciniello, Ciro; Melluso, Leone; le Roex, Anton P.; Jourdan, Fred; Morra, Vincenzo; de'Gennaro, Roberto; Grifa, Celestino


    The Ankaratra volcanic field covers an area of 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504-0.71012), 143Nd/144Nd (0.51259-0.51244) and 206Pb/204Pb (17.705-18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar.

  13. Reassessment of petrogenesis of Carboniferous–Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas

    Directory of Open Access Journals (Sweden)

    Linqi Xia


    Full Text Available The Carboniferous−Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360–351 Ma of the youngest ophiolite and the peak of subduction metamorphism of high pressure–low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ∼352 Ma and A-type granite with age of ∼358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes, are met for this large igneous province: (1 surface uplift prior to magmatism; (2 being associated with continental rifting and breakup events; (3 chemical characteristics of asthenosphere (or plume derived basalts; (4 close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many “ore-bearing” large igneous provinces, display Sr-Nd isotopic variations between plume and EM1 geochemical signatures. These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan–Tarim (central Asia large igneous province.

  14. Magnetic anisotropy in rhyolitic ignimbrite, Snake River Plain: Implications for using remanent magnetism of volcanic rocks for correlation, paleomagnetic studies, and geological reconstructions (United States)

    Finn, David R.; Coe, Robert S.; Kelly, Henry; Branney, Michael; Knott, Thomas; Reichow, Marc


    Individual ignimbrite cooling units in southern Idaho display significant variation of magnetic remanence directions and other magnetic properties. This complicates paleomagnetic correlation. The ignimbrites are intensely welded and exhibit mylonite-like flow banding produced by rheomorphic ductile shear during emplacement, prior to cooling below magnetic blocking temperatures. Glassy vitrophyric lithologies commonly have discrepantly shallow remanence directions rotated closer to the orientation of the subhorizontal shear fabric when compared to the microcrystalline center of the same cooling unit. To investigate this problem, we conducted a detailed paleomagnetic and rock magnetic study of a vertical profile through a single ignimbrite cooling unit and its underlying baked soil. The results demonstrate that large anisotropy of thermal remanent magnetization correlates with large (up to 38°) deflections of the stable remanence direction. Anisotropy of magnetic susceptibility revealed no strong anisotropy. A strong lineation and deflection of the remanence declination suggest that rheomorphic shear above magnetic blocking temperatures is the dominant mechanism controlling the formation of the magnetic fabric, with compaction contributing to a lesser extent. Nucleation and growth of anisotropic fine-grained magnetite in volcanic glass at high temperatures after, and perhaps also during, emplacement is indicated by systematic variation of magnetic properties from the quickly chilled ignimbrite base to the interior. These properties include remanence directions, anisotropy, coercivity, susceptibility, strength of natural remanent magnetization, and dominant unblocking temperature. The microcrystalline ignimbrite center has a magnetic direction that is the same as the underlying baked soil and, therefore, is a more reliable recorder of the paleofield direction than the glassy margins of highly welded ignimbrites.

  15. Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia: Implications for the tectonic evolution of Mongol-Okhotsk Ocean (United States)

    Zhu, Mingshuai; Zhang, Fochin; Miao, Laicheng; Baatar, Munkhtsengel; Anaad, Chimedtseren; Yang, Shunhu; Li, Xingbo


    The Olzit volcanism in Middle Mongolia comprises a bimodal suite of basalts and peralkaline rhyolites adjacent to the Main Mongolia Lineament. The basalts are characterized by enrichment in LILE and LREE, and depletion in HFSE with typical Sr-Nd isotopic signatures (εNd(t) = -2.50 to -0.38 and (87Sr/86Sr)i = 0.7058-0.7063), indicating they were likely derived from partial melting of an enriched lithospheric mantle, modified by subducted slab-derived fluids. The rhyolites show a close affinity to A-type granites with enrichment in LILE and LREE, and depletion in Nb, Ta and Ti. They also show a significant negative Eu anomaly, and have εNd(t) values ranging from 0.50 to 1.38 and initial 87Sr/86Sr ratios ranging from 0.7022 to 0.7200, suggesting the rhyolites stem from partial melting of crustal rocks rather than fractional crystallization of the basaltic melt. The rhyolite porphyry yields a SHRIMP zircon U-Pb age of 207 ± 2 Ma (MSWD = 1.42), indicating the bimodal volcanic suite formed in the Late Triassic. The miarolitic per-alkaline granite and biotite-bearing granite, which are associated with the bimodal volcanic rocks, show typical A-type granitic geochemical affinity with εNd(t) = 0.89-0.91 and (87Sr/86Sr)i = 0.7021-0.7043, indicating they are likely generated by partial melting of crustal rocks similar to the rhyolitic end-member of bimodal suite. The miarolitic per-alkaline granite and biotite-bearing granite yielded SHRIMP zircon U-Pb ages of 209 ± 2 Ma (MSWD = 0.91) and 213 ± 3 Ma (MSWD = 1.65) respectively, which are nearly coeval with the age of the bimodal volcanic suites. In view of the new geochemical and chronological data in this study, we suggest the Olzit Late Triassic bimodal volcanic rocks together with the coeval A-type granites represent a back-arc basin extensional environment, which probably related to the roll-back of Mongol-Okhotsk oceanic plate during the southward subduction under the Central Mongolia microcontinent.

  16. A rock- and palaeomagnetic study of recent lavas and 1995 volcanic glass on Fogo (Cape Verde Islands)

    DEFF Research Database (Denmark)

    Knudsen, M.F.; Abrahamsen, N.; Riisager, P.


    Fogo is the only island in the Cape Verde archipelago with accounts of historical volcanic activity.Here we present palaeomagnetic data from seven geologically recent lava flows on Fogo, including one glassy, volcanic flow from the eruption in 1995. Almost all samples behaved well during...

  17. On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes

    Directory of Open Access Journals (Sweden)

    H. E. Rieder


    Full Text Available We present the first spatial analysis of "fingerprints" of the El Niño/Southern Oscillation (ENSO and atmospheric aerosol load after major volcanic eruptions (El Chichón and Mt. Pinatubo in extreme low and high (termed ELOs and EHOs, respectively and mean values of total ozone for the northern and southern mid-latitudes (defined as the region between 30° and 60° north and south, respectively. Significant influence on ozone extremes was found for the warm ENSO phase in both hemispheres during spring, especially towards low latitudes, indicating the enhanced ozone transport from the tropics to the extra-tropics. Further, the results confirm findings of recent work on the connection between the ENSO phase and the strength and extent of the southern ozone "collar". For the volcanic eruptions the analysis confirms findings of earlier studies for the northern mid-latitudes and gives new insights for the Southern Hemisphere. The results provide evidence that the negative effect of the eruption of El Chichón might be partly compensated by a strong warm ENSO phase in 1982–1983 at southern mid-latitudes. The strong west-east gradient in the coefficient estimates for the Mt. Pinatubo eruption and the analysis of the relationship between the AAO and ENSO phase, the extent and the position of the southern ozone "collar" and the polar vortex structure provide clear evidence for a dynamical "masking" of the volcanic signal at southern mid-latitudes. The paper also analyses the contribution of atmospheric dynamics and chemistry to long-term total ozone changes. Here, quite heterogeneous results have been found on spatial scales. In general the results show that EESC and the 11-yr solar cycle can be identified as major contributors to long-term ozone changes. However, a strong contribution of dynamical features (El Niño/Southern Oscillation (ENSO, North Atlantic Oscillation (NAO, Antarctic Oscillation (AAO, Quasi-Biennial Oscillation (QBO to ozone

  18. Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean-island magmatism (United States)

    Höhn, Stefan; Koglin, Nikola; Klopf, Lisa; Schüssler, Ulrich; Tragelehn, Harald; Frimmel, Hartwig E.; Zeh, Armin; Brätz, Helene


    Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were sampled for geochemical characterisation and U-Pb zircon dating. The oldest rock suite comprises quartz keratophyre, brecciated keratophyre, quartz keratophyre tuff and basalt, formed in Upper Cambrian to Tremadocian time (c. 497-478 Ma). Basaltic volcanism continued until the Silurian. Quartz keratophyre shows post-collisional calc-alkaline signature, the Ordovician-Silurian basalt has alkaline signature typical of continental rift environments. The combined datasets provide evidence of Cambro-Ordovician bimodal volcanism and successive rifting until the Silurian. This evolution very likely resulted from break-up of the northern Gondwana margin, as recorded in many terranes throughout Europe. The position at the northern Gondwana margin is supported by detrital zircon grains in some tuffs, with typical Gondwana-derived age spectra mostly recording ages of 550-750 Ma and minor age populations of 950-1100 and 1700-2700 Ma. The absence of N-MORB basalt in the Frankenwald area points to a retarded break-off of the Saxothuringian terrane along a continental rift system from Uppermost Cambrian to Middle Silurian time. Geochemical data for a second suite of Upper Devonian basalt provide evidence of emplacement in a hot spot-related ocean-island setting south of the Rheic Ocean. Our results also require partial revision of the lithostratigraphy of the Frankenwald area. The basal volcanic unit of the Randschiefer Formation yielded a Tremadocian age and, therefore, should be attributed to the Vogtendorf Formation. Keratophyre of the Vogtendorf Formation, previously assigned to the Tremadoc, is most likely of Upper Devonian age.

  19. Mapping argillic and advanced argillic alteration in volcanic rocks, quartzites, and quartz arenites in the western Richfield 1° x 2 ° quadrangle, southwestern Utah, using ASTER satellite data (United States)

    Rockwell, Barnaby W.; Hofstra, Albert H.


    The Richfield quadrangle in southwestern Utah is known to contain a variety of porphyry Mo, skarn, polymetallic replacement and vein, alunite, and kaolin resources associated with 27-32 Ma calc-alkaline or 12-23 Ma bimodal volcano-plutonic centers in Neoproterozoic to Mesozoic carbonate and siliciclastic rocks. Four scenes of visible to shortwave-infrared image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were analyzed to generate maps of exposed clay, sulfate, mica, and carbonate minerals, and ASTER thermal infrared data were analyzed to identify quartz and carbonate minerals. Argillic and advanced argillic alteration minerals including alunite, pyrophyllite, dickite, and kaolinite were identified in both undocumented (U) and known (K) areas, including in the southern Paradise Mtns. (U); in calc-alkaline volcanic rocks in the Wah Wah Mtns. between Broken Ridge and the NG area (U/K); at Wah Wah Summit in a small zone adjacent to 33.1 Ma diorite and marble (U); in fractures cutting quartzites surrounding the 20-22 Ma Pine Grove Mo deposit (U); in volcanic rocks in the Shauntie Hills (U/K); in quartzites in the west-central San Francisco Mtns. (U); in volcanic rocks in the Black Mtns. (K); and in mainly 12-13 Ma rhyolitic rocks along a 20 km E-W belt that includes the Bible Spring fault zone west of Broken Ridge, with several small centers in the Escalante Desert to the south (U/K). Argillized Navajo Sandstone with kaolinite and (or) dickite ± alunite was mapped adjacent to calc-alkaline intrusions in the Star Range (U). Intense quartz-sericite alteration (K) with local kaolinite was identified in andesite adjacent to calc-alkaline intrusions in the Beaver Lake Mountains. Mo-bearing phyllic alteration was identified in 22.2 Ma rhyolite plugs at the center of the NG alunite area. Limestones, dolomites, and marbles were differentiated, and quartz and sericite were identified in most unaltered quartzites. Halos of

  20. High latitude ionospheric structure. (United States)

    Ossakow, S. L.; Burke, W.; Carlson, H. C.; Gary, P.; Heelis, R.; Keskinen, M.; Maynard, N.; Meng, C.; Szuszczewicz, E.; Vickrey, J.

    Contents: 1. Introduction: Ionospheric structure in general. Equatorial spread-F irregularities - a success story and a guide for high latitudes. Focus on high-latitude structure. 2. Sources and observations of high-latitude structure: Electron precipitation structures. Electric fields. Field-aligned currents. Plasma density structure. 3. Plasma instability theory: Macroinstabilities and high latitude structure. Microinstabilities and high latitude structure. 4. An emerging picture. 5. Future studies: Theoretical thrusts. Experimental emphasis.

  1. U-Th-Pb zircon geochronology on igneous rocks in the Toija and Salittu Formations, Orijärvi area, southwestern Finland: constraints on the age of volcanism and metamorphism

    Directory of Open Access Journals (Sweden)

    Christopher L. Kirkland


    Full Text Available Zircons from a felsic volcanic rock in the Toija Formation and a synvolcanic gabbro intrusion in the Salittu Formation within the Orijärvi area were dated by U-Th-Pb SIMS in order to provide depositional constraints on these formations. Zircon crystals from the felsic rock preserve a two-stage crystallisation history with zoned core domains and homogeneous rim domains. Inner domains yield a 1878±4 Ma concordia age, interpreted to determine the crystallisation of this rock. Rims yield a 1815±3 Ma concordia age interpretedto determine the regional metamorphism. Small rounded zircon grains from the Salittu gabbro, located within the Jyly shear zone, yield a concordia age of 1792±5 Ma. We interpret the grain textures to suggest that they recrystallised from inherited zircon seeds during the heat and fluid flow into the shear zone. Although no direct ages for the Salittu Formation have been recovered, field relationships imply that it was deposited between 1878−1875 Ma.

  2. Miocene rifting in the Los Angeles basin: Evidence from the Puente Hills half-graben, volcanic rocks, and P-wave tomography (United States)

    Bjorklund, Tom; Burke, Kevin; Zhou, Hua-Wei; Yeats, Robert S.


    Formation of the Puente Hills half-graben in the northeastern Los Angeles basin and eruption of the Glendora and El Modeno Volcanics (16 14 Ma) help to define the timing of extension in the basin. Normal faulting on the proto-Whittier fault ca. 14 Ma established the Puente Hills half-graben, in which sedimentary strata accumulated between ca. 14 and 10 Ma and into which diabase sills intruded. North-South contraction began to invert the Puente Hills half-graben ca. 7 Ma, leading to formation of the Puente Hills anticline and the Whittier fault. Our high-resolution three-dimensional P-wave velocity model shows two anomalous higher velocity (6.63 km/s) bodies at depths between 9 and 18 km, which we attribute to dioritic plutons named here for Whittier Narrows and El Modeno. The stocklike Whittier Narrows pluton could have been a source for the Glendora Volcanics and the diabase sills in the Puente Hills half-graben. The sill-shaped El Modeno pluton was a likely source for the El Modeno Volcanics. The northwesterly alignment of the plutons may mark the location of the northeastern Los Angeles basin rift boundary, which is associated with the clockwise rotation of the western Transverse Ranges. Three active faults, the Elysian Park blind thrust, the Puente Hills blind thrust, and the Whittier fault, converge on the Whittier Narrows pluton, which may have played a role in their location and segmentation.

  3. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process. (United States)

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo


    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  4. Petrology and geochemistry of volcanic rocks from the island of Panarea: implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian sea) (United States)

    Calanchi, N.; Peccerillo, A.; Tranne, C. A.; Lucchini, F.; Rossi, P. L.; Kempton, P.; Barbieri, M.; Wu, T. W.


    Major, trace element and radiogenic isotope (Sr, Nd, Pb) data are reported for a suite of rocks from the Panarea volcano, a large structure that is largely hidden below sea level and outcrops only as a group of small islands between Lipari-Vulcano and Stromboli in the eastern Aeolian arc. The exposed rocks mostly consist of high-potassium calc-alkaline (HKCA) andesites, dacites and some rhyolites; shoshonitic basalts have been collected from submarine centres; mafic calc-alkaline (CA) rocks occur as thin layers of late-erupted strombolian scoriae. Major and trace element data are scattered, but define generally linear trends on inter-element diagrams; Sr-isotope ratios do not display significant increase with evolution, although rough positive trends of 87Sr/86Sr versus SiO2 and Rb/Sr can be recognised within some units. The mafic rocks display varying enrichment in potassium, from CA to shoshonitic compositions, and are characterised by variable abundances of incompatible trace elements, which increase with potassium. There is an increase of 87Sr/86Sr ratios and a decrease of 143Nd/144Nd and 206Pb/204Pb ratios from CA to HKCA and shoshonitic mafic rocks. The scattered and incomplete nature of the outcrops make it difficult to constrain magmatic evolution at Panarea; geochemical and isotopic data suggest that AFC and mixing were important evolutionary processes. However, geochemical modelling does not support the possibility that the first-order compositional variations observed in the mafic rocks are the result of these processes, and suggests a genesis in a heterogeneous mantle source. Recent studies have highlighted strong differences in terms of incompatible trace element ratios and isotopic signatures, between the western-central and the eastern Aeolian arc. Rocks from the western islands (Alicudi, Filicudi, Salina, Vulcano) have typical magmatic arc geochemical signatures and relatively unradiogenic Sr-isotope compositions. By contrast, the eastern island of

  5. Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization (United States)

    Repstock, Alexander; Breitkreuz, Christoph; Lapp, Manuel; Schulz, Bernhard


    The North Saxon Volcanic Complex (NSVC) is a nested caldera edifice dominated by the c. 295 Ma Rochlitz Volcanic System and the c. 289 Ma Wurzen Volcanic System (WVS). The climactic activity of the WVS resembled a VEI ≥ 7 fissure `supereruption' resulting in voluminous and crystal-rich caldera-fill ignimbrites (minimum volume c. 199 km3); caldera outflow facies is not known sofar. Precursory to the WVS `monotonous intermediates', rhyolitic and rhyodacitic volcanic activity led to deposition of the low-volume Wermsdorf and Cannewitz ignimbrites. Modal analysis of the WVS pyroclastic units reveals an inhomogeneous crystal population (≤ 58 vol%) comprising k-feldspar, plagioclase, quartz, ortho- and clinopyroxene and minor amounts of biotite. The Wurzen caldera fill ignimbrites feature three types of fiamme: (1) felsic fiamme; (2) mafic fiamme; and (3) granite-porphyry fiamme. This, the modal variation, and the common presence of clinopyroxene and biotite indicate a strong magma mingling component in the WVS—characteristics which have not been observed in the precursory, Wermsdorf and Cannewitz ignimbrites. The caldera fill ignimbrites feature a large compositional variation from (basaltic) trachyandesite to rhyolite caused by basaltic injection and magma mingling. It is proposed that magmatic underplating led to reheating crystal mush and finally to convection processes within the WVS magma chamber. The predominance of either pyroxene or biotite as mafic mineral in the (trachy-) dacitic to rhyolitic ignimbrites indicates eruption of crystal mush from different magma batches. Prominent negative Nb and Ta anomalies of the Wurzen caldera fill ignimbrites, porphyries, and mafic dykes indicate enhanced melt-crust interaction or contamination of mantle melt. In the aftermath of the WVS caldera eruption, basaltic, trachyandesitic, andesitic and rhyolitic melts ascended puncturing the Wurzen-α and β ignimbrites leading to an array of NW-SE-trending dykes, subvolcanic

  6. Volcano-sedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: Example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks (United States)

    Khalaf, E. A.; Abdel Motelib, A.; Hammed, M. S.; El Manawi, A. H.


    This paper describes the Neogene lava-sediment mingling from the Abu Treifiya Basin, Cairo-Suez district, Egypt. The lava-sediment interactions as peperites have been identified for the first time at the study area and can be used as paleoenvironmental indicators. The identification of peperite reflects contemporaneous time relationship between volcanism and sedimentation and this finding is of primary importance to address the evolutional reconstruction of the Abu Treifiya Basin. Characterization of the facies architecture and textural framework of peperites was carried out through detailed description and interpretation of their outcrops. The peperites and sedimentary rocks are up to 350 m thick and form a distinct stratigraphic framework of diverse lithology that is widespread over several kilometers at the study area. Lateral and vertical facies of the peperites vary from sediment intercalated with the extrusive/intrusive basaltic rocks forming peperitic breccias to lava-sediment contacts at a large to small scales, respectively. Peperites encompass five main facies types ascribed to: (i) carbonate sediments-hosted fluidal and blocky peperites, (ii) lava flow-hosted blocky peperites, (iii) volcaniclastics-hosted fluidal and blocky peperites, (iv) sandstone/siltstone rocks-hosted blocky peperites, and (iv) debris-flows-hosted blocky peperites. Soft sediment deformation structures, vesiculated sediments, sediments filled-vesicles, and fractures in lava flows indicate that lava flows mingled with unconsolidated wet sediments. All the peperites in this study could be described as blocky or fluidal, but mixtures of different clast shapes occur regardless of the host sediment. The presence of fluidal and blocky juvenile clasts elucidates different eruptive styles, reflecting a ductile and brittle fragmentation. The gradual variation from fluidal to blocky peperite texture, producing the vertical grading is affected by influencing factors, e.g., the viscosity, magma

  7. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: role of crystal fractionation and mantle heterogeneity. (United States)

    Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.


    A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95oW and 85oW on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P2O5/K2O ratio implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns. The sequence of fractionated lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95oW. The mantle source regions for these two areas are interpreted to be depleted in incompatible (and volatile?) elements, although the source region beneath 95oW is less severely depleted in La and K. -Authors

  8. Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of, crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of post-collisional magmatism (United States)

    Ersoy, E. Yalçın; Palmer, Martin R.; Genç, Ş. Can; Prelević, Dejan; Akal, Cüneyt; Uysal, İbrahim


    Post-collisional Cenozoic magmatic activity in NW Anatolia produced widespread volcanism across the region. In the Biga Peninsula, in the west, medium-K calc-alkaline to ultra-K rocks with orogenic geochemical signature were emplaced at 43-15 Ma (Biga orogenic volcanic rocks; BOVR). Volcanic activity in the Central Sakarya region, to the east, is mainly restricted to 53-38 Ma, but also continued during the Early Miocene with small basaltic extrusives (Sakarya orogenic volcanic rocks; SOVR). This study presents a new set of geochemical data (whole rock major and trace elements and Sr-Nd-Pb isotopic compositions), obtained from the Cenozoic calc-alkaline volcanic rocks from these two regions. While there is considerable overlap in the emplacement time of volcanism in the two areas, the post-collisional volcanic rocks of these two regions differ in terms of their geochemical compositions: (1) the BOVR show an age-dependent increase in K and other large-ion lithophile elements (LILE), coupled with an increase in radiogenic Sr and Pb compositions from the Eocene to Miocene; whereas (2) the SOVR are characterized by more sodic compositions with lower K and less radiogenic Sr contents with respect to the BOVR, which were unchanged in Eocene and Miocene. We conclude that these geochemical features were principally related to the distinct modes of subduction-related mantle enrichment processes. We suggest that the Eocene to Miocene progressive enrichment in the BOVR mantle was related to successive subduction of oceanic and crustal materials in the western Aegean, while the SOVR mantle was dominantly enriched during the pre-collisional events. Magma generation in the western region was related to subduction roll-back processes associated with post-collisional extension. In the east, thermal perturbation of the mantle in response to asthenospheric upwelling due to slab break-off process was responsible for the magma generation. The time-dependent increase of K (and other

  9. Low-latitude arc-continent collision as a driver for global cooling (United States)

    Jagoutz, O. E.; Royden, L.; Macdonald, F. A.


    New constraints on the tectonic evolution of the Neo-Tethys Ocean indicate that at ˜90-70 Ma and at ˜50-40 Ma, vast quantities of mafic and ultramafic rocks were emplaced at low latitude onto continental crust within the tropical humid belt. These emplacement events correspond temporally with, and are potential agents for, the global climatic cooling events that terminated the Cretaceous Thermal Maximum and the Early Eocene Climatic Optimum. We model the temporal effects of CO2 drawdown from the atmosphere due to chemical weathering of these obducted ophilites, and of CO2 addition to the atmosphere from arc volcanism in the Neo-Tethys, between 100 and 40 Ma. Modeled variations in net CO2-drawdown rates are in excellent agreement with contemporaneous variation of ocean bottom water temperatures over this time interval, indicating that ophiolite emplacement may have played a major role in changing global climate. We demonstrate that both the lithology of the obducted rocks (mafic/ultramafic) and a tropical humid climate with high precipitation rate are needed to produce significant consumption of CO2. Based on these results, we suggest that the low-latitude closure of ocean basins along east-west trending plate boundaries may also have initiated other long-term global cooling events, such as Middle to Late Ordovician cooling and glaciation associated with the closure of the Iapetus Ocean.

  10. Low-latitude arc–continent collision as a driver for global cooling (United States)

    Jagoutz, Oliver; Macdonald, Francis A.; Royden, Leigh


    New constraints on the tectonic evolution of the Neo-Tethys Ocean indicate that at ∼90–70 Ma and at ∼50–40 Ma, vast quantities of mafic and ultramafic rocks were emplaced at low latitude onto continental crust within the tropical humid belt. These emplacement events correspond temporally with, and are potential agents for, the global climatic cooling events that terminated the Cretaceous Thermal Maximum and the Early Eocene Climatic Optimum. We model the temporal effects of CO2 drawdown from the atmosphere due to chemical weathering of these obducted ophiolites, and of CO2 addition to the atmosphere from arc volcanism in the Neo-Tethys, between 100 and 40 Ma. Modeled variations in net CO2-drawdown rates are in excellent agreement with contemporaneous variation of ocean bottom water temperatures over this time interval, indicating that ophiolite emplacement may have played a major role in changing global climate. We demonstrate that both the lithology of the obducted rocks (mafic/ultramafic) and a tropical humid climate with high precipitation rate are needed to produce significant consumption of CO2. Based on these results, we suggest that the low-latitude closure of ocean basins along east–west trending plate boundaries may also have initiated other long-term global cooling events, such as Middle to Late Ordovician cooling and glaciation associated with the closure of the Iapetus Ocean. PMID:27091966

  11. Volcanic caves of East Africa - an overview


    Jim W. Simons


    Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA) for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and are...

  12. Volcanic Gas (United States)

    ... often escape continuously into the atmosphere from the soil, volcanic vents , fumaroles , and hydrothermal systems. By far the ... after falling into a snow depression surrounding a volcanic fumarole and filled ... of CO 2 gas in soils can also damage or destroy vegetation, as is ...

  13. Biogeochemistry of REE elements and tetrad effect in the soil-plant system: a study on volcanic rock covers in southernmost Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Lima e Cunha


    Full Text Available This paper deals with the distribution of REE in rock, soil and plant in an area of monzonitic rocks from southernmost Brazil. The REE patterns in Schinus lensticifolius show a negative-Ce anomaly and a prominent tetrad effect, characterized as W-type that are not present in rock and soil samples. The REE patterns in the soils and rocks sampled are very similar and there is no fractionation of REE during the processes of soil formation. The W-type patterns are interpreted as indicating that REE were absorved by S. lentiscifolius as simple ions rather than as complex ions, or, alternatively, that the transport of REE in the plant metabolic processes was as free ions. The recognition of tetrads, either, M- or W-type patterns, is an additional tool for understanding the biogeochemistry of REE and can contribute to the study of monitoring processes of contaminated environment or to mineral prospecting.Este trabalho trata da distribuição dos ETR na rocha, solo e planta em área de ocorrência de rochas monzoníticas do extremo sul do Brasil. O padrão dos ETR em Schinus lentiscifolius apresenta anomalia negativa de Ce e significativo efeito tétrade, do tipo W, ausente no padrão da rocha e do solo. A configuração das curvas da rocha e do solo é similar e sem fracionamento das ETR durante a pedogênese. O padrão em W é interpretado como decorrente da absorção dos ETR pela planta na forma de íons livres e não complexados, ou, alternativamente, que o transporte das ETR nos processos metabólicos foi na forma de íons livres. O reconhecimento de tétrades, seja do tipo W ou M, é uma ferramenta adicional na compreensão da biogeoquímica dos ETR e pode contribuir para o estudo de processos de monitoramento de ambientes contaminados ou para pesquisas em prospecção mineral.

  14. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Hydrocarbon gases in Palaeogene volcanic rocks from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Laier, Troels


    Full Text Available Hydrocarbon gases were monitored in the drilling fluid during deepening of the Lopra-1 well from 2178–3565 m, in which thermogenic, methane-rich gases had been found previously. The mud gas concentration, up to 105 ppm of methane, was generally higher in the hyaloclastite sequence, 2470 m – terminal depth (TD, than in the overlying lavas of the lower basalt formation. The highest concentrations of mud gas in the lower basalt formation were associated with the more porous tuffaceous zones, whereas no simple relationship could be established between measured mud gas concentrations and porosity of the hyaloclastic rocks, which showed less marked porosity variations than the lavas.Chemical (C2+ 104 ppm. No particularly gas-rich zones were indicated, however, by the mud gas, nor was any significant change in lithology noted for this interval. It is possible that the technique of turbo-drilling, that had been attempted over a short interval, 2657–2675 m prior to collection of the high-level methane samples, may have caused enhanced degassingdue to the very fine cuttings produced. Chemical and isotopic composition of headspace gas and mud gas indicated the same type of gas throughout the well, although headspace methane tended to bemore enriched with respect to the 13C isotope.The origin of the Lopra-1 gas is discussed in the light of recent information obtained from source rock studies of central East Greenland and the Faroe–Shetland Basin.

  15. Implications of volcanic erratics in Quaternary deposits of North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Larsen, Ole


    Erratic boulders, petrographically similar to the volcanics exposed around Kap Washington, are found on islands and along the coast much further to the east. Isotopic measurements on two such boulders show that these volcanic rocks are of the same age as the Kap Washington volcanics. The regional...

  16. Rare earth element evidence concerning the origin of voluminous mid-Tertiary rhyolitic ignimbrites and related volcanic rocks, Sierra Madre Occidental, Chihuahua, Mexico (United States)

    Cameron, Kenneth L.; Hanson, Gilbert N.


    The mid-Tertiary volcanic sequence of the central Sierra Madre Occidental in Chihuahua, Mexico, is about one kilometer thick and is composed predominantly of rhyolitic ignimbrites. Basaltic andesite to dacitic lavas are interbedded with the rhyolites, but they are of minor volumetric importance. Rare earth element (REE) data are used to constrain a crustal anatexis model for the origin of the voluminous ignimbrites and to test a fractional crystallization model. The REE patterns indicate that if the rhyolites were formed by direct crustal anatexis, the residue from partial melting could contain no more than a few percent garnet or about 20% hornblende. This eliminates residues with the mineralogy of amphibolite, eclogite, or garnet granulite, but melting of a garnet-free granulite source is permitted. The crustal anatexis model is difficult to evaluate critically because of a lack of knowledge concerning the mid-Tertiary geothermal gradient and the composition of the crust beneath the Sierra Madre Occidental. In contrast, the fractional crystallization model can be tested rigorously. Rayleigh fractionation calculations are used to closely model REE patterns in the basaltic andesite to rhyolite series. The minerals involved are those occurring as phenocryst phases, and the mineral proportions were generated by leastsquares major element calculations. The results of the calculations are consistent with the hypothesis that the voluminous rhyolites originated by plagioclase-dominated crystal fractionation.

  17. geochemistry of the potassic basalts from the bufumbira volcanic

    African Journals Online (AJOL)


    ABSTRACT. Bufumbira volcanic field is the southernmost of the four Ugandan small Pleistocene to Recent volcanic fields within the western branch of the East African rift system. The rocks consist of silica undersaturated and vesicular basalts with numerous primary structures. The rocks consist of basanites, leucitites ...

  18. Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu-Zn deposit in southern Altay, Xinjiang, Northwest China: Insights from zircon U-Pb geochronology, geochemistry and Sr-Nd isotopes (United States)

    Wu, Yufeng; Yang, Fuquan; Liu, Feng; Geng, Xinxia; Li, Qiang; Zheng, Jiahao


    The Early-Mid-Devonian Ashele Formation of the southern margin of the Chinese Altay hosts the Ashele Cu-Zn volcanogenic massive sulfide (VMS) deposit and consists of intercalated volcanic and sedimentary rocks that have experienced regional greenschist-facies metamorphism. We studied the petrography, zircon U-Pb geochronology, geochemistry, and Sr-Nd isotopes of dacites and basalts in order to understand the petrogenesis of these rocks and the regional tectonic evolution. Two dacites yielded LA-MC-ICP-MS zircon U-Pb ages of 402 ± 6 Ma and 403 ± 2 Ma. The dacites are calc-alkaline, and characterized by high Na2O/K2O ratios (3.6-9.3), and high Mg# values (47-63), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb, Ta, Ti, and P, and relatively positive εNd(t) values (+3.6 to +7.5), collectively suggesting a sanukitic magma affinity. The variations in the major and trace elements of the dacites indicate that Fe-Ti oxide, plagioclase, and apatite were fractionated during their petrogenesis. The basalts are tholeiitic, and are characterized by high Mg# values (66-73), and negative Nb and Ta anomalies. The geochemical characteristics of the basalts are similar to those of N-MORB. Those characteristics together with the positive εNd(t) values (+6.8 to +9.2) of the basalts, indicate that the precursor magma was derived mainly from an N-MORB-type depleted asthenospheric mantle in an island arc setting. The geochemical similarities between the basalts and dacites indicate that they both originated from a similar depleted mantle source via partial melting under different magmatic conditions in each case, possibly related to ridge subduction.

  19. Venus - False Color of Volcanic Plains (United States)


    This Magellan full-resolution mosaic of Venus, centered at 10 degrees north latitude, 301 degrees east longitude, shows an area replete with diverse volcanic features. The image, of an area 489 kilometers long by 311 kilometers wide (303 by 193 miles), is dominated by volcanic plains which appear mottled because of varying roughnesses of each solidified lava flow. The rougher the terrain the brighter it appears in the radar image. The small, bright bumps clustered in the left portion of the image are a grouping of small volcanoes called a shield field. Each shield volcano is approximately 2 to 5 kilometers (1.2 to 3.1 miles) in diameter and has very subdued relief. It is believed that the lava flows that make up each shield originates from a common source. To the right of the shield field is another type of volcano, called a scalloped dome. It is 25 kilometers (16 miles) in diameter and has a central pit. Some of the indistinct lobe-shaped pattern around the dome may either be lava flows or rocky debris which has fallen from the scalloped cliffs surrounding the domes. The small radial ridges characteristic of scalloped domes are remnants of catastrophic landslides. To the right of that feature is a large depression called a volcanic caldera. The caldera was formed when lava was expelled from an underground chamber, which when emptied, subsequently collapsed forming the depression. The feature furthermost to the east (right) is another scalloped dome, 35 kilometers (22 miles) in diameter. That feature is unusual in that lava came out through the southeastern margin, rafting a large portion of the dome for 20 kilometers (12 miles). The lava continues into the lower right portion of the area in the image. Its steep rounded boundaries suggest it was a very sticky, oozing lava. That same type of lava is what scientists propose formed the steep-sided domes such as the bright, round feature, slightly northeast of center. It is highly likely that the features are all part

  20. White Rock (United States)


    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  1. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    Directory of Open Access Journals (Sweden)

    Natalie Leys


    Full Text Available Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50% and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES, showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  2. Variation of olivine composition in the volcanic rocks in the Songliao basin, NE China: lithosphere control on the origin of the K-rich intraplate mafic lavas (United States)

    Zhang, L.-Y.; Prelević, D.; Li, N.; Mertz-Kraus, R.; Buhre, S.


    Lithospheric thickness and the heterogeneity of the mantle lithosphere are two major parameters that play a role in determining the final composition of the mafic melts and their minerals. The Songliao basin in northeast China represents an ideal natural laboratory to study the effect of these two parameters on early Pliocene to Holocene K-rich mafic lavas (K2O > 4 wt.%; K2O/Na2O > 1). A series of Cenozoic volcanic edifices (Erkeshan, Wudalianchi, Keluo and Xiaogulihe) are tentatively divided into three groups (Group 1 - thin, Group 2 - middle, and Group 3 - thick) according to the lithosphere thickness. They are located in the northern region of the Songliao basin extending in a near north-south direction along a broad zone where the lithosphere thickness increases gradually. We present a detailed petrographical and geochemical study on olivine macrocrysts in combination with new geochemical data on their host lavas, including major and trace element abundances as well as Sr, Nd, and Pb isotopic signatures. Our ultimate aim is to quantitatively and qualitatively determine the role of lithospheric mantle thickness (named as ;lid effect;) and composition in the variation of mafic lavas and olivine composition. When corrected to Mg# = 0.72, a number of major elements in the lavas correlate with increasing lithospheric thickness (L): Si72 and Al72 decrease, whereas Mg72, Fe72, Ti72 and P72 increase. Sm/Yb ratios in the lavas increase, implying that lithospheric thickness exerts an important control. Group 3 mafic lavas are ultrapotassic (showing lamproite affinity) with K2O/Na2O > 4: their La/Sm and Pb isotope ratios deviate from the above correlations, indicating that the lavas from the thickest part of the basin exhibit the highest extent of metasomatic enrichment of the mantle source. Several parameters (e.g. [Ni], Ni/Mg, Ni/(Mg/Fe), Mn/Fe and Ca/Fe) in melt-related olivine from Group 1 and Group 2 lavas are controlled by variable lithosphere thickness. Olivine

  3. High-Temperature, Perhaps Silicic, Volcanism on Mars Evidenced by Tridymite Detection in High-SiO2 Sedimentary Rock at Gale Crater, Mars (United States)

    Morris, R. V.; Vaniman, D. T.; Blake, D. F.; Gellert, R.; Chipera, S. J.; Rampe, E. B.; Ming, D. W.; Morrison, S. M.; Downs, R. T.; Treiman, A. H.; hide


    The Mars Science Laboratory (MSL) rover, Curiosity, has been exploring sedimentary rocks within Gale crater since landing in August, 2012. On the lower slopes of Aeolis Mons (a.k.a. Mount Sharp), drill powder was collected from a high-silica (74 wt% SiO2) outcrop named Buckskin (BK). It was a surprise to find that the Buckskin sample contained significant amounts of the relatively rare silica polymorph tridymite. We describe the setting of the Buckskin sample, the detection of tridymite by the MSL Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, and detection implications. Geologic setting: The Buckskin outcrop is part of the Murray formation exposed in the Marias Pass area. The formation was previously studied by CheMin in the Pahrump Hills member [1] where three samples of drill fines were analyzed (Confidence Hills (CH), Mojave2 (MJ) and Telegraph Peak (TP) [2]). Assuming approximately horizontal bedding, the Buckskin outcrop is approx.15 m stratigraphically above the bottom of the Pahrump Hills member. Mudstone, generally characterized by fine lamination, is the dominant depositional facies [1]. Buckskin Mineralogical and Chemical Composition: The CheMin instrument and XRD pattern analysis procedures have been previously discussed [3-6]. The diffraction pattern used for quantitative XRD analysis (Fig. 1) is the sum of the first 4 of 45 diffraction images. The remaining images are all characterized by both on-ring and off-ring diffraction spots that we attributed to poor grain motion and particle clumping. Coincident with particle clumping was a significant decrease in the intensity of the tridymite diffraction peaks (Fig. 2a). The derived mineralogical composition of the crystalline component (derived from the first 4 diffraction images) is given in Table 1. The tridymite is well-crystalline and its pattern is refined as monoclinic tridymite (Fig 1). Mineral chemical compositions were derived from XRD unit cell parameters or obtained from

  4. Evidence for different processes of magma evolution in El Tatio volcanic region (22°16' to 22°30' S, Central Volcanic Zones, Andes)


    De Astis, G.; Lucchi, F.; Tranne, C. A.; Rossi, P. L.


    We report new petrographic and geochemical data on volcanic rocks erupted over the last 9 Ma ca. within El Tatio volcanic region (Western Cordillera – CVZ). They originated from compound volcanism alternating composite volcano activities, lava domes formation and minor low-mild explosive eruptions, whereas ignimbrite-like deposits outcropping in the region originated from external caldera system (Altiplano Puna Volcanic Complex). The volcanics – mostly erupted in the last 1 Ma - have composit...

  5. Ar-Ar Phlogopite Geochronology of the Navajo Volcanic Field and the Ship Rock Diatreme of Northwest New Mexico Define a 1.4 Ma Pulse of Potassic Magmatism (United States)

    Nybo, J. P.; McIntosh, W. C.; Semken, S. C.


    Newly acquired Ar-Ar phlogopite ages indicate a brief but widespread pulse of magmatism at 25.9 to 24.5 Ma in Navajo Volcanic Field (NVF). Covering approximately 30,000 km2 of the Four Corners region in the southwestern US and including the Ship Rock diatreme, the NVF forms approximately 100 diatremes, plugs, dikes, and occasional sills and maars. Petrographically the field is dominated by minette and serpentinized ultramafic microbreccia though katungite dikes occur in localized areas. Published K-Ar ages from the NVF range from 33.9 to 19.4 Ma1,2. Published Ar-Ar ages are sparse but a 25.05 Ma3 age in the Chuska Mountains and a 6.7 Ma4 age in SW Colorado have been reported. Phlogopite separates of six dikes from the Shiprock diatreme along with two dikes and two plugs from other locations throughout the NVF were analyzed in this study by the Ar-Ar method using CO2 laser and resistance furnace incremental heating. The resulting age spectra were generally flat and a selection of the most precise ages range from 25.9 ± 0.1 Ma at Todilto Park, AZ to 24.4 ± 0.1 Ma at Ship Rock, NM. The selected samples spatially represent the full breadth of the NVF with four pulses of magmatism interpreted at 25.9 Ma, 25.4 Ma, 24.9 Ma, and 24.5 Ma, altogether spanning a range 1.4 Ma. The narrow range of ages found in this study contrasts with the much wider range of published ages implying the bulk of the NVF was emplaced by a short pulse of widespread magmatism rather than series of temporally spaced eruptions. Additional geochronology will assess whether additional eruptive pulses occurred in the NVF. 1Laughlin, AW, et al, EPSL 76, 1986. 2Roden, MF, et al, EPSL 43, 1979. 3Cather, SM, et al, NMGS Guidebook 54, 2003. 4Gonzalez, DA, et al, NMGS Guidbook 61, 2010.

  6. A quasi-linear structure of the southern margin of Eurasia prior to the India-Asia collision: First paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet (United States)

    Yi, Zhiyu; Huang, Baochun; Yang, Liekun; Tang, Xiangde; Yan, Yonggang; Qiao, Qingqing; Zhao, Jie; Chen, Liwei


    We report the first combined geochronologic and paleomagnetic study of volcanic rocks from the Shiquanhe and Yare Basins at the westernmost Lhasa Terrane, which aims to provide an accurate constraint on the shape and paleoposition of the southern margin of Asia prior to the India-Asia collision. Three new 40Ar/39Ar ages of 92.5 ± 2.9 Ma, 92.4 ± 0.9 Ma, and 79.6 ± 0.7 Ma determined by fresh matrix or feldspar from lava flows suggest a Late Cretaceous age for the investigated units. Characteristic remanent magnetizations have been successfully isolated from 38 sites which pass positive fold and/or reversal, conglomerate tests and are hence interpreted as primary in origin. The two paleopoles obtained from Yare and Shiquanhe yield consistent paleolatitudes of 13.6°N ± 9.6°N and 14.2°N ± 2.7°N, respectively (for a reference site of 31.5°N, 80°E), indicating that the southern margin of Asia near the western syntaxis was located far south during the Late Cretaceous time. A reconstruction of the Lhasa Terrane in the frame of Eurasia with paleomagnetic data obtained from its western and eastern parts indicates that the southern margin of Eurasia probably had a quasi-linear orientation prior to the collision formerly trending approximately 315°E. This is compatible with the shape of the Neo-Tethys slab observed from seismic tomographic studies. Our findings provide a solid basis for evaluating Cenozoic crustal shortening in the Asian interior and the size of Greater India near the western syntaxis.

  7. geochemistry of the potassic basalts from the bufumbira volcanic

    African Journals Online (AJOL)


    volcanic fields within the western branch of the East African rift system. The rocks consist of silica undersaturated and ..... Plot of total alkalis (K2O + N2O wt%) versus SiO2 wt% of the various rocks of the. Bufumbira field (Cox et al. 1979). The Le Maitre (1989) plot (Fig. 8) clusters most of the mafic rocks between the basanite.

  8. Paleomagnetism of the Paleocene Ghost Rocks, Kodiak Islands, Alaska: Implications for Paleocene Pacific-Basin/North America Plate Configurations (United States)

    Housen, B. A.; Roeske, S. M.; Gallen, S.; O'Connell, K.


    strike of 250 degrees. Incremental rotations applied to the site-mean directions (a paleomagnetic rotation test) indicate that best clustering occurs at the optimal rotation; thus the Alitak rocks were magnetized prior to rotation. Because the resulting rotation-corrected structure at Alitak Bay is monoclinal, all versions of paleomagnetic fold tests on the Alitak Bay rocks are inconclusive. Volcanics from Kiliuda Bay, using data from Plumley et al 1983 and this study, also have well-defined magnetizations. A regional fold test using the combined rotation-corrected Alitak Bay results and the results from Kiliuda Bay indicates best clustering occurs at 100% untilting, resulting in a combined site mean of D = 162, I = 60, k = 19, a95 = 6, N = 30. While a pre-tilting, and pre-rotation, remagnetization cannot be entirely ruled out, our new data suggest these rocks likely retain their original magnetization. Based on this we conclude that the Ghost Rocks were likely magnetized at a latitude of 41° ±7 N. These data thus support migration of at least a portion of the Chugach terrane, and its TRT-related rocks, from a position off shore present-day Oregon, since Paleocene time.

  9. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons


    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  10. Volcanic Catastrophes (United States)

    Eichelberger, J. C.


    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  11. New Contributions to the Geomagnetic Instability Time Scale: Paleomagnetic study of Tequila and Ceboruco-San Pedro-Amado Nervo Volcanic Fields (Trans Mexican Volcanic Belt) (United States)

    Rodriguez Ceja, M.; Gogichaishvili, A.; Alva-Valdivia, L.; Rosas Elguera, J.; Calvo, M.; Urrutia-Fucugauchi, J.


    The Trans-Mexican Volcanic Belt (TMVB) is one of the largest continental volcanic arcs of the North American plate. It spans about 1000 km from the Pacific to the Gulf of Mexico. Despite the abundance of thick lava sequences with quite high extrusion rates, the TMVB have been relatively little studied from a paleomagnetic point of view. Previous studies were aimed for tectonic evolution of the region rather than documenting fluctuations of Earth's magnetic field in terms of both directions and intensity. We report a detailed paleomagnetic and rock-magnetic study of Tequila and Ceboruco-San Pedro-Amado Nervo volcanic fields. 350 oriented samples belonging to 31 independent cooling units were collected. All these sites were previously dated by means of the state-of-the-art 40Ar-39Ar geochronological method and span from 1.1 Ma to 2 Ky. Rock-magnetic experiments which included continuous susceptibility, isothermal remanence acquisition and hysteresis measurements point to simple magnetic mineralogy. In most of cases, the remanence is carried by Ti-poor titanomagnetite of pseudo-single-domain magnetic structure. The paleodirections of the flow dated as 819±25 ka correspond to a VGP latitude of 18° N. This anomalous field behaviour apparently recorded prior to the Matuyama-Brunhes reversal may coincide with the geomagnetic event, defined as M-B precursor. Two independent lava flows, dated as 623±91 and 614±16 ka respectively, yield reverse paleodirections and one lava flow dated as 690±29 yields transitional paleodirections. It is possible that these lavas erupted during the worldwide observable Big Lost or Delta events.

  12. Geochemistry and petrogenesis of anorogenic basic volcanic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite. 1. Introduction. The Malani magmatism is characterized by sub- volcanic setting, volcano-plutonic ring structures, anorogenic (A-type), high heat producing magma- tism and controlled by ...

  13. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism (United States)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.


    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  14. The geomagnetic field intensity in New Zealand: palaeointensities from Holocene lava flows of the Tongariro Volcanic Centre (United States)

    Greve, Annika; Hill, Mimi J.; Turner, Gillian M.; Nilsson, Andreas


    Very few absolute palaeointensity data exist from Holocene-aged rocks in New Zealand. Here we present a new suite of high-quality palaeointensities, supported by detailed rock magnetic investigations. Samples from 23 sites representing 10 distinct eruptive units of the Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand, were studied. Both traditional double heating and microwave palaeointensity methods were employed. The reliability of the palaeointensity data varies with rock magnetic properties of the samples, corresponding, in particular, to their positions within the lava flows. The highest success rates are from samples obtained from near the flow tops where a significant proportion of the remanence unblocked at intermediate temperatures (200-350 °C). By contrast, samples from flow centres, particularly the parts showing platey fracturing, have the lowest success rates. Reliable, high-quality palaeointensity results ranging from 32.4 ± 5.1 μT to 72.1 ± 4.7 μT were obtained from six flows with ages between c. 12 800 yr BP and the present. These correspond to virtual dipole moments that increase from 52 ± 10 ZAm2 in the early Holocene and peak at 112 ± 14 ZAm2 about 300 yr ago. The data agree well with calibrated relative palaeointensities from New Zealand lake sediments. The volcanic and sedimentary data together yield a Holocene virtual axial dipole moment curve that fits the global average variation well in the early Holocene, but which differs significantly in recent millennia. This difference is associated with recent migration of the southern high latitude core-mantle boundary flux lobe towards New Zealand, as is seen in global field models.

  15. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)


    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  16. Controls on volcanism at intraplate basaltic volcanic fields (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.


    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  17. Felsic Volcanics on the Moon (United States)

    Jolliff, B. L.; Lawrence, S. J.; Stopar, J.; Braden, S.; Hawke, B. R.; Robinson, M. S.; Glotch, T. D.; Greenhagen, B. T.; Seddio, S. M.


    Lunar Reconnaissance Orbiter (LRO) imaging and thermal data provide new morphologic and compositional evidence for features that appear to be expressions of nonmare silicic volcanism. Examples reflecting a range of sizes and volcanic styles include the Gruithuisen and Mairan Domes, and the Hansteen Alpha (H-A) and Compton-Belkovich (C-B) volcanic complexes. In this work we combine new observations with existing compositional remote sensing and Apollo sample data to assess possible origins. Images and digital topographic data at 100 m scale (Wide Angle Camera) and ~0.5 to 2 m (Narrow Angle Camera) reveal (1) slopes on volcanic constructs of ~12° to 27°, (2) potential endogenic summit depressions, (3) small domical features with dense boulder populations, and (4) irregular collapse features. Morphologies in plan view range from the circular to elliptical Gruithuisen γ and δ domes (~340 km2 each), to smaller cumulodomes such as Mairan T and C-B α (~30 km2, each), to the H-A (~375 km2) and C-B (~680 km2) volcanic complexes. Heights range from ~800-1800 m, and most domes are relatively flat-topped or have a central depression. Positions of the Christiansen Feature in LRO Diviner data reflect silicic compositions [1]. Clementine UVVIS-derived FeO varies from ~5 to 10 wt%. Lunar Prospector Th data indicate model values of 20-55 ppm [2,3], which are consistent with compositions ranging from KREEP basalt to lunar granite. The Apollo collection contains small rocks and breccia clasts of felsic/granitic lithologies. Apollo 12 samples include small, pristine and brecciated granitic rock fragments and a large, polymict breccia (12013) consisting of felsic material (quartz & K-feldspar-rich) and mafic phases (similar to KREEP basalt). Many of the evolved lunar rocks have geochemically complementary compositions. The lithologic associations and the lack of samples with intermediate composition suggest a form of magmatic differentiation that produced mafic and felsic

  18. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi


    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  19. Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars (United States)

    Michalski, Joseph. R.; Bleacher, Jacob E.


    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  20. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion (United States)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.


    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  1. Boundary of the southwestern Nevada volcanic field from Laczniak and others (1996), for the Death Valley regional ground-water flow system study, Nevada and California (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the southwestern Nevada volcanic field (SWNVF), an area of thick, regionally distributed volcanic rocks within the...

  2. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean Back-arc of Western Argentina

    NARCIS (Netherlands)

    Hernando, I.R.; Aragón, E.; Frei, R.; González, P.D.; Spakman, W.|info:eu-repo/dai/nl/074103164


    The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit

  3. Temporal and Petrogenetic Constraints on Volcanic Accretionary Processes at 9-10 Degrees North East Pacific Rise (United States)


    Sims, S. Weyer , and J. Schweiters (2008), Measurement of 234U/238U and 230Th/232Th in volcanic rocks using the Neptune PIMMS, J. Anal. At. Spectrom...doi:10.1029/2002GC000419. Ball, L., K. Sims, S. Weyer , and J. Schweiters (2008), Measurement of 234U/238U and 230Th/232Th in volcanic rocks using

  4. Excess europium content in Precambrian sedimentary rocks and continental evolution (United States)

    Jakes, P.; Taylor, S. R.


    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  5. Geology and geochemistry of volcanic centers within the eastern half of the Sonoma volcanic field, northern San Francisco Bay region, California (United States)

    Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.


    Volcanic rocks in the Sonoma volcanic field in the northern California Coast Ranges contain heterogeneous assemblages of a variety of compositionally diverse volcanic rocks. We have used field mapping, new and existing age determinations, and 343 new major and trace element analyses of whole-rock samples from lavas and tuff to define for the first time volcanic source areas for many parts of the Sonoma volcanic field. Geophysical data and models have helped to define the thickness of the volcanic pile and the location of caldera structures. Volcanic rocks of the Sonoma volcanic field show a broad range in eruptive style that is spatially variable and specific to an individual eruptive center. Major, minor, and trace-element geochemical data for intracaldera and outflow tuffs and their distal fall equivalents suggest caldera-related sources for the Pinole and Lawlor Tuffs in southern Napa Valley and for the tuff of Franz Valley in northern Napa Valley. Stratigraphic correlations based on similarity in eruptive sequence and style coupled with geochemical data allow an estimate of 30 km of right-lateral offset across the West Napa-Carneros fault zones since ~5 Ma.

  6. The Early Mesozoic volcanic arc of western North America in northeastern Mexico (United States)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora


    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  7. 20020113: Rock (1), panel (1)




    Rock Art photograph, Panel 1, glyph [cam element='coordinate' qualifier='longitude']W 70deg34'55.9"[/cam][cam element='coordinate' qualifier='latitude']S 32deg49'49.0"[/cam][cam element='coordinate' qualifier='altitude']924[/cam][cam element='coordinate' qualifier='bearing']125[/cam][cam element='coordinate' qualifier='inclination']0[/cam][cam element='coordinate' qualifier='cartesian'](1.950,1.640,2.190)[/cam

  8. Oman's low latitude "Snowball Earth" pole revisited: Late Cretaceous remagnetisation of Late Neoproterozoic carbonates in Northern Oman (United States)

    Rowan, C. J.; Tait, J.


    Glaciogenic diamictites and associated ‘cap’ carbonates within the Neoproterozoic Huqf Supergroup of Oman record a period of extreme, possibly global, glaciations between 750-635 Ma (the "Snowball Earth"). We have performed high-resolution paleomagnetic sampling of two sections through ~635 Ma cap carbonates in the Jebel Akhdar region of northern Oman. Stepwise thermal demagnetisation reveals a low temperature component carried by goethite, and a high temperature component carried by haematite, that are both aligned with the modern dipole field direction. Occasional reversed polarity directions antipodal to the present day field indicate pervasive weathering of these outcrops over timescales of at least 1 Ma. Between these two overprints an intermediate component with typical unblocking temperatures of 300-550 C, probably carried by magnetite, can also be isolated in most samples. A robust fold test clearly demonstrates that this component was acquired after Paleozoic folding of the carbonates, and was most likely acquired during exhumation associated with emplacement of the Semail ophiolite during the Late Cretaceous (95-68 Ma). In geographic co-ordinates, the intermediate component has an almost horizontal NNW or SSE direction, similar to directions previously reported from outcrops of the ophiolite close to the Jebel Akhdar region, and from thermally altered basement rocks in the the Saih Hatat window further to the east [Feinberg et al. 1999]. Hints of an older, Permian, remagnetisation of the carbonates, which is also observed in the Saih Hatat basement rocks, have also produced a false polarity stratigraphy in one of the sampled sections. Our results contrast with the previously reported low latitude pole from the Huqf Supergroup [Kilner et al., 2005], which was considered to be amongst the more reliable paleomagnetic data supporting glaciations extending to low latitudes during the late Neoproterozoic. However, this interpretation was made on the basis

  9. Volcanic Supersites as cross-disciplinary laboratories (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe


    surface between the top of the vegetation and the rock matrix in active volcanic areas and Volcanic Supersites.

  10. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  11. Silicate volcanism on Io (United States)

    Carr, M. H.


    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  12. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer


    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  13. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R


    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  14. Latitudes: new Indian transnational cinema. (United States)

    Villarejo, Amy


    This article examines films and video art that speak to conditions of exile and displacement, including the work of Mona Hatoum, Sonali Gulati, and Onir. It proposes the term "latitude" to interrogate the aesthetic and formal properties of these artworks, seeking to understand how lesbian and same-sex eroticism and identities are central to their efficacy.

  15. The volcanic and geochemical development of São Nicolau, Cape Verde Islands

    DEFF Research Database (Denmark)

    Duprat, Helene Inga; Holm, Paul Martin; Sherson, Jacob Friis


    We present 34 new age results from 40 Ar/39 Ar incremental heating analyses of groundmass separates from volcanic rocks from São Nicolau, Cape Verde. Combining the age results with field observations, we show that the volcanic activity that formed the island occurred in four separate stages: 1: >...

  16. Art Rocks with Rock Art! (United States)

    Bickett, Marianne


    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  17. Basaltic lava characterization using magnetic susceptibility identification and presence of opaque minerals in Ijen volcanic complex, Banyuwangi, East Java (United States)

    Pratama, Aditya; Hafidz, Abd.; Bijaksana, Satria; Abdurrachman, Mirzam


    Reliable volcanic map and deep understanding of magmatic processes are very important in exploration of natural resources and mitigation of volcanic hazards. The conservative method in volcanic mapping still depends on qualitative approach thus it often failed to characterize volcanic products properly. Rock magnetic methods are quantitative approaches that classify rocks based on their magnetic properties. In this study, magmatic processes in basaltic lavas from Ijen volcanic complex in Banyuwangi, East Java were studied using combined rock magnetic and petrogenesis approaches. Samples of basaltic lavas from 13 localities, taken from three eruption sources were measuredfor their mass-specific magnetic susceptibility. The samples were then also subjected to petrographic and X-ray Fluorescence Spectrometry (XRF) analyses for their minerals composition and petrogenesis. Preliminary results show that the distinction in magnetic characters might be due to the quantity of magnetic minerals contained in rocks.

  18. Revised paleomagnetic pole for the Sonoma Volcanics, California (United States)

    Mankinen, E.A.


    Paleomagnetic sampling of the Miocene and Pliocene Sonoma Volcanics, northern California, was undertaken to supplement an earlier collection. Data from 25 cooling units yield positive fold and reversal tests, and a paleomagnetic pole located at 80.2??N., 069.2??E., with ??95 = 6.8??. This paleopole is significantly displaced (9.6?? ?? 5.3?? of latitude) to the farside of the geographic pole. A highly elliptical distribution of the data in both direction and VGP space indicates that incomplete averaging of geomagnetic secular variation is a more likely explanation for this anomaly than is northward translation of the volcanic field. -Author

  19. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke


    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  20. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.


    Indian Academy of Sciences (India)


    THE PANJAL TRAPS: ACID AND BASIC. VOLCANIC ROCKS. BY P. N. GANJU, M.Sc. (Lecturer in Geology, University of Lucknow). Received September 17, 1943. (Communicated by Prof. L. Rama Rao, HB material on which this paper is based was collected by the author, mainly during the field work done in the ...

  2. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    and in deciphering the source of the rock types. Further, the large manganese nodule fields in the CIB are seen to occur in conjunction with the volcanic materials, since the latter forms nuclei and substrates for ferromanganese deposits. It is concluded that a...

  3. Surface complexation modeling of americium sorption onto volcanic tuff. (United States)

    Ding, M; Kelkar, S; Meijer, A


    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.

  4. The Meaning of High K2O Volcanism In the U.S. Cordillera (United States)

    Putirka, K. D.; Busby, C.


    K2O contents provide a highly effective discriminant between volcanic rocks erupted in the Cascades and Basin-and Range-provinces, with Cascades volcanics having lower K2O contents at a given SiO2. To differentiate these suites, we use a K-index, where K-index = K2Oobserved - 0.12[SiO2] + 5.1 (oxides in wt. %). In the Sierra Nevada, regional K2O contents are not controlled by wall-rock assimilation. In addition, none are candidates for K-metasomatism, and none are likely to be derived by partial melting of a K-metasomatized source. As to the latter issue, even volcanic rocks with the highest K2O in the Sierra Nevada have K2O/Na2O 5, and as high as 30-40 (Brooks and Snee (1996). Also, Sierra-wide K2O variations are not connected to indices of subduction-related mantle enrichments (such as La/Nb, Ba/Nb or Sr/P2O5), and so K2O is unconnected to regional variations in source composition. K2O contents are instead controlled by the degree of partial melting (F) in the mantle source and fractional crystallization. Putirka and Busby (2007) show that maximum K2O in the Sierra increases with increasing crust thickness, and this relationship also holds across the U.S. the Cordillera (at 39oN latitude). This relationship implies that low F magmas more easily transit thick, low-density upper crust (Putirka and Busby, 2007), which is a consequence of the fact that low F melts are enriched not just in K2O, but also in H2O, which greatly lowers magma density (Ochs and Lange, 1999). This model can explain the contrast in Cascade and Basin-and-Range K2O contents: the modern Cascades are built on the thinner crust of accreted terranes, while typical Basin-and-Range volcanics are erupted on older, and thicker, cratonized crust. Mean crust density, however, cannot be the only explanation of high K2O. In the central Sierra Nevada, the Colorado River Extensional Corridor, and at the Lunar Crater/Nevada Test site area of NV, eruptions of high K2O magmas (K-index>1.65) coincide in time and

  5. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth (United States)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan


    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  6. Fire effects on rock images and similar cultural resources [Chapter 5 (United States)

    Roger E. Kelly; Daniel F. McCarthy


    Throughout human global history, people have purposely altered natural rock surfaces by drilling, drawing, painting, incising, pecking, abrading and chiseling images into stone. Some rock types that present suitable media surfaces for these activities are fine-grained sandstones and granites, basalts, volcanic tuff, dolomites, and limestones. Commonly called rock...

  7. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge


    to the low thickness of the lithospheric mantle and preheating of the lower crust by earlier Mio-Pliocene volcanism. Rare earth element modelling of mantle melting calls for enriched source compositions and a beginning of melting within the garnet stability field for all Payenia basalts. The Río Colorado......The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...... rocks with 4 to 12 wt.% MgO and 44 to 50 wt.% SiO2. The southern Payenia province is dominated by intraplate basalts and the trace element patterns of the Río Colorado and Payún Matrú lavas suggest little or no influence from subducted slab components. The mantle source of these rocks is similar to some...

  8. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hot spot volcanism in the Anahim Volcanic Belt, west-central British Columbia, Canada (United States)

    Kuehn, Christian; Guest, Bernard; Russell, James K.; Benowitz, Jeff A.


    The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology ( n = 24) and geochemistry. Whole-rock chemical compositions of volcanic rock samples ( n = 59) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (<1 km3) and differ in composition from one another, even where they are in close spatial proximity. Trace element and REE patterns of mafic AVB lavas are similar to ocean island basalts (OIB), suggesting a mantle source for these lavas. The age ranges for the SMVF ( n = 11; ~2.21 to ~1.43 Ma) and BMVF ( n = 7; ~3.91 to ~0.91 Ma) are largely coeval with the Itcha Range. The distribution of volcanoes in these two volcanic fields is potentially consistent with the postulated AVB hot spot track. Eruption rates in the SMVF were high enough to build an elongated ridge that deviates from the E-W trend of the AVB by almost 90°. This deviation might reflect the mechanisms and processes facilitating magma generation and ascent through the lithosphere in this tectonically complex region and may also indicate interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.

  9. Languages of volcanic landscapes (United States)

    Frederick J. Swanson


    As a young geologist in 1980, I felt a powerful attraction to volcanoes, and I thought I knew volcanoes rather well. I had studied volcanology. I had climbed volcanic peaks in the Cascades. And I had tried to be an attentive citizen of my volcanic region, the Pacific Northwest. But when I had a chance to go with other scientists to Mount St. Helens within days of its...

  10. Descartes region - Evidence for Copernican-age volcanism. (United States)

    Head, J. W., III; Goetz, A. F. H.


    A model that suggests that the high-albedo central region of the Descartes Formation was formed by Copernican-age volcanism was developed from Orbiter photography, Apollo 12 multispectral photography, earth-based spectrophotometry, and thermal IR and radar data. The bright surface either is abundant in centimeter-sized rocks or is formed from an insulating debris layer overlying a surface with an abundance of rocks in the 1- to 20-cm size range. On the basis of these data, the bright unit is thought to be a young pyroclastic deposit mantling older volcanic units of the Descartes Formation. Since the Apollo 16 target point is only 50 km NW of the central part of this unit, evidence for material associated with this unique highland formation should be searched for in returned soil and rock samples.

  11. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky


    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  12. Scattering from Rock and Rock Outcrops (United States)


    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  13. Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism (United States)

    Crowe, Bruce M.; Sargent, Kenneth A.


    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.

  14. Intellektuaalne rock

    Index Scriptorium Estoniae


    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  15. Igneous Rocks (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  16. Volcanic hazards to airports (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.


    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  17. Volcanism in Eastern Africa (United States)

    Cauthen, Clay; Coombs, Cassandra R.


    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  18. California's Vulnerability to Volcanic Hazards: What's at Risk? (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.


    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  19. Durham, North Carolina, Students Study Martian Volcanism (United States)


    This image of the wall of a graben a depressed block of land between two parellel faults in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0914 UTC (4:14 a.m. EST) on February 6, 2008, near 17.3 degrees south latitude, 95.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point. This image was part of an investigation planned by students in four high schools in Durham, North Carolina. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. Starting with a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel, the students identified a key rock outcrop to test their hypothesis that the irregular depression was formed by Martian volcanism. They provided the coordinates of the target to CRISM's operations team, who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Durham students worked with a mentor on the CRISM team to analyze the data, and presented their results at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008. The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars Orbiter Laser

  20. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation. (United States)

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara


    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  1. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR) (United States)

    Yasar, Serdar; Yilmaz, Ali Osman


    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  2. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green


    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.


    Directory of Open Access Journals (Sweden)

    A. A. Galanin


    Full Text Available Based on remote mapping and field studies inGrand Rapids, Tumansky,Hasynsky,Del-Urechen Ridges as well as Dukchinsky and Kilgansky Mountain Massifs there were identified about 1160 landforms which morphologically are similar to the rock glaciers or they develop in close association with them. Besides tongue-shaped cirque rock glaciers originated due to ablation, a large number of lobate-shaped slope-associated rock glaciers were recognized. Significant quantity of such forms are developing within the active neotectonic areas, in zones of seismic-tectonic badland and in association with active earthquakes-controlling faults. Multiplication of regional data on volcanic-ash-chronology, lichenometry, Schmidt Hammer Test, pollen spectra and single radiocarbon data, most of the active rock glaciers were preliminary attributed to the Late Holocene.

  4. Morfologia e classificação taxonômica de neossolos e saprolitos derivados de rochas vulcânicas da Formação Serra Geral no Rio Grande no Sul Morphology and taxonomy classification of neossolos and saprolites derived from volcanic rock of the Serra Geral formation in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Fabrício de Araújo Pedron


    low potential for agricultural use. Consequently the morphological description of Neossolos in the field is also hampered, particularly in terms of contacts between soil, saprolite and rock, and their classification in the Brazilian Soil Classification System. The purpose of this study was: to define morphologically the contact between soil, saprolite and rock in Neossolos; generate data of the saprolite layer and test an inclusion in the suborder Neossolos Litólicos and Neossolos Regolíticos; and evaluate the diagnostic attributes and classes available in the Brazilian Soil Classification System for the of Neossolos Litólicos and Regolíticos derived from volcanic rocks of the Serra Geral formation in Rio Grande do Sul, State, Brazil. Five profiles of litho-climosequence were analyzed. The contacts were characterized based on the straight shovel excavation test associated to analyses of saprolite fracture and weathering classes. The contacts related to the presence of saprolite layers identified in the profile are not taken into consideration in the Brazilian Soil Classification System. Diagnostic attributes for the classification of Neossolos Regolíticos were proposed as well as a change of the term from "Regolítico" to "Saprolítico". New classes were also suggested for the third categorical level, based on information such as soil position and saprolite contact, excavation resistance and cracking level of the material. The proposed diagnostic attributes and classes allowed a more adequate classification of Neossolos derived from volcanic rocks in the State of Rio Grande do Sul.

  5. Geothermal and volcanism in west Java (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah


    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  6. Late Cretaceous volcanic arc system in Southwest Korea: Occurrence, lithological characteristics, SHRIMP zircon U-Pb age, and tectonic implications (United States)

    Koh, Hee Jae; Kwon, Chang Woo


    In the southwest region of the Korean Peninsula, four large volcanoes, the Buan, Seonunsan, Wido, and Beopseongpo, with a maximum diameter of ca 20 km, form a distinct topographic undulation along the NE-SW-trending Hamyeol Fault. These volcanics comprise various types of pyroclastic, sedimentary, and lava/intrusive rocks, and are interpreted as remnants of calderas resulting from various volcanic eruptions, indicating that Hamyeol Fault, together with crustal extension, played an important role in volcano formation in this region. SHRIMP U-Pb ages of zircon isolated from each volcanics are as follows. For Buan Volcanics, Cheonmasan Tuff 87.23 ±0.92 Ma, Udongje Tuff 86.79 ±0.71 Ma, Seokpo Tuff 87.30 ±0.99 Ma and Yujeongje Tuff 86.66 ±0.93 Ma. For Seonunsan Volcanics, Gyeongsusan Tuff 84.9 ±1.1 Ma and Yeongije Tuff 86.61 ±0.67 Ma. These ages indicate that the four volcanics were formed in the Late Cretaceous. The ages are comparable to those of the volcanic rocks of the Aioi and Arima groups in Southwestern Japan, suggesting that the Late Cretaceous volcanic arc systems developed in a NE-SW direction from the Japanese Islands to the southwestern part of the Korean Peninsula caused by regional magmatism together with crustal deformation as reflected by occurrence of the volcanic rocks along the Hamyeol Fault.

  7. Volcanic activity and climatic changes. (United States)

    Bryson, R A; Goodman, B M


    Radiocarbon dates of volcanic activity suggest variations that appear to be related to climatic changes. Historical eruption records also show variations on the scale of years to centuries. These records can be combined with simple climatic models to estimate the impact of various volcanic activity levels. From this analysis it appears that climatic prediction in the range of 2 years to many decades requires broad-scale volcanic activity prediction. Statistical analysis of the volcanic record suggests that some predictability is possible.

  8. Global monsoon precipitation responses to large volcanic eruptions (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan


    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  9. Blast energy mitigation in porous rocks (United States)

    Essink, Brittany C.

    Geo-materials are commonly used and sought after for blast mitigation applications due to their wide availability and low cost compared to industry trademarked materials. Characterization of these natural geo-materials such as volcanic rocks is of paramount importance in determining their blast mitigation capabilities. While there is a large amount of information available for materials such as concrete or sand blasts, information on the properties of volcanic rocks is far more scarce. This lack of data is due to the wide range of existing natural volcanic rocks and the variation in the minerals and pore structures of the rocks. In this thesis, silicate volcanic rock samples are characterized both through static and dynamic experimental methods. Initial X-ray powder diffraction scans have been conducted and analyzed to obtain the mineral composition information of the rock samples. Additional tomographic scans under quasi-static loading have been recorded to better understand the internal composition of the material pore structure and the material fracture. For this study, standard compression experiments were conducted at two separate strain rates for ten samples each on a UTM test frame to characterize the behavior of the rock under quasi-static conditions. High strain rate uniaxial compression tests were conducted for three strain rates using a split-Hopkinson pressure bar with pulse shaping to determine the dynamic response of the material. The stress-strain data from the experiments was used to determine the modulus of toughness of the material. Due to the high porosity and heterogeneity of the material, 25 samples were used for dynamic experimentation to attempt to capture and minimize the effects of scatter in the natural material. High speed photography was used to capture the sample deformation during two separate strain rates and to visualize crack propagation and strain rate in the samples. It was found that after an initial yielding, the material is

  10. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva


    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  11. Water-Data Report 433802088410401 West Branch Rock River nr Waupun WI 2013 (United States)

    US Fish and Wildlife Service, Department of the Interior — Streamflow and water quality parameters recorded on the West Branch Rock River near Horicon NWR; 2013. Location is Latitude 43 deg 38' 02", longitude 88 deg 41' 04",...

  12. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA


    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  13. Laboratory simulations of volcanic ash charging and conditions for volcanic lightning on Venus (United States)

    Airey, Martin; Warriner-Bacon, Elliot; Aplin, Karen


    Lightning may be important in the emergence of life on Earth and elsewhere, as significant chemical reactions occur in the superheated region around the lightning channel. This, combined with the availability of phosphates in volcanic clouds, suggests that volcanic lightning could have been the catalyst for the formation of biological compounds on the early Earth [1]. In addition to meteorological lightning, volcanic activity also generates electrical discharges within charged ash plumes, which can be a significant contributor to atmospheric electricity on geologically active planets. The physical properties of other planetary atmospheres, such as that of Venus, have an effect on the processes that lead to the generation of volcanic lightning. Volcanism is known to have occurred on Venus in the past, and recent observations made by ESA's Venus Express satellite have provided evidence for currently active volcanism [2-4], and lightning discharges [e.g. 5]. Venusian lightning could potentially be volcanic in origin, since no meteorological mechanisms are known to separate charge effectively in its clouds [6]. The hunt for further evidence for lightning at Venus is ongoing, for example by means of the Lightning and Airglow Camera (LAC) [7] on Akatsuki, the current JAXA mission at Venus. Our laboratory experiments simulate ash generation and measure electrical charging of the ash under typical atmospheric conditions on Earth and Venus. The study uses a 1 litre chamber, which, when pressurised and heated, can simulate the high-pressure, high-temperature, carbon dioxide-dominated atmosphere of Venus at 10 km altitude ( 5 MPa, 650 K). A key finding of previous work [8] is that ash plume-forming eruptions are more likely to occur at higher altitudes such as these on Venus. The chamber contains temperature/pressure monitoring and logging equipment, a rock collision apparatus (based on [9]) to generate the charged rock fragments, and charge measurement electrodes connected

  14. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.


    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  15. Volcanology and geochemical study of the volcanic rocks of the ...

    African Journals Online (AJOL)

    The major process responsible for the emplacement of the Bafmeng felsic lavas is partial melting of spinel-garnet rich peridotite, followed by contamination and assimilation. Mafic lavas are derived from the partial melting of the asthenospheric mantle. The tectonic context based on geochemistry indicates that, the regional ...

  16. Intracaldera volcanism and sedimentation - Creede Caldera, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Krier, D.; Snow, M.G. [and others


    Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous elastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus ({open_quotes}moat{close_quotes}) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovolcanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for elastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

  17. Reduced cooling following future volcanic eruptions (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.


    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  18. Paleomagnetism of Jurassic and Cretaceous rocks bounding the Santa Marta massif - NW corner of Colombia, South America (United States)

    Bayona, G.; Jimenez, G.; Silva, C.


    The Santa Marta massif (SMM) is a complex terrain located in the NW margin of South America, bounded by the left-lateral Santa Marta fault to the west and the right-lateral Oca fault to the north. The SMM is cored by Precambrian metamorphic and Jurassic intrusive rocks, whereas along the SE flank crop out Jurassic volcanic rocks overlying unconformably by Limestones of Cretaceous age. Paleomagnetic analysis of 30 sites in the Jurassic and Cretaceous units in the SE region uncovered two principal magnetic components. The component "a", isolated in low coercivity and temperatures, has declinations to the north and moderate positive inclinations representing the actual field direction (n=11, D=347.6 I=23 K=30.77, a95=8.4). The component "c", with high coercivity and temperatures, has two orientations. After two-step tilt corrections, the first has northward declination and positive, low inclination (n=9, D=12, I=3, K=18.99, a95=12.1); this direction was uncovered in Cretaceous and some Jurassic rocks near to the Santa Marta fault, and we consider it as a Cretaceous component. The second direction was uncovered only in Jurassic rocks and has NNE declinations with negative-low inclinations (n=9, D=11.3 I=-14.3 K=12.36, a95=15.2); this direction represents a Jurassic component. Jurassic and Cretaceous directions isolated in areas faraway of the Santa Marta Fault suggest slight clockwise vertical-axes rotation. The Jurassic component suggests northward translation of the SMM from Paleolatitude -7.3, to near the magnetic equador in the Cretaceous, and to northern latitudes in the Cenozoic.

  19. Backprojection of volcanic tremor (United States)

    Haney, Matthew M.


    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  20. Volcanic eruptions on Io (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Cook, A. F.; Hansen, C.


    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  1. Geochemical studies of impact breccias and country rocks from the El'gygytgyn impact structure, Russia


    Raschke, Ulli; Schmitt, Ralf Thomas; McDonald, Iain; Reimold, Wolf Uwe; Mader, Dieter; Koeberl, Christian


    The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk-Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been inves...

  2. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China (United States)

    Zheng, M.


    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  3. Jurassic Volcanism in the Eastern Pontides: Is it Rift Related or Subduction Related?




    The Jurassic volcanic rocks in the centre of the northern zone (south of Trabzon City) provide important constraints on the evolution of Pontides. The investigated volcanic rocks form a transitional series between tholeiitic and calc-alkaline, and is dominated by basalt, basaltic andesite and andesite. Geochemically, they are enriched in LILE and LREE contents and depleted in HFSE [(La/Yb)N= 2.2 - 8.5; (Nb/La)N= 0.1 - 0.77)] compared to mid-ocean ridge basalts and have radiogenic Nd isotope r...

  4. Page 1 Petrological Studies of Rocks of Boračudur, Java 405 diorite ...

    Indian Academy of Sciences (India)

    A microsection of the pebble reveals similar mineral association and it is a compact and non-vesicular Volcanic rock. MINERALOGY. Felspars.-The common felspars of the rocks are the intermediate plagioclases of the composition of andesine to labradorite. The plagio- clases often show strong zoning. They are idiomorphic ...

  5. Lithofacies and paleo depositional environment of the rocks of ...

    African Journals Online (AJOL)



    Sep 20, 2013 ... environment. The intact shells of bivalves suggest deposition in a low energy protected shoreline where wave action is limited. Sedimentary structures like fissility and laminations, also suggest deposition in low energy marine setting. Pyroclastic rocks mapped in the area have been interpreted as volcanic ...

  6. Rock-brine chemical interactions. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  7. Prevention of Catastrophic Volcanic Eruptions


    Fujii, Yoshiaki; Kodama, Jun-ichi; Fukuda, Daisuke; Dassanayake, Abn


    Giant volcanic eruptions emit sulphate aerosols as well as volcanic ash. Needless to say that volcanic ash causes significant damage to the environment and human at large. However, the aerosols are even worse. They reach the Stratosphere and stay there for months to years reflecting insolation. As a result, air temperature at the Earth's surfaces drops. Even a slight temperature drop may cause severe food shortage. Yellowstone supervolcano, for example, can even make human in the Northern Hem...

  8. CERN Rocks

    CERN Multimedia


    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  9. Volcanic Ash Nephelometer Probe Project (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  10. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi


    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  11. The initial dispersal and radiative forcing of a Northern Hemisphere mid-latitude super volcano: a model study


    Timmreck, C.; H.-F. Graf


    The chemistry climate model MAECHAM4/ CHEM with interactive and prognostic volcanic aerosol and ozone was used to study the initial dispersal and radiative forcing of a possible Northern Hemisphere mid-latitude super eruption. Tropospheric climate anomalies are not analysed since sea surface temperatures are kept fixed. Our experiments show that the global dispersal of a super eruption located at Yellowstone, Wy. is strongly dependent on the season of the eruption. In Northern Hemisphere sum...

  12. Properties of volcanic soils in cold climate conditions (United States)

    Kuznetsova, Elena


    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  13. Volcanic systems of Iceland and their magma source (United States)

    Sigmarsson, Olgeir


    -crust boundary or within the crust in magma reservoirs that are still feeding the volcanic systems. A second possible explanation for absence of temporal variations of isotope ratios for a given volcanic system during the last 10 thousand years is that the roots of these systems lie at further depths within the mantle. In that case, extensive fertile source rock of recycled origin with distinct isotope composition must feed the volcanic system and that the melt extraction mechanism from these source regions does not alter (or homogenize) the final melt products. The consequences of these two mechanisms and possible discrimination between them will be discussed.

  14. High northern latitude temperature extremes, 1400-1999 (United States)

    Tingley, M. P.; Huybers, P.; Hughen, K. A.


    There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in

  15. Small Population Size of the Pribilof Rock Sandpiper Confirmed through Distance-Sampling Surveys in Alaska

    NARCIS (Netherlands)

    Ruthrauff, D.R.; Tibbitts, T.L.; Gill, R.E.; Dementyev, M.N.


    The Rock Sandpiper (Calidris ptilocnemis) is endemic to the Bering Sea region and unique among shorebirds in the North Pacific for wintering at high latitudes. The nominate subspecies, the Pribilof Rock Sandpiper (C. p. ptilocnemis), breeds on four isolated islands in the Bering Sea and appears to

  16. Volcan Reventador's Unusual Umbrella (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.


    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  17. Reference data set of volcanic ash physicochemical and optical properties (United States)

    Vogel, A.; Diplas, S.; Durant, A. J.; Azar, A. S.; Sunding, M. F.; Rose, W. I.; Sytchkova, A.; Bonadonna, C.; Krüger, K.; Stohl, A.


    Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a data set that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50-80 wt % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface composition), and optical (complex refractive index from ultraviolet to near-infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types basalt to rhyolite. We found that the mass density ranges between ρ = 2.49 and 2.98 g/cm3 for rhyolitic to basaltic ash types and that the particle shape varies with changing particle size (d λ = 300 nm and 1500 nm depend systematically on the composition of the samples. The real part values vary from n = 1.38 to 1.66 depending on ash type and wavelength and the imaginary part values from k = 0.00027 to 0.00268. We place our results into the context of existing data and thus provide a comprehensive data set that can be used for future and historic eruptions, when only basic information about the magma type producing the ash is known.

  18. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation (United States)

    Yan, Li-Li; He, Zhen-Yu; Jahn, Bor-ming; Zhao, Zhi-Dan


    The association of volcanic and shallow plutonic rocks in caldera may provide important clues to the geochemical evolution of silicic magma systems. The Yandangshan caldera is a typical example of late Mesozoic volcanic-plutonic complex in SE China. It is composed of a series of rhyolitic extrusives and subvolcanic intrusions of porphyritic quartz syenites. In this work, we conducted petrological and geochemical studies, as well as zircon dating, on the coexisting volcanic and plutonic rocks from the Yandangshan caldera. The results of SHRIMP and LA-ICP-MS zircon U-Pb dating revealed that the crystallization of the rhyolitic extrusives and subvolcanic intrusions was contemporaneous within analytical errors and in a short period (104-98 Ma). Geochemically, the volcanic rocks are characterized by high Rb/Sr and Rb/Ba ratios and depletion in Ba, Sr, P, Eu and Ti, while the shallow plutons show high K, Ba, Al, Fe and low Rb/Sr and Rb/Ba ratios with insignificant negative Eu anomalies. The volcanic and plutonic rocks have a similar range of zircon Hf isotopic compositions (εHf(t) = - 10.0 to + 1.5) and TDM2 model ages of 2.10-1.23 Ga. They also have comparable whole-rock Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7084-0.7090; εNd(t) = - 7.8 to - 6.5) and zircon oxygen isotopic compositions (δ18O mainly = 4.5 to 6.0‰). We argue that the volcanic-plutonic complex of the Yandangshan caldera was formed by reworking of Paleoproterozoic lower crusts in the eastern Cathaysia block, and that the complex could be linked by fractional crystallization and crystal accumulation in a shallow magma chamber. The volcanic rocks represent the highly fractionated end-member, whereas the subvolcanic intrusions of porphyritic quartz syenites could be the residual crystal mushes. This case study could have a general implication for the genetic relationship between volcanic and shallow plutonic rocks in calderas.

  19. Determination of rock depth using artificial intelligence techniques

    Directory of Open Access Journals (Sweden)

    R. Viswanathan


    Full Text Available This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR, Least Square Support Vector Machine (LSSVM and Extreme Learning Machine (ELM, for prediction of rock depth (d at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce spatial variability of rock depth and offer robust models for the prediction of rock depth.

  20. High Latitude Dust in the Earth System (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide


    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  1. Rollerjaw Rock Crusher (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen


    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  2. Role of volcanic forcing on future global carbon cycle (United States)

    Tjiputra, J. F.; Otterå, O. H.


    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where

  3. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra


    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  4. Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley

    NARCIS (Netherlands)

    Wiel, van der A.M.


    The present study deals with the relation between Neogene uplift and volcanism of the SE Colombian Andes and sedimentation processes in the Upper Magdalena Valley. The southernmost part of the Upper Magdalena Valley, the S. Neiva Basin, is located between latitudes 2°08'-2°31 N and

  5. Favorability for uranium in tertiary sedimentary rocks, southwestern Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wopat, M A; Curry, W E; Robins, J W; Marjaniemi, D K


    Tertiary sedimentary rocks in the basins of southwestern Montana were studied to determine their favorability for potential uranium resources. Uranium in the Tertiary sedimentary rocks was probably derived from the Boulder batholith and from silicic volcanic material. The batholith contains numerous uranium occurrences and is the most favorable plutonic source for uranium in the study area. Subjective favorability categories of good, moderate, and poor, based on the number and type of favorable criteria present, were used to classify the rock sequences studied. Rocks judged to have good favorability for uranium deposits are (1) Eocene and Oligocene strata and undifferentiated Tertiary rocks in the western Three Forks basin and (2) Oligocene rocks in the Helena basin. Rocks having moderate favorability consist of (1) Eocene and Oligocene strata in the Jefferson River, Beaverhead River, and lower Ruby River basins, (2) Oligocene rocks in the Townsend and Clarkston basins, (3) Miocene and Pliocene rocks in the Upper Ruby River basin, and (4) all Tertiary sedimentary formations in the eastern Three Forks basin, and in the Grasshopper Creek, Horse Prairie, Medicine Lodge Creek, Big Sheep Creek, Deer Lodge, Big Hole River, and Bull Creek basins. The following have poor favorability: (1) the Beaverhead Conglomerate in the Red Rock and Centennial basins, (2) Eocene and Oligocene rocks in the Upper Ruby River basin, (3) Miocene and Pliocene rocks in the Townsend, Clarkston, Smith River, and Divide Creek basins, (4) Miocene through Pleistocene rocks in the Jefferson River, Beaverhead River, and Lower Ruby River basins, and (5) all Tertiary sedimentary rocks in the Boulder River, Sage Creek, Muddy Creek, Madison River, Flint Creek, Gold Creek, and Bitterroot basins.

  6. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California (United States)

    Wagner, David L.; Saucedo, George J.; Clahan, Kevin B.; Fleck, Robert J.; Langenheim, Victoria E.; McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Allen, James R.; Deino, Alan L.


    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10–8 Ma), and the Sonoma Volcanics (ca. 8–2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ± 0.06 and 9.13 ± 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the Rodgers Creek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek–Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and

  7. The San Franciscan volcanic field, Arizona (United States)

    Robinson, Henry Hollister


    LOCATION OF AREAThe San Franciscan volcanic field, which takes its name from San Francisco Mountain, the largest volcano of the group, covers about 3,000 square miles in the north-central part of Arizona, as shown by the shaded space on the index map forming figure 1. The center of the field lies about 50 miles south of the Grand Canyon of the Colorado and the southern boundary is in part coterminous with that of the San Francisco Plateau, which forms the southwestern division of the great Colorado Plateau.The region is easily reached, for the main line of the Atchison, Topeka, & Santa Fe Railway traverses it from east to west for more than 60 miles. Flagstaff, a town of 1,500 inhabitants 10 miles south of the summit of San Francisco Mountain, is on the railroad, amid a branch line runs from Williams, 34 miles farther west, to the Grand Canyon. All the more important points of interest in the field may be reached without difficulty by wagon, and outfits may be obtained at Flagstaff.OUTLINE OF THE REPORTThis report deals primarily with the volcanic phenomena of the region as determined in the field and laboratory. Chapter I contains a brief description of the geography of the field and Chapter II is devoted largely to the sedimentary formations and structure. The rest of the report Chapters III to VI—treats entirely of the various features of the volcanoes and igneous rocks, both individually and collectively. Detailed descriptions of the volcanoes and lava fields are given in Chapter III; the volcanic history of the region and its correlation with the general history of the surrounding country are presented in Chapter IV. These two chapters will presumably suffice for the general reader who may desire to become acquainted with the broader volcanic features of the region. Chapter V (Petrography) is devoted entirely to the detailed description of the individual igneous rocks of the region, as represented by a selected set of type specimens. In Chapter VI (Petrology

  8. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico (United States)

    Lenhardt, Nils; Götz, Annette E.


    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  9. New paleomagnetic data from the Djhavakheti Highland volcanic region (Lesser Caucasus): The Plio-Pleistocene Dashbashi sequence. (United States)

    María Sánchez-Moreno, Elisa; Calvo-Rathert, Manuel; Gogichaishvili, Avto; Vashakidze, Goga T.; Lebedev, Vladimir A.


    The Djhavakheti Highland volcanic region in the central sector of the Lesser Caucasus (South Georgia) is one of the largest neo-volcanic areas of the Caucasus. It displays an eruptive activity that provides long and continuous sequences of basaltic lava flows whose mineralogy is capable to record in a reliable way the direction and intensity of the Earth's magnetic field at the time of its cooling. Paleomagnetic and paleointensity data in this area, despite their interest, are scarce in comparison to the rest of the Alpine-Himalayan Belt. Therefore this study contributes to complete the knowledge of the magnetic field record in this region. Recently, a new sequence named Dashbashi was sampled in the volcanic Djhavakheti Highland region. The sequence consists of 16 basaltic lava flows divided into three sections of different ages which are separated by erosion surfaces. The first section (flows DB01 to DB06) has an approximate age of 3.25 ± 0.25 M.a., the second (flows DB07 to DB14), an estimated age of 2.45 ± 0.25 M.a. and lavas DB15 and DB16 yield a similar or lower age. Rock-magnetic experiments were performed to determine the carriers of remanent magnetisation, their thermal stability and grain size. These experiments included the measurement of thermomagnetic curves, hysteresis parameters and isothermal remanent magnetisation (IRM) acquisition curves. All experiments were performed at the UBU paleomagnetic laboratory with a Variable Field Translation Balance (VFTB). Three types of behavior have been differentiated: i) Type H: Reversible behaviour and a single ferromagnetic phase with high Curie temperature (Tc) close to 580°. This phase corresponds to magnetite/ Ti-poor titanomagnetite. ii) Type H*: Single high temperature ferromagnetic phase and more irreversible behaviour that distinguishes them Type H. iii) Type M: Two ferromagnetic phases, the high Tc present in all samples, and another medium Tc (≈400-500°C) titanomagnetite/titanomaghemite with lower

  10. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.


    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  11. Timing and duration of volcanism in the North Atlantic Igneous Province

    DEFF Research Database (Denmark)

    Storey, Michael; Duncan, Robert A.; Tegner, Christian


    We combine new and published 40Ar/39Ar age determinations from incremental heating experiments on whole rocks and mineral separates to assess the timing, duration and distribution of volcanic activity during construction of the North Atlantic Igneous Province. We use these ages together with volume...

  12. Page 1 Rb-Sr age of Malani volcanics 139 epeirogenic pulse of Pan ...

    Indian Academy of Sciences (India)

    epeirogenic pulse of Pan-African orogeny. The emplacement of younger granites in south India has also been correlated with the Pan-African thermo-tectonic episode. (Santosh et al 1994). 5. Conclusions. The felsic volcanics from Diri and Gurapratap Singh in Pali district of Rajasthan give a whole rock Rb-Srisochron age ...

  13. New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Fornari, Michel; Mothes, Patricia; van der Plicht, Johannes; Stix, J.


    Fieldwork, radiometric ((40)Ar/(39)Ar and (14)C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of

  14. Susceptibility of volcanic ash-influenced soil in northern Idaho to mechanical compaction (United States)

    Deborah S. Page-Dumroese


    Timber harvesting and mechanical site preparation can reduce site productivity if they excessively disturb or compact the soil. Volcanic ash-influenced soils with low undisturbed bulk densities and rock content are particularly susceptible. This study evaluates the effects of harvesting and site preparation on changes in the bulk density of ash-influenced forest soils...

  15. Search for underground openings for in situ test facilities in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O' Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.


    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

  16. Gusev Rocks Solidified from Lava (3-D) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  17. Gusev Rocks Solidified from Lava (False Color) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  18. Latitude SSTmax = 0 SSTmax = 10 SSTmax = 20

    Indian Academy of Sciences (India)

    . −10. −5. 0. 5. 10. V (m/s). −30. −20. −10. 0. 10. 20. 30. −10. −5. 0. 5. 10. Latitude. V (m/s). V Non−linear model. Non−linear advection term. Pressure gradient term. SSTmax = 0. SSTmax = 10. SSTmax = 20.

  19. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola


    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  20. Palaeointensity of the Plio-Pleistocene Boring Volcanic Field (United States)

    Lhuillier, Florian; Shcherbakov, Valeriy; Gilder, Stuart A.; Hagstrum, Jonathan T.


    The Boring Volcanic Field of the Pacific Northwest, USA, consists of more than 80 eruptive units ranging in age from 3200 to 60 ka. We carried out in this study absolute (Wilson + Thellier-Coe) and relative (pseudo-Thellier) palaeointensity experiments. We managed to determine robust palaeointensity estimates for 12 independent cooling units, whereas the pseudo-Thellier analysis yielded estimates for 47 out of the 137 investigated sites, giving an insight into the relative variability of the Earth's magnetic field during this period. We would like to compare the present results with the existing database for the last 3 myr and discuss their implications in terms of geodynamo process. From a methodological point of view, we would also like to comment on the reliability of the pseudo-Thellier method on volcanic rocks.

  1. Volcanology: Volcanic bipolar disorder explained (United States)

    Jellinek, Mark


    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  2. Hygroscopic properties of volcanic ash

    National Research Council Canada - National Science Library

    T. L. Lathem; P. Kumar; A. Nenes; J. Dufek; I. N. Sokolik; M. Trail; A. Russell


      Volcanic ash is hygroscopic Water vapor adsorption is the main proceess controlling ash hygroscopicity The results can be parameterized in a simple correlation for use in models Limited observational...

  3. Rocks Can Wow? Yes, Rocks Can Wow! (United States)

    Hardman, Sally; Luke, Sue


    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  4. Taos Plateau Volcanic Project: A Vehicle for Integration of Concepts in Igneous Petrology (United States)

    Henry, D.; Dutrow, B.


    Integrating concepts of igneous petrology is generally a challenge, but can be effective in the context of a project based on actual field, geochemical and geochronological data. The final lab project in the igneous portion of petrology involves a series of volcanic and associated rock samples that were collected from the Taos Plateau Volcanic Field, New Mexico, USA. Samples were collected over an area of several tens of km2 throughout the Plateau and represent a spatially and temporally correlated rock suite related to continental rifting. Rift-related magmatism encompasses much of the diversity of terrestrial magma types. Compositions of mafic magmas range from tholeiite to some of the most silica-undersaturated magmas found on the continents. Large effusive eruptions from fissures are typical of some rifts, whereas others may be dominated by central vent cones or even silicic caldera complexes. The injection of mantle-derived magma in extending crust may have a profound effect on the rheology of the crust and, therefore, the style of deformation associated with extension. Most of these aspects of rift volcanism and a wide range of mafic to silicic magma compositions are represented in the Rio Grande rift and the volcanic rocks of the Taos Plateau. In addition, much published data exists for whole rock and trace element geochemistry as well as geochronology. Rock samples and associated information are presented so that the student must integrate multiple lines of evidence, petrographic, petrologic, geochemical and geochronological data in a geospatial framework, to establish a geologic history of the region. The student must also draw on skills learned in mineralogy and structural geology furthering core geoscience education. Subsequent to the petrology course, the students visit the Taos Plateau Volcanic Field during their required field camp, thus reinforcing the linkage between the classroom setting and geologic reality.

  5. Monogenetic volcanic hazards and assessment (United States)

    Connor, C.; Connor, L. J.; Richardson, J. A.


    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  6. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin


    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  7. Late Jurassic–Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan




    The Sorachi Group, composed of Upper Jurassic ophiolite and Lower Cretaceous island-arc volcano-sedimentary cover, provides a record of Late Jurassic–Early Cretaceous sedimentation and volcanism in an island-arc setting off the eastern margin of the Asian continent. Stratigraphic changes in the nature and volume of the Sorachi Group volcanic and volcaniclastic rocks reveal four tectonic stages. These stages resulted from changes in the subduction direction of the Pacific oceanic plate. Stage ...

  8. Volcanic hazards and aviation safety (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,


    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  9. Los volcanes y los hombres


    García, Carmen


    Desde las entrañas de la tierra, los volcanes han creado la atmósfera, el agua de los océanos, y esculpido los relieves del planeta: son, pues, los zahoríes de la vida. Existen volcanes que los hombres explotan o cultivan, y otros sobre los cuales se han construido observatorios en los que se llevan a cabo avanzadas investigaciones científicas.

  10. Easy Volcanic Aerosol (EVA v1.0: an idealized forcing generator for climate simulations

    Directory of Open Access Journals (Sweden)

    M. Toohey


    Full Text Available Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  11. High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica (United States)

    Osipov, E. Y.; Khodzher, T. V.; Golobokova, L. P.; Onischuk, N. A.; Lipenkov, V. Y.; Ekaykin, A. A.; Shibaev, Y. A.; Osipova, O. P.


    Ion chromatography measurements of 1730 snow and firn samples obtained from three short cores and one pit in the Vostok station area, East Antarctica, allowed for the production of the combined volcanic record of the last 900 years (AD 1093-2010). The resolution of the record is 2-3 samples per accumulation year. In total, 24 volcanic events have been identified, including seven well-known low-latitude eruptions (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452, El Chichon 1259) found in most of the polar ice cores. In comparison with three other East Antarctic volcanic records (South Pole, Plateau Remote and Dome C), the Vostok record contains more events within the last 900 years. The differences between the records may be explained by local glaciological conditions, volcanic detection methodology, and, probably, differences in atmospheric circulation patterns. The strongest volcanic signal (both in sulfate concentration and flux) was attributed to the AD 1452 Kuwae eruption, similar to the Plateau Remote and Talos Dome records. The average snow accumulation rate calculated between volcanic stratigraphic horizons for the period AD 1260-2010 is 20.9 mm H2O. Positive (+13%) anomalies of snow accumulation were found for AD 1661-1815 and AD 1992-2010, and negative (-12%) for AD 1260-1601. We hypothesized that the changes in snow accumulation are associated with regional peculiarities in atmospheric transport.

  12. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah (United States)

    Steven, Thomas A.


    PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about

  13. Rock Slope Design Criteria (United States)


    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  14. Rock slope design guide. (United States)


    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  15. The Rock Cycle (United States)

    Singh, Raman J.; Bushee, Jonathan


    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  16. Evidence for the Jurassic arc volcanism of the Lolotoi complex, Timor: Tectonic implications (United States)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won


    We report the first sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon ages with geochemical data from metavolcanic rocks in the Lolotoi complex, Timor. The zircon U-Pb ages of two andesitic metavolcanic rocks yield a permissible range of the Middle Jurassic extrusion from 177 Ma to 174 Ma. The geochemical data indicate that the origins of the basaltic and andesitic metavolcanic rocks are products of prolonged oceanic crust and arc magmatism, respectively. They are originated from partial melting of lherzolites, providing an insight into the tectonic evolution of the forearc basements of the Banda volcanic arc. Thus, parts of the Banda forearc basement are pieces of allochthonous oceanic basalts and Jurassic arc-related andesites accreted to the Sundaland during the closure of Mesotethys, and are incorporated later into the Great Indonesian Volcanic Arc system along the southeastern margin of the Sundaland.

  17. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate (United States)

    Jones, T. D.; Davies, D. R.; Campbell, I. H.; Iaffaldano, G.; Yaxley, G.; Kramer, S. C.; Wilson, C. R.


    Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth’s core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent azimuthal change in Pacific plate motion exposes high- and low-pressure melt products as geographically distinct volcanoes, explaining the simultaneous emergence of double-track volcanism across the Pacific; and finally, secondary pyroxenite, which is formed as eclogite melt reacts with peridotite, dominates the low-pressure melt region beneath Loa-track volcanism, yielding the systematic geochemical differences observed between Loa- and Kea-type lavas. Our results imply that the formation of double-track volcanism is transitory and can be used to identify and place temporal bounds on plate-motion changes.

  18. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner (United States)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert


    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.


    Directory of Open Access Journals (Sweden)

    Cevdet BOZKUŞ


    Full Text Available Metamorphics of Paleozoıc, ophiolitics of Upper Cretaceous and continental sediments and volcanics of Tertıary-Quaternary are out cropped in the investigated area. The most common rock unit is Upper Miocene Pliocene aged Karakurt volcanics which is of basaltic lawa and tuff. The most important geomorphological unit in the area is the cornice of Aras valley in E - W direction and high landforms around it. Aras river is developed its bed by cutting basaltic and tuffaceous volcanics placed horizontally. Structure plateau and conical shaped volcanic hills are located at N - NW of valley. Strike-slip faults in E - W direction (Horasan Fault Zone control the forming of the Aras river. The volcanism which started at Late Miocene and finished at Quaternary is alcali and calcalkali in character. This volcanic activity has cansed some higt major lanforms like Süphandağ, Kesedağ and Aladağ. Volcanism also played major role to form recent land forms and river net.

  20. Landscape evolution within a retreating volcanic arc, Costa Rica, Central America (United States)

    Marshall, Jeffrey S.; Idleman, Bruce D.; Gardner, Thomas W.; Fisher, Donald M.


    Subduction of hotspot-thickened seafloor profoundly affects convergent margin tectonics, strongly affecting upper plate structure, volcanism, and landscape evolution. In southern Central America, low-angle subduction of the Cocos Ridge and seamount domain largely controls landscape evolution in the volcanic arc. Field mapping, stratigraphic correlation, and 40Ar/39Ar geochronology for late Cenozoic volcanic rocks of central Costa Rica provide new insights into the geomorphic response of volcanic arc landscapes to changes in subduction parameters (slab thickness, roughness, dip). Late Neogene volcanism was focused primarily along the now-extinct Cordillera de Aguacate. Quaternary migration of the magmatic front shifted volcanism northeastward to the Caribbean slope, creating a new topographic divide and forming the Valle Central basin. Stream capture across the paleo Aguacate divide led to drainage reversal toward the Pacific slope and deep incision of reorganized fluvial networks. Pleistocene caldera activity generated silicic ash flows that buried the Valle Central and descended the Tárcoles gorge to the Orotina debris fan at the coast. Growth of the modern Cordillera Central accentuated relief along the new divide, establishing the Valle Central as a Pacific slope drainage basin. Arc migration, relocation of the Pacific-Caribbean drainage divide, and formation of the Valle Central basin resulted from slab shallowing as irregular, hotspot-thickened crust entered the subduction zone. The geomorphic evolution of volcanic arc landscapes is thus highly sensitive to changes in subducting plate character.

  1. Physical properties and petrologic description of rock samples from an IOCG mineralized area in the northern Fennoscandian Shield, Sweden

    DEFF Research Database (Denmark)

    Sandrin, Alessandro; Edfelt, Å.; Waight, Tod Earle


    The Tjårrojåkka Fe-Cu prospect in northern Sweden is considered an example of a Fe-oxide Cu-Au (IOCG) deposit and is hosted in metamorphosed Paleoproterozoic volcanic and intrusive rocks. Rock samples from 24 outcrops were collected for petrophysical analysis (magnetic susceptibility, remanent ma...

  2. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada (United States)

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.


    The Bodie Hills is a ~40 by ~30 kilometer volcanic field that straddles the California-Nevada state boundary between Mono Lake and the East Walker River. Three precious metal mining districts and nine alteration zones are delineated in Tertiary-Quaternary volcanic and Mesozoic granitic and metamorphic rocks that comprise the volcanic field. Cumulative production from the mining districts, Bodie, Aurora, and Masonic, is 3.4 million ounces of gold and 28 million ounces of silver. Small amounts of mercury were produced from the Potato Peak, Paramount-Bald Peak, and Cinnabar Canyon-US 395 alteration zones; a native sulfur resource in the Cinnabar Canyon-US 395 alteration zone has been identified by drilling. There are no known mineral resources in the other six alteration zones, Red Wash-East Walker River, East Brawley Peak, Sawtooth Ridge, Aurora Canyon, Four Corners, and Spring Peak. The mining districts and alteration zones formed between 13.4 and 8.1 Ma in predominantly ~15–9 Ma volcanic rocks of the Bodie Hills volcanic field. Ages of hydrothermal minerals in the districts and zones are the same as, or somewhat younger than, the ages of volcanic host rocks.

  3. My Pet Rock (United States)

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie


    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  4. Volcanic glasses, their origins and alteration processes (United States)

    Friedman, I.; Long, W.


    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  5. Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw (United States)

    Lechleitner, Franziska A.; Breitenbach, Sebastian F. M.; Rehfeld, Kira; Ridley, Harriet E.; Asmerom, Yemane; Prufer, Keith M.; Marwan, Norbert; Goswami, Bedartha; Kennett, Douglas J.; Aquino, Valorie V.; Polyak, Victor; Haug, Gerald H.; Eglinton, Timothy I.; Baldini, James U. L.


    The presence of a low- to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low- to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low- to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.

  6. Late Cretaceous volcanism in south-central New Mexico: Conglomerates of the McRae and Love Ranch Formations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman-Fahey, J.L.; McMillan, N.J.; Mack, G.H.; Seager, W.R. (New Mexico State Univ., Las Cruces, NM (United States). Dept. of Geological Sciences)


    Evidence to support Late Cretaceous volcanism in south central New Mexico is restricted to a small area of 75-Ma-old andesitic rocks at Copper Flats near Hillsboro, and volcanic clasts in the McRae (Late Cretaceous/Paleocene ) and Love Ranch (Paleocene/Eocene). Formations located in the Jornada del Muerto basin east and northeast of the Caballo Mountains. Major and trace element data and petrographic analysis of 5 samples from Copper Flats lavas and 40 samples of volcanic clasts from the McRae and Love Ranch conglomerates will be used to reconstruct the Cretaceous volcanic field. The McRae Formation consists of two members: the lower Jose Creek and the upper Hall Lake. The lowermost Love Ranch Formation is unconformable in all places on the Hall Lake Member. Stratigraphic variations in clast composition from volcanic rocks in the lower Love Ranch Formation to Paleozoic and Precambrian clasts in the upper Love Ranch Formation reflect the progressive unroofing of the Laramide Rio Grande Uplift. Volcanic clasts in the McRae and Love Ranch Formations were derived from the west and south of the depositional basin, but the source area for McRae clasts is less well constrained. Stratigraphic, chemical, and petrographic data will be used to reconstruct the volcanic complex and more clearly define magma genesis and metasomatism associated with Laramide deformation.

  7. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin


    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  8. A Geochemical Study of Postshield Volcanism and the Generation of Trachyte on West Maui, HI (United States)

    Trenkler, M. L.; Cousens, B.


    The West Maui Volcano provides a complete evolutionary history of a fully developed Hawaiian volcano described by three main phases: (1) the tholeiitic shield-building stage of the Wailuku Basalts; (2) the postshield alkalic stage Honolua Volcanics; and (3) the rejuvenated stage Lahaina Volcanics of silica-undersaturated rocks. On West Maui, the postshield Honolua Volcanics erupted highly differentiated rocks (benmoreite to trachyte), with little to no intermediate alkalic rocks, upon cessation of tholeiitic shield building. Utilizing K-Ar dated samples, we present 35 new major and trace element analyses of shield, postshield, and rejuvenated stage lavas on West Maui in an attempt to identify the mechanisms present during evolution from basalt to trachyte over a defined temporal and spatial range. Wailuku basalts are dominated by olivine fractionation, whereas decreasing Sc and CaO/Al2O3 with increasing degree of differentiation indicate Honolua benmoreites and trachytes heavily fractionated clinopyroxene. Major element trends are consistent with crystallization of titano-magnetite, potassium feldspar, and minor apatite. Trace element patterns of the Honolua Volcanics are uniform with strong enrichments in LILE and the LREEs indicating fractionation and lower degrees of partial melting compared to Wailuku basalts. The HREEs are enriched relative to shield basalts with Gd/Yb values of 2.0-2.8 as a result of high degrees of fractionation and the presence of crystalizing apatite. Major and trace element trends follow the evolution of the postshield Hawi Volcanics of Kohala, where alkalic basalts differentiate up to trachyte. Compared to shield lavas, the Honolua Volcanics represent a drastic decrease in magma supply rates, infrequent eruptions, and magma residence times long enough to produce highly differentiated magmas with no significant mafic magma input.

  9. Electrodynamics of the Low-Latitude Ionosphere. (United States)

    Riley, Peter

    We have undertaken a study of the low and mid latitude ionospheric electric field pattern, during both magnetospherically quiet and active periods. Our analysis can be conveniently split into two parts. i.In an effort to study the penetration of magnetospheric electric fields to low latitudes, we have compared Jicamarca F-region vertical drifts for 10 radar-observation periods with the auroral boundary index (ABI). The ABI is the latitude of the equatorward edge of the diffuse aurora at local midnight, as estimated from precipitating-electron fluxes measured from DMSP spacecraft. The periods occurred in the interval January 1984 to June 1991 inclusive and each lasted between 2 and 5 days. We focus on periods that occurred in September 1986, March 1990, and June 1991. In the post-midnight sector, where we expect the penetration to be strongest, we found many examples of correlation; specifically, associated with an ionospheric updraft (implying an eastward electric field) is a strong poleward motion of the auroral boundary. However, we also found a significant number of cases where there was little or no correlation. We conclude that there is only mediocre agreement between the observed Sudden Postmidnight Ionospheric Events (SPIEs) and the ABI. These SPIEs have also been compared with other magnetospheric parameters, namely D_ {rm st} IMF B_{z } and the polar cap potential. D_ {rm st} showed significantly better correlation with the SPIEs. We summarize the proposed models for SPIEs and compare their predictions with the data, concluding that no single model can account for all events. While it is clear that some of these SPIEs can be explained in terms of direct penetration of magnetospheric electric fields, we suggest that the remainder may be due to magnetospherically-generated neutral wind effects. ii. We have constructed a model of the low- and mid-latitude potential distribution, applicable for both quiet and active times. We use the Mass

  10. Paleomagnetism of the Late Triassic Hound Island Volcanics: Revisited (United States)

    Haeussler, Peter J.; Coe, Robert S.; Onstott, T.C.


    The collision and accretion of the Alexander terrane profoundly influenced the geologic history of Alaska and western Canada; however, the terrane's displacement history is only poorly constrained by sparse paleomagnetic studies. We studied the paleomagnetism of the Hound Island Volcanics in order to evaluate the location of the Alexander terrane in Late Triassic time. We collected 618 samples at 102 sites in and near the Keku Strait, Alaska, from the Late Triassic Hound Island Volcanics, the Permian Pybus Formation, and 23-Ma gabbroic intrusions. We found three components of magnetization in the Hound Island Volcanics. The high-temperature component (component A) resides in hematite and magnetite and was found only in highly oxidized lava flows in a geographically restricted area. We think it is primary, or acquired soon after eruption of the lavas, principally because the directions pass a fold test. The paleolatitude indicated by this component (19.2° ± 10.3°) is similar to those determined for various portions of Wrangellia, consistent with the geologic interpretation that the Alexander terrane was with the Wrangellia terrane in Late Triassic time. We found two overprint directions in the Hound Island Volcanics. Component B was acquired 23 m.y. ago due to intrusion of gabbroic dikes and sills. This interpretation is indicated by the similarity of upper-hemisphere directions in the Hound Island Volcanics to those in the gabbro. Component C, found in both the Hound Island Volcanics and the Permian Pybus Formation, is oriented northeast and down, fails a regional fold test, and was acquired after regional deformation around 90 to 100 Ma. This overprint direction yields a paleolatitude similar to, but slightly higher than, slightly older rocks from the Coast Plutonic Complex, suggesting that the Alexander terrane was displaced 17° in early Late Cretaceous time. The occurrence of these two separate overprinting events provides a satisfying explanation of the

  11. Investigations of the geochemical controls on anomalous arsenic enrichment in the Santiago Peak Volcanics of Southern California: implications for arsenic distribution in volcanic arc systems (United States)

    Johnston, E. C.; Pollock, M.; Cathcart, E. M.; AlBashaireh, A.; O'shea, B. M.


    The Santiago Peak Volcanics (SPV) of Southern CA and Northern Baja CA, Mexico are remnants of a Cretaceous subaerial volcanic arc system that underwent greenschist facies metamorphism contemporaneous with volcanism. Observed SPV exposed at the surface of Black Mountain Open Space Park (San Diego, CA) exhibit anomalous arsenic (As) enrichment (100 - 480,000 ppm) up to five orders of magnitude greater than average for igneous rocks (1.5 ppm). We hypothesize that these rocks underwent localized syn-volcanic hydrothermal alteration along a highly fractured zone that today trends between N10°W and N20°W, leading to anomalous As enrichment on the spatial scale of tens of meters. We suspect that such As has been further mobilized by modern water-rock interactions. Using standard geochemical techniques (e.g. XRD, XRF, EDX) and mass balance analyses, we aim to (1) summarize the extent of As enrichment in altered SPV, and (2) present an integrated view of the interactions between ancient hydrothermal volcanic arc processes, surficial weathering, and observed As anomalies. Alteration textures of samples range from partially altered phenocrysts (i.e. minimally altered) to massive hydrothermal replacement, in which virtually all primary phases are altered to new hydrothermal minerals such as epidote, Fe-rich chlorite, and sericite (i.e. highly altered). Highly altered rocks contain average As concentrations (mean = 37,680 +/- 15,396 ppm, n = 23) >10,000 times that of minimally altered SPV (mean = 26 +/- 6 ppm As, n = 19). In some rocks, As-rich iron oxide and gypsum containing up to 900 ppm As are present as surficial rinds, suggesting modern day remobilization of As from hydrothermal host minerals, like arsenopyrite. These findings indicate that such As is highly soluble and, therefore, may be further mobilized by physical and chemical weathering. No other trace metals (e.g. Pb, Cu, Ag, Au) are consistently enriched above upper-crustal averages, and As does not always occur

  12. Felsic volcanism in a basic shield (El Hierro, Canary Islands). Implications in terms of volcanic hazards. (United States)

    Pedrazzi, Dario; Becerril Carretero, Laura; Martí Molist, Joan; Meletlidis, Stavros; Galindo Jiménez, Inés


    El Hierro, the southwesternmost and smallest island of the Canary Archipelago, is a complex basaltic shield volcano characterized by mainly effusive volcanism with both Strombolian and Hawaiian activity. Explosive felsic volcanism is not a common feature of the archipelago and, so far, it has only been reported on the central islands of Tenerife and Gran Canaria, where it has been responsible for the formation of large central volcanic complexes. The presence of felsic rocks on the other islands of the archipelago and specifically on El Hierro is mostly restricted to subvolcanic intrusions and a few lava flows, generally associated with the oldest parts of the islands. We hereby report the presence of a trachytic pumice deposit on the island of El Hierro, referred to here as the Malpaso Member. A detailed stratigraphic, lithological, and sedimentological study was carried out on the deposits of this explosive episode of felsic composition, which is the only one found on the Canary Islands apart from those of Gran Canaria and Tenerife. Four different subunits were identified on the basis of their lithological and granulometrical characteristics. The products of the eruption correspond to a single eruptive event and cover an area of about 13 km2. This deposit originated from a base-surge-type explosive eruption with a subsequent radial emplacement of dilute PDC currents, was emplaced from the vent that would have been located in a similar position to the volcano of Tanganasoga. The low vesicularity of juvenile fragments and the morphological characteristics of the fine particles, as well as the high proportion of lithic fragments and the ash-rich nature of the deposit, suggest that magma/water interaction controlled the dynamics of the eruption. This study demonstrates that magmas from El Hierro could have the potential for producing an explosive eruption, in an environment in which the majority of the eruptions are basaltic and effusive in nature. Bearing in mind

  13. The use of luminescence for dating young volcanic eruptions (United States)

    Schmidt, Christoph; Schaarschmidt, Maria; Kolb, Thomas; Richter, Daniel; Tchouankoue, Jean Pierre; Zöller, Ludwig


    Reliable chronologies of volcanic eruptions are vital for hazard analysis, but dating of Holocene and Late Pleistocene volcanism poses a major challenge. Established techniques such as 40Ar/39Ar are often problematic due to the long half-life of 40K or the absence of datable materials. In this context, luminescence dating methods are an alternative since they are applicable to Earth's most common minerals and to a range of different datable events. Luminescence signal resetting during volcanic activity can be caused by heat (lava, contact to lava), light (disintegration of ejecta) or (temperature-assisted) pressure in the course of phreatomagmatic explosions. While volcanogenic minerals assembling basalt or other volcanic rocks are less suitable for luminescence dating due to so-called anomalous fading, the signal of volcanogenically heated or fragmented country rock actually relates to the time of eruption as well and further provides reproducible results. This contribution aims to illustrate the potential of this latter approach by presenting two case studies. The first refers to two Late Pleistocene scoria cones in the Westeifel Volcanic Field (WEVF), Germany, of which the Wartgesberg locality was dated by 40Ar/39Ar and 14C, while the closeby Facher Höhe is chronologically poorly constrained (Mertz et al. 2015; pers comm. Luise Eichhorn, 2016). The former locality allows testing the accuracy of various luminescence techniques (thermoluminescence, TL, optically stimulated luminescence, OSL, infrared stimulated luminescence, IRSL) applied to quartz and feldspar against independent age control. The other study site is the monogenetic Lake Nyos Maar as part of the Cameroon Volcanic Line, having killed 1,700 people in 1986 following the release of large amounts of CO2. Previous dating efforts of the last explosive activity are inconsistent and yielded age estimates ranging from 400 a (14C) to >350 ka (K-Ar) (Aka et al. 2008). Our results demonstrate that multiple

  14. Geochemistry of the st. Catherine basement rocks, Sinai, Egypt


    Abdel Khalek, M. L. [لطفي عبدالخالق; Oweiss, K. A.; Abdel Tawab, M. A.; Abdel Maksoud, M. A.


    St. Catherine area, dominated by basement rocks encompass old continental gneisses, metasediments, greenstone belt, calc-alkaline granites (G-II-granites), rift-related volcanies (RV), and anorogenic within plate granites (G-III-granites). Comparative geoehemieal study has been carried out between the G-II-, and the G-III-granites and between the SV-, and RV-volcanics. The geoehemieal criteria strongly confirm island arc environment for the SV, and suture related environment for the G-II-g...

  15. Identifying Alteration and Water on MT. Baker, WA with Geophysics: Implications for Volcanic Landslide Hazards (United States)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P.; Minsley, B. J.


    Helicopter magnetic and electromagnetic (HEM) data, along with rock property measurements, local ground-based gravity, time domain electromagnetic (TEM) and nuclear magnetic resonance (NMR) data help identify alteration and water-saturated zones on Mount Baker, Washington. Hydrothermally altered rocks, particularly if water-saturated, can weaken volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. At Mount Baker volcano, collapses of hydrothermally altered rocks from the edifice have generated numerous debris flows that constitute their greatest volcanic hazards. Critical to quantifying this hazard is knowledge of the three-dimensional distribution of pervasively altered rock, shallow groundwater and ice that plays an important role in transforming debris avalanches to far traveled lahars. The helicopter geophysical data, combined with geological mapping and rock property measurements, indicate the presence of localized zones of less than 100 m thickness of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. New stochastic inversions of the HEM data indicate variations in resistivity in inferred perched aquifers—distinguishing between fresh and saline waters, possibly indicating the influence of nearby alteration and/or hydrothermal systems on water quality. The new stochastic results better resolve ice thickness than previous inversions, and also provide important estimates of uncertainty on ice thickness and other parameters. New gravity data will help constrain the thickness of the ice and alteration. Nuclear magnetic resonance data indicate that the hydrothermal clays contain 50% water with no evidence for water beneath the ice. The HEM data identify water-saturated fresh volcanic rocks from the surface to the detection limit ( 100 m) over the entire summit of Mt. Baker. Localized time domain EM soundings indicate that

  16. Geochemical Signatures of Potassic to Sodic Adang Volcanics, Western Sulawesi: Implications for Their Tectonic Setting and Origin

    Directory of Open Access Journals (Sweden)

    Godang Shaban


    Full Text Available DOI:10.17014/ijog.3.3.195-214The Adang Volcanics represent a series of (ultra potassic to sodic lavas and tuffaceous rocks of predominantly trachytic composition, which forms the part of a sequence of Late Cenozoic high-K volcanic and associated intrusive rocks occurring extensively throughout Western Sulawesi. The tectonic setting and origin of these high-K rocks have been the subject of considerable debates. The Adang Volcanics have mafic to mafitic-intermediate characteristics (SiO2: 46 - 56 wt% and a wide range of high alkaline contents (K2O: 0.80 - 9.08 %; Na2O: 0.90 - 7.21 % with the Total Alkali of 6.67 - 12.60 %. Al2O3 values are relatively low (10.63 - 13.21 % and TiO2 values relatively high (1.27 - 1.91 %. Zr and REE concentrations are also relatively high (Zr: 1154 - 2340 ppm; Total REE (TREY = TRE: 899.20 - 1256.50 ppm; TRExOy: 1079.76 - 1507.97 ppm, with an average Zr/TRE ratio of ~ 1.39. The major rock forming minerals are leucite/pseudoleucite, diopside/aegirine, and high temperature phlogopite. Geochemical plots (major oxides and trace elements using various diagrams suggest the Adang Volcanics formed in a postsubduction, within-plate continental extension/initial rift tectonic setting. It is further suggested magma was generated by minor (< 0.1 % partial melting of depleted MORB mantle material (garnet-lherzolite with the silicate melt having undergone strong metasomatism. Melt enrichment is reflected in the alkaline nature of the rocks and geochemical signatures such as Nb/Zr > 0.0627 and (Hf/SmPM > 1.23. A comparison with the Vulsini ultrapotassic volcanics from the Roman Province in Italy shows both similarities (spidergram pattern indicating affinity with Group III ultrapotassics volcanics and differences (nature of mantle metasomatism.

  17. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate

    DEFF Research Database (Denmark)

    Jones, David T; Davies, D. R.; Campbell, I. H.


    Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth's core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub...... of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent...

  18. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China (United States)

    Yan, Lili; He, Zhenyu; Beier, Christoph; Klemd, Reiner


    The Yunshan caldera complex is part of a larger scale, ca. 2000-km-long volcanic-plutonic complex belt in the coastal region of SE China. The volcanic rocks in the caldera complex are characterized by high-silica peraluminous and peralkaline rhyolites associated with an intracaldera porphyritic quartz monzonite pluton. In this study, we present zircon U-Pb, Hf and stable O isotopes along with geochemical data of both volcanic and plutonic rocks to evaluate the potential petrogenetic link between volcanism and plutonism in the Yunshan caldera complex. SHRIMP zircon U-Pb geochronology of both volcanic and plutonic rocks yields almost identical ages ranging from 95.6 to 93.1 Ma. The peraluminous and peralkaline rhyolites show negative anomalies of Sr, P, Ti and Ba and to a lesser extent negative Nb and Ta anomalies, along with positive Rb anomalies and `seagull-like' rare earth element (REE) patterns with negative Eu anomalies and low (La/Yb)N ratios. The intracaldera porphyritic quartz monzonite displays minor negative Rb, Nb, Ta, Sr, P and Ti anomalies and a positive Ba anomaly with REE patterns characterized by relatively high (La/Yb)N ratios and lack significant Eu anomalies. The peraluminous and peralkaline rhyolites and the porphyritic quartz monzonite exhibit consistent ɛ Nd( t) of - 3.7 to - 2.2 and display zircon ɛ Hf( t) values of - 2.1 to 3.7. They further have similar, mantle-like, zircon oxygen isotopic compositions (δ18OVSMOW mainly = 4.63 to 5.76‰). We interpret these observations to be in agreement with a crystal mush model in which the parental magma of the volcanic and plutonic rocks of the Yunshan caldera complex was likely produced by interaction of asthenosphere melts with subduction-influenced enriched mantle wedge. The peralkaline rhyolites are interpreted to represent the most differentiated magma that has subsequently experienced significant fluid-melt interactions, whereas the porphyritic quartz monzonite may be representative of the

  19. Sismos y volcanes en Colombia


    Duque Escobar, Gonzalo


    Notas sobre las zonas de amenaza sísmica y principales fuentes sísmicas de Colombia, y los segmentos volcánicos de los Andes colombianos con los principales volcanes activos, de conformidad con los estudios del Ingeominas. Anexos a títulos con sus correspondientes enlaces, para ofrecer artículos relacionados con sismos y volcanes, en los que se consideran aspectos de interés para la gestión del riesgo sísmico y volcánico en Colombia

  20. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park (United States)

    Christiansen, Robert L.; Blank, H. Richard


    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  1. Petrogenesis of Quaternary Shoshonitic Volcanism in NE Iran (Ardabil: Implication for Postcollisional Magmatism

    Directory of Open Access Journals (Sweden)

    Habib Shahbazi Shiran


    Full Text Available Trachyandesites, trachytes, andesites, and pyrocalstic rocks, with shoshonitic signature, are the main Quaternary volcanic rocks in the Sabalan region (Ardabil. Plagiocalse, K-feldspar, biotite associated with clinopyroxene, and glass are the main constituents of these lavas. Plagioclases are andesine to labradorite while clinopyroxenes have augitic composition. The Sabalan volcanic rocks show enrichment in LREEs (relative to HREEs and are characterized by enrichment in LILEs and depletion in HFSEs. Petrological observations, along with rare earth and trace elements geochemistry, suggest shoshonitic signature for Sabalan lavas. This signature highlights derivation from a subduction-related source. The Sabalan volcanic rocks are isotopically characterized by derivation from an enriched mantle source with a tendency to plot in the fields defined by island-arc basalts (IAB and OIBs (in εNd versus 87Sr/86Sr diagram. The geochemical and isotopic characteristics of the Sabalan lavas suggest that their magma has been issued via low degree partial melting of a subduction-metasomatized continental lithospheric mantle. The formation of these lavas is related to slab steepening and breakoff in a postcollisional regime.

  2. Geophysical setting of western Utah and eastern Nevada between latitudes 37°45′ and 40°N (United States)

    Mankinen, Edward A.; McKee, Edwin H.; Tripp, Bryce; Krahulec, Ken; Jordan, Lucy


    Gravity and aeromagnetic data refine the structural setting for the region of western Utah and eastern Nevada between Snake and Hamlin Valleys on the west and Tule Valley on the east. These data are used here as part of a regional analysis. An isostatic gravity map shows large areas underlain by gravity lows, the most prominent of which is a large semi-circular low associated with the Indian Peak caldera complex in the southwestern part of the study area. Another low underlies the Thomas caldera in the northeast, and linear lows elsewhere indicate low-density basin-fill in all major north-trending graben valleys. Gravity highs reflect pre-Cenozoic rocks mostly exposed in the mountain ranges. In the Confusion Range, however, the gravity high extends about 15 km east of the range front to Coyote Knolls, indicating a broad pediment cut on upper Paleozoic rocks and covered by a thin veneer of alluvium. Aeromagnetic highs sharply delineate Oligocene and Miocene volcanic rocks and intracaldera plutons associated with the Indian Peak caldera complex and the Pioche–Marysvale igneous belt. Jurassic to Eocene plutons and volcanic rocks elsewhere in the study area, however, have much more modest magnetic signatures. Some relatively small magnetic highs in the region are associated with outcrops of volcanic rock, and the continuation of those anomalies indicates that the rocks are probably extensive in the subsurface. A gravity inversion method separating the isostatic gravity anomaly into fields representing pre-Cenozoic basement rocks and Cenozoic basin deposits was used to calculate depth to basement and estimate maximum amounts of alluvial and volcanic fill within the valleys. Maximum depths within the Indian Peak caldera complex average about 2.5 km, locally reaching 3 km. North of the caldera complex, thickness of valley fill in most graben valleys ranges from 1.5 to 3 km thick, with Hamlin and Pine Valleys averaging ~3 km. The main basin beneath Tule Valley is

  3. Post-caldera volcanism: In situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera (United States)

    Bindeman, I.N.; Valley, J.W.; Wooden, J.L.; Persing, H.M.


    The Yellowstone Plateau volcanic field, the site of some of the largest known silicic volcanic eruptions, is the present location of NE-migrating hotspot volcanic activity. Most volcanic rocks in the Yellowstone caldera (0.6 Ma), which formed in response to the climactic eruption of 1000 km3 of Lava Creek Tuff (LCT), have unusually low oxygen isotope ratios. Ion microprobe analysis of both U-Pb age and ??18O in zircons from these low-??18O lavas reveals evidence of complex inheritance and remelting. A majority of analyzed zircons from low-??18O lavas erupted inside the Yellowstone caldera have cores that range in age from 2.4 to 0.7 Ma, significantly older than their eruption ages (0.5-0.4 Ma). These ages and the high-??18O cores indicate that these lavas are largely derived from nearly total remelting of normal-??18O Huckleberry Ridge Tuff (HRT) and other pre-LCT volcanic rocks. A post-HRT low-??18O lava shows similar inheritance of HRT-age zircons. The recycling of volcanic rocks by shallow remelting can change the water content and eruptive potential of magma. This newly proposed mechanism of intracaldera volcanism is best studied by combining in situ analysis of oxygen and U-Pb isotope ratios of individual crystals. ?? 2001 Elsevier Science B.V. All rights reserved.

  4. Post-caldera volcanism: in situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera (United States)

    Bindeman, Ilya N.; Valley, John W.; Wooden, J. L.; Persing, Harold M.


    The Yellowstone Plateau volcanic field, the site of some of the largest known silicic volcanic eruptions, is the present location of NE-migrating hotspot volcanic activity. Most volcanic rocks in the Yellowstone caldera (0.6 Ma), which formed in response to the climactic eruption of 1000 km3 of Lava Creek Tuff (LCT), have unusually low oxygen isotope ratios. Ion microprobe analysis of both U-Pb age and δ18O in zircons from these low-δ18O lavas reveals evidence of complex inheritance and remelting. A majority of analyzed zircons from low-δ18O lavas erupted inside the Yellowstone caldera have cores that range in age from 2.4 to 0.7 Ma, significantly older than their eruption ages (0.5-0.4 Ma). These ages and the high-δ18O cores indicate that these lavas are largely derived from nearly total remelting of normal-δ18O Huckleberry Ridge Tuff (HRT) and other pre-LCT volcanic rocks. A post-HRT low-δ18O lava shows similar inheritance of HRT-age zircons. The recycling of volcanic rocks by shallow remelting can change the water content and eruptive potential of magma. This newly proposed mechanism of intracaldera volcanism is best studied by combining in situ analysis of oxygen and U-Pb isotope ratios of individual crystals.

  5. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C. [Univ. of Nevada, Reno, NV (United States)] [and others


    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  6. CH stars at High Galactic Latitudes


    Goswami, Aruna


    In the present work we report on several CH stars identified in a sample of Faint High Latitude Carbon stars from Hamburg survey and discuss their medium resolution spectra covering a wavelength range 4000 - 6800 \\AA . Estimation of the depths of bands (1,0) $^{12}$C$^{12}$C ${\\lambda}$4737 and (1,0) $^{12}$C$^{13}$C ${\\lambda}$4744 in these stars indicate isotopic ratio $^{12}$C/$^{13}$C ${\\sim}$ 3, except for a few exceptions; these ratios are consistent with existing theories of CH stars e...

  7. Determination of rock depth using artificial intelligence techniques


    Viswanathan, R.; Samui, Pijush


    This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR), Least Square Support Vector Machine (LSSVM) and Extreme Learning Machine (ELM), for prediction of rock depth (d) at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce sp...

  8. Volcanic Winter and Cold Tropical Uplands in Late Paleozoic Pangaea: A Thought Experiment (United States)

    Heavens, N. G.; Soreghan, G. S.


    The Late Paleozoic Ice Age (LPIA) was the Earth's most recent icehouse climate prior to the Cenozoic. At present, it is generally accepted that the latitudinal gradient in climate conditions was similar to the present icehouse. High-latitude ice sheets occasionally advanced into the mid-latitudes and retreated once more, but the tropics were warmer or similar in climate to the tropics during the Plio-Pleistocene. Recently, this idea has been challenged by sedimentological evidence of glaciation and dry weathering in upland areas of the tropics as well as geochemical evidence for cold tropical oceans that is consistent with the sedimentological evidence. These observations challenge current qualitative and quantitative models of Late Paleozoic climate, implying tropical climate may have been up to 15 degrees Celsius colder than the present day at some point during the LPIA. Here we consider whether the disparity between evidence for equatorial cold in Pangaea and current models can be explained by explosive volcanic activity associated with events such as the Hercynian orogen or the Kennedy-Connors-Auburn Silicic Large Igneous Province. We find that the necessary radiative forcing for glaciation in low-latitude upland areas could be generated by explosive volcanic activity one to two orders of magnitude greater than the present day, perturbing a baseline climate with mid-latitude glaciation in both hemispheres. Such a forcing would have potentially significant impacts on the carbon cycle and ice sheet dynamics, but these effects are not likely to be unambiguously detectable in the record. Instead, we argue that measurements of mass independent fractionation of S in lacustrine sediments or other deposits sampling meteoric water would be the least ambiguous test of a hypothetical volcanic driver for late Paleozoic cold. This work was supported in part by the National Science Foundation, EAR-1337463.

  9. Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. (United States)

    Fabricio Neta, Adelazil de Brito; do Nascimento, Clístenes Williams Araújo; Biondi, Caroline Miranda; van Straaten, Peter; Bittar, Sheila Maria Bretas


    Fernando de Noronha is a small volcanic archipelago in the Southern Atlantic, some 350 km NE of the city of Natal in NE Brazil. These remote volcanic islands represent a largely pristine environment, distant from sources of anthropogenic contamination. This study was carried out to determine the natural concentrations of Ag, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V and Zn in the A and B horizons of soils of Fernando de Noronha. The aims of the study were twofold: determine whether there is a relationship between the bedrock geology and soils and to establish quality reference values for soils from Fernando de Noronha. Soil samples were subjected to acid digestion by the USEPA method 3051A, and metals were determined by inductively coupled plasma emission spectrophotometry. The results showed that the trace element distribution largely reflects the geochemistry of the underlying volcanic rocks of the Remedios and Quixaba Formations. The results demonstrate that the concentrations of Ba, Cr, Zn, Ni and Cu from the soils of the volcanic Fernando de Noronha archipelago are higher than those found in soils from continental Brazil. However, concentrations of Ni, Cu and Co are lower in soils of the archipelago as compared to other volcanic islands throughout the world. The elevated trace element concentrations of the volcanic parent material of Fernando de Noronha soils seem to be the main factor governing the relatively high natural concentrations of trace elements.

  10. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change (United States)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; hide


    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  11. Geological and Petrological Characteristics of Oligocene Magmatic Rocks in The Biga Peninsula, NW Turkey (United States)

    Erenoglu, Oya


    Oligocene magmatic activity in the Biga Peninsula (NW-Anatolia) produced widespread volcano-plutonic complexes. The study region, where in north of the Evciler village in the middle of Biga Peninsula includes these igneous assemblages. In this study, the petrographic and geochemical characteristics of igneous rocks in the region were investigated as well as the geological locations. The magmatic rocks are classified as 6 different units using their lithostratigraphical properties. The volcanism in the region starts with basaltic andesite lava including basalt dykes in the Lower Oligocene. In the Upper Oligocene, the evolved magma by crustal contamination produced commonly dacitic and andesitic lavas. The volcanism continued with andesitic lavas which had significant alterations in the region during this period. Evciler pluton including granite and granodiorite composition with shallow intrusive, was located with the related volcanism at the same time. The volcanic products, i.e. andesitic and trachydacitic lavas, was completed in the interval between Upper Oligocene and Lower Miocene. The post-collisional Oligocene sequence is associated with calc-alkaline composition and it has middle, high-K. Trace and rare earth elements (REE) diagrams show the enrichment in both large-ion lithophile elements (LILE) and light rare earth elements (LREE) with respect to the high field strength elements (HFSE), and a significant increment in heavy rare earth element consumption (HREE). The features of major, trace and rare earth elements of plutonic and volcanic rocks and the compositional variations of Oligocene volcanic group indicate increasing amounts of partial melting, crustal contamination and/or assimilation. The Oligocene post-collisional volcanism in Biga Peninsula points out the lithospheric mantle source enriched by subduction which controlled by slab break-off and lithospheric delamination. Acknowledgement. This study was supported by Canakkale Onsekiz Mart University

  12. A REE-in-plagioclase-clinopyroxene thermometer for crustal rocks (United States)

    Sun, Chenguang; Liang, Yan


    A REE-in-plagioclase-clinopyroxene thermometer has been developed on the basis of the temperature- and composition-dependent rare-earth element (REE) partitioning between coexisting plagioclase and clinopyroxene. This two-mineral exchange thermobarometer is constructed using parameters from lattice strain models for REE + Y partitioning in plagioclase and in clinopyroxene that were independently calibrated against experimentally determined mineral-melt partitioning data. An important advantage of this REE-based thermometer is that it can provide accurate temperatures through linear least-squares analysis of REE + Y as a group. Applications of the REE-in-plagioclase-clinopyroxene thermometer to volcanic and cumulate rocks show that temperatures derived from the new thermometer agree well with independently constrained magma crystallization temperatures, which adds confidence to applications of the REE-exchange thermometer to natural rocks with a wide spectrum of composition (i.e., from basalt to rhyolite). However, systematic temperature differences appear between the REE- and Mg-exchange thermometers for the volcanic and cumulate rocks. Through numerical simulations of diffusion in plagioclase-clinopyroxene systems, we demonstrate that (1) due to their slower diffusion rates, REE in minerals preferentially records crystallization or near-crystallization temperatures of the rock, and that (2) Mg is readily rest to lower temperatures for rocks from intermediately or slowly cooled magma bodies but records the initial crystallization temperatures of rocks from rapidly cooled magmas. Given their distinct diffusive responses to temperature changes, REE and Mg closure temperatures recorded by the two thermometers can be used in concert to study thermal and magmatic histories of plagioclase- and clinopyroxene-bearing rocks.

  13. Volcanic activity at Tvashtar Catena, Io (United States)

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.


    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  14. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina (United States)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.


    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  15. Riparian plant litter quality increases with latitude. (United States)

    Boyero, Luz; Graça, Manuel A S; Tonin, Alan M; Pérez, Javier; J Swafford, Andrew; Ferreira, Verónica; Landeira-Dabarca, Andrea; A Alexandrou, Markos; Gessner, Mark O; McKie, Brendan G; Albariño, Ricardo J; Barmuta, Leon A; Callisto, Marcos; Chará, Julián; Chauvet, Eric; Colón-Gaud, Checo; Dudgeon, David; Encalada, Andrea C; Figueroa, Ricardo; Flecker, Alexander S; Fleituch, Tadeusz; Frainer, André; Gonçalves, José F; Helson, Julie E; Iwata, Tomoya; Mathooko, Jude; M'Erimba, Charles; Pringle, Catherine M; Ramírez, Alonso; Swan, Christopher M; Yule, Catherine M; Pearson, Richard G


    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.

  16. Heritage stones and their deterioration in rock-cut monuments in India (United States)

    Sharma, Vinod K.


    India is dotted with thousands of rock- cut monuments of considerable antiquity having artwork of global importance. It is evident from the location of many of these monuments that knowledge of viable selection of site, geotechnical considerations and amenability to sculptures' chisel was vital for construction of rock-cut monuments and sculptures. These rock-cut structures also represent significant achievements of geotechnical and structural engineering and craftsmanship of contemporary period. The paper deals with some of the sites where natural rock-mass exposures were used to hew the monuments and highlight the deterioration owing to geological and climatic conditions. The Kailash temple in Ellora and Ajanta rock-cut caves are among the greatest architectural feats which owe their grandeur to amenability and consistency of basalt of Deccan Volcanic Province from which it is hewn. The Kailash Temple was created through a single, huge top-down excavation 100 feet deep down into the volcanic basaltic cliff rock. These ancient rock cut structures are amazing achievements of structural engineering and craftsmanship. The lava flows are nearly horizontal, competent rock medium facilitated the chiseling for the sculptures. The deterioration of these basalts are seen where the amygdule, vesicles and opening in rock discontinuity had the medium of construction or excavation. The monolithic rock- cut monuments of Mahabalipuram temples are constructed in the form of rathas or chriot and adjoining caves by excavating solid charnockite/granites. The large rock exposures are excavated and cut to perfection with wall decorations and sculptured art. The charnockites are the strongest and the most durable rock, yet quite amenable to fine dressing. These monolithic monuments in charnockite and are cut out of the hillock. The 7th Century monuments now exhibit somewhat rough surface probably due to weathering effect of salt laden winds from the sea side and alteration of feldspars

  17. Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions

    Directory of Open Access Journals (Sweden)

    C. C. Raible


    Full Text Available Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a

  18. Arsenic in volcanic geothermal fluids of Latin America. (United States)

    López, Dina L; Bundschuh, Jochen; Birkle, Peter; Armienta, Maria Aurora; Cumbal, Luis; Sracek, Ondra; Cornejo, Lorena; Ormachea, Mauricio


    Numerous volcanoes, hot springs, fumaroles, and geothermal wells occur in the Pacific region of Latin America. These systems are characterized by high As concentrations and other typical geothermal elements such as Li and B. This paper presents a review of the available data on As concentrations in geothermal systems and their surficial discharges and As data on volcanic gases of Latin America. Data for geothermal systems in Mexico, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Ecuador, Bolivia, and Chile are presented. Two sources of As can be recognized in the investigated sites: Arsenic partitioned into volcanic gases and emitted in plumes and fumaroles, and arsenic in rocks of volcanic edifices that are leached by groundwaters enriched in volcanic gases. Water containing the most elevated concentrations of As are mature Na-Cl fluids with relatively low sulfate content and As concentrations reaching up to 73.6 mg L⁻¹ (Los Humeros geothermal field in Mexico), but more commonly ranging from a few mg L⁻¹ to tens of mg L⁻¹. Fluids derived from Na-Cl enriched waters formed through evaporation and condensation at shallower depths have As levels of only a few μg L⁻¹. Mixing of Na-Cl waters with shallower meteoric waters results in low to intermediate As concentrations (up to a few mg L⁻¹). After the waters are discharged at the ground surface, As(III) oxidizes to As(V) and attenuation of As concentration can occur due to sorption and co-precipitation processes with iron minerals and organic matter present in sediments. Understanding the mechanisms of As enrichment in geothermal waters and their fate upon mixing with shallower groundwater and surface waters is important for the protection of water resources in Latin America. Copyright © 2011. Published by Elsevier B.V.


    Johnson, Kathleen M.; McIntyre, David H.


    The Custer graben is a 13 by 32 km northeast-trending volcano-tectonic graben in the Challis volcanic field of central Idaho. Andesites, rhyolites, and associated pyroclastic rocks host vein and disseminated gold-silver deposits that are localized along discrete northeast- and northwest-trending fracture zones. Ore minerals in vein deposits are electrum, native gold and silver, chalcopyrite, and various sulfosalts in a gangue of pyrite and fine-grained quartz. At the Sunbeam Mine, near the center of the graben, vein and disseminated gold-silver mineralization occurred in hydrothermally altered rhyolite and pyroclastic rocks. The host rock has been pervasively silicified, and the feldspars altered to clay minerals. Analyses of surface and drill-core samples show that altered rocks are variably enriched in gold, silver, molybdenum, arsenic, zirconium, and selenium. Intense silicification is shown by SiO//2 values at high as 93%.

  20. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran (United States)

    Azizi, Hossein; Moinevaziri, Hossein


    There are three parallel magmatic arcs in the northwest of Iran, of Cretaceous and Eocene-Miocene to Quaternary ages, trending in a NW-SE direction between the Main Zagros Thrust (MZT) in the southwest and the Tabriz Fault in the northeast. In this study, these volcanic belts are referred to as the Sanandaj Cretaceous volcanic (SCV), Sonqor-Baneh volcanic (SBV), and Hamedan-Tabriz volcanic (HTV) belts, respectively. The SCV belt consists mainly of mafic to intermediate submarine rocks with calc-alkaline affinity, and the SBV belt is composed of basalt, gabbro to dioritic bodies, with extrusive to subvolcanic magmatic textures and tholeiitic to alkaline affinity. These extend along the MZT between the Zagros ophiolite in the west and the SCV belt in the east. The HTV belt is part of the Urmieh-Dokhtar Magmatic Arc belt that extends across the Hamedan to Tabriz, and was active in the Miocene to Quaternary. The petrology and geochemistry of the northwestern Iranian volcanic zones indicate that they were generated at an active continental margin. In addition to the volcanic belts, there is a dismembered ophiolite along the MZT from Kermanshah to Turkey, in a NW-SE direction. These ophiolites are remnants of Neo-Tethyan oceanic crust which was obducted over the Arabian passive margin in the late Cretaceous. In this study, we propose that a collision between the Arabian and Iranian plates may have occurred in the middle to late Miocene, and that the Neo-Tethyan oceanic subduction beneath northwestern Iran ceased for a while. As a result, a gap in volcanic activity occurred between the Cretaceous and the Middle Miocene-Quaternary volcanism events. This gap in activity is not observed in southwestern Iran.

  1. Probabilistic Rock Slope Engineering. (United States)


    distances or may reflect errors or uncertainties in sample collection and evaluation. 58. Typical variograms for fracture set properties are illustrated... uncertainties in their measurement and estimation imply the probabilistic nature of parameters re- quired for rock slope engineering. Therefore, statistical...strengths of geologic discontinuities and also by the local stress field. Natural variabilities in these rock mass properties and uncertainties in their

  2. Rock Cycle Roulette. (United States)

    Schmidt, Stan M.; Palmer, Courtney


    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  3. Engineering a robotic approach to mapping exposed volcanic fissures (United States)

    Parcheta, C. E.; Parness, A.; Mitchell, K. L.


    Field geology provides a framework for advanced computer models and theoretical calculations of volcanic systems. Some field terrains, though, are poorly preserved or accessible, making documentation, quantification, and investigation impossible. Over 200 volcanologists at the 2012 Kona Chapman Conference on volcanology agreed that and important step forward in the field over the next 100 years should address the realistic size and shape of volcanic conduits. The 1969 Mauna Ulu eruption of Kīlauea provides a unique opportunity to document volcanic fissure conduits, thus, we have an ideal location to begin addressing this topic and provide data on these geometries. Exposed fissures can be mapped with robotics using machine vision. In order to test the hypothesis that fissures have irregularities with depth that will influence their fluid dynamical behavior, we must first map the fissure vents and shallow conduit to deci- or centimeter scale. We have designed, constructed, and field-tested the first version of a robotic device that will image an exposed volcanic fissure in three dimensions. The design phase included three steps: 1) create the payload harness and protective shell to prevent damage to the electronics and robot, 2) construct a circuit board to have the electronics communicate with a surface-based computer, and 3) prototype wheel shapes that can handle a variety of volcanic rock textures. The robot's mechanical parts were built using 3d printing, milling, casting and laser cutting techniques, and the electronics were assembled from off the shelf components. The testing phase took place at Mauna Ulu, Kīlauea, Hawai'i, from May 5 - 9, 2014. Many valuable design lessons were learned during the week, and the first ever 3D map from inside a volcanic fissure were successfully collected. Three vents had between 25% and 95% of their internal surfaces imaged. A fourth location, a non-eruptive crack (possibly a fault line) had two transects imaging the textures

  4. Potential volcanic impacts on future climate variability (United States)

    Bethke, Ingo; Outten, Stephen; Otterå, Odd Helge; Hawkins, Ed; Wagner, Sebastian; Sigl, Michael; Thorne, Peter


    Volcanic activity plays a strong role in modulating climate variability. Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios. Here, we explore how sixty possible volcanic futures, consistent with ice-core records, impact climate variability projections of the Norwegian Earth System Model (NorESM) under RCP4.5 (ref. ). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become ~50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence. These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

  5. Intracaldera volcanism and sedimentation-Creede caldera, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Krier, D.; Snow, M.G. [Los Alamos National Lab., NM (United States); McCormick, T. [Colorado Univ., Boulder, CO (United States). Dept. of Geological Sciences


    Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous clastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier (1987) concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus (``moat``) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovoleanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for clastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

  6. Determining volcanic eruption styles on Earth and Mars from crystallinity measurements. (United States)

    Wall, Kellie T; Rowe, Michael C; Ellis, Ben S; Schmidt, Mariek E; Eccles, Jennifer D


    Both Earth and Mars possess different styles of explosive basaltic volcanism. Distinguishing phreatomagmatic eruptions, driven by magma-water interaction, from 'magmatic' explosive eruptions (that is, strombolian and plinian eruptions) is important for determining the presence of near-surface water or ice at the time of volcanism. Here we show that eruption styles can be broadly identified by relative variations in groundmass or bulk crystallinity determined by X-ray diffraction. Terrestrial analogue results indicate that rapidly quenched phreatomagmatic ejecta display lower groundmass crystallinity (eruptions (>40%). Numerical modelling suggests Martian plinian eruptive plumes moderate cooling, allowing 20-30% syn-eruptive crystallization, and thus reduce the distinction between eruption styles on Mars. Analysis of Mars Curiosity rover CheMin X-ray diffraction results from Gale crater indicate that the crystallinity of Martian sediment (52-54%) is similar to pyroclastic rocks from Gusev crater, Mars, and consistent with widespread distribution of basaltic strombolian or plinian volcanic ejecta.

  7. Determining volcanic eruption styles on Earth and Mars from crystallinity measurements (United States)

    Wall, Kellie T.; Rowe, Michael C.; Ellis, Ben S.; Schmidt, Mariek E.; Eccles, Jennifer D.


    Both Earth and Mars possess different styles of explosive basaltic volcanism. Distinguishing phreatomagmatic eruptions, driven by magma-water interaction, from ‘magmatic’ explosive eruptions (that is, strombolian and plinian eruptions) is important for determining the presence of near-surface water or ice at the time of volcanism. Here we show that eruption styles can be broadly identified by relative variations in groundmass or bulk crystallinity determined by X-ray diffraction. Terrestrial analogue results indicate that rapidly quenched phreatomagmatic ejecta display lower groundmass crystallinity (40%). Numerical modelling suggests Martian plinian eruptive plumes moderate cooling, allowing 20-30% syn-eruptive crystallization, and thus reduce the distinction between eruption styles on Mars. Analysis of Mars Curiosity rover CheMin X-ray diffraction results from Gale crater indicate that the crystallinity of Martian sediment (52-54%) is similar to pyroclastic rocks from Gusev crater, Mars, and consistent with widespread distribution of basaltic strombolian or plinian volcanic ejecta.

  8. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean. (United States)

    Tejada, M L G; Ravizza, G; Suzuki, K; Paquay, F S


    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with (187)Os/(188)Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism.

  9. Large Volume 18O-depleted Rhyolitic Volcanism: the Bruneau-Jarbidge Volcanic Field, Idaho (United States)

    Boroughs, S.; Wolff, J.; Bonnichsen, B.; Godchaux, M. M.; Larson, P. B.


    The Bruneau-Jarbidge (BJ) volcanic field is located in southern Idaho at the intersection of the western and eastern arms of the Snake River Plain. The BJ region is an oval structural basin of about 6000 km2, and is likely a system of nested caldera and collapse structures similar to, though larger than, the Yellowstone Volcanic Plateau. BJ rocks are high-temperature rhyolite tuffs, high-temperature rhyolite lavas, and volumetrically minor basalts. Exposed volumes of individual rhyolite units range up to greater than 500 km3. We have analyzed feldspar and, where present, quartz from 30 rhyolite units emplaced throughout the history of the BJ center. All, including the Cougar Point Tuff, are 18O depleted (δ 18OFSP = -1.3 to 3.7‰ ), while petrographically, temporally, and chemically similar lavas erupted along the nearby Owyhee Front have "normal" rhyolite magmatic δ 18O values of 7 - 9‰ . There is no evidence for significant modification of δ 18O values by post-eruptive alteration. No correlation exists between δ 18O and age, magmatic temperature, major element composition or trace element abundances among depleted BJ rhyolites. The BJ and WSRP rhyolites possess the geochemical characteristics (depressed Al, Ca, Eu, and Sr contents, high Ga/Al and K/Na) expected of liquids derived from shallow melting of calc-alkaline granitoids with residual plagioclase and orthopyroxene (Patino-Douce, Geology v.25 p.743-746, 1997). The classic Yellowstone low δ 18O rhyolites are post-caldera collapse lavas, but at BJ, both lavas and caldera-forming ignimbrites are strongly 18O-depleted. The total volume of low δ 18O rhyolite may be as high as 10,000 km3, requiring massive involvement of meteoric-hydrothermally altered crust in rhyolite petrogenesis. Regional hydrothermal modification of the crust under the thermal influence of the Yellowstone hotspot apparently preceded voluminous rhyolite generation at Bruneau-Jarbidge.

  10. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.


    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  11. An Investigation on Load Bearing Capacities of Cement and Resin Grouted Rock Bolts Installed in Weak Rocks (United States)

    Kalyoncu Erguler, Guzide; Abiddin Erguler, Zeynal


    Rock bolts have been considered one of indispensable support method to improve load bearing capacity of many underground engineering projects, and thus, various types of them have been developed until now for different purposes. Although mechanically anchored rock bolts can be successfully installed to prevent structurally controlled instabilities in hard rocks, in comparison with cement and resin grouted rock bolts, these types of anchors are not so effective in weak rocks characterized by relatively low mechanical properties. In order to investigate the applicability and to measure relative performance of cement and resin grouted rock bolts into weak and heavily jointed rock mass, a research program mainly consisting of pull-out tests was performed in a metal mine in Turkey. The rock materials excavated in this underground mining were described as basalt, tuff, ore dominated volcanic rocks and dacite. To achieve more representative results for rock materials found in this mining and openings excavated in varied dimensions, the pull-out tests were conducted on rock bolts used in many different locations where more convergences were measured and deformation dependent instability was expected to cause greater engineering problems. It is well known that the capacity of rock bolts depends on the length, diameter and density of the bolt pattern, and so considering the thickness of plastic zone in the studied openings, the length and diameter of rock bolts were taken as 2.4 m. and 25 mm., respectively. The spacing between rows changed between 70 and 180 cm. In this study, totally twenty five pull-out tests were performed to have a general understanding about axial load bearing capacity and support reaction curves of cement and resin grouted rock bolts. When pull load-displacement curves belongs to cement and resin grouted rock bolts were compared with each other, it was determined that cement grouted rock bolts carry more load ranging between 115.6 kN and 127.5 kN with

  12. Sequential Assimilation of Volcanic Monitoring Data to Quantify Eruption Potential: Application to Kerinci Volcano, Sumatra

    Directory of Open Access Journals (Sweden)

    Yan Zhan


    Full Text Available Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the host rock around the shallow magma reservoir is trending toward tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.

  13. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA (United States)

    Lipman, P.W.


    Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author

  14. No Reprieve for Tasmanian Rock Art

    Directory of Open Access Journals (Sweden)

    Peter C. Sims


    Full Text Available The Australian State of Tasmania, at latitude 42 degrees south, became an island about 8,000 years ago when the sea rose to its present level, following the melting of polar and glacial ice that covered much of the land mass. After that time, the Tasmanian Aboriginal rock art developed independently of mainland Australia, with its form being basically linear with some naturalistic figures and a predominance of cupules. The petroglyphs with one lithophone site occur on various rock substrates varying in hardness from granite to sandstone. Many sites exist along the western coastline that borders the Southern Ocean where the landscape in some places has changed little since the arrival of Europeans in 1803. The significance of this Tasmanian Aboriginal cultural heritage along what is now known as the Tarkine Coast, named after an Aboriginal band that once inhabited this area, was recognised by the Australian Government in February 2013 when a 21,000 ha strip, 2 km wide, was inscribed on its National Heritage Register, being one of 98 special places listed in the country. However, politics and racism hamper its management. This paper is based on the results of 40 years of field recording of the Tasmanian Aboriginal rock art sites, many of which remain unpublished.

  15. Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico) (United States)

    Rodríguez Ceja, M.; Goguitchaichvili, A.; Calvo-Rathert, M.; Morales-Contreras, J.; Alva-Valdivia, L.; Rosas Elguera, J.; Urrutia Fucugauchi, J.; Delgado Granados, H.


    This paper presents new paleomagnetic results from 24 independent cooling units in Tequila area (western Trans-Mexican Volcanic Belt). These units were recently dated by means of state-of-the-art 40Ar-39Ar method (Lewis-Kenedy et al., 2005) and span from 1130 to 150 ka. The characteristic paleodirections are successfully isolated for 20 cooling units. The mean paleodirection, discarding intermediate polarity sites, is I = 29.6°, D = 359.2°, k = 26, α95 = 7.1°, n = 17, which corresponds to the mean paleomagnetic pole position Plat = 85.8°, Plong = 84.3°, K = 27.5, A95 = 6.9°. These directions are practically undistinguishable from the expected Plestocene paleodirections, as derived from reference poles for the North American polar wander curve and in agreement with previously reported directions from western Trans-Mexican Volcanic Belt. This suggests that no major tectonic deformation occurred in studied area since early-middle Plestocene to present. The paleosecular variation is estimated trough the study of the scatter of virtual geomagnetic poles giving SF = 15.4 with SU = 19.9 and SL = 12.5 (upper and lower limits respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (1991) for the last 5 Myr. The interesting feature of the paleomagnetic record obtained here is the occurrence of an intermediate polarity at 671± 13 ka which may correspond the worldwide observed Delta excursion at about 680-690 ka. This gives the volcanic evidence of this event. Two independent lava flows dated as 362± 13 and 354± 5 ka respectively, yield transitional paleodirections as well, probably corresponding to the Levantine excursion.

  16. High latitude electromagnetic plasma wave emissions (United States)

    Gurnett, D. A.


    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  17. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico (United States)

    Martiny, B.; Martinez-Serrano, R. G.; Moran-Zenteno, D. J.; MacIas-Romo, C.; Ayuso, R.A.


    In Western Oaxaca, Tertiary magmatic activity is represented by extensive plutons along the continental margin and volcanic sequences in the inland region. K-Ar age determinations reported previously and in the present work indicate that these rocks correspond to a relatively broad arc in this region that was active mainly during the Oligocene (~ 35 to ~ 25 Ma). In the northern sector of western Oaxaca (Huajuapan-Monte Verde-Yanhuitlan), the volcanic suite comprises principally basaltic andesite to andesitic lavas, overlying minor silicic to intermediate volcaniclastic rocks (epiclastic deposits, ash fall tuffs, ignimbrites) that were deposited in the lacustrine-fluvial environment. The southern sector of the volcanic zone includes the Tlaxiaco-Laguna de Guadalupe region and consists of intermediate to silicic pyroclastic and epiclastic deposits, with silicic ash fall tuffs and ignimbrites. In both sectors, numerous andesitic to dacitic hypabyssal intrusions (stocks and dikes) were emplaced at different levels of the sequence. The granitoids of the coastal plutonic belt are generally more differentiated than the volcanic rocks that predominate in the northern sector and vary in composition from granite to granodiorite. The studied rocks show large-ion lithophile element (LILE) enrichment (K, Rb, Ba, Th) relative to high-field-strength (HFS) elements (Nb, Ti, Zr) that is characteristic of subduction-related magmatic rocks. On chondrite-normalized rare earth element diagrams, these samples display light rare earth element enrichment (LREE) and a flat pattern for the heavy rare earth elements (HREE). In spite of the contrasting degree of differentiation between the coastal plutons and inland volcanic rocks, there is a relatively small variation in the isotopic composition of these two suites. Initial 87Sr/86Sr ratios obtained and reported previously for Tertiary plutonic rocks of western Oaxaca range from 0.7042 to 0.7054 and ??Nd values, from -3.0 to +2.4, and for

  18. Caldera of Godean, Sleman, Yogyakarta: A Volcanic Geomorphology Review

    Directory of Open Access Journals (Sweden)

    Hill Gendoet Hartono


    Full Text Available Godean hills is located approximately 10 km westward from the Yogyakarta City. The landscape of Godean hills and plains is affected by various factors, such as lithology, geological structure, and sub-aerial process. The purpose of this study was to reveal the landscape of Godean. The method consisted of field study, morphological variables assessment, rock sampling, and laboratory analysis. The results of field mapping indicated that the landscape of Godean  is an isolated hill with a steep slope of >40° and an elevation of +231 m a.s.l, passed by the rivers flows from northeast to southwest that disembogue into the west part of Kulon Progo. The morphologhy of Godean hills varies including G. (Gunung/Mountain So (+173 m amsl, G. Gede (+218 m a.s.l, G. Wungkal (+187 m a.s.l, G. Butak (+154 m a.s.l, and G. Berjo ( + 175 m a.s.l, dominated by the lithology of igneous rock, which is composed of porphyry andesite-microdiorite, pumice lapilli, and quartz rich lapilli-tuff. In addition, most of the igneous rocks have weathered and have been altered to clays, while the deposition from Merapi volcano formed a landscape with an altitude between +100–+150 m a.s.l surrounding Godean hills. Sentolo Formation was found in Kembang, Bantul, which is located approximately ±5km in the south of the study area N93ºE/12º,  while the distribution in the southwest and northeast relatively covers the Godean hills in curve shape. The results of the analysis provide information related with Godean landscape that it is the remains of the volcanic caldera, with various igneous rock types and volcaniclastics deposits, as well as endured the occurrences of hydrothermal alteration and mineralization. Further geophysical research is required to determine the configuration of igneous rocks under the earth's surface.

  19. Source mechanisms of volcanic tsunamis. (United States)

    Paris, Raphaël


    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  20. A comparative review of petrogenetic processes beneath the Cameroon Volcanic Line: Geochemical constraints

    Directory of Open Access Journals (Sweden)

    Asobo N.E. Asaah


    Full Text Available The origin and petrogenesis of the Cameroon Volcanic Line (CVL, composed of volcanoes that form on both the ocean floor and the continental crust, are difficult to understand because of the diversity, heterogeneity, and nature of available data. Major and trace elements, and Sr-Nd-Pb isotope data of volcanic rocks of the CVL spanning four decades have been compiled to reinterpret their origin and petrogenesis. Volcanic rocks range from nephelinite, basanite and alkali basalts to phonolite, trachyte and rhyolite with the presence of a compositional gap between SiO2 58–64 wt.%. Similarities in geochemical characteristics, modeled results for two component mixing, and the existence of mantle xenoliths in most mafic rocks argue against significant crustal contamination. Major and trace element evidences indicate that the melting of mantle rocks to generate the CVL magma occurred dominantly in the garnet lherzolite stability field. Melting models suggest small degree (<3% partial melting of mantle bearing (6–10% garnet for Mt. Etinde, the Ngaoundere Plateau and the Biu Plateau, and <5% of garnet for the oceanic sector of the CVL, Mt. Cameroon, Mt. Bambouto, Mt. Manengouba and the Oku Volcanic Group. The Sr-Nd-Pb isotope systematics suggest that mixing in various proportions of Depleted MORB Mantle (DMM with enriched mantle 1 and 2 (EM1 and EM2 could account for the complex isotopic characteristics of the CVL lavas. Low Mg number (Mg# = 100 × MgO/(MgO + FeO and Ni, Cr and Co contents of the CVL mafic lavas reveal their crystallization from fractionated melts. The absence of systematic variation in Nb/Ta and Zr/Hf ratios, and Sr-Nd isotope compositions between the mafic and felsic lavas indicates progressive evolution of magmas by fractional crystallization. Trace element ratios and their plots corroborate mantle heterogeneity and reveal distinct geochemical signatures for individual the CVL volcanoes.

  1. Runout of the Socompa volcanic debris avalanche, Chile : a mechanical explanation for low basal shear resistance


    Davies, T.; McSaveney, M.; Kelfoun, Karim


    We propose a mechanical explanation for the low basal shear resistance (about 50 kPa) previously used to simulate successfully the complex, well-documented deposit morphology and lithological distribution produced by emplacement of the 25 km(3) Socompa volcanic debris avalanche deposit, Chile. Stratigraphic evidence for intense basal comminution indicates the occurrence of dynamic rock fragmentation in the basal region of this large granular mass flow, and we show that such fragmentation gene...

  2. Petrological Monitoring of the AD 2011–2012 Volcanic Ash from Sakurajima Volcano, Southern Kyushu, Japan

    Directory of Open Access Journals (Sweden)

    Idham Andri Kurniawan


    Full Text Available Sakurajima in Japan is one of the world’s most active volcanoes. This paper presents the results of a petrological study of the Showa Crater volcanic ash samples ejected from January 2011 to November 2012 from Sakurajima. The aim of this paper is to reconstruct the evolution in time of the conduit magma system, based on the compositions and physical properties of the studied volcanic ash. We analyzed the composition of interstitial glass and microcrystal of Black Volcanic Rock (BVR and Black Vesicular Volcanic Rock (BVVR in order to estimate the magma ascent rate. The results show that SiO2 content of interstitial glass and crystallinity of the BVR is generally higher than for BVVR. The different types of juvenile material likely resulted from cooling-induced crystallization and decompression-induced crystallization in the conduit. The conditions of magma transit within the conduit from 2011 to 2012 differ: in 2011, the decompression rate and magma ascent rate of BVR were higher than for BVVR, but, in 2012, the decompression rate and magma ascent rate between BVR and BVVR were similar. As such, monitoring the petrological features of dated eruptive materials could provide useful information for evaluating ongoing eruptive activity.

  3. Volcanic Glasses as Habitat for Microfossils: Evidence from the Early Paleoproterozoic Pillow Lavas of Karelia and their Modern Analogues in the Mid-Atlantic Ridge (United States)

    Adtafieva, M. M.; Rozanov, A. Yu; Sharkov, E. V.; Chistyakov, A. V.; Bogina, M. M.; Hoover, R. B.


    Microbial complexes were identified in the volcanic glasses from the ancient (2.4-Ga-old basaltic pillow-lavas of Karelia) and modern (pillow lavas of Mid-Atlantic ridge) volcanic rocks. It was shown that that their microbial colonization is likely to occur by the same mechanism. Thus, well preserved pillow lavas, which occupy a spacious fields in the Archean and Early Paleoproterozoic greenstone belts, are promising object for search of the earliest traces of life on Earth.

  4. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. (United States)

    Tucker, C J; Slayback, D A; Pinzon, J E; Los, S O; Myneni, R B; Taylor, M G


    Normalized difference vegetation index data from the polar-orbiting National Oceanic and Atmospheric Administration meteorological satellites from 1982 to 1999 show significant variations in photosynthetic activity and growing season length at latitudes above 35 degrees N. Two distinct periods of increasing plant growth are apparent: 1982-1991 and 1992-1999, separated by a reduction from 1991 to 1992 associated with global cooling resulting from the volcanic eruption of Mt. Pinatubo in June 1991. The average May to September normalized difference vegetation index from 45 degrees N to 75 degrees N increased by 9% from 1982 to 1991, decreased by 5% from 1991 to 1992, and increased by 8% from 1992 to 1999. Variations in the normalized difference vegetation index were associated with variations in the start of the growing season of -5.6, +3.9, and -1.7 days respectively, for the three time periods. Our results support surface temperature increases within the same period at higher northern latitudes where temperature limits plant growth.

  5. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999 (United States)

    Tucker, C. J.; Slayback, D. A.; Pinzon, J. E.; Los, S. O.; Myneni, R. B.; Taylor, M. G.


    Normalized difference vegetation index data from the polar-orbiting National Oceanic and Atmospheric Administration meteorological satellites from 1982 to 1999 show significant variations in photosynthetic activity and growing season length at latitudes above 35 degrees N. Two distinct periods of increasing plant growth are apparent: 1982-1991 and 1992-1999, separated by a reduction from 1991 to 1992 associated with global cooling resulting from the volcanic eruption of Mt. Pinatubo in June 1991. The average May to September normalized difference vegetation index from 45 degrees N to 75 degrees N increased by 9% from 1982 to 1991, decreased by 5% from 1991 to 1992, and increased by 8% from 1992 to 1999. Variations in the normalized difference vegetation index were associated with variations in the start of the growing season of -5.6, +3.9, and -1.7 days respectively, for the three time periods. Our results support surface temperature increases within the same period at higher northern latitudes where temperature limits plant growth.

  6. Volcanism and associated hazards: The Andean perspective (United States)

    Tilling, R.I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (volcano risk in the Andean region. But much remains to be done.

  7. Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision (United States)

    Motuza, Gediminas; Šliaupa, Saulius


    A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.

  8. Disruptive event analysis: volcanism and igneous intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.


    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  9. Mechanical interaction between volcanic systems in Libya (United States)

    Elshaafi, Abdelsalam; Gudmundsson, Agust


    The spatial distributions of monogenetic volcanoes, primarily volcanic craters, within the four principal volcanic provinces of Libya are examined and presented on a volcano-density map. Six main volcanic clusters have been identified, referred to as volcanic systems. Remarkably, the Al Haruj (AHVP) and Nuqay (NVP) volcanic provinces have double-peak volcano-density distributions, while the Gharyan (GVP) and As Sawda (SVP) volcanic provinces have single-peak volcano-density distributions. We interpret each volcano-density peak as corresponding to a separate volcanic system, so that there is a total of six systems in these four provinces. There was an overlap in volcanic activity in these provinces with at least three simultaneously active. We propose that each of the 6 volcanic systems was/is supplied with magma from a large sill-like reservoir - similar in lateral dimensions to the systems/clusters themselves. Numerical results show zones of high tensile and shear stresses between the reservoirs that coincide roughly with the main swarms of extension (dykes and volcanic fissures) and shear (faults) fractures in the areas. The most recent volcanic eruptions in Libya fall within the modelled high-stress concentration zones, primarily eruptions in the volcano Waw an Namus and the Holocene Al Mashaqaq lava flow. There are no known eruptions in Libya in historical time, but some or all the volcanic systems may have had one or more arrested historical dyke injections. In particular, part of the recurrent seismic events in the Hun Graben in the northwest Libya may be related to dyke propagation and arrest. If some of the inferred magma reservoirs are still fluid, as is likely, they pose earthquake and volcanic hazards to parts of Libya, particularly to the city of Gharyan and Zallah town, as well as to many oil-field operations.

  10. Fracture and compaction of andesite in a volcanic edifice. (United States)

    Heap, M J; Farquharson, J I; Baud, P; Lavallée, Y; Reuschlé, T

    The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (1 km), while low-porosity (explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.

  11. Young lunar volcanic features: Thermophysical properties and formation (United States)

    Elder, C. M.; Hayne, P. O.; Bandfield, J. L.; Ghent, R. R.; Williams, J.-P.; Donaldson Hanna, K. L.; Paige, D. A.


    Irregular mare patches (IMPs) are small volcanic features on the lunar nearside with young model ages. Several formation mechanisms have been proposed including: caldera collapse, explosive outgassing, lava flow inflation, pyroclastic eruption, and regolith drainage. We present new observations of the four largest IMPs (Sosigenes, Ina, Cauchy-5, and Maskelyne) using the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer (Diviner) and evaluate the formation hypotheses in the context of both previous results and the results presented here. We find that the IMPs have a rock abundance slightly higher than their surrounding terrain. Comparison of the Diviner data with thermal models excludes the possibility of extensive competent rocks within ∼15 cm of the surface at the IMPs. We also derive the thermal inertia at the four largest IMPs. Three appear to have thermal inertias slightly higher than typical regolith due to alteration by nearby craters or mass wasting from surrounding steep slopes, but Ina has a thermal inertia lower than the surrounding terrain. In particular, the largest smooth mound in Ina is the area with the lowest thermal inertia, suggesting that the material on the mound is less consolidated than typical regolith and/or contains fewer small rocks (<1 m). Formation by lava flows or regolith drainage is not expected to result in material with a lower thermal inertia than pre-existing regolith, so some other process such as explosive outgassing or pyroclastic eruptions must have occurred.

  12. Identifying Successive Eruption of Guntur Volcanic Complex Using Magnetic Susceptibility and Polarimetric Synthetic Aperture Radar (PolSAR) Data (United States)

    Saepuloh, Asep; Bakker, Erwin


    Identifying distribution and stratigraphic of volcanic products are important not only for mitigating volcanic hazards, but also to know the characteristics of the successive eruptions. Guntur volcanic complex located in Garut, West Java, Indonesia was selected as study area because of the last eruption took place in 1847 and the volcanic activity has been dormant since then, however its seismicity is still active. During the period of July to October 2009, the hypocentre distribution of volcano tectonic earthquakes is mostly located at western flank of the volcano, beneath Guntur - Gandapura craters at the depth of less than 5 km. This study is aimed to identify distribution and succession of volcanic products based on their magnetic properties and backscattering signal of Polarimetric Synthetic Aperture Radar (PolSAR) data. The polarimetric decomposition method was used to identify the distribution of the volcanic products based on their scattering characteristics. Then, the field measurement using SM-30 magnetic susceptibility meter was performed to confirm the units of volcanic products and interpret their successions. According to the polarimetric decomposition method, we could identify fifteen successive eruptions formed Guntur Volcano Complex and termed as Khuluk and Gumuk in Indonesian standard. The successions were produced Gumuk Windu, Gumuk Malang, Gumuk Pulus, Gumuk Putrri, Khuluk Meungpeuk, Gumuk Cakra, Gumuk Gandapura, Gumuk Putri, Gumuk Gajah, Gumuk Batususun, Khuluk Pasirlaku, Gumuk Agung, Gumuk Picung, Gumuk Pasirmalang, Gumuk Masigit, Khuluk Kabuyutan and Khuluk Guntur. The magnetic susceptibility confirmed that the variations of magnetic susceptibility of rocks at each gumuk agreed with their stratigraphy.

  13. Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager

    DEFF Research Database (Denmark)

    Herkenhoff, K.E.; Squyres, S.W.; Arvidson, R.


    The Microscopic Imager on the Spirit rover analyzed the textures of the soil and rocks at Gusev crater on Mars at a resolution of 100 micrometers. Weakly bound agglomerates of dust are present in the soil near the Columbia Memorial Station. Some of the brushed or abraded rock surfaces show igneous...... textures and evidence for alteration rinds, coatings, and veins consistent with secondary mineralization. The rock textures are consistent with a volcanic origin and subsequent alteration and/or weathering by impact events, wind, and possibly water....

  14. DOAS measurements of tropospheric bromine oxide in mid-latitudes (United States)

    Hebestreit; Stutz; Rosen; Matveiv; Peleg; Luria; Platt


    Episodes of elevated bromine oxide (BrO) concentration are known to occur at high latitudes in the Arctic boundary layer and to lead to catalytic destruction of ozone at those latitudes; these events have not been observed at lower latitudes. With the use of differential optical absorption spectroscopy (DOAS), locally high BrO concentrations were observed at mid-latitudes at the Dead Sea, Israel, during spring 1997. Mixing ratios peaked daily at around 80 parts per trillion around noon and were correlated with low boundary-layer ozone mixing ratios.

  15. Scattering from Rock and Rock Outcrops (United States)


    quantities correspond to values of 0.86 and 18 respectively. SCATTERING FROM ROCKS 3 Figure 2. ( color online) Rough interface results from a glacially abraded...surface in (a) the low-resolution mode, and (b) the high-resolution mode. The glaciers flowed in the negative y direction. The color bar height reference to the surface mean, and the brightness, or black/ white information communicates the surface slope. The dashed box in (a

  16. The pace of arc volcanism (United States)

    Palmer, M. R.; Fraass, A. J.; Hatfield, R. G.; McCanta, M. C.


    Being able to reconstruct the long-term history of activity at an island arc volcanic centre has important implications for a wide variety of geologic processes. On-land records are frequently incomplete and radiometric dating is complicated in many systems. Here, we describe the application of rapid and non-destructive measurements of sediment physical properties (colour reflectance, gamma ray attenuation and magnetic susceptibility) from marine sediments recovered from IODP site U1396 to produce a tephra index (TI). This approach is combined with palaeomagnetic and foram isotope stratigraphy to yield a 4.5 Myr record of volcanic activity in the northern Lesser Antilles. Pb isotope data on visible tephra layers and volcanological models suggest the tephra is predominantly derived from the nearby island of Montserrat. When examined over a range of time-averaged intervals, the TI record shows long term (order 106 year) cycles of relative quiescence and heightened activity. In accordance with the model of Hall & Kincaid (2001, Science, 292, 2472), this record suggests that the long-term pace of volcanic activity in the northern Lesser Antilles is established by diapirs rising from deep within the mantle wedge. The diapirs do not themselves act as the major source of melt, but rather they create a conduit network that facilitates the rapid rise of melt to the surface. Within the order 106 year cycles, there are shorter-term fluctuations (order 104 years) that may reflect cycles of edifice growth and destruction, and/or pulses of melt rising through conduit networks established by the rising diapirs. The U1396 TI record provides the most complete and non-aliased long-term record of activity at an island arc volcanic center yet determined. It thus provides the first field evidence that can be used to test models of the deep mantle processes that control the pace of arc volcanism. Importantly, the approach presented here is readily applicable to other arc and island

  17. Faulting, volcanism, and basin development along the western margin of the southern San Luis Basin segment of the Rio Grande rift, New Mexico and Colorado (United States)

    Turner, K. J.; Thompson, R. A.; Cosca, M. A.; Drenth, B.; Lee, J.; Budahn, J. R.


    The San Luis Basin segment of the northern Rio Grande rift, straddling the Colorado-New Mexico border, is an asymmetrical graben where the major basin-bounding fault is on the east side. In contrast, the west side is a basin-directed dip slope surface cut by north to northwest trending faults with predominantly down-to-southwest displacement. Around 26 Ma, initial rift-related faulting formed broad, shallow basins coincident with basaltic volcanism of the Hinsdale Formation. Later episodes of rifting produced deep and narrow sub-basins generally along the eastern boundary. Basin-fill deposits along the western margin are generally thin. However, in the northern Tusas Mountains, gravity data identifies a small, yet deep, sub-basin that may contain 750 m of basin-filling Los Pinos Formation based on thickness projections derived from mapping. The Los Pinos Formation is overlain by early rift-related Hinsdale Formation basalt flows indicating this sub-basin formed as part of early rifting; the sub-basin may be a southern extension of the Monte Vista graben to the north. The stratigraphic section along the western boundary includes Precambrian basement up to volcanic rocks of the Taos Plateau volcanic field (~5-2Ma). Dips on the early-rift Miocene to Oligocene Hinsdale Formation lavas (3-5 degrees) reflect the cumulative eastward tilting corresponding to continued basin subsidence. Shallower dips (1-2 degrees) on early Pliocene volcanic rocks suggest continued subsidence up to about 3 Ma, or younger. Down-to-southwest faults accommodating eastward tilting are mostly in areas west of Pliocene volcanic rocks; individual faults offset Hinsdale Formation and older rocks by up to 200 m. The few observed faults in the Pliocene volcanic rocks have minor offset. Numerous volcanic vents are in close proximity to the faults along the western boundary. Volcanoes are commonly low to medium relief shield volcanoes with basaltic andesite composition capped by late stage cinder cones

  18. Recent Basal Melting of a Mid-Latitude Glacier on Mars (United States)

    Butcher, Frances E. G.; Balme, M. R.; Gallagher, C.; Arnold, N. S.; Conway, S. J.; Hagermann, A.; Lewis, S. R.


    Evidence for past basal melting of young (late Amazonian-aged), debris-covered glaciers in Mars' mid-latitudes is extremely rare. Thus, it is widely thought that these viscous flow features (VFFs) have been perennially frozen to their beds. We identify an instance of recent, localized wet-based mid-latitude glaciation, evidenced by a candidate esker emerging from a VFF in a tectonic rift in Tempe Terra. Eskers are sedimentary ridges deposited in ice-walled meltwater conduits and are indicative of glacial melting. We compare the candidate esker to terrestrial analogues, present a geomorphic map of landforms in the rift, and develop a landsystem model to explain their formation. We propose that the candidate esker formed during a transient phase of wet-based glaciation. We then consider the similarity between the geologic setting of the new candidate esker and that of the only other candidate esker to be identified in association with an existing mid-latitude VFF; both are within tectonic graben/rifts proximal to volcanic provinces. Finally, we calculate potential basal temperatures for a range of VFF thicknesses, driving stresses, mean annual surface temperatures, and geothermal heat fluxes, which unlike previous studies, include the possible role of internal strain heating. Strain heating can form an important additional heat source, especially in flow convergence zones, or where ice is warmer due to elevated surface temperatures or geothermal heat flux. Elevated geothermal heat flux within rifts, perhaps combined with locally-elevated strain heating, may have permitted wet-based glaciation during the late Amazonian, when cold climates precluded more extensive wet-based glaciation on Mars.

  19. Rock Equity Holdings, LLC (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015

  20. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A


    ... of eclogite evolution and genesis. The authors present a thorough treatment of the stability relations and geochemistry of these rocks, their intimate association with continental plate collision zones and suture zones...

  1. Pop & rock / Berk Vaher

    Index Scriptorium Estoniae

    Vaher, Berk, 1975-


    Uute heliplaatide Redman "Malpractice", Brian Eno & Peter Schwalm "Popstars", Clawfinger "A Whole Lot of Nothing", Dario G "In Full Color", MLTR e. Michael Learns To Rock "Blue Night" lühitutvustused

  2. Rock kinoekraanil / Katrin Rajasaare

    Index Scriptorium Estoniae

    Rajasaare, Katrin


    7.-11. juulini kinos Sõprus toimuval filminädalal "Rock On Screen" ekraanile jõudvatest rockmuusikuid portreteerivatest filmidest "Lou Reed's Berlin", "The Future Is Unwritten: Joe Strummer", "Control: Joy Division", "Hurriganes", "Shlaager"

  3. Early volcanic history of the Rabaul area (United States)

    McKee, Chris O.; Duncan, Robert A.


    We conducted an extensive program of 40Ar-39Ar age determinations on a suite of 27 volcanic rock samples from key stratigraphic units at Rabaul, Papua New Guinea in order to improve understanding of the early eruption history of the multiple volcanic systems present in the area. Analyses of whole rock, plagioclase and groundmass separates yielded statistically significant ages for 24 samples. Replicate analyses (groundmass, plagioclase) for 17 of the samples provided concordant ages. The oldest systems in the Rabaul area (>1 Ma to ≈300 ka) are in the south, associated with the caldera-like Varzin Depression, and in the north, at the stratovolcanoes Watom and Tovanumbatir. The earliest known activity of the Rabaul system occurred between about 330 and 200 ka and involved emplacement of lava flows and scoria deposits. Major explosive activity at the Rabaul system commenced at about 200 ka and produced a sequence of dacitic ignimbrites that culminated with the emplacement of the large-volume Malaguna Pyroclastics at about 160 ka. Calderas may have been formed as a consequence of the large volumes of tephra produced during some of these eruptions. Products of the early activity are found in the northern and northeastern walls of Rabaul Caldera and on the northeastern flank of Tovanumbatir. This leads to the conclusion that the source of the early activity at Rabaul probably was located in the northern part of the present caldera complex. A shift in the focus of activity at the Rabaul system took place between about 160 and 125 ka. All of the younger (<125 ka) major pyroclastic formations, including the Karavia Welded Tuff, the Barge Tunnel Ignimbrite and the Latlat Pyroclastics, which make up the bulk of the exposure in the southern and western walls of Rabaul Caldera, were erupted from a source or sources in the south-central part of the complex. The stratovolcanoes Palangiangia and Kabiu, which flank the northeastern part of the complex, had commenced activity by

  4. Arc-rift transition volcanism in the Volcanic Hills, Jacumba and Coyote Mountains, San Diego and Imperial Counties, california (United States)

    Fisch, Gregory Zane

    Neogene volcanism associated with the subduction of the Farallon-Pacific spreading center and the transition from a subduction zone to a rift zone has been studied extensively in Baja, California, Mexico. One of the main goals of these studies was to find a geochemical correlation with slab windows that may have formed during that complicated transition. While workers have been able to find distinct geochemical signatures in samples from Baja California, none have shown statistically significant correlation with samples from southern California that are thought to be related to the same arc-rift transition events. All of the basaltic samples from this study of southern California rocks have prominent Nb depletions typical of island-arc subduction-related volcanism, in contrast to the chemistry of Baja California volcanics that have trace element patterns typical of synrift related volcanism. The work done by previous investigators has been additionally complicated due to each investigator's choice of important ratios or patterns, which bears little, if any, correlation with work done by others working in the same area. For example, Martin-Barajas et al. (1995) use K/Rb ratios in their study of the Puertocitos Volcanic Province, while Castillo (2008) argues that Sr/Y vs. Y is a better indicator of petrogenetic processes. Little petrologic work has been done on Neogene volcanic rocks in the Imperial Valley and eastern San Diego County region of Southern California. This thesis combines new research with that of previous workers and attempts to establish a better understanding of the processes involved with the transition volcanism. Prior work documents significant differences in the geochemistry between some of these areas, especially those in close proximity to each other (e.g. the Volcanic Hills and Coyote Mountains). These differences were thought to be largely the result different magmatic sources. The potential of finding two differing magma types in close

  5. Volcanism, sedimentation, K/Ar and palynology studies, Yayu and Delbi-Moye Basins, Southwestern Plateau of Ethiopia (United States)

    Wolela, A.


    Major element, K/Ar, sedimentation and palynology data are reported on Tertiary volcanic and sedimentary rocks from the Yayu and Delbi-Moye Basins, SW Ethiopia. In the Yayu and Delbi-Moye Basins, pre-rift volcanic (basalts) and post-rift volcanic (basalts) are separated by coal and oil shale-bearing sedimentary rocks. The basalts are tholeiitic in composition. The K/Ar data on the volcanic rocks range from 10.98 ± 0.55 Ma (Lower Miocene i.e. Tortonian) to 111.19 ± 2.83 Ma (Early Cretaceous i.e. Aptian). Inter-Trappean coal and oil shale-bearing sedimentary rocks are widely distributed in the Yayu and Delbi-Moye Basins. The NNW-SSE fault system developed grabens and half-grabens for the deposition of coal and oil shale-bearing sedimentary rocks. The sedimentary successions are dominated by fine to medium-grained sandstones, siltstones, mudstones, carbonaceous shales, carbonaceous claystones, coal and oil shale seams, and are characterized by meandering river and lacustrine depositional environments. Fresh water algae Botryococcus brauni, Pediastrum sp., Polypodii sporites favus and Polypodii sporites afavus and Pachydermites diederixi, are common palynomorphs in the studied coal and oil shales, and are indicators of lacustrine environment. The presence of Peregrinipollis nigericus is consistent with Oligocene to Miocene. The presence of Euphorbiaceae, Papilionacae, Melastomtaceae sp., Dodonaea, Martretia quadricornis, Rubiaceae sp. (pollen derived from tropical shrubs), Sapotaceae spp. and Meliaceae spp. are indicative of humid, tropical rainforest conditions. Extensive bio-assemblages confirm that the age of coal and oil shale-bearing sedimentary rocks to be Oligocene to Miocene.

  6. Rock and Soil Rheology (United States)

    Cristescu, Nicolae; Ene, Horia I.

    The first part of the volume contains theoretical considerations of the physical properties of soils and rocks. Articles on the mechanical and kinematical behavior of rocks as well as mathematical models are the base for the understanding of the physical properties of natural systems. In the second part articles deal with experiments and applications regarding creep deformation of clay, underground cavities, tunnels and deformation of sand and lamistrine sediments.

  7. Induced Thermoluminescence Dating of Volcanism on Hawaii (United States)

    Sears, D. W. G.; Sears, H.; Hughes, S. S.; Sehlke, A.


    Last year we demonstrated that a suite of tholeiitic basalts that had erupted about 2.2 ka to nearly 500 ka ago in the east Snake River Plain (Idaho) showed a correlation between induced TL and age, although there was considerable scatter. This correlation is consistent with petrographic changes in the feldspar, the major TL-producing mineral in these rocks, such as crystallization of glassy or amorphous phases to produce feldspar or the diffusional loss of incompatible elements, such as Fe, that quench TL in feldspars. We have now measured 19 basalts from Hawaii. The Kohala alkali basalts (130-470 ka) have higher induced TL than the Kilauea tholeiitic basalts (<10ka) by a factor of 10-100. Benoit et al. (2001) showed that there is a strong relationship between induced TL and composition of feldspars. Applying the results of Benoit et al. (2001) to correct for compositional differences between the alkali and tholeiitic basalts, by normalizing them all to a tholeiitic feldspar composition, the correlation between induced TL and age for the Hawaii basalts is identical to the correlation observed for the Idaho basalts within our experimental uncertainties. These results suggest that there is an induced TL vs. age trend for basalts that is not specific to one location, and that there is the potential for a non-isotopic method of dating volcanism. The main challenge now is to identify and correct for causes of scatter in the data, other than composition, such as the amount of crystallization before, during, and immediately after emplacement of the lava (e.g., devitrification of the residual glasses within the basalts). If this can be done, the TL method, which is low-weight, low-power, low data-rate, would be suitable to spacecraft use. Part of FINESSE (PI Jennifer Heldmann) SSERVI node. We thank BASALT (PI Darlene Lim) for logistical support. [AS1]Any others you would consider?

  8. Investigation of Along-Arc Geochemical Variations in the Southern Volcanic Zone: Azufre-Planchon-Peteroa Volcanic Complex, Southern Chile (United States)

    Holbik, S. P.; Hickey-Vargas, R.; Tormey, D.


    The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. This study focuses on volcanic rocks from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic complex, within the Transitional SVZ (34.3-37.0 °S), where crustal thickness increases from approximately 30 km in the south (Central SVZ), to 55 km in the north (Northern SVZ). Planchon is the northernmost volcano in the SVZ to erupt basaltic products, while Peteroa is the currently active cone, erupting tephra of andesitic composition, most recently in September of 2011. New data for the APP are consistent with the hypothesis of Tormey et al. (1995) that the APP experienced variable depths of crystal fractionation, and that crustal assimilation at Planchon is restricted to the lower crustal depths, as reflected by limited variability in 87Sr/86Sr isotopes. New δ18O data (26.5‰) from an outcropping dolomitic limestone country rock in the vicinity of the Azufre volcano also confirms the upper crustal source of anomalously high (7.1 and 7.3‰) oxygen isotopic values for Azufre dacites. A trend of high La/Yb (6.5-9.1) and Yb depletion with increasing La/Yb for Planchon basalts is consistent with the role of garnet as a residual or crystallizing phase at lower crustal depths, however, the La/Yb range is small when compared to published data from nearby TSVZ centers such as Nevado de Longavi (La/Yb = 5.5 to 16.7) and San Pedro Pellado (La/Yb =7.2 to 13.6). Geochemical modeling of the Planchon data shows that both hornblende and garnet must be involved in the magmatic evolution, even though erupted basalts are free of major hydrous phases, in order to account for the more limited range of La/Yb. Interestingly, baseline values of La/Yb for basalt and basaltic andesites from throughout the TSVZ, including

  9. New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy) (United States)

    Conte, A. M.; Perinelli, C.; Bianchini, G.; Natali, C.; Martorelli, E.; Chiocci, F. L.


    The Pontine Islands form a volcanic archipelago in the Tyrrhenian Sea. It consists of two edifices, the islands of Ponza, Palmarola and Zannone and the islands of Ventotene and Santo Stefano, respectively. The Archipelago developed during two main volcanic cycles in the Plio-Pleistocene: 1) the Pliocene episode erupted subalkaline, silica-rich volcanic units, which constitute the dominant products in the western edifice (Ponza and Zannone Islands); 2) the Pleistocene episode erupted more alkaline products, represented by evolved rocks (trachytes to peralkaline rhyolites) in the islands of Ponza and Palmarola and by basic to intermediate rocks in the eastern edifice (Ventotene and Santo Stefano Islands). In this paper we present new geochemical and petrological data from submarine rock samples collected in two oceanographic cruises and a scuba diving survey. The main result is the recovery of relatively undifferentiated lithotypes that provide further insights on the magmatic spectrum existing in the Pontine Archipelago, allowing modelling of the whole suite of rocks by fractional crystallization processes. New major and trace element data and thermodynamic constrains (by the software PELE) indicate the existence of three distinct evolutionary trends corresponding to a HK calcalkaline series in the Pliocene, followed by a transitional and then by a shoshonite series in the Pleistocene. In particular, the transitional series, so far overlooked in the literature, is required in order to explain the genesis of several peralkaline felsic rocks recognized in the Archipelago. On the whole, the new geochemical data i) confirm the orogenic signature of the suites, ii) allow to rule out an anatectic origin for both subalkaline and peralkaline rhyolites and iii) indicate highly heterogeneous mantle sources, due to crustal components variously recycled in the mantle via subduction.

  10. Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.


    We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.

  11. Anoxia, toxic metals and acidification: volcanically-driven causes of the Middle Permian (Capitanian) mass extinction in NW Pangaea? (United States)

    Bond, David; Grasby, Stephen; Wignall, Paul


    The controversial Capitanian (Middle Permian, 262 Ma) mass extinction, mostly known from equatorial latitudes, has recently been identified in a Boreal setting in Spitsbergen. We now document this extinction in the record of brachiopods from the Sverdrup Basin in NW Pangaea (Ellesmere Island, Canada), confirming Middle Permian losses as a global crisis on par with the "Big Five". Redox proxies (pyrite framboids and trace metals) show that the high latitude crisis coincided with an intensification of oxygen-poor conditions - a potent killer that is not clearly developed in lower latitude sections. Mercury becomes briefly enriched in strata at the level of the Middle Permian extinction level in Spitsbergen and Ellesmere Island, indicating voluminous but short-lived volcanism that is likely to have been the emplacement of the Emeishan large igneous province (LIP) in SW China. A potent cocktail of poisons appears to have impacted across the Boreal Realm, whilst the near-total loss of carbonates near the extinction level is also consistent with reduced pH across the region. Multiple stresses, possibly with origins in low-latitude LIP volcanism, are therefore implicated in the Middle Permian extinction and there was no respite even in the far-distant Boreal Realm.

  12. The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum (United States)

    Frisia, Silvia; Weyrich, Laura S.; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Rivard, Camille; Cooper, Alan


    Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-