WorldWideScience

Sample records for volcanic rock distribution

  1. A new method for determining the uranium and thorium distribution in volcanic rock samples using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Bakhchi, A.; Ktata, A.; Koutit, A.; Lamine, J.; Ait nouh, F.; Oufni, L.

    2000-01-01

    A method based on using solid state nuclear track detectors (SSNTD) CR- 39 and LR-115 type II and calculating the probabilities for the alpha particles emitted by the uranium and thorium series to reach and be registered on these films was utilized for uranium and thorium contents determination in various geological samples. The distribution of uranium and thorium in different volcanic rocks has been investigated using the track fission method. In this work, the uranium and thorium contents have been determined in different volcanic rock samples by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD). The mean critical angles of etching of the solid state nuclear track detectors utilized have been calculated. A petrographical study of the volcanic rock thin layers studied has been conducted. The uranium and thorium distribution inside different rock thin layers has been studied. The mechanism of inclusion of the uranium and thorium nuclei inside the volcanic rock samples studied has been investigated. (author)

  2. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  3. GIS database and discussion for the distribution, composition, and age of Cenozoic volcanic rocks of the Pacific Northwest Volcanic Aquifer System study area

    Science.gov (United States)

    Sherrod, David R.; Keith, Mackenzie K.

    2018-03-30

    A substantial part of the U.S. Pacific Northwest is underlain by Cenozoic volcanic and continental sedimentary rocks and, where widespread, these strata form important aquifers. The legacy geologic mapping presented with this report contains new thematic categorization added to state digital compilations published by the U.S. Geological Survey for Oregon, California, Idaho, Nevada, Utah, and Washington (Ludington and others, 2005). Our additional coding is designed to allow rapid characterization, mainly for hydrogeologic purposes, of similar rocks and deposits within a boundary expanded slightly beyond that of the Pacific Northwest Volcanic Aquifer System study area. To be useful for hydrogeologic analysis and to be more statistically manageable, statewide compilations from Ludington and others (2005) were mosaicked into a regional map and then reinterpreted into four main categories on the basis of (1) age, (2) composition, (3) hydrogeologic grouping, and (4) lithologic pattern. The coding scheme emphasizes Cenozoic volcanic or volcanic-related rocks and deposits, and of primary interest are the codings for composition and age.

  4. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  5. Tungsten abundances in some volcanic rocks

    International Nuclear Information System (INIS)

    Helsen, J.N.; Shaw, D.M.; Crocket, J.H.

    1978-01-01

    A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments. These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19; continental margin, 0.40; continental subalkaline, 0.30; continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05. Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively. (author)

  6. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  7. The volcanic rocks construction of the late paleozoic era and uranium mineralization in Beishan area of Gansu province

    International Nuclear Information System (INIS)

    An Zhengchang; Luo Xiaoqiang

    2010-01-01

    Late Paleozoic volcanic rocks in Beishan area are the favorable constructions of hydrothermal type and volcanic type deposit. From the distribution of volcanic rocks, the volcanic compositions, the volcanic facies, volcanic eruption method and rhythm, chemical and trace elements compositions, and so on, it discusses the characteristics of the Late Devonian volcanic construction in this area and its relationship with uranium mineralization, analyzes the role of volcanic ore-control mechanism, and summarizes uranium ore forming regularity of volcanic construction in Late Paleozoic. (authors)

  8. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  9. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  10. Ejection age of volcano rocks and trend of volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Keiichi

    1987-10-01

    This report is II-7 of an interim report on research and development of the Sunshine Project for 1986. This report considers on the trend of volcanic activities in the South of Kyushu area. K-Ar age measurement was newly made and reported. Age values obtained were 1.09 plus minus 0.21 Ma for Nagaoyama andesite, 1.33 plus minus 0.18 Ma for Nozato andesite, and 0.3 plus minus 0.1 Ma for Imuta volcanos. Including these age values, from the age values and their distribution of the volcanic rocks in the South Kyushu district, the following three districts were selected to represent the volcanic activities since the Pliocene Epoch. As these districts are mutually overwrapped, verification at these overwrapped districts are necessary. (4 figs, 1 tab, 12 refs)

  11. Compositional Differences between Felsic Volcanic rocks from the ...

    African Journals Online (AJOL)

    The elemental and Sr-Nd isotopic compositions of the volcanic rocks suggest that fractional crystallization from differing basic parents accompanied by a limited assimilation (AFC) was the dominant process controlling the genesis of the MER felsic volcanic rocks. Keywords: Ethiopia; Northern Main Ethiopian Rift; Bimodal ...

  12. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  13. An Overview of the Soutpansberg Sedimentary and Volcanic Rocks

    Directory of Open Access Journals (Sweden)

    J.W. Bristow

    1986-11-01

    Full Text Available Volcanic and sedimentary rocks occupy a faulted graben within the previously uplifted and eroded high-grade gneiss terrain of the Limpopo Mobile Belt. The rocks comprise the Soutpansberg Group and represent an important sequence of Proterozoic rocks. Their general geology and volcanology is summarised in this paper.

  14. K-Ar ages of the Neogene volcanic rocks from the Oshamambe district, southwestern Hokkaido

    International Nuclear Information System (INIS)

    Kubo, Kazuya; Shibata, Ken; Ishida, Masao

    1988-01-01

    Oshamanbe district is on the northern extension of the so-called green tuff district in northeastern Japan, and the sedimentary rocks in a sea area and volcanic rocks from Miocene to Pleistocene widely distribute. The authors carried out the geological survey of this district, and published the results as the geological features in Oshamanbe district. The volcanic rocks distributing in this district range from andesite to dacite and rhyolite. Their lithofacies are mostly volcanic breccia and tuff breccia, accompanied by lava and dikes. This time, the measurement of the age of these volcanic rocks was carried out, and the stratigraphical table made by the authors was investigated. It is considered that those age values offer important information for determining the age of the Setana formation. The outline of the geological features, the samples for the measurement, the method of measurement of Ar isotopic ratio and K, and the results of measurement are reported. As the results, 4.38 - 4.47 Ma were obtained for Garogawa volcanic rocks, and 2.59 Ma for Shamanbesan volcanic rocks. The period of sedimentation of the Setana formation was from the latter period of Pliocene to pleistocene. (Kako, I.)

  15. Petrography, Geochemistry and Petrogenesis of Volcanic Rocks, NW Ghonabad, Iran

    Directory of Open Access Journals (Sweden)

    Sedigheh Zirjanizadeh

    2016-07-01

    .6mmin size. Trachyte is characterized by trachytic texture. Ninety percent of the rock consists of sanidine. In trachytes, 3 to 5% hornblende ( 0.3 mm is replaced by carbonates. Rhyolites contain quartz, plagioclase, sanidine, and biotite phenocrysts in a microcrystalline to glassy groundmass. Rhyodacitehas phenocrysts, some glomerophyric, consisting of quartz, 2 to 3% (0.1-0.5 mm, plagioclase 7 to 10% (0.2- 0.8 mm, hornblende 5% and biotite 1%. Up to 15% of sanidineis altered to clay minerals. Crystal tuff and lithic-crystal tuff are distributed overa large area. Using the Zr/TiO2 and Nb/Y diagram of Winchester and Fold (1977, samples are designated as rhyolite, dacite and sub-alkaline basalt. In the Co vs. Th diagram of Hastie et al. (2007, samples plot in the shoshonitic and high calc-alkaline, rhyolite, dacite and andesite-basalt fields. The REE patterns and trace element contents of the volcanic samples show: (1 LREE/HREE enrichment ((La/Yb N = 0.3 to 15.27, (2 Low negative Eu anomaly (ave.Eu*/Eu=0.2-0.85, (3 depletion in Ba, Sr, K2O, Zr and Ti (Lower continental crust-normalized spider diagram from Taylor and McLennan, 1985 and Chondrite-normalized diagram from Nakamura, 1974. Rhyolites show the most extreme negative Eu anomaly (Eu/Eu* = 0.2-0.3 compared with 0.65–0.85 for volcanic elsewhere and also show considerably differences in the contents of Rb,Sr,K,Ti,Zr,Hf,Ce. These differences are related to greater magmatic differentiation or derivation from the other sources. The Sr and Nd isotopic ratios of these volcanic rocks are: 87Sr/86Sr = 0.70699 to 0.71014 and 143Nd/144Nd =0.512144 to 0.512539. Assuming an age of 60 Ma, the initial 87Sr/86Sr ratios vary from 0.70671 to 0.71066 and initial 143Nd/144Nd values vary from 0.512098 0.51249 (εNdi = -9.1 to 0.51249 (εNdi = -1.4.In the εNdi versus (87Sr/86Sri diagram, the samples plot in the field typical of magmas that are of crustal origin or, at least, that underwent important processes of crustal assimilation

  16. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling

    2016-01-01

    rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students......Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...

  17. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.

    2015-02-01

    Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M3, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement.

  18. Areal and time distributions of volcanic formations on Mars

    International Nuclear Information System (INIS)

    Katterfeld, G.N.; Vityaz, V.I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations

  19. Areal and time distributions of volcanic formations on Mars

    Science.gov (United States)

    Katterfeld, G. N.; Vityaz, V. I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations.

  20. Acidic volcanic rock and its potential as an objective for uranium prospecting

    International Nuclear Information System (INIS)

    Rodriguez Torres, R.; Yza Dominguez, R.; Chavez Aguirre, R.; Constantino, H.E.S.E.

    1976-01-01

    The geographical distribution of recent Mexican volcanic rocks is continuous; the older formations are dispersed in isolated outcrops. Continental volcanic events, acidic and basal, took place in the Caenozoic, Mesozoic and Palaeozoic; basic submarine volcanism predominated in the Mesozoic, Palaeozoic and late Precambrian. Access to the Sierra Madre Occidental, a circum-Pacific mountain range covered by rhyolitic rocks, is limited, which restricts the sections studied. Calderas, sources of volcanic emission and preliminary litho-stratigraphic sections have been delimited on the eastern edge of the range. Subduction by the ocean magmatized the continent from the Permian onwards, extravasating and depositing cyclically various magmata through inverted and normal cortical throws. The Sierra Pena Blanca (Chihuahua) section consists of epiclastic and pyroclastic rocks. A calcareous conglomerate is overburdened by alternate basal tuffs and imbricates, forming five units. In the uraniferous district of the Sierra Pena Blanca the hydrothermal alteration argillitized both components of the ''Nopal'' formation. Primary minerals (pitchblende) are found together with silicification. Leaching favours secondary mineralization (uranium silicates) associated with opals. After extrapolation of the features, the following are considered worth-while objectives: the faces, offsets and prolongations of the Sierra Madre Occidental and the southern volcanic mesetas south of the Mexican Transcontinental Rift. Similar objectives of Mesozoic or Palaeozoic age exist in central and southern Mexico. Possible objectives for uranium are: the acidic volcanic rock of the southern and south-western United States of America, the circum-Pacific acidic volcanic rocks of North America and the acidic volcanic mesetas of Central America and in the Andes. (author)

  1. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  2. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Assessment and Evaluation of Volcanic Rocks Used as Construction Materials in the City of Addis Ababa. ... So, field observation and sample collection for laboratory investigations were conducted on six selected target areas of the city periphery. In doing so, the compressive strength, open porosity, water absorption and ...

  3. Unzen volcanic rocks as heat source of geothermal activity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Sugiyama, Hiromi

    1987-03-25

    Only a few radiometric ages have been reported so far for the Unzen volcanic rocks. In this connection, in order to clarify the relation between volcanism and geothermal activity, fission track ages of zircon seperated from the Unzen volcanic rocks in western Kyushu have been dated. Since all the rocks are thought to be young, the external surface re-etch method was adopted. The results are that the age and standard error of the basal volcaniclastic rocks of the Tatsuishi formation are 0.28 +- 0.05 Ma and 0.25 +- 0.05 Ma. The next oldest Takadake lavas range from 0.26 to 0.20 Ma. The Kusenbudake lavas fall in a narrow range from 0.19 to 0.17 Ma. The latest Fugendake lavas are younger than 0.07 Ma.In conclusion, the most promising site for geothermal power generation is the Unzen hot spring field because of its very high temperature. After that, comes the Obama hot spring field because of the considerable high temperature chemically estimated. In addition, the northwestern area of the Unzen volcanic region will be promising for electric power generation in spite of no geothermal manifestations, since its volcanos are younger than 0.2 Ma. (14 figs, 14 tabs, 22 refs)

  4. Groundwater characteristics and problems in volcanic rock terrains

    International Nuclear Information System (INIS)

    Custodio, E.

    1989-01-01

    Volcanic rock formations, each with their own particular hydrogeological characteristics, occur in circumstances that cover a multiplicity of situations. These range from permeable porous rock formations to permeable fissured formations and include all types of intermediate situation between the two. The type of volcanism, distance from the source of emission, age, alteration processes and tectonics are all factors which determine their behaviour. Volcanic formations usually constitute a single aquifer system, even though this may be very heterogeneous and may locally be separated into clearly defined subunits. At times, formations may be hundreds of metres thick and are fairly permeable almost throughout. As a rule, volcanic material does not yield directly soluble salts to the water that flows through it. Mineralization of the water is due to the concentration of rainfall and the hydrolysis of silicates as a result of CO 2 being absorbed from the atmosphere and the ground, or as a result of volcanism itself. Cationic grouping is usually closely correlated to that of the rock formation in which the chemical composition is formed. Most environmental isotope and radioisotope techniques may be used, and at times are of unquestionable value. However, the existence of evaporation in the soil with possible isotopic fractionation, the effects of marked relief, the dilution of dissolved carbon by volcanic carbon and isotopic exchange brought about by volcanic carbon, etc., should be taken into account before valid conclusions are drawn. The paper uses examples taken from existing studies, mainly those being carried out in the Canary Islands (Spain). (author). 98 refs, 18 figs, 4 tabs

  5. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole

    1998-01-01

    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes ...

  6. Change with time in extrusion and chemical composition of volcanic rock in geothermal areas in central Kyushu

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Hiroki

    1986-10-01

    Changes with time in extrusion and chemical composition of volcanic rocks in central Kyushu are studied to provide basic data required for evaluation of geothermal resources. Distribution of volcanic rocks in successive 1Ma (10/sup 6/ year) periods and the average thickness of volcanic rock layers in each period are determined, from which the volume of volcanic rocks in each 1Ma period is calculated. Results indicate that volcanos in central Kyushu extruded about 3,000 km/sup 3//Ma of volcanic rocks during the early periods (about 5Ma), followed by a series of declining periods up to the present. Comparison of volcanic extrusive rocks of each 1Ma period shows that lava of hornblende andesite and pyroxenic andesite has been extruded in great quantities in every period. Chemical composition is studied based on diagrams showing changes in SiO/sub 2/ content. The K/sub 2/O content is relatively high in most volcanos younger than 1.6Ma, compared to those older than 1.6Ma. the K/sub 2/O content in extruded rocks has been high during the latest 0.4Ma in the Aso volcanic area, unlike other island arc conjunction areas. (4 figs, 5 tabs, 28 refs)

  7. Stratigraphy and eruption age of the volcanic rocks in the west of Miyanoharu area, Kumamoto Prefecture

    International Nuclear Information System (INIS)

    Kamata, Hiroki

    1985-01-01

    The detailed stratigraphic survey, K-Ar age determinations and NRM measurements of the volcanic rocks in the west of Miyanoharu area revealed the volcanic history as follows: Hornblende andesite lava with plagioclase megacryst (Yoshinomoto lava) erupted during 2.8 - 2.5 Ma (Gauss normal epoch), accompanied by small amount of pyroclastic materials. After this eruption, Kamitarumizu hypersthene-augite andesite lava (1.7 - 1.3 Ma; reversed), Yabakei pyroclastic flow (0.99 Ma; Jaramillo normal event), Yamakogawa biotite rhyolite lava (0.9 Ma; reversed) and Daikanbo hypersthene-augite andesite lava (0.8 Ma; normal) erupted successively prior to the Aso-1 pyroclastic flow (0.3 - 0.4 Ma). Both the K-Ar ages and NRM data are consistent with the stratigraphic sequence (Fig. 2), which suggests that the activity of andesite and rhyolite is intercalated with each other during Pleistocene in the studied area. The compiled radiometric age data in the central-north Kyushu show that the age of volcanic activity that has previously been inferred as middle Miocene is of Pliocene, and its distribution is limited within the quadrilateral (60 km x 40 km) where the pre-Tertiary basement rocks are absent. The distribution of volcanic rocks is historically zonated such that the rocks of older age up to 5 Ma develop toward the outer rim of the quadrilateral, which coincides with the 0 mgal contour bordering the large low Bouguer anomaly. These facts suggest that the volcanic activity is remarkably relevant to the subsidence of this area, where the volcano-tectonic depression has been formed after 5 Ma to the present, and filled with lavas and pyroclastic materials with scarce sedimentary rocks in the tension stress field during Plio-Pleistocene age. (Kubozono, M.)

  8. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  9. Stratigraphical sequence and geochronology of the volcanic rock series in caifang basin, south jiangxi

    International Nuclear Information System (INIS)

    Xu Xunsheng; Wu Jianhua

    2010-01-01

    The late Mesozoic volcanic rocks in Jiangxi constitute two volcanic belts: the northern is Xiajiang-Guangfeng volcanic belt, the volcanic rocks series belong to one volcano cycle and named Wuyi group which is subdivided into three formations (Shuangfengling formation, Ehuling formation and Shixi formation); the southern is Sannan-Xunwu volcanic belt, the volcanic rocks series in Caifang basin which locates on Sannan-Xunwu volcanic belt also belong to only one volcano cycle. It can be subdivided into two lithology and lithofacies units (upper and lower): the lower unit consists of sedimentary rocks and associated with a subordinate amount of volcanic rocks, it belongs to erupt-deposit facies which is the product of early volcanic stage; the upper unit is mostly composed of volcanic rocks, it belongs to erupt facies that is the volcanic eruption product. SHRIMP zircon U-Pb age of rhyolite? which locates at the top of the upper unit is 130.79 ± 0.73) Ma. According to the new International Stratigraphic Chart, the boundary of Jurassic and Cretaceous is (145.4 ± 4.0) Ma, so the age shows that the geologic period of Caifang volcanic rocks series is early Early Cretaceous epoch. On the basis of lithological correlation, lithofacies and stratigraphic horizon analysis, the volcanic rock series in Caifang basin fall under Wuyi group, and the lower unit could be incorporated into Shuangfengling formation, the upper unit could be incorporated into Ehuling formation. The subdivision of sequence and the determination of geochronology of the volcanic rock series in Caifang basin provide some references for the study of the late Mesozoic volcanic rocks series of the Sannan-Xunwu volcanic belt. (authors)

  10. Alteration of submarine volcanic rocks in oxygenated Archean oceans

    Science.gov (United States)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.

    2009-12-01

    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  11. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  12. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  13. Uranium mineralization in fluorine-enriched volcanic rocks

    International Nuclear Information System (INIS)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements

  14. Hydrological and geochemical investigation on the volcanic rock and gneissic rock area

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kwon; Jeong, Chan Ho; Ryu, Kun Seok; Kim, Byoung Yeop; Park, Hyung Kun; Yu, Sang Woo; Jang, Hyu Kun; Lee, Suk Chi; Choi, Ki Young; Jeon, Hyu Woong; Kim, Do Hyoung [Daejong University, Daejeon (Korea, Republic of)

    2010-01-15

    The purpose of this study is to supply the basic data and optimum study site among volcanic rock area and gneissic rock area for high-level radioactive waste disposal. For this purpose, geological, hydrogeological and geochemical data from previously published literatures were collected and analyzed. In this study, we selected 36 volcanic rock sites and 26 gneissic sites as the candidate sites for high level radwaste disposal. Finally, for four sites(M-1, M-13, V-1 and V-13 sites) were selected as the study sites. The geochemical characteristics of groundwaters of each study site were statistically analyzed. The nitrate contamination and the sea water mixing will be important factors on the assessment of behaviour of radionuclides under groundwater environment. From the deep geothermal study, alkaline and sodium-bicarbonate chemical environment, and sea water mixing should be considered as the key factors for the deep disposal of high-level radioactive waste

  15. Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques

    OpenAIRE

    T. Miranda; L.R. Sousa; A.T. Gomes; J. Tinoco; C. Ferreira

    2018-01-01

    This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system (VRS) is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating (RMR) system....

  16. Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications

    Science.gov (United States)

    Qian, Xin; Feng, Qinglai; Chonglakmani, Chongpan; Monjai, Denchok

    2013-12-01

    Volcanic rocks in northwestern Thailand exposed dominantly in the Chiang Khong area, are commonly considered to be genetically linked to the tectonic evolution of the Paleo-Tethyan Ocean. The volcanic rocks consist mainly of andesitic to rhyolitic rocks and are traditionally mapped as Permian-Triassic sequences. Our zircon U-Pb geochronological results show that two andesitic samples (TL-1-B and TL-31-B), are representative of the Doi Yao volcanic zone, and give a mean weighted age of 241.2±4.6 Ma and 241.7±2.9 Ma, respectively. The rhyolitic sample (TL-32-B1) from the Doi Khun Ta Khuan volcanic zone erupted at 238.3±3.8 Ma. Such ages indicate that Chiang Khong volcanic rocks erputed during the early Middle Triassic period. Seven samples from the Doi Yao and Doi Khun Ta Khuan zones exhibit an affinity to arc volcanics. Three rhyolitic samples from the Chiang Khong area have a geochemical affinity to both arc and syn-collisional volcanic rocks. The Chiang Khong arc volcanic rocks can be geochemically compared with those in the Lampang area in northern Thailand, also consistent with those in Jinghong area of southwestern Yunnan. This indicates that the Chiang Rai arc-volcanic zone might northwardly link to the Lancangjiang volcanic zone in southwestern China.

  17. A study on the characteristics of site-scale fracture system in granite and volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Chun Soo; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of conductive fractures in granite and volcanic rock mass. 10 refs., 32 figs., 13 tabs. (Author)

  18. K-Ar ages for the Yahazudake volcanic rocks from southwest Kyushu, Japan; Kyushu nanseibu yahazudake kazanganrui no K-Ar nendai

    Energy Technology Data Exchange (ETDEWEB)

    Yokose, H.; Kikuchi, W. [Kumamoto Univ. (Japan)] Nagao, K. [Okayama Univ. (Japan)264000] Kodama, K. [Kochi Univ. (Japan)

    1998-05-05

    Many volcanic rocks, seemed to be erupted during the period from the Pliocene epoch to the Pleistocene epoch, are distributed abounding in Kyushu, Japan. In this study, K-Ar ages determination about the 4 samples which represents the Hisatsu volcanic rocks distributed around Yahazudake and rhyolite distributed in Gesujima placed in the southernmost extremity of Amakusa Shimojima, was conducted. And consideration of time/space distribution of the Hisatsu volcanic rocks upon collecting the data which were reported until now and the data obtained by the present K-Ar age determination, was done. In the result of the present measurement, the absolute age of the Hisatsu volcanic rocks distributed around Minamata-shi became clear. I was clarified that Yahazudake volcanic rocks consisted of andesite, which is comparatively lacking in potassium, were formed during about 100 thousand years from 1.98 to 2.08 Ma, and Ontake volcanic rocks which exists for the bottom erupted at about 2.15 Ma. And, the age value of 2.89 Ma was obtained from Ushibuka rhyolite distributed in Gesujima. 35 refs., 4 figs., 3 tabs.

  19. Rare earth element mobility in arc-type volcanic rocks

    International Nuclear Information System (INIS)

    Kuschel, E.; Smith, I.E.M.

    1990-01-01

    Some samples from arc-type volcanic suites collected in northern New Zealand and southeastern Papua New Guinea show rare earth element (REE) and Y abundances which are enriched relative to the those typical of their respective associations. This enrichment appears to be the result of an alteration process which selectively mobilises the REE and re-precipitates them as REE-bearing minerals in veins and interstitial patches. The alteration is on a micron scale and is not detected in routine petrographic examination. It is emphasised that the pattern of REE mobility in young, fresh rocks is important to igneous geochemists who use REE abundances to constrain petrogenetic models and may also be important because it indicates the operation of a natural REE enrichment process which could operate in the formation of economic REE deposits. 3 refs., 5 figs

  20. Mineral chemistry and petrogenesis of the Gurgur Mount volcanic rocks (Northeast Takab

    Directory of Open Access Journals (Sweden)

    Dariush Esmaeily

    2016-12-01

    Full Text Available Andesitic and andesitic-basaltic lavas are widespread over most of the ground surface of the Gurgur area altered mostly by the hydrothermal solutions. The main rock forming minerals in these rocks are plagioclase, pyroxene and olivine affected by the hydrothermal solutions. The altered rocks do contain minerals including calcite, sericite and chlorite. Given the results obtained and the mineral chemistry studies, the clinopyroxenes formed in the area are, chemically, calkalkaline and of diopside-augite type formed in subvolcanic to near surface levels contemporaneous with magma ascending. Plagioclase minerals show zoning textures and lie within the two andesine and albite-oligoclase fields. These units, in terms of total rock chemistry, are classified as the calk-alkaline volcanic rocks formed in the continental arcs. On the other hand, on the trace elements chondrite-normalized diagrams and enriched mantle-normalized multi- element diagrams, the LREE enrichment relative to the HREE is observed. The LILE (i.e. Rb, K and Th and the LREE (e.g. La, Ce and Nd show an enrichment in comparison to the HFSE (Zr, Hf, Nb, Yb, Y and Sm. Given the Nd/Th (1.42-1.15, Zr/Nb (12.27-21.22, Ba/La (18.64-29.77 as well as LILE enrichment associated with depletion in Nb, Ta and Ti, an environment related to the subduction zones can be proposed for the area under study. Moreover, the similarity between the REE distribution pattern and the incompatible elements point to the genetic relationship between these rocks. Finally, on the base of the obtained data, it can be concluded that the volcanic rocks in the Gurgur Mountain were likely formed during the extended magmatism of the Urumieh-Dokhtar in the Cenozoic.

  1. Platinum, palladium, and rhodium in volcanic and plutonic rocks from the Gravina-Nutzotin belt, Alaska

    Science.gov (United States)

    Page, Norman J; Berg, Henry C.; Haffty, Joseph

    1977-01-01

    The Gravina-Nutzotin belt of Middle (?) Jurassic to middle Cretaceous sedimentary and volcanic rocks in south and southeastern Alaska includes concentrically zoned ultramafic complexes known to contain platinum-group metals. Previous isotopic, petrologic, and geologic studies suggested a close relation in time and space between the volcanic rocks and the ultramafic complexes. Interpretation of 40 analyses for platinum, palladium, and rhodium in volcanic and plutonic rocks of the belt indicates a strong geochemical correlation between the two groups of rocks and is in support of their being cogenetic either from directly connected magma chambers and flows or indirectly by selective concentration processes from similar mantle material.

  2. K-Ar age of the Tertiary volcanic rocks in the Tohoku area, Japan

    International Nuclear Information System (INIS)

    Konda, Tadashi; Ueda, Yoshio.

    1980-01-01

    The absolute age of the Tertiary volcanic rocks in Tohoku area has been estimated by K-Ar method. The results are: (1) in case of the volcanic rocks of Monzen-Aikawa stage, 32.8 - 38.5 m.y.B.P., (2) in case of the volcanic rocks of Nozaki-Daijima stage, 22.0 - 25.1 m.y.B.P., (3) in case of the volcanic rocks of Nishikurosawa stage, 15.5 - 16.5 m.y.B.P., (4) in case of the volcanic rocks of Onnagawa stage, 12.6 - 14.8 m.y.B.P., (5) in case of the volcanic rocks of Funakawa stage, 9.6 - 11.3 m.y.B.P., and (6) in case of the volcanic rocks of Kitaura stage, 6.9 - 9.0 m.y.B.P. The samples used are such as biotite and whole rocks. The eruption periods in Tertiary volcanic activities presumed by K-Ar method are geologically significant. In the measurements made on the same system of samples under same conditions, there was difference in the K-Ar ages between the Monzen-Aikawa and the Nozaki-Daijima stages, and it was significantly noteworthy. It is indicated that the volcanic rock activities in the former stage had took place before those in the latter stage. In the Tohoku arc of northern Japan, the simultaneity in initial volcanic activities is not seen in the direction across the arc. (J.P.N.)

  3. Research on petrologic, geochemical characteristics and genesis of volcanic rocks in Dachangsha basin

    International Nuclear Information System (INIS)

    Wei Sanyuan

    1999-01-01

    On the basis of research on petrologic, geochemical characteristics and isotope composition of volcanic rocks in Dachangsha basin, the author concludes that the volcanic rocks formed from magma of different genesis and depth are double-cycle effusive. It is proposed that the magma forming the intermediate-basic volcanics of the first cycle comes from the mixing of the partial melting of the deep crust and mantle, and the intermediate-acidic volcanics of the secondary cycle are derived from the remelting of the upper crust

  4. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    Science.gov (United States)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  5. Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques

    Directory of Open Access Journals (Sweden)

    T. Miranda

    2018-02-01

    Full Text Available This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system (VRS is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating (RMR system. Data mining (DM techniques are applied to a database of volcanic rock geomechanical information from the islands. Different algorithms were developed and consequently approaches were followed for predicting rock mass classes using the VRS and RMR classification systems. Finally, some conclusions are drawn with emphasis on the fact that a better performance was achieved using attributes from VRS.

  6. Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction

    KAUST Repository

    Tiecher, Francieli

    2012-11-01

    Mesostasis material present in the interstices of volcanic rocks is the main cause of the alkali-aggregate reaction (AAR) in concretes made with these rock aggregates. Mesostasis often is referred to as volcanic glass, because it has amorphous features when analyzed by optical microscopy. However, this study demonstrates that mesostasis in the interstitials of volcanic rocks most often consists of micro to cryptocrystalline mineral phases of quartz, feldspars, and clays. Mesostasis has been identified as having different characteristics, and, thus, this new characterization calls for a re-evaluation of their influence on the reactivity of the volcanic rocks. The main purpose of this study is to correlate the characteristics of mesostasis with the AAR in mortar bars containing basalts and rhyolites. © 2012 Elsevier Ltd. All rights reserved.

  7. Some evidence of uranium in volcanic feldspar rocks in the state of Sonora

    Energy Technology Data Exchange (ETDEWEB)

    Marquina M, O. E. [Uranio Mexicano, Mexico City

    1983-05-15

    Description is given of four projects of exploration and survey for uranium associated with tertiary volcanic feldspar rocks importantly dispersed in the State of Sonora and being carried out by Uranium Mexicano.

  8. Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction

    KAUST Repository

    Tiecher, Francieli; Dal Molin, Denise Carpena Coitinho; Gomes, Má rcia Elisa Boscato; Hasparyk, Nicole Pagan; Monteiro, Paulo José Meleragno

    2012-01-01

    Mesostasis material present in the interstices of volcanic rocks is the main cause of the alkali-aggregate reaction (AAR) in concretes made with these rock aggregates. Mesostasis often is referred to as volcanic glass, because it has amorphous features when analyzed by optical microscopy. However, this study demonstrates that mesostasis in the interstitials of volcanic rocks most often consists of micro to cryptocrystalline mineral phases of quartz, feldspars, and clays. Mesostasis has been identified as having different characteristics, and, thus, this new characterization calls for a re-evaluation of their influence on the reactivity of the volcanic rocks. The main purpose of this study is to correlate the characteristics of mesostasis with the AAR in mortar bars containing basalts and rhyolites. © 2012 Elsevier Ltd. All rights reserved.

  9. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    Science.gov (United States)

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.

  10. The phosphorus status of andisols as influenced by nanoparticles of volcanic ash and rock phosphate

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Setiawan, Ade; Rosniawaty, Santi; Meidina, Felia Shella

    2018-02-01

    Andisols need to be ameliorated to improve the phosphorus status. The objective of this research is to investigate the effect of nanoparticles of volcanic ash and rock phosphate as ameliorants in Andisols to P-retention, available P and potential P in Andisols. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of volcanic ash (a) and the second factor was rock phosphate (p). Both ameliorants consist of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The combined treatments were replicated three times. The soil and treatments were mixed and incubated for 4 months. Soil samples were taken after one month and four months of incubation to be analyzed the P-retention, available P and potential P. The results showed that there are interactions between the volcanic ash and rock phosphate on available P and potential P after one month of incubation. However, there were no interactions occurring between the volcanic ash and rock phosphate on P-retention after one and four months of incubation and no interactions on available P and potential P after four months. The best combined treatments in increasing available P and potential P after one month was obtained in 2.5% of volcanic ash and 5% of rock phosphate that increased available P to 405.75 ppm. The 2.5% of volcanic ash and 7.5% of rock phosphate increased potential P to 2190.26 mg/100 g. Independently, 7.5% of volcanic ash and rock phosphate decreased P-retention to 71.49% after one month and 89.74% after four months. Higher effect on the application of nanoparticle of volcanic ash and rock phosphate to the phosphorus status of Andisols recieved after one month of incubation is compared with four months of incubation.

  11. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    Science.gov (United States)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  12. Clinopyroxene application in petrogenesis identification of volcanic rocks associated with salt domes from Shurab (Southeast Qom

    Directory of Open Access Journals (Sweden)

    Somayeh Falahaty

    2016-07-01

    Isfahan for its financial supports. Reference Adams, G.E. and Bishop, F.C., 1986. The olivine- clinopyroxene geobar- ometer: experimental results in the CaO- FeO- MgO- SiO2 system. Contributions to Mineralogy and Petrology, 94(2: 230-237. Droop, G.T.R., 1987. A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineralogical Magazine, 51(361: 431-437. Helz, R.T., 1973. Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity. Journal of Petrolology, 17(2: 139-193. Kretz, R., 1994. Metamorphic Crystallization. Chichester and New York, New York, 530 pp. Kushiro, I., 1960. Si- AI relation in clinopyroxenes from igneous rocks. American Journal of Science, 258(5: 548-554. Lebas, N.J., 1962. The role of aluminous in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4: 267-88. Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo- volcanic series. Earth and Planetary Science Letters, 59(1: 139-154. Morimoto, N., 1988. Nomenclature of pyroxenes. Fortschr mineral, 66: 237-252. Nisbet, E.G. and Pearce, J.A., 1977. Clinopyroxene composition of mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2: 161-173. Schweitzer, E.L., Papike, J.J. and bence, A. E., 1979. Statitical analysis of clinopyroxenes from deep sea basalts. American Mineralogist, 642: 501-513. Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT-estimations. Geological Society of Sweden (Geologiska Föreningen, 119(1: 55-60. Verhooge, J., 1962. Distribution of titanium between silicates and oxydes in igneous rocks. American Journal of Science, 260(2: 211-220.

  13. Isotopic feature and uranium dating of the volcanic rocks in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.

  14. New Data on the Composition of Cretaceous Volcanic Rocks of the Alazeya Plateau, Northeastern Yakutia

    Science.gov (United States)

    Tsukanov, N. V.; Skolotnev, S. G.

    2018-02-01

    This work presents new data on the composition of volcanics, developed within the Alazeya Plateau of the Kolyma-Indigirka fold area (Northeast Russia), which indicate essential differences in their composition and, accordingly, different geodynamic settings of the formation of rocks. The studied igneous rocks are subdivided into two groups. Volcanics of the first group of the Late Cretaceous age, which are represented by differentiated volcanic rock series (from andesitobasalts to dacites and rhyolites), were formed under island arc conditions in the continent-ocean transition zone. Volcanics of the second group are ascribed to the tholeiitic series and were formed under the other geodynamic setting, which is associated with the regime of extension and riftogenesis, manifested in the studied area probably at the later stage.

  15. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data

    Science.gov (United States)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao

    2016-04-01

    The Char ophiolite belt is located in the western Central Asian Orogenic Belt, a world largest accretionary orogen, which has evolved during more than 800 Ma. The Char belt formed during Kazakhstan - Siberia collision. It has been known for hosting fragments of Late Devonian-Early Carboniferous oceanic crust, MORB, OPB and OIB, of the Paleo-Asian Ocean (Safonova et al., 2012). The Char is surrounded by two Paleozoic island-arc terranes: Zharma-Saur in the west and Rudny Altai in the east, however, until recent times, no island-arc units have been found within it. We were the first to find island-arc units as tectonic sheets occurring adjacent to those consisting of oceanic rocks. In places, island-arc andesites cut oceanic basalts. The Char volcanic and subvolcanic rocks of a probable suprasubduction origin are basalt, microgabbro, dolerite, andesite, tonalite and dacite. The mafic to andesitic volcanics possessing low TiO2 (0.85 wt.%av.) and show MgO vs. major elements crystallization trends suggesting two magma series: tholeiitic and calc-alkaline. The tholeiitic varieties are less enriched in incompatible elements then the calc-alkaline ones. Two samples are high-Mg and low-Ti andesibasalts similar to boninites. The rocks possess moderately LREE enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14-0.47; Nb/Thpm = 0.7-1.6).The distribution of rare-earth elements (La/Smn = 0.8-2.3, Gd/Ybn = 0.7-1.9) and the results of geochemical modeling in the Nb-Yb system suggest high degrees of melting of a depleted harzburgite-bearing mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry indicates crystallization of melts at 1020-1180°C. Melt inclusion composition based numerical calculations show that primary melts were derived at 1350

  16. Cenozoic alkaline volcanic rocks with carbonatite affinity in the Bohemian Massif: Their sources and magma generation

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Štěpánková-Svobodová, Jana

    2014-01-01

    Roč. 46, 1/2 (2014), s. 45-58 ISSN 0369-2086 R&D Projects: GA AV ČR(CZ) IAA300130902 Institutional support: RVO:67985831 Keywords : alkaline volcanic rocks * melilitic rocks * carbonatites * magma generation * metasomatism * Cenozoic * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy

  17. Sr–Nd isotopic compositions of Paleoproterozoic metavolcanic rocks from the southern Ashanti volcanic belt, Ghana

    OpenAIRE

    Dampare, Samuel; Shibata, Tsugio; Asiedu, Daniel; Okano, Osamu; Manu, Johnson; Sakyi, Patrick

    2009-01-01

    Neodymium (Nd) and strontium (Sr) isotopic data are presented for Paleoproterozoic metavolcanic rocks in the southern part of the Ashanti volcanic belt of Ghana. The metavolcanic rocks are predominantly basalts/basaltic andesites and andesites with minor dacites. Two types of basalts/basaltic andesites (B/A), Type I and Type II, have been identified. The Type I B/A are stratigraphically overlain by the Type II B/A, followed by the andesites and the dacites. The analyzed volcanic rocks commonl...

  18. Geochemical of trace elements in volcanics rocks Peninsula Fildes, Fildes Bay Rey Jorge island, south Shetland

    International Nuclear Information System (INIS)

    Masquelin, H.; Vaz Chavez, N.

    1987-01-01

    The authors present some geochemical data derived from the multielement analysis of three different types of volcanic rocks collected around Fildes Bay on King George Island, South Shetland. Volcanic rocks from Fildes Peninsula Group may be distinguished from those Marian Cove by their hydrothermal alteration. Apparently the correlation between NI ands Cr allows for the observation of the stratigraphic separation of samples of the same kind. Consequently, the correlation between Cu and As show a distinction between Marian Cove propylitised tuffites and both Brecciated Andesites and pyroclastic rock from Fildes Peninsula Group.

  19. Correlations between silicic volcanic rocks of the St Mary's Islands (southwestern India) and eastern Madagascar

    DEFF Research Database (Denmark)

    Melluso, Leone; Sheth, Hetu C.; Mahoney, John J.

    2009-01-01

    The St Mary's, Islands (southwestern India) expose silicic volcanic and sub-volcanic rocks (rhyolites and granophyric dacites) emplaced contemporaneously with the Cretaceous igneous province of Madagascar, roughly 88-90 Ma ago. I he St Mary's Islands rocks have phenocrysts of plagioclase...... and isotopic Compositions very close to those of rhyolites exposed between Vatomandry Ilaka and Mananjary in eastern Madagascar, and are distinctly different from rhyolites front other sectors of the Madagascan province. We therefore postulate that the St Mary's and the Vatomandry-Ilaka Mananjary silicic rock...

  20. Sr-Nd isotope systematics of xenoliths in Cenozoic volcanic rocks from SW Japan

    International Nuclear Information System (INIS)

    Kagami, Hiroo; Iwata, Masatoshi; Iizumi, Shigeru; Nureki, Terukazu.

    1993-01-01

    Based on new and previously published Sr and Nd isotope data, we examined the petrogenetic relationship between deep crust- and upper mantle-derived xenoliths contained in Cenozoic volcanic rocks and Cretaceous-Paleogene granitoid rocks in SW Japan. The deep crust- and upper mantle-derived mafic to ultramafic xenoliths contained in Cenozoic volcanic rocks from SW Japan have comparable initial Sr and Nd isotope ratios to the Cretaceous-Paleogene granitoid rocks in their respective districts. This may suggest that these xenoliths were genetically related to the Cretaceous-Paleogene granitoid rocks in SW Japan, and that regional variations in Sr and Nd isotope ratios observed in the granitoid rocks are attributed to differences in the geochemistry of the magma sources. (author)

  1. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    Science.gov (United States)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  2. Search for Magnetic Monopoles in Polar Volcanic Rocks

    DEFF Research Database (Denmark)

    Bendtz, K.; Milstead, D.; Hächler, H. -P.

    2013-01-01

    following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analyzed. No monopoles were found, and a 90% confidence level upper limit of 9.8 x...

  3. Compositional Differences between Felsic Volcanic Rocks from the ...

    African Journals Online (AJOL)

    Bheema

    characteristics of the volcanic units, we describe the compositional differences ...... Geology and mineral resources of Somalia and surrounding regions. ... zone (Ethiopia) Journal of Volcanological and Geothermal Research, 80: 267-280.

  4. Tectonic implications of the contrasting geochemistry of Damaran mafic volcanic rocks, South West Africa

    International Nuclear Information System (INIS)

    Miller, R.McG.

    1983-01-01

    Ortho-amphibolites occur in the southern and central parts of the north-east-trending branch of the Damara Orogen. The Matchless Member amphibolites are interbedded with quartzose mica schist. Mobility of Si, ΣFe, Mn, Mg, Ca, Na, K, P, CO 2 , H 2 O, Rb, Ba, Sr and possibly LREE and immobility of Co, V, Sc, Ga, Zr, Nb, Y and HREE are indicated during metamorphism and reaction with country rock. Central Zone amphibolites are alkaline. The stratigraphically lower amphibolites have a within-plate chemistry; their distribution and associated rock types indicate a continental origin. The Matchless amphibolites have an ocean-floor chemistry. The Damaran sedimentary and orogenic cycle was initiated by continental rifting in three parallel zones in which alkaline acid volcanics occur locally. Widespread subsidence of the rift zones and the intervening areas followed and led to deposition of carbonate and clastic rocks under shallow marine conditions. During renewed rifting, submarine, alkaline basic lavas were extruded. The Southern Margin Zone amphibolites are interbedded with continental slope mixtites and continental rise deep-water fans. Spreading led to continental breakup and the formation of oceanic crust

  5. The systematics of lithium abundances in young volcanic rocks

    International Nuclear Information System (INIS)

    Ryan, J.G.; Langmuir, C.H.

    1987-01-01

    Lithium is a moderately incompatible trace element in magmatic systems. High precision analyses for lithium conducted on well characterized suites of MORB and ocean island basalts suggest a bulk distribution coefficient of 0.25-0.35 and behavior which is similar to Yb during low pressure fractionation and V during melting, as long as garnet is not an important residual phase. Data for peridotites and basalts suggest a mantle lithium content of about 1.9 ppm and show that significant concentrations of lithium reside in olivine and orthopyroxene, resulting in unusual inter-mineral partitioning of Li and complex relationships between lithium and other incompatible trace elements. The lithium abundances of arc basalts are similar to those of MORB, but their Li/Yb ratios are considerably higher. The high Li/Yb suggests the addition of a Li-rich component to arc sources; relatively low Yb abundances are consistent with the derivation of some arc magmas by larger extents of melting or from a more depleted source than MORB. Although Li is enriched at arcs, K is enriched more, leading to elevated K/Li ratios in arc volcanics. The high K/Li and relatively low La/Yb of primitive arc basalts requires either incorporation of altered ocean crust into arc magma sources, or selective removal of K and Li from subducted sediments. Bulk incorporation of sediments alone does not explain the Li systematics. Data from primitive MORB indicate a relatively low (3-4 ppm) Li content for new oceanic crust. Thus, the Li flux from the ocean crust is probably 11 g/yr, and the oceanic crust may not be an important net source in the oceanic budget of lithium. (author)

  6. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  7. Multi-elemental characterization of volcanic and vulcano-sedimentary rocks from Pina petroleum ore, central Cuba

    International Nuclear Information System (INIS)

    Montero-Cabrera, M.E.; Herrera-Peraza, E.; Betancourt-Tanda, L.; Campa-Menendez, R.; Diaz-Rizo, O.; Rodriguez-Martinez, N.; Segura-Soto, R.; Hernandez-Lopez, B.; Valdes-Lopez, S.

    1994-01-01

    Concentrations of 32 elements in 22 clay, limestone, tuff and volcanic rock samples from the Pina ore have been obtained by neutron activation and X-ray fluorescence analyses. Several LILE (large ion lithofile elements) and REE (rare earth element) concentration diagrams showed the calc-alkaline character of the volcanic rocks corresponding to the Greater Antilles Island, Arc. The basaltic andesite behavior of the rocks studied was confirmed by comparing the average concentrations obtained from tuffs and volcanic rocks with proper mean values of rock elemental compositions of the earth's crust. (Author)

  8. Multi-elemental characterization of volcanic and vulcano-sedimentary rocks from Pina petroleum ore, central Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Montero-Cabrera, M.E.; Herrera-Peraza, E.; Betancourt-Tanda, L.; Campa-Menendez, R.; Diaz-Rizo, O. (Instituto Superior de Ciencia y Tecnologia Nuclear (ISCTN), La Habana (Cuba)); Rodriguez-Martinez, N.; Segura-Soto, R.; Hernandez-Lopez, B.; Valdes-Lopez, S. (Centro de Investigaciones y Desarrollo del Petroleo, La Habana (Cuba))

    1994-08-01

    Concentrations of 32 elements in 22 clay, limestone, tuff and volcanic rock samples from the Pina ore have been obtained by neutron activation and X-ray fluorescence analyses. Several LILE (large ion lithofile elements) and REE (rare earth element) concentration diagrams showed the calc-alkaline character of the volcanic rocks corresponding to the Greater Antilles Island, Arc. The basaltic andesite behavior of the rocks studied was confirmed by comparing the average concentrations obtained from tuffs and volcanic rocks with proper mean values of rock elemental compositions of the earth's crust. (Author).

  9. Petrography of the Paleogene Volcanic Rocks of the Sierra Maestra, Southeastern Cuba

    Science.gov (United States)

    Bemis, V. L.

    2006-12-01

    This study is a petrographic analysis of over 200 specimens of the Paleogene volcanic rocks of the Sierra Maestra (Southerneastern Cuba), a key structure in the framework of the northern Caribbean plate boundary evolution. The purpose of this study is to understand the eruptive processes and the depositional environments. The volcanic sequence in the lower part of the Sierra Maestra begins with highly porphyritic pillow lavas, topped by massive tuffs and autoclastic flows. The presence of broken phenocrystals, palagonitic glass and hyaloclastites in this section of the sequence suggests that the prevalent mode of eruption was explosive. The absence of welding in the tuffs suggests that the rocks were emplaced in a deep submarine environment. Coherent flows, much less common than the massive tuffs, show evidence of autoclastic fracturing, also indicating low temperature-submarine environments. These observations support the hypothesis that the Sierra Maestra sequence may be neither part of the Great Antilles Arc of the Mesozoic nor any other fully developed volcanic arc, rather a 250 km long, submarine eruptive system of dikes, flows and sills, most likely a back-arc structure. The volcanic rocks of the upper sequence are all very fine grained, reworked volcaniclastic materials, often with the structures of distal turbidities, in mode and texture similar to those drilled on the Cayman Rise. This study suggests that the Sierra Maestra most likely records volcanism of diverse sources: a local older submarine source, and one or more distal younger sources, identifiable with the pan-Caribbean volcanic events of the Tertiary.

  10. Preliminary study of the uranium favorability of Mesozoic intrusive and Tertiary volcanic and sedimentary rocks of the Central Mojave Desert, Kern and San Bernardino counties, California

    International Nuclear Information System (INIS)

    Leedom, S.H.; Kiloh, K.D.

    1978-02-01

    Numerous, small, low-grade, supergene uranium deposits are found in Tertiary volcanic and sedimentary rocks in the central Mojave Desert of southern California. Large thorium-to-uranium ratios in samples of Mesozoic intrusive rocks exposed in the area indicate that these rocks have been extensively weathered, eroded, and subsequently leached by ground waters, and that they may have been the primary source of uranium for the deposits. The uranium content of samples of volcanic intrusive and extrusive rocks is average for intermediate to silicic rocks, but samples of basalt flows in the area contain six times the average uranium content of mafic igneous rocks. Devitrified tuffs and tuffaceous sedimentary rocks, interbedded with calcareous units, are additional sources of uranium for supergene uranium deposits found in calcareous units. Uranium is also found in accessory minerals in a few Mesozoic quartz-rich pegmatite dikes. Uranium deposits in the central Mojave Desert have been formed by enrichment during diagenetic replacement of Tertiary carbonate rocks; by supergene enrichment along fractures, joints, and bedding planes in Tertiary volcanic and sedimentary rocks; during formation of Holocene caliche; and by deposition within hydrothermally altered shear zones. Within the area, the diagenetic replacement type of deposit has the greatest potential for large, low-grade uranium occurrences. The other type of uranium deposits are small, erratically distributed, and extensively covered by alluvium

  11. A simple source preparation method for alpha-ray spectrometry of volcanic rock sample

    International Nuclear Information System (INIS)

    Takahashi, Masaomi; Kurihara, Yuichi; Sato, Jun

    2006-01-01

    A simple source preparation method was developed for the alpha-ray spectrometry to determine U and Th in volcanic rockes. Isolation of U and Th from volcanic rocks was made by use of UTEVA-Spec. resin, extraction chromatograph material. U and Th were extracted by TTA-benzene solution and organic phase was evaporated drop by drop on a hot stainless steel planchet to dryness. This method was found to be effective for the preparation of sources for alpha-ray spectrometry. (author)

  12. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  13. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Tesfaye

    as engineering material throughout the world as aggregates in cement concrete, ... properties directly affect the mechanical behavior of the rock in question. ... As the physical and mechanical tests determined the usability of the geological.

  14. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Claudete G., E-mail: claudeterms@brturbo.com.br [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Querol, Xavier [Institute of Environmental Assessment and Water Research (IDÆA-CSIC), C/Luis Solé y Sabarís s/n, 08028 Barcelona (Spain); Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Pires, Karen [Departamento Nacional de Produção Mineral (DNPM), Washington Luiz, 815, Centro, 90010-460 Porto Alegre, RS (Brazil); Kautzmann, Rubens M. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Oliveira, Luis F.S., E-mail: felipeqma@hotmail.com [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil)

    2015-04-15

    Mineralogical and geochemical characteristics of volcanic rock residue, from a crushing plant in the Nova Prata Mining District, State of Rio Grande do Sul (RS), Brazil, in this work named rock powder, were investigated in view of its potential application as soil ammendment in agriculture. Abaut 52,400 m{sup 3} of mining waste is generated annually in the city of Nova Prata without a proper disposal. The nutrients potentially available to plants were evaluated through leaching laboratory tests. Nutrient leaching tests were performed in Milli-Q water; citric acid solution 1% and 2% (AC); and oxalic acid solution 1% and 5% (AO). The bulk and leachable contents of 57 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Mining waste were made up by CaO, K{sub 2}O, SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, and P{sub 2}O{sub 5}. The analysis by X-ray diffraction (XRD) showed the major occurence of quartz, anorthite, cristobalite, sanidine, and augite. The water leachable concentrations of all elements studied were lower than 1.0 mg/kg, indicating their low solubility. Leaching tests in acidic media yield larger leachable fractions for all elements being studied are in the leachate of the AO 1%. These date usefulness of volcanic rock powder as potential natural fertilizer in agriculture in the mining district in Nova Prata, Rio Grande do Sul, Brazil to reduce the use of chemical fertilizers. - Highlights: • Volcanic rock powder as fertilizer in agriculture • Volcanic rock powder as a source of nutrients to plants • This technology may favor the use of volcanic rock in agriculture.

  15. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer

    International Nuclear Information System (INIS)

    Ramos, Claudete G.; Querol, Xavier; Oliveira, Marcos L.S.; Pires, Karen; Kautzmann, Rubens M.; Oliveira, Luis F.S.

    2015-01-01

    Mineralogical and geochemical characteristics of volcanic rock residue, from a crushing plant in the Nova Prata Mining District, State of Rio Grande do Sul (RS), Brazil, in this work named rock powder, were investigated in view of its potential application as soil ammendment in agriculture. Abaut 52,400 m 3 of mining waste is generated annually in the city of Nova Prata without a proper disposal. The nutrients potentially available to plants were evaluated through leaching laboratory tests. Nutrient leaching tests were performed in Milli-Q water; citric acid solution 1% and 2% (AC); and oxalic acid solution 1% and 5% (AO). The bulk and leachable contents of 57 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Mining waste were made up by CaO, K 2 O, SiO 2 , Al 2 O 3 , Fe 2 O 3 , and P 2 O 5 . The analysis by X-ray diffraction (XRD) showed the major occurence of quartz, anorthite, cristobalite, sanidine, and augite. The water leachable concentrations of all elements studied were lower than 1.0 mg/kg, indicating their low solubility. Leaching tests in acidic media yield larger leachable fractions for all elements being studied are in the leachate of the AO 1%. These date usefulness of volcanic rock powder as potential natural fertilizer in agriculture in the mining district in Nova Prata, Rio Grande do Sul, Brazil to reduce the use of chemical fertilizers. - Highlights: • Volcanic rock powder as fertilizer in agriculture • Volcanic rock powder as a source of nutrients to plants • This technology may favor the use of volcanic rock in agriculture

  16. Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: Petrological and geochemical characteristics

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Fediuk, F.; Lang, Miloš; Martinec, Petr

    2004-01-01

    Roč. 64, č. 2 (2004), s. 127-153 ISSN 0009-2819 R&D Projects: GA AV ČR(CZ) IAA3013903 Keywords : Late Paleozoic * volcanic rocks * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.643, year: 2004

  17. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: Petrology and mineral chemistry

    Czech Academy of Sciences Publication Activity Database

    Skála, Roman; Ulrych, Jaromír; Krmíček, Lukáš; Fediuk, F.; Balogh, K.; Hegner, E.

    2015-01-01

    Roč. 66, č. 3 (2015), s. 197-216 ISSN 1335-0552 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Cenozoic volcanism * isotope geochemistry * melilitic rock * mineralogy * petrology Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.523, year: 2015

  18. Uranium occurrences in the volcanic rocks of Upper Mahakam, east Kalimantan

    International Nuclear Information System (INIS)

    Djokolelono, S.; Agoes, E.

    1988-01-01

    The Kawat area, which is about 35 km 2 in size, is located in the Upper Mahakam region and is one of the areas being prospected in Kalimantan. It has already been covered by general, detailed and systematic prospection. The Kawat area formed a tectonical depression and was intercepted by the volcanic products of various episodes. The regional stratigraphy of this area, from the bottom upwards, is as follows: Unit 1: quartzite and ophiolitic green rock; Unit 2: black shale, sometimes with boulders of quartzite and radiolarite; Unit 3: massive conglomeratic sandstone, alternating with claystone and sandstone sequences; Unit 4: sandstone, siltstone and claystone, with an intercalation of volcanic rocks. Uraniferous occurrences are reflected by anomalous zones located in the volcanic facies of Unit 4, usually in aphanitic rhyolite. Mineralization consists of pitchblende associated with molybdenite and pyrite. Although the Kawat area is very remote, future development is of great interest. (author). 4 figs

  19. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  20. Is there a geochemical link between volcanic and plutonic rocks in the Organ Mountains caldera?

    Science.gov (United States)

    Memeti, V.; Davidson, J.

    2013-12-01

    Results from separate volcanic and plutonic studies have led to inconsistent conclusions regarding the origins and thus links between volcanic and plutonic systems in continental arcs and the magmatic processes and time scales responsible for their compositional variations. Some have suggested that there is a geochemical and geochronological disconnect between volcanic and plutonic rocks and hence have questioned the existence of magma mush columns beneath active volcanoes. Investigating contemporary volcanic and plutonic rocks that are spatially connected is thus critical in exploring these issues. The ca. 36 Ma Organ Mountains caldera in New Mexico, USA, represents such a system exposing contemporaneous volcanic and plutonic rocks juxtaposed at the surface due to tilting during extensional tectonics along the Rio Grande Rift. Detailed geologic and structural mapping [1] and 40Ar/39Ar ages of both volcanics and plutons [2] demonstrate the spatial and temporal connection of both rock types with active magmatism over >2.5 myr. Three caldera-forming ignimbrites erupted within 600 kyr [2] from this system with a total erupted volume of 500-1,000 km3 as well as less voluminous pre- and post-caldera trachyte and andesite lavas. The ignimbrite sequence ranges from a crystal-poor, high-SiO2 rhyolite at the base to a more crystal-rich, low-SiO2 rhyolite at the top. Compositional zoning with quartz-monzonite at the base grading to syenite and alaskite at the top is also found in the Organ Needle pluton, the main intrusion, which is interpreted to be the source for the ignimbrites [1]. Other contemporaneous and slightly younger plutons have dioritic to leucogranitic compositions. We examined both volcanic and plutonic rocks with petrography and their textural variations with color cathodoluminescence, and used whole rock element and Sr, Nd and Pb isotope geochemistry to constrain magma compositions and origins. Electron microprobe analyses on feldspars have been completed to

  1. Mineral Chemistry and Geochemistry of Volcanic Rocks in The North of Pasinler (Erzurum

    Directory of Open Access Journals (Sweden)

    Oktay KILIÇ

    2009-02-01

    Full Text Available In the north of Pasinler (Erzurum, Upper Miocene-Pliocene volcanic rocks crop out. These volcanites are composed of basaltic andesite, andesite, dacite, rhyolite lavas and rhyolitic pyroclastics. The rocks show porphyritic, microlitic porphyritic, hyalo-microlitic porphyritic, vitrophyric, glomeroporphyritic, pilotaxitic and hyalopilitic textures. The investigated volcanites contain plagioclase (An29-80, olivine (Fo65-82, clinopyroxene (augite, orthopyroxene (enstatite, amphibole (Mg#: 0.57-0.71, biotite (phlogopite: 0.44-0.47, annite: 0.33-0.37, sanidine, quartz and opaque mineral (titano-magnetite and ilmenite. The volcanic rocks are calc-alkaline in character and have medium to high-K contents. Major oxide and trace element variations point out open-system magmatic differentiation in the evolution of rocks. Geochemical data indicate an important role of fractionation of phenocryst phases in the rocks during differentiation process. However, it is considered that assimilation±magma mixing might have accompanied to the process. High LILE (K, Rb, Ba, Th and relatively low HFSE (Nb, Ta, Hf, Zr contents of the rocks indicate that these rocks derived from parental magmas carrying subduction signature.

  2. Geology and zircon fission track ages of volcanic rocks in the western part of Hoshino gold area, Fukuoka Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Ahmed; Himeno, Osamu; Watanabe, Koichiro; Izawa, Eiji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1999-12-01

    The Hoshino gold area is located in the western part of the Hohi volcanic zone, northern Kyushu. Volcanic rocks in this area vary from andesitic rocks in the north to dacite and rhyolite in the South. The basement is constituted by metamorphic rocks of pre-Cretaceous age. The volcanic rocks of Pliocene age were subdivided into eight volcanic units. Seven fission track ages of zircons from five volcanic units have been determined, using the external detector method. The age data obtained, combined with some previously reported ages, show that two main volcanic activities have occurred in the area. The first volcanic activity took place around 4.3 Ma, and resulted into the deposition of the Hoshino Andesite and the Ikenoyama Conglomerate. The second main volcanism started around 3.5 Ma, and was characterized by the eruption of the Shakadake Andesite and the Reiganji Andesite at the early stage, then, by more acidic rocks of the Takeyama Andesite, the Hyugami Dacite and the Kuroki Rhyolite at the later stage. The main volcanism in the area ceased around 2.6 Ma. (author)

  3. Petrography and petrology of Quaternary volcanic rocks from Ghezel Ghaleh, northwest Qorveh

    Directory of Open Access Journals (Sweden)

    Alireza Bajelan

    2014-10-01

    Full Text Available Introduction In the east and northeast of Sanandaj in the Qorveh-Bijar-Takab axis, there are series of basaltic composition volcanoes with Quaternary age. The study area is part of the Sanandaj-Sirjan zone and is located between 47°52' and 47°57' E longitudes and 35°26 and '35°30' N latitudes. Due to the location of the volcanic cone on Pliocene clastic sediments and Quaternary travertine, the age of these volcanoes is considered to be Quaternary. The cones mostly consist of low scoria, ash, volcanic bombs, lapilli deposits and basaltic lava (Moein Vaziri and Aminsobhani, 1985. Petrological and geochemical studies have been carried out to evaluate Quaternary magmatism in the area and to determine the nature of the lithological characteristics, such as the evaluation of source rocks and magma type, degree of partial melting and the tectonic setting of Ghezel Ghaleh rocks (Moein Vaziri, 1997. Simplified geological map of the study area is characterized by ER-Mapper software. Materials and methods In the course of field studies in the region, 40 samples were taken, 30 thin sections were prepared and polished. XRD analyses were performed on some whole rock samples. All major, minor and trace elements were assessed by ICP-MS at Lab Weft Laboratory in Australia. Results Based on the classification of structural zones, the area is located in the Sanandaj-Sirjan zone, hundred kilometers away from the main Zagros thrust along the NW-SE direction. After early Cimmerian orogeny, andesitic volcanic activity took place (Moein Vaziri and Aminsobhani, 1985. A major secondary mineral in these rocks is iddingsite, formed by hydration and oxidation of the olivine (Shelley, 1993. According to SiO2 against Na2O + K2O (TAS diagram (Irvine and Baragar , 1971 and cationic R1 and R2 diagram (De La Roche et el., 1980, volcanic rocks of the area indicate alkaline series. Discussion To obtain more information on the tectonic setting of these rocks, the Zr/Y-Zr diagram

  4. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  5. Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand

    Science.gov (United States)

    Qian, Xin; Wang, Yuejun; Feng, Qinglai; Zi, Jian-Wei; Zhang, Yuzhi; Chonglakmani, Chongpan

    2016-04-01

    The volcanic rocks exposed within the Chiang Khong-Lampang-Tak igneous zone in NW Thailand provide important constraints on the tectonic evolution of the eastern Paleotethys ocean. An andesite sample from the Chiang Khong area yields a zircon U-Pb age of 229 ± 4 Ma, significantly younger than the continental-arc and syn-collisional volcanic rocks (ca. 238-241 Ma). The Chiang Khong volcanic rocks are characterized by low MgO (1.71-6.72 wt.%) and high Al2O3 (15.03-17.76 wt.%). They are enriched in LILEs and LREEs and depleted in HFSEs, and have 87Sr/86Sr (i) ratios of 0.7050-0.7065, εNd (t) of - 0.32 to - 1.92, zircon εHf (t) and δ18O values of 3.5 to - 11.7 and 4.30-9.80 ‰, respectively. The geochemical data for the volcanic rocks are consistent with an origin from the enriched lithospheric mantle that had been modified by slab-derived fluid and recycled sediments. Based on available geochronological and geochemical evidences, we propose that the Late Triassic Chiang Khong volcanic rocks are equivalent to the contemporaneous volcanic rocks in the Lancangjiang igneous zone in SW China. The formation of these volcanic rocks was possibly related to the upwelling of the asthenospheric mantle during the Late Triassic, shortly after slab detachment, which induced the melting of the metasomatized mantle wedge.

  6. Petrogenesis of volcanic rocks that host the world-class Agsbnd Pb Navidad District, North Patagonian Massif: Comparison with the Jurassic Chon Aike Volcanic Province of Patagonia, Argentina

    Science.gov (United States)

    Bouhier, Verónica E.; Franchini, Marta B.; Caffe, Pablo J.; Maydagán, Laura; Rapela, Carlos W.; Paolini, Marcelo

    2017-05-01

    We present the first study of the volcanic rocks of the Cañadón Asfalto Formation that host the Navidad world-class Ag + Pb epithermal district located in the North Patagonian Massif, Patagonia, Argentina. These volcanic and sedimentary rocks were deposited in a lacustrine environment during an extensional tectonic regime associated with the breakup of Gondwana and represent the mafic to intermediate counterparts of the mainly silicic Jurassic Chon Aike Volcanic Province. Lava flows surrounded by autobrecciated carapace were extruded in subaerial conditions, whereas hyaloclastite and peperite facies suggest contemporaneous subaqueous volcanism and sedimentation. LA-ICPMS Usbnd Pb ages of zircon crystals from the volcanic units yielded Middle Jurassic ages of 173.9 ± 1.9 Ma and 170.8 ± 3 Ma. In the Navidad district, volcanic rocks of the Cañadón Asfalto Formation show arc-like signatures including high-K basaltic-andesite to high-K dacite compositions, Rb, Ba and Th enrichment relative to the less mobile HFS elements (Nb, Ta), enrichment in light rare earth elements (LREE), Ysbnd Ti depletion, and high Zr contents. These characteristics could be explained by assimilation of crustal rocks in the Jurassic magmas, which is also supported by the presence of zircon xenocrysts with Permian and Middle-Upper Triassic ages (281.3 Ma, 246.5, 218.1, and 201.3 Ma) and quartz xenocrysts recognized in these volcanic units. Furthermore, Sr and Nd isotope compositions suggest a contribution of crustal components in these Middle Jurassic magmas. High-K basaltic andesite has initial 87Sr/86Sr ratios of 0.70416-0.70658 and ξNd(t) values of -5.3 and -4. High-K dacite and andesite have initial 87Sr/86Sr compositions of 0.70584-0.70601 and ξNd(t) values of -4,1 and -3,2. The range of Pb isotope values (206Pb/204Pb = 18.28-18.37, 207Pb/204Pb = 15.61-15.62, and 208Pb/204Pb = 38.26-38.43) of Navidad volcanic rocks and ore minerals suggest mixing Pb sources with contributions of

  7. Volcanic instability: the effects of internal pressurisation and consideration of rock mass properties

    Science.gov (United States)

    Thomas, M.; Petford, N.; Bromhead, E. N.

    2003-04-01

    Since the events at mount St Helens during May 1980, there has been considerable attention focused on the mechanisms and consequences of volcanic edifice collapse. As a result catastrophic edifice failure is now recognised as perhaps the most socially devastating natural disaster associated with volcanic activity. The tendency of volcanic edifices to fail appears ubiquitous behaviour, and a number of failure precursors and more importantly triggers have been suggested, of which magmagenic (e.g. thermal and mechanical pore pressure increases) and seismogenic (e.g. tectonic or volcanic earthquakes) are common. Despite the increased interest in this field, large-scale, deep seated catastrophic edifice failure has still only be successfully modelled in the most extreme of cases, which does not account for the volume of field evidence of edifice collapse. One possible reason for this is the way that pore pressures are considered. For pore fluids that are entering the system from the surface (e.g. rain water) there is a set volume and therefore a set pressure that the system can accommodate, as once the edifice becomes saturated, any new fluids to fall on the surface of the edifice simply run off. If we consider internal pore fluid pressurisation from magmatic gasses, then the pressurising fluid is already in the system and the only limit to how much pressure can be accommodated is the strength of the edifice itself. The failure to fully consider the strength and deformability of a rock mass compared to an intact laboratory sample of a volcanic rock may result in a misleading assessment of edifice strength. An intact laboratory sample of basalt may yield a strength of 100--350 MPa (from uniaxial compression tests), a volcanic edifice however is not an intact rock, and is cut through by many discontinuities, including; faults, fractures and layering from discrete lava flows. A better approximation of the true strength can be determined from the rock mass rating (RMR

  8. Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes

    Science.gov (United States)

    Ghorbani, A.; Revil, A.; Coperey, A.; Soueid Ahmed, A.; Roque, S.; Heap, M. J.; Grandis, H.; Viveiros, F.

    2018-05-01

    Induced polarization measurements can be used to image alteration at the scale of volcanic edifices to a depth of few kilometers. Such a goal cannot be achieved with electrical conductivity alone, because too many textural and environmental parameters influence the electrical conductivity of volcanic rocks. We investigate the spectral induced polarization measurements (complex conductivity) in the frequency band 10 mHz-45 kHz of 85 core samples from five volcanoes: Merapi and Papandayan in Indonesia (32 samples), Furnas in Portugal (5 samples), Yellowstone in the USA (26 samples), and Whakaari (White Island) in New Zealand (22 samples). This collection of samples covers not only different rock compositions (basaltic andesite, andesite, trachyte and rhyolite), but also various degrees of alteration. The specific surface area is found to be correlated to the cation exchange capacity (CEC) of the samples measured by the cobalthexamine method, both serving as rough proxies of the hydrothermal alteration experienced by these materials. The in-phase (real) conductivity of the samples is the sum of a bulk contribution associated with conduction in the pore network and a surface conductivity that increases with alteration. The quadrature conductivity and the normalized chargeability are two parameters related to the polarization of the electrical double layer coating the minerals of the volcanic rocks. Both parameters increase with the degree of alteration. The surface conductivity, the quadrature conductivity, and the normalized chargeability (defined as the difference between the in-phase conductivity at high and low frequencies) are linearly correlated to the CEC normalized by the bulk tortuosity of the pore space. The effects of temperature and pyrite-content are also investigated and can be understood in terms of a physics-based model. Finally, we performed a numerical study of the use of induced polarization to image the normalized chargeability of a volcanic edifice

  9. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  10. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change

    Science.gov (United States)

    Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos

    2017-01-01

    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21–25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5–0.1 kbar crystallization depths of hot (1100–1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision

  11. Measurement of hydrogeologic parameters of Indian volcanic rocks by sub-surface hydronuclear techniques

    International Nuclear Information System (INIS)

    Bardhan, M.

    1977-01-01

    Sub-surface hydronuclear techniques namely neutron-neutron, gamma-gamma and tracer dilution logging and single and double well tracer methods were adopted to investigate the hitherto inadequately studied hydrophysical properties of the Deccan lava flows which constitute the principal Indian volcanic suit of rocks. The hydrogeologic parameters measured in the field pertain to hydrostratigraphy, hydrostorage properties and geohydraulic characteristics of these layered hard formations. Results of the studies are presented and discussed briefly. (author)

  12. Problems in the K-Ar dating of Quaternary volcanic rocks younger than 1 Ma

    International Nuclear Information System (INIS)

    Takaoka, Nobuo

    1989-01-01

    The assumption that the 40 Ar/ 36 Ar ratio of Ar trapped in volcanic rocks at eruption is atmospheric often gives a large systematic error in the K-Ar dating of Quaternary volcanic rocks younger than 1 Ma. There are two possible sources of error, the existence of excess Ar and mass-fractionated, initial Ar. The major source of excess Ar is supposed to be magma. The 40 Ar/ 36 Ar ratio for magmatic Ar in the North-East Japan arc is tentatively estimated to be 340±10 from measurements of Ar in large phenocrysts separated from Quaternary volcanic rocks. Separation of phenocrysts is the most effective to decrease the systematic error caused by excess Ar. The mass-fractionation of initial Ar should give the 38 Ar/ 36 Ar ratio which was changed from the atmospheric ratio. This can be checked by determining the 38 Ar/ 36 Ar ratio in samples. Since the systematic error caused by the mass-fractionated, initial Ar increases greatly with the increasing atmospheric Ar correction, it is important to correct the result for the mass-fractionation. Correction formulae are given. The error sources other than those mentioned above are uncertainty in the blank correction and instabilities in the sensitivity of spectrometer and the Ar isotopic ratio measurement. In order to increase accuracy of the K-Ar age obtained, to check the systematic errors by measuring samples together with standard samples is of great importance in the K-Ar dating of very young volcanic rocks. (author)

  13. Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria

    Science.gov (United States)

    Ali, Sh.; Ntaflos, Th.

    2009-04-01

    Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria Sh. Ali and Th. Ntaflos Dept. of Lithospheric Research, University of Vienna, Austria Neogene volcanism in the Alpine Pannonian Transition Zone occurred in a complex geodynamic setting. It can be subdivided into a syn-extentional phase that comprises Middle Miocene dominantly potassic, intermediate to acidic volcanism and a post-extensional phase, which is characterized by eruption of alkaline basaltic magmas during the Pliocene to Quartenary in the Styrian Basin. These alkaline basaltic magmas occur as small eruptive centers dominating the geomorphology of the southeastern part of the Styrian Basin. The eruptive centers along the SE Styrian Basin from North to South are: Oberpullendorf, Pauliberg, Steinberg, Strandenerkogel, Waltrafelsen and Klöch. The suite collected volcanic rocks comprise alkali basalts, basanites and nephelinites. Pauliberg: consists of alkali basalts that exhibit a narrow range of SiO2 (44.66-47.70 wt %) and wide range of MgO (8.52-13.19-wt %), are enriched in TiO2 (3.74-4.18 wt %). They are enriched in incompatible trace elements such as Zr (317-483 ppm), Nb (72.4-138 ppm) and Y (30.7-42 ppm). They have Nb/La ratio of 1.89 (average) and Cen/Ybn=15.22-23.11. Oberpullendorf: it also consists of alkali basalts with higher SiO2 (50.39 wt %) and lower TiO2 (2.80 wt %) if compared with the Pauliberg suite. Incompatible trace elements are lower than in Pauliberg; Zr =217 ppm, Nb=49.8 ppm, Y=23.6 ppm and Nb/La=1.93. The Oberpullendorf alkalibasalts are relative to Pauliberg lavas more depleted in LREE (Cen/Ybn=12.78). Steinberg: it consists of basanites with SiO2=44.49-46.85 wt %, MgO=6.30-9.13-wt %, and TiO2 =2.09-2.26 wt %. They are enriched in incompatible trace elements such as Zr (250-333 ppm), Nb (94-130 ppm), Y (24.7-31.9 ppm) and Nb/La=1.59 (average). The Cen/Ybn ratio varies between 18.17 and 22.83 indicating relative steep REE chondrite normalized

  14. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile

    Science.gov (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.

    2017-11-01

    The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the

  15. Strontium isotopic ratios of Tertiary volcanic rocks of northeastern Honshu, Japan: implication for the spreading of the Japan Sea

    International Nuclear Information System (INIS)

    Kurasawa, Hajime; Konda, Tadashi.

    1986-01-01

    Strontium isotopic ratios of sixty-seven Tertiary volcanic rocks from the northeastern Honshu, Japan, were determined for the purpose of examining the genesis among the volcanic rocks. Two distince suites of volcanic rocks occur in the northeastern Honshu; the rocks older than 16 Ma (Monzen-Daijima Stege) of predominantly intermediate composition and the rocks younger than 16 Ma (Nishikurosawa-Funakawa Stege) with bimodal suite of mafic and felsic composition. Initial values of 87 Sr/ 86 Sr in the Teriary volcanic rocks from the northeastern Honshu, lie in the range from 0.7033 to 0.7068. High ( 87 Sr/ 86 Sr) I ratios are observed for the rocks older than 16 Ma from the Japan Sea side (H zone). It is noteworthy that the rocks younger than 16 Ma show significantly lower ( 87 Sr/ 86 Sr) I ratios in the Dewa Hill, Japan Sea coast and North Akita areas in the northeastern Honshu (L zone). The rocks younger than 16 Ma from the L zone can also be interpreted as having been originated as a mantle-diapir associated with the spreading of the Japan Sea basin. If the basaltic magma was formed from the diapir, the 87 Sr/ 86 Sr ratio would be close to the range from 0.7033 to 0.7037 as the low-Sr isotopic ratio zone (L zone) in the northeastern Honshu, Japan. (author)

  16. Uranium mineralization in tertiary volcanic rocks of the Los Frailes formation (Bolivia)

    International Nuclear Information System (INIS)

    Aparicio, A.

    1981-01-01

    The Los Frailes Formation, a 9000 km 2 area of Miocene-Pliocene age, contains uranium mineralization in acid tuffs, ignimbrites and lavas. Uranium also occurs in sedimentary rocks of various types and ages which outcrop in adjacent areas. So far the most extensive mineralization seems to be confined in volcanic pyroclastic rocks. Although the surface mineralization varies in grade from 0.01% to more than 2.5%, the average grade in the only deposit being mined (Cotaje) is 0.05% of U 3 O 8 . On the basis of the available data it is believed that certain leaching processes, during the last erosion cycle (Pliocene-Pleistocene) and under very humid conditions, brought about the mobilization of the uranium from the volcanic rocks in aqueous alkaline and calco-alkaline solutions circulating on the surface and underground. Uranium minerals were deposited, generally by chemical reduction, in tectonic zones and/or zones of high porosity. The common metallogenetic model in the western area, defined as the 'Sevaruyo uraniferous district', is exogenic and is characterized by epigenetic uranium occurrences and deposits formed by supergene enrichment. On the basis of their mechanism of formation, control of mineralization and mineral associations, these deposits are classified according to: those with strictly tectonic control, those with sedimentary control and those of mixed genetics. Recent discoveries in the eastern area of the volcanic complex give evidence of epigenetic mineralization, apparently linked with hypogene hydrothermal processes, in addition to exogenic mineralizations contained in rocks stratigraphically subjacent to the Los Frailes Formation. There is no intention of making an evaluation of the recently discovered resources since the studies and exploration are still at too early a stage to warrant prediction of their real potential. (author)

  17. Petrography, geochemistry and tectonic setting of Salmabad Tertiary volcanic rocks, southeast of Sarbisheh, eastern Iran

    Directory of Open Access Journals (Sweden)

    Masoumeh Goodarzi

    2014-10-01

    Full Text Available Introduction The area reviewed and studied in this paper is located 5 km southeast of Sarbisheh city at eastern border of the Lut block (Jung et al., 1983; Karimpour et al., 2011; Richards et al., 2012 in eastern Iran between 59° 47′ and 59° 53′ E longitude and 32°30′ and 32°34′ N latitude. The magmatic activity in the Lut block began in middle Jurassic (165-162 Ma and reached its peak in Tertiary (Jung et al., 1983. Volcanic and subvolcanic rocks of Tertiary age cover over half of Lut block with up to 2000 m thickness and formed due to subduction prior to the collision of the Arabian and Asian plates (Camp and Griffis, 1982; Tirrul et al., 1983; Berberianet et al., 1982. Most of magmatic activity in the Lut block formed in middle Eocene (Karimpour et al., 2011 The andesitic volcanics were erupted together with the dacites and rhyodacites during a time interval of some 50 Ma from early Cretaceous to early Neogene. It can be assumed that the intensity of the volcanic activity was varying significantly during this time span (Jung et al., 1983.Tertiary volcanic rocks (Eocene-Oligocene to Pliocene with intermediate composition associated with pyroclastic rocks cropped out in eastern parts of Salmabad village, southeast of Sarbisheh. The main purpose of this paper is better understand the tectono-magmatic setting of the Tertiary volcanic rocks in southeast of Sarbisheh, eastern Iran based on geochemical characteristics. Materials and methods Eleven samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the SGS Laboratories, Toronto, Canada. Results In the Salmabad area, Tertiary volcanic rocks with mainly intermediate (andesitic composition are exposed associated with pyroclastic deposits such as tuff, breccia and agglomerate

  18. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo

    2017-01-01

    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  19. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China

    Directory of Open Access Journals (Sweden)

    Tian H.S.

    2014-07-01

    Full Text Available The Yishu Fault Zone runs through the centre of Shandong Province (E China; it is a deep-seated large fault system that still is active. Two volcanic faulted basins (the Shanwang and Linqu Basins in the Linqu area, west of the fault zone, are exposed to rifting, which process is accompanied by a series of tectonic and volcanic earthquakes with a magnitude of 5-8. Lacustrine sediments in the basins were affected by these earthquakes so that seismites with a variety of soft-sediment deformation structures originated. The seismites form part of the Shanwang Formation of the Linqu Group. Semi-consolidated fluvial conglomerates became deformed in a brittle way; these seismites are present at the base of the Yaoshan Formation. Intense earthquakes triggered by volcanic activity left their traces in the form of seismic volcanic rocks associated with liquefied-sand veins in the basalt/sand intercalations at the base of the Yaoshan Formation. These palaeo-earthquake records are dated around 14-10 Ma; they are responses to the intense tectonic extension and the basin rifting in this area and even the activity of the Yishu Fault Zone in the Himalayan tectonic cycle.

  20. Petrology, Geochemistry and Tectonomagmatic Setting of Farmahin Volcanic Rocks (North of Arak

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh

    2018-04-01

    Full Text Available Introduction The study area includes Alam Baghi, Vashaghan, Sar Band and Ghermez Cheshmeh and is located in the northeast of Farmahin and the southwest of Tafresh. Based on the structural subdivisions of Iran, the mentioned area is a part of Central Iran and the Urumieh-Dokhtar magmatic belt (Hajian, 1970. The studied volcanic rocks consist of trachybasalt, trachyandesite, basaltic andesite, andesite, dacite, rhyodacite, rhyolite, ignimbrite, tuff and tuffit in composition and in terms of age they belong to the middle and upper Eocene. It seems that the volcanic activities are related to folding and faulting in the studied area. On the other hand, in addition to causing orogenic activity, at the middle and upper Eocene (Ghasemi and Talbot, 2006, locally extensional regime has played a main role in volcanic eruption. Similar to this scenario happened in other areas such as Taft and Khizrabad in Central Iran (Zarei Sahamieh et al., 2008. Porphyritic, microlite porphyritic and microlitic are the main textures in these rocks. Mineralogically, they contain plagioclase, clinopyroxene, amphibole, quartz and biotite as the main minerals and zircon, apatite, and opaque minerals as accessories. Materials and methods The major and trace elements of mineral composition are determined by electron probe micro-analysis (EPMA using a Cameca SX100 instrument in the Iran Mineral Processing Research Center (IMPRC. Moreover, the whole-rock major and some trace elements analyses for a few samples were obtained by X-ray fluorescence (XRF, using an ARL Advant-XP automated X-ray spectrometer. Results Based on EPMA analyses, plagioclase mineral in basaltic andesite and trachybasalt samples range from labradorite to bytownite in andesite and trachyandesite has oligoclase- andesine and in dacite, rhyodacite, rhyolite has an albite-oligoclase composition. In the Wo-En-Fs diagram, all clinopyroxenes show augitic and a lessor amount of clinoenstatite composition and in the Q

  1. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    Science.gov (United States)

    Johnson, C.M.; Lipman, P.W.

    1988-01-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  2. Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea

    International Nuclear Information System (INIS)

    Kim Kyuhan; Jang Sunkyung; Tanaka, Tsuyoshi; Nagao, Keisuke

    1999-01-01

    Temporal geochemical and isotopical variations in the Ulreundgo alkali volcanic rocks provide important constraints on the origin and evolution of the volcanic rocks in relation to backarc basin tectonism. We determined the K-Ar ages, major and trace element contents, and Nd and Sr isotopic rations of the alkali volcanic rocks. The activities of Ulreungdo volcanoes can be divided, on the basis of radiometric ages and field occurrences, into five stages, though their activities range from 1.4 Ma to 0.01 Ma with short volcanic hiatus (ca. 0.05-0.3 Ma). The Nd-Sr isotopic data for Ulreungdo volcanic rocks enable us to conclude that: (1) the source materials of Ulreungdo volcanics are isotopically heterogeneous in composition, which is explained by the mixing of mantle derived magma and continental crustal source rocks. There is no systematic isotopic variations with eruption stages. Particularly, some volcanic rocks of stage 2 and 3 have extremely wide initial 87 Sr/ 86 Sr isotopic variations ranging from 0.7038 to 0.7092, which are influenced by seawater alterations; (2) the Ulreungdo volcanic rocks show EMI characteristic, while volcanic rocks from the Jejudo, Yeong-il and Jeon-gok areas have slightly depleted mantle source characteristics; (3) the trachyandesite of the latest eruption stage was originated from the mantle source materials which differ from other stages. A schematic isotopic evolution model for alkali basaltic magma is presented in the Ulreungdo volcanic island of the backarc basin of Japanese island arc system. (author)

  3. 40Ar/39Ar ages of the post-collision volcanic rocks and their geological significance in Yangyingxiang area, south Tibet

    International Nuclear Information System (INIS)

    Zhou Su; Mo Xuanxue; Zhao Zhidan; Zhang Shuangquan; Guo Tieying; Qiu Ruizhao

    2003-01-01

    Ten new 40 Ar/ 39 Ar age determination of mineral separates have been carried out to date volcanic rocks of Yangyingxiang in the eastern part of the Gangdese, Tibet. The age range of Sanidine and biotite in the five volcanic rock samples from the Yangyingxiang is 10.68 ± 0.05 - 11.42 ± 0.09 Ma. These results, combining with the previously published data, confirmed that Neogene post-collision volcanic rocks in the Gangdese widely occurred and their ages were getting younger eastwards. These volcanic rocks are different from those in Pana Formation of Linzizhong group (52.9 ± 2 Ma) outside Yangyingxiang geothermal field. (authors)

  4. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  5. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    Science.gov (United States)

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  6. Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet

    Science.gov (United States)

    Liu, An-Lin; Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Wang, Rui; Dai, Jin-Gen; Zheng, Yuan-Chuan; Zhang, Liang-Liang

    2018-04-01

    The origin of the Eocene shoshonitic rocks within the upper part of the extensive Linzizong volcanic succession (i.e., the Pana Formation) in the Gangdese arc, southern Tibet remains unclear, inhibiting the detailed investigations on the crust-mantle interaction and mantle dynamics that operate the generation of the coeval magmatic flare-up in the arc. We report mineral composition, zircon U-Pb age and zircon Hf isotope, whole-rock element and Sr-Nd-Hf isotope data for the Pana Formation volcanic rocks from Pangduo, eastern Gangdese arc in southern Tibet. The Pana volcanic rocks from Pangduo include basalts, basaltic andesites, and dacites. SIMS and LA-ICPMS zircon U-Pb dating indicates that the Pangduo dacites were erupted at 50 ± 1 Ma, representing the volcanic equivalent of the coeval Gangdese Batholith that define a magmatic flare-up at 51 ± 1 Ma. The Pangduo volcanic rocks are exclusively shoshonitic, differing from typical subduction-related calc-alkaline volcanic rocks. The basalts have positive whole-rock ƐNd(t) (+1.7) and ƐHf(t) (+3.8) with high Zr abundances (121-169 ppm) and Zr/Y ratios (4.3-5.2), most likely derived from the partial melting of an enriched garnet-bearing lithospheric mantle that was metasomatized by subduction-related components with input from asthenosphere. Compared to the basalts, similar trace elemental patterns and decreased whole-rock ƐNd(t) (-3.5 to -3.3) and ƐHf(t) (-2.5 to -1.6) of the basaltic andesites can be attributed to the input of the ancient basement-derived material of the central Lhasa subterrane into the basaltic magmas. The coherent whole-rock Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i = 0.7064-0.7069, ƐNd(t) = -6.0 to -5.2, ƐHf(t) = -5.6 to -5.0) and varying zircon ƐHf(t) (-6.0 to +4.1) of the dacites can be interpreted by the partial melting of a hybrid lower crust source (juvenile and ancient lower crust) with incorporation of basement-derived components. Calculations of zircon-Ti temperature and whole-rock

  7. Pyroclastic rocks: another manifestation of ultramafic volcanism on Gorgona Island, Colombia

    Science.gov (United States)

    Echeverría, Lina M.; Aitken, Bruce G.

    1986-04-01

    Tertiary ultramafic volcanism on Gorgona Island, Colombia, is manifested not only by komatiite flows, but also by a more voluminous sequence of tuff breccias, which is cut by comagmatic picrite dikes. The ultramafic pyroclastic rocks are chaotic to stratified mixtures of angular to subrounded glassy picritic blocks and a fine grained volcaniclastic matrix that consists primarily of plastically-deformed, glassy globules. The entire deposit is interpreted to have formed by an explosive submarine eruption of phenocryst-laden picritic magma. MgO contents of tuff breccias and picrite dikes range from 21 to 27 wt%. Relative to nearby komatiite flows, these rocks are MgO-rich, and FeO-, TiO2- and Ni-poor. HREE concentrations are very low (rock geochemistry preclude such a connection, either due to olivine fractionation/accumulation or to different degrees of partial melting. These ultramafic rock types crystallized from magmas which most likely were extracted from distinct mantle source regions.

  8. A Comprehensive Study on Dielectric Properties of Volcanic Rock/PANI Composites

    Science.gov (United States)

    Kiliç, M.; Karabul, Y.; Okutan, M.; İçelli, O.

    2016-05-01

    Basalt is a very well-known volcanic rock that is dark colored and relatively rich in iron and magnesium, almost located each country in the world. These rocks have been used in the refused rock industry, to produce building tiles, construction industrial, highway engineering. Powders and fibers of basalt rocks are widely used of radiation shielding, thermal stability, heat and sound insulation. This study examined three different basalt samples (coded CM-1, KYZ-13 and KYZ-24) collected from different regions of Van province in Turkey. Polyaniline (PANI) is one of the representative conductive polymers due to its fine environmental stability, huge electrical conductivity, as well as a comparatively low cost. Also, the electrical and thermal properties of polymer composites containing PANI have been widely studied. The dielectric properties of Basalt/Polyaniline composites in different concentrations (10, 25, 50 wt.% PANI) have been investigated by dielectric spectroscopy method at the room temperature. The dielectric parameters (dielectric constants, loss and strength) were measured in the frequency range of 102 Hz-106 Hz at room temperature. The electrical mechanism change with PANI dopant. A detailed dielectrically analysis of these composites will be presented.

  9. Petrology, Magnetic susceptibility, Tectonic setting and mineralization associated with Plutonic and Volcanic Rocks, Eastern Bajestan and Taherabad, Iran

    Directory of Open Access Journals (Sweden)

    Malihe Ghoorchi

    2009-09-01

    Full Text Available Study area is located in district of Bajestan and Ferdows cities, NE of Iran. Structurally, this area is part of Lut block. The oldest exposed rocks, to the north of intrusive rocks and in Eastern Bajestan, are meta-chert, slate, quartzite, thin-bedded crystalline limestone and meta-argillite. The sedimentary units are: Sardar Formation (Carboniferous, Jamal Formation (Permian, Sorkh Shale and Shotori Formations (Triassic, carbonateous rocks (Cretaceous and lithostratigraphically equivalent to Kerman conglomerate (Cretaceous-Paleocene are exposed in this area. Based on relative age, magmatism in eastern Bajestan and Taherabad started after Late Cretaceous and it has been active and repeated during Tertiary time. At least, three episodes of volcanic activities are recognized in this area. The first stage was mainly volcanic flow with mafic composition and minor intermediate. The second episode was mainly intermediate in composition. The third stage was changed to acid-intermediate in composition. Since the plutonic rocks intruded the volcanic rocks, therefore they may be Oligo-Miocene age. Bajestan intrusive rocks are granite-granodiorite-quartz monzonite. Taherabad intrusive rocks are diorite-quartz diorite- monzonite-latite. Bajestan intrusive rocks are reduced type (ilmenite series and Taherabad intrusive rocks are oxidized type (magnetite series.Based on geochemical analysis including trace elements, REE and isotopic data, Bajestan intrusive rocks formed in continental collision zone and the magma has crustal origin. Taherabad intrusive rocks were formed in subduction zone and magma originated from oceanic crust. Taherabad intrusive rock has exploration potential for Cu-Au and pb.

  10. Evaluation of bedrock mainly composed of volcanic aggregate rocks at the Higashidori Nuclear Power Station

    International Nuclear Information System (INIS)

    Hashimoto, Shuichi; Miwa, Tadashi; Nishidachi, Masayuki

    2000-01-01

    When carrying out engineering evaluation on foundation bedrock for important constructions such as nuclear power station, dam, and so forth, it is required as a premise on carrying out various surveys, tests, and analyses to select adequate geological elements, to classify them to some groups capable of regarding as a common engineering property, and to rate them. On a hard bedrock, there is a classification method with relatively higher versatility adding condition of crack and weathering to performances at each site as an index, but on a soft one, most of its classification are carried out individually for its site in response to an index caused by the bedrock itself. Here were shown the results carried out some bedrock classifications on a base of grouping for rock sorts and rock phases, according to some concepts on a draft of the standard on the soft bedrock classification due to the nuclear engineering committee of the Japan Society of Civil Engineers, a reference draft on the soft bedrock classification of the 'Technical indications on seismic resistance design of the nuclear power station' of the Japan Electric Association, (JEAG4601-1987), and so forth. As a result applied the reference draft on the soft bedrock, and so forth to the bedrock at the Higashidori Nuclear Power Station composed of volcanic aggregate rocks of the Miocene epoch of the new Tertiary system, an adequate engineering evaluation was made possible by making grouping of rock sorts and rock phases to a foundation. And, on property evaluation of the quality changed vein, as a result of various tests, appropriate properties could be obtained. (G.K.)

  11. Tectonic setting of the Tertiary volcanic rocks of the Olympic Peninsula, Washington

    Science.gov (United States)

    Cady, Wallace M.

    1975-01-01

    Lower and middle Eocene abyssal and Hawaiian type tholeiitic basalts form two accumulations that apparently were once far out on the east flank of the Juan de Fuca Ridge, within the Juan de Fuca plate. One of these (more than 15 km thick) is near the eastern and southeastern periphery of the Olympic Peninsula, and the other (about 5 km thick) is on the north. The tholeiites stratigraphically overlie and interfinger with Paleocene(?) and lower and middle Eocene marine turbidites and shales; one flow includes boulders that, like clasts in the sediments, were derived from the North American continental plate immediately to the east. The basalts are overlain stratigraphically by middle Eocene to middle Miocene clastic marine sedimentary rocks, which are in turn overlapped unconformably on the south and west by upper Miocene (?) and Pliocene, chiefly shallow-marine clastic rocks. These various peripheral rocks flank a middle or late Miocene structurally complex dome, or orocline convex to the east, in which originally east dipping and low angle late Eocene to late Miocene underthrusts are flexed. The outermost underthrust of the complex separates the chiefly volcanic peripheral rocks to the north, east, and south from stratigraphically correlative and comparable, though predominantly sedimentary, core rocks arranged in northwest trending arcuate belts or packets bounded by fault zones. Before underthrusting, and perhaps oroclinal folding connected with doming, the pre-middle Miocene section was possibly 150 to 200 km wide compared with the present Olympic Peninsula which is 120 km wide. The section accumulated on the ocean floor near the western margin of the continent, before and during subduction of the oceanic crust.

  12. In situ Laser Induced Breakdown Spectroscopy as a tool to discriminate volcanic rocks and magmatic series, Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Roux, C.P.M., E-mail: clement.roux@u-bourgogne.fr [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Rakovský, J.; Musset, O. [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Monna, F. [Laboratoire ARTéHIS, UMR 6298 CNRS-Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon (France); Buoncristiani, J.-F.; Pellenard, P.; Thomazo, C. [Laboratoire Biogéosciences, UMR 6282 CNRS-Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon (France)

    2015-01-01

    This study evaluates the potentialities of a lab-made pLIBS (portable Laser-Induced Breakdown Spectroscopy) to sort volcanic rocks belonging to various magmatic series. An in-situ chemical analysis of 19 atomic lines, including Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Si, Sr and Ti, from 21 sampled rocks was performed during a field exploration in Iceland. Iceland was chosen both for the various typologies of volcanic rocks and the rugged conditions in the field in order to test the sturdiness of the pLIPS. Elemental compositions were also measured using laboratory ICP-AES measurements on the same samples. Based on these latter results, which can be used to identify three different groups of volcanic rocks, a classification model was built in order to sort pLIBS data and to categorize unknown samples. Using a reliable statistical scheme applied to LIBS compositional data, the classification capability of the pLIBS system is clearly demonstrated (90–100% success rate). Although this prototype does not provide quantitative measurements, its use should be of particular interest for future geological field investigations. - Highlights: • Portable LIBS applied to field geology • Fast semi-quantitative geochemical analysis of volcanic rocks and magmatic series • Discriminant analysis and statistical treatments for LIBS compositional data.

  13. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvari

    2017-02-01

    Full Text Available Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993 and Abbasi (Abbasi, 2012 have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternary travertine and recent alluvium (Emami, 1993. The volcanic and sub volcanic rocks of this area are composed of andesite, trachyandesite, dacite, rhyolite and porphyric pyroxene diorite along with pyroclastic rocks. Materials and methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, thin and polished thin sections were prepared. Some of the samples were selected for microprobe analysis and clinopyroxene minerals were analyzed by using JEOL- JXA-8800 analyzer with a voltage of 20 Kv and a current of 12 nA in the Kanazava University of Japan and Cameca-Sx100 analyzer with a voltage of 15 Kv and a current of 15 nA in the Iranian mineral processing research center, Karaj. Discussion On the basis of petrographic investigations, porphyritic, porphyroid, fluidal, amygdaloidal and porphyry with microlitic groundmass are common textures of these rocks. Also plagioclase, clinopyroxene, amphibole, biotite, sanidine and quartz are essential minerals, opaque, zircon and apatite as accessory minerals are observed in the studied rocks. Clinopyroxenes are observed with corona texture that resulted during the uralitization process. On the basis of minerals’ chemistry, pyroxenes are Fe- Mg- Ca type in composition (Morimoto et al., 1988. These clinopyroxenes are augite. Investigations indicate that mineral composition of clinopyroxene can be effectively used to evaluation the P-T conditions during crystallization. Previous research

  14. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    International Nuclear Information System (INIS)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.

    2017-01-01

    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  15. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.

    2017-11-01

    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  16. Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa

    Science.gov (United States)

    Schweitzer, J. K.; Hatton, C. J.; De Waal, S. A.

    1997-02-01

    Until recently, it was proposed that the Bushveld Complex, consisting of the extrusive Rooiberg Group and the intrusive Rashoop Granophyre, Rustenburg Layered and Lebowa Granite Suites, evolved over a long period of time, possibly exceeding 100 Ma. Most workers therefore considered that the various intrusive and extrusive episodes were unrelated. Recent findings suggest that the intrusive, mafic Rustenburg Layered Suite, siliceous Rashoop Granophyre Suite and the volcanic Rooiberg Group were synchronous, implying that the Bushveld igneous event was short-lived. Accepting the short-lived nature of the complex, the hypothesis that the granites are genetically unrelated to the other events of the Bushveld Complex can be reconsidered. Re-examination of the potential Rooiberg Group/Lebowa Granite Suite relationship suggests that the granites form part of the Bushveld event. Rhyolite lava, granite and granophyre melts originated from a source similar in composition to upper crustal rocks. This source is interpreted to have been melted by a thermal input associated with a mantle plume. Granite intruded after extrusion of the last Rooiberg rhyolite, or possibly overlapped in time with the formation of the youngest volcanic flows.

  17. K-Ar geochronology and palaeomagnetism of volcanic rocks in the lesser Antilles island arc

    International Nuclear Information System (INIS)

    Briden, J.C.; Rex, D.C.; Faller, A.M.; Tomblin, J.F.

    1979-01-01

    K-Ar age determinations on rocks and minerals from 95 locations in the Lesser Antilles. An age range of 38 - 10 million years was found for the outer arc (Limestone Caribbees) but less than 7.7 million years in the inner arc (Volcanic Caribbees). From Martinique southwards the two arcs are superimposed. These age ranges fit between discontinuities in sea floor spreading in the North Atlantic at about 38 and 9 million years and a causal connection between spreading change and relocation of arc volcanicity is suggested. Paleomagnetic directions at 108 localities in 10 islands fall into normal and reversed groups with 6 sites intermediate and 5 indeterminate. The mean dipole axis is within 2% of the present rotation axis. The data generally agrees with the established geomagnetic polarity time scale but there is some suggestion of a normal polarity event at about 1.18 million years. The paleomagnetic data suggest that in the past 10 million years the Lesser Antilles have not changed their latitude or geographical orientation and the geomagnetic field has averaged that of a central axial dipole. (author)

  18. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Page, W.R.

    1990-01-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs

  19. Sr, Nd isotope geochemistry of volcanic rock series and its geological significance in the middle Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There exists extensive basic-acidic volcanic rock series in the middle section of the Okinawa Trough. Different types of these volcanic rocks have their own average strontium ratios of 0.704 749, 0.705 062, 0.708 771, 0.704 840 and 0.720 301 with average 143Nd/144Nd ratios of 0.512 820, 0.512 673, 0.512 413, 0.512 729 and 0.512 034. These ratios of Sr and Nd isotopes all fall on a theoretic hyperbolic curve of mixing between two end-members of MORB and rhyolitic magma. So we infer that these different kinds of volcanic rocks in the middle Okinawa Trough are the erupted product in different stages of formation and evolution of the trough crust. MORB magma, which had suffered assimilation, mixed with the early-formed crust-derived rhyolitic partial melt mass at different ratios; then, these mixed magma erupted and formed volcanic rock types of the trough. This study indicates that the Okinawa Trough is coming into a stage of submarine spreading from the stage of continental rift.

  20. Sr, Nd isotope geochemistry of volcanic rock series and its geological significance in the middle Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    孟宪伟; 陈志华; 杜德文; 吴金龙

    2000-01-01

    There exists extensive basic-acidic volcanic rock series in the middle section of the Okinawa Trough. Different types of these volcanic rocks have their own average strontium ratios of 0.704749, 0.705062, 0.708771, 0.704840 and 0.720301 with average 143Nd/144Nd ratios of 0.512 820, 0.512 673, 0.512 413, 0.512 729 and 0.512 034. These ratios of Sr and Nd isotopes all fall on a theoretic hyperbolic curve of mixing between two end-members of MORE and rhyolitic magma. So we infer that these different kinds of volcanic rocks in the middle Okinawa Trough are the erupted product in different stages of formation and evolution of the trough crust. MORE magma, which had suffered assimilation, mixed with the early-formed crust-derived rhyolitic partial melt mass at different ratios; then, these mixed magma erupted and formed volcanic rock types of the trough. This study indicates that the Okinawa Trough is coming into a stage of submarine spreading from the stage of continental rift.

  1. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton

    NARCIS (Netherlands)

    Abweny, Mohammad S.; van Ruitenbeek, Frank J A; de Smeth, Boudewijn; Woldai, Tsehaie; van der Meer, Freek D.; Cudahy, Thomas; Zegers, Tanja; Blom, Jan Kees; Thuss, Barbara

    This paper shows the results of Short-Wavelength Infrared (SWIR) spectroscopy investigations of volcanic rocks sampled from low-grade metamorphic greenstone belts of the Archean Pilbara Craton in Western Australia. From the reflectance spectra a range of spectrally active minerals were identified,

  2. ∼1400 Ma alkali metasomatic event in the sericite deposits and basal Aravalli volcanic rocks of Udaipur region, Rajasthan

    International Nuclear Information System (INIS)

    Padmakumari, V.M.; Sreenivas, B.; Srinivasan, R.; Gopalan, K.; Roy, A.B.

    1996-01-01

    Paleosols are residual soil profiles of the geological past. They throw light on the climatic conditions prevalent during their formation. Constraining their age is of importance for deciphering the paleoclimatic history of a region. A suite of K-rich spilitic volcanic rocks immediately overlying the paleosol near Nagaria have been analysed

  3. Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Byers, F.M. Jr.; Warner, J.B.

    1981-01-01

    Detailed subsurface studies in connection with the Nevada Nuclear Waste Storage Investigations program are being conducted to investigate the stratigraphic and structural features of volcanic rocks underlying Yucca Mountain, a volcanic highland situated along the western boundary of the Nevada Test Site in southern Nevada. As part of this continuing effort, drill hole USW-G1 was cored from 292 ft to a depth of 6000 ft from March to August 1980. The stratigraphic section is composed of thick sequences of ash-flow tuff and volcanic breccia interbedded with subordinate amounts of fine- to coarse-grained volcaniclastic rocks. All rocks are of Tertiary age and vary in composition from rhyolite to dacite. The 3005-ft level in the drill hole represents a significant demarcation between unaltered and altered volcanic rocks. For the most part, tuff units above 3005 ft appear devitrified and show little secondary alteration except within tuffaceous beds of Calico Hills, where the rock contains 60 to 80% zeolites. Below 3005 ft, most rocks show intermittent to pervasive alteration to clay minerals and zeolites. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the Topopah Spring Member of the Paintbrush Tuff, flow breccia, and near fault zones. Nearly 88% of shear and joint surfaces show evidence of coatings. Approximately 40% of the fractures were categorized as completely healed. Rock quality characteristics as defined by the core index indicate that greater amounts of broken and lost core are commonly associated with (1) the densely welded zone of the Topopah Spring, (2) highly silicified zones, and (3) fault zones

  4. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas

  5. Acceleration to failure in geophysical signals prior to laboratory rock failure and volcanic eruptions (Invited)

    Science.gov (United States)

    Main, I. G.; Bell, A. F.; Greenhough, J.; Heap, M. J.; Meredith, P. G.

    2010-12-01

    The nucleation processes that ultimately lead to earthquakes, volcanic eruptions, rock bursts in mines, and landslides from cliff slopes are likely to be controlled at some scale by brittle failure of the Earth’s crust. In laboratory brittle deformation experiments geophysical signals commonly exhibit an accelerating trend prior to dynamic failure. Similar signals have been observed prior to volcanic eruptions, including volcano-tectonic earthquake event and moment release rates. Despite a large amount of effort in the search, no such statistically robust systematic trend is found prior to natural earthquakes. Here we describe the results of a suite of laboratory tests on Mount Etna Basalt and other rocks to examine the nature of the non-linear scaling from laboratory to field conditions, notably using laboratory ‘creep’ tests to reduce the boundary strain rate to conditions more similar to those in the field. Seismic event rate, seismic moment release rate and rate of porosity change show a classic ‘bathtub’ graph that can be derived from a simple damage model based on separate transient and accelerating sub-critical crack growth mechanisms, resulting from separate processes of negative and positive feedback in the population dynamics. The signals exhibit clear precursors based on formal statistical model tests using maximum likelihood techniques with Poisson errors. After correcting for the finite loading time of the signal, the results show a transient creep rate that decays as a classic Omori law for earthquake aftershocks, and remarkably with an exponent near unity, as commonly observed for natural earthquake sequences. The accelerating trend follows an inverse power law when fitted in retrospect, i.e. with prior knowledge of the failure time. In contrast the strain measured on the sample boundary shows a less obvious but still accelerating signal that is often absent altogether in natural strain data prior to volcanic eruptions. To test the

  6. Crystallisation condition of the Quaternary basanites of volcanic centre Black Rock, monogenetic field Lunar Crater

    Science.gov (United States)

    Turova, Mariia; Plechov, Pavel; Scherbakov, Vasily; Larin, Nikolay

    2017-04-01

    The Lunar Crater volcanic field is located in a tension zone Basin and Range Province (USA). This tension is connected with dives oceanic plate under the continental plate [1]. Lunar Crater consists of flows basalt, basanite, trachybasalt has a different age [2]. In this work we investigate the youngest rock - basanite. The basanite is highly crystalline consisting of about megacrysts (3-10 cm) 30-60 wt% phenocrysts ( 800-1500 µm) and microphenocrysts (100-800 µm) and 40-60% microlites (Mathematical, Physical and Engineering Sciences. - 1981. - T. 300. - №. 1454. - C. 407-434. 2. Wood, X., and Keinle, Y., 1990, Volcanoes of North America: Cambridge,United Kingdom, Cambridge University Press, 354 p. 3. Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems //Contributions to Mineralogy and Petrology. - 1999. - T. 135. - №. 1. - C. 62-74. 4. Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle //Contributions to Mineralogy and Petrology. - 1991. - T. 107. - №. 1. - C. 27-40.

  7. Geochemical behaviour of rare earth elements on metasomatic alteration of volcanic rocks

    International Nuclear Information System (INIS)

    Jordanov, J.A.; Kunov, A.J.

    1987-01-01

    Investigations are carried out on metasomatically altered Paleogene latites in order to follow up the rare earth elements (REE) geochemical behavour. Representative samples of the initial rocks (latites), from propylitized latites and quartz-sericite rocks, as well as from dickite, alumite, diaspore and monoquartzites, are analysed. The results show that REE have a behaviour of moderately mobile elements. They undergo redistribution both in quantity and in the composition of the group. The different concentrations and changes in the ΣREE compared to the initial rocks are observed and direct relationships to the degree of endogenic leaching are made. The REE mobility and redistribution during the metasomatic alterations in the region investigated are controlled by the physical-chemical conditions which play a significant role both in determining the composition of the mineral paragenese and in the fixing of REE. The distribution patterns indicate that REE redistribution in the case of metasomatic alterations is almost isochemical without any supply from hydrothermal solutions

  8. Spectral characterization of volcanic rocks in the VIS-NIR for martian exploration

    Science.gov (United States)

    De Angelis, Simone; Carli, Cristian; Manzari, Paola; De Sanctis, Maria Cristina; Capaccioni, Fabrizio

    2016-10-01

    Igneous effusive rocks cover much of the surface of Mars [1,2,3]. Initially only two types of lithologies were thought to constitute the Martian crust, i.e. a basaltic one and a more andesitic one [1,2], while more evolved lithologies were ruled out.Nevertheless a more complex situation is appearing in the last years. Recently several observations have highlighted the presence of evolved, acidic rocks. High-silica dacite units were identified in Syrtis Major caldera by thermal IR data [4]. Outcrops in Noachis Terra were interpreted as constituted of felsic (i.e. feldspar-rich) rocks essentially by the observation of a 1.3-µm spectral feature in CRISM data, attributed to Fe2+ in feldspars [5]. However different interpretations exist, invoking plagioclase-enriched basalts [6] rather than felsic products.The increasing of high-resolution and in-situ rover-based observations datasets and the changing of the initial paradigm justify a new systematic spectral study of igneous effusive rocks. In this work we focus on the spectral characterization of volcanic effusive rocks in the 0.35-2.5-µm range. We are carrying out measurements and spectral analyses on a wide ensemble of effusive samples, from mafic to sialic, with variable alkali contents, following the classification in the Total-Alkali-Silica diagram, and discussing the influence on spectral characteristics of different mineral assemblages and/or texture ([7], [8]). [1] Bandfield J.L., et al., Science, 287, 1626, 2000; [2] Christensen P.R., et al., J. Geophys. Res., 105, N.E4, 9609-9621, 2000; [3] Ehlmann B.L. & Edwards C.S., Annu. Rev. Earth Planet. Sci., 42, 291-315, 2014; [4] Christensen P.R., et al., Nature, 436, 504-509, 2005; [5] Wray J.J., et al., 44th LPSC, abs. n.3065, 2013; [6] Rogers A.D. & Nekvasil H., Geophys. Res. Lett., 42, 2619-2626, 2015; [7] Carli C. and Sgavetti M.,Icarus, 211, 1034-1048, 2011; [7] Carli C. et al., SGL, doi 10.1144/SP401.19, 2015.

  9. Agronomic behavior of phosphoric rock from Bahia Inglesa using isotopic techniques. 2. Greenhouse experiment in three volcanic ash soils

    International Nuclear Information System (INIS)

    Pino N, I.; Casas G, L.

    1989-01-01

    With the aim to evaluate the behaviour of phosphoric rock in regard to the sorption capacity from three volcanic ash soils, a greenhouse trial was carried out. The isotopic dilution method with triple superphosphate labeled P32 (TSP-32) was used. Total dry matter, P total was determined by colorimetry and the liquid scintillation method for P32 was used. The evaluation of the rock was measured through different isotopical parameters such as A value and P derived from the rock. The behaviour of this material was affected by the different properties of the soils mainly on account of the diverse sorption capacity of them giving an inverse relation among sorption and effectiveness of the rock. The results showed a higher efficiency of TSP for the three soils compared with the phosphoric rock either concentrated or not. (author)

  10. SHRIMP zircon U-Pb age and its significances of volcanic rocks from banshi basin in south jiangxi province

    International Nuclear Information System (INIS)

    Wang Baofeng; Wu Jianhua

    2011-01-01

    SHRIMP zircon U-Pb dating is applied to geochronological study for tuff of original Jilongzhang formation and rhyolite of original Banshi formation in Banshi basin, located in the Sannan (Longnan, Dingnan, Quannan) -Xunwu volcanic rocks belts in the south of Jiangxi. The result shows that zircon SHRIMP U-Pb age of the tuff is (142.5 ± 1.3) Ma and the age of the rhyolite is (131.4 ± 1.3) Ma. According to the latest international stratigraphic chart, the boundary between Jurassic and Cretaceous is (145.4 ± 4.0) Ma. So original Jilongzhang Formation and original Banshi Formation in Banshi basin were formed during early Early Cretaceous. The volcanic series in Banshi basin belongs to only one volcanic cycle. The features of the rock associations consistent with Wuyi group on the Xiajiang-Guangfeng volcanic rocks belts in the north of Jiangxi, so original Jilongzhang formation falls under E'huling formation and original Banshi formation falls under Shixi formation. (authors)

  11. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany

    Science.gov (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.

    2016-06-01

    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  12. Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim Kyuhan; Jang Sunkyung [Ewha Womans Univ., Seoul (Korea); Tanaka, Tsuyoshi; Nagao, Keisuke

    1999-07-01

    Temporal geochemical and isotopical variations in the Ulreundgo alkali volcanic rocks provide important constraints on the origin and evolution of the volcanic rocks in relation to backarc basin tectonism. We determined the K-Ar ages, major and trace element contents, and Nd and Sr isotopic rations of the alkali volcanic rocks. The activities of Ulreungdo volcanoes can be divided, on the basis of radiometric ages and field occurrences, into five stages, though their activities range from 1.4 Ma to 0.01 Ma with short volcanic hiatus (ca. 0.05-0.3 Ma). The Nd-Sr isotopic data for Ulreungdo volcanic rocks enable us to conclude that: (1) the source materials of Ulreungdo volcanics are isotopically heterogeneous in composition, which is explained by the mixing of mantle derived magma and continental crustal source rocks. There is no systematic isotopic variations with eruption stages. Particularly, some volcanic rocks of stage 2 and 3 have extremely wide initial {sup 87}Sr/{sup 86}Sr isotopic variations ranging from 0.7038 to 0.7092, which are influenced by seawater alterations; (2) the Ulreungdo volcanic rocks show EMI characteristic, while volcanic rocks from the Jejudo, Yeong-il and Jeon-gok areas have slightly depleted mantle source characteristics; (3) the trachyandesite of the latest eruption stage was originated from the mantle source materials which differ from other stages. A schematic isotopic evolution model for alkali basaltic magma is presented in the Ulreungdo volcanic island of the backarc basin of Japanese island arc system. (author)

  13. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA)

    Science.gov (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.

    2017-12-01

    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  14. Mapping local singularities using magnetic data to investigate the volcanic rocks of the Qikou depression, Dagang oilfield, eastern China

    Directory of Open Access Journals (Sweden)

    G. Chen

    2013-07-01

    Full Text Available The spatial structural characteristics of geological anomaly, including singularity and self-similarity, can be analysed using fractal or multifractal modelling. Here we apply the multifractal methods to potential fields to demonstrate that singularities can characterise geological bodies, including rock density and magnetic susceptibility. In addition to enhancing weak gravity and magnetic anomalies with respect to either strong or weak background levels, the local singularity index (α ≈ 2 can be used to delineate the edges of geological bodies. Two models were established to evaluate the effectiveness of mapping singularities for extracting weak anomalies and delineating edges of buried geological bodies. The Qikou depression of the Dagang oilfield in eastern China has been chosen as a study area for demonstrating the extraction of weak anomalies of volcanic rocks, using the singularity mapping technique to analyse complex magnetic anomalies caused by complex geological background. The results have shown that the singularities of magnetic data mapped in the paper are associated with buried volcanic rocks, which have been verified by both drilling and seismic survey, and the S–N and E–W faults in the region. The targets delineated for deeply seated faults and volcanic rocks in the Qikou depression should be further investigated for the potential application in undiscovered oil and gas reservoirs exploration.

  15. Geochemistry and Mineral Chemistry of Zeolites Bearing Basic Volcanic Rocks from the Boumehen-Roudehen Area, East of Tehran

    Directory of Open Access Journals (Sweden)

    Amir Ali Tabbakh Shabani

    2017-11-01

    subhedral to euhedral and occurs both as pheocrysts and microliths in the glassy groundmass. The plagioclase crystals are variably sassuratised and sometimes replaced by zeolites. Microprobe data indicate a restricted range of chemical composition for pyroxene falling in diopside and augite fields of ternary pyroxene classification diagram (Morimoto, 1988. The plagioclase composistions have been plotted in the fields of labradorite and bytownite in the orthoclase–albite–anorthite ternary diagram (Deer et al., 1992. On the F1-F2 tectonic discrimination diagram of Nisbet and Pearce (1977, pyroxene compositions plot mainly in volcanic arc basalt field consistent with their whole rock geochemistry. Thermobarometry based on pyroxene composition (Soesoo, 1997 displays a range of temperatures from 1150 to 1250 0C and pressure from 3 to 8 kbar for its crystallization. Whole rock compositions show that the variations of SiO2 contents are narrow (47.08 – 47.47 wt% and TiO2 (1.1 – 1.24 wt%. Relatively higher contents of K2O show a shoshonitic affinity in the K2O–SiO2 diagram (Peccerillo and Taylor 1976. Trace element and rare earth element (REE distribution patterns for the basaltic samples normalized to the primitive mantle (McDonough et al., 1992 and chondrite values (Sun and McDonough, 1989 show similar patterns. The samples are all enriched in large-ion lithophile elements (LILEs, such as Rb, Ba, and K, and light rare earth elements (LREEs ((La/SmN= 2.3–3.2 relative to the more immobile elements (e.g., Hf, Ti and Y. The plot of analyzed samples in a series of different tectonic discrimination diagrams shows that the Boumehen-Roudehen alkaline basalts are consistent with characteristics of subduction related (active continental margins tectonic environments. In addition, enrichment in LILE and depletion in HFSE on spidergram create patterns which are very similar with the pattern of Andean counterparts indicating an arc setting. Acknowledgments Marcello Serracino is

  16. Permian to recent volcanism in northern sumatra, indonesia: a preliminary study of its distribution, chemistry, and peculiarities

    Science.gov (United States)

    Rock, N. M. S.; Syah, H. H.; Davis, A. E.; Hutchison, D.; Styles, M. T.; Lena, Rahayu

    1982-06-01

    Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary. Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites. Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent. Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. Possible Palaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW. Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites. Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160-210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in

  17. Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks

    Science.gov (United States)

    Sun, Yang; Teng, Fang-Zhen; Ying, Ji-Feng; Su, Ben-Xun; Hu, Yan; Fan, Qi-Cheng; Zhou, Xin-Hua

    2017-10-01

    To evaluate the role of subducted oceanic crust in the genesis of potassium-rich magmas, we report high-precision Mg isotopic data for a set of Cenozoic volcanic rocks from Northeast China. These rocks overall are lighter in Mg isotopic composition than the normal mantle and display considerable Mg isotopic variations, with δ26Mg ranging from -0.61 to -0.23. The covariation of δ26Mg with TiO2 in these rocks suggests that their light Mg isotopic compositions were derived from recycled oceanic crust in the form of carbonated eclogite in the source region. The strong correlations between δ26Mg and (Gd/Yb)N ratio as well as Sr-Pb isotopes further indicate a multicomponent and multistage origin of these rocks. Magnesium isotopes may thus be used as a novel tracer of recycled oceanic crust in the source region of mantle-derived magmas.

  18. Measurement of cosmogenic 36Cl/Cl in young volcanic rocks: An application of accelerator mass spectrometry in geochronology

    International Nuclear Information System (INIS)

    Leavy, B.D.; Phillips, F.M.; Elmore, D.; Kubik, P.W.

    1987-01-01

    We have measured 36 Cl/Cl ratios in a number of young volcanic rocks in order to test the feasibility of using 36 Cl buildup as a geochronometer for materials less than about 700,000 years old. All of the analyzed rocks have been dated independently using K-Ar or other radiometric dating methods and have exposure histories that are known or can be reasonably assumed. Measured 36 Cl/Cl ratios in these rocks are in good agreement with the calculated in-situ 36 Cl buildup curve. These analyses indicate that AMS measurement of 36 Cl buildup in young rocks is a potentially powerful new method for dating materials that had previously been undatable, and as such will have broad applications in volcanology, tectonics, geophysics, and Quaternary research

  19. Economic potential of the Rooiberg Group: volcanic rocks in the floor and roof of the Bushveld Complex

    Science.gov (United States)

    Schweitzer, J. K.; Hatton, C. J.; de Waal, S. A.

    1995-04-01

    Volcanic rocks of the Rooiberg Group are preserved in the floor and roof of the mafic Rustenburg Layered Suite of the Bushveld Complex. Field and geochemical characteristics of these volcanic rocks imply that they are genetically related to the Rustenburg Layered Suite. Four major ore-forming events are identified in the Rooiberg Group. The first phase was accompanied by volcanic hosted, fault controlled, hydrothermal copper mineralisation, which is found in the lowermost portion of the Rooiberg Group, underlying the Rustenburg Layered Suite. This type of mineralisation is tentatively linked to initial Rustenburg Layered Suite intrusions. Stratabound arsenic mineralisation that possibly formed in response to contact metamorphism, characterises the second phase, and occurred after extrusion of the Damwal Formation, possibly due to shallow granophyric intrusion. The third mineralising event occurred in response to contact metamorphism during the final stages of the Rustenburg Layered Suite, where especially Pb and Zn were introduced into the felsite roof rocks. This type of mineralisation affected the majority of the Rooiberg Group, but is most pronounced towards the contact with the Rustenburg Layered Suite. The fourth phase is restricted to the Rooiberg Group in the Nylstroom area and is linked to the granite intrusions of the Lebowa Granite Suite, from which Sn and F were introduced into the uppermost felsite succession. Mineralisation in the Rooiberg Group appears to be controlled by the character and intrusion level of the associated Bushveld magmas. Different styles of mineralisation in Rooiberg Group volcanic rocks are encountered at various stratigraphic levels. Major primary volcanogenic ore deposits appear to be absent.

  20. Subaqueous volcanism in the Etnean area: evidence for hydromagmatic activity and regional uplift inferred from the Castle Rock of Acicastello

    Science.gov (United States)

    Corsaro, R. A.; Cristofolini, R.

    2000-01-01

    The subalkaline rocks outcropping at the Acicastello Castle Rock, Catania, Sicily, and on its abrasion platforms, are related to the oldest Etnean volcanism (500-300 ka; [Gillot, P.Y., Kieffer, G., Romano, R., 1994. The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol. 5, 81-87.]). Here, submarine lavas with pillows closely packed onto each other are associated with heterogeneous and poorly sorted volcaniclastic breccia levels with sub-vertical sharp boundaries. The present-day attitude was previously interpreted as due to a local tilt [Di Re, M., 1963. Hyaloclastites and pillow-lavas of Acicastello (Mt. Etna). Bull. Volcanol. 25, 281-284.; Kieffer, G., 1985. Evolution structurale et dynamique d'un grand volcan polygenique: stades d'edification et activitè actuelle de l'Etna (Sicile). Clermont Ferrand IIDoctorat Etat Tesi, Clermont Ferrand II.], or to the seaward sliding of the entire eastern Etnean flank [Borgia, A., Ferrari, L., Pasquarè, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231-235.], on the assumption of originally horizontal boundaries. On the contrary, our observations do not match the hypothesis of a significantly tilted succession and lead us to conclude that, apart from the strong regional uplift, the present Castle Rock exposure did not suffer any substantial change of its attitude.

  1. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars

    Science.gov (United States)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.

    2016-12-01

    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  2. /sup 40/Ar//sup 39/Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P. N. G

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A. (Australian National Univ., Canberra. Dept. of Geology); McDougall, I. (Australian National Univ., Canberra. Research School of Earth Sciences)

    1982-11-01

    K-Ar and /sup 40/Ar//sup 39/Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. /sup 40/Ar//sup 39/Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic /sup 40/Ar(/sup 40/Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain /sup 39/Ar during or subsequent to irradiation, but in some cases may contain /sup 40/Ar*. The results are discussed.

  3. 40Ar/39Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P.N.G

    International Nuclear Information System (INIS)

    Walker, D.A.; McDougall, I.

    1982-01-01

    K-Ar and 40 Ar/ 39 Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40 Ar/ 39 Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic 40 Ar( 40 Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39 Ar during or subsequent to irradiation, but in some cases may contain 40 Ar*. The results are discussed. (author)

  4. Influence of hydrothermal processes on changes of volcanic rocks (data of physical modelling)

    Science.gov (United States)

    Shanina, V. V.; Bychkov, A. Y.

    2009-04-01

    Due to active development of geothermal energy, in middle of the last century have begun papers devoted to experiments, directed on study of transformations of minerals [4] and rocks [1, 2, 5] under action of geothermal processes. But any researcher did not estimate thus change of their physical and physico-mechanical properties. The purpose of job - to study character and dynamics changes of volcanic rocks (to simulate conditions of geothermal transformations). Tasks: creation of the whole series of experiments in autoclavs at various temperatures, pressure and composition of solutions, preparation of samples, study of chemical and mineral composition, structure and properties of rocks and solutions before and after experiments. In 2006 the first similar experiments were begun [3]. Researched rocks basalts, hyaloclasites and obsidian, selected from Iceland and tuffs Payzhetka Geothermal Field, Southern Kamchatka, Russia. Were used autoclavs, consisting from titanic of an alloy ВТ-8, volume 116-119 мл, in each of which was located from 2 up to 4 samples of rocks of the investigated structure and properties. The heating was made in OVEN ТРМ-10 with accuracy + 1 °С, the constancy of temperature was supervised by thermocouples. 15 experiences (temperature 200, 300 and 450 °С; pressure 16, 86 and 1000 bars accordingly now are carried out; 4 solutions (1 alkaline and 3 acid); duration 14, 15, 30 and 60 days). All four groups of the investigated rocks appreciablly react under geothermal influence. The changes are observed in colour of samples (brighten in acid solutions), their microstructure, that for basalts is visible only in raster electronic microscope, and in education of new mineral phases, is especially active in a acid solution, the X-Ray analysis (has executed by Dr. Krupskaya V.V., apparatuses - DRON- UM1) has shown, that 94,2 % is smectite, 3,5 % - kaolinite, 1,2 % - crisrobalite, 1,1 % - diopside (?), in others pores fills chlorite, and in an

  5. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination

    Science.gov (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii

    2015-04-01

    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  6. Distribution of Pa-231 and Ra-226 in rock. An indicator of rock matrix diffusion

    International Nuclear Information System (INIS)

    Saarinen, L.; Suksi, J.

    1995-01-01

    Distribution of Ra-226 and Pa-231 in rock has been studied to find signatures that may be attributed to diffusion. The idea of studying these nuclides originated from the need to obtain interpretative support to the findings of U movement in rock. Concentration profiles of Ra-226 and Pa-231 with other U series nuclides were measured across the secondary U accumulations observed in altered rock close to a fracture in the vicinity of U deposit, and in a radioactivity anomaly. (27 refs., 10 figs., 2 tabs.)

  7. Petrochemical Results for Volcanic Rocks recovered from SHINKAI 6500 diving on the Bonin Ridge (27°15'N-28°25'N): submarine extension of Ogasawara forearc volcanism

    Science.gov (United States)

    Bloomer, S. H.; Kimura, J.; Stern, R. J.; Ohara, Y.; Ishii, T.; Ishizuka, O.; Haraguchi, S.; Machida, S.; Reagan, M.; Kelley, K.; Hargrove, U.; Wortel, M.; Li, Y. B.

    2004-12-01

    Four SHINKAI 6500 submersible dives (dive #823 to #826) were performed along the Bonin Ridge escarpment west of Ogasawara (Bonin) Islands in the West Pacific during May 2004, in the hopes of finding exposures of lower crust of the IBM forearc. The Ogasawara Islands are located on the Bonin ridge, exposing 48-40 Ma boninites on Chichi-jima and depleted arc tholeiite lavas of the same age on Haha-jima. These extremely depleted lavas are believed to have been generated when subduction began beneath the Izu-Bonin-Mariana oceanic arc system. Subsequent rifting (35-30 Ma) formed the Bonin Trough and a 350 km long N-S trending eastern escarpment (Bonin Ridge), where we concentrated our dives. We observed lavas and volcaniclastic sequences by the four SHINKAI dives along the escarpment, and 16 fresh basaltic to andesitic lava samples have been recovered. The first three dives appear to have sampled volcanic constructs, of presumed Oligocene age, along the escarpment, whereas the last dive sampled exposures similar to Eocene rocks of the Bonin islands, including nummulitic limestone. The lava samples were analyzed by ICP-MS at Shimane University for 30 incompatible trace elements. All samples show arc-like chemical signatures, including elevated concentrations of LIL elements, depletions in Ta and Nb, and spikes in Pb, Sr, and Li. All samples show modest enrichments in LREE. A lava sample from the northernmost dive #824 is identical with the depleted tholeiite from Haha-jima Islands at the southernmost end of the Bonin Ridge in terms of trace element characteristics. Other lava samples from northern three dives (#823, #824, #825) have tholeiitic affinities with more elevated highly incompatible elements. This suggests derivation of the series of lavas by different degree of partial melting of a similar source mantle. Samples from southernmost dive site #826, immediately northwest of Chichi-jima Islands, are boninites with U-shaped REE patterns and relatively enriched Zr and

  8. Lead isotopic compositions of South Sandwich Island volcanic rocks and their bearing on magmagenesis in intra-oceanic island arcs

    International Nuclear Information System (INIS)

    Barreiro, B.

    1983-01-01

    Pb isotope ratios have been measured in 12 volcanic rocks from the South Sandwich Islands. The results are reported. In 207 Pb/ 204 Pb- 206 Pb/ 204 Pb and 208 Pb/ 204 Pb- 206 Pb/ 204 Pb correlation diagrams, the South Sandwich data plot distinctly above the fields for ocean ridge basalts, and yield trends showing apparent mixing with a sedimentary end member similar to South Atlantic pelagic sediments as reported by Chow and Patterson (1962) and this study. Armstrong and Cooper (1971) have likewise shown that volcanics from the Lesser Antilles show mixing trends with North Atlantic sediments in Pb isotope correlation diagrams. The North Atlantic sediments have distinctly higher 206 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios compared to the South Atlantic sediments. The parallel relationships between sediments and volcanic island arc rocks of the North and South Atlantic provide strong evidence for a component of Pb from subducted sediments in the lavas of the west Atlantic basin. In contrast to these data, lavas from the Mariana Arc in the western Pacific show little or no component of Pb from pelagic sediments. The reason for the different behaviors in the two settings is speculative. (author)

  9. The origin of volcanic rock fragments in Upper Pliocene Grad Member of the Mura Formation, North-Eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj

    2006-12-01

    Full Text Available Fresh-water, coarse-grained and detritus-dominated Mura Formation in North Eastern Slovenia includes pyroclastic and volcaniclastic deposits originating from Upper Pliocene volcanic activity of basaltic geochemical character. Although localized in occurrence at the hamlet Grad, these pyroclastic and volcaniclastic sediments forma distinctive depositional unit, for which the term “Grad Member” is proposed and introduced in this paper.In the Grad area no lavas or cinder cones are preserved, and the origin of volcaniclastic fragments still uncertain. For this reason, chemical composition of basaltic rock fragments from the Grad Member volcaniclastics has been studied and compared with basaltic rocks from the neighboring locations at Klöch, Kindsberg, Dölling and Neuhaus. The Grad Member pyroclastic and volcaniclastic deposits seem to be fed from the same source which is different from the occurrences in Austria. That supports the idea about the existence of a local volcanic centre in the present Grad area. The old volcanic edificeswerepossiblydestroyed by the late-stage hydrovolcanic eruptions, and pyroclastic and volcaniclastic deposits subjected to constant reworking by fluvial currents in a dynamic sedimentary environment of alluvial fan and braided river systems.

  10. Dating and source determination of volcanic rocks from Khunik area (South of Birjand, South Khorasan using Rb-Sr and Sm-Nd isotopes

    Directory of Open Access Journals (Sweden)

    Somayeh Samiee

    2016-12-01

    Full Text Available The Khunik area is located in the south of Birjand, Khorasan province, in the eastern margin of Lut block. Tertiary volcanic rocks have andesite to trachy-andesite composition. Dating analyzing by Rb-Sr method on plagioclase and hornblende as well as whole-rock isochron method was performed on pyroxene-hornblende andesite rock unit. On this basis the emplacement age is Upper Paleocene (58±11 Ma. These rocks have initial 87Sr/86Sr and εNd 0.7046-0.7049 and 2.16-3.12, respectively. According to isotopic data, volcanic rocks originated from depleted mantle and have the least crust contamination while it was fractionated. Geochemically, Khunik volcanic rocks have features typical of calk-alkaline to shoshonite and are metaluminous. Enrichment in LILEs and typical negative anomalies of Nb and Ti are evidences that the volcanic rocks formed in a subduction zone and active continental margin. Modeling suggests that these rocks were derived dominantly from 1–5% partial melting of a mainly spinel garnet lherzolite mantle source that is metasomatized by slab-derived fluid.

  11. Paleointensity Variation of The Earth's Magnetic Field Obtained from Neogene and Quaternary Volcanic Rocks in Central Anatolian Plateau

    Science.gov (United States)

    Kaya, Nurcan; Makaroǧlu, Özlem; Hisarlı, Z. Mümtaz

    2017-04-01

    We present the variation of the earth magnetic field intensity obtained from Neogene and Quaternary volcanic rocks located in the Central Anatolian plateau. Total of four hundred and fifty volcanic rocks were sub-sampled in eighteen different sites around the study region. A modified Thellier method including the Leonhardt protocol was used to determine paleointensity values. Paleointensity results from ten sites were accepted according to the confidence criteria . According to first results the average total paleointensity field values, indicated by F, are 51.797±5.044 μT for site NK8,NK17,NK18,NK15 with age of 4.4-10.7 my, 51.91±4.651 for site NK4, NK3, NK12, NK6, NK11, NK14 with age of 0.1-2.6 m.y. The average VDMs (Virtual Dipol Moments) correspond to 8.39x1022 , 8.92x1022 Am2 for the four Neogene and six Quaternary rocks sites respectively. Our data were correlated with IAGA database that were obtained from the surrounding area. The correlation showed that the paleointensity data from the Central Anatolia plateau considerably agree with the IAGA data.

  12. Paleointensities of the Auckland Excursion from Volcanic Rocks in New Zealand

    Science.gov (United States)

    Mochizuki, N.; Tsunakawa, H.; Shibuya, H.; Cassidy, J.; Smith, I. E.

    2001-12-01

    Shibuya et al. (1992) reported the Auckland excursion from several basaltic lava flows of monogenetic volcanic centers (Auckland Volcanic Field, New Zealand. The Auckland excursion was recorded in five centers in three intermediate direction groups of north-down, west and south. We carried out paleointensity and rock-magnetic studies in order to obtain the absolute paleointensities associated with three intermediate geomagnetic fields. Thermomagnetic analyses indicated typical Curie temperatures of 150-200, 450-500 and/or 550-580 oC. The Day plot (Day et al., 1977) showed a linear trend in the pseudo-single-domain range of magnetic carriers. Those results, combined with the reflection microscope observations, identified the magnetic carriers as titanomagnetites with wide variation in titanium content and grain size. First, the Coe's version of the Thellier method (Coe, 1967) was applied to the samples. Several samples seemed to give paleointensities ranging from 3.2 to 6.4 μ T (Shibuya and Cassidy, 1995 AGU fall meeting), but they were often affected by thermal alteration in the furnace even from fairly low temperature steps like 200oC. We were forced to introduce correction for thermal alterations in laboratory heating, using low temperature part of the Arai plot. We, therefore, applied the double heating technique (DHT) of Shaw method (Tsunakawa and Shaw, 1994), which was capable of detecting inappropriate results by the ARM correction, to the samples. The low temperature demagnetization (LTD) was combined with DHT (Yamamoto et al., submitted) before AF demagnetization and samples were heated in a vacuum of 10-100 Pa. Sixty-one samples from the five lava flows were subjected to the LTD-DHT Shaw method. Twenty-three of these samples yielded successful results passing the selection criteria. Five out of six paleointensities from the Crater Hill lava were consistent with each other. A mean paleointensity was given to be 10.9+/- 1.9 μ T (N=5) for the Crater Hill

  13. Regional stratigraphy, sedimentology, and tectonic significance of Oligocene-Miocene sedimentary and volcanic rocks, northern Baja California, Mexico

    Science.gov (United States)

    Dorsey, Rebecca J.; Burns, Beverly

    1994-01-01

    Upper Oligocene (?) to middle Miocene sedimentary and volcanic rocks in northern Baja California were deposited along the western margin of North America during subduction of the Guadalupe plate and southward migration of the Rivera Triple Junction. Regional mapping and compilation of stratigraphic data reveal a sequence of three regionally traceable stratigraphic units. (1) Oligocene (?) to lower Miocene Mesa Formation: basal quartz-rich fluvial sandstone, grus, conglomerate, and accessory facies, whose detrital compositions reflect the composition of local pre-Tertiary basement rock. (2) Lower to middle Miocene Comondú Formation: laterally variable sequence of volcaniclastic conglomerate, breccia, sandstone, tuff and minor volcanic flow units. (3) Widespread mesa-capping rhyolite tuff, typically welded and crystal-rich, probably upper Miocene in age. The Mesa Formation overlies a highly irregular and deeply dissected erosional surface developed on pre-Tertiary basement rock. The shift from pre-Mesa erosion to widespread (though localized) deposition and valley-filling records the final phase of late Cretaceous to middle Tertiary regional subsidence and eastward transgression that resulted from slow cooling and thermal contraction of Cretaceous arc crust during a temporal gap in magmatic activity along the western Cordilleran margin. Nonmarine sediments of the Mesa Formation were deposited in small, steep-walled paleovalleys and basins that gradually filled and evolved to form through-going, low-energy ephemeral stream systems. The gradational upward transition from the Mesa to Comondú Formation records the early to middle Miocene onset of subduction-related arc magmatism in eastern Baja California and related westward progradation of alluvial volcaniclastic aprons shed from high-standing eruptive volcanic centers. Pre-existing streams were choked with the new influx of volcanic detritus, causing the onset of rapid sediment deposition by stream flows and dilute

  14. Radioisotope distribution characteristics of the groundwater system in volcanic-type U deposits and isotope-dating estimation of the system

    International Nuclear Information System (INIS)

    Zhou Bingguan

    1988-01-01

    On the basis of groundwater sample measurements collected from the uranogenic belt of Mesozoic volcanic rocks in East China, the distribution characteristics of radioisotopes, including the total U content (CΣu), the activity of nuclides (Aui) or their activity ratio (ARu) and the relationship among the three ((Aui,ARu)=f(CΣu)), have been studied. Also, it is performed for radioactive water halos in the area to be divided into four various mineralization tendencies: (1) the convergent tendency of negative correlation, which has the genetic relationship with the primary U accumulation in volcanic rocks; (2) the scattered tendency of positive correlation, which is intimately related to epigenetic U mineralization in the supergene zone of volcanic rocks or in the sandstones; (3) the both positive and negative multiple-correlative tendency, which indicates that the primary volcanic-type U deposit has been leached and destroyed, and the secondary U enrichment has occurred within the supergene zone; (4) non-correlative tendency, which mainly results from increasing dispersion U. For the above recognitions, an evolution model for radioactive water halos related to this type of U deposit has been derived, and an attempt to estimate the radioisotopic age of the groundwater system also has been made. (author). 14 refs, 9 figs, 2 tabs

  15. Research on evolutionary laws of Sr, Nd, Pb isotopes of uranium metallization and volcanic rocks in south china

    International Nuclear Information System (INIS)

    Ying Junlong

    1998-01-01

    According to research on evolutionary tracer of Sr, Nd, Pb isotopes, the author proposes that isotopic evolution of Mesozoic volcanics in south China is controlled by regionally metamorphic rocks of ancient land basement, early reformed derivates and recycled continental crust. Isotopic composition of uranium metallization shows the characteristics of crust sources, and Yanshanian accretion of continental margin caused the crust movement such as magmatic activity in lower crust within continent, extension-down-faulting, etc., promoting the migration, enrichment and ore formation of uranium

  16. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite

    Directory of Open Access Journals (Sweden)

    Naresh C. Ghose

    2017-07-01

    Full Text Available The late Aptian (118–115 Ma continental flood basalts of the Rajmahal Volcanic Province (RVP are part of the Kerguelen Large Igneous Province, and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin. The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts, bentonite, grey and black shale/mudstone and oolite, whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material. At the eastern margin and the north-central sector of the RVP, the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites. The pyroclastic rocks are largely felsic in composition, and comprise ignimbrite as well as coarse-grained tuff with lithic clasts, and tuff breccia with bombs, lapilli and ash that indicate explosive eruption of viscous rhyolitic magma. The rhyolites/dacites (>68 wt.% are separated from the andesites (<60 wt.% by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma. On the other hand, partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma, crystallizing orthopyroxene at a pressure-temperature of ∼3 kb/1150 °C. In contrast, the northwestern sector of the RVP is devoid of felsic-intermediate rocks, and the volcaniclastic rocks are predominantly mafic (basaltic in composition. Here, the presence of fine-grained tuffs, tuff breccia containing sideromelane shards and quenched texture, welded tuff breccia, peperite, shale/mudstone and oolite substantiates a subaqueous environment. Based on these observations, we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions. The presence

  17. Petrology, mineral chemistry and tectono-magmatic setting of volcanic rocks from northeast Farmahin, north of Arak

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh

    2014-10-01

    Full Text Available Introduction The study area is a small part of the Urumieh-Dokhtar structural zone in the Markazi province, located in the northeastern part of the Farmahin, north of Arak (Hajian, 1970. The volcanic rocks studied from the area include andesite, dacite, rhyodacite, ignimbrite and tuff of Middle to Late Eocene age (middle Lutetian to upper Lutetian (Ameri et al., 2009. It seems that folding and faulting is caused in sedimentary basin and volcanic activities. On the other hand, except of orogeny maybe rifting had rule in eruption so that this case has seen in the other area such as Taft and Khezrabad in central Iran (Zarei Sahamieh et al., 2008. The oldest formation in the studied area is Triassic limestones. The dominant textures of these rocks are porphyritic, microlite porphyritic, microlitic and rarely sieve-texture. Sieve texture and dusty texture (dusty plagioclases indicates magma mixing. Mineralogically, they contain plagioclases, clinopyroxenes, amphiboles, quartz and biotite as the main constituents and zircon, apatite, and opaque minerals as accessories. Plagioclases in the andesitic and basaltic- andesite rocks are labradorite, bytownite and anorthite (based on electron microprobe .Moreover, plagioclases in andesitic rocks show that H2O is lesser than 2.5 precent. Amphibole is found in both plagioclases and groundmass. Materials and methods In this article are used different analyses methods such as XRF, ICP-MS and EPMA. Whole-rock major and trace element analyses were determined with ICP-MS method. The major and trace element composition of some rock was determined by electron probe micro-analysis (EPMA using a Cameca SX100 instrument in Iran Mineral Processing Research Center (IMPRC. Moreover, whole-rock major and some trace element analyses for some samples were obtained by X-ray fluorescence (XRF, using an ARL Advant-XP automated X-ray spectrometer. Results Chemical data based on electron micro probe studies of minerals indicate

  18. The Ediacaran volcanic rocks and associated mafic dykes of the Ouarzazate Group (Anti-Atlas, Morocco): Clinopyroxene composition, whole-rock geochemistry and Sr-Nd isotopes constraints from the Ouzellarh-Siroua salient (Tifnoute valley)

    Science.gov (United States)

    Belkacim, Said; Gasquet, Dominique; Liégeois, Jean-Paul; Arai, Shoji; Gahlan, Hisham A.; Ahmed, Hassan; Ishida, Yoshito; Ikenne, Moha

    2017-03-01

    Belonging to the huge Ouarzazate volcanic Group that covered the whole Anti-Atlas during the late Ediacaran (580-545 Ma), the Tifnoute valley volcanic formations are mainly pyroclastic and show a large composition, from trachybasalt to rhyolite and are crosscut by dolerite dykes. The Tifnoute valley volcanic rocks are located within a rigid salient of the Anti-Atlas that gives them special extreme characteristics. Due to the heavy greenschist alteration that affects this volcanic group, we focused the more immobile elements, but as REE can also be affected, we used the composition of unaltered clinopyroxene crystals to determine the nature of these volcanic rocks. The clinopyroxene is an augite diopside in the basalt, an augite in the andesite and an augite-salite in the dolerite. Petrography of the Tifnoute mafic volcanic rocks and clinopyroxene compositions indicate the presence of two magmatic series: (i) older high-K calc-alkaline (alkali-calcic) andesite and basalt characterized by the early crystallization of Fe-Ti oxides and of the late fractionation of plagioclase, the modal proportion of the latter increasing from the basalt to the andesite and (ii) younger alkalic dolerite dykes. With clinopyroxene trace element compositions obtained using laser ablation ICP-MS, we calculated the composition of the melts in equilibrium with the pyroxenes. The volcanic rocks of the Tifnoute Valley have positive εNd570 (+1.7 to +5.0), low Sri (volcanic rocks emplaced in a Pan-African transtensive post-collisional environment that evolved towards the major rifting event that will give rise to the Rheic ocean, in a similar way to what occurred just after the Variscan orogeny during the Triassic period that evolved to the Tethys ocean opening.

  19. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (˜45°S, Chile)

    Science.gov (United States)

    D'Orazio, M.; Innocenti, F.; Manetti, P.; Tamponi, M.; Tonarini, S.; González-Ferrán, O.; Lahsen, A.; Omarini, R.

    2003-08-01

    Major- and trace-element, Sr-Nd isotopes, and mineral chemistry data were obtained for a collection of volcanic rock samples erupted by the Cay and Maca Quaternary volcanoes, Patagonian Andes (˜45°S, Chile). Cay and Maca are two large, adjacent stratovolcanoes that rise from the Chiloe block at the southern end of the southern volcanic zone (SVZ) of the Andes. Samples from the two volcanoes are typical medium-K, calc-alkaline rocks that form two roughly continuous, largely overlapping series from subalkaline basalt to dacite. The overall geochemistry of the samples studied is very similar to that observed for most volcanoes from the southern SVZ. The narrow range of Sr-Nd isotope compositions ( 87Sr/ 86Sr=0.70389-0.70431 and 143Nd/ 144Nd=0.51277-0.51284) and the major- and trace-element distributions indicate that the Cay and Maca magmas differentiated by crystal fractionation without significant contribution by crustal contamination. This is in accordance with the thin (Maca magmas is investigated by means of the relative concentration of fluid mobile (e.g. Ba) and fluid immobile (e.g. Nb, Ta, Zr, Y) elements and other relevant trace-element ratios (e.g. Sr/Y). The results indicate that small amounts (Maca volcanoes and that, despite the very young age (Maca magma sources to the northern edge of the slab window generated by the subduction of the Chile ridge under the South American plate, we did not find any geochemical evidence for a contribution of a subslab asthenospheric mantle. However, this mantle has been used to explain the peculiar geochemical features (e.g. the mild alkalinity and relatively low ratios between large ion lithophile and high field strength elements) of the Hudson volcano, which is located even closer to the slab window than the Cay and Maca volcanoes are.

  20. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  1. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

    Science.gov (United States)

    Brengman, Latisha A.; Fedo, Christopher M.

    2018-04-01

    We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7-2.96, EuSN/EuSN∗ = 0.84-1.72, Y/Ho = 25.20-27.41, LaSN/LaSN∗ = 0.97-1.29, and Zr/Hf = 38.38-42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33-2.89, EuSN/EuSN∗ 1.33-2.5, Y/Ho = 23.94-30, LaSN/LaSN∗ 0.93-1.34, and Zr/Hf = 40-70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62-2.88, EuSN/EuSN∗ 1.30-7.15, LaSN/LaSN∗ 1.02-1.86, Y/Ho = 25.56-55, and Zr/Hf = 35-50). We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We

  2. The SHRIMP zircon U-Pb dating of felsic volcanic rocks and its geological significance from yutian group in southern jiangxi

    International Nuclear Information System (INIS)

    Ji Chunyu; Wu Jianhua

    2010-01-01

    Past researches have showed that the Rb-Sr isochron ages of felsic end member for r hyolite-basalt b imodal volcanic rocks of Yutian Group in the Changpu and Longnan Basin in Southern Jiangxi Province are 175 ∼ 148 Ma, not only does its amplitude change more significantly, but it does not match with the Rb-Sr isochron ages (179 ∼ 173 Ma) of basic end member. As a result, I choose a method of zircon U-Pb dating with a higher accuracy, to obtain the rhyolite in the bottom of bimodal volcanic rocks in the Changpu Basin and the dacite in the top of of bimodal volcanic rocks in the Longnan Basin, whose zircon SHIRMP U-Pb age are respectively (195.2 ± 2.8) Ma and (191 ± 1.7) Ma. What's more, they are both almost the same in the error limit. It shows that the bimodal volcanic rocks in these both two basins are the product of the same session of magma movement. Simultaneously, it explains they form in a flash during the eruption intervals. According to the the newest International Stratigraphic Chart (Gradsrein et al. , 2004), in terms of geological age, the bimodal volcanic rocks in Changpu Basin and Longnan Basin, belonging to the early Early Jurassic. The zircon SHIRMP U-Pb age are distinctly older than the whole-rock Rb-Sr isochron age, it is probably because of the deviation of the dating method for the wholerock Rb-Sr isochron age. The zircon SHIRMP U-Pb age of bimodal volcanic rocks are 191 ∼ 195 Ma in Southern Jiangxi Province, which indicates that there had been an extensional environment. And after the bimodal volcanic activity, The zircon SHIRMP U-Pb age of felsic volcanic rocks are 145 ∼ 130 Ma. Both of the ages shows a as long as 45 Ma quiet period between 190 Ma and 145 Ma. It is unreasonable possible to interpreted by the single pattern of pacific plate subducting to eurasian plate. (authors)

  3. Elephant distribution around a volcanic shield dominated by a mosaic of forest and savanna (Marsabit, Kenya)

    NARCIS (Netherlands)

    Ngene, S.M.; Skidmore, A.K.; Gils, H.; Douglas-Hamilton, I.; Omondi, P.

    2009-01-01

    We investigated the factors that influenced the distribution of the African elephant around a volcanic shield dominated by a mosaic of forest and savanna in northern Kenya. Data on elephant distribution were acquired from four female and five bull elephants, collared with satellite-linked

  4. The structure environment, rock-magma system, mineral-forming series and pattern of volcanic mineral-forming of uranium deposit in southeast of China

    International Nuclear Information System (INIS)

    Yu Dagan

    1992-01-01

    The Volcanic uranium deposit of rock-magma belt-the Mid-Cz Volcano in the Southeast of China mainly formed around 120 ∼ 130 Ma and 90 ∼ 100 Ma Which is in harmony with the two rock magma activities of k within the region. The rock-magma system of this period formed around the turning period from pressure to tension in the continent margin of southeast China, which is mainly characterized by the appearance of A-type granite and alkaline, sub-alkaline rocks (trachyte, trachyandensite, trachybasalt, basic rock alkaline basalt). The uranium deposit is controlled by the base rift of dissection to the mantle, the volcanic basin is of the double characteristics of transversal rift valley basin (early period) ad tension rift valley basin (laster period). The leading role of the deep source is stressed in terms of internal-forming series of volcanic uranium deposits is considered to exist; and also in terms of internal-forming series of volcanic uranium deposits is considered to exist; and also in terms of mineral-forming patterns, the multi-pattern led by the deep-source is stressed, including the mineral-forming pattern of uranium deposit of continental thermos, repeated periphery mineral-forming pattern of uranium deposit and the mineral-forming pattern of uranium deposit of rising pole-like thermos. Ten suggestions are put forward to the next mineral-search according to the above thoughts

  5. Features of the distribution of uranium in igneous rocks - uranium deposits associated with igneous rocks

    International Nuclear Information System (INIS)

    Soerensen, H.

    1977-01-01

    The generally accepted main features of the distribution of uranium and thorium in igneous rocks are briefly reviewed. It is pointed out that uranium in most cases examined is strongly partitioned into the melt during consolidation of magmas and that uranium is concentrated in the most volatile-rich parts of magmas. The mode of emplacement and the consolidation of magmas control the retention or the expulsion of the volatile phase from consolidating magmas and also the distribution of uranium between magmas and the volatile phase. After a brief review of the types of uranium deposits associated with igneous rocks it is concluded that it is difficult to establish universally valid exploration criteria to be used in the search of these types of deposit. It is emphasized, however, that detailed petrological and geochemical studies may be useful in outlining exploration targets. (author)

  6. Paleomagnetism of volcanic rocks from the Northeast of Brazil and the time of the opening of the South Atlantic

    International Nuclear Information System (INIS)

    Guerreiro, S.D.C.

    1983-01-01

    In the first part of this paper palaeomagnetic and rock magnetism investigations were developed in volcanic samples from the Northeast of Brazil. The age of the samples spans the Jurassic and Cretaceous periods. To accomplish this task four areas were studied and a total of 495 samples from 58 sites were analysed. A portable drilling machine with 2.5 em core diameter was used to collect the samples. The orientation of the samples were obtained by means of a magnetic compass, and a clinometer. The analysis of the magnetic minerals of these samples was done by thermomagnetic curves and by X-ray diffraction. In most cases the magnetic phase in the rocks is mainly titanomagnetite with poor titanium content. Maghemite and sometimes hematite, usually a product of weathering, did not obscure the initial thermoremanent magnetization of these rocks. The second part of this paper deals with the determination of the time of the opening of the South Atlantic ocean by means of palaeomagnetic data. In this paper, however, instead of using the polar wandering paths of the continents (the usual method) statistical tests were applied that give the probability that a certain configuration for the two continents be consistent or not with the palaeomagnetic data for a chosen period. (author)

  7. Geochronology of the Swift Current granite and host volcanic rocks of the Love Cove group, southwestern Avalon zone, Newfoundland

    International Nuclear Information System (INIS)

    Dallmeyer, R.D.; O'Driscoll, C.F.; Hussey, E.M.

    1981-01-01

    Zircon fractions from the variably deformed and metamorphosed Swift Current granite and host volcanic rocks of the Love Cove Group record individually discordant U-Pb ages with well-defined upper concordia intercept ages of 580 +- 20 and 590 +- 30 Ma, respectively. These are interpreted to be crystallization dates and indicate a late Proterozoic cogmagmatic relationship. Primary hornblende from the pluton record disturbed 40 Ar/ 39 Ar age spectra that suggest postcrystallization argon loss, probably during Acadian (Devonian) regional metamorphism. 40 Ar/ 39 Ar plateau ages of 560-566 Ma are well defined for the hornblende and are interpreted to date times of postmagmatic cooling. The similarity between zircon and hornblende dates suggests relatively rapid postmagmatic cooling. A six-point, Rb-Sr whole-rock isochron age of 548 +- 11 Ma is defined for the pluton. The slight discordancy of this date in comparison with the zircon and hornblende ages may reflect a minor disturbance of whole-rock isotopic systems during Acadian regional metamorphism. (author)

  8. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

    Science.gov (United States)

    Busquets, P.; Méndez-Bedia, I.; Gallastegui, G.; Colombo, F.; Cardó, R.; Limarino, O.; Heredia, N.; Césari, S. N.

    2013-07-01

    The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the

  9. Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan

    Directory of Open Access Journals (Sweden)

    Mahshid Malekian Dastjerdi

    2017-02-01

    Full Text Available Introduction The study area is located 12km away from the north east of Sarbisheh at the eastern border of the Lut block (Karimpour et al., 2011; Richards et al., 2012. The magmatic activity in the Lut blockhas begun in the middle Jurassic (165-162 Ma and reached its peak in the Tertiary age (Jung et al., 1983; Karimpour et al., 2011. Volcanic and subvolcanic rocks in the Tertiary age cover over half of the Lut block with up to 2000 m thickness and they were formed due to subduction prior to the collision of the Arabian and Asian plates (Jung et al., 1983; Karimpour et al., 2011. In the Kangan area, the basaltic lavas cropped out beyond the above intermediate to acid volcanic rocks. In this area, bentonite and perlite deposits have an economic importance. The main purpose of this paper is to present a better understanding of the tectono-magmatic settings of volcanic rocks in the northeast of Sarbisheh, east of Iran based on their geochemical characteristics. Materials and methods Fifteen samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements by using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the Acme laboratories, Vancouver, Canada. Results The Kangan area is located at the northeast of Sarbishe, Southern Khorasan and the eastern border of the Lut block. In this area, basaltic lavas have cropped out above intermediate to acid lavas such as andesite, dacite, rhyolite (sometimes perlitic .The main minerals in the basalt are plagioclase, olivine and pyroxene, in andesite contain plagioclase, pyroxene, biotite and amphibole and in acid rocks include plagioclase, quartz, sanidine, biotite and amphibole. Intermediate to acid rocks have medium to high-K calc-alkaline nature and basalt is alkaline. Enrichment in LREE relative to HREE (Ce/Yb= 21.14-28.7, high ratio of Zr/Y(4.79- 10.81, enrichment in LILE

  10. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    OpenAIRE

    Huang Bo; Cheng Hao; He Yidong; Fu Yanming

    2017-01-01

    The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc.), high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the ...

  11. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  12. Glass inclusions in volcanic rocks in the Okinawa Trough back-arc basin: constraints on magma genesis and evolution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major elemnt compositions of glass inclusions in plagioclase and pyroxene phenocrysts of basalt and pumice in the Okinawa Trough back-arc basin are determined by electron microprobe. The results indicate that basalt and pumice are cognate and respectively represent the proluots at early stages of mgmtism and at late stage of crystal fractionation. The initial magrma in the trough is rich in H2O. The variation of H2O content in magma may play an important role in the magma evolution. Plagioclase is the mineral crystallized throughout the whole magrmatic process and accumulates in the zoned magma chamber. From these features it can he inferred that the initial magma in the Okinawa Trough, whose opening began in recent years, is serious ly affected by fluid or other materials carried by subducting slab and the geocbemical feature of volcanic rocks is in some degree similar to that of lavas in island-arc environments.

  13. Stable isotope compositions and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan

    Science.gov (United States)

    Dobson, P.F.; O'Neil, J.R.

    1987-01-01

    Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.

  14. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  15. Development of micro-scale joints in volcanic rocks under thermal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Petrographic studies of samples of the Rajmahal basalt reveal a variety of microscopic joints ... To study the micro-scale joints in rock systems, ..... fiber-like crystal habit of the material chosen for ... stress, Y is the numerical modification factor to.

  16. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    Science.gov (United States)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  17. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14

    Science.gov (United States)

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.

    2017-01-20

    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend

  18. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    Science.gov (United States)

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years

  19. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints

    Science.gov (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan

    2017-05-01

    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  20. A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard

    Directory of Open Access Journals (Sweden)

    A. T. Mendoza-Rosas

    2009-03-01

    Full Text Available The assessment of volcanic hazard is the first step for disaster mitigation. The distribution of repose periods between eruptions provides important information about the probability of new eruptions occurring within given time intervals. The quality of the probability estimate, i.e., of the hazard assessment, depends on the capacity of the chosen statistical model to describe the actual distribution of the repose times. In this work, we use a mixture of exponentials distribution, namely the sum of exponential distributions characterized by the different eruption occurrence rates that may be recognized inspecting the cumulative number of eruptions with time in specific VEI (Volcanic Explosivity Index categories. The most striking property of an exponential mixture density is that the shape of the density function is flexible in a way similar to the frequently used Weibull distribution, matching long-tailed distributions and allowing clustering and time dependence of the eruption sequence, with distribution parameters that can be readily obtained from the observed occurrence rates. Thus, the mixture of exponentials turns out to be more precise and much easier to apply than the Weibull distribution. We recommended the use of a mixture of exponentials distribution when regimes with well-defined eruption rates can be identified in the cumulative series of events. As an example, we apply the mixture of exponential distributions to the repose-time sequences between explosive eruptions of the Colima and Popocatépetl volcanoes, México, and compare the results obtained with the Weibull and other distributions.

  1. New records of rare lichenicolous and lichen-forming fungi from volcanic rocks in SW Poland

    Directory of Open Access Journals (Sweden)

    Katarzyna Szczepańska

    2015-08-01

    Full Text Available Records of two lichenicolous and nine lichen-forming fungi found in the southwestern part of Poland are presented. All of the reported species are very rare and they have only a few scattered localities in the country. One of them, Lecanora pannonica, is reported for the second time from Poland. Additionally, the new, contemporary records of Cercidospora macrospora, Rhizocarpon disporum, R. viridiatrum and Stereocaulon pileatum in Lower Silesia were noted. These species were known only from historical collections in the study area. Furthermore, Lecidea fuscoatra has been found a new host for Sagediopsis barbara. All of the localities of recorded species were found on natural outcrops of basalt rocks.

  2. Petrology, geochemistry, and tectonic setting of Tertiary volcanic and intrusive rocks in the north of Shahr-e-Firouzeh (northeast of Iran)

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Zarei, A.

    2016-01-01

    The study area is located in 15 km of the north of Shahr-e-Firouzeh in Khorasan Razavi province. The area is situated in the southeast of Quchan-Sabzevar arc magmatic. Lithology of the district includes dacitic lavas, which are intruded by Oligocene porphyritic hornblende granodioritic stock and granodioritic dike as subvolcanic and plutonic rocks. Igneous rocks were overlapped by younger sedimentary rocks. The texture of dacitic unit is porphyric to glomeroporphic with flow groundmass. Quartz, plagioclase, K-feldspar, and hornblende are the main minerals. The texture of hornblende granodiorite porphyry is porphyric to glomeroporphic and plagioclase, K-feldspar, hornblende, and quartz are the common minerals, whereas granodiorite unit is granular and hornblende is not present. Based on geochemical studies, the acidic volcanic and intrusive rocks show metaluminous and medium-K nature. These rocks belong to the I-type granitoid. Enrichment of LREE versus HREE and enrichment of LILE and depletion in HFSE indicate magma formed in subduction zone. The melt originated from partial melting of amphibolite with 10 to 25% garnet. Based on the average amount of major oxides, enrichment of LREE, mostly positive Eu anomaly, high Sr (up to 499 ppm), and low Y (<13 ppm) and Yb (<1.4 ppm) contents, the magma show silica-rich adakitic nature. The intrusive and volcanic rocks of the northern Shahr-e-Firouzeh were generated by partial melting of Sabzevar Neotethyan young and hot subducted oceanic crust and mantle wedge in the continental margin of the Turan plate.

  3. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari

    2014-04-01

    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  4. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhigang; YU Shaoxiong; WANG Xiaoyuan; FU Yongtao; YIN Xuebo; ZHANG Guoliang; WANG Xiaomei; CHEN Shuai

    2010-01-01

    Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207Pb/204Pb and 208Pb/204Pb ratios.The NECS shelf margin basalts have lower 87Sr/86Sr ratios,εNd and σ18O than the northern Okinawa Trough silicic rocks.According to 40K-40Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.

  5. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    Science.gov (United States)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  6. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance

    Science.gov (United States)

    Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao

    2018-06-01

    The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of

  7. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    Science.gov (United States)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  8. Distribution coefficient of radionuclides on rocks for performance assessment of high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Shibutani, Tomoki; Shibata, Masahiro; Suyama, Tadahiro

    1999-11-01

    Distribution coefficients of radionuclides on rocks are selected for safety assessment in the 'Second Progress Report on Research and Development for the geological disposal of HLW in Japan (H12 Report)'. The categorized types of rock are granitic rocks (crystalline and acidic rocks), basaltic rocks (crystalline and basic rocks), psammitic rocks (neogene sedimentary (soft)), and tuffaceous-pelitic rocks (pre-neogene sedimentary rocks (hard)). The types of groundwater are FRHP (fresh reducing high-pH), FRLP (fresh reducing low-pH), SRHP (saline reducing high-pH), SRLP (saline reducing low-pH), MRNP (mixing reducing neutral-pH) and FOHP (fresh oxidizing high-pH) groundwater. The elements to be surveyed are Ni, Se, Zr, Nb, Tc, Pd, Sn, Cs, Sm, Pb, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm. Distribution coefficients are collected from literatures describing batch sorption experimental results, and are selected under consideration of conservativity. (author)

  9. K-Ar ages of basalts from the Higashi-Matsuura district, northwestern Kyushu, Japan and regional geochronology of the Cenozoic alkaline volcanic rocks in eastern Asia

    International Nuclear Information System (INIS)

    Nakamura, Eizo; Campbell, I.H.; McDougall, I.

    1986-01-01

    Seven new K-Ar age determinations are presented on whole rock samples from alkaline and tholeiitic basalts of the Higashi-Matsuura district, northwestern Kyushu, Japan. Ages obtained range from 2.92 ± 0.03 Ma to 3.01 ± 0.04 Ma; these ages are essentially identical within analytical errors and yield an average age of 2.98 ± 0.03 Ma (Late Pliocene). When combined on an isochron type diagram the six Higashi-Matsuura samples give an age of 3.00 ± 0.03 Ma with the composition of nonradiogenic 40 Ar/ 36 Ar = 294.2 ± 2.0. The excellent age agreement of samples with different K contents and petrographic characteristics provides strong evidence that the tholeiitic and alkaline basalts were erupted for an extremely short period in the Higashi-Matsuura district. A basalt from Ogawashima Island yields a K-Ar age of 3.58 ± 0.04 Ma. This study and previously reported data support the hypothesis that alkaline volcanic activity in southwestern Japan commenced some 10 Ma ago and continued intermittently until recent times. Systematic variations of age and distribution of Cenozoic alkaline basalts are recognized in northeastern China, Korea and southwestern Japan. It is suggested that these variations are related to the initiation of 'mantle plumes' resulting from convection in the mantle wedge caused or controlled by subduction of the Kula and Pacific plates. (author)

  10. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase.

    Science.gov (United States)

    Wan, Juan; Sun, Xiaowen; Liu, Cheng; Tang, Mengjun; Li, Lin; Ni, Hong

    2017-06-01

    A triplicate volcanic rock matrix-Bacillus thuringiensis-laccase WlacD (VRMs-Bt-WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn) 2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn) 2 -WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9 (3 4 )-orthogonal test, Plackett-Burman test, steepest ascent method, and Box-Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L -1 , which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs-Bt-WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs-Bt-WlacD toward an initial concentration of 500 mg L -1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g-100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs-Bt-WlacD and have the potential for large-scale or continuous operations.

  11. Petrography and geochemistry of the volcanic rocks of the Rodeio Velho Member, Ordovician of the Camaqua basin (RS-Brazil): preliminary results

    International Nuclear Information System (INIS)

    Almeida, Delia del Pilar M. de; Lopes, Ricardo da C.; Gomes, Cristiane H.; Lima, Larissa de.

    2000-01-01

    A geochemical study based in REE, minor elements and petrographic analyses from the volcanic rocks pertaining to the Rodeio Velho Member, comprising lava flows and epizonal intrusive bodies, both corresponding to andesites, subalkaline and alkaline basalts and trachyandesites; and stratified pyroclastic deposits, showed that fractional crystallization of deep source magma is the fundamental mechanism controlling the relationships among these rocks. This igneous event occurred in an alkaline intraplate environment, associated to a widespread extension tectonics, probably corresponding to a final stage of the Pan African - Brasiliano Orogeny during the Middle Ordovician. (author)

  12. REE behavior during weathering of basaltic rocks from the Lisbon Volcanic Complex (Portugal)

    International Nuclear Information System (INIS)

    Prudencio, M.I.; Cabral, J.M.P.; Sequeira Braga, M.A.

    1991-01-01

    Two weathering profiles developed in alkali basalts from the Lisbon Volcanic Complex were chosen for a REE behavior study. Profile 1 consists of a lava flow with porphyritic texture. Olivine and clinopyroxene are set in a groundmass which mainly comprises plagioclase, clinopyroxene, olivine, biotite, glass and Fe-Ti oxides. X-ray diffraction analysis of the 0 < 2μm fraction revealed: 45-95% smectites and 5-40% halloysite (7.3 angstrom), and Fe and/or Ti oxides. Profile 2 consists of a lava flow with an intergranular texture, where olivine, clinopyroxene and spinel grains are surrounded by large feldspars laths. The 0 < 2μ fraction consists of 80-100% halloysite (7.3 angstrom), < 20% micas and < 10% palygorskite and Fe and/or Ti oxides. The REE were determined by instrumental neutron activation analysis. The clay-sized fractions of the more weathered samples were separated and analyzed too. For the whole samples it was observed that: (1) when halloysites are the dominant clay-minerals (profile 2), REE are more retained in the profile and (2) in general the light REE are less concentrated in the profiles than the intermediate or even the heavy REE. In most weathered samples of profile 1 a significant loss of Ce was found. The REE in the 0 < 2μm fractions are in general enriched relative to the whole samples. In profile 1, where smectites dominate, a significant negative Ce anomaly is also present except for one sample collected at an intermediate level. Among the REE analyzed, Nd is the most enriched compared to the whole samples. In profile 2, where halloysites dominate and micas are present mainly at the bottom of the profile, it was observed that: (a) REE are less fractionated than in profile 1, (b) Ce is depleted at the bottom of the profile but increases upwards, so that at the top the 0 < 2μm fraction reveals a small positive anomaly relative to whole sample

  13. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    Science.gov (United States)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  14. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  15. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields

    Science.gov (United States)

    Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli

    2017-11-01

    A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites

  16. Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc

    Science.gov (United States)

    Rojas-Agramonte, Yamirka; Williams, Ian S.; Arculus, Richard; Kröner, Alfred; García-Casco, Antonio; Lázaro, Concepción; Buhre, Stephan; Wong, Jean; Geng, Helen; Echeverría, Carlos Morales; Jeffries, Teresa; Xie, Hangqian; Mertz-Kraus, Regina

    2017-10-01

    The Lesser Antilles arc is one of the best global examples in which to examine the effects of the involvement of subducted sediment and crustal assimilation in the generation of arc crust. Most of the zircon recovered in our study of igneous and volcaniclastic rocks from Grenada and Carriacou (part of the Grenadines chain) is younger than 2 Ma. Within some late Paleogene to Neogene ( 34-0.2 Ma) lavas and volcaniclastic sediments however, there are Paleozoic to Paleoarchean ( 250-3469 Ma) xenocrysts, and Late Jurassic to Precambrian zircon ( 158-2667 Ma) are found in beach and river sands. The trace element characteristics of zircon clearly differentiate between different types of magmas generated in the southern Lesser Antilles through time. The zircon population from the younger arc (Miocene, 22-19 Ma, to Present) has minor negative Eu anomalies, well-defined positive Ce anomalies, and a marked enrichment in heavy rare earth elements (HREE), consistent with crystallization from very oxidized magmas in which Eu2 + was in low abundance. In contrast, zircon from the older arc (Eocene to mid-Oligocene, 30-28 Ma) has two different REE patterns: 1) slight enrichment in the light (L)REE, small to absent Ce anomalies, and negative Eu anomalies and 2) enriched High (H)REE, positive Ce anomalies and negative Eu anomalies (a similar pattern is observed in the xenocrystic zircon population). The combination of positive Ce and negative Eu anomalies in the zircon population of the older arc indicates crystallization from magmas that were variably, but considerably less oxidized than those of the younger arc. All the igneous zircon has positive εHf(t), reflecting derivation from a predominantly juvenile mantle source. However, the εHf(t) values vary significantly within samples, reflecting considerable Hf isotopic heterogeneity in the source. The presence of xenocrystic zircon in the southern Lesser Antilles is evidence for the assimilation of intra-arc crustal sediments and

  17. K-U-Th systematics of terrestrial igneous rocks for planetological comparisons: volcanic rocks of the Earth oceanic island arc and Venus surface material

    International Nuclear Information System (INIS)

    Nikolaeva, O.V.

    1997-01-01

    Principles of the formation o data base for 339 samples of oceanic island arc (OIA) igneous rocks of the Earth available in literature are described as well as of the formation of fresh rock sample, characteristics of this sample, and K-U-Th-systematics of the fresh igneous rocks of Earth OIA. Results of comparison of the Venus measured rocks and Earth OIA rocks by K, U, Th

  18. Frictional processes during flank motion at Mount Etna (Italy): experimental characterisation of slip on similar and dissimilar volcanic and sedimentary rocks.

    Science.gov (United States)

    Rozanski, Wojciech; Lavallee, Yan; Kendrick, Jackie; Castagna, Angela; Mitchell, Thomas; Heap, Michael; Vinciguerra, Sergio; Hirose, Takehiro; Dingwell, Donald

    2015-04-01

    The edifice of Mount Etna (Italy) is structurally unstable, exhibiting a near continuous ESE seaward sliding along a set of faults due to interplay between regional tectonics, gravity instability and magma intrusion. Continuous seismic and ground deformation monitoring reveals the resulting large-scale flank motion at variable rates. The mechanisms controlling this faulting kinetic remains, however, poorly constrained. Examination of the fault zones reveals a range of rock types along the different fault segments: fresh and altered basalt, clay and limestone. As lithological contrasts can jeopardise the structural stability of an edifice, we experimentally investigate the frictional properties of these rocks using low- to high-velocity-rotary shear tests on similar and dissimilar rocks to better understand episodes of slow flank motion as well as rapid and catastrophic sector collapse events. The first set of experiments was performed at velocities up to 1.2 m/s and at normal stresses of 1.5 MPa, commensurate with depths of the contacts seen in the Etna edifice. Friction experiments on clay gouge shows the strong rate-weakening dependence of slip in this material as well as the release of carbon dioxide. Friction experiments on solid rocks show a wider range of mechanical behaviour. At high velocity (>0.6 m/s) volcanic rocks tend to melt whereas the clay and limestone do not; rather they decarbonate, which prevents the rock from achieving the temperature required for melting. Experiments on dissimilar rocks clearly show that composition of host rocks affects the composition and viscosity of the resultant frictional melt, which can have a dramatic effect on shear stress leading to fault weakening or strengthening depending on the combination of host rock samples. A series of low- to moderate-slip velocity experiments is now being conducted to complement our dataset and provide a more complete rock friction model applicable to Mount Etna.

  19. Rock encrusting assemblages: Structure and distribution along the Baltic Sea

    Science.gov (United States)

    Grabowska, Monika; Grzelak, Katarzyna; Kukliński, Piotr

    2015-09-01

    Aquatic community structure and dynamics are generally controlled by a variety of biological and physical factors. Among these factors in marine ecosystems, salinity is known to have a significant effect on species occurrence and composition. In this study, we investigated the large-scale distribution and abundance of encrusting fauna along a salinity gradient on the shallow Baltic Sea rocky coast. Rock samples collected from 14 locations distributed between the Gulf of Bothnia (salinity 0.6) and Skagerrak (salinity 28) supported a total number of 24 encrusting species. The faunas were composed mostly of marine species with opportunistic life histories; however, some brackish water specialists were also present. The number of species and abundance counts is strongly positively correlated with increases in salinity. No encrusting faunas were recorded below salinity level 4. Multivariate analysis (nMDS) revealed three major groups based on species composition that differed in terms of abundance and number of species. Each group was associated with specific salinity conditions. The first assemblage type occurred within salinity 4-7, the second within salinity between 22 and 27, and the third type was a mixture between the two observed at a salinity of approximately 17. This study indicates that to determine the assemblage structure of the Baltic Sea encrusting fauna, analyses at the family level were found to be a reliable surrogate for species composition.

  20. Sr-Nd-Pb isotope systematics of the Permian volcanic rocks in the northern margin of the Alxa Block (the Shalazhashan Belt) and comparisons with the nearby regions: Implications for a Permian rift setting?

    Science.gov (United States)

    Shi, Guanzhong; Wang, Hua; Liu, Entao; Huang, Chuanyan; Zhao, Jianxin; Song, Guangzeng; Liang, Chao

    2018-04-01

    The petrogenesis of the Permian magmatic rocks in the Shalazhashan Belt is helpful for us to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB) in the northern margin of the Alxa Block. The Permian volcanic rocks in the Shalazhashan Belt include basalts, trachyandesites and trachydacites. Our study shows that two basalt samples have negative εNd(t) values (-5.4 to -1.5) and higher radiogenic Pb values, which are relevant to the ancient subcontinental lithospheric mantle. One basalt sample has positive εNd(t) value (+10) representing mafic juvenile crust and is derived from depleted asthenosphere. The trachyandesites are dated at 284 ± 3 Ma with εNd(t) = +2.7 to +8.0; ISr = 0.7052 to 0.7057, and they are generated by different degrees of mixing between mafic magmas and crustal melts. The trachydacites have high εNd(t) values and slightly higher ISr contents, suggesting the derivation from juvenile sources with crustal contamination. The isotopic comparisons of the Permian magmatic rocks of the Shalazhashan Belt, the Nuru-Langshan Belt (representing the northern margin of the Alxa Block), the Solonker Belt (Mandula area) and the northern margin of the North China Craton (Bayan Obo area) indicate that the radiogenic isotopic compositions have an increasingly evolved trend from the south (the northern margins of the Alxa Block and the North China Craton) to the north (the Shalazhashan Belt and the Solonker Belt). Three end-member components are involved to generate the Permian magmatic rocks: the ancient subcontinental lithospheric mantle, the mafic juvenile crust or newly underplated mafic rocks that were originated from depleted asthenosphere, and the ancient crust. The rocks correlative with the mafic juvenile crust or newly underplated mafic rocks are predominantly distributed along the Shalazhashan Belt and the Solonker Belt, and the rocks derived from ancient, enriched subcontinental lithospheric mantle are mainly distributed along

  1. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  2. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    Science.gov (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  3. Mid–Late Neoproterozoic rift-related volcanic rocks in China: Geological records of rifting and break-up of Rodinia

    Directory of Open Access Journals (Sweden)

    Linqi Xia

    2012-07-01

    Full Text Available Early Cambrian and Mid–Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks, which had aggregated to form part of the Rodinia supercontinent by ca. 900 Ma. On the basis of petrogeochemical data, the basic lavas can be classified into two major magma types: HT (Ti/Y > 500 and LT (Ti/Y  0.85 and HT2 (Nb/La ≤ 0.85, and LT1 (Nb/La > 0.85 and LT2 (Nb/La ≤ 0.85 subtypes, respectively. The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere- (or plume- derived magmas, whereas the parental magmas of the HT1 and LT1 lavas did not undergo, during their ascent, pronounced lithospheric contamination. These volcanics exhibit at least three characteristics: (1 most have a compositional bimodality; (2 they were formed in an intracontinental rift setting; and (3 they are genetically linked with mantle plumes or a mantle surperplume. This rift-related volcanism at end of the Mid–Neoproterozoic and Early Cambrian coincided temporally with the separation between Australia–East Antarctica, South China and Laurentia and between Australia and Tarim, respectively. The Mid–Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.

  4. Assessment of the uranium potential of the Jurassic volcanism (Bahía Laura and El Quemado Complexes), Province of Santa Cruz, using ground-borne gamma-ray spectrometry and rock geochemistry

    International Nuclear Information System (INIS)

    Kleinman, L.E.; Maloberti, A.L.; Gayone, M.R.; Kaufmann, C.; Sruoga, P.

    2013-01-01

    Radiometric surveys are a rapid tool to measure uranium (U), thorium (Th) and potassium (K) concentrations in rocks and are very useful in the exploration for radioactive minerals. The distribution of uranium in Jurassic volcanic rocks of the province of Santa Cruz is evaluated in this work using ground gamma-ray spectrometry and rock geochemistry in order to assess its potential to form uranium deposits. Five areas were selected, which had some previous data of high radiometric values and detailed geological information. Measurements were carried out with a portable gamma-ray spectrometer (Exploranium-GR 320®) in andesites, ignimbrites, rhyolites, silicified areas, ash-fall tuffs and lacustrine sediments corresponding to the Bahía Laura and to El Quemado complexes. The results were similar in the five surveyed areas: radiometric concentrations show good positive correlations with chemical composition of the studied rocks for both K and Th, and a relatively poorer correlation for U. Different processes such as magmatic differentiation, vapor phase crystallization, hydrothermal alteration and supergene alteration are reflected in the distribution of these elements. U concentrations increase in the more glassy rocks, in areas with hydrothermal silicification, and in fracture zones, features that should be considered in future surveys. The calkalkaline composition and arc-signatures of the Jurassic magmatism are not the most favorable for uranium enrichment and for concentration of significant mineralizations. However, the extensional tectonic setting; the occurrence of calderas with facies slightly enriched in U and Th, in addition to hydrothermal activity are positive factors for U exploration. (authors) [es

  5. Assessing hydraulic connections across a complex sequence of volcanic rocks - Analysis of U-20 WW multiple-well aquifer test, Pahute Mesa, Nevada National Security Site, Nevada

    Science.gov (United States)

    Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.

    2011-01-01

    Groundwater beneath Pahute Mesa flows through a complexly layered sequence of volcanic rock aquifers and confining units that have been faulted into distinct structural blocks. Hydraulic property estimates of rocks and structures in this flow system are necessary to assess radionuclide migration near underground nuclear testing areas. The U.S. Geological Survey (USGS) used a 12 month (October 1, 2008— October 1, 2009) intermittent pumping schedule of well U-20 WW and continuously monitored water levels in observation wells ER-20-6 #3, UE-20bh 1, and U-20bg as a multi-well aquifer test to evaluate hydraulic connections across structural blocks, bulk hydraulic properties of volcanic rocks, and the hydraulic significance of a major fault. Measured water levels were approximated using synthetic water levels generated from an analytical model. Synthetic water levels are a summation of environmental water-level fluctuations and a Theis (1935) transform of the pumping signal from flow rate to water-level change. Drawdown was estimated by summing residual differences between measured and synthetic water levels and the Theis-transformed pumping signal from April to September 2009. Drawdown estimates were used in a three‑dimensional numerical model to estimate hydraulic properties of distinct aquifers, confining units, and a major fault.

  6. Determining air distribution during outbursts of gases and rocks

    Energy Technology Data Exchange (ETDEWEB)

    Struminski, A; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses use of the KPW-1 iterative and autocorrelation method developed by A. Struminski for forecasting effects of rock bursts on ventilation systems of underground coal mines with increased content of methane or carbon dioxide in coal seams and adjacent rock strata. The method is used for prediction of air flow changes caused by a rock burst accompanied by violent outburst of gases. Directions of air flow, flow rate and concentration of gases emitted from surrounding strata to mine workings are predicted. On the basis of this prediction concentration of gases from a coal outburst is determined for any point in a ventilation network. The prediction method is used for assessing hazards for coal mines during and after a rock burst. Use of the method is explained on the example of the Thorez and Walbrzych coal mines. Computer programs developed for ODRA and IBM/XT computers are discussed. 6 refs.

  7. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  8. Isotope dates and strontium isotopic ratios for plutonic and volcanic rocks in the Quesnel Trough and Nicola Belt, south central British Columbia

    International Nuclear Information System (INIS)

    Preto, V.A.; McMillan, W.J.; Armstrong, R.L.

    1979-01-01

    Four distinct events of the southern Intermontane Belt are represented in new K-Ar and Rb-Sr dates. The first and regionally most important event is sharply defined by new K-Ar dates between 200 and 209 Ma for the Thuya, Wildhorse, Iron Mask, and Allison batholiths and a 205 +- 10 Ma Rb-Sr isochron for the Guichon Creek batholith. All these plutons were emplaced approximately at the change from Triassic to Jurassic time. The related and slightly older Nicola volcanic rocks are altered by addition of more radiogenic sedimentary Sr (Carnian Nicola limestone having 87 Sr/ 86 Sr=0.7075+- 1) and do not give an isochron date. The Coldwater stock is anomalously old (K-Ar dates range from 215-267 Ma). The Mid- to late Jurassic igneous event is indicated by a 141 Ma K-Ar date for the Mount Martley batholith. Mid-Cretaceous volcanic rocks of the Kingsvale Group give a Rb-Sr isochron date of 112 +- 10 Ma and are postdated by the crosscutting and slightly younger Summers Creek stock (100 Ma by K-Ar). The final event straddles the Cretaceous-Tertiary boundary with the Nicola batholith emplaced about 60 Ma ago (K-Ar) and the Rey Lake stock perhaps slightly earlier (69 Ma by K-Ar). Initial 87 Sr/ 86 Sr ratios range from 0.7025-0.7046 with a mean and mode near 0.7037 which is within the range of modern circum-Pacific volcanoes. Initial ratios of 0.7034 +- 1 for the Guichon Creek batholith, 0.7035 +- 1 for the Iron Mask batholith 70435 +-10 for the Thuya batholith, and 0.70379 +- 4 for the Kingsvale volcanic rocks are the most precisely determined. The Coldwater stock is anomalously low at 0.7025. For the other plutonic bodies only scattered or single analyses are available. The Nicola volcanic rocks appear to have once been similar in initial ratio the the Guichon Creek batholith but their calculated initial ratios now scatter from 0.7034-0.7073. (auth)

  9. A REMAINING OPEN PALEOGEOGRAPHY OF PALEO-ASIAN OCEAN BY EARLY PERMIAN: PALEOMAGNETIC CONSTRAINTS FROM THE PERMIAN VOLCANIC ROCKS IN MIDDLE-EAST INNER MONGOLIA, NE CHINA

    Directory of Open Access Journals (Sweden)

    Donghai Zhang

    2017-01-01

    Full Text Available We report a paleomagnetic investigation on Permian volcanic rocks in the middle-east Inner Mongolia, NE China, aiming to puzzle out the timing and position of the final closure of the eastern Paleo-Asian ocean (PAO and further to better understand tectonic evolution of the Central Asian Orogenic Belt (CAOB. Two pre-folding characteristic components are isolated from the Sanmianjing and Elitu formations (~283–266 Ma in the northern margin of the North China block (NMNCB and the Dashizhai Formation (~280 Ma in the Songliao-Xilinhot block (SXB, respectively.

  10. Formation of a spatter-rich pyroclastic density current deposit in a Neogene sequence of trachytic-mafic igneous rocks at Mason Spur, Erebus volcanic province, Antarctica

    Science.gov (United States)

    Martin, A. P.; Smellie, J. L.; Cooper, A. F.; Townsend, D. B.

    2018-01-01

    Erosion has revealed a remarkable section through the heart of a volcanic island, Mason Spur, in the southwestern Ross Sea, Antarctica, including an unusually well-exposed section of caldera fill. The near-continuous exposure, 10 km laterally and > 1 km vertically, cuts through Cenozoic alkalic volcanic rocks of the Erebus volcanic province (McMurdo Volcanic Group) and permits the study of an ancient volcanic succession that is rarely available due to subsequent burial or erosion. The caldera filling sequence includes an unusual trachytic spatter-rich lapilli tuff (ignimbrite) facies that is particularly striking because of the presence of abundant black fluidal, dense juvenile spatter clasts of trachytic obsidian up to 2 m long supported in a pale cream-coloured pumiceous lapilli tuff matrix. Field mapping indicates that the deposit is an ignimbrite and, together with petrological considerations, it is suggested that mixing of dense spatter and pumiceous lapilli tuff in the investigated deposit occurred during emplacement, not necessarily in the same vent, with the mixed fragmental material emplaced as a pyroclastic density current. Liquid water was not initially present but a steam phase was probably generated during transport and may represent water ingested during passage of the current as it passed over either wet ground, stream, shallow lake or (possibly) snow. Well-exposed caldera interiors are uncommon and that at Mason Spur is helping understand eruption dynamics associated with a complex large island volcano. The results of our study should help to elucidate interpretations of other, less well exposed, pyroclastic density current deposits elsewhere in Antarctica and globally.

  11. Carboniferous-Permian volcanic evolution in Central Europe-U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Hoffmann, U.; Breitkreuz, Ch.; Breiter, Karel; Sergeev, S.; Stanek, K.; Tichomirowa, M.

    2013-01-01

    Roč. 102, č. 1 (2013), s. 73-99 ISSN 1437-3254 Institutional support: RVO:67985831 Keywords : pyroclastic rocks * dykes * stratigraphy * SHRIMP U/Pb ages * Pb/Pb single zircon age * Variscides Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.084, year: 2013

  12. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?

    Science.gov (United States)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Guo, Zhaojie; Waldrip, Ross; Li, Xiaochun; Zhang, Xiaoran; Liu, Dongdong; Kapp, Paul

    2015-01-01

    Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previously yielded data suggesting a low paleolatitude ( 10°N). New zircon U-Pb dates indicate an age of 52 Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1° (35.7°, 40.5°) (95% significance) and a secondary remanence with inclination of 42.9° (41.5°,44.4°) (95% significance). The paleolatitude defined by the modeled primary remanence—21°N (19.8°N, 23.1°N)—is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at 20°N and took place by 50 Ma.

  13. Theory for Deducing Volcanic Activity From Size Distributions in Plinian Pyroclastic Fall Deposits

    Science.gov (United States)

    Iriyama, Yu; Toramaru, Atsushi; Yamamoto, Tetsuo

    2018-03-01

    Stratigraphic variation in the grain size distribution (GSD) of plinian pyroclastic fall deposits reflects volcanic activity. To extract information on volcanic activity from the analyses of deposits, we propose a one-dimensional theory that provides a formula connecting the sediment GSD to the source GSD. As the simplest case, we develop a constant-source model (CS model), in which the source GSD and the source height are constant during the duration of release of particles. We assume power laws of particle radii for the terminal fall velocity and the source GSD. The CS model can describe an overall (i.e., entire vertically variable) feature of the GSD structure of the sediment. It is shown that the GSD structure is characterized by three parameters, that is, the duration of supply of particles to the source scaled by the fall time of the largest particle, ts/tM, and the power indices of the terminal fall velocity p and of the source GSD q. We apply the CS model to samples of the Worzel D ash layer and compare the sediment GSD structure calculated by using the CS model to the observed structure. The results show that the CS model reproduces the overall structure of the observed GSD. We estimate the duration of the eruption and the q value of the source GSD. Furthermore, a careful comparison of the observed and calculated GSDs reveals new interpretation of the original sediment GSD structure of the Worzel D ash layer.

  14. Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu

    Science.gov (United States)

    Lefèvre, Jérôme; Menkes, Christophe; Bani, Philipson; Marchesiello, Patrick; Curci, Gabriele; Grell, Georg A.; Frouin, Robert

    2016-08-01

    The Melanesian Volcanic Arc (MVA) emits about 12 kT d- 1 of sulfur dioxide (SO2) to the atmosphere from continuous passive (non-explosive) volcanic degassing, which contributes 20% of the global SO2 emission from volcanoes. Here we assess, from up-to-date and long-term observations, the SO2 emission of the Ambrym volcano, one of the dominant volcanoes in the MVA, and we investigate its role as sulfate precursor on the regional distribution of aerosols, using both satellite observations and model results at 1° × 1° spatial resolution from WRF-Chem/GOCART. Without considering aerosol forcing on clouds, our model parameterizations for convection, vertical mixing and cloud properties provide a reliable chemical weather representation, making possible a cross-examination of model solution and observations. This preliminary work enables the identification of biases and limitations affecting both the model (missing sources) and satellite sensors and algorithms (for aerosol detection and classification) and leads to the implementation of improved transport and aerosol processes in the modeling system. On the one hand, the model confirms a 50% underestimation of SO2 emissions due to satellite swath sampling of the Ozone Monitoring Instrument (OMI), consistent with field studies. The OMI irregular sampling also produces a level of noise that impairs its monitoring capacity during short-term volcanic events. On the other hand, the model reveals a large sensitivity on aerosol composition and Aerosol Optical Depth (AOD) due to choices of both the source function in WRF-Chem and size parameters for sea-salt in FlexAOD, the post-processor used to compute offline the simulated AOD. We then proceed to diagnosing the role of SO2 volcanic emission in the regional aerosol composition. The model shows that both dynamics and cloud properties associated with the South Pacific Convergence Zone (SPCZ) have a large influence on the oxidation of SO2 and on the transport pathways of

  15. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  16. Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA

    Science.gov (United States)

    Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams

    2005-01-01

    Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...

  17. Petrography, mineral chemistry and geochemistry of post-ophiolitic volcanic rocks in the Ratouk area (south of Gazik, east of Iran

    Directory of Open Access Journals (Sweden)

    Zahra Vahedi Tabas

    2017-11-01

    Full Text Available Introduction Basaltic volcanoes are one of the volcanisms that have occurred in different parts of the world. The study of these lavas is important for petrologists, because they are seen in different tectonic settings and therefore diverse mechanisms affect their formation (Chen et al., 2007. Young volcanic rocks such as Quaternary basalts are one of latest products of magmatism in Iran that are related to deep fractures and active faults in Quaternary (Emami, 2000. The study area is located at 140km east of Birjand at Gazik 1:100000 geological map (Guillou et al., 1981 and have 60̊ 11' to 60̊ 15 '27" eastward longitude and 32̊ 33' 24" to 32̊ 39' 10" northward latitude. On the basis of structural subdivisions of Iran, this area is located in the northern part of the Sistan suture zone (Tirrul et al., 1983. Because of the importance of basaltic rocks in Sistan suture, this research is done with the aim of investigating the petrography and mineralogy of basaltic lavas, the nature of basaltic and intermediate magmatism and finally determination of tectonomagmatic regime. Materials and methods After field studies and sampling, 85 thin sections were prepared and carefully studied. Then ten samples with the lowest alteration were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion at the Acme laboratories, Vancouver, Canada. Electron probe micro analyses of clinopyroxene and olivine were done at the Iranian mineral processing research center (IMPRC by Cameca SX100 machine. X-ray diffraction analysis of minerals was done at the X-ray laboratory of the University of Birjand. Results In 60km south of GaziK at the east of the southern Khorasan province and the northern part of the Sistan suture zone, volcanic rocks with intermediate (Oligomiocene and

  18. Mineral chemistry, thermobarometry and tectonomagmatic setting of Late-Cretaceous volcanic rocks from the Kojid area (south of Lahijan, northern Alborz

    Directory of Open Access Journals (Sweden)

    morteza delavari

    2018-03-01

    Full Text Available The volcanic rocks of Kojid area (south of Lahijan crop out in northern Alborz. They show mainly pillow structure with numerous cross-cutting dykes. Based on lithostratigraphic relationships and interpillow pelagic limestones, the volcanics are Late Cretaceous in age. The volcanics of Kojid area are predominantly basic in composition (olivine basalt and basalt and minor more evolved suites such as trachyandesite and dacite. Olivine phenocrysts display forsterite (Fo content of 63 to 83%. The phenocrystic and interstitial clinopyroxene crystals are augite to diopside in composition, with Na2O, Al2O3 and TiO2 contents of 0.24- 0.68, 2.3-6.53 and 1-5.1 wt.%, respectively. Furthermore, plagioclase is labradorite (An%= 51-68. The results of various geothermobarometric methods of clinopyroxene, plagioclase and olivine indicate good correlation with each other. Different thermometric calculations yielded temperatures in the range of 1100 to 1250 °C which are compatible with temperatures of basic melts. Moreover, clinopyroxene and plagioclase barometry of the phenocrysts (4 to 8 Kb and interstitial phases (

  19. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    Science.gov (United States)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  20. Late Triassic Porphyritic Intrusions And Associated Volcanic Rocks From The Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Implications For Adakitic Magmatism And Porphyry Copper Mineralization

    Science.gov (United States)

    Wang, B.; Zhou, M.; Li, J.; Yan, D.

    2011-12-01

    The Yidun terrane, located on the eastern margin of the Tibetan plateau, has been commonly considered to be a Triassic volcanic arc produced by subduction of the Ganzi-Litang oceanic lithosphere. The Yidun terrane is characterized by numerous arc-affinity granitic intrusions located along a 500-km-long, north-south-trending belt. Among these granitic bodies, several small porphyritic intrusions in the southern segment of the terrane (Shangri-La region) are associated with large porphyry copper deposits. These porphyritc intrusions are composed of diorite and quartz diorite, and spatially associated with andesites and dacites. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The andesites and dacites are intercalated with slates and sandstones and have ages of around 220 Ma. The intrusive and volcanic rocks have SiO2 contents from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from 1.9 to 4.2 wt.%. They show significant negative Nb-Ta anomalies on primitive mantle-normalized spidergrams. They have high La/Yb (13-49) ratios with no prominent Eu anomalies. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). The geochemical features indicate that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and ɛNd (-1.88 to -4.93) values, but can be further divided into two groups: high silica (HSA) and low silica adakitic rocks (LSA). The HSA, representing an early stage of magmatism (230 to 215 Ma), were derived from oceanic slab melts with limited interaction with the overlying mantle wedge. At 215 Ma, more extensive interaction resulted in the formation of LSA. We propose that HSA were produced by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the LSA. Compared with

  1. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet)

    Science.gov (United States)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Waldrip, Ross; Ganerød, Morgan; Li, Xiaochun; Guo, Zhaojie; Kapp, Paul

    2015-03-01

    The Paleogene latitude of the Lhasa terrane (southern Tibet) can constrain the age of the onset of the India-Asia collision. Estimates for this latitude, however, vary from 5°N to 30°N, and thus, here, we reassess the geochronology and paleomagnetism of Paleogene volcanic rocks from the Linzizong Group in the Linzhou basin. The lower and upper parts of the section previously yielded particularly conflicting ages and paleolatitudes. We report consistent 40Ar/39Ar and U-Pb zircon dates of 52 Ma for the upper Linzizong, and 40Ar/39Ar dates ( 51 Ma) from the lower Linzizong are significantly younger than U-Pb zircon dates (64-63 Ma), suggesting that the lower Linzizong was thermally and/or chemically reset. Paleomagnetic results from 24 sites in lower Linzizong confirm a low apparent paleolatitude of 5°N, compared to the upper part ( 20°N) and to underlying Cretaceous strata ( 20°N). Detailed rock magnetic analyses, end-member modeling of magnetic components, and petrography from the lower and upper Linzizong indicate widespread secondary hematite in the lower Linzizong, whereas hematite is rare in upper Linzizong. Volcanic rocks of the lower Linzizong have been hydrothermally chemically remagnetized, whereas the upper Linzizong retains a primary remanence. We suggest that remagnetization was induced by acquisition of chemical and thermoviscous remanent magnetizations such that the shallow inclinations are an artifact of a tilt correction applied to a secondary remanence in lower Linzizong. We estimate that the Paleogene latitude of Lhasa terrane was 20 ± 4°N, consistent with previous results suggesting that India-Asia collision likely took place by 52 Ma at 20°N.

  2. Petrogenesis of Miocene alkaline volcanic suites from western Bohemia. Whole rock geochemistry and Sr-Nd-Pb isotopic signatures.

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Krmíček, Lukáš; Tomek, Č.; Lloyd, F. E.; Ladenberger, A.; Ackerman, Lukáš; Balogh, K.

    2016-01-01

    Roč. 76, č. 1 (2016), s. 77-93 ISSN 0009-2819 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Cenozoic alkaline volcanism * Geochemistry * K-Ar ages * Sr-Nd-Pb isotopes Subject RIV: DD - Geochemistry Impact factor: 1.380, year: 2016

  3. The Ignimbritic tertiary volcanism of the Andes (Peru, Bolivia, Argentina): its characteristics and uraniferous potentiality

    International Nuclear Information System (INIS)

    Leroy, J.L.; George-Aniel, B.

    1988-01-01

    The petrographic and geochemical characteristics of the volcanism and the primary U distribution at the magmatic stage: alkali-rich volcanic rocks (Peru) appear to be fertile source-rocks, whereas sub alkaline and calc-alkaline rocks (Bolivia and Argentina) are less favorable. Uranium can only be leached from the matrix, due to the stability of the accessory minerals during all the following events. The fertility of a volcanic rock is thus directly controlled by the volume proportion of the matrix and the U fractionation between glass and accessory minerals. The preconcentration and concentration stages: the existence of mineralizations in relation with a fertile rock will depend on other events which must occur successively at the same place: the cooling type and rate of the volcanic pile (pre-concentration stage), the intensity and the duration of the hydrothermal circulations, the presence of reducing agents and trapps. (author)

  4. Application of Clinopyroxene Chemistry to Interpret the Physical Conditions of Ascending Magma, a Case Study of Eocene Volcanic Rocks in the Ghohrud Area (North of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari

    2016-07-01

    Full Text Available Introduction Volcanic rocks with a porphyritic texture have experienced two crystallization stages. The first is slow, resulting in phenocrysts, and the second, which took place at, or near the surface, or during intrusion into a cooler body of rock, result in a groundmass of glass, or fine crystals. The pressure and temperature history of a magma during crystallization is recorded in the chemical composition of the phenocrysts during both stages. These phenocrysts provide valuable data about the physicochemical conditions of the parent magma during the process of crystallization. The composition of clinopyroxene (cpx reflects not only the chemical condition and therefore the magmatic series, but also the physical conditions, i.e., temperature and pressure of a magma at the time when clinopyroxene crystallized. The Ghohrud area lies in the middle part of the Urumieh-Dokhtar Magmatic Arc , which is part of a much larger magmatic province extending in a vast region of convergence between Arabia and Eurasia north of the Zagros-Bitlis suture zone (Dilek et al., 2010. In the Ghohrud area, north of Isfahan, exposed Eocene volcanic rocks belong to the first pulse of Cenozoic volcanism of Iran (Sayari, 2015, ranging in composition from andesitic basalt to basalt. The basaltic rocks of the Ghohrud area are composed mainly of plagioclase phenocrysts surrounded by smaller crystals of clinopyroxene in a groundmass of microlites, glass and opaques. In this study, the clinopyroxene and plagioclase of these rocks were analyzed in order to estimate the physicochemical conditions of the parent magmas. Results Clinopyroxene and plagioclase phenocrysts of nineteen samples were analyzed with the electron microprobe. The chemical compositions of the clinopyroxenes were used to estimate both the chemical evolution and temperature and pressure conditions of the magmas during crystallization, using SCG, a specialized software for clinopyroxene thermobarometry (Sayari

  5. Distribution of cesium between colloid-rock phases-establishment of experimental system and investigation of Cs distribution between colloid and rock

    International Nuclear Information System (INIS)

    Nakata, Kotaro

    2006-01-01

    Distribution and re-distribution of cesium between 3-phases (colloid, rock and water) was investigated. Analcite and bentonite colloid ware used as colloid phase and muscovite was used as rock phase. Before investigating the distribution between 3-phases, sorption and desorption behavior of Cs on analcite colloid, bentonite colloid and muscovite was investigated. It was found some fraction of Cs sorbed irreversibly on analcite colloid, while Cs sorbed reversibly on bentonite colloid. The experimental system was established for assessment of the distribution of nuclides between 3-phases by using combination of membrane filter and experimental cell. Since colloid and muscovite were separated by membrane filter, sorption of colloid on muscovite could be prevented and we could obtain distribution of Cs as ion. The distribution of Cs between 3-phases were obtained by this experimental system. Furthermore, re-distribution experiment was also carried out by using this system. After 7 days contact of colloid with Cs, distribution of sorbed Cs on colloid to liquid or muscovite phase was investigated. Comparing sorption and desorption isotherm with the distribution of Cs between 3-phases, it was found that Kd value of colloid (ratio of Cs concentration in liquid phase to amount of sorbed Cs on colloid phase) estimated in 2-phases (water and colloid) is different from that in 3-phases. Furthermore, in the case of analcite colloid, Kd value of colloid obtained in 3-phases distribution experiment was different from that obtained in re-distribution experiment. This is considered because of the irreversibility of Cs sorption on analcite colloid. Thus, it was found distribution of Cs in 3-phases was not predictable from sorption and desorption isotherm or Kd value of 2-phases (water-rock, water-colloid). (author)

  6. Petrology and geochemistry of volcanic rocks of Cheshmeh Khuri and Shekasteh Sabz areas, Khur, northwest of Birjand

    Directory of Open Access Journals (Sweden)

    Maryam Javidi Moghaddam

    2016-09-01

    Full Text Available Khur area is located in east of Iran and northwest of Birjand. The area comprises outcrops of Eocene to Oligocene volcanics with basaltic andesite to rhyolite composition, which were intruded by subvolcanic and intrusive bodies of granodiorite to gabbro. In the present work, petrogenesis of volcanic units in Cheshmeh Khuri and Shekasteh Sabz areas was studied, which are located in Khur area and these volcanics have most widespread in them. Rhyolite, dacite, andesite, trachyandesite and basaltic andesite units in Cheshmeh Khuri and trachyandesite unit in Shekasteh Sabz were identified. The main textures of these units are porphyritic, hialoporphyritic and microlitic and plagioclase, pyroxene, K-feldspar, hornblende, biotite and quartz are the main minerals. Volcanic units of Cheshmeh Khuri have characteristic of high-K Calc-alkaline. Enrichment of LREE relative to HREE and LILE to HFSE are important evidences that magma was formed in a magmatic belt of a subduction zone. Based on the initial 87Sr/86Sr of andesite and dacite, their magma has originated from partial melting of an enriched mantle and contaminated with the crust through its differentiation. Trachyandesites of Shekaste Sabz have characteristic of shoshonitic nature. These units are characterized by high FeOt/FeOt+MgO, K2O/Na2O and Zr>360 ppm, Y>39 ppm, and Ce> 100 ppm. Also, they are enrichment in REE particularly in LREE, depletion of Eu, strong enrichment in HFSE, and depletion in Ba and Sr. Therefore, trachyandesites of Shekaste Sabz belong to post collision volcanics.

  7. Geochemical, petrographic and physical characterizations and associated alterations of the volcanic rocks of the Romanesque San Nicola Church (Ottana, central Sardinia, Italy)

    Science.gov (United States)

    Columbu, Stefano; Palomba, Marcella; Sitzia, Fabio

    2015-04-01

    In this research, the volcanic rocks belonging to the Sardinia Oligo-Miocene volcanic cycle (32 - 11 Ma) and building up the structure of the San Nicola church, one of the most representative churches of the Romanesque architecture, were studied. These stones were widely used in medieval architecture for the excellent workability, but they present some disadvantages, since they are greatly affected by alteration phenomena. The main objectives of this research are i) to focus the mineral, chemical and petrographic compositions of the San Nicola stones, ii) the chemical and physical alteration processes affecting these materials, and iii) to establish the exactly provenance of the volcanic rocks. Furthermore, a comparative study between the rocks from the ancient quarries and those forming the structure of the church was performed. In the ancient quarries, where presumably a more advanced alteration occurs due to the vertical alteration gradient, different facies of the same volcanic lithology, characterized by macroscopical evidences of chemical-physical degradation degree, were sampled. Petrographic, geochemical (both major elements that the traces) and physical-mechanical features of the collected samples were determined to highlight the compositional differences (density, porosity, water-absorption kinetics, mechanical resistance) as a function of the different alteration degree. Moreover, chemical-mineralogical analysis of the sample surfaces from the church, was performed, to highlight possible presence and nature of secondary newly-formed phases (e.g., salt efflorescence). Several methodologies were applied to carry out physical-chemical and petrographic analysis: X-Ray fluorescence (XRF) and Inductively Coupled Mass Spectrometry (ICP-MS), X-Ray Diffractometry (XRD) for chemical and mineral composition; Optical and Scanning Electron Microscopy (SEM) for textures, mineral assemblages and microstructures studies; He-picnometry, water-absorption and mechanical

  8. Rock avalanche occurrence in the San Juan province (Argentina): an analysis of their spatial distribution and main forcing factors

    Science.gov (United States)

    Penna, Ivanna; Tonini, Marj; Vega Orozco, Carmen D.; Longchamp, Céline; Derron, Marc-Henri; Jaboyedoff, Michel

    2013-04-01

    Rock avalanches are frequent phenomena in the Argentinean Andes and a particular high concentration of these events is observed in the Northwest (~25°S) and in the Central Andes from 30°S until the transition with the Patagonian Andes (~38°S). Tectonic deformation and seismicity are generally proposed as main driving factors, with weather and lithologic conditions playing a subordinate role. From 28°S to 33°S, the subhorizontal subduction of the Nazca plate drives higher shortening rates than in the surrounding areas, and an intense seismicity. Main morphotectonic units in this regions are the Cordillera and Precordillera, separated by the Barreal-Calingasta depression. In the southern central part of the flat subduction area (30°30'°-32°30'S), it is observed high valley incision and maximum local relief of 2900 m, while in the Precordillera main fluvial courses developed in the inter-thrust valleys, where local relief is up to 2400 m. In both mountain ranges, we recognized 34 rock avalanches deposits with volumes up to 0.3 km3. There is no apparent lithologic control on detachments, which involved sedimentary, volcanic and granite rocks, even though ~20% of them were favored by layering orientation. However, about 50% of the inventoried rock avalanches with the greatest volumes, developed along tectonic structures or less than 1 km far from them. The main objective of the present study is to explore the spatial distribution of rock avalanche deposits, and compare it with the instrumental seismicity and landscape conditions by means of statistical tools (e.g. exploratory data analyses, Ripley's K-function). Those analyses allow to highlight the spatial correlation between the geological events. Moreover, to visually display the detected cluster spatial patterns we elaborated kernel density maps. Our findings revealed that most of the rock avalanches show a high spatial aggregation mainly between 31°20'S-31°50'S. Main concentration of bedrock landslides

  9. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    Science.gov (United States)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the

  10. Probabilistic-Stochastic Model of Distribution of Physical and Mechanical Properties of Soft Mineral Rocks

    Directory of Open Access Journals (Sweden)

    O.O. Sdvizhkova

    2017-12-01

    Full Text Available The physical and mechanical characteristics of soils and soft rocks obtained as a result of laboratory tests are important initial parameters for assessing the stability of natural and artificial slopes. Such properties of rocks as adhesion and the angle of internal friction are due to the influence of a number of natural and technogenic factors. At the same time, from the set of factors influencing the stability of the slope, the most significant ones are singled out, which to a greater extent determine the properties of the rocks. The more factors are taken into account in the geotechnical model, the more closely the properties of the rocks are studied, which increases the accuracy of the scientific forecast of the landslide danger of the slope. On the other hand, an increase in the number of factors involved in the model complicates it and causes a decrease in the reliability of geotechnical calculations. The aim of the work is to construct a statistical distribution of the studied physical and mechanical properties of soft rocks and to substantiate a probabilistic statistical model. Based on the results of laboratory tests of rocks, the statistical distributions of the quantitative traits studied, the angle of internal friction φ and the cohesion, were constructed. It was established that the statistical distribution of physical mechanical properties of rocks is close to a uniform law.

  11. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Directory of Open Access Journals (Sweden)

    G. Pappalardo

    2013-04-01

    Full Text Available The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET. Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010. All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL. After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May, material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on

  12. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan

    OpenAIRE

    Rezvan Mehvari; Moussa Noghreyan; Mortaza Sharifi; Mohammad Ali Mackizadeh; Seyed Hassan Tabatabaei; Ghodrat Torabi

    2017-01-01

    Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993) and Abbasi (Abbasi, 2012) have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternar...

  13. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  14. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization

    Science.gov (United States)

    Wang, Bai-Qiu; Zhou, Mei-Fu; Li, Jian-Wei; Yan, Dan-Ping

    2011-11-01

    Early Mesozoic porphyritic intrusions in the Shangri-La region, southern Yidun terrane, SW China, are spatially associated with andesites and dacites. These intrusions are composed of diorite and quartz diorite, and are closely related to copper mineralization. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The associated andesites and dacites are interlayered with slates and sandstones and have ages of around 220 Ma. All of the intrusive and extrusive rocks have similar, highly fractionated REE patterns and high La/Yb (13-49) ratios with no prominent Eu anomalies. They display pronounced negative Nb-Ta and Ti anomalies on primitive mantle-normalized spidergrams. Their SiO2 contents range from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from1.9 to 4.2 wt.%. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). These features suggest that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and εNd (- 1.88 to - 4.93) values, but belong to high silica (HSA) and low silica adakitic rocks (LSA). The HSA represent an early stage of magmatism (230 to 215 Ma) and were derived from oceanic slab melts with limited interaction with the overlying mantle wedge during ascent. At 215 Ma, more extensive interaction produced the LSA. We propose that the early adakitic magmas (HSA) formed by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the later adakitic magmas (LSA).

  15. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  16. Variable slab and subarc mantle signatures within dying arc setting-clues from the volcanology and geochemistry of Quaternary volcanic rocks from Armenia.

    Science.gov (United States)

    Savov, I. P.; Luhr, J.; D'Antonio, M.; Connor, C.; Karakhanian, A.; Ghukasyan, Y.; Djrbashian, R.

    2007-05-01

    Armenian volcanoes occur within the active continental collision zone involving the Arabian and Eurasian plates. The volcanism is hosted by a chain of pull-apart basins, cumulatively forming an arc across Armenia and extending into Turkey and Iran. We collected fresh volcanic rocks from >100 volcanoes in proximity to the large calc-alkaline strato-volcano Mt.Ararat (Turkey) and the sub-alkaline shield-volcano Mt.Aragats (Armenia).The samples are trachybasalt-andesites o dacites (Aragats Volcanic Plateau) and trachybasalts to rhyolites (Arteni Volcanic Complex, Gegham Plateau and Lake Sevan regions).The major and trace element systematics of the Armenian volcanics reveal mixed arc-like and OIB-like signatures may accompany the transition from subduction to collision (Miocene-recent). Relative to N-MORB our samples show enrichments of fluid mobile elements,Th,U,LILE and LREE,and depletions of HREE and Hf, Nb, Ta and Zr.The lower 87Sr/86Sr ratios (0.7041 to 0.7051) compared to any known crustal material in the region, the regional mantle 144Nd/143Nd isotope ratios [0.5128-0.5129] and the absence of crustal xenoliths cause us to conclude that crustal assimilation did not play a significant role in the magmagenesis.We will report large mineral chemistry dataset and detailed textural observations revealing no significant mineral zoning.Based on mineral rim and groundmass chemistries and using variety of hygrothermometers, we calculated melt H2O contents ranging from 1.9 to 4.5 wt% and also elevated eruption temperatures [range= 1030- 1060°C].This calculations are in agreement with the generally anhydrous nature of the mineral assemblages [Pl+Opx+Cpx+Ol+TiMt] and with the ionprobe study of volatile contents in olivine hosted melt inclusions [H2O = 0.5-2.8 wt%; CO2 = 10-371 ppm; F= 1865-2905 ppm, S= 225-5122 ppm;Cl= 650-1013 ppm]. Although other mechanisms such as delamination and localized extension related to strike slip faulting might also contribute to magma

  17. New K-Ar ages of volcanic rocks and associated mineralization in Canada Honda district, San Luis, Argentina

    International Nuclear Information System (INIS)

    Urbina, N.E.; Oggier, F.P

    2001-01-01

    New K-Ar ages in the Late Tertiary gold-bearing volcanic belt of the Sierras Pampeanas of San Luis, Argentina are presented. At Canada Honda district, an age of 8.49±0.2 Ma yielded by Cerro del Valle andesite indicates that the dome emplacement postdates the Diente Verde eruptive event. An even younger age of 7.3±0.2 Ma was obtained for illite from hydrothermal alteration at La Reynela mineralization which is hosted by Cerro del Valle andesite (au)

  18. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    Science.gov (United States)

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This geospatial database for a geologic map of the Cascades Range in Washington state is one of a series of maps that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of lithostratigraphic units. Geologic maps of the Eocene to Holocene Cascade Range in California and Oregon complete the series, providing a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanantion. The complete series will be useful for regional studies of volcanic hazards, volcanology, and tectonics.

  19. Distribution of metals between particulate and gaseous forms in a volcanic plume

    Science.gov (United States)

    Hinkley, T.K.

    1991-01-01

    In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.

  20. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)].

    Science.gov (United States)

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Distribution of indoor radon concentrations and uranium-bearing rocks in Texas

    International Nuclear Information System (INIS)

    Hudak, P.F.

    1996-01-01

    The purpose of this study was to compare regional patterns of indoor radon concentration with uranium-bearing rock zones and county populations in Texas. Zones yielding radon concentrations that are relatively high for Texas include shale and sandstone in northwest Texas; red beds in north-central Texas; felsic volcanic rocks in west Texas; and sandstone, limestone, and igneous rocks in central Texas. Located in northwest Tecas, only five of the 202 counties evaluated have mean indoor radon concentrations above 4.0 pCi l -1 . Two of those counties have populations above the state median of 20115. The highest county mean concentration is 8.8 pCi l -1 . Results of the study suggest that (1) regional geology influences indoor radon concentrations in Texas, (2) statewide, the radon concentrations are relatively low, (3) highly populated counties do not coincide with regions of high indoor radon concentration, and (4) regions that may warrant further monitoring include northwest Texas and, to a lesser degree, west and central Texas. (orig.)

  2. Distribution of Areal Strain on Mercury: Insights into the Interaction of Volcanism and Global Contraction

    Science.gov (United States)

    Peterson, G. A.; Johnson, C. L.; Byrne, P. K.; Phillips, R. J.

    2018-05-01

    Wrinkle ridges within volcanic plains on Mercury host just as much shortening strain as lobate scarps and high relief ridges, suggesting that wrinkle ridges have accommodated much more strain from global contraction than previously thought.

  3. Across and along arc geochemical variations in altered volcanic rocks: Evidence from mineral chemistry of Jurassic lavas in northern Chile, and tectonic implications

    Science.gov (United States)

    Rossel, Pablo; Oliveros, Verónica; Ducea, Mihai N.; Hernandez, Laura

    2015-12-01

    Postmagmatic processes mask the original whole-rock chemistry of most Mesozoic igneous rocks from the Andean arc and back-arc units preserved in Chile. Mineral assemblages corresponding to subgreenschist metamorphic facies and/or propylitic hydrothermal alteration are ubiquitous in volcanic and plutonic rocks, suggesting element mobility at macroscopic and microscopic scale. However, fresh primary phenocrysts of clinopyroxene and plagioclase do occur in some of the altered rocks. We use major and trace element chemistry of such mineral phases to infer the geochemical variations of four Jurassic arc and four back-arc units from northern Chile. Clinopyroxene belonging to rocks of the main arc and two units of the bark-arc are augites with low contents of HFSE and REE; they originated from melting of an asthenospheric mantle source. Clinopyroxenes from a third back-arc unit show typical OIB affinities, with high Ti and trace element contents and low Si. Trace elemental variations in clinopyroxenes from these arc and back-arc units suggest that olivine and clinopyroxene were the main fractionating phases during early stages of magma evolution. The last back-arc unit shows a broad spectrum of clinopyroxene compositions that includes depleted arc-like augite, high Al and high Sr-Ca diopside (adakite-like signature). The origin of these lavas is the result of melting of a mixture of depleted mantle plus Sr-rich sediments and subsequent high pressure fractionation of garnet. Thermobarometric calculations suggest that the Jurassic arc and back-arc magmatism had at least one crustal stagnation level where crystallization and fractionation took place, located at ca. ~ 8-15 km. The depth of this stagnation level is consistent with lower-middle crust boundary in extensional settings. Crystallization conditions calculated for high Al diopsides suggest a deeper stagnation level that is not consistent with a thinned back-arc continental crust. Thus minor garnet fractionation

  4. Indication Of Hydrothermal Alteration Activities Based On Petrography Of Volcanic Rocks In Abang Komba Submarine Volcano, East Flores Sea

    OpenAIRE

    Sarmili, Lili; Hutabarat, Johanes

    2014-01-01

    The presence of mineral alteration or secondary processes to rocks on submarine volcano of Abang Komba was caused by an introduction of hydrothermal solutions. Those are indicated by the presence of a resembly of minerals alteration seen in their petrographic analyses. They are characterized by replacement partially surrounding of plagioclase phenocrysts, partially replacing plagioclase by sericite, carbonate and clay minerals. The replacement of pyroxene partly by chlorite, and the presence ...

  5. Attempts of whole-rock K/Ar dating of mesozoic volcanic and hypabissal igneous rocks from the Central Subbetic (Southern Spain: A case of differential Argon loss related to very low-grade metamorphism

    Directory of Open Access Journals (Sweden)

    Sanz de Galdeano, C.

    1988-04-01

    Full Text Available 12 samples of basic intrusives within Triassic rocks «ophites» and 11 samples of volcanic and associated intrusives within Jurassic to Early Cretaceous sequences of the Subbetic Zone were subjected to whole-rock K/Ar dating in combination with chemical/petrological analysis. Satisfactory results were obtained only from a number of samples of volcanic rocks, however, analytical ages commonly agree, within about 10 relative percent, with those deduced from stratigraphic location. «Ophite» samples, on the other hand, may reveal considerably lower analytic ages than the volcanics and show much stronger scattering, even among samples collected within a small area. It is argued that the inferred loss of Ar results from very-low-grade alpine metamorphic alteration, which affected the «ophites» more intensely than the higher volcanic rocks. Other post-emplacement chemical changes, such as the degree of secondary oxidation of Fe, are also distintive among the two groups of samples, and are to some extent consistent with the above view in that the alteration environment of the ophites should have produced conditions for more penetrative fluid-rock interactions and homogeneous recrystallization. Overall, the magmatic activity from which the ophitic rocks originated might have started in the Late Triassic and continued in the Lower Jurassic. 80th, the «ophites» and the volcanics are though to be the result of magmatic events Collowing tensional to transtensive crustal movements affecting the external basins of the Betic Cordilleras Crom Late Triassic to Early Cretaceous times.Doce muestras de cuerpos básicos intrusivos en rocas triásicas («ofitas» y 11 muestras de volcanitas y rocas intrusivas asociadas en secuencias jurásico-cretáceas de la zona Subbética han sido objeto de datación radiométrica K/Ar (roca total en combinación con análisis químico-petrográfico. Las edades analíticas obtenidas son 's

  6. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    Science.gov (United States)

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  7. Experimental and natural constraints on the generation of calc-alkaline volcanic rocks in the Western Aleutian arc

    Science.gov (United States)

    Cottrell, E.; Kelley, K. A.; Grant, E.; Coombs, M. L.; Pistone, M.

    2016-12-01

    A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering

  8. Distribution of biologic, anthropogenic, and volcanic constituents as a proxy for sediment transport in the San Francisco Bay Coastal System

    Science.gov (United States)

    McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.

  9. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya

    Science.gov (United States)

    Jones, D. B.; Harrison, S.; Anderson, K.; Selley, H. L.; Wood, J. L.; Betts, R. A.

    2018-01-01

    In the Nepalese Himalaya, there is little information on the number, spatial distribution and morphometric characteristics of rock glaciers, and this information is required if their hydrological contribution is to be understood. Based on freely available fine spatial resolution satellite data accessible through Google Earth, we produced the first comprehensive Nepalese rock glacier inventory, supported through statistical validation and field survey. The inventory includes the location of over 6000 rock glaciers, with a mean specific density of 3.4%. This corresponds to an areal coverage of 1371 km2. Our approach subsampled approximately 20% of the total identified rock glacier inventory (n = 1137) and digitised their outlines so that quantitative/qualitative landform attributes could be extracted. Intact landforms (containing ice) accounted for 68% of the subsample, and the remaining were classified as relict (not containing ice). The majority (56%) were found to have a northerly aspect (NE, N, and NW), and landforms situated within north- to west-aspects reside at lower elevations than those with south- to- east aspects. In Nepal, we show that rock glaciers are situated between 3225 and 5675 m a.s.l., with the mean minimum elevation at the front estimated to be 4977 ± 280 m a.s.l. for intact landforms and 4541 ± 346 m a.s.l. for relict landforms. The hydrological significance of rock glaciers in Nepal was then established by statistically upscaling the results from the subsample to estimate that these cryospheric reserves store between 16.72 and 25.08 billion m3 of water. This study, for the first time, estimates rock glacier water volume equivalents and evaluates their relative hydrological importance in comparison to ice glaciers. Across the Nepalese Himalaya, rock glacier to ice glacier water volume equivalent is 1:9, and generally increases westwards (e.g., ratio = 1:3, West region). This inventory represents a preliminary step for understanding the

  10. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge

    Science.gov (United States)

    Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.

    2006-01-01

    Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high

  11. Zircon Hf-O isotopic constraints on the origin of Late Mesozoic felsic volcanic rocks from the Great Xing'an Range, NE China

    Science.gov (United States)

    Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong

    2018-05-01

    The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new

  12. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    Science.gov (United States)

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  13. The vertical distribution of volcanic SO2 plumes measured by IASI

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2016-04-01

    Full Text Available Sulfur dioxide (SO2 is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm−1 (the 7.3 and 8.7 µm SO2 bands returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012 has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors with the other measurements. The series of analysed eruptions (2008 to 2012 show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro and of the volcanic explosive index (between 3 and 5.

  14. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  15. Upper Paleozoic mafic and intermediate volcanic rocks of the Mount Pleasant caldera associated with the Sn-W deposit in southwestern New Brunswick (Canada): Petrogenesis and metallogenic implications

    Science.gov (United States)

    Dostal, Jaroslav; Jutras, Pierre

    2016-10-01

    Upper Paleozoic ( 365 Ma) mafic and intermediate volcanic rocks of the Piskahegan Group constitute a subordinate part of the Mount Pleasant caldera, which is associated with a significant polymetallic deposit (tungsten-molybdenum-bismuth zones 33 Mt ore with 0.21% W, 0.1% Mo and 0.08% Bi and tin-indium zones 4.8 Mt with 0.82% Sn and 129 g/t In) in southwestern New Brunswick (Canada). The epicontinental caldera complex formed during the opening of the late Paleozoic Maritimes Basin in the northern Appalachians. The mafic and intermediate rocks make up two compositionally distinct associations. The first association includes evolved rift-related continental tholeiitic basalts, and the second association comprises calc-alkaline andesites, although both associations were emplaced penecontemporaneously. The basalts have low Mg# 0.34-0.40, smooth chondrite-normalized REE patterns with (La/Yb)n 5-6, primitive mantle-normalized trace element patterns without noticeable negative Nb-Ta anomalies, and their ɛNd(T) ranges from + 2.5 to + 2.2. The basalts were generated by partial melting of a transition zone between spinel and garnet mantle peridotite at a depth of 70-90 km. The calc-alkaline andesites of the second association have chondrite-normalized REE patterns that are more fractionated, with (La/Yb)n 7-8.5, but without significant negative Eu anomalies. Compared to the basaltic rocks, they have lower ɛNd(T) values, ranging from + 0.5 to + 1.9, and their mantle-normalized trace element plots show negative Nb-Ta anomalies. The ɛNd(T) values display negative correlations with indicators of crustal contamination, such as Th/La, Th/Nb and SiO2. The andesitic rocks are interpreted to have formed by assimilation-fractional crystallization processes, which resulted in the contamination of a precursor basaltic magma with crustal material. The parent basaltic magma for both suites underwent a different evolution. The tholeiitic basalts experienced shallow-seated fractional

  16. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    Science.gov (United States)

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  17. Contrasted glass-whole rock compositions and phenocryst re-distribution, IPOD Sites 417 and 418

    Science.gov (United States)

    Staudigel, H.; Bryan, W. B.

    1982-01-01

    Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.

  18. Uranium distribution and fixation in main types of climatic and stational pedogenesis on crystalline rocks

    International Nuclear Information System (INIS)

    Gueniot, B.

    1983-11-01

    An experimental and analytical study of uranium behavior in soils and of its distribution was carried out for bioclimatic pedogenesis on crystalline rocks, generally granites. Uranium distribution, and sometimes thorium) is compared to the distribution of tracers of pedogenesis (C, Fe, Al, Si, alkalis, clays). Uranium and thorium behavior is dependent of pedogenesis and can be leached or concentrated. Various fractions of soil alteration complexes and associated uranium can be isolated by chemical and physical fractionation and fixation sites for U are evidenced, efficiency is tested in situ. Adsorption is low onclays, fixation is frequent on oxyhydroxides, organic compounds are active for uranium complexation [fr

  19. Distribution of uranium, thorium and potassium in the alkaline rocks of Pocos de Caldas massif

    International Nuclear Information System (INIS)

    Rocha, E.B.

    1985-01-01

    The Pocos de Caldas massif, with area about 800 Km 2 , represents the greatest complex of alkaline rocks existent in the American continent. Although values of U and Th are well Known in the mineralized areas, few has been registered with respect to the distribution of those elements outside the ore deposits. The rocks of the massif, in general, present high contents of U and Th when confronted with the surrouding country rocks. The distribution of the U and Th appoint a relevant additional data in the discussion on the hypothesis of nepheline syenites bodies formation in Pocos de Caldas by crystal fractionation processes. In this work are provided results of the U, Th and K distribution in the main petrographic facies occurring in the several studies places of the massif, yielded by gamma-ray spectrometric analysis of the samples. Those analysis disclose that khibinites present average values about 38 ppm U and 120 ppm Th; lujavrites, about 14 ppm U and more than 70 ppm Th; U-Th depleted nepheline synites, about 12 ppm U and 38 ppm Th, Th/U ratios are close to 3,0 in the nepheline syenites, about 3,7 in the phonolites, reaching values close to 4,0 in the khibinites. These values are comparable with others Th/U ratios of selected series of alkaline rocks reported in the international literature. Uranium and Th comparative data, attained by delayed neutron counting activation analysis also are given. The results obtained for the fluorimetric analysis show loss of U leaching is greater in the fine-grained rocks (phonolites) than coarse-grained ones (lujavrites, Khibinites). The autoradiographic studies reveal that radioactive elements are found concentrated in mineral phases. A new assessment of the radiogenic heat production it is also available. (Author) [pt

  20. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  1. Statistical behavior and geological significance of the geochemical distribution of trace elements in the Cretaceous volcanics Cordoba and San Luis, Argentina

    International Nuclear Information System (INIS)

    Daziano, C.

    2010-01-01

    Statistical analysis of trace elements in volcanics research s, allowed to distinguish two independent populations with the same geochemical environment. For each component they have variable index of homogeneity resulting in dissimilar average values that reveal geochemical intra telluric phenomena. On the other hand the inhomogeneities observed in these rocks - as reflected in its petrochemical characters - could be exacerbated especially at so remote and dispersed location of their pitches, their relations with the enclosing rocks for the ranges of compositional variation, due differences relative ages

  2. Spatial Distribution of Volcanic Hotspots and Paterae on Io: Implications for Tidal Heating Models and Magmatic Pathways

    Science.gov (United States)

    Hamilton, C. W.; Beggan, C. D.; Lopes, R.; Williams, D. A.; Radenbaugh, J.

    2011-01-01

    Io, the innermost of Jupiter's Galilean satellites, is the most volcanically active body in the Solar. System. Io's global mean heat flow is approximately 2 W/square m, which is approximately 20 times larger than on Earth. High surface temperatures concentrate within "hotspots" and, to date, 172 Ionian hotspots have been identified by spacecraft and Earth-based telescopes. The Laplace resonance between Io, Europa, and Ganymede maintains these satellites in noncircular orbits and causes displacement of their tidal bulges as the overhead position of Jupiter changes for each moon. Gravitational interactions between Jupiter and Io dominate the orbital evolution of the Laplacian system and generate enormous heat within to as tidal energy is dissipated. If this energy were transferred out of Io at the same rate as it is generated, then the associated surface heat flux would be 2.24 +/- 0.45 W/square m. This estimate is in good agreement with observed global heat flow, but to better constrain tidal dissipation mechanisms and infer how thermal energy is transferred to Io's surface, it is critical to closely examine the spatial distribution of volcanic features. End-member tidal dissipation models either consider that heating occurs completely in the mantle, or completely in the asthenosphere. Mixed models typically favor one-third mantle and two-thirds asthenosphere heating. Recent models also consider the effects of mantle-asthenosphere boundary permeability and asthenospheric instabilities. Deep-mantle heating models predict maximum surface heat flux near the poles, whereas asthenosphere heating models predict maxima near the equator-particularly in the Sub-Jovian and Anti-Jovian hemispheres, with smaller maxima occurring at orbit tangent longitudes. Previous studies have examined the global distribution of Ionian hotspots and patera (i.e., irregular or complex craters with scalloped edges that are generally interpreted to be volcanic calderas), but in this study, we

  3. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  4. Re — Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    Science.gov (United States)

    Walker, R. J.; Echeverria, L. M.; Shirey, S. B.; Horan, M. F.

    1991-04-01

    The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (ɛNd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (γOs) ranged from 0 to +22, and model-initial μ values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.

  5. Re - Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    Science.gov (United States)

    Walker, R.J.; Echeverria, L.M.; Shirey, S.B.; Horan, M.F.

    1991-01-01

    The Re - Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155??43 Ma. Subsequent episodes of volcanism produced basalts at 88.1??3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (??Nd+9??1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (??Os) ranged from 0 to +22, and model-initial ?? values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re - Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions. ?? 1991 Springer-Verlag.

  6. Reassessment of petrogenesis of Carboniferous–Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas

    Directory of Open Access Journals (Sweden)

    Linqi Xia

    2012-07-01

    Full Text Available The Carboniferous−Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360–351 Ma of the youngest ophiolite and the peak of subduction metamorphism of high pressure–low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ∼352 Ma and A-type granite with age of ∼358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes, are met for this large igneous province: (1 surface uplift prior to magmatism; (2 being associated with continental rifting and breakup events; (3 chemical characteristics of asthenosphere (or plume derived basalts; (4 close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many “ore-bearing” large igneous provinces, display Sr-Nd isotopic variations between plume and EM1 geochemical signatures. These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan–Tarim (central Asia large igneous province.

  7. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island)

    Digital Repository Service at National Institute of Oceanography (India)

    Pillai, H.U.K.; Jayaraj, K.A.; Rafeeq, M.; Jayalakshmi, K.J.; Revichandran, C.

    predation might happened in the surface. Copepods are important food items for chaetognaths (Liang and Vega-Pérez 1995), and they play an extremely important role in energy transfer to higher trophic levels (Terazaki 1998; Fulmer and Bollens 2005). It has... volcanic signature observed around Barren Island, Andaman Sea, India. Marine Geophysical Researches. doi:10.1007/ s11001–006–9008-z. Liang, T. H., & Vega-Pérez, L. A. (1995). Studies on chaetognaths off Ubatuba region, Brazil. II. Feeding habits...

  8. A rock- and palaeomagnetic study of recent lavas and 1995 volcanic glass on Fogo (Cape Verde Islands)

    DEFF Research Database (Denmark)

    Knudsen, M.F.; Abrahamsen, N.; Riisager, P.

    2005-01-01

    Fogo is the only island in the Cape Verde archipelago with accounts of historical volcanic activity.Here we present palaeomagnetic data from seven geologically recent lava flows on Fogo, including one glassy, volcanic flow from the eruption in 1995. Almost all samples behaved well during alternat......Fogo is the only island in the Cape Verde archipelago with accounts of historical volcanic activity.Here we present palaeomagnetic data from seven geologically recent lava flows on Fogo, including one glassy, volcanic flow from the eruption in 1995. Almost all samples behaved well during...

  9. Distribution of mountain wetlands and their response to Holocene climate change in the Hachimantai Volcanic Groups, northeastern Japan

    Science.gov (United States)

    Sasaki, N.; Sugai, T.

    2017-12-01

    Mountain wetlands, natural peatlands or lakes, with narrow catchment areas need abundant water supply and topography retaining water because of unstable water condition. This study examines wetland distribution with a focus on topography and snow accumulation, and discuss wetland evolution responding to Holocene climate change in the Hachimantai Volcanic Group, northeastern Japan, where the East Asian winter monsoon brings heavier snow and where has many wetlands of varied origin: crater lakes and wetlands in nivation hollows on original volcanic surfaces, and wetlands in depressions formed by landslides. We identified and classified wetlands using aerial photographs and 5-m and 10-m digital elevation models. Wetlands on the original volcanic surfaces tend to be concentrated under the small scarps with much snow or on saddles of the mountain ridge where snowmelt from surrounding slopes maintains a moist environment. More lake type wetlands are formed in the saddle than in the snowdrifts. That may represent that the saddles can correct more recharge water and may be a more suitable topographic condition for wetland formation and endurance. On the contrary, wetlands on landslides lie at the foot of the scarps where spring water can be abundantly supplied, regardless of snow accumulation. We used lithological analysis, 14C dating, tephra age data, and carbon contents of wetland cores to compare the evolution of wetlands, one (the Oyachi wetland) within a huge landslide and three (the Appi Highland wetlands) outside of a landslide area. We suggest that the evolution of the wetland in the landslide is primarily influenced by landslide movements and stream dissection rather than climate change. In the Appi Highland wetlands, peatlands appeared much later and at the almost same time in the Medieval Warm Period. We suggest that the development of mountain wetlands outside of landslide areas is primarily related to climate changes. Responsiveness of mountain wetlands to

  10. Distribution of uranium in the carbonate rock of Um Bogma formation, Southwest, Sinai, Egypt

    International Nuclear Information System (INIS)

    El-AAssy, I.E.; Ahmed, F.Y.; Morsy, A.M.; El-Fawal, F.M.; Mansour, M.Gh.

    1998-01-01

    The lower carboniferous Um bogma Formation is a potential source for Mn, Cu and U. it is mainly composed of dolostone and limestone with few clastic different interbeds of clay stone, siltstone and sandstone. The different diagenetic processes which affected this formation are mainly, compaction, cementation, neomorphism, dissolution, dolomitization, silicification and filling the veins and pores. The distribution of uranium and thorium within the three members and their correlation with the iron oxides and organic matter, were studied. The channel porosity and intercrystalline spaces which resulted from dolomitization acted as pathways for uraniferous solutions in the carbonate rocks. On the other hand, the shales and clay stones underneath the carbonates of Um bogma formation acted as barriers and good depositional environment for the accumulation of uranium on the surfaces of joints and fractures.The accumulated uranium minerals in the carbonate rocks are most likely of the efflorescent deposits

  11. Distribution of siderophile and other trace elements in melt rock at the Chicxulub impact structure

    Science.gov (United States)

    Schuraytz, B. C.; Lindstrom, D. J.; Martinez, R. R.; Sharpton, V. L.; Marin, L. E.

    1994-01-01

    Recent isotopic and mineralogical studies have demonstrated a temporal and chemical link between the Chicxulub multiring impact basin and ejecta at the Cretaceous-Tertiary boundary. A fundamental problem yet to be resolved, however, is identification of the projectile responsible for this cataclysmic event. Drill core samples of impact melt rock from the Chichxulub structure contain Ir and Os abundances and Re-Os isotopic ratios indicating the presence of up to approx. 3 percent meteoritic material. We have used a technique involving microdrilling and high sensitivity instrumental neutron activation analysis (INAA) in conjunction with electron microprobe analysis to characterize further the distribution of siderophile and other trace elements among phases within the C1-N10 melt rock.

  12. Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites

    Science.gov (United States)

    Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.

    2000-01-01

    Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.

  13. AFSC/RACE/FBEP/Ryer: Polychaete worm tubes modify juvenile northern rock sole Lepidopsetta polyxystra depth distribution in Kodiak nurseries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is from a study that evaluates whether inter-annual variability in the depth distribution of juvenile northern rock sole on their nursery grounds around...

  14. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    Science.gov (United States)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  15. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Directory of Open Access Journals (Sweden)

    M. E. Gettings

    2005-01-01

    Full Text Available Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same

  16. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Science.gov (United States)

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  17. What, When, Where, and Why of Secondary Hawaiian Hotspot Volcanism

    Science.gov (United States)

    Garcia, M. O.; Ito, G.; Applegate, B.; Weis, D.; Swinnard, L.; Flinders, A.; Hanano, D.; Nobre-Silva, I.; Bianco, T.; Naumann, T.; Geist, D.; Blay, C.; Sciaroni, L.; Maerschalk, C.; Harpp, K.; Christensen, B.

    2007-12-01

    Secondary hotspot volcanism occurs on most oceanic island groups (Hawaii, Canary, Society) but its origins remain enigmatic. A 28-day marine expedition used multibeam bathymetry and acoustic imagery to map the extent of submarine volcanic fields around the northern Hawaiian Islands (Kauai, Niihau and Kaula), and the JASON2 ROV to sample many volcanoes to characterize the petrology, geochemistry (major and trace elements, and isotopes) and ages of the lavas from these volcanoes. Our integrated geological, geochemical and geophysical study attempts to examine the what (compositions and source), where (distribution and volumes), when (ages), and why (mechanisms) of secondary volcanism on and around the northern Hawaiian Islands. A first-order objective was to establish how the submarine volcanism relates in space, time, volume, and composition to the nearby shield volcanoes and their associated onshore secondary volcanism. Our surveying and sampling revealed major fields of submarine volcanoes extending from the shallow slopes of these islands to more than 100 km offshore. These discoveries dramatically expand the volumetric importance, distribution and geodynamic framework for Hawaiian secondary volcanism. New maps and rock petrology on the samples collected will be used to evaluate currently proposed mechanisms for secondary volcanism and to consider new models such as small-scale mantle convection driven by thermal and melt-induced buoyancy to produce the huge volume of newly discovered lava. Our results seem to indicate substantial revisions are needed to our current perceptions of hotspot dynamics for Hawaii and possibly elsewhere.

  18. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  19. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  20. Soil erosion and effluent particle size distribution under different initial conditions and rock fragment coverage

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. C. P.; Sander, G. C.; Parlange, J.-Y.

    2012-04-01

    It is well known that the presence of rock fragments on the soil surface and the soil's initial characteristics (moisture content, surface roughness, bulk density, etc.) are key factors influencing soil erosion dynamics and sediment delivery. In addition, the interaction of these factors increases the complexity of soil erosion patterns and makes predictions more difficult. The aim of this study was (i) to investigate the effect of soil initial conditions and rock fragment coverage on soil erosion yields and effluent particle size distribution and (ii) to evaluate to what extent the rock fragment coverage controls this relationship. Three laboratory flume experiments with constant precipitation rate of 74 mm/h on a loamy soil parcel with a 2% slope were performed. Experiments with duration of 2 h were conducted using the 6-m × 2-m EPFL erosion flume. During each experiment two conditions were considered, a bare soil and a rock fragment-protected (with 40% coverage) soil. The initial soil surface state was varied between the three experiments, from a freshly re-ploughed and almost dry condition to a compacted soil with a well-developed shield layer and high moisture content. Experiments were designed so that rain splash was the primary driver of soil erosion. Results showed that the amount of eroded mass was highly controlled by the initial soil conditions and whether the steady-state equilibrium was un-, partially- or fully- developed during the previous event. Additionally, results revealed that sediment yields and particle size composition in the initial part of an erosion event are more sensitive to the erosion history than the long-time behaviour. This latter appears to be mainly controlled by rainfall intensity. If steady-state was achieved for a previous event, then the next event consistently produced concentrations for each size class that peaked rapidly, and then declined gradually to steady-state equilibrium. If steady state was not obtained, then

  1. Global Distribution of Active Volcanism on Io as Known at the End of the Galileo Mission

    Science.gov (United States)

    Lopes, Rosaly M. C.; Kamp. Lucas W.; Smythe, W. D.; Radebaugh, J.; Turtle, E.; Perry, J.; Bruno, B.

    2004-01-01

    Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.

  2. Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean-island magmatism

    Science.gov (United States)

    Höhn, Stefan; Koglin, Nikola; Klopf, Lisa; Schüssler, Ulrich; Tragelehn, Harald; Frimmel, Hartwig E.; Zeh, Armin; Brätz, Helene

    2018-01-01

    Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were sampled for geochemical characterisation and U-Pb zircon dating. The oldest rock suite comprises quartz keratophyre, brecciated keratophyre, quartz keratophyre tuff and basalt, formed in Upper Cambrian to Tremadocian time (c. 497-478 Ma). Basaltic volcanism continued until the Silurian. Quartz keratophyre shows post-collisional calc-alkaline signature, the Ordovician-Silurian basalt has alkaline signature typical of continental rift environments. The combined datasets provide evidence of Cambro-Ordovician bimodal volcanism and successive rifting until the Silurian. This evolution very likely resulted from break-up of the northern Gondwana margin, as recorded in many terranes throughout Europe. The position at the northern Gondwana margin is supported by detrital zircon grains in some tuffs, with typical Gondwana-derived age spectra mostly recording ages of 550-750 Ma and minor age populations of 950-1100 and 1700-2700 Ma. The absence of N-MORB basalt in the Frankenwald area points to a retarded break-off of the Saxothuringian terrane along a continental rift system from Uppermost Cambrian to Middle Silurian time. Geochemical data for a second suite of Upper Devonian basalt provide evidence of emplacement in a hot spot-related ocean-island setting south of the Rheic Ocean. Our results also require partial revision of the lithostratigraphy of the Frankenwald area. The basal volcanic unit of the Randschiefer Formation yielded a Tremadocian age and, therefore, should be attributed to the Vogtendorf Formation. Keratophyre of the Vogtendorf Formation, previously assigned to the Tremadoc, is most likely of Upper Devonian age.

  3. Geochronology of the basement rocks, Amazonas Territory, Venezuela and the tectonic evolution of the western Guiana Shield

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, H E; Olszewski, Jr, W J

    1985-01-01

    The Amazonas Territory of Venezuela is a large area of Precambrian basement rocks overlain in some locales by the supracrustal sedimentary and volcanic rocks of the Roraima Formation. The basement rocks are medium to high grade gneisses with both igneous and sedimentary protoliths, plutonic rocks ranging in composition from granite to tonalite, and meta-volcanic rocks. Rb-Sr whole rock, and U-Pb isotopic analyses of zircons indicate a period of medium to high grade metamorphism and intrusion from 1860 to 1760 Ma. Post-tectonic plutonic activity continued to 1550 Ma. The volcanic rocks of the Roraima Formation in Venezuela give an age of 1746 Ma comparable to volcanic rocks of the Roraima Formation in other parts of the Guiana Shield. The ages and distribution of the basement rocks suggest the presence of a tectonic zone, approximately coincident with the Venezuelan-Colombian border, representing an active orogenic boundary between distinct tectonic provinces. The rocks to the northeast of this zone are part of the Trans-Amazonian of the Guiana Shield, while to the southwest and in adjacent Brazil and Colombia, new younger continental crust has been developed and cratonized. We suggest a model of collision and subduction followed by a chan0140n tectonic style to extensional-vertical to produce the basement rocks of the western Guiana Shield in the Amazonas Territory. (Auth.). 20 refs.; 13 figs.; 2 tabs.

  4. Lithium, boron and chloride in volcanics and greywackes in Northland, Auckland and the Taupo Volcanic Zone

    International Nuclear Information System (INIS)

    Reyes, A.G.; Trompetter, W.J.

    1998-01-01

    During magmatic differentiation processes B preferentially partitions into the glassy mesostasis of rhyolite and andesite. The behaviour of Li, on the other hand, varies with the silica content of the rock. Lithium, B, Cl and water contents increase proportionally with the silica concentration of the volcanic rocks. Their relative proportions in andesites of the Taupo Volcanic Zone (TVZ) appear to reflect the nature of the underlying crust, the dip of the subducting slab and hence the depth and temperature of magma generation. The B/Li ratios of rhyolites associated with the northern Rotorua and Okataina eruptive centres yield lower B/Li ratios than those from Maroa and Taupo centres in the south, where the slab subducts at a shallower angle. Apparently, volcanics associated with a younger subduction event as in the TVZ, contain and retain more Cl, yielding lower Li/Cl ratios for the TVZ than Northland-Auckland basalts. The B/Li ratio of greywackes from the Torlesse terrane ( 1.4). In geothermal wells in Ngawha, hydrothermal alteration yields higher B/Li ratios of >2.8 for Waipapa terrane sedimentary rocks. The Li/Cl ratios for average South and North Island greywackes are similar and may reflect similar degrees of metamorphism. In general, the relative Li, B and Cl contents in greywackes are dictated by the composition of the detrital fragments, the clay fraction, the type of clays and the metamorphic grade. During hydrothermal alteration of rhyolite in the TVZ, Cl always partitions into solution while Li and B have an affinity for the rock. However, more Li remains in the rock than B at any given temperature. The distribution coefficients of Li and B between water and rock increase with increasing temperature. The partitioning of Li between rock and solution in TVZ hydrothermal systems is mainly dictated by temperature, whereas the mass distribution coefficient for B is related to the tectonic setting. An increase in relative Li of the rock is associated with the

  5. Size-Frequency Distributions of Rocks on Mars and Earth Analog Sites: Implications for Future Landed Missions

    Science.gov (United States)

    Golombeck, M.; Rapp, D.

    1996-01-01

    The size-frequency distribution of rocks and the Vicking landing sites and a variety of rocky locations on the Earth that formed from a number of geologic processes all have the general shape of simple exponential curves, which have been combined with remote sensing data and models on rock abundance to predict the frequency of boulders potentially hazardous to future Mars landers and rovers.

  6. Spatial distribution of radionuclides in Lake Michigan biota near the Big Rock Point Nuclear Plant

    International Nuclear Information System (INIS)

    Wahlgren, M.A.; Yaguchi, E.M.; Nelson, D.M.; Marshall, J.S.

    1974-01-01

    A survey was made of four groups of biota in the vicinity of the Big Rock Point Nuclear Plant near Charlevoix, Michigan, to determine their usefulness in locating possible sources of plutonium and other radionuclides to Lake Michigan. This 70 MW boiling-water reactor, located on the Lake Michigan shoreline, was chosen because its fuel contains recycled plutonium, and because it routinely discharges very low-level radioactive wastes into the lake. Samples of crayfish (Orconectes sp.), green algae (Chara sp. and Cladophora sp.), and an aquatic macrophyte (Potamogeton sp.) were collected in August 1973, at varying distances from the discharge and analyzed for 239 240 Pu, 90 Sr, and five gamma-emitting radionuclides. Comparison samples of reactor waste solution have also been analyzed for these radionuclides. Comparisons of the spatial distributions of the extremely low radionuclide concentrations in biota clearly indicated that 137 Cs, 134 Cs, 65 Zn, and 60 Co were released from the reactor; their concentrations decreased exponentially with increasing distance from the discharge. Conversely, concentrations of 239 240 Pu, 95 Zr, and 90 Sr showed no correlation with distance, suggesting any input from Big Rock was insignificant with respect to the atmospheric origin of these isotopes. The significance of these results is discussed, particularly with respect to current public debate over the possibility of local environmental hazards associated with the use of plutonium as a nuclear fuel. (U.S.)

  7. Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud

    Directory of Open Access Journals (Sweden)

    H. F. Dacre

    2013-02-01

    Full Text Available The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter. NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

  8. Division of volcanic activity cycles in the late mesozoic in South Jiangxi and North Guangdong

    International Nuclear Information System (INIS)

    Li Qinglong; Wu Jianhua

    1999-01-01

    Based on stratigraphical unconformity, rock association, fossil assemblage, isotope age and tectonic features, the volcanic activity in late Mesozoic in south Jiangxi and north Guandong can be divided into four cycles: Yutian volcanic activity cycle, Lianhuazhai volcanic activity cycle. Banshi volcanic activity cycle and Nanxiong volcanic activity cycle. Yutian volcanic cycle which occurs in middle Jurassic epoch is the bimodal rock association composed of rhyolite and basalt. Lianhuazhai volcanic cycle which occurs in late Jurassic epoch is unimodal rock association composed of rhyolite. Banshi volcanic cycle occurs from the late stage of early Cretaceous to the early stage of late Cretaceous epoch. There are two types of rock associations related to this cycle: unimodal rock association composed of rhyolite or basalt and bimodal rock association composed of rhyolite and basalt. Nanxiong volcanic activity cycle which occurred in late stage of late Cretaceous epoch is the unimodal rock association composed of basalt which is the interlayer of the red sedimentary series

  9. Effects of statistical distribution of joint trace length on the stability of tunnel excavated in jointed rock mass

    Directory of Open Access Journals (Sweden)

    Kayvan Ghorbani

    2015-12-01

    Full Text Available The rock masses in a construction site of underground cavern are generally not continuous, due to the presence of discontinuities, such as bedding, joints, faults, and fractures. The performance of an underground cavern is principally ruled by the mechanical behaviors of the discontinuities in the vicinity of the cavern. During underground excavation, many surrounding rock failures have close relationship with joints. The stability study on tunnel in jointed rock mass is of importance to rock engineering, especially tunneling and underground space development. In this study, using the probability density distribution functions of negative exponential, log-normal and normal, we investigated the effect of joint trace length on the stability parameters such as stress and displacement of tunnel constructed in rock mass using UDEC (Universal Distinct Element Code. It was obtained that normal distribution function of joint trace length is more critical on the stability of tunnel, and exponential distribution function has less effect on the tunnel stability compared to the two other distribution functions.

  10. Spatial distribution of volcanic ash deposits of 2011 Puyehue-Cordón Caulle eruption in Patagonia as measured by a perturbation in NDVI temporal dynamics

    Science.gov (United States)

    Easdale, M. H.; Bruzzone, O.

    2018-03-01

    Volcanic ash fallout is a recurrent environmental disturbance in forests, arid and semi-arid rangelands of Patagonia, South America. The ash deposits over large areas are responsible for several impacts on ecological processes, agricultural production and health of local communities. Public policy decision making needs monitoring information of the affected areas by ash fallout, in order to better orient social, economic and productive aids. The aim of this study was to analyze the spatial distribution of volcanic ash deposits from the eruption of Puyehue-Cordón Caulle in 2011, by identifying a sudden change in the Normalized Difference Vegetation Index (NDVI) temporal dynamics, defined as a perturbation located in the time series. We applied a sparse-wavelet transform using the Basis Pursuit algorithm to NDVI time series obtained from the Moderate Resolution Image Spectroradiometer (MODIS) sensor, to identify perturbations at a pixel level. The spatial distribution of the perturbation promoted by ash deposits in Patagonia was successfully identified and characterized by means of a perturbation in NDVI temporal dynamics. Results are encouraging for the future development of a new platform, in combination with data from forecasting models and tracking of ash cloud trajectories and dispersion, to inform stakeholders to mitigate impact of volcanic ash on agricultural production and to orient public intervention strategies after a volcanic eruption followed by ash fallout over a wide region.

  11. Constraints of texture and composition of clinopyroxene phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath Tengchong, SW China

    Science.gov (United States)

    Hu, Jun-Hao; Song, Xie-Yan; He, Hai-Long; Zheng, Wen-Qin; Yu, Song-Yue; Chen, Lie-Meng; Lai, Chun-Kit

    2018-04-01

    Understanding processes of magma replenishment in a magma plumbing system is essential to predict eruption potential of a dormant volcano. In this study, we present new petrologic and thermobarometric data for youngest lava flows from the Holocene Heikongshan volcano in the Tengchong area, SW China. Clinopyroxene phenocrysts from the trachytic lava flows display various textural/compositional zoning styles (i.e., normal, reverse and oscillatory). Such zoning patterns are indicative of an open magmatic plumbing system with multiphase magma replenishment and mixing, which were likely a key drive of the volcanic eruptions. Thermobarometric calculations of these zoned clinopyroxene phenocrysts yield crystallization pressures of 3.8-7.1 kbar (peak at 4.5-7.0 kbar), corresponding to a magma chamber at depths of 14-21 km. The calculated depths are consistent with the large low-resistivity body at 12-30 km beneath the Heikongshan volcano, implying that the magmatic plumbing system may still be active. Recent earthquakes in the Tengchong area suggest that the regional strike-slip faulting are still active, and may trigger future volcanic eruptions if the magma chamber(s) beneath the Tengchong volcanic field is disturbed, in spite of the volcanic quiescence since 1609 CE.

  12. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco)

    Science.gov (United States)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.

    2001-05-01

    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  13. CT Identification and Fractal Characterization of 3-D Propagation and Distribution of Hydrofracturing Cracks in Low-Permeability Heterogeneous Rocks

    Science.gov (United States)

    Liu, Peng; Ju, Yang; Gao, Feng; Ranjith, Pathegama G.; Zhang, Qianbing

    2018-03-01

    Understanding and characterization of the three-dimensional (3-D) propagation and distribution of hydrofracturing cracks in heterogeneous rock are key for enhancing the stimulation of low-permeability petroleum reservoirs. In this study, we investigated the propagation and distribution characteristics of hydrofracturing cracks, by conducting true triaxial hydrofracturing tests and computed tomography on artificial heterogeneous rock specimens. Silica sand, Portland cement, and aedelforsite were mixed to create artificial heterogeneous rock specimens using the data of mineral compositions, coarse gravel distribution, and mechanical properties that were measured from the natural heterogeneous glutenite cores. To probe the effects of material heterogeneity on hydrofracturing cracks, the artificial homogenous specimens were created using the identical matrix compositions of the heterogeneous rock specimens and then fractured for comparison. The effects of horizontal geostress ratio on the 3-D growth and distribution of cracks during hydrofracturing were examined. A fractal-based method was proposed to characterize the complexity of fractures and the efficiency of hydrofracturing stimulation of heterogeneous media. The material heterogeneity and horizontal geostress ratio were found to significantly influence the 3-D morphology, growth, and distribution of hydrofracturing cracks. A horizontal geostress ratio of 1.7 appears to be the upper limit for the occurrence of multiple cracks, and higher ratios cause a single crack perpendicular to the minimum horizontal geostress component. The fracturing efficiency is associated with not only the fractured volume but also the complexity of the crack network.

  14. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    Science.gov (United States)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or

  15. Heterogeneous hydrogen distribution in orthopyroxene from veined mantle peridotite (San Carlos, Arizona): Impact of melt-rock interactions

    Science.gov (United States)

    Denis, Carole M. M.; Demouchy, Sylvie; Alard, Olivier

    2018-03-01

    Experimental studies have shown that hydrogen embedded as a trace element in mantle mineral structures affects the physical properties of mantle minerals and rocks. Nevertheless, hydrogen concentrations in mantle minerals are much lower than predicted by hydrogen solubilities obtained experimentally at high pressure and temperature. Here, we report textural analyses and major and trace element concentrations (including hydrogen) in upper mantle minerals from a spinel-bearing composite xenolith (dunite and pyroxenite) transported by silica-undersaturated mafic alkaline lavas from the San Carlos volcanic field (Arizona, USA). Our results suggest that the composite xenolith results from the percolation-reaction of a basaltic liquid within dunite channels, and is equilibrated with respect to trace elements. Equilibrium temperatures range between 1011 and 1023 °C. Hydrogen concentrations (expressed in ppm H2O by weight) obtained from unpolarized and polarized Fourier transform infrared spectroscopy are low, with average values water stored in the Earth's upper mantle.

  16. Map showing the distribution and characteristics of plutonic rocks in the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    John, D.A.

    1987-01-01

    Plutonic rocks, mostly granite and granodiorite, are widely distributed in the west two-thirds of the Tonopah 1 degree by 2 degree quadrangle, Nevada. These rocks were systematically studied as part of the Tonopah CUSMAP project. Studies included field mapping, petrographic and modal analyses, geochemical studies of both fresh and altered plutonic rocks and altered wallrocks, and K-Ar and Rb-Sr radiometric dating. Data collected during this study were combined with previously published data to produce a 1:250,000-scale map of the Tonopah quadrangle showing the distribution of individual plutons and an accompanying table summarizing composition, texture, age, and any noted hydrothermal alteration and mineralization effects for each pluton.

  17. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials

    Science.gov (United States)

    Guo, Kun; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Zhang, Xia; Wang, Xiaoyuan

    2018-04-01

    The Okinawa Trough is an infant back-arc basin developed along the Ryukyu arc. This paper provides new major and trace element and Sr-Nd-Pb-Li isotope data of volcanic rocks in the Okinawa Trough and combines the published geochemical data to discuss the composition of magma source, the influence of subduction component, and the contamination of crustal materials, and calculate the contribution between subduction sediment and altered oceanic crust in the subduction component. The results showed that there are 97% DM and 3% EMI component in the mantle source in middle trough (MS), which have been influenced by subduction sediment. The Li-Nd isotopes indicate that the contribution of subduction sediment and altered oceanic crust in subduction component are 4 and 96%, respectively. The intermediate-acidic rocks suffer from contamination of continental crust material in shallow magma chamber during fractional crystallization. The acidic rocks in south trough have experienced more contamination of crustal material than those from the middle and north trough segments.

  18. U-Th-Pb zircon geochronology on igneous rocks in the Toija and Salittu Formations, Orijärvi area, southwestern Finland: constraints on the age of volcanism and metamorphism

    Directory of Open Access Journals (Sweden)

    Christopher L. Kirkland

    2008-01-01

    Full Text Available Zircons from a felsic volcanic rock in the Toija Formation and a synvolcanic gabbro intrusion in the Salittu Formation within the Orijärvi area were dated by U-Th-Pb SIMS in order to provide depositional constraints on these formations. Zircon crystals from the felsic rock preserve a two-stage crystallisation history with zoned core domains and homogeneous rim domains. Inner domains yield a 1878±4 Ma concordia age, interpreted to determine the crystallisation of this rock. Rims yield a 1815±3 Ma concordia age interpretedto determine the regional metamorphism. Small rounded zircon grains from the Salittu gabbro, located within the Jyly shear zone, yield a concordia age of 1792±5 Ma. We interpret the grain textures to suggest that they recrystallised from inherited zircon seeds during the heat and fluid flow into the shear zone. Although no direct ages for the Salittu Formation have been recovered, field relationships imply that it was deposited between 1878−1875 Ma.

  19. Distribution of lithium, boron and chloride between fresh and altered rocks in the Kawerau geothermal system, New Zealand

    International Nuclear Information System (INIS)

    Reyes, A.G.; Vickridge, I.C.

    1996-01-01

    The partitioning of Li, B and Cl between altered rock and thermal waters in Kawerau is dependent primarily on their ability to be incorporated into the structure of secondary minerals. Chloride rarely finds a niche in alteration minerals below 320 degrees C and is thus highly depleted in altered rock but enriched in the waters. Boron and Li participate in hydrothermal mineral formation. At elevated temperatures the mass distribution coefficient (K/sub W-R/) between water and rock of B is 0.2 and that of Li is <0.06, showing that B has a high tendency to be leached, while Li stays in the rock. However at temperatures < 100 degrees C, the K/sub W-R/ of B and Li is the same at 0.1, indicating that both have a similar tendency to partition into rock at low temperatures. The redistribution of other elements during alteration is affected by the chemical composition of the altering fluids and the original rock and by permeability and temperature. (author.)18 refs., 4 figs., 5 tabs

  20. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    Science.gov (United States)

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular

  1. The distribution of E-centres concentration in the minerals of the wall-rocks of uranium deposit

    International Nuclear Information System (INIS)

    Kislyakov, Ya.M.; Moiseev, B.M.; Rakov, L.T.; Kulagin, Eh.G.

    1975-01-01

    Electron paramagnetic resonance was used to investigate the distribution of electron-hole centres caused by natural radioactive irradiation in terrigenous arcosic rocks and their principal mineral components (quartz-feldspar concretions, white and smoky quartz, feldspars). The relationship between concentrations of E-centres and the uranium content of the rocks reflects the genetic features of the uranium mineralization. Taking one specific deposit as an example, the author shows the proportional dependence between uranium content and E-centre concentration. The dependence reflects the practically simultraneous formation of the main mass of epigenetic mineralization. The hypothesis that older (syngenetic) ore deposits may have existed was not confirmed. Despite the long interval between sedimentary accumulation end epigenesis, no significant surplus concentrations of E-centres were found in epigenetic-metamorphic rocks. Anomalous concentrations of uranium and E-centres are caused by uranium migration during later epigenetic processes superimposed on the mesozoic ore-controlling zonality. One result of this migration is the formation in limonitized rocks of ''augen'' ores for which low concentrations of paramagnetic centres are typical. For the study of the distribution of E-centres in rocks from uranium deposits, it is possible to use polymineral mixtures. For the proper interpratation of the data obtained, however, account must be taken of the sensitivity to irradiation of the various mineral components, particularly the various forms of quartz, which is the principal natural dosimeter. (E.G.)

  2. Rb-Sr and Ar-Ar systematics of Malani volcanic rocks of southwest Rajasthan: evidence for a younger post-crystallization thermal event

    International Nuclear Information System (INIS)

    Rathore, S.S.; Srivastava, R.K.

    1996-01-01

    A new Rb-Sr age of 779 ± 10 Ma has been obtained for a suite of andesite-dacite-rhyolite from the Malani igneous province of southwestern Rajasthan, dated earlier at 745 ± 10 Ma by Crawford and Compston (1970). The associated basalts may be slightly younger than the felsic volcanics and have a mantle source. The felsic volcanics on the other hand were most probably derived by fractional crystallization of a crustal magma. 40 Ar- 39 Ar systematics of three samples viz., a basalt, a dacite and a rhyolite show disturbed age spectra indicating a thermal event around 500-550 Ma ago. This secondary thermal event is quite wide-spread and possibly related to the Pan-African thermo-tectonic episode observed in the Himalayas and south India. (author). 38 refs., 5 figs., 2 tabs

  3. Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices

    Science.gov (United States)

    Yingst, R. A.; Biederman, K. L.; Monhead, A. M.; Haldemann, A. F. C.; Kowalczyk, M. R.

    2004-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder visible/near-infrared spectra, it has not been fully determined which of these stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique mineralogy's difficult. Efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, and the current understanding is such that many factors influencing spectral signatures cannot be quantified to a sufficient level so they may be removed. The result is that fundamental questions regarding information needed to reveal the present and past interactions between the rocks and rock surfaces and the Martian environment remain unanswered. But it is possible to approach the issue of identifying distinct rock and rock surface types from a different angle.

  4. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang

    2010-01-01

    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  5. Rock- and Paleomagnetic Properties and Modeling of a Deep Crustal Volcanic System, the Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    Science.gov (United States)

    ter Maat, G. W.; Pastore, Z.; Michels, A.; Church, N. S.; McEnroe, S. A.; Larsen, R. B.

    2017-12-01

    The Reinfjord Ultramafic Complex is part of the 5000 km2 Seiland Igneous Province (SIP) in Northern Norway. The SIP is argued to be the deep-seated conduit system of a Large Igneous Province and was emplaced at 25-35 km depth in less than 10 Ma (570-560 Ma). The Reinfjord Ultramafic Complex was emplaced during three major successive events at 22-28km depth at pressures of 6-8kb, with associated temperatures 1450-1500°C (Roberts, 2006). The rocks are divided into three formations: the central series (CS) consisting of mainly dunites, upper layered series (ULS) consisting of dunites and wehrlites, a lower layered series (LLS) containing most pyroxene-rich rocks and a marginal zone (MZ) which formed where the ultramafic melts intruded the gabbro-norite and metasedimentary gneisses. Deep exposures such as the Reinfjord Ultramafic Complex are rare, therefore this study gives a unique insight in the rock magnetic properties of a deep ultramafic system. Localised serpentinised zones provide an opportunity to observe the effect of this alteration process on the magnetic properties of deep-seated rocks. Here, we present the results from the rock magnetic properties, a paleomagnetic study and combined potential-fields modeling. The study of the rock magnetic properties provides insight in primary processes associated with the intrusion, and later serpentinization. The paleomagnetic data yields two distinct directions. One direction corresponds to a Laurentia pole at ≈ 532 Ma while the other, though younger, is not yet fully understood. Rock magnetic properties were measured on > 700 specimens and used to constrain the modelling of gravity, high-resolution helicopter, and ground magnetic data. The intrusion is modelled as a cylindrically shaped complex with a dunite core surrounded by wehrlite and gabbro. The ultramafic part of the complex dips to the NE and its maximum vertical extent is modelled to 1400m. Furthermore, modelling allows estimation of relative volumes of

  6. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    Science.gov (United States)

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  7. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  8. Stratigraphy, sedimentology and petrology of neogene rocks in the Deschutes Basin, Central Oregon: a record of continental-margin volcanism and its influence on fluvial sedimentation in an arc-adjacent basin

    International Nuclear Information System (INIS)

    Smith, G.A.

    1986-07-01

    Neogene rocks of the Deschutes basin include the middle Miocene Columbia River Basalt Group and Simtustus Formation, and late Miocene to early Pliocene Deschutes Formation. Assignment of Prineville chemical-type flows to the Grande Ronde Basalt of the Columbia River Basalt Group is based on correlation of these lavas from their type area through the Deschutes basin and onto the Columbia Plateau, where they have been previously mapped as Grande Ronde Basalt. Simtustus Formation is a newly defined unit intercalated with and conformable upon these basalts, and is unconformably overlain by Deschutes Formation. Burial of mature topography by middle Miocene basalts raised local base levels and initiated aggradation by low-gradient streams within the basin represented by the tuffaceous sandstones and mudstones of the Simtustus Formation. These sediments are enriched in pyroclastic constituents relative to contemporaneous Western Cascades volcanics, reflecting preferential incorporation of easily eroded and more widespread pyroclastic debris in distal sedimentary sequences compared to epiclastic contributions from lavas. The abundance of basalts, combined with the paucity of hydrous minerals and FeO and TiO 2 enrichment in intermediate lavas, characterizes early High Cascade volcanics as atypical for convergent-margin arcs. These petrologic characteristics are consistent with high-level fractionation in an extensional regime. Extension culminated in the development of an intra-arc graben, which ended Deschutes Formation deposition by structurally isolating the basin from the High Cascade source area

  9. Golovkinskii law for prediction of distribution of rock lithotypes of Permian deposits (east part of Russian plate)

    Science.gov (United States)

    Sitdikova, Lyalya; Izotov, Victor; Berthault, Gi; Lalomov, Alexander

    2010-05-01

    Zone of development of upper-permian-kazanian deposits in Volga-Kama petroleum province is the region of facies interrelations law identification. This law is known as the rule of Golovkinskii-Valter. Many details of geological formations relationship in change zones are still discussed. Efforts of analytic expression of Golovkinskii rule for specific regions of its development are very important. We analyzed width of horizons of the Kazanian Stage. They are in zone of facies change of marine gray and red formations of the east part of Russian plate. Results of this analysis were principle for analytic expression of Golovkinskii rule. Percent proportion of main lithological types of these rock formations was also used. We used profile which was based on data from 75 wells. This profile crosses region of development of kazanian deposits from the river Volga to Urals territory. It overpasses main structural and tectonic units of the region: Kazan-Kirov downfold, system of lifted blocks of Tatar Arch and Upper-Kama depression. Kazanian deposits of Kazan-Kirov downfold are represented by typical marine gray carbonate-terrigenous formation. Red formation is deposed within Upper-Kama depression. Zone of these formations relationship is limited to central parts of Tatar Arch. Abrupt fluctuations of content of one rock type in insignificant distance are common. Every rock type has unique features in its distribution on profile. That's why it is possible to study function of dependence of certain rock type content from distance as a sum of regular and chance components. Intensively rising change of proportions of different rock types is presented in the zone of transition from typical marine deposits to red deposits. So trends of variation of percent content (y) of main rock lithotypes depending on distance (x) can be described by simple difference equations: dy = -kdx, for rocks of marine gray formation. dy = k(M-y)dx, for rocks of red formation. M - mathematical

  10. Paraná flood basalt volcanism primarily limited to 1 Myr beginning at 135 Ma: New 40Ar/39Ar ages for rocks from Rio Grande do Sul, and critical evaluation of published radiometric data

    Science.gov (United States)

    Baksi, Ajoy K.

    2018-04-01

    40Ar/39Ar step heating analyses were carried out on seven rocks (five basalts, an andesite and a rhyolite) from the southern Paraná Province ( 28°S-30°S); they yield plateau/isochron ages of 135-134 Ma, in good agreement with published step heating data on rocks from the same area. Critical review of laser spot isochron ages for rocks from the Province, ranging from 140 to 130 Ma, are shown to be unreliable estimates of crystallization ages, as the rocks were substantially altered; step heating results on three of these rocks thought to yield good plateau ages, are shown to be incorrect, as a result of a technicality in dating procedures followed. U-Pb ages on zircon and baddeleyite separated from a variety of rock types ( 30°S-23°S) fall in the range 135 to 134 Ma. All reliable 40Ar/39Ar and U-Pb ages indicate volcanism was sharply focused, initiated at 135 Ma, and 1 Myr in duration; no variation of age with either latitude or longitude is noted, Scrutiny of published 40Ar/39Ar ages on the Florianopolis dykes shows they cannot be used as reliable crystallization ages. U-Pb work shows that this dyke swarm was formed coevally with the main part of the Parana province. Most of the published 40Ar/39Ar ages on the Ponta Grossa dyke swarm are unreliable; a few ages appear reliable and suggest the magmatic event in this area, may have postdated the main Paraná pulse by 1-2 Myr. A single 40Ar/39Ar age from a high-Nb basalt in the southernmost part ( 34°S) of the Paraná at 135 Ma, highlights the need for further radiometric work on other areas of this flood basalt province. The Paraná Province postdates the time of the Jurassic-Cretaceous bound­ary by 10 Myr.

  11. Geochemistry of Volcanic Rocks from International Ocean Discovery Program (IODP) Site 1438, Amami Sankaku Basin: Implications for Izu-Bonin-Mariana (IBM) Arc Initiation

    Science.gov (United States)

    Hickey-Vargas, R.; Ishizuka, O.; Yogodzinski, G. M.; Bizimis, M.; Savov, I. P.; McCarthy, A. J.; Arculus, R. J.; Bogus, K.

    2015-12-01

    IODP Expedition 351 drilled 150 m of volcanic basement overlain by 1461 m of sedimentary material at Site 1438 in the Amami Sankaku basin, just west of the Kyushu Palau Ridge, the locus of IBM arc initiation. Age interpretations based on biostratigraphy (Arculus et al., Nat. Geosci., in-press) determined that the age of the basement section is between 64 and 51 Ma, encompassing the age of the earliest volcanic products of the IBM arc. The Site 1438 volcanic basement consists of multiple flows of aphyric microcrystalline to finely crystalline basalts containing plagioclase and clinopyroxene with rare olivine pseudomorphs. New XRF major and ICPMS trace element data confirm findings of shipboard analysis that the basalts are moderately differentiated (6-14 % MgO; Mg# = 51-83; 73-490 ppm Cr and 58-350 ppm Ni) with downcore variations related to flow units. Ti/V and Ti/Sc ratios are 16-27 and 75-152, respectively, with lowest values at the base of the core. One prominent characteristic of the basalts is their depletion of immobile highly incompatible elements compared with MORB. Basalts have MORB-normalized La/Nd of 0.5 to 0.9, and most have Th/La 3 and primitive mantle normalized La/Yb > 1. Our results suggest that mantle melting at the onset of subduction involved exceptionally depleted sources. Enrichment over time may be related to increasing subduction inputs and/or other processes, such as entrainment of fertile asthenosphere during extension of the overriding plate.

  12. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2011-07-01

    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  13. Isotopic clues to magmatic source regions for neogene Andean volcanic rocks in the El Teniente area near 38oS latitude

    International Nuclear Information System (INIS)

    Kay, Suzanne Mahlburg; Kurtz, A.C

    2001-01-01

    The origin of isotopic variations in Central Andean arc lavas is a long-standing problem that involves identifying mantle and crustal source regions. Advances have come from analyzing temporal and spatial variations in constrained tectonic settings. The purpose here is to highlight the similarities of temporal variations in an east-west transect of Neogene magmatic units near 34 O S latitude with those from a south-north transect along the modern Southern Volcanic Zone (SVZ, e.g. Hildreth and Moorbath 1988, Tormey et al. 1991). The comparison shows the importance of crustal thickening processes associated with compressional shortening and of lithospheric scale adjustments associated with eastward migration of the arc front on magma sources. Sr, Nd and Pb isotopic analyses of 27 Neogene volcanic and plutonic samples from the El Teniente area are presented in Table 1 and plotted along with some analyses from Skewes and Stern (1994) and Stern and Skewes (1995) in Figure 2. The data show a clear progression from older samples with more 'depleted' isotopic signatures (lower 87 Sr/ 86 Sr and Pb isotopic ratios, higher εNd) to younger samples with more 'enriched' signatures (higher 87 Sr/ 86 Sr and Pb isotopic ratios, lower εNd). In detail, four temporal and spatial groups marked by discontinuities in isotopic trends can be defined. Within each group, εNd tends to decrease and 87 Sr/ 86 Sr ratios to increase with SiO2 concentration (au)

  14. Stability and predictability in younger crystalline rock system: Japanese Islands case

    International Nuclear Information System (INIS)

    Yoshida, S.

    2009-01-01

    The Japanese Islands consist of igneous, sedimentary, and metamorphic rocks ranging in age from Paleozoic to Cenozoic. Among these, Carboniferous to Paleogene rocks occupy about 60% of the total area of the Japanese Islands. It should be noted that Quaternary volcanic rocks occupy only about 9% of the total area, although Quaternary volcanoes occur throughout the Japanese Islands. Long-term stability and predictability in the rock system are discussed in terms of volcanic activity, active faulting, and plate motion. Volcanic activity in the Japanese Islands is intimately related to subduction of the Pacific Plate and the Philippine Sea Plate. The volcanic front related to the Pacific and the Philippine Sea plates has been essentially fixed since about 6 Ma. The main active faults, which are distributed sporadically throughout the Japanese Islands, number about 150 and have been extensively investigated. The modes of the Pacific Plate and the Philippine Sea Plate have been essentially invariable since 10 Ma and 6 Ma, respectively. These lines of evidence imply that volcanism and tectonism in the Japanese Islands will scarcely change for hundreds of thousands of years into the future. It is clear that many places suitable for geological disposal will be present in this rock system. (author)

  15. Study on improved procedure for determination of three dimensional distributions of the initial rock stresses. 3

    International Nuclear Information System (INIS)

    Mizuta, Yoshiaki

    2004-02-01

    In the fiscal year of 2003, our committee achieved the following work items during the contract period, from September 3rd, 2003 to February 13th, 2004. The more accurate numerical data with respect to the geological/geometrical conditions including the fault were provided from Tono Geoscience Center and the numerical models by Finite Element Method (FEM), Finite Difference Method (FDM) and Boundary Element Method (BEM) were built taking those strata data into account. For small region modeling by FEM, three layers models, Shoumasama model and Tono-Shoumasama model, as well as Tono Mine model, were constructed, and each strain state at the far field boundary was determined. In order to get better agreement in local stress states with the measured values, a far field strain state was determined to the modified model in which material properties of upper granite and lower granite are different. In intermediate region modeling by FDM, actual strata data was taken into account, whereas strata boundary was assumed to be horizontal in former modeling, and far field stress field was analyzed. Intermediate region modeling by BEM was also carried out and far field stress state was determined. In wide region modeling by FEM, the fault was build in the model and fault slip was taken into account, and evaluation of strain state at the far field boundary was carried out for inhomogeneous rock including fault. It was proposed to output three-dimensional distribution of the maximum shear stress coefficients in order to advance three-dimensional modeling. It will make clear effect of shape, scale and property of the fault on stress state characteristic. This report describes minutely the results of the studies mentioned above. (author)

  16. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  17. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites

    Science.gov (United States)

    Esper Angillieri, María Yanina

    2017-01-01

    Rock glaciers are frozen water reservoirs in mountainous areas. Water resources are important for the local populations and economies. The presence of rock glaciers is commonly used as a direct indicator of mountain permafrost conditions. Over 500 active rock glaciers have been identified, showing that elevations between 3500 and 4500 m asl., a south-facing or east-facing aspect, areas with relatively low solar radiation and low mean annual air temperature (-4 to 0 °C) favour the existence of rock glaciers in this region. The permafrost probability model, for Dry Andes of San Juan Province between latitudes 28º30‧S and 32°30‧S, have been analyzed by logistic regression models based on the active rock glaciers occurrence in relation to some topoclimatic variables such as altitude, aspect, mean annual temperature, mean annual precipitation and solar radiation, using optical remote sensing techniques in a GIS environment. The predictive performances of the model have been estimated by known rock glaciers locations and by the area under the receiver operating characteristic curve (AUROC). This regional permafrost map can be applied by the Argentinean Government for their recent initiatives which include creating inventories, monitoring and studying ice masses along the Argentinean Andes. Further, this generated map provides valuable input data for permafrost scenarios and contributes to a better understanding of our geosystem.

  18. Analysis of volcano rock from Canary islands

    International Nuclear Information System (INIS)

    Sitek, J.; Sedlackova, K.; Dekan, J.

    2013-01-01

    In this work we have analyzed the basalt rock from Lanzarote, which is the easternmost island of the Canary Islands lying in the Atlantic Ocean and has a volcanic origin. It was born through fiery eruptions and has solidified lava streams as well as extravagant rock formations. We compared our results with composition of basalt rocks from some other places on the Earth. Different iron oxides created on the volcanic rocks during their weathering on the Earth surface has been also analyzed. (authors)

  19. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  20. New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: support for the mantle plume hypothesis

    OpenAIRE

    Geldmacher, Jörg; Hoernle, Kaj; van den Bogaard, Paul; Duggen, Svend; Werner, Reinhard

    2005-01-01

    The role of mantleplumes in the formation of intraplate volcanic islands and seamount chains is being increasingly questioned. Particular examples are the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. New40Ar / 39Ar ages and Sr–Nd–Pb isotope geochemistry of volcanic rocks from seamounts northeast of the Madeira Islands (Seine and Unicorn) and northeast of the Canary Islands (Dacia and Anika), however, provide support for the plu...

  1. Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands

    Science.gov (United States)

    Houk, P.; Starmer, J.

    2010-03-01

    A central problem for jurisdictional scientists and managers is to reconcile how multiple environmental regimes, encompassing continuous, intermittent and human disturbances, influence pertinent ecological management targets. The presence of heterogeneous environments throughout the volcanic Northern Mariana Islands (NMI), coupled with the availability of descriptive physical data, form the basis examining environmental-ecological relationships. Since 2003, coral abundances and macrobiota (all visibly recognizable taxa greater than 2 cm) occurrences have been estimated at 42 reef slopes along the volcanic archipelago. Analyses showed that reef types acted as surrogates of coral growth capacity and the modern assemblages residing upon them, being highest and most favorable, respectively, where relatively high salinity levels, low-to-moderate wave exposure, and an absence of volcanic activity for ~90 years existed. However, island size was the greatest constraint on species richness overall, but relations with corals were dampened by volcanic activity and increased for sponges and algae where greater connection with the island aquifer existed (i.e., relatively low salinity levels). The number of years since volcanic activity has occurred was positively related to the residuals of species-area relationships and coral cover, with a ~90-year time frame predicted for recovery. Notably, no relationships with watershed characteristics or distance from CNMI’s main fishing port and coral-reef assemblages or species richness were found. Further examination of specific management concerns, such as fisheries and feral animal populations, should be designed to account for the inherent differences in driving environmental regimes. Management strategies focused upon conserving biodiversity and ecosystem function should be centered at the island level, matching the operational scale of dominant environmental-ecological relationships. Marine reserves represent a strategy pertinent

  2. Neogene felsic volcanic rocks in the Hoggar province: Volcanology, geochemistry and age of the Azrou trachyte-phonolite association (Algerian Sahara)

    Science.gov (United States)

    Ben El Khaznadji, Riad; Azzouni-Sekkal, Abla; Benhallou, Amel; Liégeois, Jean-Paul; Bonin, Bernard

    2017-03-01

    The Azrou volcanic district, located to the south-east to the Atakor district in the Hoggar, has a landscape is governed by a number of felsic volcanic highs and dissected mafic plateau lavas. Our new Rb-Sr age (i.e. 23.1 ± 1.6 Ma) indicates that the Azrou felsic lavas are contemporaneous with the Achkal ring complexes (Anahef region). The Azrou felsic lavas (mainly trachyte and phonolite) show remarkably homogeneous compositions both in major elements (57.5 ≤ SiO2≤ 63.1 wt%; 10.8 ≤(Na2O + K2O)≤12.4 wt%), trace elements (33.2 ≤ Th ≤ 107 ppm; 170 ≤ La≤472 ppm; 8.7<(La/Yb)N < 27.3) and radiogenic isotopes (0.703359 < 87Sr/86Sr < 0.706539; 0.512727 <143Nd/144Nd < 0.512925; 2<εNd <5.84. These data indicate that the lavas have been only very weakly contaminated by the Precambrian basement. Geodynamically, this genesis coupled with the low volume of both trachytic and phonolitic trends implies the reworking of pre-existing shear-zones allowing the rapid ascent of these small batches of magmas. This is in agreement with the general model of linear delamination along these shear zones due to the Africa-Europe convergence developed by Liégeois et al. (2005) and recently imaged by the magneto-telluric investigation of Bouzid et al. (2015).

  3. Alteration of rhyolitic (volcanic) glasses in natural Bolivian salt lakes. - Natural analogue for the behavior of radioactive waste glasses in rock salt repositories

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-06-01

    Alteration experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 CaCl 2 -saturated brine (formation of hydrotalcite and chlorite-serpentine at short-term and saponite at long-term). These results support the use of volcanic glasses alteration patterns in Mg-rich solutions (seawater, brines) to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The neoformed phases in the sediments are: Smectite, alunite, pyrite, barite, celestite and cerianite. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long-term in brines and the trapping of certain radionuclides in secondary phases. (orig.) [de

  4. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  5. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains

    Science.gov (United States)

    Xie, W.

    2017-12-01

    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  6. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Seismicity, focal mechanisms, and stress distribution in the Tres Virgenes volcanic and geothermal region, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Victor; Munguia, Luis [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico)

    2006-01-15

    In October 1993 we carried out a seismic monitoring in the Tres Virgenes volcanic region in order to record the background seismicity associated with the volcanic structures, the geothermal field and the tectonic features of the area. Hypocenters for 257 microearthquakes were located in the volcanic edifices and along the northwest right-lateral, strike-slip La Virgen fault. Focal depths range from close to the Earth surface to about 8 km. Shallow depths occur mainly in the volcanic edifices. Deeper seismic events occurred outside the volcanic area. The duration magnitudes of the located microearthquakes range between 1 and 3. The Vp/Vs ratio and the low-Q values estimated suggest heterogeneous material properties in the volcanic structures mainly toward the El Azufre fault and the El Aguajito Caldera, where hydrothermal activity has been reported. The P- and T-axes of focal mechanisms for 90 microearthquakes suggest that the region is under N-S compression and E-W extension, in agreement with the regional tectonic stress field of the NW-SE right-lateral strike-slip transform fault system of the Gulf of California. [Spanish] En octubre de 1993 se llevo a cabo un monitoreo sismico en la region volcanica Las Tres Virgenes con el proposito de registrar la actividad sismica asociada a las estructuras volcanicas, al campo geotermico y a la tectonica local. Se localizaron 257 microsismos con hipocentros en los edificios volcanicos y a lo largo de la falla de rumbo, lateral derecha conocida como falla La Virgen. La profundidad focal de los sismos varia desde los muy cercanos a la superficie de la Tierra hasta los 8 km. Las profundidades someras ocurren principalmente en los edificios volcanicos. Los sismos mas profundos ocurren fuera del area volcanica. La magnitud de duracion de los microsismos localizados varia entre 1 y 3. La razon Vp/Vs y los valores bajos de Q que se estimaron en la zona sugieren un material con propiedades heterogeneas bajo las estructuras

  8. Cristal size distribution in metamorphic rocks: an example for the relationship between nucleation and growth rates with overstepping

    International Nuclear Information System (INIS)

    Homan, S. M.

    2003-01-01

    Crystal size distribution in metamorphic rocks provide fundamental information about crystal nucleation and growth rate, growth time and the degree of overstepping. Crystal size distribution data for garnet, saluretil, keynote, and and alusite crystals from the aureole demonstrate that the earliest formed of this minerals, garnet, has the highest population density and the shortest growth time. The last formed mineral, and alusite, has the lowest population density and longest growth time. keynote and saluretil have the similar population density and growth times intermediate between those of overstepping on the nucleation and growth rates of minerals during metamorphism

  9. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  10. Distribution regularities and prospecting of carbonate-siliceous-argillitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Zhao Fengmin; Pan Yan

    2012-01-01

    The carbonate-siliceous-argillitic rock type uranium deposit is one of the important types of uranium deposits in China. Exogenic permeability type and hydrothermal type are dominated in genetic type. Four mineralization zones, two independent mineralization districts, two potential mineralization zones can be classified in China, uranium mineralization districts can be classified further. They are classified as four levels through the potential metallogenic evaluation on the mineralization districts, an important prospective area in the near future. In order to develop and make use of carbonate-siliceous-argillitic rock type uranium resources, exploration and study should be listed in the development planning on uranium geology. (authors)

  11. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Hydrocarbon gases in Palaeogene volcanic rocks from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Laier, Troels

    2006-07-01

    Full Text Available Hydrocarbon gases were monitored in the drilling fluid during deepening of the Lopra-1 well from 2178–3565 m, in which thermogenic, methane-rich gases had been found previously. The mud gas concentration, up to 105 ppm of methane, was generally higher in the hyaloclastite sequence, 2470 m – terminal depth (TD, than in the overlying lavas of the lower basalt formation. The highest concentrations of mud gas in the lower basalt formation were associated with the more porous tuffaceous zones, whereas no simple relationship could be established between measured mud gas concentrations and porosity of the hyaloclastic rocks, which showed less marked porosity variations than the lavas.Chemical (C2+ 104 ppm. No particularly gas-rich zones were indicated, however, by the mud gas, nor was any significant change in lithology noted for this interval. It is possible that the technique of turbo-drilling, that had been attempted over a short interval, 2657–2675 m prior to collection of the high-level methane samples, may have caused enhanced degassingdue to the very fine cuttings produced. Chemical and isotopic composition of headspace gas and mud gas indicated the same type of gas throughout the well, although headspace methane tended to bemore enriched with respect to the 13C isotope.The origin of the Lopra-1 gas is discussed in the light of recent information obtained from source rock studies of central East Greenland and the Faroe–Shetland Basin.

  12. The origin of an oceanic plateau: Isotope geochemistry (Sr, Nd, Pb and Hf) of volcanic rocks from IODP Site U1347 and ODP Site 1213 (Hf data) on the Shatsky Rise (Northwest Pacific)

    Science.gov (United States)

    Heydolph, K.; Geldmacher, J.; Hoernle, K.

    2011-12-01

    K.HEYDOLPH1*, J.GELDMACHER2, 1 ,K.HOERNLE1 1IFM-GEOMAR, Wischhofstr. 1-3. D-24148 Kiel, Germany, (*correspondence: kheydolph@ifm-geomar.de) 2 Integrated Ocean Drilling Program, Texas A&M University, 1000 Discovery Drive, College Station, Texas 77845-9547 (geldmacher@iodp.tamu.edu) The submarine Shatsky Rise plateau, a unique large igneous province (LIP) in the northwest Pacific Ocean ca. 1500 km east of Japan, is the only large intraoceanic plateau, which formed during the Late Jurassic to Early Cretaceous at a time period with numerous reversals of the Earth's magnetic field. These magnetic reversals combined with bathymetric data allow a detailed reconstruction of the tectonic history. Accordingly the three main volcanic edifices Tamu, Ori and Shirshov massifs formed by massive volcanism during a short time span along a southwest - northeast trending, rapidly spreading triple junction. Therefore, the magnetic and bathymetric data suggest that the Shatsky Rise formed through the interaction of a mantle plume head with a ridge [1, 2]. We present new Sr, Nd and Pb (double spike) and for the first time Hf isotope data from volcanic rocks of relatively fresh basaltic lava flows from recent IODP Exp. 324 Site U1347 and ODP Leg 198 Site 1213 (Hf data) both located on Tamu massif the southernmost (oldest) volcanic edifice of Shtasky Rise. Initial 176Hf/177Hf and 143Nd/144Nd isotopic compositions are fairly uniform throughout the entire holes ranging between 0.283076 to 0.283100 and 0.512903 to 0.512981 respectively, showing neither distinct MORB nor intraplate (plume) affinity. Relatively unradiogenic 87Sr/86Sr data ranging from 0.70276 to 0.70296 mostly overlaps with Pacific MORB like values. In a Nd vs Hf isotope plot they form a tight cluster at the edge of the Pacific MORB field below the present-day Hf-Nd mantle array. Although initial Pb double spike 206Pb/204Pb and 208Pb/204Pb isotopic compositions for Site U1347 range from 18.13 to 18.46 and 37.71 to 37

  13. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    Science.gov (United States)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  14. Age Distribution of Lunar Impact-Melt Rocks in Apollo Drive-Tube 68001/2

    Science.gov (United States)

    Curran, N. M.; Bower, D. M.; Frasl, B.; Cohen, B. A.

    2018-01-01

    Apollo 16 double-drive tube 68001 /68002 provides impact and volcanic materials along a depth of approximately 60 cm in five compositional distinct units. 68001 /2 offers the potential to study distinct populations of impact melts with depth to understand how 'gardening' affects these samples. We will use unbiased major-element chemistry, mineralogy, and age to understand the impact history of Apollo 16 landing site. The study demonstrates the techniques that landed missions require to identify lithologies of interest (e.g., impact melts).

  15. Influence of convective-energy transfer on calculated temperature distributions in proposed hard-rock nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R R; Reda, D C [Sandia National Labs., Albuquerque, NM (USA)

    1982-06-01

    This study assesses the relative influence of convective-energy transfer on predicted temperature distributions for a nuclear-waste repository located in water-saturated rock. Using results for energy transfer by conduction only (no water motion) as a basis of comparison, it is shown that a considerable amount of energy can be removed from the repository by pumping out water that migrates into the drift from regions adjacent to the buried waste canisters. Furthermore, the results show that the influence of convective-energy transfer on mine drift cooling requirements can be significant for cases where the in-situ permeability of the rock is greater than one millidarcy (a regime potentially encountered in repository scenarios).

  16. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    Science.gov (United States)

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia

  17. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  18. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  19. Application of Clinopyroxene Chemistry to Interpret the Physical Conditions of Ascending Magma, a Case Study of Eocene Volcanic Rocks in the Ghohrud Area (North of Isfahan)

    International Nuclear Information System (INIS)

    Sayari, M.; Sharifi, M.

    2016-01-01

    Clinopyroxene and plagioclase phenocrysts of nineteen samples were analyzed with the electron microprobe. The chemical compositions of the clinopyroxenes were used to estimate both the chemical evolution and temperature and pressure conditions of the magmas during crystallization, using SCG, a specialized software for clinopyroxene thermo barometry (Sayari and Sharifi, 2014). Microprobe analyses show that plagioclases in the Eocene basaltic rocks are labradorite-bytownite (An85-58Ab15-41) and clinopyroxenes are augite (En41-49Di29-38Fs17-26). The compositions of the clinopyroxenes indicate a tholeiitic affinity for the magma. After plotting the cpx thermobarometry results on a P-T diagram, and applying a linear regression, an equation of P-T describing the physical conditions of the ascending magma was obtained.

  20. Deciphering shallow paleomagnetic inclinations: 1. Implications from correlation of Albian volcanic rocks along the Insular/Intermontane Superterrane boundary in the southern Canadian Cordillera

    Science.gov (United States)

    Haskin, M. L.; Enkin, R. J.; Mahoney, J. B.; Mustard, P. S.; Baker, J.

    2003-04-01

    Geologic and paleomagnetic data lead to two contradictory hypotheses regarding the paleoposition of the Insular and Intermontane Superterranes that presently constitute the western Canadian Cordillera. Paleomagnetic data from the Insular and Intermontane superterranes suggest a southerly origin coinciding with the latitude of Mexico and the northwest United States, respectively, during the mid-Cretaceous. Geologic evidence points to a northerly origin for these same tectonic entities during this period; both models cannot be correct. Geologic and paleomagnetic data from the Empire Valley-Churn Creek area in south central British Columbia (51.5°N, 122.5°W) are critical to resolving these contradictory hypotheses. Late Cretaceous rocks correlated to the Insular Superterrane with large paleomagnetic displacements unconformably overlie mid-Cretaceous rocks correlative to the Spences Bridge Group of the Intermontane Superterrane. We provide paleomagnetic evidence of this correlation based on similar magnetic properties, opaque mineral assemblages, demagnetization behavior, fold test results, mean inclinations, clockwise vertical axes rotations, and statistically indistinguishable paleomagnetic poles and displacement estimates. This correlation and the observed geologic relationships in the Empire Valley-Churn Creek area indicate that the Insular and Intermontane Superterranes were linked by the mid-Cretaceous. Sites from the two previous Spences Bridge Group studies are combined with their correlatives in the Empire Valley-Churn Creek area to give 81 sites that yield a paleomagnetic pole of 60.5°N, 304.5°E, dp = 3.7°, dm = 5.5° which corresponds to 1050 ± 450 km of displacement from the south. This new displacement estimate suggests that the Spences Bridge arc formed at the latitude of southern Oregon during the mid-Cretaceous.

  1. Hydrocarbon Reservoir Identification in Volcanic Zone by using Magnetotelluric and Geochemistry Information

    Science.gov (United States)

    Firda, S. I.; Permadi, A. N.; Supriyanto; Suwardi, B. N.

    2018-03-01

    The resistivity of Magnetotelluric (MT) data show the resistivity mapping in the volcanic reservoir zone and the geochemistry information for confirm the reservoir and source rock formation. In this research, we used 132 data points divided with two line at exploration area. We used several steps to make the resistivity mapping. There are time series correction, crosspower correction, then inversion of Magnetotelluric (MT) data. Line-2 and line-3 show anomaly geological condition with Gabon fault. The geology structure from the resistivity mapping show the fault and the geological formation with the geological rock data mapping distribution. The geochemistry information show the maturity of source rock formation. According to core sample analysis information, we get the visual porosity for reservoir rock formation in several geological structure. Based on that, we make the geological modelling where the potential reservoir and the source rock around our interest area.

  2. Rift propagation at craton margin.: Distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times

    Science.gov (United States)

    Le Gall, B.; Nonnotte, P.; Rolet, J.; Benoit, M.; Guillou, H.; Mousseau-Nonnotte, M.; Albaric, J.; Deverchère, J.

    2008-02-01

    A revised kinematic model is proposed for the Neogene tectono-magmatic development of the North Tanzanian Divergence where the axial valley in S Kenya splits southwards into a wide diverging pattern of block faulting in association with the disappearance of volcanism. Propagation of rifting along the S Kenya proto-rift during the last 8 Ma is first assumed to have operated by linkage of discrete magmatic cells as far S as the Ngorongoro-Kilimanjaro transverse volcanic belt that follows the margin of cratonic blocks in N Tanzania. Strain is believed to have nucleated throughout the thermally-weakened lithosphere in the transverse volcanic belt that might have later linked the S Kenya and N Tanzania rift segments with marked structural changes along-strike. The North Tanzanian Divergence is now regarded as a two-armed rift pattern involving: (1) a wide domain of tilted fault blocks to the W (Mbulu) that encompasses the Eyasi and Manyara fault systems, in direct continuation with the Natron northern trough. The reactivation of basement fabrics in the cold and intact Precambrian lithosphere in the Mbulu domain resulted in an oblique rift pattern that contrasts with the orthogonal extension that prevailed in the Magadi-Natron trough above a more attenuated lithosphere. (2) To the E, the Pangani horst-like range is thought to be a younger (< 1 Ma) structure that formed in response to the relocation of extension S of the Kilimanjaro magmatic center. A significant contrast in the mechanical behaviour of the stretched lithosphere in the North Tanzanian diverging rift is assumed to have occurred on both sides of the Masai cratonic block with a mid-crustal decoupling level to the W where asymmetrical fault-basin patterns are dominant (Magadi-Natron and Mbulu), whereas a component of dynamical uplift is suspected to have caused the topographic elevation of the Pangani range in relation with possible far-travelled mantle melts produced at depth further N.

  3. Using mosses as biomonitors to study trace element emissions and their distribution in six different volcanic areas

    Science.gov (United States)

    Arndt, Julia; Calabrese, Sergio; D'Alessandro, Walter; Planer-Friedrich, Britta

    2017-09-01

    Volcanoes emit SO2, CO2, and H2S, but also trace elements gases and particles such as As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb. Active moss bag biomonitoring, an easy to apply and low budget method, was used to determine trace element release from volcanic areas of different geological context and climates. Exposure height variations (0.7-1.6 m above ground) due to different availability of natural tie points did not affect the results. Accumulation was linear for exposure durations from three days to nine weeks, so values were comparable by normalization to moss exposure time. Uncovered moss bags showed higher accumulation than co-exposed covered ones because of additional dust and wet deposition while washout by rain was negligible. The selection of a specific moss significantly affected element accumulation with moss of lower shoot compactness accumulating more. For all volcanic areas, highest accumulation was found for S (1-1000 μmol·(g·d)- 1), followed by Fe and Mg (0.1-10 μmol·(g·d)- 1), Sr, Ba, Pb, Cr, Li (10- 4-10- 1 μmol·(g·d)- 1), then Co, Mo and the volatile elements As, Sb, Se, Tl, Bi (10- 6-10- 2 μmol·(g·d)- 1). For most elements, open conduit volcanoes (Etna, Stromboli, Nyiragongo) showed higher moss accumulation rates than more quiescent hydrothermal areas (Vulcano > Nisyros > Yellowstone National Park) and a correlation of S, Fe, and Pb from eruptive ash and lava emissions. For some volatile elements (S, As, Se), higher accumulation was observed within fumarolic fields compared to crater rims of open conduit volcanoes which is a relevant information for risk assessment of tourist exposure to volcanic gases.

  4. Dispersion of uranium in accessory apatite in crystalline rocks and its possible petrogenetic meaning

    International Nuclear Information System (INIS)

    Kral, J.; Burchart, J.

    1983-01-01

    The coefficient of variation for grain-by-grain fission track uranium analysis of apatites from igneous rocks seems to reflect the temperature of crystallization and the cooling rate. For metamorphic rocks the coefficient represents a complex record of the homogeneity of the source and of metamorphic neocrystallization. As a test case 41 West Carpathian rocks have been examined and the coefficients of variation for U in apatites found to be: granitic rocks 0.30-0.79, paragneisses 0.35-0.95, migmatites 0.55-0.87, and volcanic rocks 0.30-0.40. Most of the frequency distributions are lognormal, though for some cases a normal distribution gives a better fit, and some are incompatible with either of the two distributions. (orig.)

  5. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  6. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  7. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  8. How 'The association of endemic elephantiasis of the lower legs in East Africa with soil derived from volcanic rocks' has underpinned progress in podoconiosis research.

    Science.gov (United States)

    Deribe, Kebede; Davey, Gail

    2014-09-01

    We demonstrate how an article from the Transactions of the Royal Society of Tropical Medicine & Hygiene archive has triggered two important series of studies into the aetiology and distribution of podoconiosis, 30 years after first publication of the article. It indicates the value of becoming familiar with hypotheses raised by earlier investigators and of direct use of historical data in understanding trends in disease distribution. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    Directory of Open Access Journals (Sweden)

    Natalie Leys

    2017-04-01

    Full Text Available Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50% and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES, showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  10. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  11. High-Temperature, Perhaps Silicic, Volcanism on Mars Evidenced by Tridymite Detection in High-SiO2 Sedimentary Rock at Gale Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Vaniman, D. T.; Blake, D. F.; Gellert, R.; Chipera, S. J.; Rampe, E. B.; Ming, D. W.; Morrison, S. M.; Downs, R. T.; Treiman, A. H.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, has been exploring sedimentary rocks within Gale crater since landing in August, 2012. On the lower slopes of Aeolis Mons (a.k.a. Mount Sharp), drill powder was collected from a high-silica (74 wt% SiO2) outcrop named Buckskin (BK). It was a surprise to find that the Buckskin sample contained significant amounts of the relatively rare silica polymorph tridymite. We describe the setting of the Buckskin sample, the detection of tridymite by the MSL Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, and detection implications. Geologic setting: The Buckskin outcrop is part of the Murray formation exposed in the Marias Pass area. The formation was previously studied by CheMin in the Pahrump Hills member [1] where three samples of drill fines were analyzed (Confidence Hills (CH), Mojave2 (MJ) and Telegraph Peak (TP) [2]). Assuming approximately horizontal bedding, the Buckskin outcrop is approx.15 m stratigraphically above the bottom of the Pahrump Hills member. Mudstone, generally characterized by fine lamination, is the dominant depositional facies [1]. Buckskin Mineralogical and Chemical Composition: The CheMin instrument and XRD pattern analysis procedures have been previously discussed [3-6]. The diffraction pattern used for quantitative XRD analysis (Fig. 1) is the sum of the first 4 of 45 diffraction images. The remaining images are all characterized by both on-ring and off-ring diffraction spots that we attributed to poor grain motion and particle clumping. Coincident with particle clumping was a significant decrease in the intensity of the tridymite diffraction peaks (Fig. 2a). The derived mineralogical composition of the crystalline component (derived from the first 4 diffraction images) is given in Table 1. The tridymite is well-crystalline and its pattern is refined as monoclinic tridymite (Fig 1). Mineral chemical compositions were derived from XRD unit cell parameters or obtained from

  12. Surrounding rock abutment pressure distribution and thickness effect of dynamic catastrophic in fully mechanized sublevel mining stope

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.; Yang, K.; Chang, J.; Wang, L. [Anhui University of Science and Technology, Huainan (China)

    2006-12-15

    Numerical simulation was carried out to analyse the distribution of surrounding rock stress with coal seams of different thickness (3.0, 5.4, 8.0, 12.0 m) based on engineering geology and exploitation technology of the 151(3) fully mechanized sublevel caving face in Xieqiao colliery. The research indicates that the variation of abutment pressure has obvious difference in coal seams of different thickness. The effect of abutment pressure distribution in seams of different thickness on coal-methane outbursts was analysed. With an increase in thickness of the caving seam, the research illustrates that the elastic energy resilience is reduced and the capability of resisting damage and deformation is strengthened in coal around the stope. The results show that fully mechanized sublevel caving slows down dynamic catastrophes. 7 refs., 4 figs.

  13. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  14. Geological development and uranium and thorium evolutions in volcanic basin No.460

    International Nuclear Information System (INIS)

    Zhou Dean.

    1989-01-01

    On the basis of summarizing the geological features and the developmental history of tectono-magmatic activity, the uranium and thorium evolutional rules of rocks in different times are studied. It is suggested that the uranium and thorium increments caused by potassic migmatization of late Archean basement rocks in this area is the material base which affected the subsequent evolution of the cover of volcanic rocks and uranium mineralization. The Upper Jurassic acid volcanic cover belonging to crustal remelting origin constituted the favorable stratigraphic background for uranium mineralization in this area due to its wide distribution, large thickness, various rock associations and lithological sequences, as well as high content of uranium and thorium. During the late Yanshanian stage acid subvolanic rocks or small intrusions with high uranium intruded along the regional fractures are the decisive factors for the emplacement of uranium mineralization in this area, which othen became the favorable wall rocks for preserving ores itself. During the late stage the hydrothermal uranium mineralization was the main geological process from which uranium and thorium in stratigraphy and terrain were finally separated

  15. Identification of igneous rocks in a superimposed basin through integrated interpretation dominantly based on magnetic data

    Science.gov (United States)

    LI, S.

    2017-12-01

    Identification of igneous rocks in the basin environment is of great significance to the exploration for hydrocarbon reservoirs hosted in igneous rocks. Magnetic methods are often used to alleviate the difficulties faced by seismic imaging in basins with thick cover and complicated superimposed structures. We present a case study on identification of igneous rocks in a superimposed basin through integrated interpretation based on magnetic and other geophysical data sets. The study area is located in the deepest depression with sedimentary cover of 14,000 m in Huanghua basin, which is a Cenozoic basin superimposed on a residual pre-Cenozoic basin above the North China craton. Cenozoic and Mesozoic igneous rocks that are dominantly intermediate-basic volcanic and intrusive rocks are widespread at depth in the basin. Drilling and seismic data reveal some volcanic units and intrusive rocks in Cenozoic stratum at depths of about 4,000 m. The question remains to identify the lateral extent of igneous rocks in large depth and adjacent areas. In order to tackle the difficulties for interpretation of magnetic data arisen from weak magnetic anomaly and remanent magnetization of igneous rocks buried deep in the superimposed basin, we use the preferential continuation approach to extract the anomaly and magnetic amplitude inversion to image the 3D magnetic units. The resultant distribution of effective susceptibility not only correlates well with the locations of Cenozoic igneous rocks known previously through drilling and seismic imaging, but also identifies the larger scale distribution of Mesozoic igneous rocks at greater depth in the west of the basin. The integrated interpretation results dominantly based on magnetic data shows that the above strategy is effective for identification of igneous rocks deep buried in the superimposed basin. Keywords: Identification of igneous rocks; Superimposed basin; Magnetic data

  16. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  17. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  18. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  19. Greated era of volcanic front in Middle Kyushu and Western Chugoku districts

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Hirotake; Hoshizumi, Hideo; Koyaguchi, Takehiro

    1987-10-01

    Purpose of this study was to determine the era when the creation of the volcanos commenced which were extending from north-east to south west, by using the K-Ar age of volcanic rocks which were continuously distributed from middle Kyushu to San-in district and which were mainly composed of amphibole andesite. By comparing with geological map, relation with the stratigraphic order of layers at Yabakei, Himejima and Aono were considered. It was concluded that, in every place, the vocanic activities commenced much later era than creation of basement rock. It was also recognized that, by studying the relation with Phillipine Plate, deep earthquake was related with the volcanic front of south west Japan arc. (8 figs, 2 tabs, 14 refs)

  20. New 40Ar / 39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: Support for the mantle plume hypothesis

    Science.gov (United States)

    Geldmacher, J.; Hoernle, K.; Bogaard, P. v. d.; Duggen, S.; Werner, R.

    2005-08-01

    The role of mantle plumes in the formation of intraplate volcanic islands and seamount chains is being increasingly questioned. Particular examples are the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. New 40Ar / 39Ar ages and Sr-Nd-Pb isotope geochemistry of volcanic rocks from seamounts northeast of the Madeira Islands (Seine and Unicorn) and northeast of the Canary Islands (Dacia and Anika), however, provide support for the plume hypothesis. The oldest ages of shield stage volcanism from Canary and Madeira volcanic provinces confirm progressions of increasing age to the northeast. Average volcanic age progression of ∼1.2 cm/a is consistent with rotation of the African plate at an angular velocity of ∼0.20° ± 0.05 /Ma around a common Euler pole at approximately 56° N, 45° W computed for the period of 0-35 Ma. A Euler pole at 35° N, 45° W is calculated for the time interval of 35-64 Ma. The isotope geochemistry further confirms that the Madeira and Canary provinces are derived from different sources, consistent with distinct plumes having formed each volcanic group. Conventional hotspot models, however, cannot easily explain the up to 40 m.y. long volcanic history at single volcanic centers, long gaps in volcanic activity, and the irregular distribution of islands and seamounts in the Canary province. A possible explanation could involve interaction of the Canary mantle plume with small-scale upper mantle processes such as edge-driven convection. Juxtaposition of plume and non-plume volcanism could also account for observed inconsistencies of the classical hotspot concept in other volcanic areas.

  1. Petrogenesis of the Cenozoic alkaline volcanic rock series of the České Středohoří Complex (Bohemian Massif), Czech Republic: A case for two lineages

    Czech Academy of Sciences Publication Activity Database

    Dostal, J.; Schellnutt, J. G.; Ulrych, Jaromír

    2017-01-01

    Roč. 317, June (2017), s. 677-706 ISSN 0002-9599 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Central European volcanic province * continental alcaline volcanism * fractional crystallization * magmatic fluids Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 4.099, year: 2016

  2. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    International Nuclear Information System (INIS)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-01-01

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma)

  3. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  4. Uranium sorption on tezontle volcanic rock

    International Nuclear Information System (INIS)

    Lopez M, B. E.; Duran B, J. M.; Iturbe G, J. L.; Olguin G, M. T.

    2009-01-01

    It is described a study that demonstrates that hexavalent uranium ions were sorbed by the naturally occurring mineral using a batch technique. This mineral is found in abundant quantities in Mexico. Our study focused on the separation of U Vi from synthetic aqueous systems of both H 2 O-UO 2 (NO 3 ) 2 .6H 2 O (acid) and H 2 O-Na 4 [UO 2 (CO 3 ) 3 ] (basic). The chemical speciation was performed by using high voltage electrophoresis, and the uranium content was determined by UV-Vis spectroscopy. The quantified U(Vi) sorption by tezontle from acidic and basic systems was 2.72 and 1.68 μmol/g, respectively, and the sorption behavior is discussed considering the surface charge of the tezontle at different ph values based on the point of zero charge characteristic of this material. (Author)

  5. Uranium sorption on tezontle volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, B. E.; Duran B, J. M.; Iturbe G, J. L.; Olguin G, M. T., E-mail: beatriz.lopez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    It is described a study that demonstrates that hexavalent uranium ions were sorbed by the naturally occurring mineral using a batch technique. This mineral is found in abundant quantities in Mexico. Our study focused on the separation of U Vi from synthetic aqueous systems of both H{sub 2}O-UO{sub 2}(NO{sub 3}){sub 2}.6H{sub 2}O (acid) and H{sub 2}O-Na{sub 4}[UO{sub 2}(CO{sub 3}){sub 3}] (basic). The chemical speciation was performed by using high voltage electrophoresis, and the uranium content was determined by UV-Vis spectroscopy. The quantified U(Vi) sorption by tezontle from acidic and basic systems was 2.72 and 1.68 mumol/g, respectively, and the sorption behavior is discussed considering the surface charge of the tezontle at different ph values based on the point of zero charge characteristic of this material. (Author)

  6. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  7. Geochemistry and petrology of basaltic rocks from the Marshall Islands

    Science.gov (United States)

    Davis, Alice S.; Schwab, William C.; Haggerty, Janet A.

    1986-01-01

    A variety of volcanic rock was recovered from the flanks of seamounts, guyots, atolls, and islands in the Ratak chain of the Marshall Islands on the U.S. Geological Survey cruise L9-84-CP. The main objective of this cruise was to study the distribution and composition of ferromanganese oxide crusts. Preliminary results of managanese crust composition are reported by Schwab et al. (1985) and detailed studies are in preparation (Schwab et al., 1986). A total of seven seafloor edifices were studied using 12 khz, 3.5 khz and air gun seismic reflection, chain dredge and box corer. Bathymetry and ship track lines are presented by Schwab and Bailey (1985). Of the seven edifices surveyed two support atolls (Majuro and Taongi) and one is a tiny island (Jemo). Dredge locations and water depths are given in Table 1 and dredge locations are shown in Figure 1. Due to equipment failures depths of dredge hauls were limited to shallow depth for all except the first two sites occupied. Recovery consisted mostly of young, poorly-consolidated limestone of fore-reef slope deposit and minor volcanogenic breccia and loose talus. The breccia and pieces of talus are thickly encrusted with ferromanganese oxide, whereas the young limestone is only coated by a thin layer. Four of the seven sites surveyed yielded volcanic rock. The volcanic rock, volumetrically a minor part of each dredge haul, consists mostly of lapilli and cobble-size clasts in a calcareous matrix or as loose talus. Most clasts show evidence of reworking, being sub- to well rounded, sometimes with a thin ferromanganese crust of their own. This paper reports preliminary findings on the petrology and geochemistry of volcanic rock recovered.

  8. Timing of the volcanism of the southern Kivu province: Implications for the evolution of the western branch of the East African rift system

    International Nuclear Information System (INIS)

    Pasteels, P.

    1989-01-01

    New K-Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural eruptions; from 7.5 to 5 Ma alkali basalts and their differentiates are mainly erupted in localized rifts. A culmination of activity occurs between 6.0 and 5.5 Ma ago. Pleistocene alkalic volcanism is restricted to localized areas. The transition from tholeiites to alkali-basaltic volcanism dated around 7.5 Ma would correspond to a major rifting phase which corresponds with the initiation of Lake Kivu Basin formation. The distribution of tholeiitic rocks in the central part of the rift, and predominantly alkalic rocks along the western active border fault, strengthens the idea that the former are associated with tension, the latter with vertical, possibly also strike-slip movements. Volcanism in the Western Rift is restricted to areas where tension occurs in a zone which is located between two zones of strike-slip. In the South Kivu area normal faults intersect strike-slip faults and this seems to have determined the location of volcanic activity. Magma formation is considered to be related with shear heating combined with adiabatic decompression in ascending diapirs. This implies heating at the lithosphere-asthenosphere boundary as a result of extension. Generation of tholeiitic or alkalic magmas is connected with the variable ascent velocity of mantle diapirs or with variable shear heating along the shear zone. Changes in both magma composition and intensity of volcanic activity with time are considered to be related to major phases of rift evolution. (orig.)

  9. Optimizing the Terzaghi Estimator of the 3D Distribution of Rock Fracture Orientations

    Science.gov (United States)

    Tang, Huiming; Huang, Lei; Juang, C. Hsein; Zhang, Junrong

    2017-08-01

    Orientation statistics are prone to bias when surveyed with the scanline mapping technique in which the observed probabilities differ, depending on the intersection angle between the fracture and the scanline. This bias leads to 1D frequency statistical data that are poorly representative of the 3D distribution. A widely accessible estimator named after Terzaghi was developed to estimate 3D frequencies from 1D biased observations, but the estimation accuracy is limited for fractures at narrow intersection angles to scanlines (termed the blind zone). Although numerous works have concentrated on accuracy with respect to the blind zone, accuracy outside the blind zone has rarely been studied. This work contributes to the limited investigations of accuracy outside the blind zone through a qualitative assessment that deploys a mathematical derivation of the Terzaghi equation in conjunction with a quantitative evaluation that uses fractures simulation and verification of natural fractures. The results show that the estimator does not provide a precise estimate of 3D distributions and that the estimation accuracy is correlated with the grid size adopted by the estimator. To explore the potential for improving accuracy, the particular grid size producing maximum accuracy is identified from 168 combinations of grid sizes and two other parameters. The results demonstrate that the 2° × 2° grid size provides maximum accuracy for the estimator in most cases when applied outside the blind zone. However, if the global sample density exceeds 0.5°-2, then maximum accuracy occurs at a grid size of 1° × 1°.

  10. Content and distribution of fluorine in rock, clay and water in fluorosis area Zhaotong, Yunnan Province

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.; Li, H.; Feng, F. (and others) [Chinese Academy of Sciences, Beijing (China)

    2007-04-15

    About 160 samples of coal, pyritic coal balls, coal seam gangue, clay, corn, capsicum and drinking water were collected from the endemic fluorosis area of Zhenxiong and Weixin county, China to determine the fluorine content, distribution pattern and source in this fluorosis area. The study shows that the average fluorine content in the coal samples collected from 3 coal mines of the Late Permian coals in Zhenxiong and Weixin county, Zhaotong City, which are the main mining coals there, is 77.13 mg/kg. The average fluorine content coals collected form thee typical fluorosis villages in 72.56 mg/kg. Both of them are close to the world average and little low than the Chinese average. The fluorine content of drinking water is lower than 0.35 mg/L, the clay used as an additive for coal-burning and as a binfer in briquette-making by local residents has a high content of fluorine, ranging from 367-2,435 mg/kg, with the majority higher than 600 mg/kg and an average of 1,084.2 mg/kg. 29 refs., 5 tabs.

  11. K-Ar ages of the Nyuto-Takakura volcanic products, southern part of the Sengan geothermal area, northeast Japan

    International Nuclear Information System (INIS)

    Suto, Shigeru; Uto, Kozo; Uchiumi, Shigeru

    1990-01-01

    The K-Ar age determination of the volcanic rocks from the Nyuto-Takakura volcano group, northeast Japan, was carried out. Nyuto-Takakura volcanoes are situated in the southern part of the Sengan geothermal area. And the Young Volcanic Rocks in the area were already divided into the Early stage volcanics (erupted in Matsuyama reversed epoch or more older epoch) and the Later stage volcanics (erupted in Brunhes normal epoch) by accumulated paleomagnetic and K-Ar age data. The results in this study are as follows; Nyuto Volcano: 0.63±0.06, 0.36±0.07 Ma, Sasamoriyama Volcano: 0.09±0.07, 0.3±0.3 Ma, Marumori Lava Dome: 0.4±0.3, 0.31±0.12 Ma, Mikadoyama Lava Dome: <1 Ma, Takakurayama-Kotakakurayama volcano: 1.4±0.5, 1.0±0.4, <0.4 Ma. The determinated ages are concordant with the volcanic stratigraphy and the paleomagnetic data. Nyuto Volcano, Sasamoriyama Volcano, Marumori Lava Dome, Mikadoyama Lava Dome and upper part of the Takakurayama-Kotakakurayama Volcano are interpreted to be erupted in Brunhes normal epoch. The volcanic rocks from the lower part of the Takakurayama-Kotakakurayama volcano show normal magnetic polarity, so they are interpreted to be erupted in Jaramillo normal polarity event. The Early stage volcanics and the Later stage volcanics in the studied area are tend to be distributed in the central part and the outer part of the area, respectively. But the determinated ages in this study show that there is no simple migration of the eruption center of the volcanic rocks from the central part to the peripheral part. There is no geothermal manifestation or alteration area around the Sasamoriyama Volcano and the Marumori Lava Dome, which are the youngest volcanoes in the studied area. So it is concluded that there is no direct correlation between the eruption age of the nearest volcano and the geothermal activity. (author)

  12. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    Science.gov (United States)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  13. Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    Science.gov (United States)

    Hovey, Renae K.; Van Niel, Kimberly P.; Bellchambers, Lynda M.; Pember, Matthew B.

    2012-01-01

    Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats. PMID

  14. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Directory of Open Access Journals (Sweden)

    Renae K Hovey

    Full Text Available BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand and dominant biota (kelp, sessile invertebrates and macroalgae within a 40 km(2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2 of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical

  15. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Science.gov (United States)

    Hovey, Renae K; Van Niel, Kimberly P; Bellchambers, Lynda M; Pember, Matthew B

    2012-01-01

    The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.

  16. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin

    Science.gov (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  17. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  18. Pemodelan Penyebaran Batuan Potensial Pembentuk Asam Pada Kawasan Penambangan Batubara Tambang Terbuka Di Muara Lawa, Kabupaten Kutai Barat, Kalimantan Timur (Modeling Distribution of Rock Potential Acid Forming in Open Pit Coal Mining Areas)

    OpenAIRE

    Devy, Shalaho Dina; Hendrayana, Heru; Putra, Dony Prakasa Eka; Sugiharto, Eko

    2016-01-01

    The impact of open pit coal mining is the emergence of Acid Mine Water (AMD) around the mining environment that affect the quality of the mine water, aquatic biota, water and soil quality. Therefore, early information to anticipate these impacts is the identification potential acid rock and distribution model as a guide for the mining plan. Geological and geochemical study of rocks is important in knowing the distribution of rock Potential Acid Formning (PAF) and Non Acid Forming (NAF). Minin...

  19. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  20. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  1. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  2. Can rain cause volcanic eruptions?

    Science.gov (United States)

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  3. Depth and substrate as determinants of distribution of juvenile flathead sole (Hippoglossoides elassodon) and rock sole (Pleuronectes bilineatus), in Kachemak Bay, Alaska

    Science.gov (United States)

    Abookire, Alisa A.; Norcross, Brenda L.

    1998-01-01

    Three transects in Kachemak Bay, Alaska, were sampled in September 1994, May and August 1995, and February, May, and August 1996. Juvenile flathead sole, Hippoglossoides elassodon, and rock sole, Pleuronectes bilineatus, were the most abundant flatfishes, comprising 65-85% of all fiatfishes captured at any period. Collections of fish and sediments were made at regular depth contour intervals of l0 m. Habitat distribution was described by depth at 10 m increments and sediment percent weights of gravel, sand, and mud. Year-round habitat of flathead sole age-0 was primarily from 40 to 60 m, and age-1 habitat was primarily from 40 to 80 m. Summer habitat of rock sole age-0 and -1 was from 10 to 30 m, and in winter they moved offshore to depths of up to 150 m. Both age classes of flathead sole were most abundant on mixed mud sediments, while age-1 were also in high abundance on muddy sand sediments. Rock sole age-0 and -1 were most abundant on sand, though age-1 were also found on a variety of sediments both finer and coarser grained than sand. Flathead sole and rock sole had distinctive depth and sediment habitats. When habitat overlap occurred between the species, it was most often due to rock sole moving offshore in the winter. Abundances were not significantly different among seasons for age-1 flatfishes.

  4. The effect of the water-to-rock ratio on REE distribution in hydrothermal fluids: An experimental study

    Science.gov (United States)

    Beermann, Oliver; Garbe-Schönberg, Dieter; Holzheid, Astrid

    2013-04-01

    High-temperature submarine MOR hydrothermalism creates high elemental fluxes into, and out of, oceanic lithosphere significantly affecting ocean chemistry. The Turtle Pits hydrothermal system discovered at 5° S on the slow-spreading Mid-Atlantic Ridge (MAR) in water depths of ~3000 m (~300 bar) emanates 'ultrahot' fluids > 400 ° C [1] with high concentrations of dissolved gases (e.g., H2), transition metals, and rare earth elements (REE). The normalised REE patterns of these 'ultrahot' fluids are uncommon as they exhibit depletions of LREE and no Eu-anomaly ('special' REE-signature in [2]), which is in contrast to the "typical" LREE enrichment and pronounced positive Eu-anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Although hydrothermal fluid REE-signatures may play a key role in understanding processes during water-rock interaction, only few experimental data have been published on REE distribution in seawater-like fluids reacted with rocks from the ocean crust [e.g., 4, 5]. Besides temperature, the seawater-to-rock ratio (w/r ratio) strongly affects water-rock reaction processes and, thus, has significant control on the fluid chemistry [e.g., 6, 7]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we designed a series of experiments reacting different fluid types with mineral assemblages from fresh, unaltered gabbro at 425 ° C and 400 bar using cold seal pressure vessels (CSPV). Mixtures of 125-500 μm-sized hand-picked plagioclase and clinopyroxene grains separated from unaltered gabbro reacted in gold capsules with 3.2 wt.% NaCl(aq) fluid (similar to seawater salinity), or with natural seawater. The w/r (mass) ratio ranged from 1 to 100 and the run durations were varied from 3 to 30 d in the NaCl(aq) experiments, and was 3 d in the seawater experiments. The reacted fluids were extracted after quenching and analysed by ICP-OES and ICP-MS. Only in the seawater experiments, the gabbro

  5. Timing and Duration of Volcanism in the North Atlantic Igneous Province: Implications for Geodynamics and Links to the Iceland Hotspot

    DEFF Research Database (Denmark)

    Storey, M.; Duncan, R. A.; Tegner, Christian

    2007-01-01

    estimates of erupted magmas and their cumulates to calculate melt production rates for the early Tertiary flood basalts of East Greenland and the Faeroes Islands. The lavas lie at opposite ends of the Greenland-Iceland-Faeroes Ridge, the postulated Iceland hotspot track, and record volcanic activity leading...... of plate separation. The upper part of this crust comprises seismically imaged, seaward-dipping, subaerially erupted lavas. By  50 Ma, eruption rates had diminished drastically and volcanic activity had narrowed to a much restricted portion of the East Greenland margin, at the western end of the Greenland......We combine new and published 40Ar/39Ar age determinations from incremental heating experiments on whole rocks and mineral separates to assess the timing, duration and distribution of volcanic activity during construction of the North Atlantic Igneous Province. We use these ages together with volume...

  6. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  7. The spatial and temporal `cost' of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand

    Science.gov (United States)

    McDonald, Garry W.; Smith, Nicola J.; Kim, Joon-hwan; Cronin, Shane J.; Proctor, Jon N.

    2017-07-01

    Volcanic risk assessment has historically concentrated on quantifying the frequency, magnitude, and potential diversity of physical processes of eruptions and their consequent impacts on life and property. A realistic socio-economic assessment of volcanic impact must however take into account dynamic properties of businesses and extend beyond only measuring direct infrastructure/property loss. The inoperability input-output model, heralded as one of the 10 most important accomplishments in risk analysis over the last 30 years (Kujawaski Syst Eng. 9:281-295, 2006), has become prominent over the last decade in the economic impact assessment of business disruptions. We develop a dynamic inoperability input-output model to assess the economic impacts of a hypothetical volcanic event occurring at each of 7270 unique spatial locations throughout the Auckland Volcanic Field, New Zealand. This field of at least 53 volcanoes underlies the country's largest urban area, the Auckland region, which is home to 1.4 million people and responsible for 35.3% (NZ201481.2 billion) of the nation's GDP (Statistics New Zealand 2015). We apply volcanic event characteristics for a small-medium-scale volcanic eruption scenario and assess the economic impacts of an `average' eruption in the Auckland region. Economic losses are quantified both with, and without, business mitigation and intervention responses in place. We combine this information with a recent spatial hazard probability map (Bebbington and Cronin Bull Volcanol. 73(1):55-72, 2011) to produce novel spatial economic activity `at risk' maps. Our approach demonstrates how business inoperability losses sit alongside potential life and property damage assessment in enhancing our understanding of volcanic risk mitigation.

  8. Evaluation of the quality, thermal maturity and distribution of potential source rocks in the Danish part of the Norwegian–Danish Basin

    Directory of Open Access Journals (Sweden)

    Kristensen, Lars

    2008-11-01

    Full Text Available The quality, thermal maturity and distribution of potential source rocks within the Palaeozoic–Mesozoic succession of the Danish part of the Norwegian–Danish Basin have been evaluated on the basis of screening data from over 4000 samples from the pre-Upper Cretaceous succession in 33 wells. The Lower Palaeozoic in the basin is overmature and the Upper Cretaceous – Cenozoic strata have no petroleum generation potential, but the Toarcian marine shales of the Lower Jurassic Fjerritslev Formation (F-III, F-IV members and the uppermost Jurassic – lowermost Cretaceous shales of the Frederikshavn Formation may qualify as potential source rocks in parts of the basin. Neither of these potential source rocks has a basinwide distribution; the present occurrence of the Lower Jurassic shales was primarily determined by regional early Middle Jurassic uplift and erosion. The generation potential of these source rocks is highly variable. The F-III and F-IV members show significant lateral changes in generation capacity, the best-developed source rocks occurring in the basin centre. The combined F-III andF-IV members in the Haldager-1, Kvols-1 and Rønde-1 wells contain ‘net source-rock’ thicknesses (cumulative thickness of intervals with Hydrogen Index (HI >200 mg HC/g TOC of 40 m, 83 m, and 92 m, respectively, displaying average HI values of 294, 369 and 404 mg HC/g TOC. The Mors-1 well contains 123 m of ‘net source rock’ with an average HI of 221 mg HC/g TOC. Parts of the Frederikshavn Formation possess a petroleum generation potential in the Hyllebjerg-1, Skagen-2, Voldum-1 and Terne-1 wells, the latter well containing a c.160 m thick highly oil-prone interval with an average HI of 478 mg HC/g TOC and maximum HI values >500 mg HC/g TOC. The source-rock evaluation suggests that a Mesozoic petroleum system is the most likely in the study area. Two primary plays are possible: (1 the Upper Triassic – lowermost Jurassic Gassum play, and (2the

  9. Global scale concentrations of volcanic activity on Venus: A summary of three 23rd Lunar and Planetary Science Conference abstracts. 1: Venus volcanism: Global distribution and classification from Magellan data. 2: A major global-scale concentration of volcanic activity in the Beta-Atla-Themis region of Venus. 3: Two global concentrations of volcanism on Venus: Geologic associations and implications for global pattern of upwelling and downwelling

    Science.gov (United States)

    Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.

    1992-01-01

    As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.

  10. Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Ulrych, Jaromír; Řanda, Zdeněk; Erban, V.; Hegner, E.; Magna, T.; Balogh, K.; Frána, Jaroslav; Lang, Miloš; Novák, Jiří Karel

    224/225, May (2015), s. 256-271 ISSN 0024-4937 R&D Projects: GA AV ČR IAA3048201 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : phonolite * trachyte * Sr–Nd–Li isotopes * Cenozoic alkaline volcanism * Ohře (Eger) Rift * Bohemian Massif Subject RIV: DD - Geochemistry Impact factor: 3.723, year: 2015

  11. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province

    Science.gov (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.

    2005-12-01

    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  12. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    Science.gov (United States)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  13. Impact of In Situ Stress Distribution Characteristics on Jointed Surrounding Rock Mass Stability of an Underground Cavern near a Hillslope Surface

    Directory of Open Access Journals (Sweden)

    Bangxiang Li

    2017-01-01

    Full Text Available In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.

  14. Using nuclear magnetic resonance and transient electromagnetics to characterise water distribution beneath an ice covered volcanic crater: the case of Sherman Crater Mt. Baker Washington.

    Science.gov (United States)

    Irons, Trevor P.; Martin, Kathryn; Finn, Carol A.; Bloss, Benjamin; Horton, Robert J.

    2014-01-01

    Surface and laboratory Nuclear Magnetic Resonance (NMR) measurements combined with transient electromagnetic (TEM) data are powerful tools for subsurface water detection. Surface NMR (sNMR) and TEM soundings, laboratory NMR, complex resistivity, and X-Ray Diffraction (XRD) analysis were all conducted to characterise the distribution of water within Sherman Crater on Mt. Baker, WA. Clay rich rocks, particularly if water saturated, can weaken volcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-travelled, destructive debris flows. Detecting the presence and volume of shallow groundwater is critical for evaluating these landslide hazards. The TEM data identified a low resistivity layer (conditions which would allow for sNMR detection of the clay layer are investigated. Using current instrumentation the combined analysis of the TEM and sNMR data allow for valuable characterisation of the groundwater system in the crater. The sNMR is able to reduce the uncertainty of the TEM in regards to the presence of a bulk water layer, a valuable piece of information in hazard assessment.

  15. Soft Rock Yields Clues to Mars' Past

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This image taken by the Mars Exploration Rover Spirit shows the rock outcrop dubbed 'Clovis.' The rock was discovered to be softer than other rocks studied so far at Gusev Crater after the rover easily ground a hole into it with its rock abrasion tool. Spirit's solar panels can be seen in the foreground. This image was taken by the rover's navigation camera on sol 205 (July 31, 2004). Elemental Trio Found in 'Clovis' Figure 1 above shows that the interior of the rock dubbed 'Clovis' contains higher concentrations of sulfur, bromine and chlorine than basaltic, or volcanic, rocks studied so far at Gusev Crater. The data were taken by the Mars Exploration Rover Spirit's alpha particle X-ray spectrometer after the rover dug into Clovis with its rock abrasion tool. The findings might indicate that this rock was chemically altered, and that fluids once flowed through the rock depositing these elements.

  16. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  17. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  18. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  19. Mineral and rock chemistry of Mata da Corda Kamafugitic Rocks (Minas Gerais State, Brazil)

    International Nuclear Information System (INIS)

    Albuquerque Sgarbi, Patricia B. de; Valenca, Joel G.

    1995-01-01

    The volcanic rocks of the Mata da Corda Formation (Upper Cretaceous) in Minas Gerais, Brazil, are mafic potassic to ultra potassic rocks of kamafugitic affinity containing essentially clinopyroxenes, perovskite, magnetite and occasionally olivine, phlogopite, melilite pseudomorphs and apatite. The felsic phases are kalsilite and/or leucite pseudomorphs. The rocks are classified as mafitites, leucitites and kalsilitites. The analysis of the available data of the rocks studied, based on the relevant aspects of the main proposals for the classification of alkaline mafic to ultramafic potassic rocks leads to the conclusion that Sahama's (1974) proposal to divide potassium rich alkaline rocks in two large families is the one to which the Mata da Corda rocks adapt best. According to this and the data in the literature on the mineralogy and mineral and rock chemistries of the other similar occurrences, these rocks may be interpreted as alkaline potassic to ultra potassic rocks of hamafugitic affinity. 11 figs., 5 tabs

  20. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    We present new major and trace element and Sr, Nd, Pb and Os isotope data for Quaternary basaltic lavas and tephra from the Itasy and Ankaratra volcanic fields, representing the most recent volcanism in Madagascar. Mafic magmas from Itasy and Ankaratra exhibit significant inter- and intra-volcanic field geochemical heterogeneity. The Itasy eruptive products range in composition from foidite to phonotephrite whereas Ankaratra lavas range from basanite to trachybasalts. Trace element signatures of samples from both volcanic fields are very similar to those of ocean island basalts (OIB), with significant enrichment in Nb and Ta, depletion in Rb, Cs, and K, and relatively high Nb/U and Ce/Pb. However, the Itasy volcanic rocks show enrichment relative to those of Ankaratra in most incompatible elements, indicative of a more enriched source and/or lower degrees of partial melting. Significant inter- and intra-volcanic field heterogeneity is also observed in Sr, Nd, Pb and Os isotope signatures. The Itasy volcanic rocks generally have less radiogenic Sr and Nd isotopic ratios but more radiogenic Pb isotopic signatures than the Ankaratra volcanic field. Together, the Itasy and Ankaratra volcanic rocks form a well-defined negative correlation in Sr vs. Pb isotopes that could be attributed to lithospheric contamination or variable degrees of mixing between distinct mantle sources. However, the lack of correlation between isotopes and indices of crustal contamination (e.g. MgO and Nb/U) are inconsistent with shallow lithospheric contamination, and instead suggest mixing between compositionally distinct mantle sources. Furthermore, although Sr-Pb isotope systematics are apparently consistent with mixing between two different sources, distinct trends in Sr vs. Nd isotopes displayed by samples from Itasy and Ankaratra, respectively, argue for more complex source mixing involving three or more sources. The current data demonstrate that although the Itasy and Ankaratra volcanic

  1. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  2. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    Science.gov (United States)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  3. Local distribution of uranium in rocks and miner:als as an indicator of its geochemical history

    International Nuclear Information System (INIS)

    Omel'yanenko, B.I.; Kozlova, P.S.; Eliseeva, O.P.; Simonova, L.I.

    1983-01-01

    Uranium behaviour at all stages of magmatic and postmagnetic processes is s tudied. The data obtained ground the orn-generating ability of magmatic melts. The basic tendencies of geohemical uranium history in crystalline rocks are det ermined by the process of its redistribution with a transition from accessory mi nerals to secondary minerals-concentrates

  4. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  5. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  6. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  7. Hydrothermal Alteration Products as Key to Formation of Duricrust and Rock Coatings on Mars

    Science.gov (United States)

    Bishop, J. L.

    1999-03-01

    A model is presented for the formation of duricrust and rock coatings on Mars. Hydrothermal alteration of volcanic tephra may produce a corrosive agent that attacks rock surfaces and binds dust particles to form duricrust.

  8. Aspects of the distribution and movement of aluminium in the surface of the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.; Rodgers, K.A. [University of Auckland (New Zealand). Dept. of Geology; Browne, P.R.L. [University of Auckland (New Zealand). Dept. of Geology; University of Auckland (New Zealand). Geothermal Institute

    2000-09-01

    The principal Al-bearing components of two surface quadrats in the central Te Kopia geothermal field are the atmosphere, substrate ({approx} 10 wt% AI in ignimbrite, clay and protosoils, 0.3-0.6 AI wt% in sinter), vegetation (4-5 g AI/m{sup 2}) and waters (1-4 {mu}g/g AI in semi-permanent acid surface waters, 6-9 {mu}g/g in acid pools, 10-14 {mu}g/g in post-rain, ephemeral streams and pools). About 0.7 g/ha/a of AI is received from the atmosphere. Water transports AI in and out of each quadrat and distributes it between the different components. During initial alteration of the parent ignimbrite by alkali chloride water in the deep reservoir, AI either remained within the quadrat boundaries or transfers out were balanced by contemporaneous gains. Subsequently, alteration by acid sulfate fluids redistributes elements into new mineral assemblages but again with no net movement of AI in or out of either quadrat. The latest, surface alteration event involves interaction of all the previously and variously altered rocks by steam, gases and steam condensate. A primary product of this process is transient, hydrated, AI-rich, water-soluble sulfate efflorescences whose persistence indicates a steady flux of AI at the surface. The magnitude of this flux depends on available moisture and the activities of H{sup +}, SiO{sub 4}{sup 4-}, SO{sub 4}{sup 2} and K{sup +} such that variations in the rate of discharge of AI alone may be used to detect changes in surface conditions as may result from exploitation of a geothermal field. (author)

  9. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis

    Directory of Open Access Journals (Sweden)

    C. Dussauge-Peisser

    2002-01-01

    Full Text Available We study the rock fall volume distribution for three rock fall inventories and we fit the observed data by a power-law distribution, which has recently been proposed to describe landslide and rock fall volume distributions, and is also observed for many other natural phenomena, such as volcanic eruptions or earthquakes. We use these statistical distributions of past events to estimate rock fall occurrence rates on the studied areas. It is an alternative to deterministic approaches, which have not proved successful in predicting individual rock falls. The first one concerns calcareous cliffs around Grenoble, French Alps, from 1935 to 1995. The second data set is gathered during the 1912–1992 time window in Yosemite Valley, USA, in granite cliffs. The third one covers the 1954–1976 period in the Arly gorges, French Alps, with metamorphic and sedimentary rocks. For the three data sets, we find a good agreement between the observed volume distributions and a fit by a power-law distribution for volumes larger than 50 m3 , or 20 m3 for the Arly gorges. We obtain similar values of the b exponent close to 0.45 for the 3 data sets. In agreement with previous studies, this suggests, that the b value is not dependant on the geological settings. Regarding the rate of rock fall activity, determined as the number of rock fall events with volume larger than 1 m3 per year, we find a large variability from one site to the other. The rock fall activity, as part of a local erosion rate, is thus spatially dependent. We discuss the implications of these observations for the rock fall hazard evaluation. First, assuming that the volume distributions are temporally stable, a complete rock fall inventory allows for the prediction of recurrence rates for future events of a given volume in the range of the observed historical data. Second, assuming that the observed volume distribution follows a power-law distribution without cutoff at small or large scales, we can

  10. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis

    Science.gov (United States)

    Dussauge-Peisser, C.; Helmstetter, A.; Grasso, J.-R.; Hantz, D.; Desvarreux, P.; Jeannin, M.; Giraud, A.

    We study the rock fall volume distribution for three rock fall inventories and we fit the observed data by a power-law distribution, which has recently been proposed to describe landslide and rock fall volume distributions, and is also observed for many other natural phenomena, such as volcanic eruptions or earthquakes. We use these statistical distributions of past events to estimate rock fall occurrence rates on the studied areas. It is an alternative to deterministic approaches, which have not proved successful in predicting individual rock falls. The first one concerns calcareous cliffs around Grenoble, French Alps, from 1935 to 1995. The second data set is gathered during the 1912-1992 time window in Yosemite Valley, USA, in granite cliffs. The third one covers the 1954-1976 period in the Arly gorges, French Alps, with metamorphic and sedimentary rocks. For the three data sets, we find a good agreement between the observed volume distributions and a fit by a power-law distribution for volumes larger than 50 m3 , or 20 m3 for the Arly gorges. We obtain similar values of the b exponent close to 0.45 for the 3 data sets. In agreement with previous studies, this suggests, that the b value is not dependant on the geological settings. Regarding the rate of rock fall activity, determined as the number of rock fall events with volume larger than 1 m3 per year, we find a large variability from one site to the other. The rock fall activity, as part of a local erosion rate, is thus spatially dependent. We discuss the implications of these observations for the rock fall hazard evaluation. First, assuming that the volume distributions are temporally stable, a complete rock fall inventory allows for the prediction of recurrence rates for future events of a given volume in the range of the observed historical data. Second, assuming that the observed volume distribution follows a power-law distribution without cutoff at small or large scales, we can extrapolate these

  11. Moessbauer Study of Sedimentary Rocks from King George Island, Antarctica

    International Nuclear Information System (INIS)

    Kuzmann, E.; Souza, P. A. de; Schuch, L. A.; Oliveira, A. C. de; Garg, R.; Garg, V. K.

    2002-01-01

    The separation of continents at the periphery of Antarctica occurred about 180 ma ago due to volcanic activity. Geological faults can be very important in the study of geological occurrences. Such geological faults occur across the Admiralty Bay, King George Island, and have been studied in detail previously. Controversial statements were given in earlier works, based on conventional geological investigations, as to whether altered 'Jurassic' and unaltered Tertiary rocks were separated by a major fault which goes across the Admiralty Bay, or whether there is no difference in the alteration of the rocks located at either side of the fault. The aim of our work is to investigate rock samples from the Admiralty Bay of King George Island, Antarctica, from different locations on both sides of the geological fault. For these investigations 57 Fe Moessbauer spectroscopy and X-ray diffractometry were used. We have found that the phase composition, and the iron distribution among the crystallographic sites of iron-bearing minerals, are characteristic of the location of the rock samples from the Admiralty Bay of King George Island. There is a much higher amount of iron oxides in the rocks from the south part of the geological fault than in the north part. The differences in the mineral composition and iron distribution showed that the rocks in the southern part of the geological fault of King George Island are significantly altered compared to the rocks in the northern part. Our present results support and complement well the results obtained earlier on soils from King George Island.

  12. New Age and Geochemical Data From Seamounts in the Canary and Madeira Volcanic Provinces: A Contribution to the "Great Plume Debate"

    Science.gov (United States)

    Geldmacher, J.; Hoernle, K.; van den Bogaard, P.; Duggen, S.; Werner, R.

    2004-12-01

    The role of hotspots (mantle plumes) in the formation of intraplate volcanic island and seamount groups is being increasingly questioned, in particular concerning the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. However, new 40Ar/39Ar ages and Sr-Nd-Pb isotope geochemistry of volcanic rocks from two seamounts northeast of the Canary Islands and two northeast of the Madeira Islands provide new support for the plume hypothesis. The oldest ages of shield stage volcanism from seamounts and islands northeast of the Canary and Madeira Islands confirm progressions of increasing age to the northeast for both island/seamount chains consistent with northeast directed plate motion. Calculated angular velocities for the average movement of the African plate in both regions gave similar values of about 0.45\\deg plus/minus 0.05\\deg/Ma around a rotation pole located north of the Azores Islands. Furthermore, the curvature of the chains clearly deviates from the E-W orientation of fracture zones in the East Atlantic. A local control of surface volcanism by lithospheric zones of weakness, however, is likely for some E-W elongated seamounts and islands. The isotope geochemistry additionally confirms that the two volcanic provinces are derived from distinct sources, consistent with distinct mantle plumes having formed both volcanic groups. Conventional hotspot models, however, cannot easily explain the wide distribution of seamounts in the Canary region and the long history of volcanic activity at single volcanic centers (e.g. Dacia seamount, 47-4 Ma; Selvagen Islands, 30-3 Ma). A possible explanation could involve interaction of a Canary mantle plume with small-scale upper mantle processes such as edge driven convection at the edge of the NW African craton (e.g. King and Ritsema, 2000, Science 290, 1137-1140).

  13. Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt

    International Nuclear Information System (INIS)

    El Aassy, I.E.; El Galy, M.M.; El Feky, M.G.; Ibrahim, E.M.; Nada, A.A.; Abd El Maksoud, T.M.; Talaat, S.M.

    2011-01-01

    The contents of natural radionuclides in various types of sedimentary rocks in Um Bogma Formation and base of El Hashash Formation were determined by gamma-ray spectrometry. Three types of lower Carboniferous sedimentary rocks were investigated; sandstone (El Hashash Formation), dolostone and argillaceous sediments (Um Bogma Formation). The alteration processes are dolomitization, dedolomitization, karstification and lateritization. The specific radioactivity of 238 U, 226 Ra, 232 Th and 40 K determined in different samples, indicate that 238 U and its decay products contribute primarily to the high natural radioactivity of rocks. The maximum concentration of 238 U reached up to 2129.36 ppm in argillaceous sediments. The average concentrations of determined radionuclides ( 238 U, 226 Ra, 232 Th and 40 K) are 8.34 ppm, 7.88 ppm, 4.68 ppm and 0.3%, respectively in sandstone. In dolostones the average concentrations are 418.69 ppm, 808.75 ppm, 3.14 ppm and 0.29%, respectively. For argillaceous sediments are 276.88 ppm, 419.49 ppm, 11.47 ppm and 0.93%, respectively. The 238 U/ 226 Ra ratio in sandstone ranges between 0.89 and 1.25, while in dolostones and argillaceous sediments are 0.27-2.63 and 0.27-1.83, respectively. These variations in the concentrations of radioelements and their ratios are due to the action of the alteration processes affected these different sedimentary rocks in different times. Environmentally, the Raeq in dolostones and argillaceous sediments exceeds the permitted limits, while in the sandstone samples; it is within the permissible levels. (author)

  14. Magnetic properties of frictional volcanic materials

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  15. Behaviour interpretation log-normal tenor of uranium in the context of intrusive rocks

    International Nuclear Information System (INIS)

    Valencia, Jacinto; Palacios, Andres; Maguina, Jose

    2015-01-01

    Analysis and processing of the results of the tenor of uranium obtained from a rock intrusive by the method of gamma spectrometry, which result in a better correlation between uranium and thorium when the logarithm of these analyzes is used is discussed and is represented in a thorium/uranium diagram obtaining a better response. This is provided that the expression of the lognormal distribution provides a closer relation to the spatial distribution of uranium in a mineral deposit. The representation of a normal distribution and a log-normal distribution is shown. In the interpretative part explained by diagrams the behavior of the thorium/uranium and relation to potassium from direct measurements of tenors obtained in the field of sampling points of a section of granite San Ramon (SR) relationship, and volcanic Mitu Group (GM) where it has identified the granite rock of this unit as a source of uranium. (author)

  16. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  17. Feasibility study on volcanic power generation system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Investigations were carried out to determine the feasibility of volcanic power generation on Satsuma Io Island. Earthquakes were studied, as were the eruptions of subaerial and submarine hot springs. Hydrothermal rock alteration was studied and electrical surveys were made. General geophysical surveying was performed with thermocameras and radiation monitoring equipment. In particular, the Toyoba mine was studied, both with respect to its hot spring and its subsurface temperatures.

  18. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  19. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  20. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  1. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  2. Analysis on deep metallogenic trace and simulation experiment in xiangshan large-scale volcanic hydrothermal type uranium deposit

    International Nuclear Information System (INIS)

    Liu Zhengyi; Liu Zhangyue; Wen Zhijian; Du Letian

    2010-01-01

    Based on series experiments on field geologic analysis, and associated with deep metallogenic trace experiment model transformed from establishment of field deep metallogenic trace model, this paper come to the conclusion that distribution coefficients of U and Th first domestic from the magmatic experiment, and then discuss the geochemical behaviors of U, Th, K during magmatic evolution stage. The experiment shows that close relationship between U and Na during the hydrothermal alteration stage; and relationship between U and K during metallogenic stage, which prove that U and K are incompatible and regularity of variation between K and Na. The conclusion of uranium dissolving ability increased accompany with pressure increasing in basement metamorphic rocks and host rocks, is obtained from this experiment, which indicate a good deep metallogenic prospect. Furthermore, Pb, Sr, Nd, He isotopes show that the volcanic rocks and basement rocks are ore source beds; due to the combined functions of volcanic hydrothermal and mantle ichor, uranium undergo multi-migration and enrichment and finally concentrated to large rich deposit. (authors)

  3. Excess europium content in Precambrian sedimentary rocks and continental evolution

    Science.gov (United States)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  4. Coping with the cold: an ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska

    Science.gov (United States)

    Ruthrauff, Daniel R.; Gill, Robert E.; Tibbitts, T. Lee

    2013-01-01

    Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.

  5. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    surface between the top of the vegetation and the rock matrix in active volcanic areas and Volcanic Supersites.

  6. Geologic setting of the St. Catherine basement rocks, Sinai, Egypt

    OpenAIRE

    Abdel Maksoud, M. A. [محمد علي عبدالمقصود; Khalek, M. L. Abdel; Oweiss, K. A.

    1993-01-01

    St. Catherine area, some 900 km in size, is dominated by basement rocks Encompassing old continental gneisses, metasediments, greenstone belt, calc-alkaline granites (G-II-granites), rift-related volcanics (RV), and anorogenic within plate granites (G-III-granites). The greenstone belt is composed of subduction-related volcanics (SV) intercalated with metasediments. These volcanics split into older group (moderately metamorphosed) and younger group (slightly metamorphosed). The calc-alkaline ...

  7. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  8. Volcanisme, activité anthropique et circulation des masses océaniques : leur influence respective sur la distribution des populations d'ostracodes dans la baie de Kagoshima (île de Kyushu, Japon)Impact of volcanism, human activities, and water mass circulation on the distribution of ostracod populations in Kagoshima Bay (Kyushu Island, southern Japan)

    Science.gov (United States)

    Bodergat, Anne-Marie; Oki, Kimihiko; Ishizaki, Kunihiro; Rio, Michel

    2002-11-01

    The distribution of ostracod populations in Kagoshima Bay (Japan) is analysed with reference to different environmental parameters. The bay is an area of volcanic activity of Sakurajima volcano under the influence of the Kuroshio Current. Most of the Head environment is occupied by an acidic water mass. Numbers of individual and species decrease from the Mouth of the bay towards the Basin and Head environments. In this latter, acidic water mass has a drastic effect on ostracod populations, whereas volcanic ashes and domestic inputs are not hostile. Ostracod distribution is influenced by the quality and structure of water masses. To cite this article: A.-M. Bodergat et al., C. R. Geoscience 334 (2002) 1053-1059.

  9. Self-potential anomalies preceding tectonic and volcanic crises

    International Nuclear Information System (INIS)

    Patella, D.

    1993-01-01

    In this paper I consider a possible physical mechanism capable of explaining self-potential anomalies, which are currently observed on the ground surface prior to tectonic and volcanic activities. A rock cracking-fluid diffusion-charge polarization model is described. The electrical charge polarization is assumed to be the electrokinetic effect due to invasion of fluid into new fissures, which open inside a stressed rock material because of dilatancy, in the case of tectonic activity, and of the rising of a magma intrusion in the case of volcanic activity. (author). 10 refs, 2 figs

  10. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  11. Correlation of upper Llandovery–lower Wenlock bentonites in the När (Gotland, Sweden and Ventspils (Latvia drill cores: role of volcanic ash clouds and shelf sea currents in determining areal distribution of bentonite

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2012-11-01

    Full Text Available Study of volcanic ash beds using biostratigraphy, sanidine composition and immobile elements within bentonites has manifested several well-established and some provisional correlations between Gotland and East Baltic sections. Energy dispersive X-ray fluorescence microanalysis of phenocrysts has revealed bentonites containing Mg-rich or Fe-rich biotite. Sanidine phenocrysts contain, in addition to a major Na and K component, often a few per cent of Ca and Ba. On the basis of new correlations the mapping of the distribution areas of bentonites has been extended from the East Baltic to Gotland. The bentonite distribution can be separated into two parts in North Latvia–South Estonia, indicating the existence of shelf sea currents in the Baltic Silurian Basin.

  12. A 150-ka-long record for the volcano-tectonic deformation of Central Anatolian Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Tonguç Uysal, I.; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin

    2017-04-01

    The Anatolian Block represents one of the most outstanding examples of intra-plate deformation related to continental collision. Deformation related to the convergence of the Afro-Arabian continent toward north gives rise to widespread and intense arc volcanism in the Central Anatolia. All the usual studies on dating the volcano-tectonic deformation of the region are performed entirely on volcanic events of the geological record resulted in eruptions. However, without volcanic eruption, magma migration and related fluid pressurization also generate crustal deformation. In the current study has been funded by the Scientific and Technological Research Council of Turkey with the project no. 115Y497, we focused on fracture systems and their carbonate veins around the Ihlara Valley (Cappadocia) surrounded by well-known volcanic centers with latest activities of the southern Central Anatolian Volcanic Province. We dated 37 samples using the Uranium-series technique and analyzed their isotope systematics from fissure veins, which are thought to be controlled by the young volcanism in the region. Our detailed fracture analyses in the field show that there is a regional dilatation as a result of a NW-SE striking extension which is consistent with the results of recent GPS studies. The Uranium-series results indicate that fracture development and associated carbonate vein deposition occurred in the last 150 ka. Carbon and oxygen isotope systematics have almost remained unchanged in the studied time interval. Although veins in the region were precipitated from fluids primarily of meteoric origin, fluids originating from water-rock interaction also contribute for the deposition of carbonate veins. The age distribution indicates that the crustal deformation intensified during 7 different period at about 4.7, 34, 44, 52, 83, 91, 149 ka BP. Four of these periods (4.7, 34, 91, 149 ka BP) correspond to the volcanic activities suggested in the previous studies. The three crustal

  13. The relational of Mesozoic volcanism to uranium mineralization in Guyuan-Hongshanzi area

    International Nuclear Information System (INIS)

    Wu Rengui; Xu Zhe; Yu Zhenqing; Jiang Shan; Shen Kefeng

    2011-01-01

    Based on the time of Mesozoic volcanism,the characteristic of major and trace element, and REE pattern of the volcanic rocks in Guyuan-Hongshanzi area, The Mesozoic volcanism can be divided into the early cycle and later cycle during the Early Cretaceous, and it's magma series is classified in two sub-series, one is alkaline series of trachyte dominated and another is subalkaline series of rhyolite dominated. The relations between Mesozoic volcanism and uranium mineralization is mainly shown in four aspects: (1) Uranium mineralization controlled by the coexist of two magma series; (2) Uranium mineralization controlled by superhypabyssal porphyry body in later cycle volcanism during the Early Cretaceous; (3) The porphyry body close to uranium mineralization,bearing the genesis characteristics of crust-mantle action; and (4) High Si and K content in the chemical composition of the mineralization volcanic rocks. (authors)

  14. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  15. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  16. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  17. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  18. Characteristics and genesis of porphyroclastic lava rock in Xiangshan

    International Nuclear Information System (INIS)

    Zhou Xiaohua; Wang Zhuning

    2012-01-01

    Due to the transitional characteristics of porphyroclastic lava rock in Xiangshan of Jiangxi province, there are a variety of views on its genesis, petrographic attribution. This is because the marginal facies of the porphyroclastic lava is with ignimbrite and tuff characteristics, its transition phase has the characteristics of lava, and its intermediate phase has the feature of sub-volcanic rocks, further more, different texture of the rocks bears transition relationship. By the study of mineral composition, REE pattern, trace elements, isotopes, we put forward that the porphyroclastic lava is formed by the remelting of basement metamorphic rocks. The rocks was believed to be formed in the environment similar to volcanics and subvolcanics, and quite different to plutonic rocks due to the features of low-structure of potassium feldspar phenocrysts and solution mechanism, because the porphyroclastic lava phenocrysts occurs as fragments and maybe related to cryptoexplosion. Therefore the rocks was believed to belong to the volcano extrusive facies. (authors)

  19. The volcanic and geochemical development of São Nicolau, Cape Verde Islands

    DEFF Research Database (Denmark)

    Duprat, Helene Inga; Holm, Paul Martin; Sherson, Jacob Friis

    2007-01-01

    We present 34 new age results from 40 Ar/39 Ar incremental heating analyses of groundmass separates from volcanic rocks from São Nicolau, Cape Verde. Combining the age results with field observations, we show that the volcanic activity that formed the island occurred in four separate stages: 1: >6...

  20. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  1. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid

  2. The Dalradian rocks of Scotland: an introduction

    OpenAIRE

    Stephenson, David; Mendum, John R.; Fettes, Douglas J.; Leslie, A. Graham

    2013-01-01

    The Dalradian Supergroup and its basement rocks, together with younger plutons, underpin most of the Grampian Highlands and the islands of the Inner Hebrides between the Highland Boundary and Great Glen faults. The Dalradian is a mid-Neoproterozoic to early-Ordovician sequence of largely clastic metasedimentary rocks, with some volcanic units, which were deformed and metamorphosed to varying degrees during the Early Palaeozoic Caledonian Orogeny. Sedimentation of the lower parts of the Da...

  3. Research into basic rocks types