Sample records for volcanic hazard predictions

  1. Volcanic hazard management in dispersed volcanism areas (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon


    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  2. Volcanic hazards to airports (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.


    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  3. Volcanic hazard assessment in monogenetic volcanic fields


    Bartolini, Stefania


    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  4. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.


    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  5. Volcanic hazards and aviation safety (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,


    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  6. A quantitative model for volcanic hazard assessment


    W. Marzocchi; Sandri, L.; Furlan, C


    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  7. Volcanic hazards at Mount Rainier, Washington (United States)

    Crandell, Dwight Raymond; Mullineaux, Donal Ray


    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  8. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited) (United States)

    Sparks, R. S.


    many sources of uncertainty in forecasting the areas that volcanic activity will effect and the severity of the effects. Uncertainties arise from: natural variability, inadequate data, biased data, incomplete data, lack of understanding of the processes, limitations to predictive models, ambiguity, and unknown unknowns. The description of volcanic hazards is thus necessarily probabilistic and requires assessment of the attendant uncertainties. Several issues arise from the probabilistic nature of volcanic hazards and the intrinsic uncertainties. Although zonation maps require well-defined boundaries for administrative pragmatism, such boundaries cannot divide areas that are completely safe from those that are unsafe. Levels of danger or safety need to be defined to decide on and justify boundaries through the concepts of vulnerability and risk. More data, better observations, improved models may reduce uncertainties, but can increase uncertainties and may lead to re-appraisal of zone boundaries. Probabilities inferred by statistical techniques are hard to communicate. Expert elicitation is an emerging methodology for risk assessment and uncertainty evaluation. The method has been applied at one major volcanic crisis (Soufrière Hills Volcano, Montserrat), and is being applied in planning for volcanic crises at Vesuvius.

  9. Volcanism and associated hazards: the Andean perspective (United States)

    Tilling, R. I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  10. Volcanism and associated hazards: The Andean perspective (United States)

    Tilling, R.I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  11. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling


    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  12. Volcanic hazards on the Island of Hawaii (United States)

    Mullineaux, Donal Ray; Peterson, Donald W.


    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  13. Volcanic air pollution hazards in Hawaii (United States)

    Elias, Tamar; Sutton, A. Jeff


    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  14. Integrating Community Volcanic Hazard Mapping, Geographic Information Systems, and Modeling to Reduce Volcanic Hazard Vulnerability (United States)

    Bajo Sanchez, Jorge V.

    This dissertation is composed of an introductory chapter and three papers about vulnerability and volcanic hazard maps with emphasis on lahars. The introductory chapter reviews definitions of the term vulnerability by the social and natural hazard community and it provides a new definition of hazard vulnerability that includes social and natural hazard factors. The first paper explains how the Community Volcanic Hazard Map (CVHM) is used for vulnerability analysis and explains in detail a new methodology to obtain valuable information about ethnophysiographic differences, hazards, and landscape knowledge of communities in the area of interest: the Canton Buenos Aires situated on the northern flank of the Santa Ana (Ilamatepec) Volcano, El Salvador. The second paper is about creating a lahar hazard map in data poor environments by generating a landslide inventory and obtaining potential volumes of dry material that can potentially be carried by lahars. The third paper introduces an innovative lahar hazard map integrating information generated by the previous two papers. It shows the differences in hazard maps created by the communities and experts both visually as well as quantitatively. This new, integrated hazard map was presented to the community with positive feedback and acceptance. The dissertation concludes with a summary chapter on the results and recommendations.

  15. Volcanic hazard assessment at Deception Island (United States)

    Bartolini, S.; Sobradelo, R.; Geyer, A.; Martí, J.


    Deception Island is the most active volcano of the South Shetland Islands (Antarctica) with more than twenty eruptions recognised over the past two centuries. The island was formed on the expansion axis of the Central Bransfield Strait and its evolution consists of constructive and destructive phases. A first a shield phase was followed by the construction of a central edifice and formation of the caldera with a final monogenetic volcanism along the caldera rim. The post-caldera magma composition varies from andesitic-basaltic to dacitic. The activity is characterised by monogenetic eruptions of low volume and short duration. The eruptions show a variable degree of explosivity, strombolian or phreatomagmatic, with a VEI 2 to 4, which have generated a wide variety of pyroclastic deposits and lavas. It is remarkable how many phases of phreatic explosive eruptions are associated to the emission of large ballistic blocks. Tephra record preserved in the glacier ice of Livingston Island or in marine sediments show the explosive power of the phreatomagmatic phases and the wide dispersal of its finest products in a great variety of directions of the prevailing winds. Also it is important to highlight the presence of different lahar deposits associated with some of these eruptions. In this contribution we present the guidelines to conduct a short-term and long-term volcanic hazard assessment at Deception Island. We apply probabilistic methods to estimate the susceptibility, statistical techniques to determine the eruption recurrence and eruptive scenario, and reproduce the effects of historical eruptions too. Volcanic hazard maps and scenarios are obtained using a Voris-based model tool (Felpeto et al., 2007) in a free Geographical Information System (GIS), a Quantum GIS.

  16. Volcanic hazards and their mitigation: Progress and problems (United States)

    Tilling, Robert I.


    At the beginning of the twentieth century, volcanology began to emerge as a modern science as a result of increased interest in eruptive phenomena following some of the worst volcanic disasters in recorded history: Krakatau (Indonesia) in 1883 and Mont Pelée (Martinique), Soufrière (St. Vincent), and Santa María (Guatemala) in 1902. Volcanology is again experiencing a period of heightened public awareness and scientific growth in the 1980s, the worst period since 1902 in terms of volcanic disasters and crises. A review of hazards mitigation approaches and techniques indicates that significant advances have been made in hazards assessment, volcano monitoring, and eruption forecasting. For example, the remarkable accuracy of the predictions of dome-building events at Mount St. Helens since June 1980 is unprecedented. Yet a predictive capability for more voluminous and explosive eruptions still has not been achieved. Studies of magma-induced seismicity and ground deformation continue to provide the most systematic and reliable data for early detection of precursors to eruptions and shallow intrusions. In addition, some other geophysical monitoring techniques and geochemical methods have been refined and are being more widely applied and tested. Comparison of the four major volcanic disasters of the 1980s (Mount St. Helens, U.S.A. (1980), El Chichón, Mexico (1982); Galunggung, Indonesia (1982); and Nevado del Ruíz, Colombia (1985) illustrates the importance of predisaster geoscience studies, volcanic hazards assessments, volcano monitoring, contingency planning, and effective communications between scientists and authorities. The death toll (>22,000) from the Ruíz catastrophe probably could have been greatly reduced; the reasons for the tragically ineffective implementation of evacuation measures are still unclear and puzzling in view of the fact that sufficient warnings were given. The most pressing problem in the mitigation of volcanic and associated hazards on

  17. Assessing volcanic hazard at Yucca Mountain using expert judgment

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K.J.; Perman, R.C. [Geomatrix Consultants, Inc., San Francisco, CA (United States); Nesbit, J. [Department of Energy, Las Vegas, NV (United States)] [and others


    A study to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain, termed the Probabilistic Volcanic Hazard Analysis (PVHA) project, is being sponsored by the U.S. Department of Energy (DOE). This assessment, which is focused on the volcanic hazard at the site, expressed as the probability of disruption of the potential repository, will eventually provide input to an assessment of volcanic risk, which expresses the probability of radionuclide release due to volcanic disruption. To ensure that a wide range of approaches are considered in the hazard analysis, judgments of members of an expert panel will be elicited. The results of the individual elicitations will be combined to develop an integrated assessment of the volcanic hazard that reflects the diversity of scientific interpretations. This paper outlines the hazard model components and the procedures for eliciting expert judgments.

  18. Volcanic hazards at Atitlan volcano, Guatemala (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.


    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  19. The Yucca Mountain probabilistic volcanic hazard analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K.J.; Perman, R.C.; Youngs, R.R. [Geomatrix Consultants, Inc., San Francisco, CA (United States)] [and others


    The Probabilistic Volcanic Hazard Analysis (PVHA) project, sponsored by the U.S. Department of Energy (DOE), was conducted to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain. The PVHA project is one of the first major expert judgment studies that DOE has authorized for technical assessments related to the Yucca Mountain project. The judgments of members of a ten-person expert panel were elicited to ensure that a wide range of approaches were considered for the hazard analysis. The results of the individual elicitations were then combined to develop an integrated assessment of the volcanic hazard that reflects the diversity of alternative scientific interpretations. This assessment, which focused on the volcanic hazard at the site, expressed as the probability of disruption of the potential repository, will provide input to an assessment of volcanic risk, which expresses the probability of radionuclide release due to volcanic disruption.

  20. Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration (United States)

    Thompson, M. A.; Lindsay, J. M.; Calder, E.


    All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.

  1. Video Games in Volcanic Hazard Communications: Methods & Issues (United States)

    Mani, Lara; Cole, Paul; Stewart, Iain


    Educational outreach plays a vital role in improving the resilience of vulnerable populations at risk from natural disasters. Currently, that activity is undertaken in many guises including the distribution of leaflets and posters, maps, presentations, education sessions and through radio and TV broadcasts. Such tried-and-tested communication modes generally target traditional stakeholder groups, but it is becoming increasingly important to engage with the new generation of learners who, due to advancements in technology, obtain information in ways different to their predecessors. That new generation is defined by a technological way of life and it remains a challenge to keep them motivated. On the eastern Caribbean island of St. Vincent, the La Soufriere Volcano lies in quiescence since the last eruption in 1979. Since then, an entire generation - over 56% of the population (Worldbank, 2015) - has little or no direct experience of a volcanic eruption. The island experiences, more frequently, other hazards (hurricanes, flooding, earthquakes landsliding), such that disaster preparedness measures give less priority to volcanic threats, which are deemed to pose less of a risk. With no accurate predictions to warn of the next eruption, it is especially important to educate residents about the potential of future volcanic hazards on the island, and to motivate them to prepare to mitigate their risk. This research critically examines the application of video games in supporting and enhancing existing public education and outreach programmes for volcanic hazards. St. Vincent's Volcano is a computer game designed to improve awareness and knowledge of the eruptive phenomena from La Soufriere that could pose a threat to residents. Within an interactive and immersive environment, players become acquainted with a 3D model of St. Vincent together with an overlay of the established volcanic hazard map (Robertson, 2005). Players are able to view visualisations of two historical

  2. Volcanic hazard assessment at the Campi Flegrei caldera


    Mastrolorenzo, G.; Pappalardo, L; C. Troise; S. Rossano; Panizza, A; G. De Natale


    Previous and new results from probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei, are assembled in a comprehensive assessment of volcanic hazards at the Campi Flegrei caldera, in order to compare the volcanic hazards related to the different types of events. Hazard maps based on a very wide set of numerical simulations, produced using field and laboratory data as input parameters relative to the whole range of fallout and pyrocl...

  3. Volcanic hazard impacts to critical infrastructure: A review (United States)

    Wilson, G.; Wilson, T. M.; Deligne, N. I.; Cole, J. W.


    Effective natural hazard risk assessment requires the characterisation of both hazards and vulnerabilities of exposed elements. Volcanic hazard assessment is at an advanced state and is a considerable focus of volcanic scientific inquiry, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analysing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. This paper reviews documented disruption and physical damage of critical infrastructure elements resulting from four volcanic hazards (tephra fall, pyroclastic density currents, lava flows and lahars) of eruptions in the last 100 years. We define critical infrastructure as including energy sector infrastructure, water supply and wastewater networks, transportation routes, communications, and critical components. Common trends of impacts and vulnerabilities are summarised, which can be used to assess and reduce volcanic risk for future eruptions. In general, tephra falls cause disruption to these infrastructure sectors, reducing their functionality, whilst flow hazards (pyroclastic density currents, lava flows and lahars) are more destructive causing considerable permanent damage. Volcanic risk assessment should include quantification of vulnerabilities and we challenge the volcanology community to address this through the implementation of a standardised vulnerability assessment methodology and the development and use of fragility functions, as has been successfully implemented in other natural hazard fields.

  4. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities (United States)

    Connor, Charles


    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  5. California's Vulnerability to Volcanic Hazards: What's at Risk? (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.


    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  6. Long term volcanic hazard analysis in the Canary Islands (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.


    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  7. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System (United States)

    Takarada, S.


    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  8. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.


    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  9. Volcanic hazard on Deception Island (South Shetland Islands, Antarctica) (United States)

    Bartolini, S.; Geyer, A.; Martí, J.; Pedrazzi, D.; Aguirre-Díaz, G.


    Deception Island is the most active volcano in the South Shetland Islands and has been the scene of more than twenty identified eruptions over the past two centuries. In this contribution we present the first comprehensive long-term volcanic hazard assessment for this volcanic island. The research is based on the use of probabilistic methods and statistical techniques to estimate volcanic susceptibility, eruption recurrence and the most likely future eruptive scenarios. We perform a statistical analysis of the time series of past eruptions and the spatial extent of their products, including lava flows, fallout, pyroclastic density currents and lahars. The Bayesian event tree statistical method HASSET is applied to calculate eruption recurrence, while the QVAST tool is used in an analysis of past activity to calculate the possibility that new vents will open (volcanic susceptibility). On the basis of these calculations, we identify a number of significant scenarios using the GIS-based VORIS 2.0.1 and LAHARZ software and evaluate the potential extent of the main volcanic hazards to be expected on the island. This study represents a step forward in the evaluation of volcanic hazard on Deception Island and the results obtained are potentially useful for long-term emergency planning.

  10. An assessment of future volcanic hazard at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States)


    Preliminary results and methods of a volcanic-hazards assessment for the proposed high-level nuclear-waste repository at Yucca Mountain are given. The most significant hazards are potential intersection of the repository by a basaltic dike, or structural disruption associated with dike intrusion. Two approaches are taken, which give similar results: homogeneous volcanic-source zones and spatial smoothing. The preliminary computed probabilities of intersection of the Yucca Mountain repository by a basaltic dike are in the range 10{sup -7} to 10{sup -8} per year.

  11. Volcanic hazard mapping for development planning


    Dunkley, P.N.; Young, S. R.


    It is estimated that more than 500 million people are at risk from the hazards posed by volcanoes. The potential therefore exists for major loss of life and damage to property in a number of regions, especially where large urban areas occur in proximity to dangerous volcanoes. As population pressures intensify, hazardous areas are likely to become increasingly developed, so raising the level of risk. In the case of major eruptions, losses to property, infrastructure and economic activity c...

  12. Database for potential hazards from future volcanic eruptions in California (United States)

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan


    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  13. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Harrington, C. [Los Alamos National Lab., NM (USA); Turrin, B.; Champion, D. [US Geological Survey (US); Wells, S.; Perry, F.; McFadden, L.; Renault, C. [New Mexico Univ., Albuquerque, NM (USA)


    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located between 8 and 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10-8 to 10-10 yr-1. These bounds are currently being reexamined based on new developments in the understanding of the evolution of small volume, basaltic volcanic centers including: Many of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity, The centers may be active for time spans exceeding 105 yrs, There is a decline in the volume of eruptions of the centers through time, and Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene. The authors classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 103 to 105 yrs. magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes.

  14. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.


    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1}. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10{sup 5} yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10{sup 3} to 10{sup 5} yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs.

  15. Resident perception of volcanic hazards and evacuation procedures (United States)

    Bird, D. K.; Gisladottir, G.; Dominey-Howes, D.


    Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP), in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in this region. Our data can be used

  16. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)


    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  17. Volcanic Hazard Maps; the results and progress made by the IAVCEI Hazard Map working group (United States)

    Calder, Eliza; Lindsay, Jan; Wright, Heather


    The IAVCEI Commission on Volcanic Hazards and Risk set up a working group on Hazard Maps in 2014. Since then, the group has led or co-organised three major workshops, and organized two thematic conference sessions. In particular we have initiated a series of workshops, named the "State of the Hazard Map" which we plan to continue (the first was held at COV8 (State of the Hazard Map 1) and second at COV9 (State of the Hazard Map 2) and the third will be held at IAVCEI General Assembly in Portland. The broad aim of these activities is to work towards an IAVCEI-endorsed considerations or guidelines document for volcanic hazard map generation. The workshops have brought together people from around the world working on volcanic hazard maps, and have had four primary objectives: 1) to review (and collect further data on) the diverse variety of methods and rationales currently used to develop maps; 2) to openly discuss approaches and experiences regarding how hazard maps are interpreted and used by different groups; 3) to discuss and prepare the IAVCEI Guidelines document; and lastly, 4) Discuss options for finalizing, publishing and disseminating the Guidelines document (e.g. wiki, report, open-source publication). This presentation will provide an update of the results and outcomes of those initiatives. This includes brief outcomes of the reviews undertaken, a survey that has been constructed in order to gather additional data, the planned structure for the guidelines documents and a summary of the key findings to date. The majority of the participants of these activities so far have come from volcano observatories or geological surveys, as these institutions commonly have primary responsibility for making operational hazard map. It is important however that others in the scientific community that work on quantification of volcanic hazard contribute to these guidelines. We therefore invite interested parties to become involved.

  18. Results of the probabilistic volcanic hazard analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, R.; Coppersmith, K.J.; Perman, R.C. [Geomatrix Consultants, Inc., San Francisco, CA (United States)


    The Probabilistic Volcanic Hazard Analysis (PVHA) project, sponsored by the U.S. Department of Energy (DOE), has been conducted to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain. The methodology for the PVHA project is summarized in Coppersmith and others (this volume). The judgments of ten earth scientists who were members of an expert panel were elicited to ensure that a wide range of approaches were considered. Each expert identified one or more approaches for assessing the hazard and they quantified their uncertainties in models and parameter values. Aggregated results are expressed as a probability distribution on the annual frequency of intersecting the proposed repository block. This paper presents some of the key results of the PVHA assessments. These results are preliminary; the final report for the study is planned to be submitted to DOE in April 1996.

  19. Hazardous indoor CO2 concentrations in volcanic environments. (United States)

    Viveiros, Fátima; Gaspar, João L; Ferreira, Teresa; Silva, Catarina


    Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.

  20. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission (United States)

    Krueger, Arlin J.


    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  1. Preliminary overview map of volcanic hazards in the 48 conterminous United States (United States)

    Mullineaux, D.R.


    Volcanic eruptions and related phenomena can be expected to occur in the Western United States, and in some places are potentially hazardous enough to be considered in longe-range land-use planning. But the immediate risk from volcanic hazards is low because eruptions are so infrequent in the conterminous United States that few, if any, occur during any one person 1s lifetime. Furthermore, severely destructive effects of eruptions, other than extremely rare ones of catastrophic scale, probably would be limited to areas within a few tens of kilometers downvalley or downwind from a volcano. Thus, the area seriously endangered by any one eruption would be only a very small part of the Western United States. The accompanying map identifies areas in which volcanic hazards pose some degree of risk, and shows that the problem is virtually limited to the far western States. The map also shows the possible areal distribution of several kinds of dangerous eruptive events and indicates the relative likelihood of their occurrence at various volcanoes. The kinds of events described here as hazards are those that can occur suddenly and with little or no warning; they do not include long-term geologic processes. Table 1 summarizes the origin and some characteristics of potentially hazardous volcanic phenomena. The map is diagrammatic. It does not show the specific location of the next expected eruption , because such an event cannot be reliably predicted . Instead, the map shows general areas or zones that, over a long period of time, are relatively likely to be affected in one or more places by various kinds of hazardous volcanic events. However, only a small part of one of these areas would be affected by any single eruption.

  2. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce


    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  3. Hazards posed by distal ash transport and sedimentation from extreme volcanic eruptions (United States)

    Sahagian, D. L.; Proussevitch, A. A.; White, C. M.; Klewicki, J.


    Volcanic ash injected into the upper troposphere and lower stratosphere poses a significant hazard to aviation and human security as a result of extreme, explosive eruptions. These have occurred in the recent geologic past, and are expected to occur again, now that modern society and its infrastructure is far more vulnerable than ever before. Atmospheric transport, dispersion, and sedimentation of Ash particles is controlled by fundamentally different processes than control other particles normally transported in the atmosphere due to their complex internal and external morphology. It is thus necessary to elucidate the fundamental processes of particle-fluid interactions in the upper troposphere and lower stratosphere, where most air traffic resides, and thereby enhance the capability of volcanic ash transport models to predict the ash concentration in distal regions that pose aviation and other hazards. Current Volcanic Ash Transport and Dispersion (VATD) models use simplistic stokes settling velocities for larger ash particles, and treat smaller ash particles (that are a large part of the hazard) merely as passive tracers. By incorporating the dynamics of fine ash particle-atmosphere interactions into existing VATD models provides the foundation for a much more accurate assessment framework applied to the hazard posed by specific future extreme eruptions, and thus dramatically reduce both the risk to air traffic and the cost of airport and flight closures, in addition to human health, water quality, agricultural, infrastructure hazards, as well as ice cap albedo and short term climate impacts.

  4. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.


    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  5. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird


    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  6. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.


    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2


    Energy Technology Data Exchange (ETDEWEB)

    K.J. Coppersmith


    A probabilistic volcanic hazard analysis (PVHA) was conducted in 1996 for the proposed repository at Yucca Mountain, Nevada. Based on data gathered by the Yucca Mountain Project over the course of about 15 years, the analysis integrated the judgments of a panel of ten volcanic experts using methods of formal expert elicitation. PVHA resulted in a probability distribution of the annual frequency of a dike intersecting the repository, which ranges from 10E-7 to 10E-10 (mean 1.6 x 10E-8). The analysis incorporates assessments of the future locations, rates, and types of volcanic dikes that could intersect the repository, which lies about 300 m below the surface. A particular focus of the analysis is the quantification of uncertainties. Since the 1996 PVHA, additional aeromagnetic data have been collected in the Yucca Mountain region, including a high-resolution low-altitude survey. A number of anomalies have been identified within alluvial areas and modeling suggests that some of these may represent buried eruptive centers (basaltic cinder cones). A program is currently underway to drill several of the anomalies to gain information on their origin and, if basalt, their age and composition. To update the PVHA in light of the new aeromagnetic and drilling data as well as other advancements in volcanic hazard modeling over the past decade, the expert panel has been reconvened and the expert elicitation process has been fully restarted. The analysis requires assessments of the spatial distribution of igneous events, temporal distributions, and geometries and characteristics of future events (both intrusive and extrusive). The assessments are for future time periods of 10,000 years and 1,000,000 years. Uncertainties are being quantified in both the conceptual models that define these elements as well as in the parameters for the models. The expert elicitation process is centered around a series of workshops that focus on the available data; alternative approaches to

  8. UK Hazard Assessment for a Laki-type Volcanic Eruption (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo


    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  9. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard (United States)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico M.; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd


    Pyroclastic flows represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Vesuvius that destroyed Pompeii (AD 79). Much of our knowledge of the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, including the particles contained in pyroclastic deposits, but the deposit characteristics are rarely used for quantifying the destructive potential of pyroclastic flows. By means of experiments, we validate a model that is based on data from pyroclastic deposits. The model allows the reconstruction of the current's fluid-dynamic behaviour. Model results are consistent with measured values of dynamic pressure in the experiments, and allow the quantification of the damage potential of pyroclastic flows.

  10. Volcanic hazard mapping in the Philippines using remote sensing and GIS (United States)

    Slob, Siefko; Fernandez-Alonso, Max; Kervyn, Francois; Bornas, Mariton


    One of the 22 active volcanoes in the Philippines is Mt. Bulusan. The volcano erupted more than 15 times recent history, but the majority of these eruptions were mild phreatic eruptions. Field evidence shows however that Bulusan is capable of producing lava flows, domes, pyroclastic currents and lahars. Bulusan therefore poses a potentially major risk to the dense population at the footslopes of the volcano. Hence the volcano is constantly monitored with seismic equipment. To mitigate the potential hazards posed by this volcano, a volcanic hazard mapping program has been undertaken. Because of lacking existing geological and geographical data, it was decided to use optical and radar remote sensing techniques to acquire additional data. A GIS database was created at a medium scale, which was used as a reference for the development of preliminary hazard maps for each of the volcanic hazards that have been identified. An elementary approach, making use of the 'Energy cone' concept, was followed to outline the areas subject to potential pyroclastic flows and surges. Lava- and lahar flow path predictions were made based on the Digital Terrain Model (DTM).

  11. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures (United States)

    Costa, Antonio


    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  12. UQ -- Fast Surrogates Key to New Methodologies in an Operational and Research Volcanic Hazard Forecasting System (United States)

    Hughes, C. G.; Stefanescu, R. E. R.; Patra, A. K.; Bursik, M. I.; Madankan, R.; Pouget, S.; Jones, M.; Singla, P.; Singh, T.; Pitman, E. B.; Morton, D.; Webley, P.


    As the decision to construct a hazard map is frequently precipitated by the sudden initiation of activity at a volcano that was previously considered dormant, timely completion of the map is imperative. This prohibits the calculation of probabilities through direct sampling of a numerical ash-transport and dispersion model. In developing a probabilistic forecast for ash cloud locations following an explosive volcanic eruption, we construct a number of possible meta-models (a model of the simulator) to act as fast surrogates for the time-expensive model. We will illustrate the new fast surrogates based on both polynomial chaos and multilevel sparse representations that have allowed us to conduct the Uncertainty Quantification (UQ) in a timely fashion. These surrogates allow orders of magnitude improvement in cost associated with UQ, and are likely to have a major impact in many related domains.This work will be part of an operational and research volcanic forecasting system (see the Webley et al companion presentation) moving towards using ensembles of eruption source parameters and Numerical Weather Predictions (NWPs), rather than single deterministic forecasts, to drive the ash cloud forecasting systems. This involves using an Ensemble Prediction System (EPS) as input to an ash transport and dispersion model, such as PUFF, to produce ash cloud predictions, which will be supported by a Decision Support System. Simulation ensembles with different input volcanic source parameters are intelligently chosen to predict the average and higher-order moments of the output correctly.

  13. Assessing the long-term probabilistic volcanic hazard for tephra fallout in Reykjavik, Iceland: a preliminary multi-source analysis (United States)

    Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús


    Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results

  14. State of volcanic ash dispersion prediction (United States)

    Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin


    The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.

  15. Geophysics of Volcanic Landslide Hazards: The Inside Story (United States)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.


    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in lahars and floods. Ice thickness measurements critical for flood and mudflow hazards studies are very sparse on most volcanoes. The HEM data are used to estimate ice thickness over portions of Mount Baker and Mount Adams volcanoes. The best estimates for ice thickness are obtained over relatively low resistivity (<600 ohm-m) ground for the main ice cap on Mount Adams and over most of the summit of Mount Baker. The modeled distribution of

  16. Felsic volcanism in a basic shield (El Hierro, Canary Islands). Implications in terms of volcanic hazards. (United States)

    Pedrazzi, Dario; Becerril Carretero, Laura; Martí Molist, Joan; Meletlidis, Stavros; Galindo Jiménez, Inés


    the style and the spatial extent of the studied eruption, a future event with similar characteristics would have a serious impact on the population, infrastructures, and economy of the island of El Hierro. For this reason it is clearly of great importance to assess the potential volcanic hazard on the island. This research was partially funded by the MINECO grant CGL2011-16144-E and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  17. Improved prediction and tracking of volcanic ash clouds (United States)

    Webley, P.; Mastin, L.


    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  18. Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli city (Southern Italy

    Directory of Open Access Journals (Sweden)

    I. Alberico


    Full Text Available The possible emplacement of pyroclastic fall and flow products from Campi Flegrei and Somma-Vesuvio represents a threat for the population living in Napoli city. For this area, the volcanic hazard was always partially investigated to define the hazard related to the Campi Flegrei or to the Somma-Vesuvio activity one at a time. A new volcanic hazard and risk assessment, at the municipality scale, as a vital tool for decision-making about territorial management and future planning, is presented here.

    In order to assess the hazard related to the explosive activity of both sources, we integrated the results of field studies and numerical simulations, to evaluate the future possibility for Napoli to be hit by the products of an explosive eruption. This is defined for the Somma Vesuvio central volcano through the sum of "field frequency" based on the thickness and distribution of past deposits (Lirer et al., 2001, and for the Campi Flegrei volcanic field by suitably processing simulated events based on numerical modelling (Alberico et al., 2002; Costa et al., 2009. Aiming at volcanic risk assessment, the hazard areas were joined with the exposure map, considered for our purposes as the economical value of artefacts exposed to hazard. We defined four risk classes, and argued that the medium and low-very low risk classes have the largest extent in Napoli municipality, whereas only few zones located in the eastern part of the city and in the westernmost coastal area show a high risk, owing to the correspondence of high economical value and high hazard.

  19. Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius (United States)

    Marzocchi, Warner; Sandri, Laura; Gasparini, Paolo; Newhall, Christopher; Boschi, Enzo


    We describe an event tree scheme to quantitatively estimate both long- and short-term volcanic hazard. The procedure is based on a Bayesian approach that produces a probability estimation of any possible event in which we are interested and can make use of all available information including theoretical models, historical and geological data, and monitoring observations. The main steps in the procedure are (1) to estimate an a priori probability distribution based upon theoretical knowledge, (2) to modify that using past data, and (3) to modify it further using current monitoring data. The scheme allows epistemic and aleatoric uncertainties to be dealt with in a formal way, through estimation of probability distributions at each node of the event tree. We then describe an application of the method to the case of Mount Vesuvius. Although the primary intent of the example is to illustrate the methodology, one result of this application merits special mention. The present emergency response plan for Mount Vesuvius is referenced to a maximum expected event (MEE), the largest out of all the possible eruptions within the next few decades. Our calculation suggest that there is a nonnegligible (1-20%) chance that the next eruption could be larger than that stipulated in the present MEE. The methodology allows all assumptions and thresholds to be clearly identified and provides a rational means for their revision if new data or information are obtained.

  20. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands) (United States)

    Becerril, Laura; Martí, Joan; Bartolini, Stefania; Geyer, Adelina


    Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (> 1.5 km3 DRE) and longest (6 years) eruption, the Timanfaya eruption (1730-1736), on the Canary Islands in historical times (last 600 years). This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  1. Fusion characteristics of volcanic ash relevant to aviation hazards (United States)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.


    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  2. Global Volcano Model: progress towards an international co-ordinated network for volcanic hazard and risk (United States)

    Loughlin, Susan


    GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. GVM is a network that aims to co-ordinate and integrate the efforts of the international volcanology community. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM. Activities currently include: design and development of databases of volcano data, volcanic hazards, vulnerability and exposure with internationally agreed metadata standards; establishment of methodologies for analysis of the data (e.g. hazard and exposure indices) to inform risk assessment; development of complementary hazards models and create relevant hazards and risk assessment tools. GVM acts through establishing task forces to deliver explicit deliverables in finite periods of time. GVM has a task force to deliver a global assessment of volcanic risk for UN ISDR, a task force for indices, and a task force for volcano deformation from satellite observations. GVM is organising a Volcano Best Practices workshop in 2013. A recent product of GVM is a global database on large magnitude explosive eruptions. There is ongoing work to develop databases on debris avalanches, lava dome hazards and ash hazard. GVM aims to develop the capability to anticipate future volcanism and its consequences.

  3. Probabilistic estimation of long-term volcanic hazard with assimilation of geophysics and tectonic data (United States)

    Jaquet, O.; Lantuéjoul, C.; Goto, J.


    Risk assessments in relation to the siting of potential geological repositories require the estimation of long-term volcanic hazard. Owing to their tectonic situation, many industrial regions around the world are concerned by such evaluation. For sites near volcanically active regions, the prevailing source of uncertainty is long-term volcanic hazard. The complexity and non-linearity of volcanic processes, the space-time variability in terms of distribution and intensity for volcanic events and the limited amount of information make probabilistic estimation of volcanic hazard ineluctable. The needs for reliable methodologies for volcanic and tectonic hazard assessments in Japan have stimulated the development of specific stochastic models for improving uncertainty characterization. A conditional Cox process with a multivariate potential was developed for the assimilation of geophysics and tectonic data (gravity data, GPS strain rate data and active faults). The theoretical basis and concepts of the proposed model are given and a methodological illustration is provided using data from the island of Kyushu.

  4. Volcanic hazards from Bezymianny- and Bandai-type eruptions (United States)

    Siebert, L.; Glicken, H.; Ui, T.


    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  5. Collaborative studies target volcanic hazards in Central America (United States)

    Bluth, Gregg J. S.; Rose, William I.

    Central America is the second-most consistently active volcanic zone on Earth, after Indonesia. Centuries of volcanic activity have produced a spectacular landscape of collapsed calderas, debris flows, and thick blankets of pyroclastic materials. Volcanic activity dominates the history, culture, and daily life of Central American countries.January 2002 marked the third consecutive year in which a diverse group of volcanologists and geophysicists conducted focused field studies in Central America. This type of multi-institutional collaboration reflects the growing involvement of a number of U.S. and non-U.S. universities, and of other organizations, in Guatemala and El Salvador (Table 1).

  6. Hazard assessment of explosive volcanism at Somma-Vesuvius

    National Research Council Canada - National Science Library

    G. Mastrolorenzo; L. Pappalardo


    ...) class, in the Vesuvius area and its surroundings including Naples. Particularly, eruptions with VEI 3 would produce a fallout hazard within about 10 km mostly east of the volcano and a PDC hazard within about 2 km from the crater...

  7. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation (United States)

    Ko, Bokyun; Yun, Sung-Hyo


    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  8. Earthquake and Volcanic Hazard Mitigation and Capacity Building in Sub-Saharan Africa (United States)

    Ayele, A.


    The East African Rift System (EARS) is a classic example of active continental rifting, and a natural laboratory setting to study initiation and early stage evolution of continental rifts. The EARS is at different stages of development that varies from relatively matured rift (16 mm/yr) in the Afar to a weakly extended Okavango Delta in the south with predicted opening velocity < 3 mm/yr. Recent studies in the region helped researchers to highlight the length and timescales of magmatism and faulting, the partitioning of strain between faulting and magmatism, and their implications for the development of along-axis segmentation. Although the human resource and instrument coverage is sparse in the continent, our understanding of rift processes and deep structure has improved in the last decade after the advent of space geodesy and broadband seismology. The recent major earthquakes, volcanic eruptions and mega dike intrusions that occurred along the EARS attracted several earth scientist teams across the globe. However, most African countries traversed by the rift do not have the full capacity to monitor and mitigate earthquake and volcanic hazards. Few monitoring facilities exist in some countries, and the data acquisition is rarely available in real-time for mitigation purpose. Many sub-Saharan Africa governments are currently focused on achieving the millennium development goals with massive infrastructure development scheme and urbanization while impending natural hazards of such nature are severely overlooked. Collaborations with overseas researchers and other joint efforts by the international community are opportunities to be used by African institutions to best utilize limited resources and to mitigate earthquake and volcano hazards.

  9. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.


    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  10. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory, and the recent volcanic eruption of El Hierro (United States)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.


    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 years, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterise the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. Shortly after the publication of this method an eruption in the island of El Hierro took place for the first time in historical times, supporting our method and contributing towards the validation of

  11. Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis (United States)

    Sobradelo, Rosa; Martí, Joan


    One of the most challenging aspects of managing a volcanic crisis is the interpretation of the monitoring data, so as to anticipate to the evolution of the unrest and implement timely mitigation actions. An unrest episode may include different stages or time intervals of increasing activity that may or may not precede a volcanic eruption, depending on the causes of the unrest (magmatic, geothermal or tectonic). Therefore, one of the main goals in monitoring volcanic unrest is to forecast whether or not such increase of activity will end up with an eruption, and if this is the case, how, when, and where this eruption will take place. As an alternative method to expert elicitation for assessing and merging monitoring data and relevant past information, we present a probabilistic method to transform precursory activity into the probability of experiencing a significant variation by the next time interval (i.e. the next step in the unrest), given its preceding evolution, and by further estimating the probability of the occurrence of a particular eruptive scenario combining monitoring and past data. With the 1991 Pinatubo volcanic crisis as a reference, we have developed such a method to assess short-term volcanic hazard using Bayesian inference.

  12. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system (United States)

    Takarada, S.


    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website ( was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  13. How to associate with volcanoes. Mitigation of volcanic hazards; Kazan tono tsukiaikata. Kazan saigai wo doyatte herasuka

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Y. [Geological Survey of Japan, Tsukuba (Japan)


    This paper describes how to deal with volcanic hazards. Basaltic lave such as in the Kilauea volcano flows quickly, while andesite lava such as in Mt. Asama and Mt. Sakurajima in Japan flows slowly. The pyroclastic flow in the Unzen area was a flow of high-temperature lava, pumice stones and gas driven to a high speed by gravity. The flow is so dangerous as it flows so quickly as allowing no time to escape from. Pyroclastic fall-outs and volcanic gases also give damages of different forms. Mountain collapse and debris avalanche in which a volcanic mountain collapses by eruption and earthquake acting as a trigger can also cause a large disaster. A debris flow may also do the same. Knowing the history of volcanic activities by making geological surveys may help judge what type of eruptive activities is prone to occur. On the other hand, the current conditions must be kept observed by performing seismic observations. Eruption itself, a large-scale lava flow and a pyroclastic flow cannot be prevented by using any hardware technique. Software measures are important to utilize more adequately areas and soil natures with high risks. The National Land Agency has prepared recently a guideline for making hazard prediction maps. It is important that both the administration and general residents utilize this guideline. 11 refs., 3 figs., 3 tabs.

  14. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.


    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.

  15. New strategies for volcanic hazard and risk assessment


    Biasse, Sébastien


    Volcanic eruptions are amongst the most intense and majestic display of natu- re’s power that can dramatically impact the Earth system and our modern societies. The recent 2010 eruption of Eyjafjallajökull demonstrated how eruptions of moderate size can impact modern globalised societies. Most of the European airspace was closed for a week and the air traffic over the North Atlantic was interrupted. 313 airports were closed, 104,000 flights cancelled, 10 million passengers stranded, causing a...

  16. Hazard assessment of explosive volcanism at Somma-Vesuvius

    National Research Council Canada - National Science Library

    G. Mastrolorenzo; L. Pappalardo


      A probabilistic approach based on the available volcanological data on past Somma-Vesuvius eruptions has been developed to produce hazard-zone maps for fallout, pyroclastic density currents (PDCs...

  17. Long-term volcanic hazard assessment on El Hierro (Canary Islands

    Directory of Open Access Journals (Sweden)

    L. Becerril


    Full Text Available Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted in the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyze the past eruptive activity (how, the spatial probability (where and the temporal probability (when of an eruption on the island. By studying the past eruptive behavior of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs. Finally, we estimate their probability of occurrence. The end result is the first total qualitative volcanic hazard map of the island.

  18. Long-term volcanic hazard assessment on El Hierro (Canary Islands) (United States)

    Becerril, L.; Bartolini, S.; Sobradelo, R.; Martí, J.; Morales, J. M.; Galindo, I.


    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.

  19. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.


    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  20. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.


    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt (<4 Myr) of the NTS region and southern Death Valley area, California, indicate an enrichment in incompatible elements, with the exception of rubidium. The conditional probability of recurring basaltic volcanism and disruption of a repository by that event is bounded by the range of 10{sup -8} to 10{sup -10} as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes.

  1. People's behaviour in the face of volcanic hazards: Perspectives from Javanese communities, Indonesia (United States)

    Lavigne, Franck; De Coster, Benjamin; Juvin, Nancy; Flohic, François; Gaillard, Jean-Christophe; Texier, Pauline; Morin, Julie; Sartohadi, Junun


    This paper is concerned with the way in which the Indonesian people living on the slopes or near active volcanoes behave in the face of volcanic threats. It explores the role of three factors in the shaping of this behaviour, e.g. risk perception, cultural beliefs and socio-economic constraints. The paper is mainly based on field data collected during the last 5 years on four volcanoes in Central Java, namely Sumbing, Sindoro, Dieng, and Merapi. The common assumption that hazard knowledge, risk perception and people's behaviour are closely related and conditional on volcanic activity is debatable in the Indonesian context. Factors that play a role in hazard knowledge—e.g. basic knowledge of volcanic processes, personal experience of volcanic crisis, time lapsed since the last volcanic eruption, etc.—differ from those that influence risk perception. Indeed, local people often underestimate the scientifically or statistically estimated risk. This poor risk perception is characterized by an approximate personal representation of the volcanic processes, an excess of trust in concrete countermeasures, the presence of a physical-visual obstructions, or cultural beliefs related to former eruptions. In addition, the commonly-acknowledged factors that influence hazard knowledge and/or risk perception may be at odds with the non hazard-related factors that prompt or force people to live in or to exploit areas at risk. These factors may be either socio-cultural—e.g., attachment to place, cultural beliefs, etc.—or social and socio-economical —e.g., standard of living, strength of people's livelihoods, well-being. These factors are fundamental in explaining the short-term behaviour in the face of a developing threat during a volcanic crisis.

  2. Long-term volcanic hazard assessment on El Hierro (Canary Islands)


    L. Becerril; S. Bartolini; R. Sobradelo; Martí, J.; Morales, J.M.; Galindo, I.


    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of differ...

  3. Long-term volcanic hazard assessment on El Hierro (Canary Islands)


    L. Becerril; S. Bartolini; R. Sobradelo; Martí, J.; Morales, J.M.; Galindo, I.


    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different erupt...

  4. An Interdisciplinary Approach to Volcanic Hazard Assessment, Risk Perception and Social Vulnerability (United States)

    Lechner, H. N.


    During a volcanic crisis there often exists a gap in communication among scientists, decision makers and members of the affected community. While the physical processes of these events are of scientific interest and may be well understood by the scientists involved, it is the communication of the risk and possible consequences to human population within the hazard zone that is most important during the actual time of a crisis. The use of hazard maps is often an integral tool employed by scientists to communicate risk to decision makers and the general public; unfortunately, in regions that are commonly affected by volcanic events, volcanic hazard maps may be too abstract for use by the general public. The objective of this paper is to open a discussion about an interdisciplinary approach to risk communication using a four-pronged methodology: 1) identification of multiple communities that have experienced a volcanic crisis over the last 20years and an examination of the events, decisions, responses and outcomes before, during and after; 2) participatory mapping and hazards assessments with community members and decision makers to define a community's geospatial orientation relative to the hazard source; 3) develop new or modify and incorporate existing hazard educational curricula; and 4) integrate a GIS and cartographic component that will produce quality maps that communicate both hazard and risk based on spatial and social variables. The long term goal is to develop a model that will allow us to effectively identify vulnerable populations, communicate risk and map both the hazard and the associated risk in a manner that can be interpreted at all levels in the decision making process.

  5. Time correlation by palaeomagnetism of the 1631 eruption of Mount Vesuvius. Volcanological and volcanic hazard implications (United States)

    Carracedo, J. C.; Principe, C.; Rosi, M.; Soler, V.


    The 1631 eruption of Mount Vesuvius was the most destructive episode in the recent volcanic history of Vesuvius and the last in which large pyroclastic flows were emitted. The controversy about whether lava flows were also generated in this eruption, as sustained in the mapping by Le Hon (1866) and by the interpretation by some authors (Burri et al., 1975; Rolandi et al., 1991) of eyewitness accounts, is important not only for a better understanding of the eruption but also for the implications in the prediction of volcanic hazards of this volcano, set in an overpopulated area with more than 3 million people potentially at risk. Short-period palaeomagnetic techniques (secular variation curve) have been applied to correlate lava flows interpreted as produced in the event of 1631 with the pyroclastic flow of this same eruption and other lava flows unquestionably emitted prior to this eruptive event. The model that best fits the results obtained suggests that the presumed 1631 lava flows were not the result of a single eruptive event but were, in fact, produced by several different eruptions. These lava flows also have a better palaeomagnetic correlation with the medieval lava flows than with the pyroclastic flow of 1631, whose juvenile pumice clasts have a well-defined single component magnetization that fits in the expected corresponding position of the secular variation curve for that age. The palaeomagnetic characteristics of the 1631 pyroclastic flow are compatible with a "hot" depositional temperature (apparently above the Curie point of magnetite, 585 °C) for the juvenile pumice fragments (magmatic fraction) and a "cold" deposition for the non-magmatic fraction. This suggests the lack of thermal equilibration during transport of the larger clasts, probably due to the short distance travelled by the pyroclastic flows. The main volcanological and volcanic hazard issues of this work are that the 1631 event was entirely explosive and that pyroclastic flow activity

  6. Effect of gas emissions from Tianchi volcano (NE China) on environment and its potential volcanic hazards

    Institute of Scientific and Technical Information of China (English)

    GUO; Zhengfu; LIU; Jiaqi; HAN; Jingtai; HE; Huaiyu; DAI; Guoliang; YOU; Haitao


    The Tianchi volcano in the Changbai Mountains is located on the boundary between China and North Korea. There are many times of eruptions of the Tianchi volcano during the Holocene. One of its large eruptions occurred around 1000 years ago dated by 14C method and historical records. Composition of products of the largest Tianchi volcanic eruption studied is characterized by comenditic Plinian fallout and unwelded ignimbrite, which are mainly distributed in China and North Korea. Caldera is about 4.4 km long and 3.4 km wide, which had filled with water (e.g. Tianchi Lake). The Tianchi volcanic cone is about 2700 m high above sea level. The Tianchi Lake is located on the summit of the volcanic cone, that is also highest peak of the Changbai Mountains in northeastern China. This study analyzed Cl, F, S and H2O concentrations of melt inclusions in the phenocryst minerals (anorthoclase and quartz) and co-existing matrix glasses using the electron microprobe and estimated environmental effect of Tianchi volcanic gases. The authors proposed a new method to evaluate future eruption of active volcano and estimate potential volcanic hazards based on contents of volatile emissions. Using this method, we made a perspective of future volcanic hazard in this region.

  7. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    Directory of Open Access Journals (Sweden)

    Mark Stirling


    Full Text Available We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration, and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g., short-term forecasting. The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  8. Evaluating effusive volcanic hazard from thermal remote-sensing: insight from analogue experiments (United States)

    Garel, Fanny; Kaminski, Edouard; Tait, Steve; Limare, Angela


    During an effusive volcanic eruption, crisis management is mainly based on the prediction of lava flow advance. The spreading of a lava flow depends mainly on its rheology and on the effusion rate, and can be modeled as a gravity current. A thermal proxy, based on the power radiated by lava flows and measured by remote-sensing, has been quite widely used in the literature to evaluate the effusion rate in near real-time. But firm physical bases are still lacking for such modeling to be used to assess robustly the time variation of the effusion rate. To gain a better understanding of the physical processes underlying lava flow advance and to better assess the validity of thermal proxies, we have performed and analysed analogue experiments using a solidifying wax material. Two aspects of volcanic hazard mitigation are studied: (i) how supply rate relates to surface thermal signal, and (ii) how flow advance relates to supply rate. We find that, for material injected at a constant rate, flow advance is discontinuous and occurs through a succession of stagnation phases and overflows. Stagnation phases are longer for lower supply rates, whereas flows with higher supply rates are less affected by solidification. The total radiated power also grows by stages, but the signal radiated by the hottest and liquid part of the flow reaches a quasi-steady state after some time. This plateau value is shown to scale with the theoretical thermal response of an isoviscous gravity current. The experimental scaling yields satisfying estimates of the effusion rate from the total radiated power measured on a range of basaltic lava flows. However, even though lava lava flow effusion rate can be estimated, our experiments show that prediction of lava advance remains difficult due to chaotic emplacement of solidifying flows.

  9. Combining Geological and Geophysical Data in Volcanic Hazard Estimation for Dominica, Lesser Antilles (United States)

    George, O.; Latchman, J. L.; Connor, C.; Malservisi, R.; Connor, L.


    Risk posed by volcanic eruptions are generally quantified in a few ways; in the short term geophysical data such as seismic activity or ground deformation are used to assess the state of volcanic unrest while statistical approaches such as spatial density estimates are used for long term hazard assessment. Spatial density estimates have been used in a number of monogenetic volcanic fields for hazard map generation and utilize the age, location and volumes of previous eruptions to calculate the probability of a new event occurring at a given location within this field. In a previously unpublished study, spatial density estimates of the Lesser Antilles volcanic arc showed the island of Dominica to have the highest likelihood of future vent formation. In this current study, this technique was used in combination with relocated seismic events occurring beneath Dominica within the last ~ 20 years as well as InSAR images of ground deformation to generate a hazard map which not only takes into consideration the past events but also the current state of unrest. Here, geophysical data serve as a weighting factor in the estimates with those centers showing more vigorous activity receiving stronger favorability in the assessment for future activity. In addition to this weighting, the bandwidth utilized in the 2D-radially symmetric kernel density function was optimized using the SAMSE method so as to find the value which best minimizes the error in the estimate. The end results of this study are dynamic volcanic hazards maps which will be readily updatable as changes in volcanic unrest occurs within the system.

  10. Submarine landslides: processes, triggers and hazard prediction. (United States)

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F


    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  11. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua (United States)

    Asahina, T.; Navarro, M.; Strauch, W.


    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  12. Combining observations and model simulations to reduce the hazard of Etna volcanic ash plumes (United States)

    Scollo, Simona; Boselli, Antonella; Coltelli, Mauro; Leto, Giuseppe; Pisani, Gianluca; Prestifilippo, Michele; Spinelli, Nicola; Wang, Xuan; Zanmar Sanchez, Ricardo


    Etna is one of the most active volcanoes in the world with a recent activity characterized by powerful lava fountains that produce several kilometres high eruption columns and disperse volcanic ash in the atmosphere. It is well known that, to improve the volcanic ash dispersal forecast of an ongoing explosive eruption, input parameters used by volcanic ash dispersal models should be measured during the eruption. In this work, in order to better quantify the volcanic ash dispersal, we use data from the video-surveillance system of Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, and from the lidar system together with a volcanic ash dispersal model. In detail, the visible camera installed in Catania, 27 km from the vent is able to evaluate the evolution of column height with time. The Lidar, installed at the "M.G. Fracastoro" astrophysical observatory (14.97° E, 37.69° N) of the Istituto Nazionale di Astrofisica in Catania, located at a distance of 7 km from the Etna summit craters, uses a frequency doubled Nd:YAG laser source operating at a 532-nm wavelength, with a repetition rate of 1 kHz. Backscattering and depolarization values measured by the Lidar system can give, with a certain degree of uncertainty, an estimation of volcanic ash concentration in atmosphere. The 12 August 2011 activity is considered a perfect test case because volcanic plume was retrieved by both camera and Lidar. We evaluated the mass eruption rate from the column height and used best fit procedures comparing simulated volcanic ash concentrations with those extracted by the Lidar data. During this event, powerful lava fountains were well visible at about 08:30 GMT and a sustained eruption column was produced since about 08:55 GMT. Ash emission completely ceased around 11:30 GMT. The proposed approach is an attempt to produce more robust ash dispersal forecasts reducing the hazard to air traffic during Etna volcanic crisis.

  13. BET-VH: A Probabilistic Tool for Long- and Short-Term Volcanic Hazard Assessment (United States)

    Marzocchi, W.; Selva, J.; Sandri, L.


    The purpose of this work is to present the probabilistic code BET-VH (Bayesian Event Tree for Volcanic Hazard) for long- and short-term volcanic hazard assessment. BET-VH follows the probabilistic scheme recently published by Marzocchi et al. (2004; Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt. Vesuvius, J. Geophys. Res., vol. 109, B11201, doi:10.1029/2004JB003155), and it includes the fuzzy logic to minimize the effects of the choice of some particular thresholds of the model. In brief, BET-VH is based on a Bayesian approach applied to an Event Tree scheme that produces the probability estimation of any possible event in which we are interested, using all available information including theoretical models, historical and geological data, and monitoring observations. The general sequence is to estimate an a priori probability distribution based upon theoretical knowledge, to modify that using data. The procedure deals with epistemic and aleatory uncertainties in a formal way, through the estimation of probability distributions at each node of the Event Tree. In order to illustrate the potentiality of BET-VH in managing emergencies and in land use planning, we present applications of the code to some explosive volcanoes.

  14. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches. (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.


    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population are aware about the governmental commitment to assume a strategic planning for mitigation, facing a volcanic emergency. Recently, university undergraduate students from Chile and Argentina are networking to acquire the skills needed for a better preparedness to the next volcanic eruption.

  15. Global Assessment of Volcanic Debris Hazards from Space (United States)

    Watters, Robert J.


    Hazard (slope stability) assessment for different sectors of volcano edifices was successfully obtained from volcanoes in North and South America. The assessment entailed Hyperion images to locate portions of the volcano that were hydrothermally altered to clay rich rocks with zones that were also rich in alunite and other minerals. The identified altered rock zones were field checked and sampled. The rock strength of these zones was calculated from the field and laboratory measurements. Volcano modeling utilizing the distinct element method and limit equilibrium technique, with the calculated strength data was used to assess stability and deformation of the edifice. Modeling results give indications of possible failure volumes, velocities and direction. The models show the crucial role hydrothermally weak rock plays in reducing the strength o the volcano edifice and the rapid identification of weak rock through remote sensing techniques. Volcanoes were assessed in the Cascade Range (USA), Mexico, and Chile (ongoing).

  16. Volcanic hazard assessment in the Phlegraean Fields: A contribution based on stratigraphic and historical data

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, M.; Santacroce, R. (Universita di Pisa (Italy) Gruppo Nazionale per la Vulcanologia, Roma (Italy))


    Phenomena occurring since 1982 in the Phlegraean fields, interpreted as precursors of a potential renewal of volcanic activity, have forced the authors to anticipate some conclusions of a volcanic-hazard study based on the reconstruction of past eruptions in the area, to serve as basis for civil defense preparedness plans. The eruptive history of the Phlegraean Fields suggests a progressive decrease with time in the strength of eruptive phenomena paralleling a migration of vents towards the center of the Phlegraean caldera. Studies concerning the volcanic risk zonation were therefore concentrated on activities during the last 4,500 years and two eruptions (Monte Nuovo and Agnano Monte Spina), that occurred in 1538 and 4,400 years B.P., respectively were selected as the reference eruptions from which possible eruption scenarios were drawn.

  17. International collaboration towards a global analysis of volcanic hazards and risk (United States)

    Loughlin, Susan; Duncan, Melanie; Volcano Model Network, Global


    Approximately 800 million people live within 100km of an active volcano and such environments are often subject to multiple natural hazards. Volcanic eruptions and related volcanic hazards are less frequent than many other natural hazards but when they occur they can have immediate and long-lived impacts so it is important that they are not overlooked in a multi-risk assessment. Based on experiences to date, it's clear that natural hazards communities need to address a series of challenges in order to move to a multi-hazard approach to risk assessment. Firstly, the need to further develop synergies and coordination within our own communities at local to global scales. Secondly, we must collaborate and identify opportunities for harmonisation across natural hazards communities: for instance, by ensuring our databases are accessible and meet certain standards, a variety of users will be then able to contribute and access data. Thirdly, identifying the scale and breadth of multi-risk assessments needs to be co-defined with decision-makers, which will constrain the relevant potential cascading/compounding hazards to consider. Fourthly, and related to all previous points, multi-risk assessments require multi-risk knowledge, requiring interdisciplinary perspectives, as well as discipline specific expertise. The Global Volcano Model network (GVM) is a growing international network of (public and private) institutions and organisations, which have the collective aim of identifying and reducing volcanic risks. GVM's values embody collaboration, scientific excellence, open-access (wherever possible) and, above all, public good. GVM highlights and builds on the best research available within the volcanological community, drawing on the work of IAVCEI Commissions and other research initiatives. It also builds on the local knowledge of volcano observatories and collaborating scientists, ensuring that global efforts are underpinned by local evidence. Some of GVM's most

  18. A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines

    Directory of Open Access Journals (Sweden)

    M. Neri


    Full Text Available Hazard mapping in poorly known volcanic areas is complex since much evidence of volcanic and non-volcanic hazards is often hidden by vegetation and alteration. In this paper, we propose a semi-quantitative method based on hazard event tree and multi-hazard map constructions developed in the frame of the FP7 MIAVITA project. We applied this method to the Kanlaon volcano (Philippines, which is characterized by poor geologic and historical records. We combine updated geological (long-term and historical (short-term data, building an event tree for the main types of hazardous events at Kanlaon and their potential frequencies. We then propose an updated multi-hazard map for Kanlaon, which may serve as a working base map in the case of future unrest. The obtained results extend the information already contained in previous volcanic hazard maps of Kanlaon, highlighting (i an extensive, potentially active ~5 km long summit area striking north–south, (ii new morphological features on the eastern flank of the volcano, prone to receiving volcanic products expanding from the summit, and (iii important riverbeds that may potentially accumulate devastating mudflows. This preliminary study constitutes a basis that may help local civil defence authorities in making more informed land use planning decisions and in anticipating future risk/hazards at Kanlaon. This multi-hazard mapping method may also be applied to other poorly known active volcanoes.

  19. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico) (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio


    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  20. Development and application of indices using large volcanic databases for a global hazard and risk assessment (United States)

    Brown, Sarah; Auker, Melanie; Cottrell, Elizabeth; Delgado Granados, Hugo; Loughlin, Sue; Ortiz Guerrero, Natalie; Sparks, Steve; Vye-Brown, Charlotte; Taskforce, Indices


    The Global Volcano Model (GVM) and IAVCEI were commissioned by the United Nations Office for Disaster Risk Reduction to produce a global assessment of volcanic hazard and risk for the Global Assessment Report 2015 (GAR15). This involved presenting both an introduction to volcanology and developing indices to assess hazard and risk on a global scale. To this end two open-access databases were of utmost importance: the Global Volcanism Program's Volcanoes of the World ( and the Large Magnitude Explosive Volcanic Eruptions database (LaMEVE; Indices were developed to enable a relative global assessment cognisant of data uncertainty and availability to broadly identify how hazard and risk varies around the world, the extent of monitoring and strengths and limitations in knowledge. The accessibility of both physical (e.g. volcano, eruption) and social data is crucial to our understanding of past behaviour, forecasting probable future behaviour and the potential impacts on communities. Such data is regionally highly variable and the eruption record worsens back in time. The Volcanic Hazard Index (VHI) was designed to quantify hazard levels globally, based on the Holocene eruption record. Vulnerability to eruptions was measured using the Population Exposure Index, which weights the population within 100 km of volcanoes by area and historical fatalities. The combination of these indices provides an indicator of population risk at individual volcanoes. The VHI was also combined with the total populations living within 30 km of volcanoes in each country to develop an understanding of the global distribution of volcano threat, and to rank countries by this measure. About half of the historically active volcanoes have insufficient information to adequately calculate VHI and these are highlighted as requiring future research. A database currently in development, GLOVOREMID, collates monitoring data to understand

  1. An Assessment of the Volcanic Hazards on the Island of Heimaey, Vestmannaeyjar, Iceland (United States)

    Andrew, R.


    The Vestmannaeyjar Islands, off the southern coast of Iceland, mark the most recent area of activity in the southward propagation of the East Volcanic Zone. The eruptions of the islands of Surtsey in 1963 to 1967 and of Heimaey in 1973 indicate a phase of increased activity. The Vestmannaeyjar Islands are thought to be developing into the central (composite) volcano within the volcanic system of the same name. The magma of the 1973 Heimaey eruption is of the same general composition, although slightly more evolved, as that of the 1963 Surtsey eruption. Increased volcanic activity in the area automatically creates increased risk to the island of Heimaey with a population of 5300. Thus a study of the evolution of the island up to and including the 1973 eruption was carried out and a hazard map compiled for the island. The hazard map encapsulates the areas of highest risk, as well as alternative evacuation routes from the island. The logistics of an evacuation of the island are an issue that needs to be addressed; following the favorable evacuation during the 1973 eruption, a false sense of security could be said to be in place. The study also looked at the awareness of the population and their education as regards the volcanic hazards in the area. The hazard map for the island recognizes that a future eruption could be further away from the populated areas of the island, though this does alter the risk involved. A future eruption could occur to the northeast of the island, in which case it would block the natural harbor. Aside from evacuation in an emergency, further questions arise from this study in relation to the future of the island and its predominant fishing industry. The main conclusions of the study are, first, that the people of the island feel that an imminent eruption of the Katla Volcano on the mainland poses perhaps the only future volcanic hazard. Katla Volcano being on the mainland, its future eruption will not much affect them. A second main


    Energy Technology Data Exchange (ETDEWEB)

    F.V. Perry


    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight

  3. Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner


    During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly

  4. Volcanic-glacial interactions: GIS applications to the assessment of lahar hazards (case study of Kamchatka

    Directory of Open Access Journals (Sweden)

    Ya. D. Muraviev


    Full Text Available On the Kamchatka peninsula, lahars or volcanogenic mudflows arise as a result of intensive snow melting caused by incandescent material ejected by volcanoes onto the surface. Such flows carrying volcanic ash and cinders together with lava fragments and blocks move with a speed up to 70 km/h that can result in significant destructions and even human victims. Formation of such water flows is possible during the whole year.Large-scale GIS «Hazards of lahars (volcanogenic mudflows» has been developed for some volcano group as well as for individual volcanoes on the peninsula in framework of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc». Main components of this database are the following: physic-geographical information on region of active volcanism and adjacent areas, on human settlements; data on the mudflow activity; data on distribution of the snow and ice reserves. This database is aimed at mapping of surrounding territories and estimating a hazard of lahars.For illustration the paper presents a map of the lahar hazards, results of calculations of the distances of ejects and maximal area of ejected material spreading in dependence on a character and power of an eruption. In future we plan to perform operational calculations of maximal possible volumes of such flows and areas of their spreading. The calculations will be made on the basis of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc».A volume of hard material carried by lahars onto slopes and down to foot of the Kluchevskaya volcanic massif is estimated on the basis of data on the snow and ice reserves on volcano slopes. On the average for many years, the snow accumulation in zones of the mudflow formations their volume often reaches 15–17 millions of cubic meters. Depending on the snowfall activity in different years this value may vary within 50% relative to the norm. Further on, calculations of maximal possible volume of such flows will be performed in a

  5. Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico) (United States)

    Alatorre-Ibargüengoitia, Miguel A.; Delgado-Granados, Hugo; Dingwell, Donald B.


    During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles' maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum "launching" conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  6. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard. (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina


    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  7. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.


    The Ceboruco Volcano (21° 7.688 N, 104° 30.773 W) is located in the northwestern part of the Tepic-Zacoalco graben. Its volcanic activity can be divided in four eruptive cycles differentiated by their VEI and chemical variations as well. As a result of andesitic effusive activity, the "paleo-Ceboruco" edifice was constructed during the first cycle. The end of this cycle is defined by a plinian eruption (VEI between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome built up in the interior of the caldera. The dome collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by the andesitic lava flows of the nineteenth century located in the southwestern flank of the volcano. Actually, moderate fumarolic activity occurs in the upper part of the volcano showing temperatures ranging between 20° and 120°C. Some volcanic high frequency tremors have also been registered near the edifice. Shows the updating of the volcanic hazard maps published in 1998, where we identify with SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east sides of the Ceboruco volcano. The population inhabiting the area is 70,224 people in 2010, concentrated in 107 localities and growing at an annual rate of 0.37%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by highway, high road, railroad, and the construction of new highway to Puerto Vallarta, which is built in the southeast sector of the volcano and electrical infrastructure that connect the Cajon and Yesca Dams to Guadalajara city. The most important economic activity in the area is agriculture, with crops of sugar cane (Saccharum officinarum), corn, and jamaica

  8. The Volcanic Hazards Simulation: Students behaving expert-like when faced with challenging, authentic tasks during a simulated Volcanic Crisis (United States)

    Dohaney, J. A.; kennedy, B.; Brogt, E.; Gravley, D.; Wilson, T.; O'Steen, B.


    This qualitative study investigates behaviors and experiences of upper-year geosciences undergraduate students during an intensive role-play simulation, in which the students interpret geological data streams and manage a volcanic crisis event. We present the development of the simulation, its academic tasks, (group) role assignment strategies and planned facilitator interventions over three iterations. We aim to develop and balance an authentic, intensive and highly engaging capstone activity for volcanology and geo-hazard courses. Interview data were collected from academic and professional experts in the fields of Volcanology and Hazard Management (n=11) in order to characterize expertise in the field, characteristics of key roles in the simulation, and to validate the authenticity of tasks and scenarios. In each iteration, observations and student artifacts were collected (total student participants: 68) along with interviews (n=36) and semi-structured, open-ended questionnaires (n=26). Our analysis of these data indicates that increasing the structure (i.e. organization, role-specific tasks and responsibilities) lessens non-productive group dynamics, which allows for an increase in difficulty of academic tasks within the simulation without increasing the cognitive load on students. Under these conditions, students exhibit professional expert-like behaviours, in particular in the quality of decision-making, communication skills and task-efficiency. In addition to illustrating the value of using this simulation to teach geosciences concepts, this study has implications for many complex situated-learning activities.

  9. Living in Harmony with Disaster: Exploring Volcanic Hazard Vulnerability in Indonesia

    Directory of Open Access Journals (Sweden)

    Sea Eun Cho


    Full Text Available This article illustrates the multi-faceted notion of hazard vulnerability and the complicated relations a community has with a hazardous area based on a joint urban planning and design studio between Seoul National University and Diponegoro University in 2014. The study focused on an area in Central Java, Indonesia, surrounded by four active volcanic mountains, and explored the economic, environmental and social vulnerability associated with the site. Although initially the study focused on drawing up and improving the relocation plan, it was soon discovered that eliminating environmental vulnerability by relocating residents to new sites may in fact increase their economic vulnerability. This led the study to embrace the concept of living in harmony with disaster. In conclusion, the results of the study are discussed in terms recognizing environmental hazards as a vehicle for understanding local perceptions, and utilizing these perceptions to suggest mitigation measures that are more responsive to the site at risk.

  10. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation (United States)

    Romero, R. W.; Guffanti, M.


    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  11. LAV@HAZARD: a web-GIS interface for volcanic hazard assessment

    Directory of Open Access Journals (Sweden)

    Giovanni Gallo


    Full Text Available Satellite data, radiative power of hot spots as measured with remote sensing, historical records, on site geological surveys, digital elevation model data, and simulation results together provide a massive data source to investigate the behavior of active volcanoes like Mount Etna (Sicily, Italy over recent times. The integration of these heterogeneous data into a coherent visualization framework is important for their practical exploitation. It is crucial to fill in the gap between experimental and numerical data, and the direct human perception of their meaning. Indeed, the people in charge of safety planning of an area need to be able to quickly assess hazards and other relevant issues even during critical situations. With this in mind, we developed LAV@HAZARD, a web-based geographic information system that provides an interface for the collection of all of the products coming from the LAVA project research activities. LAV@HAZARD is based on Google Maps application programming interface, a choice motivated by its ease of use and the user-friendly interactive environment it provides. In particular, the web structure consists of four modules for satellite applications (time-space evolution of hot spots, radiant flux and effusion rate, hazard map visualization, a database of ca. 30,000 lava-flow simulations, and real-time scenario forecasting by MAGFLOW on Compute Unified Device Architecture.

  12. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel


    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakes – Lakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  13. Hazard prediction discriminates between novice and experienced drivers


    Crundall, D


    Typical hazard perception tests often confound multiple processes in their responses. The current study tested hazard prediction in isolation to assess whether this component can discriminate between novice and experienced drivers. A variant of the hazard perception test, based on the Situation Awareness Global Assessment Technique, found experienced drivers to outperform novices across three experiments suggesting that the act of predicting an imminent hazard is a crucial part of the hazard-...

  14. An updated Probabilistic Seismic Hazard Analysis of the Trans Mexican Volcanic Belt, Mexico. (United States)

    Bayona, J. A., Sr.; Suarez, G.; Zuniga, R. R.; Jaimes, M. Á.


    The Trans Mexican Volcanic Belt is the volcanic arc located in Central Mexico. This zone is not as seismically active as some other regions in Mexico, such as the subduction zone along the Pacific coast. However, there is evidence of major historical earthquakes (M > 7) occurring on the volcanic belt near densely populated cities such as Mexico City, Guadalajara and Morelia. Furthermore, almost 50% of the population of the country lives in cities and towns located on the Volcanic Belt. Using empirical magnitude-Intensity regressions, data obtained from historical descriptions of earthquakes were calibrated with instrumental data to determine their moment magnitude in order to create a complete seismic catalogue of this geological province. We propose a methodology to solve the problem of merging both historical and instrumental datasets. The method consists of dividing our catalogue into three different segments, according to the temporary nature and magnitude of our records. This segmentation was made considering the cut-off magnitude of our catalogue. In this way, we determined three Gutenberg-Richter distributions and correlated them geometrical and statistically. Based on the local seismic sources and using Bayesian statistics as well as appropriate seismic waves attenuation models, we generate seismic hazard maps that would be useful for more than 40 million people that live in the zone.

  15. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico) (United States)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.


    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  16. Fractal analysis of experimentally generated pyroclasts: A tool for volcanic hazard assessment (United States)

    Perugini, Diego; Kueppers, Ulrich


    Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes. Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition. The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.

  17. Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations. (United States)

    Heggie, Travis W


    Volcano tourism and tourism to geothermal destinations is increasingly popular. If such endeavors are to be a sustainable sector of the tourism industry, tourists must be made aware of the potential health hazards facing them in volcanic environments. With the aim of creating awareness amongst the tourism industry and practitioners of travel medicine, this paper reviews the potential influences and effects of volcanic gases such as carbon dioxide (CO(2)), hydrogen sulfide (H(2)S), sulfur dioxide (SO(2)), and hydrogen chloride/hydrochloric acid (HCl). It also reviews the negative health impacts of tephra and ash, lava flows, landslides, and mudflows. Finally, future research striving to quantify the health risks facing volcano tourists is recommended.

  18. Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results (United States)

    Faria, B.; Fonseca, J. F. B. D.


    We describe a new geophysical network deployed in the Cape Verde Archipelago for the assessment and monitoring of volcanic hazards as well as the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression of eruptive activity as widely separated islands have erupted contemporaneously on geological timescales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo Island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions, including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that on Fogo, the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium-frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.

  19. Estimating building exposure and impact to volcanic hazards in Icod de los Vinos, Tenerife (Canary Islands) (United States)

    Marti, J.; Spence, R.; Calogero, E.; Ordoñez, A.; Felpeto, A.; Baxter, P.


    Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).

  20. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory (United States)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.


    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the distribution of repose

  1. Volcanic hazard assessment for the Canary Islands (Spain using extreme value theory

    Directory of Open Access Journals (Sweden)

    R. Sobradelo


    Full Text Available The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the

  2. Volcanic-glacial interactions: GIS applications to the assessment of lahar hazards (case study of Kamchatka)



    On the Kamchatka peninsula, lahars or volcanogenic mudflows arise as a result of intensive snow melting caused by incandescent material ejected by volcanoes onto the surface. Such flows carrying volcanic ash and cinders together with lava fragments and blocks move with a speed up to 70 km/h that can result in significant destructions and even human victims. Formation of such water flows is possible during the whole year.Large-scale GIS «Hazards of lahars (volcanogenic mudflows)» has been deve...

  3. Probabilistic hazard analysis of Citlaltépetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt (United States)

    De la Cruz-Reyna, Servando; Carrasco-Núñez, Gerardo


    Citlaltépetl or Pico de Orizaba is the highest active volcano in the North American continent. Although Citlaltépetl is at present in repose, its eruptive history reveals repetitive explosive eruptions in the past. Its relatively low eruption rate has favored significant population growth in areas that may be affected by a potential eruptive activity. The need of some criteria for hazards assessment and land-use planning has motivated the use of statistical methods to estimate the time and space distribution of volcanic hazards around this volcano. The analysis of past activity, from late Pleistocene to historic times, and the extent of some well-identified deposits are used to calculate the recurrence probabilities of eruptions of various size during time periods useful for land-use planning.

  4. Climate Prediction Center (CPC) U.S. Hazards Outlook (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center releases a US Hazards Outlook daily, Monday through Friday. The product highlights regions of anticipated hazardous weather during the...

  5. Probabilistic volcanic hazard assessments of Pyroclastic Density Currents: ongoing practices and future perspectives (United States)

    Tierz, Pablo; Sandri, Laura; Ramona Stefanescu, Elena; Patra, Abani; Marzocchi, Warner; Costa, Antonio; Sulpizio, Roberto


    Explosive volcanoes and, especially, Pyroclastic Density Currents (PDCs) pose an enormous threat to populations living in the surroundings of volcanic areas. Difficulties in the modeling of PDCs are related to (i) very complex and stochastic physical processes, intrinsic to their occurrence, and (ii) to a lack of knowledge about how these processes actually form and evolve. This means that there are deep uncertainties (namely, of aleatory nature due to point (i) above, and of epistemic nature due to point (ii) above) associated to the study and forecast of PDCs. Consequently, the assessment of their hazard is better described in terms of probabilistic approaches rather than by deterministic ones. What is actually done to assess probabilistic hazard from PDCs is to couple deterministic simulators with statistical techniques that can, eventually, supply probabilities and inform about the uncertainties involved. In this work, some examples of both PDC numerical simulators (Energy Cone and TITAN2D) and uncertainty quantification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature -PCQ- and Bayesian Linear Emulation -BLE-) are presented, and their advantages, limitations and future potential are underlined. The key point in choosing a specific method leans on the balance between its related computational cost, the physical reliability of the simulator and the pursued target of the hazard analysis (type of PDCs considered, time-scale selected for the analysis, particular guidelines received from decision-making agencies, etc.). Although current numerical and statistical techniques have brought important advances in probabilistic volcanic hazard assessment from PDCs, some of them may be further applicable to more sophisticated simulators. In addition, forthcoming improvements could be focused on three main multidisciplinary directions: 1) Validate the simulators frequently used (through comparison with PDC deposits and other simulators), 2) Decrease

  6. MED SUV TASK 6.3 Capacity building and interaction with decision makers: Improving volcanic risk communication through volcanic hazard tools evaluation, Campi Flegrei Caldera case study (Italy) (United States)

    Nave, Rosella; Isaia, Roberto; Sandri, Laura; Cristiani, Chiara


    In the communication chain between scientists and decision makers (end users), scientific outputs, as maps, are a fundamental source of information on hazards zoning and the related at risk areas definition. Anyway the relationship between volcanic phenomena, their probability and potential impact can be complex and the geospatial information not easily decoded or understood by not experts even if decision makers. Focusing on volcanic hazard the goal of MED SUV WP6 Task 3 is to improve the communication efficacy of scientific outputs, to contribute in filling the gap between scientists and decision-makers. Campi Flegrei caldera, in Neapolitan area has been chosen as the pilot research area where to apply an evaluation/validation procedure to provide a robust evaluation of the volcanic maps and its validation resulting from end users response. The selected sample involved are decision makers and officials from Campanian Region Civil Protection and municipalities included in Campi Flegrei RED ZONE, the area exposed to risk from to pyroclastic currents hazard. Semi-structured interviews, with a sample of decision makers and civil protection officials have been conducted to acquire both quantitative and qualitative data. The tested maps have been: the official Campi Flegrei Caldera RED ZONE map, three maps produced by overlapping the Red Zone limit on Orthophoto, DTM and Contour map, as well as other maps included a probabilistic one, showing volcanological data used to border the Red Zone. The outcomes' analysis have assessed level of respondents' understanding of content as displayed, and their needs in representing the complex information embedded in volcanic hazard. The final output has been the development of a leaflet as "guidelines" that can support decision makers and officials in understanding volcanic hazard and risk maps, and also in using them as a communication tool in information program for the population at risk. The same evaluation /validation process

  7. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes (United States)

    Carey, S.; Sigurdsson, H.


    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  8. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps (United States)

    Bevilacqua, Andrea; Isaia, Roberto; Neri, Augusto; Vitale, Stefano; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Esposti Ongaro, Tomaso; Iannuzzi, Enrico; Pistolesi, Marco; Rosi, Mauro


    Campi Flegrei is an active volcanic area situated in the Campanian Plain (Italy) and dominated by a resurgent caldera. The great majority of past eruptions have been explosive, variable in magnitude, intensity, and in their vent locations. In this hazard assessment study we present a probabilistic analysis using a variety of volcanological data sets to map the background spatial probability of vent opening conditional on the occurrence of an event in the foreseeable future. The analysis focuses on the reconstruction of the location of past eruptive vents in the last 15 ka, including the distribution of faults and surface fractures as being representative of areas of crustal weakness. One of our key objectives was to incorporate some of the main sources of epistemic uncertainty about the volcanic system through a structured expert elicitation, thereby quantifying uncertainties for certain important model parameters and allowing outcomes from different expert weighting models to be evaluated. Results indicate that past vent locations are the most informative factors governing the probabilities of vent opening, followed by the locations of faults and then fractures. Our vent opening probability maps highlight the presence of a sizeable region in the central eastern part of the caldera where the likelihood of new vent opening per kilometer squared is about 6 times higher than the baseline value for the whole caldera. While these probability values have substantial uncertainties associated with them, our findings provide a rational basis for hazard mapping of the next eruption at Campi Flegrei caldera.

  9. A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard

    Directory of Open Access Journals (Sweden)

    A. T. Mendoza-Rosas


    Full Text Available The assessment of volcanic hazard is the first step for disaster mitigation. The distribution of repose periods between eruptions provides important information about the probability of new eruptions occurring within given time intervals. The quality of the probability estimate, i.e., of the hazard assessment, depends on the capacity of the chosen statistical model to describe the actual distribution of the repose times. In this work, we use a mixture of exponentials distribution, namely the sum of exponential distributions characterized by the different eruption occurrence rates that may be recognized inspecting the cumulative number of eruptions with time in specific VEI (Volcanic Explosivity Index categories. The most striking property of an exponential mixture density is that the shape of the density function is flexible in a way similar to the frequently used Weibull distribution, matching long-tailed distributions and allowing clustering and time dependence of the eruption sequence, with distribution parameters that can be readily obtained from the observed occurrence rates. Thus, the mixture of exponentials turns out to be more precise and much easier to apply than the Weibull distribution. We recommended the use of a mixture of exponentials distribution when regimes with well-defined eruption rates can be identified in the cumulative series of events. As an example, we apply the mixture of exponential distributions to the repose-time sequences between explosive eruptions of the Colima and Popocatépetl volcanoes, México, and compare the results obtained with the Weibull and other distributions.

  10. Volcanic hazard assessment for disposal of high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.


    Volcanic hazards are evaluated through risk assessment, which is a product of probability and consequences. These studies have been completed for a potential waste disposal site in the Nevada Test Site (NTS). Cenozoic volcanism of the NTS region is divided into three distinct episodes. The youngest episode, 3.7 to 0.3 m.y., comprises scattered, monogenetic Strombolian centers of small volume (<1 km{sup 3}). Rates of volcanic activity for the NTS region are estimated to be about 10{sup -6} event/yr, based on vent counts through time and calculation of rates of magma production. The conditional probability of disruption of the possible waste disposal site at the NTS by basaltic volcanism is bounded by the range of 10{sup -8} to 10{sup -10} yr{sup -1}. Consequences, expressed as radiological release levels, were evaluated by assuming disruption of a repository by basaltic magmas fed along narrow dikes. Limits are placed on the volume of waste material incorporated in magma by analogy to the abundance of lithic fragments in basalt scoria and lava. These consequences would be increased if rising magma encountered water and produced magma/water vapor explosions, which can eject large volumes of country rock. Such a mechanism would be important only if the vapor explosions excavated a crater to repository depths (380 m) - an unlikely event, based on the dimensions of hydrovolcanic craters. The total expected release from disruption of a repository by basaltic magma for a 10{sup 4}-yr period is 1.8 Ci for spent fuel and 1.3 Ci for high-level waste. 34 references.

  11. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.


    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  12. Volcanic hazards: extent and severity of potential tephra hazard interpreted from layer Yn from Mount St. Helens, Washington (Abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Mullineaux, D.R.


    Volcanoes in the conterminous United States erupt infrequently but represent a significant potential hazard. Tephra eruptions can affect broader areas and reach population centers at greater distances from a volcano than any other kind of volcanic event. Lava flows, pyroclastic flows, mudflows, and floods can be more hazardous, but they seldom extend beyond a volcano except along valleys. Severity of risk from tephra depends in part on rate of fall and grain size, but mainly on thickness. Rates of fall from future eruptions in the Cascade Range must be estimated from historic eruptions elsewhere; potential grain sizes and thicknesses can be judged from past tephra eruptions of the Cascade volcanoes themselves. Pumice layer Yn, erupted by Mount St. Helens about BC 2000, exemplifies an extensive and thick tephra resulting from a single eruptive pulse of a Cascade volcano; in thickness and volume it resembles tephra of the type Plinian eruption of Vesuvius in Italy in 79 AD. Layer Yn trends NNE from Mount St. Helens in a long narrow lobe that is much thicker at any given distance than if the layer had formed a wide lobe. On broad ridges where it should be nearly unaffected by thickening or erosion, its present (compacted) thickness is as much as 70 cm at about 50 km from the volcano, 20 cm at 100 km, and 5 cm at about 280 km. Future eruptions like that of layer Yn could produce similar thicknesses in any easterly direction between about NNE and SSE downwind from Mount St. Helens or any other explosive Cascade volcano. Weaker winds toward the west indicate that potential thicknesses are less in westerly directions.

  13. ST-HASSET for volcanic hazard assessment: A Python tool for evaluating the evolution of unrest indicators (United States)

    Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan


    Short-term hazard assessment is an important part of the volcanic management cycle, above all at the onset of an episode of volcanic agitation (unrest). For this reason, one of the main tasks of modern volcanology is to use monitoring data to identify and analyse precursory signals and so determine where and when an eruption might occur. This work follows from Sobradelo and Martí [Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis. Journal of Volcanology and Geothermal Research 290, 111, 2015] who defined the principle for a new methodology for conducting short-term hazard assessment in unrest volcanoes. Using the same case study, the eruption on Pinatubo (15 June 1991), this work introduces a new free Python tool, ST-HASSET, for implementing Sobradelo and Martí (2015) methodology in the time evolution of unrest indicators in the volcanic short-term hazard assessment. Moreover, this tool is designed for complementing long-term hazard assessment with continuous monitoring data when the volcano goes into unrest. It is based on Bayesian inference and transforms different pre-eruptive monitoring parameters into a common probabilistic scale for comparison among unrest episodes from the same volcano or from similar ones. This allows identifying common pre-eruptive behaviours and patterns. ST-HASSET is especially designed to assist experts and decision makers as a crisis unfolds, and allows detecting sudden changes in the activity of a volcano. Therefore, it makes an important contribution to the analysis and interpretation of relevant data for understanding the evolution of volcanic unrest.

  14. Spatio-temporal occurrence of eruptions in El Hierro (Canary Islands). Sequential steps for long-term volcanic hazard assessment. (United States)

    Becerril, Laura; Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan; María Morales, José; Galindo, Inés; Geyer, Adelina


    Long term volcanic hazard assessment requires the attainment of several sequential steps, including the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios to get qualitative and representative results. Volcanic hazard assessment has not been yet systematically conducted in the Canary Islands, in spite of being a densely populated active volcanic region that receives millions of visitors per year. In this paper we focus our attention on El Hierro, the youngest and latest island affected by an eruption in the Canary Islands. We analyze the past eruptive activity (how), the spatial probability (where), and the temporal probability (when) on the island. Looking at the past eruptive behavior of the island, and assuming future eruptive patterns will be similar, we try to identify the most likely set of volcanic scenarios and corresponding hazards that could occur in the future (eg. lava flows, pyroclastic fallout, and pyroclastic density currents) and estimate their probability of occurrence. The final result shows the first volcanic hazard map of the island. This study represents a step forward in the evaluation of long term volcanic hazard at El Hierro Island with regard to previous studies. The obtained results should represent the main pillars on which to build risk mitigation programs as it is required for territorial planning and to develop emergency plans. This research was partially funded by IGME, CSIC and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO"), and MINECO grant GL2011-16144-E.

  15. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland (United States)

    Leadbetter, Susan J.; Hort, Matthew C.


    Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour 'explosive' eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption. Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.

  16. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques (United States)

    Saepuloh, Asep; Fitrianingtyas, Chintya


    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  17. Developing Sustainable Modeling Software and Necessary Data Repository for Volcanic Hazard Analysis -- Some Lessons Learnt (United States)

    Patra, A. K.; Connor, C.; Webley, P.; Jones, M.; Charbonnier, S. J.; Connor, L.; Gallo, S.; Bursik, M. I.; Valentine, G.; Hughes, C. G.; Aghakhani, H.; Renschler, C. S.; Kosar, T.


    We report here on an effort to improve the sustainability, robustness and usability of the core modeling and simulation tools housed in the collaboratory and used in the study of complex volcanic behavior. In particular, we focus on tools that support large scale mass flows (TITAN2D), ash deposition/transport and dispersal (Tephra2 and PUFF), and lava flows (Lava2). These tools have become very popular in the community especially due to the availability of an online usage modality. The redevelopment of the tools ot take advantage of new hardware and software advances was a primary thrust for the effort. However, as we start work we have reoriented the effort to also take advantage of significant new opportunities for supporting the complex workflows and use of distributed data resources that will enable effective and efficient hazard analysis.

  18. Doubly stochastic models for volcanic hazard assessment at Campi Flegrei caldera

    CERN Document Server

    Bevilacqua, Andrea


    This study provides innovative mathematical models for assessing the eruption probability and associated volcanic hazards, and applies them to the Campi Flegrei caldera in Italy. Throughout the book, significant attention is devoted to quantifying the sources of uncertainty affecting the forecast estimates. The Campi Flegrei caldera is certainly one of the world’s highest-risk volcanoes, with more than 70 eruptions over the last 15,000 years, prevalently explosive ones of varying magnitude, intensity and vent location. In the second half of the twentieth century the volcano apparently once again entered a phase of unrest that continues to the present. Hundreds of thousands of people live inside the caldera and over a million more in the nearby city of Naples, making a future eruption of Campi Flegrei an event with potentially catastrophic consequences at the national and European levels.

  19. Radon monitoring and hazard prediction in Ireland (United States)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie


    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (, indoor radon concentrations (, and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  20. Physical Volcanology and Hazard Analysis of a Young Volcanic Field: Black Rock Desert, Utah, USA (United States)

    Hintz, A. R.


    The Black Rock Desert volcanic field, located in west-central Utah, consists of ~30 small-volume monogenetic volcanoes with compositions ranging from small rhyolite domes to large basaltic lava flow fields. The field has exhibited bimodal volcanism for > 9 Ma with the most recent eruption of Ice Springs volcano ˜ 600 yrs ago. Together this eruptive history along with ongoing geothermal activity attests to the usefulness of a hazard assessment. The likelihood of a future eruption in this area has been calculated to be ˜ 8% over the next 1 Ka (95% confidence). However, many aspects of this field such as the explosivity and nature of many of these eruptions are not well known. The physical volcanology of the Tabernacle Hill volcano, suggests a complicated episodic eruption that may have lasted up to 50 yrs. The initial phreatomagmatic eruptions at Tabernacle Hill are reported to have begun ~14 Ka. This initial eruptive phase produced a tuff cone approximately 150 m high and 1.5 km in diameter with distinct bedding layers. Recent mapping and sampling of Tabernacle Hill's lava field, tuff cone and intra-crater deposits were aimed at better constraining the eruptive history, physical volcanology, and explosive energy associated with this eruption. Blocks ejected during the eruption were mapped and analyzed to yield minimum muzzle velocities of 60 - 70 meters per second. These velocities were used in conjunction with an estimated shallow depth of explosion to calculate an energy yield of ˜ 0.5 kT.

  1. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand (United States)

    Leonard, Graham S.; Stewart, Carol; Wilson, Thomas M.; Procter, Jonathan N.; Scott, Bradley J.; Keys, Harry J.; Jolly, Gill E.; Wardman, Johnny B.; Cronin, Shane J.; McBride, Sara K.


    . Hazard maps were integral to science communication during the crisis, but there is limited international best practice information available on hazard maps as communication devices, as most volcanic hazard mapping literature is concerned with defining hazard zones. We propose that hazard maps are only as good as the communications framework and inter-agency relationships in which they are embedded, and we document in detail the crisis hazard map development process. We distinguish crisis hazard maps from background hazard maps and ashfall prediction maps, illustrating the complementary nature of these three distinct communication mechanisms. We highlight issues that arose and implications for the development of future maps.

  2. Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand (United States)

    Cronin, Shane J.; Neall, V. E.; Lecointre, J. A.; Hedley, M. J.; Loganathan, P.


    The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m 3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995-1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF 6 phases, demonstrated to be the carriers of 'available' F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF 2, AlF 3 and Ca 5(PO 4) 3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.

  3. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska (United States)

    Fierstein, Judy; Hildreth, Wes


    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  4. PyBetVH: A Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps (United States)

    Tonini, Roberto; Sandri, Laura; Anne Thompson, Mary


    PyBetVH is a completely new, free, open-source and cross-platform software implementation of the Bayesian Event Tree for Volcanic Hazard (BET_VH), a tool for estimating the probability of any magmatic hazardous phenomenon occurring in a selected time frame, accounting for all the uncertainties. New capabilities of this implementation include the ability to calculate hazard curves which describe the distribution of the exceedance probability as a function of intensity (e.g., tephra load) on a grid of points covering the target area. The computed hazard curves are (i) absolute (accounting for the probability of eruption in a given time frame, and for all the possible vent locations and eruptive sizes) and (ii) Bayesian (computed at different percentiles, in order to quantify the epistemic uncertainty). Such curves allow representation of the full information contained in the probabilistic volcanic hazard assessment (PVHA) and are well suited to become a main input to quantitative risk analyses. PyBetVH allows for interactive visualization of both the computed hazard curves, and the corresponding Bayesian hazard/probability maps. PyBetVH is designed to minimize the efforts of end users, making PVHA results accessible to people who may be less experienced in probabilistic methodologies, e.g. decision makers. The broad compatibility of Python language has also allowed PyBetVH to be installed on the VHub cyber-infrastructure, where it can be run online or downloaded at no cost. PyBetVH can be used to assess any type of magmatic hazard from any volcano. Here we illustrate how to perform a PVHA through PyBetVH using the example of analyzing tephra fallout from the Okataina Volcanic Centre (OVC), New Zealand, and highlight the range of outputs that the tool can generate.

  5. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment (United States)

    Geyer, A.; Martí, J.; Villaseñor, A.


    In volcanic areas, the existing stress field is a key parameter controlling magma generation, location and geometry of the magmatic plumbing systems and the distribution of the resulting volcanism at surface. Therefore, knowing the stress configuration in the lithosphere at any scale (i.e. local, regional and plate-scale) is fundamental to understand the distribution of volcanism and, subsequently, to interpret volcanic unrest and potential tectonic controls of future eruptions. The objective of the present work is to provide a first-order estimate of the plate-scale tectonic stresses acting on the Canary Islands, one of the largest active intraplate volcanic regions of the World. In order to obtain the orientation of the minimum and maximum horizontal compressive stresses, we perform a series of 2D finite element models of plate scale kinematics assuming plane stress approximation. Results obtained are used to develop a regional model, which takes into account recognized archipelago-scale structural discontinuities. Maximum horizontal compressive stress directions obtained are compared with available stress, geological and geodynamic data. The methodology used may be easily applied to other active volcanic regions, where a first order approach of their plate/regional stresses can be essential information to be used as input data for volcanic hazard assessment models.

  6. Volcanic hazard zonation of the Nevado de Toluca volcano, México (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.


    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  7. The role of petrology in defining volcanic hazards and designing monitoring systems (United States)

    Smith, I. E.; Turner, M. B.; Price, R. C.; Cronin, S. J.


    Petrology is the study of magmatic systems; physical volcanology investigates processes of eruption. Physical volcanology provides the pre-eminent underpinning of the practical business of defining hazard scenarios, planning mitigation and designing monitoring strategies. Recent research in a variety of volcanic settings has demonstrated an important link between the petrologic processes that at a fundamental level drive the behavior of volcanoes and the processes that determine the eruptive style of a volcano. Together these define the hazards that arise from volcanic eruptions. Petrological studies of volcanoes are typically based on a study of lava because coherent rock is less vulnerable to weathering and alteration and is more durable in the geological record. Pyroclastic materials are commonly friable and glassy, are more easily eroded, and are more difficult to use in the analytical techniques that have become the staple basis of petrological studies. However, pyroclastic materials represent a complementary but different part of the magmatic story and it is only by integrating both effusive and explosive components of an eruption sequence that a complete picture of the behavior of the system feeding a volcano can be gained. Andesitic strato-cones are made up of a cone-building facies consisting mainly of primary magmatic products and usually dominated by lava flows because pyroclastic material is easily eroded from the slopes of a steep cone. The surrounding ring plain facies includes primary pyroclastic deposits but is typically dominated by redistributed material in the form of debris flow and lahar deposits together with reworked fluvial material. The deposits of each of these two facies are assembled on different time scales and they contain different aspects of the record of the evolution of the magmatic system that gave rise to them. An important practical consequence of this is that different parts of the geochemical record of the system can occur in

  8. Spatial analysis of the Los Tuxtlas Volcanic Field (LTVF) and hazard implications (United States)

    Sieron, K.; Alvarez, D.


    The Tuxtlas volcanic field (LTVF) is located in the southern part of Veracruz state (Mexico) adjacent to the Gulf of Mexico and consists of 4 large volcanic edifices, 3 of them considered inactive and the active San Martin shield volcano. The monogenetic volcanoes belonging to the younger series are represented by hundreds of scoria cones and tens of maars and tuff cones, all of which show ages less than 50,000 years. In comparison to other monogenetic fields, the scoria cone density is quite elevated with 0.2 cones/km2, although the highest scoria cone density can be observed along narrow zones corresponding to the main NW-SE fault system where it reaches 0.7 cones/km2. Scoria cones occur as single edifices and in clusters and show individual edifice volumes of 0.0009 km3 to 0.2 km3, cone heights varying between 21.39 m and 299.21 m. Lava flows associated to scoria cones originate especially along the main NW-SE trending main fault and present run out distances up to 11 kilometers. Only few radiocarbon and Ar-Ar dates exist for the LTVF, mostly because of the high cone density and dense vegetation of the Los Tuxtlas region. Therefore, morphological parameters were used to estimate relative ages. In consequence, the scoria cones can be subdivided into four age groups; the members of each group do not seem to follow any particular trend and are rather scattered throughout the field. The explosive (or wet) equivalents of the mainly basaltic strombolian scoria cones are explosion craters, such as maars and tuff cones, show the highest concentration along the border of the two main geological units to the S of the area with the highest scoria cone concentration. Although the relatively small scale strombolian eruptions associated to scoria cone emplacement do not represent a considerable hazard for the surrounding population, lava flows can easily extent to the main urban zones accommodating about 262,384 inhabitants. Within the area prone to maar formation, the hazard

  9. Hazard assessment at Teide-Pico Viejo volcanic complex (Tenerife, Canary Islands) (United States)

    Marti, Joan; Sobradelo, Rosa; Felpeto, Alicia


    Mid to long-term hazard assessment is conducted at Teide-Pico Viejo volcanic complex as a first step to evaluate volcanic risk in Tenerife, a densely populated island that is one of the biggest tourist destinations in Europe. Teide-Pico Viejo stratovolcanoes started to grow up in the interior of the Las Cañadas caldera, in the central part of Tenerife, about 190 ka ago, after the formation of the youngest sector of the caldera. Since then they have produced more than 150 km3 of rocks which represent a complete basanite to phonolite series. Eruptive activity at Teide-Pico Viejo complex has been traditionally considered as mostly effusive, but new field data has revealed that explosive activity of phonolitic and basaltic magmas, including plinian and subplinian eruptions and the generation of a wide range of PDCs, has also been significant, particularly during the last 30 ka. Most of the Teide products have been emplaced towards the north, inside the Icod and La Orotava valleys, or at the interior of the caldera, while towards the south the caldera wall has stopped the emplacement of such products from going further. The last eruption from the Teide-Pico Viejo central vents, the Lavas Negras eruption, took place about 1000 years ago, but younger eruptive episodes have occurred along the flanks of these stratovolcanoes. Despite the occurrence of numerous eruptions during the last 30 ka and the existence of unequivocal signs of activity in historical times (fumaroles, seismicity) and, even, a clear unrest episode that started in 2004 and is still ongoing, Teide-Pico Viejo stratovolcanoes have not been considered as a major threat by some scientists and also by the local authorities who have dedicated minimum attention to them in the recently approved regional emergency plan. If this view prevails it is obvious that risk mitigation in Tenerife will not succeed. In order to contribute to change that view on the danger potential of Teide-Pico Viejo, and to insist on the

  10. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner


    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  11. The VORISA Project: An Integrated Approach to Assessing Volcanic Hazard and Risk in the Kingdom of Saudi Arabia (United States)

    Lindsay, J. M.; Moufti, R.


    The Kingdom of Saudi Arabia has numerous large monogenetic volcanic fields, known locally as 'Harrat'. The largest of these, Harrat Rahat, produced a basaltic fissure eruption in 1256 AD with lava flows travelling within 20 km of the Islamic holy city Al-Madinah. With over 900 visible basaltic and trachytic vents and periodic seismic swarms indicating stalled eruptions, an understanding of the risk of future eruptions in this volcanic field is vital. To systematically address this need we developed the Volcanic Risk in Saudi Arabia (VORISA) Project, a 3-year, multi-disciplinary international research collaboration that integrates geological, geophysical, hazard and risk studies. Detailed mapping and geochemical studies are being combined with new and existing age determinations to determine the style and sequence of events during past basaltic and trachytic eruptions. Data from gravity and magnetotelluric surveys are being integrated with microearthquake data from an 8-station borehole seismic research array to geophysically characterise the structure and nature of the crust, and thus constrain possible physical controls on magma propagation. All available data are being synthesised in hazard models to determine patterns in eruption frequency, magnitude, and style of past activity, as well as the probable location and style of a future event. Combined with geospatial vulnerability data, these hazard models, which include a reconstruction of the 1256 AD eruption, enable us to calculate and communicate volcanic risk to the city of Al-Madinah.

  12. People living under threat of volcanic hazard in southern Iceland: vulnerability and risk perception

    Directory of Open Access Journals (Sweden)

    G. Jóhannesdóttir


    Full Text Available Residents in the village of Vík and in the farming community of Álftaver in southern Iceland are living with the threat of volcanic hazards. The highly active subglacial volcano Katla has erupted approximately twice per century since the beginning of settlement around 874 AD. The last major eruption was in 1918 and Katla has recently entered an agitated stage. The purpose of this research was to (1 review residents' responses in relation to vulnerability, (2 examine their risk perception, preparedness and mitigation in relation to an eruption of Katla, and (3 investigate the public and the representative of the local authorities and emergency manager's knowledge of the official evacuation plan. In 2004, we conducted in-depth, face-to-face interviews with local residents using a snowball sample technique. All participants were permanent residents of the two communities, between the ages of 25–95 and most had lived in the area their entire lives. Regardless of the residents' knowledge about past volcanic activity of Katla and the associated future risk, many residents were doubtful about the imminent eruption forecast by scientists and they believed that the volcano is no longer active. In both communities, different social, cultural and economic factors played a central role in how people perceived natural hazards and how they dealt with the fact that their lives and livelihoods could be at risk. The participants had good knowledge about the existing evacuation plan and had participated in evacuation exercises. However, they had not made personal mitigation or preparedness plans in the event of a future eruption. In contrast to the residents of Vík, the inhabitants in Álftaver are concerned about the evacuation process and found it very confusing; they neither found the emergency plan nor the proposed methods for risk communication relevant for their farming community. The perception of the inhabitants, especially in Álftaver, does not

  13. Suitability of energy cone for probabilistic volcanic hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei (Italy) (United States)

    Tierz, Pablo; Sandri, Laura; Costa, Antonio; Zaccarelli, Lucia; Di Vito, Mauro Antonio; Sulpizio, Roberto; Marzocchi, Warner


    Pyroclastic density currents (PDCs) are gravity-driven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ˜8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.

  14. The Geologic Basis for Volcanic Hazard Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry


    Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} per year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near

  15. Assessment and prediction of debris-flow hazards (United States)

    Wieczorek, Gerald F.; ,


    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  16. Volcanic Hazard Map as a Tool of City Planning: Experiences at Galeras Volcano and the county of Pasto, Colombia. (United States)

    Calvache, M. L.


    Large populated areas located near active volcanoes emphasize the importance to take effective actions towards risk reduction. A volcanic hazard map is believed to be the first step in order to inform government officials, private institutions and community about the danger that poses a particular volcano. The hazard map is a tool that must be used to evaluate risk and elaborate risk map. The risk map must be used by decision makers to take measurements about the land-use accordingly with the hazard present in the area and to prepare contingency plans. In 1998 and 1999 the Colombian government pass a law, where every county of the country has to have a plan of land-use and development (POT) for the following 10 years. The POT must consider natural hazard and risk such as seismicity, landslide and volcanic activity. Without the plan, the county will not receive any economical support from the central government. In the county of Pasto, the largest city in the influence zone of Galeras volcano, the hazard map has been used to promote educational plan in schools, increasing public awareness of Galeras and its hazard, advise and persuade decision makers to consider Galeras hazard in the city development plans. On the other hand, the hazard map has been mistaken as a risk map and it has originated opposition due to the measurements taken as a consequence of the map. This presentation deal with the gain experience of using the hazard map as a tool of information and planing and the confrontation that any decision implies with political, social and economic interest.

  17. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts (United States)

    Krotkov, Nickolay A.; Habib, Shahid; da Silva, Arlindo; Hughes, Eric; Yang, Kai; Brentzel, Kelvin; Seftor, Colin; Li, Jason Y.; Schneider, David; Guffanti, Marianne; Hoffman, Robert L.; Myers, Tim; Tamminen, Johanna; Hassinen, Seppo


    Volcanic eruptions can inject significant amounts of sulfur dioxide (SO2) and volcanic ash into the atmosphere, posing a substantial risk to aviation safety. Ingesting near-real time and Direct Readout satellite volcanic cloud data is vital for improving reliability of volcanic ash forecasts and mitigating the effects of volcanic eruptions on aviation and the economy. NASA volcanic products from the Ozone Monitoring Insrument (OMI) aboard the Aura satellite have been incorporated into Decision Support Systems of many operational agencies. With the Aura mission approaching its 10th anniversary, there is an urgent need to replace OMI data with those from the next generation operational NASA/NOAA Suomi National Polar Partnership (SNPP) satellite. The data provided from these instruments are being incorporated into forecasting models to provide quantitative ash forecasts for air traffic management. This study demonstrates the feasibility of the volcanic near-real time and Direct Readout data products from the new Ozone Monitoring and Profiling Suite (OMPS) ultraviolet sensor onboard SNPP for monitoring and forecasting volcanic clouds. The transition of NASA data production to our operational partners is outlined. Satellite observations are used to constrain volcanic cloud simulations and improve estimates of eruption parameters, resulting in more accurate forecasts. This is demonstrated for the 2012 eruption of Copahue. Volcanic eruptions are modeled using the Goddard Earth Observing System, Version 5 (GEOS-5) and the Goddard Chemistry Aerosol and Radiation Transport (GOCART) model. A hindcast of the disruptive eruption from Iceland's Eyjafjallajokull is used to estimate aviation re-routing costs using Metron Aviation's ATM Tools.

  18. The impact of stratospheric volcanic aerosol on decadal-scale climate predictions (United States)

    Timmreck, Claudia; Pohlmann, Holger; Illing, Sebastian; Kadow, Christopher


    The possibility of a large future volcanic eruption provides arguably the largest uncertainty concerning the evolution of the climate system on the time scale of a few years; but also the greatest opportunity to learn about the behavior of the climate system, and our models thereof. So the question emerges how large will the uncertainty be for future decadal climate predictions if no volcanic aerosol is taken into account? And how strong has volcanic aerosol affected decadal prediction skill on annual and multi-year seasonal scales over the CMIP5 hindcast period? To understand the impact of volcanic aerosol on multi-year seasonal and decadal climate predictions we performed CMIP5-type hindcasts without volcanic aerosol using the German MiKlip prediction system system baseline 1 from 1961 to 1991 and compared them to the corresponding simulations including aerosols. Our results show that volcanic aerosol significantly affects the prediction skill for global mean surface air temperature in the first five years after strong volcanic eruptions. Also on the regional scale a volcanic imprint on decadal-scale variability is detectable. Neglecting volcanic aerosol leads to a reduced prediction skill over the tropical and subtropical Atlantic, Indic and West Pacific but to an improvement over the tropical East-Pacific, where the model has in general no skill. Multi-seasonal differences in the skill for seasonal-mean temperatures are evident over Continental Europe with significant skill loss due to neglection of volcanic aerosol in boreal winter over central Europe, Scandinavia and over south-eastern Europe and the East-Mediterranean in boreal summer.

  19. Preparing for Volcanic Hazards: An Examination of Lahar Knowledge, Risk Perception, and Preparedness around Mount Baker and Glacier Peak, WA (United States)

    Corwin, K.; Brand, B. D.


    As the number of people living at risk from volcanic hazards in the U.S. Pacific Northwest continues to rise, so does the need for improved hazard science, mitigation, and response planning. The effectiveness of these efforts relies not only on scientists and policymakers, but on individuals and their risk perception and preparedness levels. This study examines the individual knowledge, perception, and preparedness of over 500 survey respondents living or working within the lahar zones of Mount Baker and Glacier Peak volcanoes. We (1) explore the common disconnect between accurate risk perception and adequate preparedness; (2) determine how participation in hazard response planning influences knowledge, risk perception, and preparedness; and (3) assess the effectiveness of current lahar hazard maps for public risk communication. Results indicate that a disconnect exists between perception and preparedness for the majority of respondents. While 82% of respondents accurately anticipate that future volcanic hazards will impact the Skagit Valley, this knowledge fails to motivate increased preparedness. A majority of respondents also feel "very responsible" for their own protection and provision of resources during a hazardous event (83%) and believe they have the knowledge and skills necessary to respond effectively to such an event (56%); however, many of these individuals still do not adequately prepare. When asked what barriers prevent them from preparing, respondents primarily cite a lack of knowledge about relevant local hazards. Results show that participation in response-related activities—a commonly recommended solution to this disconnect—minimally influences preparedness. Additionally, although local hazard maps successfully communicate the primary hazard—97% of respondents recognize the lahar hazard—many individuals incorrectly interpret other important facets of the maps. Those who participate in response-related activities fail to understand these

  20. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific (United States)

    Webley, P. W.; Dehn, J.


    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  1. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn


    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  2. Hazard and risk assessment in a complex multi-source volcanic area: the example of the Campania Region, Italy (United States)

    Lirer, L.; Petrosino, P.; Alberico, I.


    In order to zone the territory of Campania Region (southern Italy) with regard to the hazard related to future explosive activity of Somma-Vesuvio, Campi Flegrei, and Ischia Island, we drew a multi-source hazard map for tephra and pyroclastic flows. This map, which merges the areas possibly endangered by the three volcanic sources, takes into account a large set of tephra fall and pyroclastic flow events that have occurred in the last 10 ka. In detail, for fall products at Campi Flegrei and Somma-Vesuvio we used the dispersal of past eruption products as deduced by field surveys and their recurrence over the whole area. For pyroclastic flows, the field data were integrated with VEI = 4 simulated events; about 100 simulations sourcing from different points of the area were performed, considering the different probability of vent opening. The spatial recurrence of products of both past eruptions and simulated events was used to assign a weight to the area endangered by the single volcanic sources. The sum of these weights in the areas exposed to the activity of two sources and/or to different kinds of products was used to draw a hazard map, which highlights the spatial trend and the extent of the single equivalent classes at a regional scale. A multi-source risk map was developed for the same areas as the graphic result of the product of volcanic hazard and exposure, assessed in detail from a dasymetric map. The resulting multi-source hazard and risk maps are essential tools for communication among scientists, local authorities, and the public, and may prove highly practical for long-term regional-scale mitigation planning.

  3. Application of Geographical Information Systems to Lahar Hazard Assessment on an Active Volcanic System



    Lahars (highly dynamic mixtures of volcanic debris and water) have been responsible for some of the most serious volcanic disasters and have killed tens of thousands of people in recent decades. Despite considerable lahar model development in the sciences, many research tools have proved wholly unsuitable for practical application on an active volcanic system where it is difficult to obtain field measurements. In addition, geographic information systems are tools that offer a great potenti...

  4. The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard

    Directory of Open Access Journals (Sweden)

    Horwell Claire J


    Full Text Available Abstract Background Respirable crystalline silica (RCS continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1 the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2 particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3 the cristobalite surface is occluded by an annealed rim; 4 dissolution of other volcanic particles affects the surfaces of RCS in the lung. Methods The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch’s two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. Results Volcanic cristobalite contains up to 4 wt. % combined Al2O3 and Na2O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. Conclusions The composition of volcanic

  5. Using a ballistic-caprock model for developing a volcanic projectiles hazard map at Santorini caldera (United States)

    Konstantinou, Konstantinos


    Volcanic Ballistic Projectiles (VBPs) are rock/magma fragments of variable size that are ejected from active vents during explosive eruptions. VBPs follow almost parabolic trajectories that are influenced by gravity and drag forces before they reach their impact point on the Earth's surface. Owing to their high temperature and kinetic energies, VBPs can potentially cause human casualties, severe damage to buildings as well as trigger fires. Since the Minoan eruption the Santorini caldera has produced several smaller (VEI = 2-3) vulcanian eruptions, the last of which occurred in 1950, while in 2011 it also experienced significant deformation/seismicity even though no eruption eventually occurred. In this work, an eruptive model appropriate for vulcanian eruptions is used to estimate initial conditions (ejection height, velocity) for VBPs assuming a broad range of gas concentration/overpressure in the vent. These initial conditions are then inserted into a ballistic model for the purpose of calculating the maximum range of VBPs for different VBP sizes (0.35-3 m), varying drag coefficient as a function of VBP speed and varying air density as a function of altitude. In agreement with previous studies a zone of reduced drag is also included in the ballistic calculations that is determined based on the size of vents that were active in the Kameni islands during previous eruptions (< 1 km). Results show that the horizontal range of VBPs varies between 0.9-3 km and greatly depends on gas concentration, the extent of the reduced drag zone and the size of VBP. Hazard maps are then constructed by taking into account the maximum horizontal range values as well as potential locations of eruptive vents along a NE-SW direction around the Kameni islands (the so-called "Kameni line").

  6. NBC Hazard Prediction Model Capability Analysis (United States)


    Puff( SCIPUFF ) Model Verification and Evaluation Study, Air Resources Laboratory, NOAA, May 1998. Based on the NOAA review, the VLSTRACK developers...TO SUBSTANTIAL DIFFERENCES IN PREDICTIONS HPAC uses a transport and dispersion (T&D) model called SCIPUFF and an associated mean wind field model... SCIPUFF is a model for atmospheric dispersion that uses the Gaussian puff method - an arbitrary time-dependent concentration field is represented

  7. Volcanic Stratigraphy and Potential Hazards of the Chihsingshan Volcano Subgroup in the Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Wei Tsai


    Full Text Available The Chihsingshan Volcano Subgroup (CVSG is one of the most important landforms located within the Tatun Volcano Group in northern Taiwan. Based on a Digital Terrain Model, contour maps and field investigations, the CVSG can be divided into four types of volcanic landforms: (1 a strato- or composite volcano, Chihsingshan; (2 domes, the Shamaoshan and a hidden unit; (3 lava cones, the Baiyunshan and the Hsiaotsaoshan; and (4 a scoria cone, the Chikushan. Meanwhile, many small craters are distributed linearly along two northeast trending normal-fault systems. The occurrences are predominantly lava flows with subsidiary fall deposits, pyroclastic flows, and lahars in which at least twenty layers of lava flow in the CVSG can be recognized. Among them, 16 layers in the Chihsingshan volcano, named as C1 - C16, two in the Baiyunshan, B1 - B2, and two in the Hsiaotsaoshan, H1 - H2. Our study suggests that the potential volcanic hazards include lava and pyroclastic flows and simultaneous or subsequent lahars, if the Chihsingshan erupts in a similar manner as in the past. A volcanic hazard zonation map can be constructed for the purpose of mitigation assuming the future eruptive center and eruptive volume.

  8. Updating Parameters for Volcanic Hazard Assessment Using Multi-parameter Monitoring Data Streams And Bayesian Belief Networks (United States)

    Odbert, Henry; Aspinall, Willy


    Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss

  9. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland (United States)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.


    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. 4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial challenge. A

  10. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data (United States)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.


    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’,, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion

  11. A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico (United States)

    Alcorn, Rebecca; Panter, Kurt S.; Gorsevski, Pece V.


    The objective of this study is to evaluate the spatial extent of a possible future eruption using a GIS-based volcanic hazard tool designed to simulate pyroclastic fallout and density currents (PDCs) as well as lava flows and to assess the social and economic vulnerabilities of the area at risk. Simulated pyroclastic fallout deposits originating from the El Cajete crater within the Valles Caldera, Jemez Mountains volcanic field, New Mexico, are calibrated to isopach and lithic isopleth maps of the Lower and Upper El Cajete as constructed by Wolff et al. (2011). The change in the axial orientation of fallout deposits between the Lower and Upper El Cajete is best matched using seasonal variations in wind speed and direction based on modern atmospheric records. The calibration of PDCs is based on the distribution and run-out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at a second vent location determined from probability distributions of structural features. The resulting hazard simulation maps show the potential distribution of pyroclastic fallout, PDCs and lava flows, indicating areas to the S/SE of Valles Caldera to be at greatest risk.

  12. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models (United States)

    Miller, Craig A.; Williams-Jones, Glyn


    A new 3D geophysical model of the Mt Tongariro Volcanic Massif (TgVM), New Zealand, provides a high resolution view of the volcano's internal structure and hydrothermal system, from which we derive implications for volcanic hazards. Geologically constrained 3D inversions of potential field data provides a greater level of insight into the volcanic structure than is possible from unconstrained models. A complex region of gravity highs and lows (± 6 mGal) is set within a broader, ~ 20 mGal gravity low. A magnetic high (1300 nT) is associated with Mt Ngauruhoe, while a substantial, thick, demagnetised area occurs to the north, coincident with a gravity low and interpreted as representing the hydrothermal system. The hydrothermal system is constrained to the west by major faults, interpreted as an impermeable barrier to fluid migration and extends to basement depth. These faults are considered low probability areas for future eruption sites, as there is little to indicate they have acted as magmatic pathways. Where the hydrothermal system coincides with steep topographic slopes, an increased likelihood of landslides is present and the newly delineated hydrothermal system maps the area most likely to have phreatic eruptions. Such eruptions, while small on a global scale, are important hazards at the TgVM as it is a popular hiking area with hundreds of visitors per day in close proximity to eruption sites. The model shows that the volume of volcanic material erupted over the lifespan of the TgVM is five to six times greater than previous estimates, suggesting a higher rate of magma supply, in line with global rates of andesite production. We suggest that our model of physical property distribution can be used to provide constraints for other models of dynamic geophysical processes occurring at the TgVM.

  13. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight (United States)

    Matthews, Zoe; Manning, Christina J.


    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  14. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. (United States)

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C


    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.

  15. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards (United States)

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.


    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  16. D Visualization of Volcanic Ash Dispersion Prediction with Spatial Information Open Platform in Korea (United States)

    Youn, J.; Kim, T.


    Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.

  17. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando


    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  18. Using high-precision 40Ar/39Ar geochronology to understand volcanic hazards within the Rio Grande rift and along the Jemez lineament, New Mexico (United States)

    Zimmerer, M. J.; McIntosh, W. C.; Heizler, M. T.; Lafferty, J.


    High-precision Ar/Ar ages were generated for late Quaternary volcanic fields in the Rio Grande rift and along the Jemez Lineament, New Mexico, to assess the time-space patterns of volcanism and begin quantifying volcanic hazards for the region. The published chronology of most late Quaternary volcanic centers in the region is not sufficiently precise, accurate, or complete for a comprehensive volcanic hazard assessment. Ar/Ar ages generated as part of this study were determined using the high-sensitivity, multi-collector ARGUS VI mass spectrometer, which provides about an order of magnitude more precise isotopic measurements compared to older generation, single-detector mass spectrometers. Ar/Ar ages suggest an apparent increase in eruption frequency during the late Quaternary within the Raton-Clayton volcanic field, northeastern NM. Only four volcanoes erupted between 426±8 and 97±3 ka. Contrastingly, four volcanoes erupted between 55±2 and 32±5 ka. This last eruptive phase displays a west to east migration of volcanism, has repose periods of 0 to 17 ka, and an average recurrence rate of 1 eruption per 5750 ka. The Zuni-Bandera volcanic field, west-central NM, is composed of the ~100 late Quaternary basaltic vents. Preliminary results suggest that most of the Chain of Craters, the largest and oldest part of the Zuni-Bandera field, erupted between ~100 and 250 ka. Volcanism then migrated to the east, where published ages indicate at least seven eruptions between 50 and 3 ka. Both volcanic fields display a west to east migration of volcanism during the last ~500 ka, although the pattern is more pronounced in the Zuni-Bandera field. A reassessment of low-precision published ages for other late Quaternary volcanic fields in region indicates that most fields display a similar west to east migration of volcanism during the last ~500 ka. One possible mechanism to explain the observed patterns of volcanism is the westward migration of the North American plate relative

  19. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,


    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  20. Predicted Abundances of Carbon Compounds in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L; Schaefer, Laura


    We use chemical equilibrium calculations to model the speciation of carbon in volcanic gases on Io. The calculations cover wide temperature (500-2000 K), pressure (10^-8 to 10^+2 bars), and composition ranges (bulk O/S atomic ratios \\~0 to 3), which overlap the nominal conditions at Pele (1760 K, 0.01 bar, O/S ~ 1.5). Bulk C/S atomic ratios ranging from 10^-6 to 10^-1 in volcanic gases are used with a nominal value of 10^-3 based upon upper limits from Voyager for carbon in the Loki plume on Io. Carbon monoxide and CO2 are the two major carbon gases under all conditions studied. Carbonyl sulfide and CS2 are orders of magnitude less abundant. Consideration of different loss processes (photolysis, condensation, kinetic reactions in the plume) indicates that photolysis is probably the major loss process for all gases. Both CO and CO2 should be observable in volcanic plumes and in Io's atmosphere at abundances of several hundred parts per million by volume for a bulk C/S ratio of 10^-3.

  1. Debris flow hazards mitigation--Mechanics, prediction, and assessment (United States)

    Chen, C.-L.; Major, J.J.


    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  2. Volcanic hazard in Mexico: a comprehensive on-line database for risk mitigation (United States)

    Manea, Marina; Constantin Manea, Vlad; Capra, Lucia; Bonasia, Rosanna


    Researchers are currently working on several key aspects of the Mexican volcanoes, such as remote sensing, field data of old and recent volcaniclastic deposits, structural framework, monitoring (rainfall data and visual observation of lahars), and laboratory experiment (analogue models and numerical simulations - fall3D, titan2D). Each investigation is focused on specific processes, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Mexican Volcanoes @nline represents a novel initiative aimed to collect, on a systematic basis, the complete set of data obtained so far on the volcanoes, and to continuously update the database with new data. All the information is compiled from published works and updated frequently. Maps, such as the geological map of the Mexican volcanos and the associated hazard zonation, as well as point data, such as stratigraphic sections, sedimentology and diagrams of rainfall intensities, are presented in Google Earth format in order to be easily accessed by the scientific community and the general public. An important section of this online database is the presentation of numerical simulations results for ash dispersion associated with the principal Mexican active volcanoes. Daily prediction of ash flow dispersion (based on real-time data from CENAPRED and the Mexican Meteorological Service), as well as large-scale high-resolution subduction simulations performed on HORUS (the Computational Geodynamics Laboratory's supercomputer) represent a central part of the Mexican Volcanos @nline database. The Mexican Volcanoes @nline database is maintained by the Computational Geodynamics Laboratory and it is based entirely on Open Source software. The website can be visited at:

  3. Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua (United States)

    Avellán, Denis Ramón; Macías, José Luis; Pardo, Natalia; Scolamacchia, Teresa; Rodriguez, Dionisio


    The Nejapa Volcanic Field (NVF) is located on the western outskirts of Managua, Nicaragua. It consists of at least 30 volcanic structures emplaced along the N-S Nejapa fault, which represents the western active edge of the Managua Graben. The study area covers the central and southern parts of the volcanic field. We document the basic geomorphology, stratigraphy, chemistry and evolution of 17 monogenetic volcanic structures: Ticomo (A, B, C, D and E); Altos de Ticomo; Nejapa; San Patricio; Nejapa-Norte; Motastepe; El Hormigón; La Embajada; Asososca; Satélite; Refinería; and Cuesta El Plomo (A and B). Stratigraphy aided by radiocarbon dating suggests that 23 eruptions have occurred in the area during the past ~ 34,000 years. Fifteen of these eruptions originated in the volcanic field between ~ 28,500 and 2,130 yr BP with recurrence intervals varying from 400 to 7,000 yr. Most of these eruptions were phreatomagmatic with minor strombolian and fissural lava flow events. A future eruption along the fault might be of a phreatomagmatic type posing a serious threat to the more than 500,000 inhabitants in western Managua.

  4. Late-Pleistocene to precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards (United States)

    Siebert, Lee; Carrasco-Núñez, Gerardo


    initially produced the high effusion rate, short-duration Toxtlacuaya alkaline aa lava flow from the southeastern crater. This 12-km-long hawaiite (average 50.5% SiO 2) flow was followed by extrusion of the calc-alkaline Rı´o Naolinco lava flow from the northwestern crater. This large-volume (˜1.3 km 3) tube-fed basaltic pahoehoe flow (average SiO 2 49%) traveled 50 km. Inferred effusion rates suggest emplacement over a decade-long period. Flows of all three age groups are transected by Highway 140 and the railway that form major transportation arteries between Jalapa and Puebla. This area has not previously been considered to be at volcanic risk, but volcanism here has continued into precolumbian time. Future eruptions of similar magnitude and location to those documented here could pose significant hazards to transportation corridors and to densely populated areas in and to the north of Jalapa. Slight variations in vent locations could produce future flows down one or more of more than a half dozen drainages with widely varying population densities.

  5. GIS-Based emergency and evacuation planning for volcanic hazards in New Zealand

    DEFF Research Database (Denmark)

    Cole, J. W.; Sabel, C. E.; Blumenthal, E.


    in New Zealand is high, with 10 volcanoes or volcanic centres (Auckland, Bay of Islands, Haroharo, Mayor Island, Ruapehu, Taranaki, Tarawera, Taupo, Tongariro (including Ngauruhoe) and White Island) recognised as active or potentially active. In addition there are many active and potentially active...... (reduction, readiness, response and recovery) can benefit from CIS, including applications related to transportation systems, a critical element in managing effective lifelines in an emergency. This is particularly true immediately before and during a volcanic eruption. The potential for volcanic activity...... volcanoes along the Kermadec Island chain. There is a great deal of background information on all of these volcanoes, and GIS is currently being used for some aspects of monitoring (e.g. ERS and Envisat radar interferometry for observing deformation prior to eruptions). If an eruption is considered imminent...

  6. Deformation in volcanic areas: a numerical approach for their prediction in Teide volcano (Tenerife, Canary Islands); Deformaciones en areas volcanicas: una aproximacin numerica para su prediccion en el volcan Teide (Tenerife, Islas Canarias)

    Energy Technology Data Exchange (ETDEWEB)

    Charco, M.; Galan del Sastre, P.


    Active volcanic areas study comprises both, observation of physical changes in the natural media and the interpretation of such changes. Nowadays, the application of spatial geodetic techniques, such as GPS (Global Positioning System) or InSAR (Interferometry with Synthetic Aperture Radar), for deformation understanding in volcanic areas, revolutionizes our view of this geodetic signals. Deformation of the Earth's surface reflects tectonic, magmatic and hydrothermal processes at depth. In this way, the prediction of volcanic deformation through physical modelling provides a link between the observation and depth interior processes that could be crucial for volcanic hazards assessment. In this work, we develop a numerical model for elastic deformation study. The Finite Element Method (FEM) is used for the implementation of the numerical model. FEM allows to take into account different morphology, structural characteristics and the mechanical heterogeneities of the medium. Numerical simulations of deformation in Tenerife (Canary Islands) taking into account different medium hypothesis allow us to conclude that the accuracy of the predictions depends on how well the natural system is described. (Author) 22 refs.

  7. Neotectonics of Graciosa island (Azores: a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting

    Directory of Open Access Journals (Sweden)

    Ana Hipólito


    Full Text Available Graciosa is a mid-Pleistocene to Holocene volcanic island that lies in a complex plate boundary between the North American, Eurasian, and Nubian plates. Large fault scarps displace the oldest (Middle Pleistocene volcanic units, but in the younger areas recent volcanism (Holocene to Upper Pleistocene conceals the surface expression of faulting, limiting neotectonic observations. The large displacement accumulated by the older volcanic units when compared with the younger formations suggests a variability of deformation rates and the possibility of alternating periods of higher and lower tectonic deformation rates; this would increase the recurrence interval of surface rupturing earthquakes. Nevertheless, in historical times a few destructive earthquakes affected the island attesting for its seismic hazard. Regarding the structural data, two main fault systems, incompatible with a single stress field, were identified at Graciosa Island. Thus, it is proposed that the region is affected by two alternating stress fields. The stress field #1 corresponds to the regional stress regime proposed by several authors for the interplate shear zone that constitutes the Azorean segment of the Eurasia-Nubia plate boundary. It is suggested that the stress field #2 will act when the area under the influence of the regional stress field #1 narrows as a result of variations in the differential spreading rates north and south of Azores. The islands closer to the edge of the sheared region will temporarily come under the influence of a different (external stress field (stress field #2. Such data support the concept that, in the Azores, the Eurasia-Nubia boundary corresponds to a complex and wide deformation zone, variable in time.

  8. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino


    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  9. Understanding volcanic hazard at the most populated caldera in the world: Campi Flegrei, Southern Italy (United States)

    De Natale, Giuseppe; Troise, Claudia; Kilburn, Christopher R. J.; Somma, Renato; Moretti, Roberto


    Naples and its hinterland in Southern Italy are one of the most urbanized areas in the world under threat from volcanic activity. The region lies within range of three active volcanic centers: Vesuvius, Campi Flegrei, and Ischia. The Campi Flegrei caldera, in particular, has been in unrest for six decades. The unrest followed four centuries of quiescence and has heightened concern about an increased potential for eruption. Innovative modeling and scientific drilling are being used to investigate Campi Flegrei, and the results highlight key directions for better understanding the mechanisms of caldera formation and the roles of magma intrusion and geothermal activity in determining the volcano's behavior. They also provide a framework for evaluating and mitigating the risk from this caldera and other large ones worldwide.

  10. Tube coalescence in the Jingfudong lava tube and implications for lava flow hazard of Tengchong volcanism


    Zhengquan Chen; Yongshun Liu; Haiquan Wei; Jiandong Xu; Wenfeng Guo


    Tube-fed structure occurs as a general phenomenon in Tengchong basic lavas, such as lava tubes, lava plugs and tube-related collapse depressions. We deduced the development of Laoguipo lava flows, which is the longest lava tube (Jingfudong lava tube) evolved in Tengchong volcanic area. Following the detailed documentation of the tube morphology of the Jingfudong lava tube, we propose that the Jingfudong lava tube was formed through vertical coalescence of at least three tubes. The coalescence...

  11. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall (United States)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo


    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  12. Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. [Federal Center, Denver, CO (United States); Delaney, P.T. [2255 North Gemini Drive, Flagstaff, AZ (United States); Kauahikaua, J.P. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory


    This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa`s northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu`ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

  13. Possible asphyxiation from carbon dioxide of a cross-country skier in eastern California: a deadly volcanic hazard. (United States)

    Hill, P M


    This report describes an incident in which exceedingly high levels of carbon dioxide may have contributed to the death of a skier in eastern California. A cross-country skier was found dead inside a large, mostly covered snow cave, 1 day after he was reported missing. The autopsy report suggests that the skier died of acute pulmonary edema consistent with asphyxiation; carbon dioxide measurements inside the hole in which he was found reached 70%. This area is known for having a high carbon dioxide flux attributed to degassing of a large body of magma (molten rock) 10 to 20 km beneath the ski area. The literature describes many incidents of fatal carbon dioxide exposures associated with volcanic systems in other parts of the world. We believe this case represents the first reported death associated with volcanically produced carbon dioxide in the United States. Disaster and wilderness medicine specialists should be aware of and plan for this potential health hazard associated with active volcanoes.

  14. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin (United States)

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, U.S.; Christensen, N.I.


    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2??-7?? to 12?? where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35-45 km deep) beneath the Cascade Range, with thinner crust (30-35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ???25 km depth beneath the coastline to perhaps as far west as the deformation front ???120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  15. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Madankan, R. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pouget, S. [Department of Geology, University at Buffalo (United States); Singla, P., E-mail: [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Bursik, M. [Department of Geology, University at Buffalo (United States); Dehn, J. [Geophysical Institute, University of Alaska, Fairbanks (United States); Jones, M. [Center for Computational Research, University at Buffalo (United States); Patra, A. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pavolonis, M. [NOAA-NESDIS, Center for Satellite Applications and Research (United States); Pitman, E.B. [Department of Mathematics, University at Buffalo (United States); Singh, T. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Webley, P. [Geophysical Institute, University of Alaska, Fairbanks (United States)


    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  16. Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner


    By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.

  17. "Canary Islands, a volcanic window in the Atlantic Ocean": a 7 year effort of public awareness on volcano hazards and risk management (United States)

    Rodríguez, Fátima; Calvo, David; Pérez, Nemesio M.; Padrón, Eleazar; Melián, Gladys; Padilla, Germán; Barrancos, José; Hernández, Pedro A.; Asensio-Ramos, María; Alonso, Mar


    "Canary Islands: A volcanic window in the Atlantic Ocean" is an educational program born from the need to inform and educate citizens residing in the Canary Islands on the various hazards associated to volcanic phenomena. The Canary Islands is the only territory of Spain that hosts active volcanism, as is shown by the 16 historical eruptions that have occurred throughout this territory, being the last one a submarine eruption taking place on October 12, 2011, offshore El Hierro Island. In the last 7 years, ITER as well as INVOLCAN have been performing an educative program focused on educating to the population about the benefits of a volcanic territory, volcanic hazards, how to reduce volcanic risk and the management of volcanic risk in the Canary Islands. "Canary Islands: A volcanic window in the Atlantic Ocean" consists of three units, the first two dedicated to the IAVCEI/UNESCO videos "Understanding Volcanic Hazards" and "Reducing Volcanic Risk" and the third one dedicated to the management of volcanic risk in the Canary Islands, as well as some other aspects of the volcanic phenomena. Generally the three units are shown consecutively on Tuesday, Wednesday and Thursday. This educative program has been roaming all around the 88 municipalities of the archipelago since this initiative started in 2008. The total number of attendees since then amounts to 18,911 people. The increase of assistance was constant until 2011, with annual percentages of 7.8, 17.1 and 20.9 respectively, regarding to ratio assistant/municipality. Despite the heterogeneity of the audience, the main audience is related to aged people of 45 years and older. This could be related to the memories of the recent eruptions occurred at La Palma Island in 1949 and 1971. It is important to point out that many of those people attending the educative program are representatives of local government (i.e. civil protection). Regarding the interest of the audience, the educational program attendees have

  18. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results (United States)

    Mani, Lara; Cole, Paul D.; Stewart, Iain


    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  19. Managing a Monogenetic Volcanic Field As a World Heritage Nomination: Implications for Science, Outreach, and Hazards (United States)

    Olive-Garcia, C.; van Wyk de Vries, B.


    Monogenetic volcanoes form a large proportion of the world's volcanoes. They are in all tectonic environments and thus provide a significant link to understand fundamental geological processes such as plate tectonics. The Chaîne des Puys - Limagne fault World Heritage nomination is a prime example of this link where monogenetic volcanism, continental rifting, uplift and erosion are highlighted, and are made understandable to the lay person, though the actions on over 80 aligned monogenetic volcanoes. Such geoheritage is essential for monogenetic and other geological risks to be communicated to the wider public. The current scientific interest on monogenetic volcanoes is quite recent, and because of this, and probably their global distribution but small size, they have not received their due importance from a geoheritage standpoint. Some individual sites and some fields are protected and developed as attractions, but there has been no coherent global strategy for defining monogenetic heritage, or for linking sites. This is starting through the monogenetic commission of IAVCEI, and with wider participation of the IUGS and other bodies. The Chaîne des Puys - Limagne Fault UNESCO project is an example of how public awareness, at a global scale, and be increased through geoheritage. This is done integrating local stakeholders: population, industry, science, landscapers, artists, sports, government. This builds on existing protection and sustainable activities, integrating them with education programs. The result is to create a populace that 'thinks geological', and which leads visitors to also become geologically aware. This is helped by a monogenetic landscape that is easily readable and by links made to other geological sites around the world. We will explain how this process is ongoing. The project started over 35 years ago, and is a long-term vision to develop geological understanding and protection of this unique monogenetic and tectono-volcanic site.

  20. Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes (United States)

    Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis


    Post-wildfire natural hazards such as flooding and debris flows threaten infrastructure and can even lead to loss of life. The risk from these natural hazards could be reduced if floods and debris flows could be predicted from modeling. Our ability to test predictive models is primarily constrained by a lack of observational data that can be used for comparison with model predictions. Following the 2009 Station Fire in the San Gabriel Mountains, CA, USA, we conducted a study with high-resolution topography and hydrologic measurements to test the effectiveness of two different hydrologic routing models to predict flood and debris flow timing. Our research focuses on comparing the performance of two hydrologic models with differing levels of complexity and efficiency using high-resolution, lidar-derived digital elevation models. The simpler model uses the kinematic wave approximation to route flows, while the more complex model uses the full shallow water equations. In both models precipitation is spatially uniform and infiltration is simulated using the Green-Ampt infiltration equation. Input data for the numerical models was constrained by time series data of soil moisture, and rainfall collected at field sites as well as high-resolution lidar-derived digital elevation models. We ran the numerical models and varied parameter values for the roughness coefficient and hydraulic conductivity. These parameter values were calibrated by minimizing the difference between the simulated and observed flow timing. Moreover, the two parameters were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. The calibrated parameters were subsequently used to model a third watershed, and the results show a good match with observed timing of flow peaks for both models. Calibrated roughness coefficients are generally higher when using the kinematic wave approximation relative to the full shallow water equations, and decrease with increasing spatial

  1. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data (United States)

    Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Núñez, Gerardo; Díaz-Castellón, Rodolfo; Rodríguez, Sergio Raúl


    In this study, we evaluated and compared the utility of spaceborne SRTM and ASTER DEMs with baseline DTED-1 "bald-earth" topography for mapping lahar inundation hazards from volcan Citlaltépetl, Mexico, a volcano which has had a history of producing debris flows of various extents. In particular, we tested the utility of these topographic datasets for resolving ancient valley-filling deposits exposed around the flanks of the volcano, for determining their magnitude using paleohydrologic methods and for forecasting their inundation limits in the future. We also use the three datasets as inputs to a GIS stream inundation flow model, LAHARZ, and compare the results. In general all three datasets, with spatial resolution of 90 m or better, were capable of resolving debris flow and lahar deposits at least 3 × 10 6 m 3 in volume or larger. Canopy- and slope-related height errors in the ASTER and SRTM DEMs limit their utility for measuring valley-filling cross-sectional area and deriving flow magnitude for the smallest deposits using a cross-sectional area to volume scaling equation. Height errors in the ASTER and SRTM DEMs also causes problems in resolving stream valley hydrography which controls lahar flow paths and stream valley morphology which controls lahar filling capacity. However, both of the two spaceborne DEM datasets are better than DTED-1 at resolving fine details in stream hydrography and erosional morphologies of volcaniclastics preserved in the valleys around the more humid, eastern flanks of the volcanic range. The results of LAHARZ flow inundation modeling using all three DEMs as inputs are remarkably similar and co-validate one another. For example, at Citlaltépetl all lahar simulations show that the city of Orizaba is the most vulnerable to flows similar in magnitude to, or larger than, one that occurred in 1920. Many of the other cities and towns illustrated are built higher up on terrace deposits of older debris flows, and are safe from all but

  2. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals (United States)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel


    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  3. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.


    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  4. La Yeguada volcanic complex in the Republic of Panama: an assessment of the geologic hazards using 40ar/39ar geochronology

    Directory of Open Access Journals (Sweden)

    Karinne L. Knutsen


    Full Text Available Abstract: La Yeguada volcanic complex is one of three Quaternary volcanic centers in Panama. To assess potential geologic hazards, new samples were analyzed using argon analysis (40Ar/39Ar , and obtained the following: the most recent eruption occurred approximately 32,000 years ago at the Media Luna cinder cone; the youngest dated eruption from the main dome complex occurred 357 ± 19 ka, producing the Castillo dome unit; Cerro Picacho, a separate dacite dome 1.5 km east of the main complex is 4.47 ± 0.23 Ma; and the El Satro Pyroclastic Flow unit surrounds the northern portion of the volcanic complex is 11.26 ± 0.17 Ma. No Holocene (10,000 years ago to present activity is recorded at the La Yeguada volcanic complex and therefore, it is unlikely to produce another eruption. The main geologic hazard at the La Yeguada volcanic complex is from landslides coming off the many steep slopes.

  5. Toward a pro-active scientific advice on global volcanic activity within the multi-hazard framework of the EU Aristotle project (United States)

    Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos


    The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of

  6. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka (United States)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.


    conceptual integrated approach, the mathematical tool will be transportable to other regions affected by volcanic eruption and tsunami. We will involve students in the work, incorporate the results into our teaching portfolio and work closely with the IUGG GeoRisk Commission and AGU Natural Hazards Focus Group to communicate our findings to the broader public, specifically local communities that will be most impacted. Under the PIRE education component, a cohort of U.S. and Russian post-doctoral researchers and students will receive training and contribute to the overall natural hazards SGD science agenda in cooperation with senior U.S. researchers and leading investigators from the Russian institutions. Overall, the extensive team of researchers, students and institutions is poised to deliver an innovative and broad spectrum of science associated with the study of SGD in the volcanic eruption and tsunami affected areas, in a way not possible to achieve in isolation.

  7. A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico (United States)

    Alcorn, R.; Panter, K. S.; Gorsevski, P.; Ye, X.


    The Jemez Volcanic field in New Mexico is best known for the two cataclysmic eruptions that formed the Valles Caldera and deposited the Bandelier tuff at 1.61 and 1.25 Ma. This was followed by a period of small-scale activity limited to within the moat until ~ 55 ka when plinian eruptions sourced from the El Cajete crater dispersed tephra well beyond the caldera wall. These deposits include the El Cajete pyroclastic beds and the Battleship Rock Ignimbrite. Following the eruption of the Banco Bonito lava flow at ~40 ka, the Valles caldera has lain dormant. However, there is potential for future activity and it is prudent to assess the risk to the surrounding area and consider possible mitigation strategies well before a disaster strikes. The objective of this study is to evaluate the spatial extent of a possible future eruption using a GIS-based volcanic hazards tool designed to simulate pyroclastic fallout and density currents (PDCs) as well as lava flows [1] and to assess the social and economic vulnerability of the area at risk. Simulated pyroclastic fall deposits originating from the El Cajete crater are calibrated to isopach and lithic isopleth maps of the Lower and Upper El Cajete as constructed by [2]. The change in the axial orientation of fall deposits between the Lower and Upper El Cajete is best matched using seasonal variations in wind speed and direction based on modern atmospheric records. The calibration of PDCs is based on the distribution and run-out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at two other vent locations determined from probability distributions of structural features. The resulting hazard maps show the potential distribution of pyroclastic fall, PDCs and lava flows, indicating areas to the S/SE of Valles Caldera to be at greatest risk. To assess hazard preparedness, social vulnerability is evaluated for all census-designated places (CDP) within the study site. Based on methods by [3], twenty

  8. Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series (United States)

    Dzierma, Y.; Wehrmann, H.


    their fits is evaluated. The mixture of exponentials distribution (MOED), adopted from Mendoza-Rosas and De la Cruz-Reyna (2008), facilitates statistical evaluation of non-stationary eruptive regimes. Despite providing the least good fit of the data, the MOED proves particularly useful for Lanín Volcano, where stationarity can not be assessed because of possible gaps in the eruption record. In general, the Weibull, exponential and log-logistic distributions imply a higher likelihood of future eruptions within a given time, while the Bayesian and MOED analyses predict lower hazard probabilities. This study does not take into account the complexly interacting geophysical and geochemical processes triggering volcanic eruptions. Our aim is to contribute this statistical prediction to the integrative hazard assessment currently performed in the area by the SFB 574 ("Volatiles and Fluids in Subduction Zones"), complementing regional recording of seismic activity and quiescent gas release, as well as tectonic and geochemical characteristics of the investigated volcanic centres.

  9. Volcanic risk: mitigation of lava flow invasion hazard through optimized barrier configuration (United States)

    Scifoni, S.; Coltelli, M.; Marsella, M.; Napoleoni, Q.; Del Negro, C.; Proietti, C.; Vicari, A.


    In order to mitigate the destructive effects of lava flows along volcanic slopes, the building of artificial barriers is a fundamental action for controlling and slowing down the lava flow advance, as experienced during a few recent eruptions of Etna. The simulated lava path can be used to define an optimize project to locate the work but for a timely action it is also necessary to quickly construct a barrier. Therefore this work investigates different type of engineering work that can be adopted to build up a lava containing barrier for improving the efficiency of the structure. From the analysis of historical cases it is clear that barriers were generally constructed by building up earth, lava blocks and incoherent, low density material. This solution implies complex operational constraints and logistical problems that justify the effort of looking for alternative design. Moreover for optimizing the barrier construction an alternative project of gabion-made barrier was here proposed. In this way the volume of mobilized material is lower than that for a earth barrier, thus reducing the time needed for build up the structure. A second crucial aspect to be considered is the geometry of the barrier which, is one of the few parameters that can be modulated, the others being linked to the morphological and topographical characteristics of the ground. Once the walls have been realized, it may be necessary to be able to expand the structure vertically. The use of gabion has many advantages over loose riprap (earthen walls) owing to their modularity and capability to be stacked in various shapes. Furthermore, the elements which are not inundated by lava can be removed and rapidly used for other barriers. The combination between numerical simulations and gabions will allow a quicker mitigation of risk on lava flows and this is an important aspect for a civil protection intervention in emergency cases.

  10. Science at the policy interface: volcano-monitoring technologies and volcanic hazard management (United States)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael


    This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

  11. Ground motion prediction and earthquake scenarios in the volcanic region of Mt. Etna (Southern Italy (United States)

    Langer, Horst; Tusa, Giuseppina; Luciano, Scarfi; Azzaro, Raffaela


    One of the principal issues in the assessment of seismic hazard is the prediction of relevant ground motion parameters, e. g., peak ground acceleration, radiated seismic energy, response spectra, at some distance from the source. Here we first present ground motion prediction equations (GMPE) for horizontal components for the area of Mt. Etna and adjacent zones. Our analysis is based on 4878 three component seismograms related to 129 seismic events with local magnitudes ranging from 3.0 to 4.8, hypocentral distances up to 200 km, and focal depth shallower than 30 km. Accounting for the specific seismotectonic and geological conditions of the considered area we have divided our data set into three sub-groups: (i) Shallow Mt. Etna Events (SEE), i.e., typically volcano-tectonic events in the area of Mt. Etna having a focal depth less than 5 km; (ii) Deep Mt. Etna Events (DEE), i.e., events in the volcanic region, but with a depth greater than 5 km; (iii) Extra Mt. Etna Events (EEE), i.e., purely tectonic events falling outside the area of Mt. Etna. The predicted PGAs for the SEE are lower than those predicted for the DEE and the EEE, reflecting their lower high-frequency energy content. We explain this observation as due to the lower stress drops. The attenuation relationships are compared to the ones most commonly used, such as by Sabetta and Pugliese (1987)for Italy, or Ambraseys et al. (1996) for Europe. Whereas our GMPEs are based on small earthquakes, the magnitudes covered by the two above mentioned attenuation relationships regard moderate to large magnitudes (up to 6.8 and 7.9, respectively). We show that the extrapolation of our GMPEs to magnitues beyond the range covered by the data is misleading; at the same time also the afore mentioned relationships fail to predict ground motion parameters for our data set. Despite of these discrepancies, we can exploit our data for setting up scenarios for strong earthquakes for which no instrumental recordings are

  12. Using Websites to Convey Scientific Uncertainties for Volcanic Processes and Potential Hazards (United States)

    Venezky, D. Y.; Lowenstern, J. B.; Hill, D. P.


    The Yellowstone Volcano Observatory (YVO) and Long Valley Observatory (LVO) websites have greatly increased the public's awareness and access to information about scientific uncertainties for volcanic processes by communicating at multiple levels of understanding and varied levels of detail. Our websites serve a broad audience ranging from visitors unaware of the calderas, to lay volcano enthusiasts, to scientists, federal agencies, and emergency managers. Both Yellowstone and Long Valley are highly visited tourist attractions with histories of caldera-forming eruptions large enough to alter global climate temporarily. Although it is much more likely that future activity would be on a small scale at either volcano, we are constantly posed questions about low-probability, high-impact events such as the caldera-forming eruption depicted in the recent BBC/Discovery movie, "Supervolcano". YVO and LVO website objectives include: providing monitoring data, explaining the likelihood of future events, summarizing research results, helping media provide reliable information, and expanding on information presented by the media. Providing detailed current information is a crucial website component as the public often searches online to augment information gained from often cryptic pronouncements by the media. In May 2005, for example, YVO saw an order of magnitude increase in page requests on the day MSNBC ran the misleading headline, "Yellowstone eruption threat high." The headline referred not to current events but a general rating of Yellowstone as one of 37 "high threat" volcanoes in the USGS National Volcano Early Warning System report. As websites become a more dominant source of information, we continuously revise our communication plans to make the most of this evolving medium. Because the internet gives equal access to all information providers, we find ourselves competing with various "doomsday" websites that sensationalize and distort the current understanding of

  13. Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, lipari, and vesuvius (United States)

    Sheridan, Michael F.; Malin, Michael C.


    A previously developed computer-assisted model has been applied to several pyroclastic-surge eruptions at three active volcanoes in Italy. Model hazard maps created for various vent locations, eruption types, and mass production rates reasonably reproduced pyroclastic-surge deposits from several recent eruptions on Vulcano, Lipari, and Vesuvius. Small-scale phreatic eruptions on the island of Vulcano (e.g. the 1727 explosion of Forgia Vecchia) pose a limited but serious threat to the village of Porto. The most dangerous zone affected by this type of eruption follows a NNW fissure system between Fossa and Vulcanello. Moderate-sized eruptions on Vulcano, such as those associated with the present Fossa Crater are a much more serious threat to Porto as well as the entire area within the caldera surrounding the cone. The less frequent surge eruptions on Lipari have been even more violent. The extreme mobility of surges like those produced from Monte Guardia (approx. 20,000 y.b.p.) and Monte Pilato would not only threaten the entire island of Lipari, but also the northern part of neighboring Vulcano. Eruptions at Vesuvius with energy and efficiency similar to that of the May 18, 1980 blast of Mount St. Helens would be still more destructive because of the great initial elevation of the summit vent. In addition, surge eruptions at Vesuvius are generally part of more complex eruption cycles that involve several other types of volcanic phenomena including Plinian fall and pyroclastic flows.

  14. Automatized near-real-time short-term Probabilistic Volcanic Hazard Assessment of tephra dispersion before eruptions: BET_VHst for Vesuvius and Campi Flegrei during recent exercises (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Rouwet, Dmtri; Tonini, Roberto; Macedonio, Giovanni; Marzocchi, Warner


    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short temporal intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology named BET_VHst (Selva et al. 2014) for short-term PVHA of volcanic tephra dispersal based on automatic interpretation of measures from the monitoring system and physical models of tephra dispersal from all possible vent positions and eruptive sizes based on frequently updated meteorological forecasts. The large uncertainty at all the steps required for the analysis, both aleatory and epistemic, is treated by means of Bayesian inference and statistical mixing of long- and short-term analyses. The BET_VHst model is here presented through its implementation during two exercises organized for volcanoes in the Neapolitan area: MESIMEX for Mt. Vesuvius, and VUELCO for Campi Flegrei. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252

  15. Landslide hazard prediction in the North-Eastern Apennines (Italy) (United States)

    Disperati, L.; Guastaldi, E.; Rindinella, A.


    training dataset of occurrences and a test dataset, a cross validation is made. The valuation both for flows and slides was performed through Prediction Rate Curves (PRC). By utilising the occurrences of the test dataset, PRC derived from the relation between CF trend in the whole area (cumulative percentage), portion of total area and number of landslides. As result, engineering geology can be indicated as the dominant factor for PRC of flows; likewise engineering geology, land use and RBS combination is the more effective combination. On the other side, slope and aspect resulted less determinative in best PRC trend. Moreover, the combination of engineering geology and slope allowed the computation of best PRC for landslide. References CARMIGNANI L. (2001): Realizzazione della cartografia geologica e geotematica e dei relativi supporti informatici alla scala 1/10.000 -- Progetto 1 -- Zona Nord. Progetti strumentali alla funzione di ricostruzione. Interventi strutturali comunitari obiettivo 5b -- Misura 3.1.4 Azioni di ricostruzione e recupero del tessuto urbano infrastrutturale nei territori colpiti dal sisma (Azione 7). Contratto tra la Regione Marche -- Servizio Urbanistica e Cartografia e l'Università degli Studi di Siena. Rapporto Finale. Università degli Studi di Siena, Dipartimento di Scienze della Terra, Dicembre 200 1, pp. 6 I. CHUNG C. J. (1999): Prediction models in spatial data analysis for landslide hazard mapping -- Natural Resources Canada, Geological Survey of Canada-Mineral Resources Division-Spatial Data Analysis Laboratory, CHUNG C. J., FABBRI A.G. (1993): The representation of geoscience information for data integration. Non-renewable Resources, v. 2., n. 3, pp. 1 22-139. CHUNG C. J., FABBRI A.G., VAN WESTEN C.J (1995).- Multivariate regression analysis for landslide hazard zonation. In Carrara, A. and Guzzetti, F., eds.: "Geographical Information Systems in Assessing Natural Hazards

  16. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau


    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  17. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system (United States)

    de la Cruz-Reyna, Servando; Tilling, Robert I.


    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  18. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.


    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System (VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green-yellow-red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  19. Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions (United States)

    De Risi, Raffaele; Goda, Katsuichiro


    Probabilistic tsunami hazard analysis (PTHA) is the prerequisite for rigorous risk assessment and thus for decision-making regarding risk mitigation strategies. This paper proposes a new simulation-based methodology for tsunami hazard assessment for a specific site of an engineering project along the coast, or, more broadly, for a wider tsunami-prone region. The methodology incorporates numerous uncertain parameters that are related to geophysical processes by adopting new scaling relationships for tsunamigenic seismic regions. Through the proposed methodology it is possible to obtain either a tsunami hazard curve for a single location, that is the representation of a tsunami intensity measure (such as inundation depth) versus its mean annual rate of occurrence, or tsunami hazard maps, representing the expected tsunami intensity measures within a geographical area, for a specific probability of occurrence in a given time window. In addition to the conventional tsunami hazard curve that is based on an empirical statistical representation of the simulation-based PTHA results, this study presents a robust tsunami hazard curve, which is based on a Bayesian fitting methodology. The robust approach allows a significant reduction of the number of simulations and, therefore, a reduction of the computational effort. Both methods produce a central estimate of the hazard as well as a confidence interval, facilitating the rigorous quantification of the hazard uncertainties.

  20. Uncertainties in Predicting Debris Flow Hazards Following Wildfire

    NARCIS (Netherlands)

    Hyde, K.D.; Riley, Karin; Stoof, C.R.


    Wildfire increases the probability of debris flows posing hazardous conditions where values-at-risk exist downstream of burned areas. Conditions and processes leading to postfire debris flows usually follow a general sequence defined here as the postfire debris flow hazard cascade: biophysical setti

  1. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy) (United States)

    Della Seta, Marta; Marotta, Enrica; Orsi, Giovanni; de Vita, Sandro; Sansivero, Fabio; Fredi, Paola


    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island's coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.

  2. "Curso de Vulcanología General": Web-education efforts on volcanic hazards for the Latin American region from Mexico. (United States)

    Delgado, Hugo


    Education of volcanic hazards is a never-ending task in countries where volcanoes erupt very frequently as they do in the Latin American region (LAR). Eleven countries in the LAR have active volcanoes within their territories and some volcanoes are located in between countries so the volcanic hazards associated to the eruption of those volcanoes affect more than one country. Besides, countries without volcanoes within their territory (i. e. Belize, Honduras or Brazil) can be impacted as well. Personnel working at several volcano observatories in the LAR need training in Volcanology and, more importantly, in Volcanic Hazards. Unfortunately, Volcanology is a discipline that is not taught at universities of some countries. Even worse, Earth Sciences are not even taught at high education centers in some countries of the LAR. Thus, there is an important need for the acquisition of volcanological knowledge by the personnel working at volcano observatories but there are no possibilities for them to study at their countries or they are impended for travel abroad for training. The international course: "Curso de Vulcanología General" taught from Mexico City at the Universidad Nacional Autónoma de México (UNAM) has been successfully implemented and has been active over the last five years. Nearly 700 students have participated in this course although only ~150 have been awarded the certificate UNAM grants to the students who have concluded the course successfully. This course has been sponsored by UNAM, ALVO (Latin American Volcanological Association) and IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior). More than 50 lecturers from LAR, Europe and US have been involved in these courses. Here, Reflections on the course, the opportunities sparkled, the educational tools, benefits, statistics and virtues of the course are presented.

  3. A relation to predict the failure of materials and potential application to volcanic eruptions and landslides. (United States)

    Hao, Shengwang; Liu, Chao; Lu, Chunsheng; Elsworth, Derek


    A theoretical explanation of a time-to-failure relation is presented, with this relationship then used to describe the failure of materials. This provides the potential to predict timing (tf - t) immediately before failure by extrapolating the trajectory as it asymptotes to zero with no need to fit unknown exponents as previously proposed in critical power law behaviors. This generalized relation is verified by comparison with approaches to criticality for volcanic eruptions and creep failure. A new relation based on changes with stress is proposed as an alternative expression of Voight's relation, which is widely used to describe the accelerating precursory signals before material failure and broadly applied to volcanic eruptions, landslides and other phenomena. The new generalized relation reduces to Voight's relation if stress is limited to increase at a constant rate with time. This implies that the time-derivatives in Voight's analysis may be a subset of a more general expression connecting stress derivatives, and thus provides a potential method for forecasting these events.


    Directory of Open Access Journals (Sweden)

    Md. Mahmud Hasan


    Full Text Available This study presents a method for the identification of hazardous situations on the freeways. The hazard identification is done using a crash risk probability model. For this study, about 18 km long section of Eastern Freeway in Melbourne (Australia is selected as a test bed. Two categories of data i.e. traffic and accident record data are used for the analysis and modelling. In developing the crash risk probability model, Hazard Prediction Index is formulated in this study by the differences of traffic parameters with threshold values. Seven different prediction indices are examined and the best one is selected as crash risk probability model based on prediction error minimisation.

  5. Gas emission from diffuse degassing structures (DDS) of the Cameroon volcanic line (CVL): Implications for the prevention of CO2-related hazards (United States)

    Issa; Ohba, T.; Chako Tchamabé, B.; Padrón, E.; Hernández, P.; Eneke Takem, E. G.; Barrancos, J.; Sighomnoun, D.; Ooki, S.; Nkamdjou, Sigha; Kusakabe, M.; Yoshida, Y.; Dionis, S.


    In the mid-1980s, lakes Nyos and Monoun violently released massive gas, mainly magmatic CO2 killing about 1800 people. Subsequent geochemical surveys and social studies indicate that lakes Nyos and Monoun event is cyclic in nature and may occur anywhere in the about 37 other volcanic lakes located in the corridor of the Cameroon volcanic line (CVL). This potential threat motivated us to check if, alike Nyos and Monoun, the internal dynamic of the other lakes is also controlled by inputs of deep-seated-derived CO2 and attempt to measure and provide comprehensive insights on the passive gas emission along the CVL. This knowledge shall contribute to the prevention of volcanic lake-related hazards in Cameroon and the refinement of the Global Carbon Cycle. We used in situ fixation and dry gas phase sampling methods to determine CO2 origin and the concentration, and the accumulation chamber technique to measure diffuse CO2 emission from nine lakes and on soil at Nyos Valley and Mount Manenguba Caldera. The results suggest that, although in minor concentrations (compared to Nyos and Monoun), ranging from 0.56 mmol kg- 1 to 8.75 mmol kg- 1, the bottom waters of some lakes also contain measurable magmatic CO2 with δ13C varies from - 4.42‰ to - 9.16‰ vs. PDB. That finding implies that, under certain circumstances, e.g. increase to volcanic and/or tectonic activities along the CVL, the concerned lakes could develop a Nyos-type behavioural scheme. The diffuse gas emission results indicate that the nine surveyed lakes release approximately 3.69 ± 0.37 kt km- 2 yr- 1 of CO2 to the atmosphere; extrapolation to the approximately 39 volcanic lakes located on the CVL yields an approximate CO2 output of 27.37 ± 0.5 kt km- 2 yr- 1, representing 0.023% of the global CO2 output from volcanic lakes. In addition to the precedent value, the gas removal operation in lakes Nyos and Monoun released approximately 2.52 ± 0.46 × 108 mol km- 2 yr- 1 CO2 to the atmosphere from January

  6. Volcanic ash melting under conditions relevant to ash turbine interactions. (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B


    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  7. Automatized near-real-time short-term Probabilistic Volcanic Hazard Assessment of tephra dispersion before and during eruptions: BET_VHst for Mt. Etna (United States)

    Selva, Jacopo; Scollo, Simona; Costa, Antonio; Brancato, Alfonso; Prestifilippo, Michele


    Tephra dispersal, even in small amounts, may heavily affect public health and critical infrastructures, such as airports, train and road networks, and electric power supply systems. Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at managing and mitigating the risk posed by activity during volcanic crises and during eruptions. Short-term PVHA (over time intervals in the order of hours to few days) must account for rapidly changing information coming from the monitoring system, as well as, updated wind forecast, and they must be accomplished in near-real-time. In addition, while during unrest the primary goal is to forecast potential eruptions, during eruptions it is also fundamental to correctly account for the real-time status of the eruption and of tephra dispersal, as well as its potential evolution in the short-term. Here, we present a preliminary application of BET_VHst model (Selva et al. 2014) for Mt. Etna. The model has its roots into present state deterministic procedure, and it deals with the large uncertainty that such procedures typically ignore, like uncertainty on the potential position of the vent and eruptive size, on the possible evolution of volcanological input during ongoing eruptions, as well as, on wind field. Uncertainty is treated by making use of Bayesian inference, alternative modeling procedures for tephra dispersal, and statistical mixing of long- and short-term analyses. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252

  8. National Multi-agency Support for Airborne Hazard Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, J S; Sugiyama, G A; Baskett, R L; Larsen, S C; Bradley, M M; Aines, R D


    Lawrence Livermore National Laboratory (LLNL) provides hazardous material plume modeling tools and services for a large number of emergency managers and responders. This paper describes ongoing advancement of LLNL's support for multiple agencies through the National Atmospheric Release Advisory Center (NARAC) and the Interagency Atmospheric Modeling and Atmospheric Assessment Center (IMAAC). A suite of software tools developed by LLNL and collaborating organizations includes simple stand-alone, local-scale plume modeling tools for end user's computers, and Web- and Internet-based software to access advanced 3-D flow and atmospheric dispersion modeling tools and expert analyses from the national center at LLNL.

  9. Traffic Incident Clearance Time and Arrival Time Prediction Based on Hazard Models

    Directory of Open Access Journals (Sweden)

    Yang beibei Ji


    Full Text Available Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an effective input for travel time prediction. In this paper, the hazard based prediction models are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.

  10. Seismic Hazard Prediction Using Seismic Bumps: A Data Mining Approach

    Directory of Open Access Journals (Sweden)

    Musa Peker


    Full Text Available Due to the large number of influencing factors, it is difficult to predict the earthquake which is a natural disaster. Researchers are working intensively on earthquake prediction. Loss of life and property can be minimized with earthquake prediction. In this study, a system is proposed for earthquake prediction with data mining techniques. In the study in which Cross Industry Standard Process for Data Mining (CRISP-DM approach has been used as data mining methodology, seismic bumps data obtained from mines has been analyzed. Extreme learning machine (ELM which is an effective and rapid classification algorithm has been used in the modeling phase. In the evaluation stage, different performance evaluation criteria such as classification accuracy, sensitivity, specificity and kappa value have been used. The results are promising for earthquake prediction.

  11. Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation (United States)

    Sulpizio, Roberto; Folch, Arnau; Costa, Antonio; Scaini, Chiara; Dellino, Pierfrancesco


    Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallajökull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38 %) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7 days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2 mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallajökull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment

  12. Pattern recognition prediction of coal and gas outburst hazard in the sixth mine of Hebi

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-wei; SONG Wei-hua; YANG Heng; ZHANG Ming-jie


    Based on the systematical analysis influence factors of coal and gas outburst,the main factors and their magnitude was determined by the corresponding methods. With the research region divided into finite predicting units, the internal relation between the factors and the hazard of coal and gas outburst, that was combination model of influence factors, was ascertained through multi-factor pattern recognition method. On the basis of contrastive analysis the pattern of coal and gas outburst between prediction region and mined region, the hazard of every predication unit was determined. The mining area was then divided into coal and gas outburst dangerous area, threaten area and safe area respectively according to the hazard of every predication unit. Accordingly the hazard of mining area is assessed.

  13. Prediction of ground motion parameters for the volcanic area of Mount Etna (United States)

    Tusa, Giuseppina; Langer, Horst


    Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth 5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.

  14. Pipeline geo-hazard prediction and early warning during summer monsoon based on GIS technology

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shaohui [PetroChina Pipeline RandD Center, Langfang, Hebei (China)


    PetroChina Pipeline Company operates over 12 000 kilometers of pipelines with crude oil, gas, and refined oil. The pipelines have been in operation for over 40 years. Geo-hazard is a serious threat for pipeline operators, especially during summer monsoon; monsoon geo-hazards account for 70% to 80% of the annual incidents and financial losses. There is an urgent need of prediction and early warning systems. GIS technology provides an advanced tool for such analysis. Many years of research and experience with PetroChina's prediction model finally established an important link between geo-hazard and rainfall. Spatial analysis is performed with GIS technology, using the predicted rainfall data for the next 24 hours and the data of pipeline geo-hazard susceptibility. Then the severity of pipeline damage expected is predicted. Researchers, while they try to forecast rainfall, try to forecast debris flow at the same time to minimize human casualties and property losses caused by geo-hazards.

  15. The Interactive Effects of Drinking Motives, Age, and Self-Criticism in Predicting Hazardous Drinking. (United States)

    Skinner, Kayla D; Veilleux, Jennifer C


    Individuals who disclose hazardous drinking often report strong motives to drink, which may occur to modulate views of the self. Investigating self-criticism tendencies in models of drinking motives may help explain who is more susceptible to drinking for internal or external reasons. As much of the research on drinking motives and alcohol use is conducted in young adult or college student samples, studying these relations in a wider age range is clearly needed. The current study examined the interactive relationship between drinking motives (internal: coping, enhancement; external: social, conformity), levels of self-criticism (internalized, comparative), and age to predict hazardous drinking. Participants (N = 427, Mage = 34.16, 54.8% female) who endorsed drinking within the last year completed an online study assessing these constructs. Results indicated internalized self-criticism and drinking to cope interacted to predict hazardous drinking for middle-aged adults. However, comparative self-criticism and conformity motives interacted to predict greater hazardous drinking for younger-aged adults. In addition, both social and conformity motives predicted less hazardous drinking for middle-aged adults high in comparative self-criticism. Interventions that target alcohol use could minimize coping motivations to drink while targeting comparative self-criticism in the context of social, and conformity motives.

  16. Operational short-term Probabilistic Volcanic Hazard Assessment of tephra fallout: an example from the 1982-1984 unrest at Campi Flegrei (United States)

    Sandri, Laura; Selva, Jacopo; Costa, Antonio; Macedonio, Giovanni; Marzocchi, Warner


    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology for the short-term PVHA and its operational implementation, based on the model BET_EF, in which measures from the monitoring system are used to routinely update the forecast of some parameters related to the eruption dynamics, that is, the probabilities of eruption, of every possible vent position and every possible eruption size. Then, considering all possible vent positions and eruptive sizes, tephra dispersal models are coupled with frequently updated meteorological forecasts. Finally, these results are merged through a Bayesian procedure, accounting for epistemic uncertainties at all the considered steps. As case study we retrospectively study some stages of the volcanic unrest that took place in Campi Flegrei (CF) in 1982-1984. In particular, we aim at presenting a practical example of possible operational tephra fall PVHA on a daily basis, in the surroundings of CF at different stages of the 1982-84 unrest. Tephra dispersal is simulated using the analytical HAZMAP code. We consider three possible eruptive sizes (a low, a medium and a

  17. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands (United States)

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.


    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  18. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.


    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  19. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps (United States)

    Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano


    Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.

  20. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity. (United States)

    Sangion, Alessandro; Gramatica, Paola


    Active Pharmaceutical Ingredients (APIs) are recognized as Contaminants of Emerging Concern (CEC) since they are detected in the environment in increasing amount, mainly in aquatic compartment, where they may be hazardous for wildlife. The huge lack of experimental data for a large number of end-points requires tools able to quickly highlight the potentially most hazardous and toxic pharmaceuticals, focusing experiments on the prioritized compounds. In silico tools, like QSAR (Quantitative Structure-Activity Relationship) models based on structural molecular descriptors, can predict missing data for toxic end-points necessary to prioritize existing, or even not yet synthesized chemicals for their potential hazard. In the present study, new externally validated QSAR models, specific to predict acute toxicity of APIs in key organisms of the three main aquatic trophic levels, i.e. algae, Daphnia and two species of fish, were developed using the QSARINS software. These Multiple Linear regressions - Ordinary Least Squares (MLR-OLS) models are based on theoretical molecular descriptors calculated by free PaDEL-Descriptor software and selected by Genetic Algorithm. The models are statistically robust, externally predictive and characterized by a wide structural applicability domain. They were applied to predict acute toxicity for a large set of APIs without experimental data. Then predictions were processed by Principal Component Analysis (PCA) and a trend, driven by the combination of toxicities for all the studied organisms, was highlighted. This trend, named Aquatic Toxicity Index (ATI), allowed the raking of pharmaceuticals according to their potential toxicity upon the whole aquatic environment. Finally a QSAR model for the prediction of this Aquatic Toxicity Index (ATI) was proposed to be applicable in QSARINS for the screening of existing APIs for their potential hazard and the a priori chemical design of not environmentally hazardous APIs. Copyright © 2016

  1. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation (United States)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry


    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars

  2. Hazards Response of Energetic Materials - Initiation Mechanisms, Experimental Characterization, and Development of Predictive Capability

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J; Nichols III, A; Reaugh, J; McClelland, M; Hsu, P C


    We present our approach to develop a predictive capability for hazards -- thermal and non-shock impact -- response of energetic material systems based on: (A) identification of relevant processes; (B) characterization of the relevant properties; (C) application of property data to predictive models; and (D) application of the models into predictive simulation. This paper focuses on the first two elements above, while a companion paper by Nichols et al focuses on the final two elements. We outline the underlying mechanisms of hazards response and their interactions, and present our experimental work to characterize the necessary material parameters, including thermal ignition, thermal and mechanical properties, fracture/fragmentation behavior, deflagration rates, and the effect of material damage. We also describe our validation test, the Scaled Thermal Explosion Experiment. Finally, we integrate the entire collection of data into a qualitative understanding that is useful until such time as the predictive models become available.

  3. Volatile heavy metal mobility in silicate liquids: Implications for volcanic degassing and eruption prediction (United States)

    MacKenzie, Jason M.; Canil, Dante


    The volatilization of Cd, Re, Tl, Pb, Sb and Te from melts in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) and Na 2O-MgO-Al 2O 3-SiO 2 (NMAS) has been investigated at 0.1 MPa and 1200-1350 °C. Experiments were conducted in air using metal-doped melts in Pt crucibles. Analysis of quenched glasses by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) normal to the melt/gas interface produced concentration profiles for Cd, Re, Tl, Pb, Sb and Te to which a semi-infinite one-dimensional diffusion model could be applied to extract diffusion coefficients ( D). The melt was also doped with Cu, Zn, In, Mo, Sn and W but concentration profiles for these metals did not develop. In the CMAS composition at 1300 °C, the fastest diffusing element was Cd having a log DCd = - 6.5 ± 0.2. The slowest element was Re with log DRe = - 7.5 ± 0.3. Diffusivities of Sb, Te, Pb and Tl have intermediate values where log DSb = - 7.1 ± 0.1, log DTe = - 7.2 ± 0.3, log DPb = - 7.1 ± 0.2, log DTl = - 7.0 ± 0.2 cm 2/s. In the NMAS composition, log DRe = - 6.5 ± 0.2, log DSb = - 6.0 ± 0.2, log DPb = - 6.1 ± 0.1, log DTl = - 5.8 ± 0.2 cm 2/s (values for Cd and Te were not determined). Differences in diffusivity of volatile heavy metal ions to a melt-gas interface lead to significant fractionation between these metals in magmas during degassing. Given the observed differences in Cd and Re diffusivities in the CMAS composition, we predict an increase in the normalized Cd/Re ratio in the gas phase with increasing bubble growth rate. Monitoring of the Cd/Re ratios in aerosols from degassing volcanoes may provide a tool for predicting volcanic eruption.

  4. Multivariate factorial analysis to design a robust batch leaching test to assess the volcanic ash geochemical hazard. (United States)

    Ruggieri, Flavia; Gil, Raúl A; Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Gimeno, Domingo; Lobo, Agustin; Martinez, Luis D; Rodriguez-Gonzalez, Alejandro


    A method to obtain robust information on short term leaching behaviour of volcanic ashes has been developed independently on the sample age. A mixed factorial design (MFD) was employed as a multivariate strategy for the evaluation of the effects of selected control factors and their interactions (amount of sample (A), contact time (B), and liquid to solid ratio or L/S (C)) on the leaching process of selected metals (Na, K, Mg, Ca, Si, Al, V, Mn, Fe, and Co) and anions (Cl(-) and SO(4)(2-)). Box plots of the data acquired were used to evaluate the reproducibility achieved at different experimental conditions. Both the amount of sample (A) and leaching time (B) had a significant effect on the element stripping whereas the L/S ratio influenced only few elements. The lowest dispersion values have been observed when 1.0 g was leached with an L/S ratio equal to 10, shaking during 4 h. The entire method is completed within few hours, and it is simple, feasible and reliable in laboratory conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms (United States)

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie


    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with

  6. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva


    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  7. Effects of large volcanic eruptions on Eurasian climate and societies: unravelling past evidence to predict future impacts (United States)

    Churakova Sidorova, Olga; Guillet, Sébastien; Corona, Christophe; Khodri, Myriam; Vaganov, Eugene; Siegwolf, Rolf; Bryukhanova, Marina; Naumova, Oksana; Kirdyanov, Aleksander; Myglan, Vladimir; Sviderskaya, Irina; Pyzhev, Anton; Grachev, Alexei; Saurer, Matthias; Beniston, Martin; Stoffel, Markus


    Substantial evidence exists for the sulphur deposition in ice cores of Greenland and Antarctica after major volcanic eruptions but their impacts have not been documented with sufficient detail so far. This is true for temperature, of which the cooling induced by eruptions has been vividly debated in recent years, but even more so for precipitation. In the Era.Net RUS Plus ELVECS, we are currently quantifying climate disturbance induced by major Common Era eruptions, the persistence of changes and their impact on short- to mid-term temperature and precipitation anomalies by using an unprecedented dataset of tree-ring records across Eurasia and a large body of recently unearthed historical archives. We will compile a comprehensive database of tree-ring proxies and historical archives; quantify temperature and precipitation impacts of large eruptions; simulate on a case-by-case basis volcanic microphysical processes and radiative forcing induced by the eruptions as well as evaluate results against tree-ring records; quantify impacts of large volcanic eruptions on atmospheric and oceanic circulations and feedbacks; and assess impacts of possible future eruptions. The new and diversified proxy data sources and more sophisticated modelling are expected to reduce discrepancies and uncertainties related to climatic responses to some of the largest eruptions. We expect to capture persistence of anomalies correctly by climate models, even more so if they are evaluated against highly resolved proxy data of past events. This will increase our confidence in the overall reliability of climate models and help to correctly capture, and therefore predict, the cooling and precipitation anomalies of possible future, large eruptions. These predictions of climatic anomalies will then be used to quantify their likely impacts on major economy and society, including food security, migration and air traffic. Acknowledgements: Era.Net RUS Plus ELVECS project № 122


    Energy Technology Data Exchange (ETDEWEB)

    F.V. Perry; A. Cogbill; R. Kelley


    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10{sup -8} dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  9. Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond (United States)

    Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.


    The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next

  10. Spatial hazard analysis and prediction on rainfall-induced landslide using GIS

    Institute of Scientific and Technical Information of China (English)


    The application of landslide hazard model cou-pled with GIS provides an effective means to spatial hazardanalysis and prediction on rainfall-induced landslides. Amodified SINMAP model is established based upon the sys-tematic investigation on previous GIS-based landslide analy-sis models. By integrating the landslide deterministic modelwith the hydrological distribution model based on DEM, thismodel deeply studied the effect of underground water dis-tribution due to rainfall on the slope stability and landslideoccurrence, including the effect of dynamic water pressureresulting from the down slope seepage process as well as thatof static water pressure. Its applicability has been testified onthe Xiaojiang watershed, the rainfall-induced landslideswidespread area in Southeast China. Detailed discussion wascarried out on the spatial distribution characteristics oflandslide hazard and its extending trend, as well as thequantitative relationship between landslide hazard with pre-cipitation, slope angle and specific catchment area in theXiaojiang watershed. And the precipitation threshold forlandslide occurrence was estimated. These analytical resultsare proved useful for geohazard control and engineeringdecision-making in the Xiaojiang watershed.

  11. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts (United States)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.


    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow

  12. Lithological and rheological constraints on fault rupture scenarios for ground motion hazard prediction. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, W.; Hutchings, L.; Jarpe, S.


    This paper tests a new approach to predict a range of ground motion hazard at specific sites generated by earthquakes on specific faults. The approach utilizes geodynamics to link structural, lithological and Theological descriptions of the fault zones to development of fault rupture scenarios and computation of synthetic seismograms. Faults are placed within a regional geomechanical model that is used to calculate stress conditions along the fault. The approach is based upon three hypothesis: (1) An exact solution of the representation relation that u@s empirical. Green`s functions enables very accurate computation of ground motions generated by a given rupture scenario; (2) a general description of the rupture is sufficient; and (3) the structural, lithological and Theological characteristics of a fault can be used to constrain, in advance, possible future rupture histories. Ground motion hazard here refers to three-component, full wave train descriptions of displacement, velocity, and acceleration over the frequency band 0.01 to 25 Hz. Corollaries to these hypotheses are that the range of possible fault rupture histories is narrow enough to functionally constrain the range of strong ground motion predictions, and that a discreet set of rupture histories is sufficient to span the infinite combinations possible from a given range of rupture parameters.

  13. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly


    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  14. Reliability estimation and remaining useful lifetime prediction for bearing based on proportional hazard model

    Institute of Scientific and Technical Information of China (English)

    王鹭; 张利; 王学芝


    As the central component of rotating machine, the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability. A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime (RUL) of bearings was proposed, consisting of three phases. Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis (feature selection step). Time series analysis based on neural network, as an identification model, was used to predict the features of bearing vibration signals at any horizons (feature prediction step). Furthermore, according to the features, degradation factor was defined. The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing (RUL prediction step). The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.

  15. Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo

    CSIR Research Space (South Africa)

    Mavonga, T


    Full Text Available In recent decades, civil wars in the eastern provinces of the Democratic Republic of Congo have caused massive social disruptions, which have been exacerbated by volcanic and earthquake disasters. Seismic data were gathered and analysed as part...

  16. Hazard Forecasting by MRI: A Prediction Algorithm of the First Kind (United States)

    Lomnitz, C.


    Seismic gaps do not tell us when and where the next earthquake is due. We present new results on limited earthquake hazard prediction at plate boundaries. Our algorithm quantifies earthquake hazard in seismic gaps. The prediction window found for M7 is on the order of 50 km by 20 years (Lomnitz, 1996a). The earth is unstable with respect to small perturbations of the initial conditions. A prediction of the first kind is an estimate of the time evolution of a complex system with fixed boundary conditions in response to changes in the initial state, for example, weather prediction (Edward Lorenz, 1975; Hasselmann, 2002). We use the catalog of large world earthquakes as a proxy for the initial conditions. The MRI algorithm simulates the response of the system to updating the catalog. After a local stress transient dP the entropy decays as (grad dP)2 due to transient flows directed toward the epicenter. Healing is the thermodynamic process which resets the state of stress. It proceeds as a power law from the rupture boundary inwards, as in a wound. The half-life of a rupture is defined as the healing time which shrinks the size of a scar by half. Healed segments of plate boundary can rupture again. From observations in Chile, Mexico and Japan we find that the half-life of a seismic rupture is about 20 years, in agreement with seismic gap observations. The moment ratio MR is defined as the contrast between the cumulative regional moment release and the local moment deficiency at time t along the plate boundary. The procedure is called MRI. The findings: (1) MRI works; (2) major earthquakes match prominent peaks in the MRI graph; (3) important events (Central Chile 1985; Mexico 1985; Kobe 1995) match MRI peaks which began to emerge 10 to 20 years before the earthquake; (4) The emergence of peaks in MRI depends on earlier ruptures that occurred, not adjacent to but at 10 to 20 fault lengths from the epicentral region, in agreement with triggering effects. The hazard

  17. Free-product plume distribution and recovery modeling prediction in a diesel-contaminated volcanic aquifer (United States)

    Hernández-Espriú, Antonio; Martínez-Santos, Pedro; Sánchez-León, Emilio; Marín, Luis E.

    Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air-oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air-oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in

  18. Operational and contractual impacts in E and P offshore during predicted natural hazards

    Energy Technology Data Exchange (ETDEWEB)

    Benevides, Paulo Roberto Correa de Sa e [PETROBRAS, Rio de Janeiro, RJ (Brazil)


    Generally, when E and P operators using DP (Dynamic Positioning) are advised previously of a possible natural hazard occurrence, usually they consider it like an emergency situation and their main action is oriented only to prepare the first response and use the 'force majeure' argumentation to protect itself from any additional responsibility. When the natural phenomenon actually happens, the expenses due to the losses will be accepted because it was already considered in its budget as 'Losses due to accident' and it will be shared by the partners of the project according to the correspondent contractual terms. This paper describes real cases of the evolution of predictions for natural hazards in offshore basins in Brazil, Western Africa and Gulf of Mexico where PETROBRAS and many other oil companies have used DP operations. It proposes some alternative procedures through the BCM (Business Continuity Management) to manage natural crisis instead of the common use of the traditional 'force majeure' argumentation. (author)

  19. Numerical Simulations as Tool to Predict Chemical and Radiological Hazardous Diffusion in Case of Nonconventional Events

    Directory of Open Access Journals (Sweden)

    J.-F. Ciparisse


    Full Text Available CFD (Computational Fluid Dynamics simulations are widely used nowadays to predict the behaviour of fluids in pure research and in industrial applications. This approach makes it possible to get quantitatively meaningful results, often in good agreement with the experimental ones. The aim of this paper is to show how CFD calculations can help to understand the time evolution of two possible CBRNe (Chemical-Biological-Radiological-Nuclear-explosive events: (1 hazardous dust mobilization due to the interaction between a jet of air and a metallic powder in case of a LOVA (Loss Of Vacuum Accidents that is one of the possible accidents that can occur in experimental nuclear fusion plants; (2 toxic gas release in atmosphere. The scenario analysed in the paper has consequences similar to those expected in case of a release of dangerous substances (chemical or radioactive in enclosed or open environment during nonconventional events (like accidents or man-made or natural disasters.

  20. Prediction of gas pressurization and hydrogen generation for shipping hazard analysis : Six unstabilized PU 02 samples

    Energy Technology Data Exchange (ETDEWEB)

    Moody, E. W. (Eddie W.); Veirs, D. K. (Douglas Kirk); Lyman, J. L. (John L.)


    Radiolysis of water to form hydrogen gas is a safety concern for safe storage and transport of plutonium-bearing materials. Hydrogen gas is considered a safety hazard if its concentration in the container exceeds five percent hydrogen by volume, DOE Docket No. 00-1 1-9965. Unfortunately, water cannot be entirely avoided in a processing environment and these samples contain a range of water inherently. Thermodynamic, chemical, and radiolysis modeling was used to predict gas generation and changes in gas composition as a function of time within sealed containers containing plutonium bearing materials. The results are used in support of safety analysis for shipping six unstabilized (i.e. uncalcined) samples from Rocky Flats Environmental Technology Sits (RFETS) to the Material Identification and Surveillance (MIS) program at Los Alamos National Lab (LANL). The intent of this work is to establish a time window in which safe shipping can occur.

  1. A brief peripheral motion contrast threshold test predicts older drivers' hazardous behaviors in simulated driving. (United States)

    Henderson, Steven; Woods-Fry, Heather; Collin, Charles A; Gagnon, Sylvain; Voloaca, Misha; Grant, John; Rosenthal, Ted; Allen, Wade


    Our research group has previously demonstrated that the peripheral motion contrast threshold (PMCT) test predicts older drivers' self-report accident risk, as well as simulated driving performance. However, the PMCT is too lengthy to be a part of a battery of tests to assess fitness to drive. Therefore, we have developed a new version of this test, which takes under two minutes to administer. We assessed the motion contrast thresholds of 24 younger drivers (19-32) and 25 older drivers (65-83) with both the PMCT-10min and the PMCT-2min test and investigated if thresholds were associated with measures of simulated driving performance. Younger participants had significantly lower motion contrast thresholds than older participants and there were no significant correlations between younger participants' thresholds and any measures of driving performance. The PMCT-10min and the PMCT-2min thresholds of older drivers' predicted simulated crash risk, as well as the minimum distance of approach to all hazards. This suggests that our tests of motion processing can help predict the risk of collision or near collision in older drivers. Thresholds were also correlated with the total lane deviation time, suggesting a deficiency in processing of peripheral flow and delayed detection of adjacent cars. The PMCT-2min is an improved version of a previously validated test, and it has the potential to help assess older drivers' fitness to drive.

  2. Survival prediction based on compound covariate under Cox proportional hazard models.

    Directory of Open Access Journals (Sweden)

    Takeshi Emura

    Full Text Available Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data analysis that the compound covariate method generally competes well with ridge regression and Lasso methods, both already well-studied methods for predicting survival outcomes with a large number of covariates. Furthermore, we develop a refinement of the compound covariate method by incorporating likelihood information from multivariate Cox models. The new proposal is an adaptive method that borrows information contained in both the univariate and multivariate Cox regression estimators. We show that the new proposal has a theoretical justification from a statistical large sample theory and is naturally interpreted as a shrinkage-type estimator, a popular class of estimators in statistical literature. Two datasets, the primary biliary cirrhosis of the liver data and the non-small-cell lung cancer data, are used for illustration. The proposed method is implemented in R package "compound.Cox" available in CRAN at

  3. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment (United States)

    Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.


    The Citlalte??petl-Cofre de Perote volcanic chain forms an important physiographic barrier that separates the Central Altiplano (2500??masl) from the Gulf Coastal Plain (GCP) (1300??masl). The abrupt eastward drop in relief between these provinces gives rise to unstable conditions and consequent gravitational collapse of large volcanic edifices built at the edge of the Altiplano. Eastward sloping substrate, caused by the irregular configuration of the basement rocks, is the dominant factor that controls the direction of collapsing sectors in all major volcanoes in the region to be preferentially towards the GCP. These collapses produced voluminous debris avalanches and lahars that inundated the well-developed drainages and clastic aprons that characterize the Coastal Plain. Large catastrophic collapses from Citlalte??petl, Las Cumbres, and Cofre de Perote volcanoes are well documented in the geologic record. Some of the avalanches and transformed flows have exceptionally long runouts and reach the Gulf of Mexico traveling more than 120??km from their source. So far, no direct evidence has been found for magmatic activity associated with the initiation of these catastrophic flank-collapses. Apparently, instability of the volcanic edifices has been strongly favored by very intense hydrothermal alteration, abrupt topographic change, and intense fracturing. In addition to the eastward slope of the substrate, the reactivation of pre-volcanic basement structures during the Late Tertiary, and the E-W to ENE-SSW oriented regional stress regimes may have played an important role in the preferential movement direction of the avalanches and flows. In addition to magmatic-hydrothermal processes, high amounts of rainfall in the area is another factor that enhances alteration and eventually weakens the rocks. It is very likely that seismic activity may be the principal triggering mechanism that caused the flank collapse of large volcanic edifices in the Eastern Mexican Volcanic

  4. New Insights Into Volcanic Hazards in Western Mexico: Multiple Cone-Building Episodes at Arc Stratovolcanoes Revealed by 40Ar/39Ar Geochronology (United States)

    Frey, H. M.; Lewis-Kenedi, K.; Lange, R. A.; Hall, C. M.; Delgado-Granados, H.


    The detailed eruptive histories of two andesitic stratocones, Volcáns Ceboruco and Tequila, in the western Mexican arc have been documented using 40Ar/39Ar geochronology. The volumes of these volcanoes were obtained with mapping, airphotos, and digital elevation models. The age and volume data constrain the rate and duration of major cone-building events, which bears on the longevity of the underlying upper-crustal magma chambers that fed the eruptions. The results indicate that at each stratovolcano there were two discrete cone-building events, separated by a hiatus. At V. Tequila, six samples from the edifice yielded dates (196 +/- 8, 196 +/- 19, 178 +/- 8, 191 +/- 13, 216 +/- 11, and 198 +/- 11 ka; errors are 1 sigma) with a mean eruption age of 196 +/- 12 ka. Thus the bulk of the main edifice ( ˜31 km3) erupted within 24 kyrs (at the 2 sigma level), leading to a cone-building rate of > 1.3 km3/kyr. After a hiatus of ˜110 kyrs, ˜14 km3 of andesite erupted along the NW and SE flanks of V. Tequila at 90 +/- 19 ka. The last activity at V. Tequila produced a ˜2 km3 parasitic cone at ˜60 ka. Since an eruption has not occurred in the last 60 kyrs, V. Tequila is often considered an extinct volcano. This may be the view held by the > 75,000 inhabitants of the town of Tequila located on the northern flanks. A similar history of two discrete cone-building events is found at V. Ceboruco, ˜75 km to the NW. Seven samples taken from various parts of the edifice, including the inner caldera wall, indicate an initial cone-building event at ˜45 ka in which ˜37 km3 of andesite erupted. After a hiatus of nearly 44 kyrs, a second eruptive period began ˜1000 years ago. The first eruption to occur after the hiatus was Plinian and released 3-4 km3 of dacite. In the last 1 kyr, 9.5 km3 of andesite and dacite erupted effusively, culminating in the historic 1870 flow. The sobering conclusion, in terms of volcanic hazards assessment, is that the only Plinian eruption to occur

  5. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District (United States)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.


    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  6. Predictive models in hazard assessment of Great Lakes contaminants for fish (United States)

    Passino, Dora R. May


    A hazard assessment scheme was developed and applied to predict potential harm to aquatic biota of nearly 500 organic compounds detected by gas chromatography/mass spectrometry (GC/MS) in Great Lakes fish. The frequency of occurrence and estimated concentrations of compounds found in lake trout (Salvelinus namaycush) and walleyes (Stizostedion vitreum vitreum) were compared with available manufacturing and discharge information. Bioconcentration potential of the compounds was estimated from available data or from calculations of quantitative structure-activity relationships (QSAR). Investigators at the National Fisheries Research Center-Great Lakes also measured the acute toxicity (48-h EC50's) of 35 representative compounds to Daphnia pulex and compared the results with acute toxicity values generated by QSAR. The QSAR-derived toxicities for several chemicals underestimated the actual acute toxicity by one or more orders of magnitude. A multiple regression of log EC50 on log water solubility and molecular volume proved to be a useful predictive model. Additional models providing insight into toxicity incorporate solvatochromic parameters that measure dipolarity/polarizability, hydrogen bond acceptor basicity, and hydrogen bond donor acidity of the solute (toxicant).

  7. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada) (United States)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.


    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  8. Volcanic ash vs. sand and dust - "to stick or not to stick" in jet engines (United States)

    Kueppers, U.; Song, W.; Lavallée, Y.; Hess, K. U.; Cimarelli, C.; Dingwell, D. B.


    Safe air travel activity requires clean flight corridors. But particles scattered in the atmosphere, whether volcanic ash, dust or sand, may present a critical threat to aviation safety. When these foreign particles are ingested into jet engines, whose interiors (e.g., the combustor and turbine blades) reach 1200-2000 °C, they can abrade, melt, and stick to the internal components of the engine, clogging ventilation traps of the cooling system as well as imparting substantial damage and potentially resulting in catastrophic system failure. To date, no criterion predicts ash behaviour at high temperature. Here, we experimentally develop the first quantitative model to predict melting and sticking conditions for the compositional range of volcanic ash encountered worldwide (Fig.1). The assumption that volcanic ash can be approximated by sand or dust is wholly inadequate, leading to an overestimation of sticking temperature and a correspondingly severe underestimation of the thermal hazard. Our findings confirm that the melting/softening behaviour of volcanic ash at high temperatures is essentially controlled by the composition of erupted ash - which may serve as an accurate proxy of the thermal hazard potential of volcanic ash interaction with jet engines. The criterion proposed here successfully parameterizes the potentially complex "melting" process of volcanic ash and can be used to assess the deposition probability of volcanic ash upon ingestion into hot jet engines.

  9. National volcanic ash operations plan for aviation (United States)

    ,; ,


    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  10. Validating a Hazardous Drinking Index in a Sample of Sexual Minority Women: Reliability, Validity and Predictive Accuracy (United States)

    Riley, Barth B.; Hughes, Tonda L.; Wilsnack, Sharon C.; Johnson, Timothy P.; Benson, Perry; Aranda, Frances


    Background Although sexual minority women (SMW) are at increased risk of hazardous drinking (HD), efforts to validate HD measures have yet to focus on this population. Objectives Validation of a 13-item Hazardous Drinking Index (HDI) in a large sample of SMW. Methods Data were from 700 adult SMW (age 18–82) enrolled in the Chicago Health and Life Experiences of Women study. Criterion measures included counts of depressive symptoms and post-traumatic stress disorder (PTSD) symptoms, average daily and 30-day ethanol consumption, risky sexual behavior, and Diagnostic and Statistical Manual (DSM-IV) measures of alcohol abuse/dependence. Analyses included assessment of internal consistency, construction of receiver operating characteristic (ROC) curves to predict alcohol abuse/dependence, and correlations between HDI and criterion measures. We compared the psychometric properties (diagnostic accuracy and correlates of hazardous drinking) of the HDI to the commonly used CAGE instrument. Results KR-20 reliability for the HDI was 0.80, compared to 0.74 for the CAGE. Predictive accuracy, as measured by the area under the receiver operating characteristic curve for alcohol abuse/dependence, was HDI: 0.89; CAGE: 0.84. The HDI evidenced the best predictive efficacy and tradeoff between sensitivity and specificity. Results supported the concurrent validity of the HDI measure. Conclusions The Hazardous Drinking Index is a reliable and valid measure of hazardous drinking for sexual minority women. PMID:27661289

  11. Risk prediction of Critical Infrastructures against extreme natural hazards: local and regional scale analysis (United States)

    Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia


    Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario

  12. On the predictability of volcano-tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands

    Directory of Open Access Journals (Sweden)

    M. Tárraga


    Full Text Available The island of Tenerife (Canary Islands, Spain, is showing possible signs of reawakening after its last basaltic strombolian eruption, dated 1909 at Chinyero. The main concern relates to the central active volcanic complex Teide - Pico Viejo, which poses serious hazards to the properties and population of the island of Tenerife (Canary Islands, Spain, and which has erupted several times during the last 5000 years, including a subplinian phonolitic eruption (Montaña Blanca about 2000 years ago. In this paper we show the presence of low frequency seismic noise which possibly includes tremor of volcanic origin and we investigate the feasibility of using it to forecast, via the material failure forecast method, the time of occurrence of discrete events that could be called Volcano-Tectonic or simply Tectonic (i.e. non volcanic on the basis of their relationship to volcanic activity. In order to avoid subjectivity in the forecast procedure, an automatic program has been developed to generate forecasts, validated by Bayes theorem. A parameter called 'forecast gain' measures (and for the first time quantitatively what is gained in probabilistic terms by applying the (automatic failure forecast method. The clear correlation between the obtained forecasts and the occurrence of (Volcano-Tectonic seismic events - a clear indication of a relationship between the continuous seismic noise and the discrete seismic events - is the explanation for the high value of this 'forecast gain' in both 2004 and 2005 and an indication that the events are Volcano-Tectonic rather than purely Tectonic.

  13. On the predictive information criteria for model determination in seismic hazard analysis (United States)

    Varini, Elisa; Rotondi, Renata


    estimate, but it is hardly applicable to data which are not independent given parameters (Watanabe, J. Mach. Learn. Res., 2010). A solution is given by Ando and Tsay criterion where the joint density may be decomposed into the product of the conditional densities (Ando and Tsay, Int. J. Forecast., 2010). The above mentioned criteria are global summary measures of model performance, but more detailed analysis could be required to discover the reasons for poor global performance. In this latter case, a retrospective predictive analysis is performed on each individual observation. In this study we performed the Bayesian analysis of Italian data sets by four versions of a long-term hazard model known as the stress release model (Vere-Jones, J. Physics Earth, 1978; Bebbington and Harte, Geophys. J. Int., 2003; Varini and Rotondi, Environ. Ecol. Stat., 2015). Then we illustrate the results on their performance evaluated by Bayes Factor, predictive information criteria and retrospective predictive analysis.

  14. Catastrophic volcanism (United States)

    Lipman, Peter W.


    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  15. Statistical Issues for Uncontrolled Reentry Hazards - Empirical Tests of the Predicted Footprint for Uncontrolled Satellite Reentry Hazards (United States)

    Matney, M.


    A number of statistical tools have been developed over the years for assessing the risk of reentering objects to human populations. These tools make use of the characteristics (e.g., mass, material, shape, size) of debris that are predicted by aerothermal models to survive reentry. The statistical tools use this information to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of the analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. Because this information is used in making policy and engineering decisions, it is important that these assumptions be tested using empirical data. This study uses the latest database of known uncontrolled reentry locations measured by the United States Department of Defense. The predicted ground footprint distributions of these objects are based on the theory that their orbits behave basically like simple Kepler orbits. However, there are a number of factors in the final stages of reentry - including the effects of gravitational harmonics, the effects of the Earth's equatorial bulge on the atmosphere, and the rotation of the Earth and atmosphere - that could cause them to diverge from simple Kepler orbit behavior and possibly change the probability of reentering over a given location. In this paper, the measured latitude and longitude distributions of these objects are directly compared with the predicted distributions, providing a fundamental empirical test of the model assumptions.

  16. Toward a coupled Hazard-Vulnerability Tool for Flash Flood Impacts Prediction (United States)

    Terti, Galateia; Ruin, Isabelle; Anquetin, Sandrine; Gourley, Jonathan J.


    Flash floods (FF) are high-impact, catastrophic events that result from the intersection of hydrometeorological extremes and society at small space-time scales, generally on the order of minutes to hours. Because FF events are generally localized in space and time, they are very difficult to forecast with precision and can subsequently leave people uninformed and subject to surprise in the midst of their daily activities (e.g., commuting to work). In Europe, FFs are the main source of natural hazard fatalities, although they affect smaller areas than riverine flooding. In the US, also, flash flooding is the leading cause of weather-related deaths most years, with some 200 annual fatalities. There were 954 fatalities and approximately 31 billion U.S. dollars of property damage due to floods and flash floods from 1995 to 2012 in the US. For forecasters and emergency managers the prediction of and subsequent response to impacts due to such a sudden onset and localized event remains a challenge. This research is motivated by the hypothesis that the intersection of the spatio-temporal context of the hazard with the distribution of people and their characteristics across space and time reveals different paths of vulnerability. We argue that vulnerability and the dominant impact type varies dynamically throughout the day and week according to the location under concern. Thus, indices are appropriate to develop and provide, for example, vehicle-related impacts on active population being focused on the road network during morning or evening rush hours. This study describes the methodological developments of our approach and applies our hypothesis to the case of the June 14th, 2010 flash flood event in the Oklahoma City area (Oklahoma, US). Social (i.e. population socio-economic profile), exposure (i.e. population distribution, land use), and physical (i.e. built and natural environment) data are used to compose different vulnerability products based on the forecast location

  17. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  18. Moving the Hazard Prediction and Assessment Capability to a Distributed, Portable Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, RW


    The Hazard Prediction and Assessment Capability (HPAC) has been re-engineered from a Windows application with tight binding between computation and a graphical user interface (GUI) to a new distributed object architecture. The key goals of this new architecture are platform portability, extensibility, deployment flexibility, client-server operations, easy integration with other systems, and support for a new map-based GUI. Selection of Java as the development and runtime environment is the major factor in achieving each of the goals, platform portability in particular. Portability is further enforced by allowing only Java components in the client. Extensibility is achieved via Java's dynamic binding and class loading capabilities and a design by interface approach. HPAC supports deployment on a standalone host, as a heavy client in client-server mode with data stored on the client but calculations performed on the server host, and as a thin client with data and calculations on the server host. The principle architectural element supporting deployment flexibility is the use of Universal Resource Locators (URLs) for all file references. Java WebStart{trademark} is used for thin client deployment. Although there were many choices for the object distribution mechanism, the Common Object Request Broker Architecture (CORBA) was chosen to support HPAC client server operation. HPAC complies with version 2.0 of the CORBA standard and does not assume support for pass-by-value method arguments. Execution in standalone mode is expedited by having most server objects run in the same process as client objects, thereby bypassing CORBA object transport. HPAC provides four levels for access by other tools and systems, starting with a Windows library providing transport and dispersion (T&D) calculations and output generation, detailed and more abstract sets of CORBA services, and reusable Java components.

  19. Volcanic eruptions observed with infrasound (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.


    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  20. Climate Prediction Center(CPC)Global Tropics Hazards and Benefits Assessment (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Tropics Hazards and Benefits Assessment (GTH) is an outlook product for the areas in the Tropics. Forecasts for the Week-1 and Week-2 period are given for...

  1. Hazard responses in the pre-industrial era: vulnerability and resilience of traditional societies to volcanic disasters and the implications for present-day disaster planning (United States)

    Sangster, Heather


    A major research frontier in the study of natural hazard research involves unravelling the ways in which societies have reacted historically to disasters, and how such responses influence current policies of disaster reduction. For societies it is common to classify responses to natural hazards into: pre-industrial (folk); industrial; and post-industrial (comprehensive) responses. Pre-industrial societies are characterised by: a pre-dominantly rural location; an agricultural economic focus; artisan handicrafts rather than industrial production, parochialism, with people rarely travelling outside their local area and being little affected by external events and a feudal or semi-feudal social structure. In the past, hazard assessment focused on the physical processes that produced extreme and potentially damaging occurrences, however from the middle of the twenty-first century research into natural hazards has been cast within a framework defined by the polarities (or opposites) of vulnerability and resilience, subject to a blend of unique environmental, social, economic and cultural forces in hazardous areas, that either increase or decrease the impact of extreme events on a given society. In the past decade research of this type has been facilitated by a 'revolution' of source materials across a range of languages and in a variety of electronic formats (e.g. official archives; major contemporary and near-contemporary publications - often available as reprints; national and international newspapers of record; newsreel-films; and, photographs) and in the introduction of more reliable translation software (e.g. Systrans) that provides far more scope to the researcher in the study of natural hazards than was the case even a few years ago. Knowledge of hazard responses in the pre-industrial era is, not only important in its own right because it reveals indigenous strategies of coping, but also informs present-day disaster planners about how people have reacted to past

  2. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker


    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  3. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker


    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  4. Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows (United States)

    Schilling, Steve P.; Iverson, Richard M.


    Large debris flows can pose hazards to people and property downstream from volcanoes. We have developed a rapid, reproducible, objective, and inexpensive method to delineate distal debris-flow hazard zones. Our method employs the results of scaling and statistical analyses of the geometry of volcanic debris flows (lahars) to predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume. We use a range of specified lahar volumes to evaluate A and B. In a Geographic Information System (GIS) we employ the resulting range of predicted A and B to delineate gradations in inundation hazard, which is highest near the volcano and along valley thalwegs and diminishes as distances from the volcano and elevations above valley floors increase. Comparison of our computer-generated hazard maps with those constructed using traditional, field-based methods indicates that our method can provide an accurate means of delineating lahar hazard zones.

  5. Volcanic Ash Advisory Database, 1983-2003 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  6. An application of the perpendicular moisture index for the prediction of fire hazard

    NARCIS (Netherlands)

    Maffei, C.; Menenti, M.


    Various factors contribute to forest fire hazard, and among them vegetation moisture is the one that dictates susceptibility to fire ignition and propagation. The scientific community has developed a number of spectral indices based on remote sensing measurements in the optical domain for the

  7. Predicting the Survival Time for Bladder Cancer Using an Addi-tive Hazards Model in Microarray Data

    Directory of Open Access Journals (Sweden)

    Leili TAPAK


    Full Text Available Background: One substantial part of microarray studies is to predict patients’ survival based on their gene expression profile. Variable selection techniques are powerful tools to handle high dimensionality in analysis of microarray data. However, these techniques have not been investigated in competing risks setting. This study aimed to investigate the performance of four sparse variable selection methods in estimating the survival time.Methods: The data included 1381 gene expression measurements and clinical information from 301 patients with bladder cancer operated in the years 1987 to 2000 in hospitals in Denmark, Sweden, Spain, France, and England. Four methods of the least absolute shrinkage and selection operator, smoothly clipped absolute deviation, the smooth integration of counting and absolute deviation and elastic net were utilized for simultaneous variable selection and estimation under an additive hazards model. The criteria of area under ROC curve, Brier score and c-index were used to compare the methods.Results: The median follow-up time for all patients was 47 months. The elastic net approach was indicated to outperform other methods. The elastic net had the lowest integrated Brier score (0.137±0.07 and the greatest median of the over-time AUC and C-index (0.803±0.06 and 0.779±0.13, respectively. Five out of 19 selected genes by the elastic net were significant (P<0.05 under an additive hazards model. It was indicated that the expression of RTN4, SON, IGF1R and CDC20 decrease the survival time, while the expression of SMARCAD1 increase it.Conclusion: The elastic net had higher capability than the other methods for the prediction of survival time in patients with bladder cancer in the presence of competing risks base on additive hazards model.Keywords: Survival analysis, Microarray data, Additive hazards model, Variable selection, Bladder cancer 

  8. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W


    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  9. Development of Predictive Relationships for Flood Hazard Assessments in Ungaged Basins (United States)


    into account . Figures 8 and 9 show the relationships obtained that represent the best-fit flood inundated extents over settlements and agricultural...INTRODUCTION: Historically, the first great civilizations evolved from smaller settlements in river valleys (Diamond 1999); natural hazards, like flooding...and Harlan 1969) that can be used in conjunction with recommended hydrodynamic and infiltration parametric values that are found within the

  10. The Hazards of Underspecified Models: The Case of Symmetry in Everyday Predictions (United States)

    Sedlmeier, Peter; Kilinc, Berna


    Should one be more confident when predicting the whole (or an event based on a larger sample) from the part (or an event based on a smaller sample) than when predicting the reverse? The relevant literature on judgment under uncertainty argues that such predictions are symmetrical but that, as an empirical matter, people often fail to appreciate…

  11. Exploring Hawaiian Volcanism (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken


    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  12. Exploring Hawaiian volcanism (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken


    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  13. Timing, origin and emplacement dynamics of mass flows offshore of SE Montserrat in the last 110 ka: implications for landslide and tsunami hazards, eruption history, and volcanic island evolution


    Trofimovs, J.; Talling, P. J.; Fisher, J. K.; Sparks, R.S.J.; Watt, S.F.L.; Hart, M. B.; Smart, C.; Le Friant, A.; Cassidy, M.; Moreton, S.G.; Leng, M.J.


    Mass flows on volcanic islands generated by volcanic lava dome collapse and by larger volume flank collapse, can be highly dangerous locally and may generate tsunamis that threaten a wider area. It is therefore important to understand their frequency, emplacement dynamics and relationship to volcanic eruption cycles. The best record of mass flow on volcanic islands may be found offshore, where most material is deposited, and where intervening hemipelagic sediment aids dating. Here we analyse ...

  14. Landslide and debris-flow hazard analysis and prediction using GIS in Minamata Hougawachi area, Japan (United States)

    Wang, Chunxiang; Esaki, Tetsuro; Xie, Mowen; Qiu, Cheng


    On July 20, 2003, following a short duration of heavy rainfall, a debris-flow disaster occurred in the Minamata Hougawachi area, Kumamoto Prefecture, Japan. This disaster was triggered by a landslide. In order to assess the landslide and debris-flow hazard potential of this mountainous region, the study of historic landslides is critical. The objective of the study is to couple 3D slope-stability analysis models and 2D numerical simulation of debris flow within a geographical information systems in order to identity the potential landslide-hazard area. Based on field observations, the failure mechanism of the past landslide is analyzed and the mechanical parameters for 3D slope-stability analysis are calculated from the historic landslide. Then, to locate potential new landslides, the studied area is divided into slope units. Based on 3D slope-stability analysis models and on Monte Carlo simulation, the spots of potential landslides are identified. Finally, we propose a depth-averaged 2D numerical model, in which the debris and water mixture is assumed to be a uniform continuous, incompressible, unsteady Newtonian fluid. The method accurately models the historic debris flow. According to the 2D numerical simulation, the results of the debris-flow model, including the potentially inundated areas, are analyzed, and potentially affected houses, river and road are mapped.

  15. Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data (United States)

    Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander


    Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR–like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746

  16. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited) (United States)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.


    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  17. Chemical agnostic hazard prediction: Statistical inference of toxicity pathways - data for Figure 2 (United States)

    U.S. Environmental Protection Agency — This dataset comprises one SigmaPlot 13 file containing measured survival data and survival data predicted from the model coefficients selected by the LASSO...

  18. Turning the rumor of the May 11, 2011, earthquake prediction in Rome, Italy, into an information day on earthquake hazard

    Directory of Open Access Journals (Sweden)

    Concetta Nostro


    Full Text Available A devastating earthquake was predicted to hit Rome on May 11, 2011. This prediction was never officially released, but it grew on the internet and was amplified by the media. It was erroneously ascribed to Raffaele Bendandi, an Italian self-taught natural scientist who studied planetary motions and related them to earthquakes. Indeed, around May 11, 2011, there was a planetary alignment, and this fed the credibility of the earthquake prediction. During the months preceding May 2011, the Istituto Nazionale di Geofisica e Vulcanologia (INGV was overwhelmed with requests for information about this prediction, by the inhabitants of Rome and by tourists. Given the echo of this earthquake prediction, on May 11, 2011, the INGV decided to organize an Open Day at its headquarters in Rome, to inform the public about Italian seismicity and earthquake physics. The Open Day was preceded by a press conference two days before, to talk with journalists about this prediction, and to present the Open Day. During this ‘Day’, 13 new videos were also posted on our YouTube/INGVterremoti channel to explain earthquake processes and hazards, and to provide periodic updates on seismicity in Italy from the seismicity monitoring room. On May 11, 2011, the INGV headquarters was peacefully invaded by over 3,000 visitors, from 10:00 am to 9:00 pm: families, students with and without teachers, civil protection groups, and many journalists. This initiative that was built up in a few weeks has had very large feedback, and was a great opportunity to talk with journalists and people about earthquake prediction, and more in general about the seismic risk in Italy.

  19. The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: A guide for assessing local volcanic hazards (United States)

    Scott, William E.; Gardner, Cynthia A.; Devoli, Graziella; Alvarez, Antonio


    The January 1835 eruption of Volcán Cosigüina in northwestern Nicaragua was one of the largest and most explosive in Central America since Spanish colonization. We report on the results of reconnaissance stratigraphic studies and laboratory work aimed at better defining the distribution and character of deposits emplaced by the eruption as a means of developing a preliminary hazards assessment for future eruptions. On the lower flanks of the volcano, a basal tephra-fall deposit comprises either ash and fine lithic lapilli or, locally, dacitic pumice. An overlying tephra-fall deposit forms an extensive blanket of brown to gray andesitic scoria that is 35–60 cm thick at 5–10 km from the summit-caldera rim, except southwest of the volcano, where it is considerably thinner. The scoria fall produced the most voluminous deposit of the eruption and underlies pyroclastic-surge and -flow deposits that chiefly comprise gray andesitic scoria. In northern and southeastern sectors of the volcano, these flowage deposits form broad fans and valley fills that locally reach the Gulf of Fonseca. An arcuate ridge 2 km west of the caldera rim and a low ridge east of the caldera deflected pyroclastic flows northward and southeastward. Pyroclastic flows did not reach the lower west and southwest flanks, which instead received thick, fine-grained, accretionary-lapilli–rich ashfall deposits that probably derived chiefly from ash clouds elutriated from pyroclastic flows. We estimate the total bulk volume of erupted deposits to be ∼6 km3. Following the eruption, lahars inundated large portions of the lower flanks, and erosion of deposits and creation of new channels triggered rapid alluviation. Pre-1835 eruptions are poorly dated; however, scoria-fall, pyroclastic-flow, and lahar deposits record a penultimate eruption of smaller magnitude than that of 1835. It occurred a few centuries earlier—perhaps in the fifteenth century. An undated sequence of thick tephra-fall deposits on

  20. Predictive teratology: teratogenic risk-hazard identification partnered in the discovery process. (United States)

    Augustine-Rauch, K A


    Unexpected teratogenicity is ranked as one of the most prevalent causes for toxicity-related attrition of drug candidates. Without proactive assessment, the liability tends to be identified relatively late in drug development, following significant investment in compound and engagement in pre clinical and clinical studies. When unexpected teratogenicity occurs in pre-clinical development, three principle questions arise: Can clinical trials that include women of child bearing populations be initiated? Will all compounds in this pharmacological class produce the same liability? Could this effect be related to the chemical structure resulting in undesirable off-target adverse effects? The first question is typically addressed at the time of the unexpected finding and involves considering the nature of the teratogenicity, whether or not maternal toxicity could have had a role in onset, human exposure margins and therapeutic indication. The latter two questions can be addressed proactively, earlier in the discovery process as drug target profiling and lead compound optimization is taking place. Such proactive approaches include thorough assessment of the literature for identification of potential liabilities and follow-up work that can be conducted on the level of target expression and functional characterization using molecular biology and developmental model systems. Developmental model systems can also be applied in the form of in vitro teratogenicity screens, and show potential for effective hazard identification or issue resolution on the level of characterizing teratogenic mechanism. This review discusses approaches that can be applied for proactive assessment of compounds for teratogenic liability.

  1. A comparative analysis of hazard models for predicting debris flows in Madison County, VA (United States)

    Morrissey, Meghan M.; Wieczorek, Gerald F.; Morgan, Benjamin A.


    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a sixteen-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, Virginia. Field studies showed that the majority (70%) of these debris flows initiated with a thickness of 0.5 to 3.0 m in colluvium on slopes from 17 o to 41 o (Wieczorek et al., 2000). This paper evaluated and compared the approaches of SINMAP, LISA, and Iverson's (2000) transient response model for slope stability analysis by applying each model to the landslide data from Madison County. Of these three stability models, only Iverson's transient response model evaluated stability conditions as a function of time and depth. Iverson?s model would be the preferred method of the three models to evaluate landslide hazards on a regional scale in areas prone to rain-induced landslides as it considers both the transient and spatial response of pore pressure in its calculation of slope stability. The stability calculation used in SINMAP and LISA is similar and utilizes probability distribution functions for certain parameters. Unlike SINMAP that only considers soil cohesion, internal friction angle and rainfall-rate distributions, LISA allows the use of distributed data for all parameters, so it is the preferred model to evaluate slope stability over SINMAP. Results from all three models suggested similar soil and hydrologic properties for triggering the landslides that occurred during the 1995 storm in Madison County, Virginia. The colluvium probably had cohesion of less than 2KPa. The root-soil system is above the failure plane and consequently root strength and tree surcharge had negligible effect on slope stability. The result that the final location of the water table was near the ground surface is supported by the water budget analysis of the rainstorm conducted by Smith et al. (1996).

  2. Hidden Markov Model for quantitative prediction of snowfall and analysis of hazardous snowfall events over Indian Himalaya (United States)

    Joshi, J. C.; Tankeshwar, K.; Srivastava, Sunita


    A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992-2012. There are six observations and six states of the model. The most probable observation and state sequence has been computed using Forward and Viterbi algorithms, respectively. Baum-Welch algorithm has been used for optimizing the model parameters. The model has been validated for two winters (2012-2013 and 2013-2014) by computing root mean square error (RMSE), accuracy measures such as percent correct (PC), critical success index (CSI) and Heidke skill score (HSS). The RMSE of the model has also been calculated using leave-one-out cross-validation method. Snowfall predicted by the model during hazardous snowfall events in different parts of the Himalaya matches well with the observed one. The HSS of the model for all the stations implies that the optimized model has better forecasting skill than random forecast for both the days. The RMSE of the optimized model has also been found smaller than the persistence forecast and standard deviation for both the days.

  3. Hidden Markov Model for quantitative prediction of snowfall and analysis of hazardous snowfall events over Indian Himalaya

    Indian Academy of Sciences (India)

    J C Joshi; K Tankeshwar; Sunita Srivastava


    A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992–2012. There are six observations and six states of the model. The most probable observation and state sequence has been computed using Forward and Viterbi algorithms, respectively. Baum–Welch algorithm has been used for optimizing the model parameters. The model has been validated for two winters (2012–2013 and 2013–2014) by computing root mean square error (RMSE), accuracy measures such as percent correct (PC), critical success index (CSI) and Heidke skill score (HSS). The RMSE of the model has also been calculated using leave-one-out cross-validation method. Snowfall predicted by the model during hazardous snowfall events in different parts of the Himalaya matches well with the observed one. The HSS of the model for all the stations implies that the optimized model has better forecasting skill than random forecast for both the days. The RMSE of the optimized model has also been found smaller than the persistence forecast and standard deviation for both the days.

  4. Comparison of Predicted Probabilities of Proportional Hazards Regression and Linear Discriminant Analysis Methods Using a Colorectal Cancer Molecular Biomarker Database

    Directory of Open Access Journals (Sweden)

    Upender Manne


    Full Text Available Background: Although a majority of studies in cancer biomarker discovery claim to use proportional hazards regression (PHREG to the study the ability of a biomarker to predict survival, few studies use the predicted probabilities obtained from the model to test the quality of the model. In this paper, we compared the quality of predictions by a PHREG model to that of a linear discriminant analysis (LDA in both training and test set settings. Methods: The PHREG and LDA models were built on a 491 colorectal cancer (CRC patient dataset comprised of demographic and clinicopathologic variables, and phenotypic expression of p53 and Bcl-2. Two variable selection methods, stepwise discriminant analysis and the backward selection, were used to identify the final models. The endpoint of prediction in these models was five-year post-surgery survival. We also used linear regression model to examine the effect of bin size in the training set on the accuracy of prediction in the test set.Results: The two variable selection techniques resulted in different models when stage was included in the list of variables available for selection. However, the proportion of survivors and non-survivors correctly identified was identical in both of these models. When stage was excluded from the variable list, the error rate for the LDA model was 42% as compared to an error rate of 34% for the PHREG model.Conclusions: This study suggests that a PHREG model can perform as well or better than a traditional classifier such as LDA to classify patients into prognostic classes. Also, this study suggests that in the absence of the tumor stage as a variable, Bcl-2 expression is a strong prognostic molecular marker of CRC.

  5. Volcanic gas (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.


    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  6. A Distributed Laboratory for Event-Driven Coastal Prediction and Hazard Planning (United States)

    Bogden, P.; Allen, G.; MacLaren, J.; Creager, G. J.; Flournoy, L.; Sheng, Y. P.; Graber, H.; Graves, S.; Conover, H.; Luettich, R.; Perrie, W.; Ramakrishnan, L.; Reed, D. A.; Wang, H. V.


    The 2005 Atlantic hurricane season was the most active in recorded history. Collectively, 2005 hurricanes caused more than 2,280 deaths and record damages of over 100 billion dollars. Of the storms that made landfall, Dennis, Emily, Katrina, Rita, and Wilma caused most of the destruction. Accurate predictions of storm-driven surge, wave height, and inundation can save lives and help keep recovery costs down, provided the information gets to emergency response managers in time. The information must be available well in advance of landfall so that responders can weigh the costs of unnecessary evacuation against the costs of inadequate preparation. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program is a multi-institution collaboration implementing a modular, distributed service-oriented architecture for real time prediction and visualization of the impacts of extreme atmospheric events. The modular infrastructure enables real-time prediction of multi- scale, multi-model, dynamic, data-driven applications. SURA institutions are working together to create a virtual and distributed laboratory integrating coastal models, simulation data, and observations with computational resources and high speed networks. The loosely coupled architecture allows teams of computer and coastal scientists at multiple institutions to innovate complex system components that are interconnected with relatively stable interfaces. The operational system standardizes at the interface level to enable substantial innovation by complementary communities of coastal and computer scientists. This architectural philosophy solves a long-standing problem associated with the transition from research to operations. The SCOOP Program thereby implements a prototype laboratory consistent with the vision of a national, multi-agency initiative called the Integrated Ocean Observing System (IOOS). Several service- oriented components of the SCOOP enterprise architecture have already been designed and

  7. Transient hazard model using radar data for predicting debris flows in Madison County, Virginia (United States)

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.


    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.


    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.


    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the


    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.


    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  10. Caldera rim collapse: A hidden volcanic hazard


    Merle, Olivier; Michon, Laurent; Bachèlery, Patrick


    International audience; Following the emblematic flank collapse of Mount St Helens in 1981, numerous models of flank sliding have been proposed. These models have allowed to largely improve the understanding of mechanisms involved in such landslides, which represent a tremendous risk for populations living around volcanoes. In this article, a new mode of landslide formation, related to buried calderas, is described. The model emphasizes the paramount importance of the hidden ring fault that, ...

  11. Volcanic Catastrophes (United States)

    Eichelberger, J. C.


    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  12. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations. (United States)

    Lin, Lei; Wang, Qian; Sadek, Adel W


    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean

  13. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources (United States)



    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  14. Turning the rumor of May 11, 2011 earthquake prediction In Rome, Italy, into an information day on earthquake hazard (United States)

    Amato, A.; Cultrera, G.; Margheriti, L.; Nostro, C.; Selvaggi, G.; INGVterremoti Team


    headquarters until 9 p.m.: families, school classes with and without teachers, civil protection groups, journalists. This initiative, built up in a few weeks, had a very large feedback, also due to the media highlighting the presumed prediction. Although we could not rule out the possibility of a strong earthquake in central Italy (with effects in Rome) we tried to explain the meaning of short term earthquake prediction vs. probabilistic seismic hazard assessment. Despite many people remained with the fear (many decided to take a day off and leave the town or stay in public parks), we contributed to reduce this feeling and therefore the social cost of this strange Roman day. Moreover, another lesson learned is that these (fortunately sporadic) circumstances, when people's attention is high, are important opportunities for science communication. We thank all the INGV colleagues who contributed to the May 11 Open Day, in particular the Press Office, the Educational and Outreach laboratory, the Graphics Laboratory and SissaMedialab. P.S. no large earthquake happened

  15. Volcan Reventador's Unusual Umbrella (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.


    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  16. Numerical Simulation and Probabilistic Hazard Assessment of Tephra Fallout at Jinlongdingzi Volcano, Longgang Volcanic Field in Jilin Province%龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估

    Institute of Scientific and Technical Information of China (English)

    于红梅; 许建东; 吴建平; 栾鹏; 赵波


    空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法.本文根据改进的Suzuki (1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序.通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性.根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图.本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据.%Tephra fallout is an important type of hazard caused by explosive volcanic eruption. Numerical simulation has become a fast and effective approach to assess the dispersion and deposition of tephra fallout. According to a modified 2D diffusion model of Suzuki (1983), we develop a tephra diffusion program that can run in Windows system. Based on previous data, we simulated the diffusion scope of Jinlongdingzi volcanic eruption, which is the latest eruption in Longgang volcanic field. The simulated results are in good agreement with the results from measurement in situ, indicating that the model is reliable and the parameters used in the model are suitable. By using wind profiles of ten years, 7021 simulations under different wind profile were carried out, and then probabilistic hazard maps of tephra fallout were constructed for tephra thickness thresholds of 1 cm and 0.5 cm. This study can provide an important scientific basis to the volcanic hazard analysis and risk mitigation plans countermeasure in Longgang volcanic area.

  17. The α-β phase transition in volcanic cristobalite.


    Damby, D. E.; Llewellin, E.W.; Horwell, C. J.; Williamson, B.J.; Najorka, J; Cressey, G.; Carpenter, M.A.


    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time...

  18. Volcanic Ash Detection Using Raman LIDAR: "VADER" Project (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  19. Seismic and volcanic risk studies - western Gulf of Alaska (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this research are to evaluate geologic hazards to offshore petroleum development due to earthquake and volcanic activity in the lower Cook Inlet,...

  20. After the damages: Lessons learned from recent earthquakes for ground-motion prediction and seismic hazard assessment (C.F. Gauss Lecture) (United States)

    Cotton, Fabrice


    Recent damaging earthquakes (e.g. Japan 2011, Nepal 2014, Italy 2016) and associated ground-shaking (ground-motion) records challenge the engineering models used to quantify seismic hazard. The goal of this presentation is to present the lessons learned from these recent events and discuss their implications for ground-motion prediction and probabilistic seismic hazard assessment. The following points will be particularly addressed: 1) Recent observations clearly illustrate the dependency of ground-shaking on earthquake source related factors (e.g. fault properties and geometry, earthquake depth, directivity). The weaknesses of classical models and the impact of these factors on hazard evaluation will be analysed and quantified. 2) These observations also show that events of similar magnitude and style of faulting are producing ground-motions which are highly variable. We will analyse this variability and show that the exponential growth of recorded data give a unique opportunity to quantify regional or between-events shaking variations. Indeed, most seismic-hazard evaluations do not consider the regional specificities of earthquake or wave-propagation properties. There is little guidance in the literature on how this should be done and we will show that this challenge is interdisciplinary, as structural geology, neotectonic and tomographic images can provide key understanding of these regional variations. 3) One of the key lessons of recent earthquakes is that extreme hazard scenarios and ground-shaking are difficult to predict. In other words, we need to mobilize "scientific imagination" and define new strategies based on the latest research results to capture epistemic uncertainties and integrate them in engineering seismology projects. We will discuss these strategies and show an example of their implementation to develop new seismic hazard maps of Europe (Share and Sera FP7 projects) and Germany.

  1. Volcanic activity: a review for health professionals. (United States)

    Newhall, C G; Fruchter, J S


    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  2. Spatial evaluation of volcanic ash forecasts using satellite observations (United States)

    Harvey, N. J.; Dacre, H. F.


    The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD) models. In this paper the fractions skill score has been used for the first time to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash. This objective measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealized scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200-700 (km)2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite-retrieved ash data and evaluate VATD forecasts over a long time period.

  3. Spatial evaluation of volcanic ash forecasts using satellite observations

    Directory of Open Access Journals (Sweden)

    N. J. Harvey


    Full Text Available The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD models. In this paper an objective metric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The metric is based on the fractions skill score (FSS. This measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700 km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.

  4. Crustal and tectonic controls on large-explosive volcanic eruptions (United States)

    Sheldrake, Tom; Caricchi, Luca


    Quantifying the frequency-Magnitude (f-M) relationship for volcanic eruptions is important to estimate volcanic hazard. Furthermore, understanding how this relationship varies between different groups of volcanoes can provide insights into the processes that control the size and rate of volcanic events. Using a Bayesian framework, which allows us to conceptualise the volcanic record as a series of individual and unique time series, associated by a common group behaviour, we identify variations in the size and rate of volcanism in different volcanic arcs. These variations in behaviour are linked to key parameters that include the motion of subduction, rate of subduction, age of the slab and thickness of the crust. The effects of these parameters on volcanism are interpreted in terms of variations in mantle productivity and the thermal efficiency of magma transfer in arc crustal systems. Understanding the link between subduction architecture, heat content of magmatic systems, and volcanic activity will serve to improve our capacity to quantify volcanic hazard in regions with limited geological and historical records of volcanic activity.

  5. [A system for predicting the toxicity and hazard of chemical substances, based on the joint use of logistic and numerical methods]. (United States)

    Kharchevnikova, N V


    A version of a logical combinatorial intellectual system (DMS system) has been developed to predict the toxicity and hazards of chemical substances. The system is based on the combined description of the substances, which includes both structural and numerical descriptors, particularly those characterizing the reactivity of compounds or their metabolites. The selection of numerical descriptors is based on the classification of processes of the interaction of the substance with the body in accordance with the key stage of the mechanism responsible for its toxic action. The new version of the DSM system takes into account the fact that the toxicity and hazard of chemicals are frequently determined by their bioactivation. Examples of how to apply the system to the prediction of carcinogenicity are given.

  6. Source mechanisms of volcanic tsunamis. (United States)

    Paris, Raphaël


    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  7. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds (United States)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.


    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  8. The Relative Severity of Single Hazards within a Multi-Hazard Framework (United States)

    Gill, Joel C.; Malamud, Bruce D.


    Here we present a description of the relative severity of single hazards within a multi-hazard framework, compiled through examining, quantifying and ranking the extent to which individual hazards trigger or increase the probability of other hazards. Hazards are broken up into six major groupings (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space), with the interactions for 21 different hazard types examined. These interactions include both one primary hazard triggering a secondary hazard, and one primary hazard increasing the probability of a secondary hazard occurring. We identify, through a wide-ranging review of grey- and peer-review literature, >90 interactions. The number of hazard-type linkages are then summed for each hazard in terms of their influence (the number of times one hazard type triggers another type of hazard, or itself) and their sensitivity (the number of times one hazard type is triggered by other hazard types, or itself). The 21 different hazards are then ranked based on (i) influence and (ii) sensitivity. We found, by quantification and ranking of these hazards, that: (i) The strongest influencers (those triggering the most secondary hazards) are volcanic eruptions, earthquakes and storms, which when taken together trigger almost a third of the possible hazard interactions identified; (ii) The most sensitive hazards (those being triggered by the most primary hazards) are identified to be landslides, volcanic eruptions and floods; (iii) When sensitivity rankings are adjusted to take into account the differential likelihoods of different secondary hazards being triggered, the most sensitive hazards are found to be landslides, floods, earthquakes and ground heave. We believe that by determining the strongest influencing and the most sensitive hazards for specific spatial areas, the allocation of resources for mitigation measures might be done more effectively.

  9. A Prediction of Increase in Subglacial Volcanism Beneath the West Antarctic Ice Sheet (WAIS) as Future Deglaciation Caused by Ocean Circulation Proceeds (United States)

    Behrendt, J. C.; LeMasurier, W. E.


    Many decades of aeromagnetic surveying (e.g. Behrendt, 1964; 2013; and others) over the West Antarctic Ice sheet (WAIS) have shown >1000 high amplitude, shallow source magnetic anomalies interpreted as as indicating subglacial volcanic centers of late Cenozoic age to presently active. Similar anomalies exist over exposed volcanic rocks bordering the WAIS in places.Recent papers (e.g. Wouters et al., 2015; Paolo, et al.; 2015 and others) based on satellite altimetry have shown dramatic thinning and retreat of ice shelves, particularly those bordering the Amundsen and Bellingshausen Seas, caused by melting from circulation of warming sea water. Previous workers have shown that when ice shelves collapse, the ice streams previously dammed by them accelerate an order of magnitude higher velocity, and surface elevation decreases. GRACE satellite interpretations (e.g. Velicogna et al., and others) indicate mass loss of WAIS in recent years.The bed elevation beneath the WAIS deepens inland from the Amundsen and Bellingshausen coasts, although high relief volcanic topography is present in a number of areas beneath the ice.Crowley et a. (2015) have shown that glacial cycles may drive production of oceanic crust by lowering pressure in the mantle resulting in increased melting and magma production. Increased volcanism due to deglaciation in Iceland has apparently produced increased in volcanic activity there. Deglaciation of the Norwegian continental shelf has resulted in faulting of the sea floor and similar faulting has been reported of the Ross Sea shelf following deglaciation there.I suggest here that as the WAIS collapses in the future resulting from climate change, an increase in volcanic activity beneath the ice might be expected. This may provide a feedback mechanism for increase in ice melting.

  10. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen


    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  11. Local to global: a collaborative approach to volcanic risk assessment (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna


    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  12. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)


    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes.

  13. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia


    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  14. Friction in volcanic environments (United States)

    Kendrick, Jackie E.; Lavallée, Yan


    to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner as it degasses and crystallises. This character aids the development of shear zones in the conduit, producing fault surfaces that host gouge, cataclasite and pseudotachylyte and which control the last hundreds of meters of ascent by frictional slip. Recent work has shown that the occurrence of vesiculation of gas bubbles modifies the rheology of frictional melt and in extreme cases can trigger eruption style to switch from effusive to explosive activity. Hence it is of vital importance to recognise the frictional behaviour of volcanic rocks and magmas to understand the continuation of an eruption and associated hazards.

  15. Hazardous Waste (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  16. A Course in Hazardous Chemical Spills: Use of the CAMEO Air Dispersion Model to Predict Evacuation Distances. (United States)

    Kumar, Ashok; And Others


    Provides an overview of the Computer-Aided Management of Emergency Operations (CAMEO) model and its use in the classroom as a training tool in the "Hazardous Chemical Spills" course. Presents six problems illustrating classroom use of CAMEO. Lists 16 references. (YP)

  17. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.


    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.

  18. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)


    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  19. Natural hazards science strategy (United States)

    Holmes, Jr., Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.


    and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms - the hazards considered in this plan. There are numerous other hazards of societal importance that are considered either only peripherally or not at all in this Strategy because they are either in another of the USGS strategic science plans (such as drought) or not in the overall mission of the USGS (such as tornados).

  20. Natural hazards science strategy (United States)

    Holmes, Jr., Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.


    and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms—the hazards considered in this plan. There are numerous other hazards of societal importance that are considered either only peripherally or not at all in this Strategy because they are either in another of the USGS strategic science plans (such as drought) or not in the overall mission of the USGS (such as tornados).

  1. Abstract on the Effective validation of both new and existing methods for the observation and forecasting of volcanic emissions (United States)

    Sathnur, Ashwini


    " positives. Cost - free data made available. Minimum band - width problem. Rapid communication system. Validation and Requirements of the New products of the Remote Sensing instruments The qualities of the existing products would be present in the new products also. Along with these qualities, newly devised additional qualities are also required in order to build an advanced remote sensing instrument. The new additional requirements are mentioned below:- Review Comment Number 1 Enlarging the spatial resolution so that the volcanic plumes erupting from the early volcanic eruption is captured by the remote sensing instrument. This spatial resolution data capture would involve better video and camera facilities on the remote sensing instrument. Review Comment Number 2 Capturing the traces of carbon, carbonic acid and water vapour, along with the existing product's capture of sulphur dioxide and volcanic Ash. Review Comment Number 3 Creating an additional module in the instrument to derive the functionality of forecasting a volcanic eruption. This new forecast model should be able to predict the occurrences of volcanic eruption several months in advance. This is basically to create mechanisms for providing early solutions to the problems of mitigation of volcanic hazards. Review Comment Number 4 Creating additional features in the remote sensing instrument to enable the automatic transfer of forecasted eruptions of volcanoes, to the disaster relief operations team. This transfer of information is to be performed automatically, without any request raised from the relief operations team, for the predicted forecast information. This is for the purpose of receiving the information at the right - time, thus eliminating any possibility of occurrences of errors during hazard management.

  2. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C


    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  3. Observation of the volcanic plume of Eyjafjallajoekull over continental Europe by MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S.; Bobrowski, N.; Friess, U.; Platt, U. [IUP, University of Heidelberg (Germany); Flentje, H. [DWD, Hohenpeissenberg (Germany); Hoermann, C.; Sihler, H. [IUP, University of Heidelberg (Germany); MPI, Mainz (Germany); Kern, C. [USGS, Vancouver (Canada); Wagner, T. [MPI, Mainz (Germany)


    The recent eruption of Eyjafjallajoekull Volcano (Iceland) and the emitted ash plume which disrupted commercial air traffic over Europe has led to an exhaustive debate on how to improve our ability to quantitatively determine the ash load in the atmosphere as a function of time and geographical location. Satellite instruments detecting ash and SO{sub 2} and ground-based LIDAR stations can help constrain atmospheric transport and meteorology models used to predict ash dispersion. However, MAX-DOAS represents an additional tool with considerable potential for the quantitative detection of elevated volcanic ash and SO{sub 2} plumes. It performs especially well during weather conditions in which satellites and LIDARs are impeded in their effectiveness, e.g. in the case of dense clouds above or below the plume, respectively. Here, the advantages and disadvantages of the DOAS technique are discussed, and its potential for monitoring of volcanic ash hazards explored. Results of ash and SO{sub 2} measurements of the Eyjafjallajoekull plume as it passed over Heidelberg are presented as an example of a positive detection of a highly diluted volcanic plume. Their low cost and complementary nature makes MAX-DOAS a promising technology in the field of aviation hazard detection and management.

  4. Volcanic forcing in decadal forecasts (United States)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe


    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  5. Improving communication during volcanic crises on small, vulnerable islands (United States)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.


    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  6. Characteristics of civil aviation atmospheric hazards (United States)

    Marshall, Robert E.; Montoya, J.; Richards, Mark A.; Galliano, J.


    Clear air turbulence, wake vortices, dry hail, and volcanic ash are hazards to civil aviation that have not been brought to the forefront of public attention by a catastrophic accident. However, these four hazards are responsible for major and minor injuries, emotional trauma, significant aircraft damage, and in route and terminal area inefficiency. Most injuries occur during clear air turbulence. There is significant aircraft damage for any volcanic ash encounter. Rolls induced by wake vortices occur near the ground. Dry hail often appears as an area of weak echo on the weather radar. This paper will present the meteorological, electromagnetic, and spatiotemporal characteristics of each hazard. A description of a typical aircraft encounter with each hazard will be given. Analyzed microwave and millimeter wave sensor systems to detect each hazard will be presented.

  7. Methodology for prediction and estimation of consequences of possible atmospheric releases of hazardous matter: 'Kursk' submarine study

    Directory of Open Access Journals (Sweden)

    A. Baklanov


    Full Text Available There are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.. Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1 probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2 forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second - during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning of the ``Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release (e.g. 1 Bq are performed. The analysis showed that the possible deposition fractions of 10-11 (Bq/m2 over the Kola Peninsula, and 10-12 - 10-13 (Bq/m2 for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature.

  8. Identifying hazard parameter to develop quantitative and dynamic hazard map of an active volcano in Indonesia (United States)

    Suminar, Wulan; Saepuloh, Asep; Meilano, Irwan


    Analysis of hazard assessment to active volcanoes is crucial for risk management. The hazard map of volcano provides information to decision makers and communities before, during, and after volcanic crisis. The rapid and accurate hazard assessment, especially to an active volcano is necessary to be developed for better mitigation on the time of volcanic crises in Indonesia. In this paper, we identified the hazard parameters to develop quantitative and dynamic hazard map of an active volcano. The Guntur volcano in Garut Region, West Java, Indonesia was selected as study area due population are resided adjacent to active volcanoes. The development of infrastructures, especially related to tourism at the eastern flank from the Summit, are growing rapidly. The remote sensing and field investigation approaches were used to obtain hazard parameters spatially. We developed a quantitative and dynamic algorithm to map spatially hazard potential of volcano based on index overlay technique. There were identified five volcano hazard parameters based on Landsat 8 and ASTER imageries: volcanic products including pyroclastic fallout, pyroclastic flows, lava and lahar, slope topography, surface brightness temperature, and vegetation density. Following this proposed technique, the hazard parameters were extracted, indexed, and calculated to produce spatial hazard values at and around Guntur Volcano. Based on this method, the hazard potential of low vegetation density is higher than high vegetation density. Furthermore, the slope topography, surface brightness temperature, and fragmental volcanic product such as pyroclastics influenced to the spatial hazard value significantly. Further study to this proposed approach will be aimed for effective and efficient analyses of volcano risk assessment.

  9. Applications of dip angle and coherence attributes to recognition of volcanic edifice in Songliao Basin

    Institute of Scientific and Technical Information of China (English)


    On the basis of the shape and inner structure of volcanic edifice, the dip angle and coherence were selected to recognize the buried volcanic edifices in Songliao Basin. Five volcanic edifices were recognized in both two methods in the first volcanic cycle of Yingcheng Formation and the prediction perfectly corresponds to the drilling results in well XS8 area. The results are satisfying when the prediction method were employed in the exploration and development of Qingshen gas field.

  10. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory (United States)

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim


    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  11. Communicating Uncertainty in Volcanic Ash Forecasts: Decision-Making and Information Preferences (United States)

    Mulder, Kelsey; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel; Lickiss, Matthew


    The Robust Assessment and Communication of Environmental Risk (RACER) consortium, an interdisciplinary research team focusing on communication of uncertainty with respect to natural hazards, hosted a Volcanic Ash Workshop to discuss issues related to volcanic ash forecasting, especially forecast uncertainty. Part of the workshop was a decision game in which participants including forecasters, academics, and members of the Aviation Industry were given hypothetical volcanic ash concentration forecasts and asked whether they would approve a given flight path. The uncertainty information was presented in different formats including hazard maps, line graphs, and percent probabilities. Results from the decision game will be presented with a focus on information preferences, understanding of the forecasts, and whether different formats of the same volcanic ash forecast resulted in different flight decisions. Implications of this research will help the design and presentation of volcanic ash plume decision tools and can also help advise design of other natural hazard information.

  12. Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile (United States)

    Dzierma, Yvonne; Wehrmann, Heidi


    Probabilistic forecasting of volcanic eruptions is a central issue of applied volcanology with regard to mitigating consequences of volcanic hazards. Recent years have seen great advances in the techniques of statistical analysis of volcanic eruption time series, which constitutes an essential component of a multi-discipline volcanic hazard assessment. Here, two of the currently most active volcanoes of South America, Villarrica and Llaima, are subjected to an established statistical procedure, with the aim to provide predictions for the likelihood of future eruptions within a given time interval. In the eruptive history of both Villarrica and Llaima Volcanoes, time independence of eruptions provides consistency with Poissonian behaviour. A moving-average test, helping to assess whether the distribution of repose times between eruptions changes in response to the time interval considered, validates stationarity for at least the younger eruption record. For the earlier time period, stationarity is not entirely confirmed, which may artificially result from incompleteness of the eruption record, but can also reveal fluctuations in the eruptive regime. To take both possibilities into account, several different distribution functions are fit to the eruption time series, and the fits are evaluated for their quality and compared. The exponential, Weibull and log-logistic distributions are shown to fit the repose times sufficiently well. The probability of future eruptions within defined time periods is therefore estimated from all three distribution functions, as well as from a mixture of exponential distribution (MOED) for the different eruption regimes and from a Bayesian approach. Both the MOED and Bayesian estimates intrinsically predict lower eruption probabilities than the exponential distribution function, while the Weibull distributions have increasing hazard rates, hence giving the highest eruption probability forecasts. This study provides one of the first

  13. Recent seismicity detection increase in the Santorini volcanic island complex (United States)

    Chouliaras, G.; Drakatos, G.; Makropoulos, K.; Melis, N. S.


    Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA) recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue. In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region. The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  14. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.


    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  15. Monitoring and characterizing natural hazards with satellite InSAR imagery (United States)

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel


    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  16. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska (United States)

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick


    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  17. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field (United States)

    Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.


    pyroclastic products, which may extend several kilometres from source, has an important consequence for hazard assessment in these volcanic fields, which previously have been considered to present only minor hazards and risks.

  18. The timing and intensity of column collapse during explosive volcanic eruptions (United States)

    Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen


    Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.

  19. Using faults for PSHA in a volcanic context: the Etna case (Southern Italy) (United States)

    Azzaro, Raffaele; D'Amico, Salvatore; Gee, Robin; Pace, Bruno; Peruzza, Laura


    At Mt. Etna volcano (Southern Italy), recurrent volcano-tectonic earthquakes affect the urbanised areas, with an overall population of about 400,000 and with important infrastructures and lifelines. For this reason, seismic hazard analyses have been undertaken in the last decade focusing on the capability of local faults to generate damaging earthquakes especially in the short-term (30-5 yrs); these results have to be intended as complementary to the regulatory seismic hazard maps, and devoted to establish priority in the seismic retrofitting of the exposed municipalities. Starting from past experience, in the framework of the V3 Project funded by the Italian Department of Civil Defense we performed a fully probabilistic seismic hazard assessment by using an original definition of seismic sources and ground-motion prediction equations specifically derived for this volcanic area; calculations are referred to a new brand topographic surface (Mt. Etna reaches more than 3,000 m in elevation, in less than 20 km from the coast), and to both Poissonian and time-dependent occurrence models. We present at first the process of defining seismic sources that includes individual faults, seismic zones and gridded seismicity; they are obtained by integrating geological field data with long-term (the historical macroseismic catalogue) and short-term earthquake data (the instrumental catalogue). The analysis of the Frequency Magnitude Distribution identifies areas in the volcanic complex, with a- and b-values of the Gutenberg-Richter relationship representative of different dynamic processes. Then, we discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults estimated by using a purely geologic approach. This analysis has been carried out through the software code FISH, a Matlab® tool developed to turn fault data representative of the seismogenic process into hazard models. The utilization of a magnitude-size scaling relationship

  20. SVM异常数据识别的比例风险预测模型%Proportional Hazards Model Prediction Model Study Based on SVM Abnormal Date Recognition

    Institute of Scientific and Technical Information of China (English)

    孙磊; 冯添乐; 张星辉


    剩余寿命预测在设备维修管理中扮演着重要的角色,准确的剩余寿命预测对制定维修策略起着至关重要的作用,从而可以有效避免设备故障的发生.提出一种基于支持向量机(SVM)异常数据识别的比例风险模型(PHM)用于剩余寿命的预测,该模式利用支持向量机和比例风险模型分别实现异常状态数据的识别和剩余寿命的预测.案例研究表明,SVM -PHM模型较PHM模型具有更好的预测精度.%The Remaining Useful Life (RUL) forecasting of the unit plays a significant role in maintenance management. The accurate RUL prediction based on the current and previous health condition of the unit is essential to make a timely maintenance decision for failure avoidance. In this paper, it presents proportional hazards model assembled with Support Vector Machine (SVM) to forecast RUL. In this method, it amploys SVM and PHM to identify abnormal data and RUL forecasting The case shows, the precision of predicting by SVM-PHM has a better performance than the original PHM.

  1. Volcanic Rocks and Features (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  2. Identification and hazard prediction of tattoo pigments by means of pyrolysis-gas chromatography/mass spectrometry. (United States)

    Schreiver, Ines; Hutzler, Christoph; Andree, Sarah; Laux, Peter; Luch, Andreas


    The implementation of regulation for tattoo ink ingredients across Europe has generated the need for analytical methods suitable to identify prohibited compounds. Common challenges of this subject are the poor solubility and the lack of volatility for most pigments and polymers applied in tattoo inks. Here, we present pyrolysis coupled to online gas chromatography and electron impact ionization mass spectrometry (py-GC/MS) as quick and reliable tool for pigment identification using both purified pigments and tattoo ink formulations. Some 36 organic pigments frequently used in tattoo inks were subjected to py-GC/MS with the aim to establish a pyrogram library. To cross-validate pigment identification, 28 commercially available tattoo inks as well as 18 self-made pigment mixtures were analyzed. Pyrograms of inks and mixtures were evaluated by two different means to work out the most reliable and fastest strategy for an otherwise rather time-consuming data review. Using this approach, the declaration of tattoo pigments currently used on the market could be verified. The pyrolysis library presented here is also assumed suitable to predict decomposition patterns of pigments when affected by other degradation scenarios, such as sunlight exposure or laser irradiation. Thus, the consumers' risk associated with the exposure to toxicologically relevant substances that originate from pigment decomposition in the dermal layers of the skin can be assessed. Differentiation between more or less harmful pigments for this field of application now will become feasible.

  3. Predicted no effect concentration derivation as a significant source of variability in environmental hazard assessments of chemicals in aquatic systems: an international analysis. (United States)

    Hahn, Thorsten; Diamond, Jerry; Dobson, Stuart; Howe, Paul; Kielhorn, Janet; Koennecker, Gustav; Lee-Steere, Chris; Mangelsdorf, Inge; Schneider, Uwe; Sugaya, Yoshio; Taylor, Ken; Dam, Rick Van; Stauber, Jenny L


    Environmental hazard assessments for chemicals are carried out to define an environmentally "safe" level at which, theoretically, the chemical will not negatively affect any exposed biota. Despite this common goal, the methodologies in use are very diverse across different countries and jurisdictions. This becomes particularly obvious when international scientists work together on documents with global scope, e.g., in the World Health Organization (WHO) International Program on Chemical Safety. In this article, we present a study that describes the extent of such variability and analyze the reasons that lead to different outcomes in deriving a "safe level" (termed the predicted no effect concentration [PNEC] throughout this article). For this purpose, we chose 5 chemicals to represent well-known substances for which sufficient high-quality aquatic effects data were available: ethylene glycol, trichloroethylene, nonylphenol, hexachlorobenzene, and copper (Cu). From these data, 2 data sets for each chemical were compiled: the full data set, that contained all information from selected peer-review sources, and the base data set, a subsample of the full set simulating limited data. Scientists from the European Union (EU), United States, Canada, Japan, and Australia independently carried out hazard assessments for each of these chemicals using the same data sets. Their reasoning for key study selection, use of assessment factors, or use of probabilistic methods was comprehensively documented. The observed variation in the PNECs for all chemicals was up to 3 orders of magnitude, and this was not simply due to obvious factors such as the size of the data set or the methodology used. Rather, this was due to individual decisions of the assessors within the scope of the methodology used, especially key study selection, acute versus chronic definitions, and size of assessment factors. Awareness of these factors, together with transparency of the decision-making process, would

  4. Artificial neural networks versus proportional hazards Cox models to predict 45-year all-cause mortality in the Italian Rural Areas of the Seven Countries Study

    Directory of Open Access Journals (Sweden)

    Puddu Paolo


    Full Text Available Abstract Background Projection pursuit regression, multilayer feed-forward networks, multivariate adaptive regression splines and trees (including survival trees have challenged classic multivariable models such as the multiple logistic function, the proportional hazards life table Cox model (Cox, the Poisson’s model, and the Weibull’s life table model to perform multivariable predictions. However, only artificial neural networks (NN have become popular in medical applications. Results We compared several Cox versus NN models in predicting 45-year all-cause mortality (45-ACM by 18 risk factors selected a priori: age; father life status; mother life status; family history of cardiovascular diseases; job-related physical activity; cigarette smoking; body mass index (linear and quadratic terms; arm circumference; mean blood pressure; heart rate; forced expiratory volume; serum cholesterol; corneal arcus; diagnoses of cardiovascular diseases, cancer and diabetes; minor ECG abnormalities at rest. Two Italian rural cohorts of the Seven Countries Study, made up of men aged 40 to 59 years, enrolled and first examined in 1960 in Italy. Cox models were estimated by: a forcing all factors; b a forward-; and c a backward-stepwise procedure. Observed cases of deaths and of survivors were computed in decile classes of estimated risk. Forced and stepwise NN were run and compared by C-statistics (ROC analysis with the Cox models. Out of 1591 men, 1447 died. Model global accuracies were extremely high by all methods (ROCs > 0.810 but there was no clear-cut superiority of any model to predict 45-ACM. The highest ROCs (> 0.838 were observed by NN. There were inter-model variations to select predictive covariates: whereas all models concurred to define the role of 10 covariates (mainly cardiovascular risk factors, family history, heart rate and minor ECG abnormalities were not contributors by Cox models but were so by forced NN. Forced expiratory volume and arm

  5. Modeling lahar behavior and hazards (United States)

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.


    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  6. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo


    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  7. Investigating the value of passive microwave observations for monitoring volcanic eruption source parameters (United States)

    Montopoli, Mario; Cimini, Domenico; Marzano, Frank


    Volcanic eruptions inject both gas and solid particles into the Atmosphere. Solid particles are made by mineral fragments of different sizes (from few microns to meters), generally referred as tephra. Tephra from volcanic eruptions has enormous impacts on social and economical activities through the effects on the environment, climate, public health, and air traffic. The size, density and shape of a particle determine its fall velocity and thus residence time in the Atmosphere. Larger particles tend to fall quickly in the proximity of the volcano, while smaller particles may remain suspended for several days and thus may be transported by winds for thousands of km. Thus, the impact of such hazards involves local as well as large scales effects. Local effects involve mostly the large sized particles, while large scale effects are caused by the transport of the finest ejected tephra (ash) through the atmosphere. Forecasts of ash paths in the atmosphere are routinely run after eruptions using dispersion models. These models make use of meteorological and volcanic source parameters. The former are usually available as output of numerical weather prediction models or large scale reanalysis. Source parameters characterize the volcanic eruption near the vent; these are mainly the ash mass concentration along the vertical column and the top altitude of the volcanic plume, which is strictly related to the flux of the mass ejected at the emission source. These parameters should be known accurately and continuously; otherwise, strong hypothesis are usually needed, leading to large uncertainty in the dispersion forecasts. However, direct observations during an eruption are typically dangerous and impractical. Thus, satellite remote sensing is often exploited to monitor volcanic emissions, using visible (VIS) and infrared (IR) channels available on both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellites. VIS and IR satellite imagery are very useful to monitor

  8. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón


    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  9. Volcanic Infrasound - A technical topic communicated in an entertaining way (United States)

    Kerlow, Isaac


    Volcanic Infrasound is a 9-minute film about using infrasound waves to detect and measure volcanic eruptions as they unfold. The film was made by an interdisciplinary team of filmmakers and scientists for a general audience. The movie explains the basic facts of using infrasound to detect volcanic activity, and it also shows volcano researchers as they install infrasound sensors in a natural reserve in the middle of the city. This is the first in a series of films that seek to address natural hazards of relevance to Singapore, a country shielded from violent hazards. This presentation reviews the science communication techniques and assumptions used to develop and produce this entertaining scientific documentary short. Trailer:

  10. Volcano hazards assessment for the Lassen region, northern California (United States)

    Clynne, Michael A.; Robinson, Joel E.; Nathenson, Manuel; Muffler, L.J. Patrick


    The Lassen region of the southernmost Cascade Range is an active volcanic area. At least 70 eruptions have occurred in the past 100,000 years, including 3 in the past 1,000 years, most recently in 1915. The record of past eruptions and the present state of the underlying magmatic and hydrothermal systems make it clear that future eruptions within the Lassen Volcanic Center are very likely. Although the annual probability of an eruption is small, the consequences of some types of eruptions could be severe. Compared to those of a typical Cascade composite volcano, eruptive vents at Lassen Volcanic Center and the surrounding area are widely dispersed, extending in a zone about 50 km wide from the southern boundary of Lassen Volcanic National Park north to the Pit River. This report presents a discussion of volcanic and other geologic hazards in the Lassen area and delineates hazards zones for different types of volcanic activity. Owing to its presence in a national park with significant visitorship, its explosive behavior, and its proximity to regional infrastructure, the Lassen Volcanic Center has been designated a "high threat volcano" in the U.S. Geological Survey National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity and ground deformation, and the Lassen area has a network of seismometers and Global Positioning System stations in place to monitor for early warning of volcanic activity.

  11. Learning to drive: from hazard detection to hazard handling


    Madigan, Mary Ruth


    Hazard perception has been found to correlate with crash involvement, and has thus been suggested as the most likely source of any skill gap between novice and experienced drivers. The most commonly used method for measuring hazard perception is to evaluate the perception-reaction time to filmed traffic events. It can be argued that this method lacks ecological validity and may be of limited value in predicting the actions drivers’ will take to hazards encountered. The first two studies of th...

  12. The epidemiology of extreme hiking injuries in volcanic environments. (United States)

    Heggie, Travis W; Heggie, Tracey M


    The objective of this review was to summarize the epidemiological literature for extreme hikers in volcanic environments and describe the incidence, nature and severity of injuries, the factors contributing to the injuries, and strategies for preventing injuries. Due to the relative newness of extreme hiking in volcanic environments, there are only a small handful of studies addressing the topic. Moreover, these studies are primarily focused on extreme hikers in Hawaii Volcanoes National Park. These studies found that the majority of extreme hikers in volcanic environments are inexperienced and unfamiliar with the potential hazards present in volcanic environments. The studies found that upper respiratory irritation resulting from exposure to volcanic gases and dehydration and scrapes, abrasions, lacerations, and thermal burns to the extremities were common injuries. The severity of the injuries ranged from simple on-site treat-and-release incidents to more severe incidents and even death. This review reveals a need for well-designed epidemiologic research from volcanic destinations outside of Hawaii that identify the nature and severity of injuries along with the factors contributing to injury incidents. There is also a demonstrated need for studies identifying preventive measures that reduce both the occurrence and severity of extreme hiking incidents in volcanic environments.

  13. Predicting the movement of pumice rafts in the South Pacific using GNOME for enhanced navigational warnings and coastal hazard management policies (United States)

    Kelly, J.; Bender, M.; Kelly, M.; Walters, C.


    Pumice rafts formed from explosive shallow submarine eruptions in the South Pacific pose a significant hazard to local maritime transportation and global coastal communities. Local concerns include the possibility of individual pumice clasts blocking seawater intake valves of ships, damaging the hull of smaller vessels, and inundating harbors bringing fishing and transport to a standstill. Additionally, pumice rafts can introduce harmful invasive species to delicate coastal communities around the world as they dramatically increase dispersal distances for otherwise benthic or relatively sedentary organisms. Two volcanoes in this region have recently formed pumice rafts: Home Reef volcano (Tonga) in 2006 and Havre Seamount (Kermadec Islands) in 2012. These raft events were used as case studies to test a trajectory prediction model since they occurred during times at which high spatial and temporal resolution satellite data were being collected and/or have been described in peer reviewed literature, both of which were necessary for providing model validation. The model was created using the General NOAA Observational Modeling Environment (GNOME), which utilizes sea surface winds and sea surface height (SSH) datasets to predict the possible trajectory a pollutant might follow on a body of water. Wind and ocean current data were acquired from the SeaWinds and Poseidon-3 sensors on board the NASA Earth Observing System (EOS) satellites QuikSCAT and Jason-2. Model outputs showed the 2012 Havre Seamount raft rapidly disperse as it drifted in an ENE direction and the 2006 Home Reef raft drifted quickly in a NW direction towards Papua New Guinea. The 2006 Home Reef prediction model was validated by comparing it to another published model that was based on an integrated surface velocity field in addition to in situ observations. The 2012 Havre Seamount prediction model was validated by spatially and temporally correlating the GNOME trajectory output with moderate

  14. Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. (United States)

    Leist, Marcel; Lidbury, Brett A; Yang, Chihae; Hayden, Patrick J; Kelm, Jens M; Ringeissen, Stephanie; Detroyer, Ann; Meunier, Jean R; Rathman, James F; Jackson, George R; Stolper, Gina; Hasiwa, Nina


    Several alternative methods to replace animal experiments have been accepted by legal bodies. An even larger number of tests are under development or already in use for non-regulatory applications or for the generation of information stored in proprietary knowledge bases. The next step for the use of the different in vitro methods is their combination into integrated testing strategies (ITS) to get closer to the overall goal of predictive "in vitro-based risk evaluation processes." We introduce here a conceptual framework as the basis for future ITS and their use for risk evaluation without animal experiments. The framework allows incorporation of both individual tests and already integrated approaches. Illustrative examples for elements to be incorporated are drawn from the session "Innovative technologies" at the 8th World Congress on Alternatives and Animal Use in the Life Sciences, held in Montreal, 2011. For instance, LUHMES cells (conditionally immortalized human neurons) were presented as an example for a 2D cell system. The novel 3D platform developed by InSphero was chosen as an example for the design and use of scaffold-free, organotypic microtissues. The identification of critical pathways of toxicity (PoT) may be facilitated by approaches exemplified by the MatTek 3D model for human epithelial tissues with engineered toxicological reporter functions. The important role of in silico methods and of modeling based on various pre-existing data is demonstrated by Altamira's comprehensive approach to predicting a molecule's potential for skin irritancy. A final example demonstrates how natural variation in human genetics may be overcome using data analytic (pattern recognition) techniques borrowed from computer science and statistics. The overall hazard and risk assessment strategy integrating these different examples has been compiled in a graphical work flow.

  15. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards (United States)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)


    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  16. Perceptions of hazard and risk on Santorini (United States)

    Dominey-Howes, Dale; Minos-Minopoulos, Despina


    Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no "emergency plan" for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.

  17. International Database of Volcanic Ash Impacts (United States)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.


    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  18. Using Bayesian Belief Networks and event trees for volcanic hazard assessment and decision support : reconstruction of past eruptions of La Soufrière volcano, Guadeloupe and retrospective analysis of 1975-77 unrest. (United States)

    Komorowski, Jean-Christophe; Hincks, Thea; Sparks, Steve; Aspinall, Willy; Legendre, Yoann; Boudon, Georges


    Since 1992, mild but persistent seismic and fumarolic unrest at La Soufrière de Guadeloupe volcano has prompted renewed concern about hazards and risks, crisis response planning, and has rejuvenated interest in geological studies. Scientists monitoring active volcanoes frequently have to provide science-based decision support to civil authorities during such periods of unrest. In these circumstances, the Bayesian Belief Network (BBN) offers a formalized evidence analysis tool for making inferences about the state of the volcano from different strands of data, allowing associated uncertainties to be treated in a rational and auditable manner, to the extent warranted by the strength of the evidence. To illustrate the principles of the BBN approach, a retrospective analysis is undertaken of the 1975-77 crisis, providing an inferential assessment of the evolving state of the magmatic system and the probability of subsequent eruption. Conditional dependencies and parameters in the BBN are characterized quantitatively by structured expert elicitation. Revisiting data available in 1976 suggests the probability of magmatic intrusion would have been evaluated high at the time, according with subsequent thinking about the volcanological nature of the episode. The corresponding probability of a magmatic eruption therefore would have been elevated in July and August 1976; however, collective uncertainty about the future course of the crisis was great at the time, even if some individual opinions were certain. From this BBN analysis, while the more likely appraised outcome - based on observational trends at 31 August 1976 - might have been 'no eruption' (mean probability 0.5; 5-95 percentile range 0.8), an imminent magmatic eruption (or blast) could have had a probability of about 0.4, almost as substantial. Thus, there was no real scientific basis to assert one scenario was more likely than the other. This retrospective evaluation adds objective probabilistic expression to

  19. Development of Visualisations for Multi-Hazard Environments in Guatemala (United States)

    Gill, Joel; Malamud, Bruce D.


    Here we present an adaptation of global interacting hazard matrices for the purpose of improving disaster risk reduction in multi-hazard environments of Guatemala. Guatemala is associated with multiple natural hazards, including volcanic eruptions, earthquakes, mass movements and floods. These processes are often not independent and it is therefore important to consider and understand the ways by which they interact to generate cascades or networks of natural hazard events. We first present a review of such hazard interactions and hazard chains in Guatemala, focusing on the volcanic environments around Pacaya, Fuego and Santiaguito. Interactions discussed are those where a primary hazard triggers or increases the probability of secondary hazards. Consideration is also given to interactions where two hazards combine to trigger a third hazard, or two concurring hazards result in impacts greater than the sum of components. Second, we utilise and adapt global interacting hazard matrices designed to understand and communicate information about interactions. We explore the use of this hazard visualisation framework within the more regional Guatemalan context. Twenty-one semi-structured interviews, and a workshop with 16 participants, were held with hazard and civil protection professionals in Guatemala to solicit feedback on: (i) how visualisations with a global focus can be modified for use in Guatemala, (ii) possible end users for such visualisations, and (iii) participants' understanding of hazard interactions and their opinion of community understanding of these themes. Core ideas that emerged from these interviews were (i) the importance of such tools in rapid response, preparedness and community education, (ii) the appropriate scales for visualisation development, in order to have maximum impact, and (iii) the need to integrate anthropic factors to fully understand hazard cascades. It is hoped that the development of improved tools to understand natural hazard

  20. Causes and mobility of large volcanic landslides: application to Tenerife, Canary Islands (United States)

    Hürlimann, M.; Garcia-Piera, J. O.; Ledesma, A.


    Giant volcanic landslides are one of the most hazardous geological processes due to their volume and velocity. Since the 1980 eruption and associated debris avalanche of Mount St. Helens hundreds of similar events have been recognised worldwide both on continental volcanoes and volcanic oceanic islands. However, the causes and mobility of these enormous mass movements remain unresolved. Tenerife exhibits three voluminous subaerial valleys and a wide offshore apron of landslide debris produced by recurrent flank failures with ages ranging from Upper Pliocene to Middle Pleistocene. We have selected the La Orotava landslide for analysis of its causes and mobility using a variety of simple numerical models. First, the causes of the landslide have been evaluated using Limit Equilibrium Method and 2D Finite Difference techniques. Conventional parameters including hydrostatic pore pressure and material strength properties, together with three external processes, dike intrusion, caldera collapse and seismicity, have been incorporated into the stability models. The results indicate that each of the external mechanism studied is capable of initiating slope failures. However, we propose that a combination of these processes may be the most probable cause for giant volcanic landslides. Second, we have analysed the runout distance of the landslide using a simple model treating both the subaerial and submarine parts of the sliding path. The effect of the friction coefficient, drag forces and hydroplaning has been incorporated into the model. The results indicate that hydroplaning particularly can significantly increase the mobility of the landslide, which may reach runout distances greater than 70 km. The models presented are not considered definite and have mainly a conceptual purpose. However, they provide a physical basis from which to better interpret these complex geologic phenomena and should be taken into account in the prediction of future events and the assessment of

  1. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green


    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  2. Learning to recognize volcanic non-eruptions (United States)

    Poland, Michael P.


    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  3. A Decade of Volcanic Observations from Aura and the A-Train (United States)

    Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer


    Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.

  4. The use of geographical information systems for disaster risk reduction strategies: a case study of Volcan de Colima, Mexico (United States)

    Landeg, O.

    Contemporary disaster risk management requires the analysis of vulnerability and hazard exposure, which is imperative at Volcan de Colima (VdC), Mexico, due to the predicted, large-magnitude eruption forecast to occur before 2025. The methods used to gauge social vulnerability included the development and application of proxies to census records, the undertaking of a building vulnerability survey and the spatial mapping of civil and emergency infrastructure. Hazard exposure was assessed using primary modelling of laharic events and the digitalisation of secondary data sources detailing the modelled extent of pyroclastic flows and tephra deposition associated with a large-magnitude (VEI 5) eruption at VdC. The undertaking and analysis of a risk perception survey of the population enabled an understanding of the cognitive behaviour of residents towards the volcanic risk. In comparison to the published hazard map, the GIS analysis highlighted an underestimation of lahar hazard on the western flank of VdC and the regional tephra hazard. Vulnerability analysis identified three communities where social deprivation is relatively high, and those with significant elderly and transient populations near the volcano. Furthermore, recognition of the possibility of an eruption in the near future was found to be low across the study region. These results also contributed to the analysis of emergency management procedures and the preparedness of the regional authorities. This multidisciplinary research programme demonstrates the success of applying a GIS platform to varied integrative spatial and temporal analysis. Furthermore, ascertaining the impact of future activity at VdC upon its surrounding populations permits the evaluation of emergency preparedness and disaster risk reduction strategies.

  5. Lung problems and volcanic smog (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  6. Is volcanic phenomena of fractal nature? (United States)

    Quevedo, R.; Lopez, D. A. L.; Alparone, S.; Hernandez Perez, P. A.; Sagiya, T.; Barrancos, J.; Rodriguez-Santana, A. A.; Ramos, A.; Calvari, S.; Perez, N. M.


    A particular resonance waveform pattern has been detected beneath different physical volcano manifestations from recent 2011-2012 period of volcanic unrest at El Hierro Island, Canary Islands, and also from other worldwide volcanoes with different volcanic typology. This mentioned pattern appears to be a fractal time dependent waveform repeated in different time scales (periods of time). This time dependent feature suggests this resonance as a new approach to volcano phenomena for predicting such interesting matters as earthquakes, gas emission, deformation etc. as this fractal signal has been discovered hidden in a wide typical volcanic parameters measurements. It is known that the resonance phenomenon occurring in nature usually denote a structure, symmetry or a subjacent law (Fermi et al., 1952; and later -about enhanced cross-sections symmetry in protons collisions), which, in this particular case, may be indicative of some physical interactions showing a sequence not completely chaotic but cyclic provided with symmetries. The resonance and fractal model mentioned allowed the authors to make predictions in cycles from a few weeks to months. In this work an equation for this waveform has been described and also correlations with volcanic parameters and fractal behavior demonstration have been performed, including also some suggestive possible explanations of this signal origin.

  7. Volcanic Eruptions and Climate: Outstanding Research Issues (United States)

    Robock, Alan


    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  8. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong


    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  9. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts


    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  10. The United States national volcanic ash operations plan for aviation (United States)

    Albersheim, Steven; Guffanti, Marianne


    Volcanic-ash clouds are a known hazard to aviation, requiring that aircraft be warned away from ash-contaminated airspace. The exposure of aviation to potential hazards from volcanoes in the United States is significant. In support of existing interagency operations to detect and track volcanic-ash clouds, the United States has prepared a National Volcanic Ash Operations Plan for Aviation to strengthen the warning process in its airspace. The US National Plan documents the responsibilities, communication protocols, and prescribed hazard messages of the Federal Aviation Administration, National Oceanic and Atmospheric Administration, US Geological Survey, and Air Force Weather Agency. The plan introduces a new message format, a Volcano Observatory Notice for Aviation, to provide clear, concise information about volcanic activity, including precursory unrest, to air-traffic controllers (for use in Notices to Airmen) and other aviation users. The plan is online at While the plan provides general operational practices, it remains the responsibility of the federal agencies involved to implement the described procedures through orders, directives, etc. Since the plan mirrors global guidelines of the International Civil Aviation Organization, it also provides an example that could be adapted by other countries.

  11. Alternative paradigms of volcanic risk perception: The case of Mt. Pinatubo in the Philippines (United States)

    Gaillard, Jean-Christophe


    The literature on people's response to volcanic hazards tends to be split between two paradigms. The first argues that the choice of adjustment depends on how people perceive rare and extreme volcanic phenomena and the associated risk. The second considers that people's behavior in the face of natural hazards is constrained by social, economic and political forces beyond their control. The present paper addresses both paradigms and demonstrates that, in order to understand people's behavior in the face of volcanic threats, volcanic risk perception has to be balanced with non-hazard related factors and structural constraints. These conclusions are based on a case study of Mt. Pinatubo and the lingering threat of lahars from the 1991 eruption. Drawing on the results of a questionnaire-based survey and additional interviews with key informants, it is shown that a high perception of risk does not stop people from choosing to forms of living that put them at high threat from lahars. Furthermore, the paper argues that insufficient opportunity for making a livelihood in resettlement centers and strong attachment to native villages push people back to the banks of lahar channels. Everyday hazards of poverty and the threat to cultural heritage weighed heavier than this seasonal natural hazard. In other words, in a context of economic and social hardship, risk perception of volcanic hazards is necessarily balanced with other risk perceptions. This study does not argue that risk perception is unimportant for understanding people's adjustment to volcanic environments but rather stresses the need for placing it in its larger and daily contexts which are independent of volcanic hazards.

  12. Use of Earth Observing Satellites for Operational Hazard Support (United States)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  13. GIS-based statistical mapping technique for block-and-ash pyroclastic flow and surge hazards (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.


    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from many volcanoes and given by A = (0.05-0.1)V2/3, B = (35-40)V2/3 , where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on coefficients applicable to individual PFs, DEM details, and release volumes. Gradational nested hazard maps produced by these simulations reflect in a sense these uncertainties. The model does not explicitly consider dynamic behavior, which can be important. Surge impacts must be extended beyond PF hazard zones and we have explored several approaches to do this. The method has been used to supply PF hazard maps in two crises: Merapi 2006; and Montserrat 2006- 2007. We have also compared our hazard maps to actual recent PF deposits and to maps generated by several other model techniques.

  14. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating (United States)

    Vazquez, Jorge A.; Woolford, Jeff M


    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  15. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for basalt and volcanic rocks (gwava-s_vrox) (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the presence or absence of basalt and volcanic rocks in the conterminous United States. The data set was used as an input data layer for a...

  16. Natural hazards and risk reduction in Hawai'i: Chapter 10 in Characteristics of Hawaiian volcanoes (United States)

    Kauahikaua, James P.; Tilling, Robert I.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.


    Significant progress has been made over the past century in understanding, characterizing, and communicating the societal risks posed by volcanic, earthquake, and tsunami hazards in Hawai‘i. The work of the Hawaiian Volcano Observatory (HVO), with a century-long commitment to serving the public with credible hazards information, contributed substantially to this global progress. Thomas A. Jaggar, Jr., HVO’s founder, advocated that a scientific approach to understanding these hazards would result in strategies to mitigate their damaging effects. The resultant hazard-reduction methods range from prediction of eruptions and tsunamis, thereby providing early warnings for timely evacuation (if needed), to diversion of lava flows away from high-value infrastructure, such as hospitals. In addition to long-term volcano monitoring and multifaceted studies to better understand eruptive and seismic phenomena, HVO has continually and effectively communicated—through its publications, Web site, and public education/outreach programs—hazards information to emergency-management authorities, news media, and the public.

  17. Combination of SAR remote sensing and GIS for monitoring subglacial volcanic activity – recent results from Vatnajökull ice cap (Iceland

    Directory of Open Access Journals (Sweden)

    U. Münzer


    Full Text Available This paper presents latest results from the combined use of SAR (Synthetic Aperture Radar remote sensing and GIS providing detailed insights into recent volcanic activity under Vatnajökull ice cap (Iceland. Glaciers atop active volcanoes pose a constant potential danger to adjacent inhabited regions and infrastructure. Besides the usual volcanic hazards (lava flows, pyroclastic clouds, tephra falls, etc., the volcano-ice interaction leads to enormous meltwater torrents (icelandic: jökulhlaup, devastating large areas in the surroundings of the affected glacier. The presented monitoring strategy addresses the three crucial questions: When will an eruption occur, where is the eruption site and which area is endangered by the accompanying jökulhlaup. Therefore, sufficient early-warning and hazard zonation for future subglacial volcanic eruptions becomes possible, as demonstrated for the Bardárbunga volcano under the northern parts of Vatnajökull. Seismic activity revealed unrest at the northern flanks of Bardárbunga caldera at the end of September 2006. The exact location of the corresponding active vent and therefore a potentially eruptive area could be detected by continuous ENVISAT-ASAR monitoring. With this knowledge a precise prediction of peri-glacial regions prone to a devastating outburst flood accompanying a possible future eruption is possible.

  18. Google Mapplets for Earthquakes and Volcanic Activity (United States)

    Haefner, S. A.; Venezky, D. Y.


    The USGS Earthquake and Volcano Hazards Programs monitor, assess, and issue warnings of natural hazards. Users can access our hazards information through our web pages, RSS feeds, and now through USGS Mapplets. Mapplets allow third party data layers to be added on top of Google Maps ( - My Maps tab). Mapplets are created by parsing a GeoRSS feed, which involves searching through an XML file for location data and plotting the associated information on a map. The new Mapplets allow users to view both real-time earthquakes and current volcanic activity on the same map for the first time. In addition, the USGS Mapplets have been added to Google's extensive collection of Mapplets, allowing users to add the types of information they want to see on their own customized maps. The Earthquake Mapplet plots the past week of earthquakes around the world, showing the location, time and magnitude. The Volcano Mapplet displays the latest U.S. volcano updates, including the current level of both ground-based and aviation hazards. Join us to discuss how Mapplets are made and how they can be used to create your own customized map.

  19. Volcanic ash impacts on critical infrastructure (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.


    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  20. Spatial Compilation of Holocene Volcanic Vents in the Western Conterminous United States (United States)

    Ramsey, D. W.; Siebert, L.


    A spatial compilation of all known Holocene volcanic vents in the western conterminous United States has been assembled. This compilation records volcanic vent location (latitude/longitude coordinates), vent type (cinder cone, dome, etc.), geologic map unit description, rock type, age, numeric age and reference (if dated), geographic feature name, mapping source, and, where available, spatial database source. Primary data sources include: USGS geologic maps, USGS Data Series, the Smithsonian Global Volcanism Program (GVP) catalog, and published journal articles. A total of 726 volcanic vents have been identified from 45 volcanoes or volcanic fields spanning ten states. These vents are found along the length of the Cascade arc in the Pacific Northwest, widely around the Basin and Range province, and at the southern margin of the Colorado Plateau into New Mexico. The U.S. Geological Survey (USGS) National Volcano Early Warning System (NVEWS) identifies 28 volcanoes and volcanic centers in the western conterminous U.S. that pose moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. This compilation enhances the understanding of volcano hazards that could threaten people and property by providing the context of where Holocene eruptions have occurred and where future eruptions may occur. Locations in this compilation can be spatially compared to located earthquakes, used as generation points for numerical hazard models or hazard zonation buffering, and analyzed for recent trends in regional volcanism and localized eruptive activity.

  1. Toward a unified dynamic model for dykes and cone sheets in volcanic systems (United States)

    Galland, Olivier; Burchardt, Steffi; Hallot, Erwan; Mourgues, Régis; Bulois, Cédric


    Igneous sheet intrusions, such as dykes and cone sheets, represent various geometries of magma channels through the crust. In many volcanoes, they coexist as parts of complex plumbing systems and are likely fed by common sources. How they form is fundamental regarding volcanic hazards, but yet no dynamic model simulates and predicts satisfactorily the diversity of sheet intrusions observed in volcanic systems. Here we present scaled laboratory experiments that reproduced dyke and cone sheet intrusion geometries under controlled conditions. Combined to a parametric study, a dimensional analysis shows that two dimensionless numbers Π1 and Π2 govern the formation of these intrusions. Π1 is geometrical and describes the geometry of the magma source; Π2 is dynamical and compares the local viscous stresses in the flowing magma to the host-rock strength. Plotting our experiments against these two numbers results in a phase diagram evidencing a dyke and a cone-sheet field, separated by a sharp transition that fits a power law. This result shows that dykes and cone sheets correspond to two distinct physical regimes of magma emplacement in the Earth's crust. Cone sheets preferentially form when their source is shallow relative to their size, when the magma influx (or viscosity) is large, or when the host rock is weak. In addition, both dykes and cone sheets may form from the same source, the shift from one regime to the other being then controlled by magma dynamics, i.e. different values of Π2. We compare our phase diagram to geological data and show that the extrapolated empirical dyke-to-cone sheet transition predicts the occurrence of dykes and cone sheets in various natural volcanic settings. This study thus provides a unified dynamic model of sheet intrusions emplacement and captures fundamental mechanisms of magma transport in the Earth's crust.

  2. Halogen Chemistry in Volcanic Plumes (Invited) (United States)

    Roberts, Tjarda


    Volcanoes release vast amounts of gases and particles in the atmosphere. Volcanic halogens (HF, HCl, HBr, HI) are co-emitted alongside SO2, and observations show rapid formation of BrO and OClO in the plume as it disperses into the troposphere. The development of 1D and Box models (e.g. PlumeChem) that simulate volcanic plume halogen chemistry aims to characterise how volcanic reactive halogens form and quantify their atmospheric impacts. Following recent advances, these models can broadly reproduce the observed downwind BrO/SO2 ratios using "bromine-explosion" chemistry schemes, provided they use a "high-temperature initialisation" to inject radicals (OH, Cl, Br and possibly NOx) which "kick-start" the low-temperature chemistry cycles that convert HBr into reactive bromine (initially as Br2). The modelled rise in BrO/SO2 and subsequent plateau/decline as the plume disperses downwind reflects cycling between reactive bromine, particularly Br-BrO, and BrO-HOBr-BrONO2. BrCl is produced when aerosol becomes HBr-depleted. Recent model simulations suggest this mechanism for reactive chlorine formation can broadly account for OClO/SO2 reported at Mt Etna. Predicted impacts of volcanic reactive halogen chemistry include the formation of HNO3 from NOx and depletion of ozone. This concurs with HNO3 widely reported in volcanic plumes (although the source of NOx remains under question), as well as observations of ozone depletion reported in plumes from several volcanoes (Mt Redoubt, Mt Etna, Eyjafjallajokull). The plume chemistry can transform mercury into more easily deposited and potentially toxic forms, for which observations are limited. Recent incorporation of volcanic halogen chemistry in a 3D regional model of degassing from Ambrym (Vanuatu) also predicts how halogen chemistry causes depletion of OH to lengthen the SO2 lifetime, and highlights the potential for halogen transport from the troposphere to the stratosphere. However, the model parameter-space is vast and

  3. Volcanic jet noise: infrasonic source processes and atmospheric propagation (United States)

    Matoza, R. S.; Fee, D.; Ogden, D. E.


    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  4. Recent seismicity detection increase in the Santorini volcanic island complex

    Directory of Open Access Journals (Sweden)

    G. Chouliaras


    Full Text Available Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue.

    In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region.

    The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth.

    These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  5. A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis (United States)


    for by using AGMM (See details below) in the inner loop in lock-step with the bent-puff coupled model. The outer PCQ loop (see Fig. 1) accounts for...assimilation step the input model parameters pdf is updated using the Bayesian framework. Based on the modified pdf a new PCQ based sampling must be...formulation of the NISP idea [38] that we call polynomial chaos quadrature ( PCQ ). PCQ replaces the projection step of NISP with numerical quadrature

  6. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi


    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  7. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide (United States)

    Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W.


    This paper brings a global perspective to volcanic arc geothermal assessments by evaluating trends and correlations of volcanic characteristic and surface manifestation data from world power production sites in subduction zone volcanic settings. The focus of the work was to evaluate volcanic centers individually and as a group in these arcs by correlating various geologic characteristics with known potential to host electricity grade geothermal systems at the volcanic centers. A database was developed that describes key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes all 74 subduction zone volcanic centers world-wide with current or proven power production capability. Importantly, this data set only contains data from subduction zone volcanoes and contains no negative cases, limiting the populations of any statistical groups. Regardless, this is the most robust geothermal benchmark training set for magmatic-heated systems to date that has been made public. The work reported here is part of a larger project that included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. This first paper describes volcano characteristics, compositions and eruption ages and trends along with surface manifestation observations and temperatures as they relate to known power producing systems. Our findings show a strong correlation between the presence and size of active flank fumarole areas and installed power production. Additionally, the majority of volcanic characteristics, including long-held anecdotal correlations related to magmatic composition or size, have limited to no correlation with power production potential. Notable exceptions are correlations between greater power yield from geothermal systems associated with older (Pleistocene) caldera systems

  8. Rapid laccolith intrusion driven by explosive volcanic eruption (United States)

    Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves


    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ~0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ~20-200 m and overpressures (~1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  9. Whose reality counts? Factors affecting the perception of volcanic risk (United States)

    Haynes, Katharine; Barclay, Jenni; Pidgeon, Nick


    Understanding how people perceive risk has become increasingly important for improving risk communication and reducing risk associated conflicts. This paper builds upon findings, methodologies and lessons learned from other fields to help understand differences between scientists, authorities and the public. Qualitative and quantitative methods were used to analyse underlying attitudes and judgements during an ongoing volcanic crisis on the Caribbean Island of Montserrat. Specific differences between the public, authorities and scientists were found to have been responsible for misunderstandings and misinterpretations of information and roles, resulting in differing perceptions of acceptable risk. Difficulties in the articulation and understanding of uncertainties pertaining to the volcanic risk led to a situation in which the roles of hazard monitoring, risk communication and public protection became confused. In addition, social, economic and political forces were found to have distorted risk messages, leading to a public reliance upon informal information networks. The implications of these findings for volcanic risk management and communication are discussed.

  10. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.


    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  11. Summary of Natural Hazard Statistics for 2015 in the United States (United States)

    ... Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous Total 0 ... the most deadly hazard in 2015, claiming 176 victims, up significantly from 40 deaths in 2014. Rip ...

  12. The Dilemmas of Risk-Sensitive Development on a Small Volcanic Island

    Directory of Open Access Journals (Sweden)

    Emily Wilkinson


    Full Text Available In the Small Islands Developing State (SIDS of St Vincent and the Grenadines in the Caribbean, the most destructive disasters in terms of human casualties have been the multiple eruptions of La Soufrière volcano situated in the north of St Vincent. Despite this major threat, people continue to live close to the volcano and national development plans do not include risk reduction measures for volcanic hazards. This paper examines the development options in volcanic SIDS and presents a number of conundrums for disaster risk management on the island of St Vincent. Improvements in monitoring of volcanic hazards and ongoing programmes to enhance communications systems and encourage community preparedness planning have increased awareness of the risks associated with volcanic hazards, yet this has not translated into more risk-informed development planning decisions. The current physical development plan in fact promotes investment in infrastructure in settlements located within the zone designated very high-hazard. However, this is not an anomaly or an irrational decision: severe space constraints in SIDS, as well as other historical social and economic factors, limit growth and options for low-risk development. Greater attention needs to be placed on developing measures to reduce risk, particularly from low-intensity hazards like ash, limiting where possible exposure to volcanic hazards and building the resilience of communities living in high-risk areas. This requires planning for both short- and longer-term impacts from renewed activity. Volcanic SIDS face multiple hazards because of their geography and topography, so development plans should identify these interconnected risks and options for their reduction, alongside measures aimed at improving personal preparedness plans so communities can learn to live with risk.

  13. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne


    of paroxysmal peaks at 25± 6 km. A new quantitative method producing grain shape data of bulk samples of volcanic ash was developed to correlate the bulk average grain shape with magma fragmentation mechanisms. The new shape index: the regularity index (RI) was developed from a manually classified reference...... of 0.134 ± 0.001 (2σ) and these samples represent the extremes of the fragmentation spectrum. Subglacial samples show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ) and lacustrine samples have slightly higher RI of 0.187 ± 0.002 (2σ). The method uses automated image analysis of 2D...... of future hazard and risk assessments of one of the most hazardous volcanoes in Iceland. Furthermore the RI method is expected to be widely applicable to tephra morphology studies and to be helpful during the next volcanic ash crises....

  14. "Last mile" challenges to in situ volcanic data transmission

    Directory of Open Access Journals (Sweden)

    J. F. B. D. Fonseca


    Full Text Available Scientists play a key role in volcanic risk mitigation, but rely heavily on fast access to data acquired in the vicinity of an active volcano. Hazardous volcanoes are often located in remote areas were telecommunications infrastructure is fragile. Besides being exposed directly to the volcanic hazard, the infrastructure in such remote areas can suffer also from "last mile" limitations derived from lack of market demand for data transmission services. In this paper, we report on the findings of FP7 MIAVITA project in the topic of volcanic data transmission. We draw on the contribution of partners from emergent or developing countries to identify the main bottlenecks and fragilities. We present also the results of an experiment conducted in Fogo island, Cape Verde, to test the availability of VSAT services adequate for volcanic monitoring. We warn against the false sense of security resulting from increasingly ubiquitous connectivity, and point out the lack of reliability of many consumer-type services, particularly during emergencies when such services are likely to crash due to excess of demand from the public. Finally, we propose guidelines and recommend best practices for the design of volcanic monitoring networks in what concerns data transmission. In particular, we advise that the data transmission equipment close to the exposed area should be owned, operated and maintained by the volcanic monitoring institution. We exemplify with the setup of the Fogo telemetric interface, which uses low-power licence-free radio modems to reach a robust point of entry into the public network at a suitable distance from the volcano.

  15. "Last mile" challenges to in situ volcanic data transmission (United States)

    Fonseca, J. F. B. D.; Faria, B. V. E.; Trindade, J.; Cruz, G.; Chambel, A.; Silva, F. M.; Pereira, R. L.; Vazão, T.


    Scientists play a key role in volcanic risk management, but rely heavily on fast access to data acquired in the vicinity of an active volcano. Hazardous volcanoes are often located in remote areas were telecommunications infrastructure is fragile. Besides being exposed directly to the volcanic hazard, the infrastructure in such remote areas can also suffer from "last mile" limitations derived from lack of market demand for data transmission services. In this paper, we report on the findings of the FP7 MIAVITA project in the topic of volcanic data transmission. We draw on the contribution of partners from emergent or developing countries to identify the main bottlenecks and fragilities. We also present the results of an experiment conducted on Fogo Island, Cape Verde, to test the availability of VSAT services adequate for volcanic monitoring. We warn against the false sense of security resulting from increasingly ubiquitous connectivity, and point out the lack of reliability of many consumer-type services, particularly during emergencies when such services are likely to crash due to excess of demand from the public. Finally, we propose guidelines and recommend best practices for the design of volcanic monitoring networks in what concerns data transmission. In particular, we advise that the data transmission equipment close to the exposed area should be owned, operated and maintained by the volcanic monitoring institution. We exemplify with the set-up of the Fogo telemetric interface, which uses low-power licence-free radio modems to reach a robust point of entry into the public network at a suitable distance from the volcano.

  16. Volcanism on Mars. Chapter 41 (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.


    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  17. Airborne volcanic ash; a global threat to aviation (United States)

    Neal, Christina A.; Guffanti, Marianne C.


    The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  18. Exploring Volcanism with Digital Technology in Undergraduate Education (United States)

    McCoy, F. W.; Parisky, A.


    Volcanism as one of the most dynamic geological processes on this planet is also one of the most dramatic for attracting students to the earth sciences. At the University of Hawaii (UH) volcanism is used to attract students into the geosciences, coupled with its significant association to Hawaiian culture and contemporary issues such as those associated with related hazards - example: during the past century five towns were buried by lava flows on the Big Island, another recently threatened with destruction. To bring this dynamism into undergraduate education, UH focuses on field trips and courses to all islands; at Windward Community College (WCC/UH) a focus is provided through a series of field courses (1 credit) to all islands, especially the Big Island. Critical to the WCC effort are computer-generated animations and descriptions of volcanological processes for illustrating concepts undergraduate students find difficult: tumescence as an indicator of an eruption, fractional crystallization, collapse of volcanic edifices, explosive eruptions, weathering processes, hazards and mitigation, all embedded in the evolutionary story of mid-ocean volcanic islands such as those in Hawaii. Field courses require intense field labs, which are significantly assisted by digital platforms that include computer-generated illustrations, descriptions, animations, and more. The consequence for developing geoscientists has been outstanding.

  19. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter? (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.


    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  20. Volcanic Ash Nephelometer Probe Project (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  1. Evidence of Multiple Flank Collapse at Volcan Baru, Panama (United States)

    Herrick, J. A.; Rose, W. I.


    Michigan Tech's Peace Corps Master's International program (PCMI) in Geological Hazards has enabled several long-term investigations of active volcanoes in Latin America. To contribute to volcanic hazard assessments in Panama and achieve the goals defined by the PCMI program, we developed this debris avalanche project to address outstanding questions regarding Volcan Baru's most devastating event - massive slope failure of the western flank. Relying on basic mapping tools as well as the 2007 USGS Open-File Report focusing on hazard assessments of Panama's youngest and potentially active volcano, identification of the debris avalanche deposits (DAD) required detailed field investigations to determine the limits of the units. Extending across an area larger than 600 km2, field strategies were developed based on outcrop exposures within drainages and road-cuts. Aerial photos and DEMs of Baru's nested craters were interpreted by earlier scientists as the remains of two collapsed flanks. The results from in-depth field traverses provide several important discoveries: paleosols and sharp contacts within the stratigraphy indicate multiple DAD, deeply weathered hummocks red-flag the deposits more than 50-km away from Baru's crater, and high-quality radiocarbon samples (up to 45-cm long fragments of entrained wood) lie in the distal reaches of the debris flow area. During the 2008-2009 field seasons, we received assistance from the University of Panama, Civil Protection, and Panama's National Institute of Geography. Support from local experts and feedback from professional scientists of the Smithsonian Institution and Costa Rica's Institute of Electricity were invaluable. The 2-year investment in volcanic hazard studies has brought together resources from several countries as well as fresh data that will benefit the residents and emergency management officials of Panama. Jigsaw fractured clasts lie within Volcan Baru's debris avalanche deposits more than 28 km south of the

  2. Volcanic Eruptions and Climate (United States)

    Robock, A.


    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  3. Geophysics and Seismic Hazard Reduction

    Institute of Scientific and Technical Information of China (English)

    YuGuihua; ZhouYuanze; YuSheng


    The earthquake is a natural phenomenon, which often brings serious hazard to the human life and material possession. It is a physical process of releasing interior energy of the earth, which is caused by interior and outer forces in special tectonic environment in the earth, especially within the lithosphere. The earthquake only causes casualty and loss in the place where people inhabit. Seismic hazard reduction is composed of four parts as seismic prediction, hazard prevention and seismic engineering, seismic response and seismic rescuing, and rebuilding.

  4. Deposition or not? The fate of volcanic ash after aggregation processes (United States)

    Mueller, Sebastian B.; Kueppers, Ulrich; Wadsworth, Fabian B.; Ayris, Paul M.; Casas, Ana S.; Cimarelli, Corrado; Ametsbichler, Jonathan; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.


    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  5. How natural hazards influence Internet searches (United States)

    Geyer, Adelina; Martí, Joan; Villaseñor, Antonio


    Effective dissemination of correct and easy-to-understand scientific information is one of the most imperative tasks of natural hazard assessment and risk management, being the media and the population the two fundamental groups of receptors. It has been observed how during the occurrence of hazardous natural phenomena, media and population desperately seek for information in all possible channels. Traditionally, these have been the radio and television, but over the past decades, the Internet has also become a significant information resource. Nevertheless, how the Internet search behavior changes during the occurrence of natural phenomena of significant societal impact (i.e. involving important human and/or economic losses) has never been analyzed so far. Focusing mainly on volcanism, we use here for the first time Internet search data provided by Google Trends to examine the search patterns of volcanology-related terms and how these may change during unrest periods or volcanic crises. Results obtained allow us to evaluate, at a global and local scale, the interest of society towards volcanological phenomena and its potential background knowledge of Earth Sciences. We show here how Internet search data turns to be a promising tool for the global and local monitoring of awareness and education background of society on natural phenomena in general, and volcanic hazards in particular.

  6. System of Volcanic activity

    Directory of Open Access Journals (Sweden)



    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  7. Using multiple data sets to populate probabilistic volcanic event trees (United States)

    Newhall, C.G.; Pallister, John S.


    The key parameters one needs to forecast outcomes of volcanic unrest are hidden kilometers beneath the Earth’s surface, and volcanic systems are so complex that there will invariably be stochastic elements in the evolution of any unrest. Fortunately, there is sufficient regularity in behaviour that some, perhaps many, eruptions can be forecast with enough certainty for populations to be evacuated and kept safe. Volcanologists charged with forecasting eruptions must try to understand each volcanic system well enough that unrest can be interpreted in terms of pre-eruptive process, but must simultaneously recognize and convey uncertainties in their assessment. We have found that use of event trees helps to focus discussion, integrate data from multiple sources, reach consensus among scientists about both pre-eruptive process and uncertainties and, in some cases, to explain all of this to officials. Figure 1 shows a generic volcanic event tree from Newhall and Hoblitt (2002) that can be modified as needed for each specific volcano. This paper reviews how we and our colleagues have used such trees during a number of volcanic crises worldwide, for rapid hazard assessments in situations in which more formal expert elicitations could not be conducted. We describe how Multiple Data Sets can be used to estimate probabilities at each node and branch. We also present case histories of probability estimation during crises, how the estimates were used by public officials, and some suggestions for future improvements.

  8. On a Possible Unified Scaling Law for Volcanic Eruption Durations. (United States)

    Cannavò, Flavio; Nunnari, Giuseppe


    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  9. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans (United States)

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.


    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  10. Society's Growing Vulnerability to Natural Hazards and Implications for Geophysics Research (Invited) (United States)

    Slingo, J.


    2010 is shaping up to be a year of unprecedented natural hazards - at least in living memory - which have raised our awareness of our vulnerability, challenged our scientific understanding and questioned our ability to predict and prepare for such events. This talk will take some examples from this year and use them to explore the implications for the research agenda in weather and climate modelling and prediction, and in how to translate our pred