WorldWideScience

Sample records for volcanic hazard mitigation

  1. Volcanic hazards and their mitigation: Progress and problems

    Science.gov (United States)

    Tilling, Robert I.

    1989-05-01

    At the beginning of the twentieth century, volcanology began to emerge as a modern science as a result of increased interest in eruptive phenomena following some of the worst volcanic disasters in recorded history: Krakatau (Indonesia) in 1883 and Mont Pelée (Martinique), Soufrière (St. Vincent), and Santa María (Guatemala) in 1902. Volcanology is again experiencing a period of heightened public awareness and scientific growth in the 1980s, the worst period since 1902 in terms of volcanic disasters and crises. A review of hazards mitigation approaches and techniques indicates that significant advances have been made in hazards assessment, volcano monitoring, and eruption forecasting. For example, the remarkable accuracy of the predictions of dome-building events at Mount St. Helens since June 1980 is unprecedented. Yet a predictive capability for more voluminous and explosive eruptions still has not been achieved. Studies of magma-induced seismicity and ground deformation continue to provide the most systematic and reliable data for early detection of precursors to eruptions and shallow intrusions. In addition, some other geophysical monitoring techniques and geochemical methods have been refined and are being more widely applied and tested. Comparison of the four major volcanic disasters of the 1980s (Mount St. Helens, U.S.A. (1980), El Chichón, Mexico (1982); Galunggung, Indonesia (1982); and Nevado del Ruíz, Colombia (1985) illustrates the importance of predisaster geoscience studies, volcanic hazards assessments, volcano monitoring, contingency planning, and effective communications between scientists and authorities. The death toll (>22,000) from the Ruíz catastrophe probably could have been greatly reduced; the reasons for the tragically ineffective implementation of evacuation measures are still unclear and puzzling in view of the fact that sufficient warnings were given. The most pressing problem in the mitigation of volcanic and associated hazards on

  2. Earthquake and Volcanic Hazard Mitigation and Capacity Building in Sub-Saharan Africa

    Science.gov (United States)

    Ayele, A.

    2012-04-01

    The East African Rift System (EARS) is a classic example of active continental rifting, and a natural laboratory setting to study initiation and early stage evolution of continental rifts. The EARS is at different stages of development that varies from relatively matured rift (16 mm/yr) in the Afar to a weakly extended Okavango Delta in the south with predicted opening velocity < 3 mm/yr. Recent studies in the region helped researchers to highlight the length and timescales of magmatism and faulting, the partitioning of strain between faulting and magmatism, and their implications for the development of along-axis segmentation. Although the human resource and instrument coverage is sparse in the continent, our understanding of rift processes and deep structure has improved in the last decade after the advent of space geodesy and broadband seismology. The recent major earthquakes, volcanic eruptions and mega dike intrusions that occurred along the EARS attracted several earth scientist teams across the globe. However, most African countries traversed by the rift do not have the full capacity to monitor and mitigate earthquake and volcanic hazards. Few monitoring facilities exist in some countries, and the data acquisition is rarely available in real-time for mitigation purpose. Many sub-Saharan Africa governments are currently focused on achieving the millennium development goals with massive infrastructure development scheme and urbanization while impending natural hazards of such nature are severely overlooked. Collaborations with overseas researchers and other joint efforts by the international community are opportunities to be used by African institutions to best utilize limited resources and to mitigate earthquake and volcano hazards.

  3. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  4. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  5. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    Science.gov (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  6. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    , Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries - USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom - have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators. ?? Springer Science+Business Media B.V. 2008.

  7. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  8. Volcanic risk: mitigation of lava flow invasion hazard through optimized barrier configuration

    Science.gov (United States)

    Scifoni, S.; Coltelli, M.; Marsella, M.; Napoleoni, Q.; Del Negro, C.; Proietti, C.; Vicari, A.

    2009-04-01

    In order to mitigate the destructive effects of lava flows along volcanic slopes, the building of artificial barriers is a fundamental action for controlling and slowing down the lava flow advance, as experienced during a few recent eruptions of Etna. The simulated lava path can be used to define an optimize project to locate the work but for a timely action it is also necessary to quickly construct a barrier. Therefore this work investigates different type of engineering work that can be adopted to build up a lava containing barrier for improving the efficiency of the structure. From the analysis of historical cases it is clear that barriers were generally constructed by building up earth, lava blocks and incoherent, low density material. This solution implies complex operational constraints and logistical problems that justify the effort of looking for alternative design. Moreover for optimizing the barrier construction an alternative project of gabion-made barrier was here proposed. In this way the volume of mobilized material is lower than that for a earth barrier, thus reducing the time needed for build up the structure. A second crucial aspect to be considered is the geometry of the barrier which, is one of the few parameters that can be modulated, the others being linked to the morphological and topographical characteristics of the ground. Once the walls have been realized, it may be necessary to be able to expand the structure vertically. The use of gabion has many advantages over loose riprap (earthen walls) owing to their modularity and capability to be stacked in various shapes. Furthermore, the elements which are not inundated by lava can be removed and rapidly used for other barriers. The combination between numerical simulations and gabions will allow a quicker mitigation of risk on lava flows and this is an important aspect for a civil protection intervention in emergency cases.

  9. Volcanic hazard in Mexico: a comprehensive on-line database for risk mitigation

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Capra, Lucia; Bonasia, Rosanna

    2013-04-01

    Researchers are currently working on several key aspects of the Mexican volcanoes, such as remote sensing, field data of old and recent volcaniclastic deposits, structural framework, monitoring (rainfall data and visual observation of lahars), and laboratory experiment (analogue models and numerical simulations - fall3D, titan2D). Each investigation is focused on specific processes, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Mexican Volcanoes @nline represents a novel initiative aimed to collect, on a systematic basis, the complete set of data obtained so far on the volcanoes, and to continuously update the database with new data. All the information is compiled from published works and updated frequently. Maps, such as the geological map of the Mexican volcanos and the associated hazard zonation, as well as point data, such as stratigraphic sections, sedimentology and diagrams of rainfall intensities, are presented in Google Earth format in order to be easily accessed by the scientific community and the general public. An important section of this online database is the presentation of numerical simulations results for ash dispersion associated with the principal Mexican active volcanoes. Daily prediction of ash flow dispersion (based on real-time data from CENAPRED and the Mexican Meteorological Service), as well as large-scale high-resolution subduction simulations performed on HORUS (the Computational Geodynamics Laboratory's supercomputer) represent a central part of the Mexican Volcanos @nline database. The Mexican Volcanoes @nline database is maintained by the Computational Geodynamics Laboratory and it is based entirely on Open Source software. The website can be visited at: http://www.geociencias.unam.mx/mexican_volcanoes.

  10. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  11. How to associate with volcanoes. Mitigation of volcanic hazards; Kazan tono tsukiaikata. Kazan saigai wo doyatte herasuka

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Y. [Geological Survey of Japan, Tsukuba (Japan)

    1997-08-01

    This paper describes how to deal with volcanic hazards. Basaltic lave such as in the Kilauea volcano flows quickly, while andesite lava such as in Mt. Asama and Mt. Sakurajima in Japan flows slowly. The pyroclastic flow in the Unzen area was a flow of high-temperature lava, pumice stones and gas driven to a high speed by gravity. The flow is so dangerous as it flows so quickly as allowing no time to escape from. Pyroclastic fall-outs and volcanic gases also give damages of different forms. Mountain collapse and debris avalanche in which a volcanic mountain collapses by eruption and earthquake acting as a trigger can also cause a large disaster. A debris flow may also do the same. Knowing the history of volcanic activities by making geological surveys may help judge what type of eruptive activities is prone to occur. On the other hand, the current conditions must be kept observed by performing seismic observations. Eruption itself, a large-scale lava flow and a pyroclastic flow cannot be prevented by using any hardware technique. Software measures are important to utilize more adequately areas and soil natures with high risks. The National Land Agency has prepared recently a guideline for making hazard prediction maps. It is important that both the administration and general residents utilize this guideline. 11 refs., 3 figs., 3 tabs.

  12. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific

    Science.gov (United States)

    Webley, P. W.; Dehn, J.

    2012-12-01

    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  13. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  14. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  15. Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration

    Science.gov (United States)

    Thompson, M. A.; Lindsay, J. M.; Calder, E.

    2015-12-01

    All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.

  16. A quantitative model for volcanic hazard assessment

    OpenAIRE

    W. Marzocchi; Sandri, L.; Furlan, C

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  17. FEMA Hazard Mitigation Grants Program Summary

    Data.gov (United States)

    Department of Homeland Security — The Hazard Mitigation Grant Program (HMGP, CFDA Number: 97.039) provides grants to States and local governments to implement long-term hazard mitigation measures...

  18. FEMA Hazard Mitigation Grants Program Summary - API

    Data.gov (United States)

    Department of Homeland Security — The Hazard Mitigation Grant Program (HMGP, CFDA Number: 97.039) provides grants to States and local governments to implement long-term hazard mitigation measures...

  19. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  20. California's Vulnerability to Volcanic Hazards: What's at Risk?

    Science.gov (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.

    2015-12-01

    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  1. WHC natural phenomena hazards mitigation implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  2. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  3. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  4. Resident perception of volcanic hazards and evacuation procedures

    Science.gov (United States)

    Bird, D. K.; Gisladottir, G.; Dominey-Howes, D.

    2009-02-01

    Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP), in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in this region. Our data can be used

  5. NIR LIDAR for Hazard Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have investigated the feasibility of employing a hazard detection and mitigation system based upon a polarization discriminating range-gated Lidar system. This...

  6. FEMA Hazard Mitigation Grant Program - Property Acquisitions

    Data.gov (United States)

    Department of Homeland Security — HMGP provides grants to states and local governments to implement long-term hazard mitigation measures after a major disaster declaration. The HMGP is one of three...

  7. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  8. Volcanic hazards on the Island of Hawaii

    Science.gov (United States)

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  9. Earthquake Hazard Mitigation Strategy in Indonesia

    Science.gov (United States)

    Karnawati, D.; Anderson, R.; Pramumijoyo, S.

    2008-05-01

    Because of the active tectonic setting of the region, the risks of geological hazards inevitably increase in Indonesian Archipelagoes and other ASIAN countries. Encouraging community living in the vulnerable area to adapt with the nature of geology will be the most appropriate strategy for earthquake risk reduction. Updating the Earthquake Hazard Maps, enhancement ofthe existing landuse management , establishment of public education strategy and method, strengthening linkages among stake holders of disaster mitigation institutions as well as establishement of continues public consultation are the main strategic programs for community resilience in earthquake vulnerable areas. This paper highlights some important achievements of Earthquake Hazard Mitigation Programs in Indonesia, together with the difficulties in implementing such programs. Case examples of Yogyakarta and Bengkulu Earthquake Mitigation efforts will also be discussed as the lesson learned. The new approach for developing earthquake hazard map which is innitiating by mapping the psychological aspect of the people living in vulnerable area will be addressed as well.

  10. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  11. Playing against nature: improving earthquake hazard mitigation

    Science.gov (United States)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  12. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    Science.gov (United States)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  13. A public health hazard mitigation planning process.

    Science.gov (United States)

    Griffith, Jennifer M; Kay Carpender, S; Crouch, Jill Artzberger; Quiram, Barbara J

    2014-01-01

    The Texas A&M Health Science Center School of Rural Public Health, a member of the Training and Education Collaborative System Preparedness and Emergency Response Learning Center (TECS-PERLC), has long-standing partnerships with 2 Health Service Regions (Regions) in Texas. TECS-PERLC was contracted by these Regions to address 2 challenges identified in meeting requirements outlined by the Risk-Based Funding Project. First, within Metropolitan Statistical Areas, there is not a formal authoritative structure. Second, preexisting tools and processes did not adequately satisfy requirements to assess public health, medical, and mental health needs and link mitigation strategies to the Public Health Preparedness Capabilities, which provide guidance to prepare for, respond to, and recover from public health incidents. TECS-PERLC, with its partners, developed a framework to interpret and apply results from the Texas Public Health Risk Assessment Tool (TxPHRAT). The 3-phase community engagement-based TxPHRAT Mitigation Planning Process (Mitigation Planning Process) and associated tools facilitated the development of mitigation plans. Tools included (1) profiles interpreting TxPHRAT results and identifying, ranking, and prioritizing hazards and capability gaps; (2) a catalog of intervention strategies and activities linked to hazards and capabilities; and (3) a template to plan, evaluate, and report mitigation planning efforts. The Mitigation Planning Process provided a framework for Regions to successfully address all funding requirements. TECS-PERLC developed more than 60 profiles, cataloged and linked 195 intervention strategies, and developed a template resulting in 20 submitted mitigation plans. A public health-focused, community engagement-based mitigation planning process was developed by TECS-PERLC and successfully implemented by the Regions. The outcomes met all requirements and reinforce the effectiveness of academic practice partnerships and importance of

  14. Integrating Community Volcanic Hazard Mapping, Geographic Information Systems, and Modeling to Reduce Volcanic Hazard Vulnerability

    Science.gov (United States)

    Bajo Sanchez, Jorge V.

    This dissertation is composed of an introductory chapter and three papers about vulnerability and volcanic hazard maps with emphasis on lahars. The introductory chapter reviews definitions of the term vulnerability by the social and natural hazard community and it provides a new definition of hazard vulnerability that includes social and natural hazard factors. The first paper explains how the Community Volcanic Hazard Map (CVHM) is used for vulnerability analysis and explains in detail a new methodology to obtain valuable information about ethnophysiographic differences, hazards, and landscape knowledge of communities in the area of interest: the Canton Buenos Aires situated on the northern flank of the Santa Ana (Ilamatepec) Volcano, El Salvador. The second paper is about creating a lahar hazard map in data poor environments by generating a landslide inventory and obtaining potential volumes of dry material that can potentially be carried by lahars. The third paper introduces an innovative lahar hazard map integrating information generated by the previous two papers. It shows the differences in hazard maps created by the communities and experts both visually as well as quantitatively. This new, integrated hazard map was presented to the community with positive feedback and acceptance. The dissertation concludes with a summary chapter on the results and recommendations.

  15. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  16. Video Games in Volcanic Hazard Communications: Methods & Issues

    Science.gov (United States)

    Mani, Lara; Cole, Paul; Stewart, Iain

    2016-04-01

    Educational outreach plays a vital role in improving the resilience of vulnerable populations at risk from natural disasters. Currently, that activity is undertaken in many guises including the distribution of leaflets and posters, maps, presentations, education sessions and through radio and TV broadcasts. Such tried-and-tested communication modes generally target traditional stakeholder groups, but it is becoming increasingly important to engage with the new generation of learners who, due to advancements in technology, obtain information in ways different to their predecessors. That new generation is defined by a technological way of life and it remains a challenge to keep them motivated. On the eastern Caribbean island of St. Vincent, the La Soufriere Volcano lies in quiescence since the last eruption in 1979. Since then, an entire generation - over 56% of the population (Worldbank, 2015) - has little or no direct experience of a volcanic eruption. The island experiences, more frequently, other hazards (hurricanes, flooding, earthquakes landsliding), such that disaster preparedness measures give less priority to volcanic threats, which are deemed to pose less of a risk. With no accurate predictions to warn of the next eruption, it is especially important to educate residents about the potential of future volcanic hazards on the island, and to motivate them to prepare to mitigate their risk. This research critically examines the application of video games in supporting and enhancing existing public education and outreach programmes for volcanic hazards. St. Vincent's Volcano is a computer game designed to improve awareness and knowledge of the eruptive phenomena from La Soufriere that could pose a threat to residents. Within an interactive and immersive environment, players become acquainted with a 3D model of St. Vincent together with an overlay of the established volcanic hazard map (Robertson, 2005). Players are able to view visualisations of two historical

  17. Volcanic hazards at Mount Rainier, Washington

    Science.gov (United States)

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  18. Volcanic hazard assessment at Deception Island

    Science.gov (United States)

    Bartolini, S.; Sobradelo, R.; Geyer, A.; Martí, J.

    2012-04-01

    Deception Island is the most active volcano of the South Shetland Islands (Antarctica) with more than twenty eruptions recognised over the past two centuries. The island was formed on the expansion axis of the Central Bransfield Strait and its evolution consists of constructive and destructive phases. A first a shield phase was followed by the construction of a central edifice and formation of the caldera with a final monogenetic volcanism along the caldera rim. The post-caldera magma composition varies from andesitic-basaltic to dacitic. The activity is characterised by monogenetic eruptions of low volume and short duration. The eruptions show a variable degree of explosivity, strombolian or phreatomagmatic, with a VEI 2 to 4, which have generated a wide variety of pyroclastic deposits and lavas. It is remarkable how many phases of phreatic explosive eruptions are associated to the emission of large ballistic blocks. Tephra record preserved in the glacier ice of Livingston Island or in marine sediments show the explosive power of the phreatomagmatic phases and the wide dispersal of its finest products in a great variety of directions of the prevailing winds. Also it is important to highlight the presence of different lahar deposits associated with some of these eruptions. In this contribution we present the guidelines to conduct a short-term and long-term volcanic hazard assessment at Deception Island. We apply probabilistic methods to estimate the susceptibility, statistical techniques to determine the eruption recurrence and eruptive scenario, and reproduce the effects of historical eruptions too. Volcanic hazard maps and scenarios are obtained using a Voris-based model tool (Felpeto et al., 2007) in a free Geographical Information System (GIS), a Quantum GIS.

  19. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  20. Assessing volcanic hazard at Yucca Mountain using expert judgment

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K.J.; Perman, R.C. [Geomatrix Consultants, Inc., San Francisco, CA (United States); Nesbit, J. [Department of Energy, Las Vegas, NV (United States)] [and others

    1995-12-01

    A study to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain, termed the Probabilistic Volcanic Hazard Analysis (PVHA) project, is being sponsored by the U.S. Department of Energy (DOE). This assessment, which is focused on the volcanic hazard at the site, expressed as the probability of disruption of the potential repository, will eventually provide input to an assessment of volcanic risk, which expresses the probability of radionuclide release due to volcanic disruption. To ensure that a wide range of approaches are considered in the hazard analysis, judgments of members of an expert panel will be elicited. The results of the individual elicitations will be combined to develop an integrated assessment of the volcanic hazard that reflects the diversity of scientific interpretations. This paper outlines the hazard model components and the procedures for eliciting expert judgments.

  1. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)

    Science.gov (United States)

    Becerril, Laura; Martí, Joan; Bartolini, Stefania; Geyer, Adelina

    2017-07-01

    Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (> 1.5 km3 DRE) and longest (6 years) eruption, the Timanfaya eruption (1730-1736), on the Canary Islands in historical times (last 600 years). This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  2. The Yucca Mountain probabilistic volcanic hazard analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K.J.; Perman, R.C.; Youngs, R.R. [Geomatrix Consultants, Inc., San Francisco, CA (United States)] [and others

    1996-12-01

    The Probabilistic Volcanic Hazard Analysis (PVHA) project, sponsored by the U.S. Department of Energy (DOE), was conducted to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain. The PVHA project is one of the first major expert judgment studies that DOE has authorized for technical assessments related to the Yucca Mountain project. The judgments of members of a ten-person expert panel were elicited to ensure that a wide range of approaches were considered for the hazard analysis. The results of the individual elicitations were then combined to develop an integrated assessment of the volcanic hazard that reflects the diversity of alternative scientific interpretations. This assessment, which focused on the volcanic hazard at the site, expressed as the probability of disruption of the potential repository, will provide input to an assessment of volcanic risk, which expresses the probability of radionuclide release due to volcanic disruption.

  3. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    OpenAIRE

    L. Becerril; S. Bartolini; R. Sobradelo; Martí, J.; Morales, J.M.; Galindo, I.

    2014-01-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of differ...

  4. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    OpenAIRE

    L. Becerril; S. Bartolini; R. Sobradelo; Martí, J.; Morales, J.M.; Galindo, I.

    2014-01-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different erupt...

  5. Volcanic hazard assessment at the Campi Flegrei caldera

    OpenAIRE

    Mastrolorenzo, G.; Pappalardo, L; C. Troise; S. Rossano; Panizza, A; G. De Natale

    2006-01-01

    Previous and new results from probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei, are assembled in a comprehensive assessment of volcanic hazards at the Campi Flegrei caldera, in order to compare the volcanic hazards related to the different types of events. Hazard maps based on a very wide set of numerical simulations, produced using field and laboratory data as input parameters relative to the whole range of fallout and pyrocl...

  6. Mitigation of Hazardous Comets and Asteroids

    Science.gov (United States)

    Belton, Michael J. S.; Morgan, Thomas H.; Samarasinha, Nalin H.; Yeomans, Donald K.

    2011-03-01

    Preface; 1. Recent progress in interpreting the nature of the near-Earth object population W. Bottke, A. Morbidelli and R. Jedicke; 2. Earth impactors: orbital characteristics and warning times S. R. Chesley and T. B. Spahr; 3. The role of radar in predicting and preventing asteroid and comet collisions with Earth S. J. Ostro and J. D. Giorgini; 4. Interior structures for asteroids and cometary nuclei E. Asphaug; 5. What we know and don't know about surfaces of potentially hazardous small bodies C. R. Chapman; 6. About deflecting asteroids and comets K. A. Holsapple; 7. Scientific requirements for understanding the near-Earth asteroid population A. W. Harris; 8. Physical properties of comets and asteroids inferred from fireball observations M. D. Martino and A. Cellino; 9. Mitigation technologies and their requirements C. Gritzner and R. Kahle; 10. Peering inside near-Earth objects with radio tomography W. Kofman and A. Safaeinili; 11. Seismological imvestigation of asteroid and comet interiors J. D. Walker and W. F. Huebner; 12. Lander and penetrator science for near-Earth object mitigation studies A. J. Ball, P. Lognonne, K. Seiferlin, M. Patzold and T. Spohn; 13. Optimal interpretation and deflection of Earth-approaching asteroids using low-thrust electric propulsion B. A. Conway; 14. Close proximity operations at small bodies: orbiting, hovering, and hopping D. J. Scheeres; 15. Mission operations in low gravity regolith and dust D. Sears, M. Franzen, S. Moore, S. Nichols, M. Kareev and P. Benoit; 16. Impacts and the public: communicating the nature of the impact hazard D. Morrison, C. R. Chapman, D. Steel and R. P. Binzel; 17. Towards a program to remove the threat of hazardous NEOs M. J. S. Belton.

  7. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  8. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  9. FEMA Hazard Mitigation Assistance Severe Repetitive Loss (SRL) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Severe Repetitive Loss (SRL). The...

  10. MITIGATION OF SEDIMENTATION HAZARDS DOWNSTREAM FROM RESERVOIRS

    Institute of Scientific and Technical Information of China (English)

    Ellen WOHL; Sara RATHBURN

    2003-01-01

    Many reservoirs currently in operation trap most or all of the sediment entering the reservoir,creating sediment-depleted conditions downstream. This may cause channel adjustment in the form of bank erosion, bed erosion, substrate coarsening, and channel planform change. Channel adjustment may also result from episodic sediment releases during reservoir operation, or from sediment evacuation following dam removal. Channel adjustment to increased sediment influx depends on the magnitude, frequency, duration and grain-size distribution of the sediment releases, and on the downstream channel characteristics. Channel adjustment may occur as a change in substrate sizedistribution, filling of pools, general bed aggradation, lateral instability, change in channel planform,and/or floodplain aggradation. The increased sediment availability may alter aquatic and riparian habitat, reduce water quality, distribute adsorbed contaminants along the river corridor, and provide germination sites for exotic vegetation. Mitigation of these sedimentation hazards requires: (1)mapping grain-size distribution within the reservoir and estimating the grain-size distributions of sediment that will be mobilized through time; (2) mapping shear stress and sediment transport capacity as a function of discharge on the basis of channel units for the length of the river likely to be affected; (3) mapping potential depositional zones, and aquatic habitat and "acceptable losses," along the downstream channel, and comparing these volumes to the total sediment volume stored in the reservoir as a means of estimating total transport capacity required to mobilize reservoir sediment delivered to the channel; (4) designing discharge and sediment release regime (magnitude, frequency,duration) to minimize adverse downstream impacts; and (5) developing plans to remove, treat, contain,or track contaminants, and to restrict establishment of exotic vegetation. The North Fork Poudre River in Colorado is used to

  11. Volcanic hazard impacts to critical infrastructure: A review

    Science.gov (United States)

    Wilson, G.; Wilson, T. M.; Deligne, N. I.; Cole, J. W.

    2014-10-01

    Effective natural hazard risk assessment requires the characterisation of both hazards and vulnerabilities of exposed elements. Volcanic hazard assessment is at an advanced state and is a considerable focus of volcanic scientific inquiry, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analysing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. This paper reviews documented disruption and physical damage of critical infrastructure elements resulting from four volcanic hazards (tephra fall, pyroclastic density currents, lava flows and lahars) of eruptions in the last 100 years. We define critical infrastructure as including energy sector infrastructure, water supply and wastewater networks, transportation routes, communications, and critical components. Common trends of impacts and vulnerabilities are summarised, which can be used to assess and reduce volcanic risk for future eruptions. In general, tephra falls cause disruption to these infrastructure sectors, reducing their functionality, whilst flow hazards (pyroclastic density currents, lava flows and lahars) are more destructive causing considerable permanent damage. Volcanic risk assessment should include quantification of vulnerabilities and we challenge the volcanology community to address this through the implementation of a standardised vulnerability assessment methodology and the development and use of fragility functions, as has been successfully implemented in other natural hazard fields.

  12. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  13. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  14. The National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Bernard, E. N.

    2004-12-01

    The National Tsunami Hazard Mitigation Program (NTHMP) is a state/Federal partnership that was created to reduce the impacts of tsunamis to U.S. Coastal areas. It is a coordinated effort between the states of Alaska, California, Hawaii, Oregon, and Washington and four Federal agencies: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey (USGS), and the National Science Foundation (NSF). NOAA has led the effort to forge a solid partnership between the states and the Federal agencies because of it's responsibility to provide tsunami warning services to the nation. The successful partnership has established a mitigation program in each state that is developing tsunami resilient coastal communities. Inundation maps are now available for many of the coastal communities of Alaska, California, Hawaii, Oregon, and Washington. These maps are used to develop evacuation plans and, in the case of Oregon, for land use management. The NTHMP mapping technology is now being applied to FEMA's Flood Insurance Rate Maps (FIRMs). The NTHMP has successfully upgraded the warning capability in NOAA so that earthquakes can be detected within 5 minutes and tsunamis can be detected in the open ocean in real time. Deep ocean reporting of tsunamis has already averted one unnecessary evacuation of Hawaii and demonstrated that real-time tsunami forecasting is now possible. NSF's new Network for Earthquake Engineering (NEES) program has agreed to work with the NTHMP to focus tsunami research on national needs. An overview of the NTHMP will be given including a discussion of accomplishments and a progress report on NEES and FIRM activities.

  15. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  16. Long-term volcanic hazard assessment on El Hierro (Canary Islands

    Directory of Open Access Journals (Sweden)

    L. Becerril

    2014-02-01

    Full Text Available Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted in the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyze the past eruptive activity (how, the spatial probability (where and the temporal probability (when of an eruption on the island. By studying the past eruptive behavior of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs. Finally, we estimate their probability of occurrence. The end result is the first total qualitative volcanic hazard map of the island.

  17. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    Science.gov (United States)

    Becerril, L.; Bartolini, S.; Sobradelo, R.; Martí, J.; Morales, J. M.; Galindo, I.

    2014-07-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.

  18. Fusion characteristics of volcanic ash relevant to aviation hazards

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  19. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  20. Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis

    Science.gov (United States)

    Sobradelo, Rosa; Martí, Joan

    2015-01-01

    One of the most challenging aspects of managing a volcanic crisis is the interpretation of the monitoring data, so as to anticipate to the evolution of the unrest and implement timely mitigation actions. An unrest episode may include different stages or time intervals of increasing activity that may or may not precede a volcanic eruption, depending on the causes of the unrest (magmatic, geothermal or tectonic). Therefore, one of the main goals in monitoring volcanic unrest is to forecast whether or not such increase of activity will end up with an eruption, and if this is the case, how, when, and where this eruption will take place. As an alternative method to expert elicitation for assessing and merging monitoring data and relevant past information, we present a probabilistic method to transform precursory activity into the probability of experiencing a significant variation by the next time interval (i.e. the next step in the unrest), given its preceding evolution, and by further estimating the probability of the occurrence of a particular eruptive scenario combining monitoring and past data. With the 1991 Pinatubo volcanic crisis as a reference, we have developed such a method to assess short-term volcanic hazard using Bayesian inference.

  1. Volcanic hazard on Deception Island (South Shetland Islands, Antarctica)

    Science.gov (United States)

    Bartolini, S.; Geyer, A.; Martí, J.; Pedrazzi, D.; Aguirre-Díaz, G.

    2014-09-01

    Deception Island is the most active volcano in the South Shetland Islands and has been the scene of more than twenty identified eruptions over the past two centuries. In this contribution we present the first comprehensive long-term volcanic hazard assessment for this volcanic island. The research is based on the use of probabilistic methods and statistical techniques to estimate volcanic susceptibility, eruption recurrence and the most likely future eruptive scenarios. We perform a statistical analysis of the time series of past eruptions and the spatial extent of their products, including lava flows, fallout, pyroclastic density currents and lahars. The Bayesian event tree statistical method HASSET is applied to calculate eruption recurrence, while the QVAST tool is used in an analysis of past activity to calculate the possibility that new vents will open (volcanic susceptibility). On the basis of these calculations, we identify a number of significant scenarios using the GIS-based VORIS 2.0.1 and LAHARZ software and evaluate the potential extent of the main volcanic hazards to be expected on the island. This study represents a step forward in the evaluation of volcanic hazard on Deception Island and the results obtained are potentially useful for long-term emergency planning.

  2. An assessment of future volcanic hazard at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States)

    1996-12-01

    Preliminary results and methods of a volcanic-hazards assessment for the proposed high-level nuclear-waste repository at Yucca Mountain are given. The most significant hazards are potential intersection of the repository by a basaltic dike, or structural disruption associated with dike intrusion. Two approaches are taken, which give similar results: homogeneous volcanic-source zones and spatial smoothing. The preliminary computed probabilities of intersection of the Yucca Mountain repository by a basaltic dike are in the range 10{sup -7} to 10{sup -8} per year.

  3. Volcanic hazard mapping for development planning

    OpenAIRE

    Dunkley, P.N.; Young, S. R.

    2000-01-01

    It is estimated that more than 500 million people are at risk from the hazards posed by volcanoes. The potential therefore exists for major loss of life and damage to property in a number of regions, especially where large urban areas occur in proximity to dangerous volcanoes. As population pressures intensify, hazardous areas are likely to become increasingly developed, so raising the level of risk. In the case of major eruptions, losses to property, infrastructure and economic activity c...

  4. Database for potential hazards from future volcanic eruptions in California

    Science.gov (United States)

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  5. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Harrington, C. [Los Alamos National Lab., NM (USA); Turrin, B.; Champion, D. [US Geological Survey (US); Wells, S.; Perry, F.; McFadden, L.; Renault, C. [New Mexico Univ., Albuquerque, NM (USA)

    1989-12-31

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located between 8 and 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10-8 to 10-10 yr-1. These bounds are currently being reexamined based on new developments in the understanding of the evolution of small volume, basaltic volcanic centers including: Many of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity, The centers may be active for time spans exceeding 105 yrs, There is a decline in the volume of eruptions of the centers through time, and Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene. The authors classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 103 to 105 yrs. magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes.

  6. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-05-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1}. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10{sup 5} yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10{sup 3} to 10{sup 5} yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs.

  7. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population are aware about the governmental commitment to assume a strategic planning for mitigation, facing a volcanic emergency. Recently, university undergraduate students from Chile and Argentina are networking to acquire the skills needed for a better preparedness to the next volcanic eruption.

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  9. Volcanic Hazard Maps; the results and progress made by the IAVCEI Hazard Map working group

    Science.gov (United States)

    Calder, Eliza; Lindsay, Jan; Wright, Heather

    2017-04-01

    The IAVCEI Commission on Volcanic Hazards and Risk set up a working group on Hazard Maps in 2014. Since then, the group has led or co-organised three major workshops, and organized two thematic conference sessions. In particular we have initiated a series of workshops, named the "State of the Hazard Map" which we plan to continue (the first was held at COV8 (State of the Hazard Map 1) and second at COV9 (State of the Hazard Map 2) and the third will be held at IAVCEI General Assembly in Portland. The broad aim of these activities is to work towards an IAVCEI-endorsed considerations or guidelines document for volcanic hazard map generation. The workshops have brought together people from around the world working on volcanic hazard maps, and have had four primary objectives: 1) to review (and collect further data on) the diverse variety of methods and rationales currently used to develop maps; 2) to openly discuss approaches and experiences regarding how hazard maps are interpreted and used by different groups; 3) to discuss and prepare the IAVCEI Guidelines document; and lastly, 4) Discuss options for finalizing, publishing and disseminating the Guidelines document (e.g. wiki, report, open-source publication). This presentation will provide an update of the results and outcomes of those initiatives. This includes brief outcomes of the reviews undertaken, a survey that has been constructed in order to gather additional data, the planned structure for the guidelines documents and a summary of the key findings to date. The majority of the participants of these activities so far have come from volcano observatories or geological surveys, as these institutions commonly have primary responsibility for making operational hazard map. It is important however that others in the scientific community that work on quantification of volcanic hazard contribute to these guidelines. We therefore invite interested parties to become involved.

  10. Results of the probabilistic volcanic hazard analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, R.; Coppersmith, K.J.; Perman, R.C. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1996-12-01

    The Probabilistic Volcanic Hazard Analysis (PVHA) project, sponsored by the U.S. Department of Energy (DOE), has been conducted to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain. The methodology for the PVHA project is summarized in Coppersmith and others (this volume). The judgments of ten earth scientists who were members of an expert panel were elicited to ensure that a wide range of approaches were considered. Each expert identified one or more approaches for assessing the hazard and they quantified their uncertainties in models and parameter values. Aggregated results are expressed as a probability distribution on the annual frequency of intersecting the proposed repository block. This paper presents some of the key results of the PVHA assessments. These results are preliminary; the final report for the study is planned to be submitted to DOE in April 1996.

  11. Hazardous indoor CO2 concentrations in volcanic environments.

    Science.gov (United States)

    Viveiros, Fátima; Gaspar, João L; Ferreira, Teresa; Silva, Catarina

    2016-07-01

    Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.

  12. Mitigating the hazards of Mount Rainier

    Science.gov (United States)

    Swanson, Don; Malone, Steve; Casadevall, Tom

    Mount Rainier volcano is an ever-present reminder to the more than three million inhabitants of the Puget Sound Lowland of the potentially hazardous geologic setting of the Pacific Northwest. Increased public awareness resulting from the recent eruptions of Mount St. Helens, Nevado del Ruiz, and Mount Pinatubo, among others, and the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)'s designation of Mount Rainier as a Decade Volcano [Swanson et al., 1992] afford an opportunity to improve our knowledge about Mount Rainier with the goal of reducing these hazards. A workshop to discuss research needs and strategies, cosponsored by the National Academy of Sciences, the U.S. Geological Survey, and the University of Washington, was held at the University of Washington in Seattle from September 18 to 20, 1992. About seventy-five Earth scientists, social scientists, and representatives of several companies and government agencies attended.

  13. Living in Harmony with Disaster: Exploring Volcanic Hazard Vulnerability in Indonesia

    Directory of Open Access Journals (Sweden)

    Sea Eun Cho

    2016-08-01

    Full Text Available This article illustrates the multi-faceted notion of hazard vulnerability and the complicated relations a community has with a hazardous area based on a joint urban planning and design studio between Seoul National University and Diponegoro University in 2014. The study focused on an area in Central Java, Indonesia, surrounded by four active volcanic mountains, and explored the economic, environmental and social vulnerability associated with the site. Although initially the study focused on drawing up and improving the relocation plan, it was soon discovered that eliminating environmental vulnerability by relocating residents to new sites may in fact increase their economic vulnerability. This led the study to embrace the concept of living in harmony with disaster. In conclusion, the results of the study are discussed in terms recognizing environmental hazards as a vehicle for understanding local perceptions, and utilizing these perceptions to suggest mitigation measures that are more responsive to the site at risk.

  14. Mitigation of earthquake hazards using seismic base isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1994-06-01

    This paper deals with mitigation of earthquake hazards using seismic base-isolation systems. A numerical algorithm is described for system response analysis of isolated structures with laminated elastomer bearings. The focus of this paper is on the adaptation of a nonlinear constitutive equation for the isolation bearing, and the treatment of foundation embedment for the soil-structure-interaction analysis. Sample problems are presented to illustrate the mitigating effect of using base-isolation systems.

  15. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  16. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  17. Volcanic hazard mapping in the Philippines using remote sensing and GIS

    Science.gov (United States)

    Slob, Siefko; Fernandez-Alonso, Max; Kervyn, Francois; Bornas, Mariton

    1998-12-01

    One of the 22 active volcanoes in the Philippines is Mt. Bulusan. The volcano erupted more than 15 times recent history, but the majority of these eruptions were mild phreatic eruptions. Field evidence shows however that Bulusan is capable of producing lava flows, domes, pyroclastic currents and lahars. Bulusan therefore poses a potentially major risk to the dense population at the footslopes of the volcano. Hence the volcano is constantly monitored with seismic equipment. To mitigate the potential hazards posed by this volcano, a volcanic hazard mapping program has been undertaken. Because of lacking existing geological and geographical data, it was decided to use optical and radar remote sensing techniques to acquire additional data. A GIS database was created at a medium scale, which was used as a reference for the development of preliminary hazard maps for each of the volcanic hazards that have been identified. An elementary approach, making use of the 'Energy cone' concept, was followed to outline the areas subject to potential pyroclastic flows and surges. Lava- and lahar flow path predictions were made based on the Digital Terrain Model (DTM).

  18. Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies

    Science.gov (United States)

    Larsen, M.C.

    2008-01-01

    Rainfall-triggered landslides are part of a natural process of hillslope erosion that can result in catastrophic loss of life and extensive property damage in mountainous, densely populated areas. As global population expansion on or near steep hillslopes continues, the human and economic costs associated with landslides will increase. Landslide hazard mitigation strategies generally involve hazard assessment mapping, warning systems, control structures, and regional landslide planning and policy development. To be sustainable, hazard mitigation requires that management of natural resources is closely connected to local economic and social interests. A successful strategy is dependent on a combination of multi-disciplinary scientific and engineering approaches, and the political will to take action at the local community to national scale.

  19. Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibargüengoitia, Miguel A.; Delgado-Granados, Hugo; Dingwell, Donald B.

    2012-11-01

    During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles' maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum "launching" conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  20. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  1. Knowledge Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia: A Participative Workshop to Reduce Volcanic Risk

    Science.gov (United States)

    Sheridan, M. F.; Cordoba, G. A.

    2009-12-01

    Galeras has been in nearly constant activity during modern historic times (roughly the past 500 years). Approximately 10,000 people live within an area designated as the highest-hazard and nearly 400,000 people are within areas of potential harmful effects. A wide variety of stakeholders are affected by the hazards, including: farmers, indigenous villagers, and people in urban environments. Hazards assessment and volcano monitoring are the responsibility of the Colombian Geological Survey (INGEOMINAS), whereas decisions regarding mitigation and response procedures are the responsibility of various governmental offices and the national emergency system (SNPAD). According to the current plan, when the risk level rises to a high level the people in the highest risk zone are required to evacuate. The volcano currently is in a very active, but fluctuating, condition and a future large eruption in a medium time frame (years to decades) is possible. There is a growing level of discomfort among many of the affected groups, including indigenous communities, farmers, and urban dwellers, related to the risk assessment. The general opinion prior to July 2009 was quite polarized as the decision makers saw the people of the region as poorly prepared to understand this hazard, whereas the population felt that their views were not being heard. The result was that the people in the hazardous areas decided not to evacuate, even during the current period of explosive activity. To resolve this situation the University of Nariño (Colombia) and the State University of New York at Buffalo organized a workshop named "Knowledge, Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia" that was held in Pasto (Colombia), between 6 and 11 July, 2009. The general objective of this workshop was to analyze the existing hazard maps and safety plans for Galeras and form a bridge connecting scientists, decision makers, and other stake holders to promote a better

  2. Spatio-temporal occurrence of eruptions in El Hierro (Canary Islands). Sequential steps for long-term volcanic hazard assessment.

    Science.gov (United States)

    Becerril, Laura; Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan; María Morales, José; Galindo, Inés; Geyer, Adelina

    2014-05-01

    Long term volcanic hazard assessment requires the attainment of several sequential steps, including the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios to get qualitative and representative results. Volcanic hazard assessment has not been yet systematically conducted in the Canary Islands, in spite of being a densely populated active volcanic region that receives millions of visitors per year. In this paper we focus our attention on El Hierro, the youngest and latest island affected by an eruption in the Canary Islands. We analyze the past eruptive activity (how), the spatial probability (where), and the temporal probability (when) on the island. Looking at the past eruptive behavior of the island, and assuming future eruptive patterns will be similar, we try to identify the most likely set of volcanic scenarios and corresponding hazards that could occur in the future (eg. lava flows, pyroclastic fallout, and pyroclastic density currents) and estimate their probability of occurrence. The final result shows the first volcanic hazard map of the island. This study represents a step forward in the evaluation of long term volcanic hazard at El Hierro Island with regard to previous studies. The obtained results should represent the main pillars on which to build risk mitigation programs as it is required for territorial planning and to develop emergency plans. This research was partially funded by IGME, CSIC and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO"), and MINECO grant GL2011-16144-E.

  3. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    Science.gov (United States)

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  4. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    Science.gov (United States)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  5. UPDATE TO THE PROBABILISTIC VOLCANIC HAZARD ANALYSIS, YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Coppersmith

    2005-09-14

    A probabilistic volcanic hazard analysis (PVHA) was conducted in 1996 for the proposed repository at Yucca Mountain, Nevada. Based on data gathered by the Yucca Mountain Project over the course of about 15 years, the analysis integrated the judgments of a panel of ten volcanic experts using methods of formal expert elicitation. PVHA resulted in a probability distribution of the annual frequency of a dike intersecting the repository, which ranges from 10E-7 to 10E-10 (mean 1.6 x 10E-8). The analysis incorporates assessments of the future locations, rates, and types of volcanic dikes that could intersect the repository, which lies about 300 m below the surface. A particular focus of the analysis is the quantification of uncertainties. Since the 1996 PVHA, additional aeromagnetic data have been collected in the Yucca Mountain region, including a high-resolution low-altitude survey. A number of anomalies have been identified within alluvial areas and modeling suggests that some of these may represent buried eruptive centers (basaltic cinder cones). A program is currently underway to drill several of the anomalies to gain information on their origin and, if basalt, their age and composition. To update the PVHA in light of the new aeromagnetic and drilling data as well as other advancements in volcanic hazard modeling over the past decade, the expert panel has been reconvened and the expert elicitation process has been fully restarted. The analysis requires assessments of the spatial distribution of igneous events, temporal distributions, and geometries and characteristics of future events (both intrusive and extrusive). The assessments are for future time periods of 10,000 years and 1,000,000 years. Uncertainties are being quantified in both the conceptual models that define these elements as well as in the parameters for the models. The expert elicitation process is centered around a series of workshops that focus on the available data; alternative approaches to

  6. Analysis on the Capacity Building Efforts for Mitigating Volcanic Risks during 2010 Eruption of Mount Merapi, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    SARI BAHAGIARTI KUSUMAYUDHA

    2012-12-01

    Full Text Available Mount Merapi is one of the most active volcanoes on the World erupted again during October to November 2010. Its climax activities happened on 5th November at 00.10 pm, with different type of eruption from Mount Merapi of last 50 years. Ordinary, Mount Merapi activity starts from lava dome development, followed by dome collapse to create pyroclastic flow. This specific character of eruption is called Merapi type. The pyroclastic flows at that time killed 341 people and buried many villages on the southeastern slope, while the secondary hazard of lahar destroyed many other human settlements and infrastructures on the western slope of the volcano. Actually, capacity building program in the areas of around Mount Merapi has been established since more than 15 years ago. In most villages, there are community associations that well trained on volcanic hazard mitigation and early warning system. The association name is Association of Mountains Belt of Merapi. Map of Mount Merapi hazards was also already set by the Center of Volcanology and Geologic Disaster Mitigation. Unfortunately, human are not able to order the nature. The character of Mount Merapi eruption in the year 2010 was inconsistent. There was much higher gas pressure, much longer distant of pyroclastic flow, and much greater volume of volcanic material poured from the crater. This made people and stake holders very astonished in handling the evacuation. However, a socio-cultural factor in this respect is that the local people and agriculturists view Mount Merapi as a God which gives them fertile soil and water for agriculture and are reluctant to move away even under an impending threat of a volcanic hazard. This mind-set of people is a challenge in capacity building as the people prefer in-situ protective measures rather than moving away.

  7. Nationwide Operational Assessment of Hazards and success stories in disaster prevention and mitigation in the Philippines

    Science.gov (United States)

    Mahar Francisco Lagmay, Alfredo

    2016-04-01

    The Philippines, being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Natural hazards inflict loss of lives and costly damage to property in the country. In 2011, after tropical storm Washi devastated cities in southern Philippines, the Department of Science and Technology put in place a responsive program to warn and give communities hours-in-advance lead-time to prepare for imminent hazards and use advanced science and technology to enhance geohazard maps for more effective disaster prevention and mitigation. Since its launch, there have been many success stories on the use of Project NOAH, which after Typhoon Haiyan was integrated into the Pre-Disaster Risk Assessment (PDRA) system of the National Disaster Risk Reduction and Management Council (NDRRMC), the government agency tasked to prepare for, and respond to, natural calamities. Learning from past disasters, NDRRMC now issues warnings, through scientific advise from DOST-Project NOAH and PAGASA (Philippine Weather Bureau) that are hazards-specific, area-focused and time-bound. Severe weather events in 2015 generated dangerous hazard phenomena such as widespread floods and massive debris flows, which if not for timely, accessible and understandable warnings, could have turned into disasters. We call these events as "disasters that did not happen". The innovative warning system of the Philippine government has so far proven effective in addressing the impacts of hydrometeorological hazards and can be employed elsewhere in the world.

  8. A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard

    Directory of Open Access Journals (Sweden)

    A. T. Mendoza-Rosas

    2009-03-01

    Full Text Available The assessment of volcanic hazard is the first step for disaster mitigation. The distribution of repose periods between eruptions provides important information about the probability of new eruptions occurring within given time intervals. The quality of the probability estimate, i.e., of the hazard assessment, depends on the capacity of the chosen statistical model to describe the actual distribution of the repose times. In this work, we use a mixture of exponentials distribution, namely the sum of exponential distributions characterized by the different eruption occurrence rates that may be recognized inspecting the cumulative number of eruptions with time in specific VEI (Volcanic Explosivity Index categories. The most striking property of an exponential mixture density is that the shape of the density function is flexible in a way similar to the frequently used Weibull distribution, matching long-tailed distributions and allowing clustering and time dependence of the eruption sequence, with distribution parameters that can be readily obtained from the observed occurrence rates. Thus, the mixture of exponentials turns out to be more precise and much easier to apply than the Weibull distribution. We recommended the use of a mixture of exponentials distribution when regimes with well-defined eruption rates can be identified in the cumulative series of events. As an example, we apply the mixture of exponential distributions to the repose-time sequences between explosive eruptions of the Colima and Popocatépetl volcanoes, México, and compare the results obtained with the Weibull and other distributions.

  9. UK Hazard Assessment for a Laki-type Volcanic Eruption

    Science.gov (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  10. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard

    Science.gov (United States)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico M.; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-06-01

    Pyroclastic flows represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Vesuvius that destroyed Pompeii (AD 79). Much of our knowledge of the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, including the particles contained in pyroclastic deposits, but the deposit characteristics are rarely used for quantifying the destructive potential of pyroclastic flows. By means of experiments, we validate a model that is based on data from pyroclastic deposits. The model allows the reconstruction of the current's fluid-dynamic behaviour. Model results are consistent with measured values of dynamic pressure in the experiments, and allow the quantification of the damage potential of pyroclastic flows.

  11. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  12. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  13. A toolbox to visualise benefits resulting from flood hazard mitigation

    Science.gov (United States)

    Fuchs, Sven; Thaler, Thomas; Heiser, Micha

    2017-04-01

    In order to visualize the benefits resulting from technical mitigation, a toolbox was developed within an open-source environment that allows for an assessment of gains and losses for buildings exposed to flood hazards. Starting with different scenarios showing the changes in flood magnitude with respect to the considered management options, the computation was based on the amount and value of buildings exposed as well as their vulnerability, following the general concept of risk assessment. As a result, beneficiaries of risk reduction may be identified and - more general - also different mitigation options may be strategically evaluated with respect to the height of risk reduction for different elements exposed. As such, multiple management options can be ranked according to their costs and benefits, and in order of priority. A relational database composed from different modules was created in order to mirror the requirements of an open source application and to allow for future dynamics in the data availability as well as the spatiotemporal dynamics of this data (Fuchs et al. 2013). An economic module was used to compute the monetary value of buildings exposed using (a) the building footprint, (b) the information of the building cadaster such as building type, number of storeys and utilisation, and (c) regionally averaged construction costs. An exposition module was applied to connect the spatial GIS information (X and Y coordinates) of elements at risk to the hazard information in order to achieve information on exposure. An impact module linked this information to vulnerability functions (Totschnig and Fuchs 2013; Papathoma-Köhle et al. 2015) in order to achieve the monetary level of risk for every building exposed. These values were finally computed before and after the implementation of mitigation measure in order to show gains and losses, and visualised. The results can be exported in terms of spread sheets for further computation. References Fuchs S

  14. Geophysics of Volcanic Landslide Hazards: The Inside Story

    Science.gov (United States)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.

    2013-05-01

    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in lahars and floods. Ice thickness measurements critical for flood and mudflow hazards studies are very sparse on most volcanoes. The HEM data are used to estimate ice thickness over portions of Mount Baker and Mount Adams volcanoes. The best estimates for ice thickness are obtained over relatively low resistivity (<600 ohm-m) ground for the main ice cap on Mount Adams and over most of the summit of Mount Baker. The modeled distribution of

  15. Felsic volcanism in a basic shield (El Hierro, Canary Islands). Implications in terms of volcanic hazards.

    Science.gov (United States)

    Pedrazzi, Dario; Becerril Carretero, Laura; Martí Molist, Joan; Meletlidis, Stavros; Galindo Jiménez, Inés

    2014-05-01

    the style and the spatial extent of the studied eruption, a future event with similar characteristics would have a serious impact on the population, infrastructures, and economy of the island of El Hierro. For this reason it is clearly of great importance to assess the potential volcanic hazard on the island. This research was partially funded by the MINECO grant CGL2011-16144-E and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  16. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    Science.gov (United States)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  17. Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1997-09-12

    Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well as for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford

  18. Preparing for Volcanic Hazards: An Examination of Lahar Knowledge, Risk Perception, and Preparedness around Mount Baker and Glacier Peak, WA

    Science.gov (United States)

    Corwin, K.; Brand, B. D.

    2015-12-01

    As the number of people living at risk from volcanic hazards in the U.S. Pacific Northwest continues to rise, so does the need for improved hazard science, mitigation, and response planning. The effectiveness of these efforts relies not only on scientists and policymakers, but on individuals and their risk perception and preparedness levels. This study examines the individual knowledge, perception, and preparedness of over 500 survey respondents living or working within the lahar zones of Mount Baker and Glacier Peak volcanoes. We (1) explore the common disconnect between accurate risk perception and adequate preparedness; (2) determine how participation in hazard response planning influences knowledge, risk perception, and preparedness; and (3) assess the effectiveness of current lahar hazard maps for public risk communication. Results indicate that a disconnect exists between perception and preparedness for the majority of respondents. While 82% of respondents accurately anticipate that future volcanic hazards will impact the Skagit Valley, this knowledge fails to motivate increased preparedness. A majority of respondents also feel "very responsible" for their own protection and provision of resources during a hazardous event (83%) and believe they have the knowledge and skills necessary to respond effectively to such an event (56%); however, many of these individuals still do not adequately prepare. When asked what barriers prevent them from preparing, respondents primarily cite a lack of knowledge about relevant local hazards. Results show that participation in response-related activities—a commonly recommended solution to this disconnect—minimally influences preparedness. Additionally, although local hazard maps successfully communicate the primary hazard—97% of respondents recognize the lahar hazard—many individuals incorrectly interpret other important facets of the maps. Those who participate in response-related activities fail to understand these

  19. Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli city (Southern Italy

    Directory of Open Access Journals (Sweden)

    I. Alberico

    2011-04-01

    Full Text Available The possible emplacement of pyroclastic fall and flow products from Campi Flegrei and Somma-Vesuvio represents a threat for the population living in Napoli city. For this area, the volcanic hazard was always partially investigated to define the hazard related to the Campi Flegrei or to the Somma-Vesuvio activity one at a time. A new volcanic hazard and risk assessment, at the municipality scale, as a vital tool for decision-making about territorial management and future planning, is presented here.

    In order to assess the hazard related to the explosive activity of both sources, we integrated the results of field studies and numerical simulations, to evaluate the future possibility for Napoli to be hit by the products of an explosive eruption. This is defined for the Somma Vesuvio central volcano through the sum of "field frequency" based on the thickness and distribution of past deposits (Lirer et al., 2001, and for the Campi Flegrei volcanic field by suitably processing simulated events based on numerical modelling (Alberico et al., 2002; Costa et al., 2009. Aiming at volcanic risk assessment, the hazard areas were joined with the exposure map, considered for our purposes as the economical value of artefacts exposed to hazard. We defined four risk classes, and argued that the medium and low-very low risk classes have the largest extent in Napoli municipality, whereas only few zones located in the eastern part of the city and in the westernmost coastal area show a high risk, owing to the correspondence of high economical value and high hazard.

  20. Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius

    Science.gov (United States)

    Marzocchi, Warner; Sandri, Laura; Gasparini, Paolo; Newhall, Christopher; Boschi, Enzo

    2004-11-01

    We describe an event tree scheme to quantitatively estimate both long- and short-term volcanic hazard. The procedure is based on a Bayesian approach that produces a probability estimation of any possible event in which we are interested and can make use of all available information including theoretical models, historical and geological data, and monitoring observations. The main steps in the procedure are (1) to estimate an a priori probability distribution based upon theoretical knowledge, (2) to modify that using past data, and (3) to modify it further using current monitoring data. The scheme allows epistemic and aleatoric uncertainties to be dealt with in a formal way, through estimation of probability distributions at each node of the event tree. We then describe an application of the method to the case of Mount Vesuvius. Although the primary intent of the example is to illustrate the methodology, one result of this application merits special mention. The present emergency response plan for Mount Vesuvius is referenced to a maximum expected event (MEE), the largest out of all the possible eruptions within the next few decades. Our calculation suggest that there is a nonnegligible (1-20%) chance that the next eruption could be larger than that stipulated in the present MEE. The methodology allows all assumptions and thresholds to be clearly identified and provides a rational means for their revision if new data or information are obtained.

  1. Global Volcano Model: progress towards an international co-ordinated network for volcanic hazard and risk

    Science.gov (United States)

    Loughlin, Susan

    2013-04-01

    GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. GVM is a network that aims to co-ordinate and integrate the efforts of the international volcanology community. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM. Activities currently include: design and development of databases of volcano data, volcanic hazards, vulnerability and exposure with internationally agreed metadata standards; establishment of methodologies for analysis of the data (e.g. hazard and exposure indices) to inform risk assessment; development of complementary hazards models and create relevant hazards and risk assessment tools. GVM acts through establishing task forces to deliver explicit deliverables in finite periods of time. GVM has a task force to deliver a global assessment of volcanic risk for UN ISDR, a task force for indices, and a task force for volcano deformation from satellite observations. GVM is organising a Volcano Best Practices workshop in 2013. A recent product of GVM is a global database on large magnitude explosive eruptions. There is ongoing work to develop databases on debris avalanches, lava dome hazards and ash hazard. GVM aims to develop the capability to anticipate future volcanism and its consequences.

  2. Hazard and risk assessment in a complex multi-source volcanic area: the example of the Campania Region, Italy

    Science.gov (United States)

    Lirer, L.; Petrosino, P.; Alberico, I.

    2010-05-01

    In order to zone the territory of Campania Region (southern Italy) with regard to the hazard related to future explosive activity of Somma-Vesuvio, Campi Flegrei, and Ischia Island, we drew a multi-source hazard map for tephra and pyroclastic flows. This map, which merges the areas possibly endangered by the three volcanic sources, takes into account a large set of tephra fall and pyroclastic flow events that have occurred in the last 10 ka. In detail, for fall products at Campi Flegrei and Somma-Vesuvio we used the dispersal of past eruption products as deduced by field surveys and their recurrence over the whole area. For pyroclastic flows, the field data were integrated with VEI = 4 simulated events; about 100 simulations sourcing from different points of the area were performed, considering the different probability of vent opening. The spatial recurrence of products of both past eruptions and simulated events was used to assign a weight to the area endangered by the single volcanic sources. The sum of these weights in the areas exposed to the activity of two sources and/or to different kinds of products was used to draw a hazard map, which highlights the spatial trend and the extent of the single equivalent classes at a regional scale. A multi-source risk map was developed for the same areas as the graphic result of the product of volcanic hazard and exposure, assessed in detail from a dasymetric map. The resulting multi-source hazard and risk maps are essential tools for communication among scientists, local authorities, and the public, and may prove highly practical for long-term regional-scale mitigation planning.

  3. Probabilistic estimation of long-term volcanic hazard with assimilation of geophysics and tectonic data

    Science.gov (United States)

    Jaquet, O.; Lantuéjoul, C.; Goto, J.

    2012-08-01

    Risk assessments in relation to the siting of potential geological repositories require the estimation of long-term volcanic hazard. Owing to their tectonic situation, many industrial regions around the world are concerned by such evaluation. For sites near volcanically active regions, the prevailing source of uncertainty is long-term volcanic hazard. The complexity and non-linearity of volcanic processes, the space-time variability in terms of distribution and intensity for volcanic events and the limited amount of information make probabilistic estimation of volcanic hazard ineluctable. The needs for reliable methodologies for volcanic and tectonic hazard assessments in Japan have stimulated the development of specific stochastic models for improving uncertainty characterization. A conditional Cox process with a multivariate potential was developed for the assimilation of geophysics and tectonic data (gravity data, GPS strain rate data and active faults). The theoretical basis and concepts of the proposed model are given and a methodological illustration is provided using data from the island of Kyushu.

  4. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    Science.gov (United States)

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  5. New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon

    Science.gov (United States)

    Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.

    2012-12-01

    Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective

  6. People living under threat of volcanic hazard in southern Iceland: vulnerability and risk perception

    Directory of Open Access Journals (Sweden)

    G. Jóhannesdóttir

    2010-02-01

    Full Text Available Residents in the village of Vík and in the farming community of Álftaver in southern Iceland are living with the threat of volcanic hazards. The highly active subglacial volcano Katla has erupted approximately twice per century since the beginning of settlement around 874 AD. The last major eruption was in 1918 and Katla has recently entered an agitated stage. The purpose of this research was to (1 review residents' responses in relation to vulnerability, (2 examine their risk perception, preparedness and mitigation in relation to an eruption of Katla, and (3 investigate the public and the representative of the local authorities and emergency manager's knowledge of the official evacuation plan. In 2004, we conducted in-depth, face-to-face interviews with local residents using a snowball sample technique. All participants were permanent residents of the two communities, between the ages of 25–95 and most had lived in the area their entire lives. Regardless of the residents' knowledge about past volcanic activity of Katla and the associated future risk, many residents were doubtful about the imminent eruption forecast by scientists and they believed that the volcano is no longer active. In both communities, different social, cultural and economic factors played a central role in how people perceived natural hazards and how they dealt with the fact that their lives and livelihoods could be at risk. The participants had good knowledge about the existing evacuation plan and had participated in evacuation exercises. However, they had not made personal mitigation or preparedness plans in the event of a future eruption. In contrast to the residents of Vík, the inhabitants in Álftaver are concerned about the evacuation process and found it very confusing; they neither found the emergency plan nor the proposed methods for risk communication relevant for their farming community. The perception of the inhabitants, especially in Álftaver, does not

  7. Collaborative studies target volcanic hazards in Central America

    Science.gov (United States)

    Bluth, Gregg J. S.; Rose, William I.

    Central America is the second-most consistently active volcanic zone on Earth, after Indonesia. Centuries of volcanic activity have produced a spectacular landscape of collapsed calderas, debris flows, and thick blankets of pyroclastic materials. Volcanic activity dominates the history, culture, and daily life of Central American countries.January 2002 marked the third consecutive year in which a diverse group of volcanologists and geophysicists conducted focused field studies in Central America. This type of multi-institutional collaboration reflects the growing involvement of a number of U.S. and non-U.S. universities, and of other organizations, in Guatemala and El Salvador (Table 1).

  8. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  9. Volcanic Stratigraphy and Potential Hazards of the Chihsingshan Volcano Subgroup in the Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Wei Tsai

    2010-01-01

    Full Text Available The Chihsingshan Volcano Subgroup (CVSG is one of the most important landforms located within the Tatun Volcano Group in northern Taiwan. Based on a Digital Terrain Model, contour maps and field investigations, the CVSG can be divided into four types of volcanic landforms: (1 a strato- or composite volcano, Chihsingshan; (2 domes, the Shamaoshan and a hidden unit; (3 lava cones, the Baiyunshan and the Hsiaotsaoshan; and (4 a scoria cone, the Chikushan. Meanwhile, many small craters are distributed linearly along two northeast trending normal-fault systems. The occurrences are predominantly lava flows with subsidiary fall deposits, pyroclastic flows, and lahars in which at least twenty layers of lava flow in the CVSG can be recognized. Among them, 16 layers in the Chihsingshan volcano, named as C1 - C16, two in the Baiyunshan, B1 - B2, and two in the Hsiaotsaoshan, H1 - H2. Our study suggests that the potential volcanic hazards include lava and pyroclastic flows and simultaneous or subsequent lahars, if the Chihsingshan erupts in a similar manner as in the past. A volcanic hazard zonation map can be constructed for the purpose of mitigation assuming the future eruptive center and eruptive volume.

  10. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    Science.gov (United States)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  11. Accounting for vulnerable populations in rural hazard mitigation plans: results of a survey of emergency managers.

    Science.gov (United States)

    Horney, Jennifer A; Nguyen, Mai; Cooper, John; Simon, Matthew; Ricchetti-Masterson, Kristen; Grabich, Shannon; Salvesen, David; Berke, Philip

    2013-01-01

    Rural areas of the United States are uniquely vulnerable to the impacts of natural disasters. One possible way to mitigate vulnerability to disasters in rural communities is to have a high-quality hazard mitigation plan in place. To understand the resources available for hazard mitigation planning and determine how well hazard mitigation plans in rural counties meet the needs of vulnerable populations, we surveyed the lead planning or emergency management official responsible for hazard mitigation plans in 96 rural counties in eight states in the Southeastern United States. In most counties, emergency management was responsible for implementing the county's hazard mitigation plan and the majority of counties had experienced a presidentially declared disaster in the last 5 years. Our research findings demonstrated that there were differences in subjective measures of vulnerability (as reported by survey respondents) and objective measures of vulnerability (as determined by US Census data). In addition, although few counties surveyed included outreach to vulnerable groups as a part of their hazard mitigation planning process, a majority felt that their hazard mitigation plan addressed the needs of vulnerable populations "well" or "very well." These differences could result in increased vulnerabilities in rural areas, particularly for certain vulnerable groups.

  12. Hazard assessment of explosive volcanism at Somma-Vesuvius

    National Research Council Canada - National Science Library

    G. Mastrolorenzo; L. Pappalardo

    2010-01-01

    ...) class, in the Vesuvius area and its surroundings including Naples. Particularly, eruptions with VEI 3 would produce a fallout hazard within about 10 km mostly east of the volcano and a PDC hazard within about 2 km from the crater...

  13. The role of petrology in defining volcanic hazards and designing monitoring systems

    Science.gov (United States)

    Smith, I. E.; Turner, M. B.; Price, R. C.; Cronin, S. J.

    2011-12-01

    Petrology is the study of magmatic systems; physical volcanology investigates processes of eruption. Physical volcanology provides the pre-eminent underpinning of the practical business of defining hazard scenarios, planning mitigation and designing monitoring strategies. Recent research in a variety of volcanic settings has demonstrated an important link between the petrologic processes that at a fundamental level drive the behavior of volcanoes and the processes that determine the eruptive style of a volcano. Together these define the hazards that arise from volcanic eruptions. Petrological studies of volcanoes are typically based on a study of lava because coherent rock is less vulnerable to weathering and alteration and is more durable in the geological record. Pyroclastic materials are commonly friable and glassy, are more easily eroded, and are more difficult to use in the analytical techniques that have become the staple basis of petrological studies. However, pyroclastic materials represent a complementary but different part of the magmatic story and it is only by integrating both effusive and explosive components of an eruption sequence that a complete picture of the behavior of the system feeding a volcano can be gained. Andesitic strato-cones are made up of a cone-building facies consisting mainly of primary magmatic products and usually dominated by lava flows because pyroclastic material is easily eroded from the slopes of a steep cone. The surrounding ring plain facies includes primary pyroclastic deposits but is typically dominated by redistributed material in the form of debris flow and lahar deposits together with reworked fluvial material. The deposits of each of these two facies are assembled on different time scales and they contain different aspects of the record of the evolution of the magmatic system that gave rise to them. An important practical consequence of this is that different parts of the geochemical record of the system can occur in

  14. Evaluating effusive volcanic hazard from thermal remote-sensing: insight from analogue experiments

    Science.gov (United States)

    Garel, Fanny; Kaminski, Edouard; Tait, Steve; Limare, Angela

    2014-05-01

    During an effusive volcanic eruption, crisis management is mainly based on the prediction of lava flow advance. The spreading of a lava flow depends mainly on its rheology and on the effusion rate, and can be modeled as a gravity current. A thermal proxy, based on the power radiated by lava flows and measured by remote-sensing, has been quite widely used in the literature to evaluate the effusion rate in near real-time. But firm physical bases are still lacking for such modeling to be used to assess robustly the time variation of the effusion rate. To gain a better understanding of the physical processes underlying lava flow advance and to better assess the validity of thermal proxies, we have performed and analysed analogue experiments using a solidifying wax material. Two aspects of volcanic hazard mitigation are studied: (i) how supply rate relates to surface thermal signal, and (ii) how flow advance relates to supply rate. We find that, for material injected at a constant rate, flow advance is discontinuous and occurs through a succession of stagnation phases and overflows. Stagnation phases are longer for lower supply rates, whereas flows with higher supply rates are less affected by solidification. The total radiated power also grows by stages, but the signal radiated by the hottest and liquid part of the flow reaches a quasi-steady state after some time. This plateau value is shown to scale with the theoretical thermal response of an isoviscous gravity current. The experimental scaling yields satisfying estimates of the effusion rate from the total radiated power measured on a range of basaltic lava flows. However, even though lava lava flow effusion rate can be estimated, our experiments show that prediction of lava advance remains difficult due to chaotic emplacement of solidifying flows.

  15. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  16. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory, and the recent volcanic eruption of El Hierro

    Science.gov (United States)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2012-04-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 years, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterise the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. Shortly after the publication of this method an eruption in the island of El Hierro took place for the first time in historical times, supporting our method and contributing towards the validation of

  17. The Brave New World of Real-time GPS for Hazards Mitigation

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.

    2015-12-01

    Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast

  18. The 3D Elevation Program—Landslide recognition, hazard assessment, and mitigation support

    Science.gov (United States)

    Lukas, Vicki; Carswell, Jr., William J.

    2017-01-27

    The U.S. Geological Survey (USGS) Landslide Hazards Program conducts landslide hazard assessments, pursues landslide investigations and forecasts, provides technical assistance to respond to landslide emergencies, and engages in outreach. All of these activities benefit from the availability of high-resolution, three-dimensional (3D) elevation information in the form of light detection and ranging (lidar) data and interferometric synthetic aperture radar (IfSAR) data. Research on landslide processes addresses critical questions of where and when landslides are likely to occur as well as their size, speed, and effects. This understanding informs the development of methods and tools for hazard assessment and situational awareness used to guide efforts to avoid or mitigate landslide impacts. Such research is essential for the USGS to provide improved information on landslide potential associated with severe storms, earthquakes, volcanic activity, coastal wave erosion, and wildfire burn areas.Decisionmakers in government and the private sector increasingly depend on information the USGS provides before, during, and following disasters so that communities can live, work, travel, and build safely. The USGS 3D Elevation Program (3DEP) provides the programmatic infrastructure to generate and supply lidar-derived superior terrain data to address landslide applications and a wide range of other urgent needs nationwide. By providing data to users, 3DEP reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data.

  19. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  20. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,

    2003-01-01

    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  1. Hazard assessment at Teide-Pico Viejo volcanic complex (Tenerife, Canary Islands)

    Science.gov (United States)

    Marti, Joan; Sobradelo, Rosa; Felpeto, Alicia

    2010-05-01

    Mid to long-term hazard assessment is conducted at Teide-Pico Viejo volcanic complex as a first step to evaluate volcanic risk in Tenerife, a densely populated island that is one of the biggest tourist destinations in Europe. Teide-Pico Viejo stratovolcanoes started to grow up in the interior of the Las Cañadas caldera, in the central part of Tenerife, about 190 ka ago, after the formation of the youngest sector of the caldera. Since then they have produced more than 150 km3 of rocks which represent a complete basanite to phonolite series. Eruptive activity at Teide-Pico Viejo complex has been traditionally considered as mostly effusive, but new field data has revealed that explosive activity of phonolitic and basaltic magmas, including plinian and subplinian eruptions and the generation of a wide range of PDCs, has also been significant, particularly during the last 30 ka. Most of the Teide products have been emplaced towards the north, inside the Icod and La Orotava valleys, or at the interior of the caldera, while towards the south the caldera wall has stopped the emplacement of such products from going further. The last eruption from the Teide-Pico Viejo central vents, the Lavas Negras eruption, took place about 1000 years ago, but younger eruptive episodes have occurred along the flanks of these stratovolcanoes. Despite the occurrence of numerous eruptions during the last 30 ka and the existence of unequivocal signs of activity in historical times (fumaroles, seismicity) and, even, a clear unrest episode that started in 2004 and is still ongoing, Teide-Pico Viejo stratovolcanoes have not been considered as a major threat by some scientists and also by the local authorities who have dedicated minimum attention to them in the recently approved regional emergency plan. If this view prevails it is obvious that risk mitigation in Tenerife will not succeed. In order to contribute to change that view on the danger potential of Teide-Pico Viejo, and to insist on the

  2. Automatized near-real-time short-term Probabilistic Volcanic Hazard Assessment of tephra dispersion before eruptions: BET_VHst for Vesuvius and Campi Flegrei during recent exercises

    Science.gov (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Rouwet, Dmtri; Tonini, Roberto; Macedonio, Giovanni; Marzocchi, Warner

    2015-04-01

    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short temporal intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology named BET_VHst (Selva et al. 2014) for short-term PVHA of volcanic tephra dispersal based on automatic interpretation of measures from the monitoring system and physical models of tephra dispersal from all possible vent positions and eruptive sizes based on frequently updated meteorological forecasts. The large uncertainty at all the steps required for the analysis, both aleatory and epistemic, is treated by means of Bayesian inference and statistical mixing of long- and short-term analyses. The BET_VHst model is here presented through its implementation during two exercises organized for volcanoes in the Neapolitan area: MESIMEX for Mt. Vesuvius, and VUELCO for Campi Flegrei. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252

  3. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.

  4. New strategies for volcanic hazard and risk assessment

    OpenAIRE

    Biasse, Sébastien

    2015-01-01

    Volcanic eruptions are amongst the most intense and majestic display of natu- re’s power that can dramatically impact the Earth system and our modern societies. The recent 2010 eruption of Eyjafjallajökull demonstrated how eruptions of moderate size can impact modern globalised societies. Most of the European airspace was closed for a week and the air traffic over the North Atlantic was interrupted. 313 airports were closed, 104,000 flights cancelled, 10 million passengers stranded, causing a...

  5. Hazard assessment of explosive volcanism at Somma-Vesuvius

    National Research Council Canada - National Science Library

    G. Mastrolorenzo; L. Pappalardo

    2010-01-01

      A probabilistic approach based on the available volcanological data on past Somma-Vesuvius eruptions has been developed to produce hazard-zone maps for fallout, pyroclastic density currents (PDCs...

  6. EnviroAtlas - Natural Hazard Mitigation Metrics for Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Natural Hazard Mitigation...

  7. GNSS Buoy Array in the Ocean for Natural Hazard Mitigation

    Science.gov (United States)

    Kato, T.; Terada, Y.; Yamamoto, S. I.; Iwakiri, N.; Toyoshima, M.; Koshikawa, N.; Motohashi, O.; Hashimoto, G.; Wada, A.

    2015-12-01

    The GNSS buoy system for tsunami early warning has been developed in Japan. The system has been implemented as a national wave monitoring system and its record was used to update the tsunami warning at the 3.11 Tohoku-oki earthquake. The lessons learned in this experience was that the buoys are placed only less than 20km from the coast, which was not far enough for effective evacuation of people. We thus tried to improve the system for putting the buoy much farther from the coast. First, we tried to implement, different from current baseline mode RTK-GPS, a real-time PPP analysis strategy for positioning. In addition, we tried to use a two-way satellite data transmission in contrast with current surface radio system. We have made a series of experiments for this purpose in 2013 and 2014. A buoy of about 40km south of Shikoku, southwest Japan, was used for this purpose. GEONET data were used to obtain precise orbits and clocks of satellites. Then, the information was transferred to the GNSS buoy using LEX signal of QZSS satellite system. The received information on the buoy were used for real-time PPP analysis for every second. The obtained buoy position was then transmitted to the ground base, through an engineering test satellite, ETS-VIII. The received data was then disseminated to public through the internet. Both filtered short-term and long-term waves, were separately shown on the webpage. The success of these experiments indicates that the GNSS buoy can be placed at least more than 1,500 km from the ground based tracking network. Given this success, we would now be able to deploy a new GNSS buoy array system in the wide ocean. An array in the ocean can be used for ionospheric and atmospheric research in the same region as well as tsunami or ocean bottom crustal deformation monitoring through an application to the GNSS-acoustic system. We are now designing a regional GNSS buoy array in the western Pacific as a synthetic natural hazard mitigation system.

  8. Next-Generation GPS Station for Hazards Mitigation (Invited)

    Science.gov (United States)

    Bock, Y.

    2013-12-01

    Our objective is to better forecast, assess, and mitigate natural hazards, including earthquakes, tsunamis, and extreme storms and flooding through development and implementation of a modular technology for the next-generation in-situ geodetic station to support the flow of information from multiple stations to scientists, mission planners, decision makers, and first responders. The same technology developed under NASA funding can be applied to enhance monitoring of large engineering structures such as bridges, hospitals and other critical infrastructure. Meaningful warnings save lives when issued within 1-2 minutes for destructive earthquakes, several tens of minutes for tsunamis, and up to several hours for extreme storms and flooding, and can be provided by on-site fusion of multiple data types and generation of higher-order data products: GPS/GNSS and accelerometer measurements to estimate point displacements, and GPS/GNSS and meteorological measurements to estimate moisture variability in the free atmosphere. By operating semi-autonomously, each station can then provide low-latency, high-fidelity and compact data products within the constraints of narrow communications bandwidth that often accompanies natural disasters. We have developed a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS, a strong-motion accelerometer module, and a meteorological sensor package, for deployment at existing continuous GPS stations in southern California; fifteen stations have already been upgraded. The low-cost modular design is scalable to the many existing continuous GPS stations worldwide. New on-the-fly data products are estimated with 1 mm precision and accuracy, including three-dimensional seismogeodetic displacements for earthquake, tsunami and structural monitoring and precipitable water for forecasting extreme weather events such as summer monsoons and atmospheric rivers experienced in California. Unlike more

  9. The mitigation of volcanic risk as opportunity for an ecological and resilient city

    Directory of Open Access Journals (Sweden)

    Giulio Zuccaro

    2014-05-01

    Full Text Available The paper outlines some of the results of SPeeD project, funded by EU, Campania Region and National Department of Civil Protection. The research is aimed at the definition of impact scenarios resulting from the eruption of Vesuvius and Campi Flegrei and the development of strategies to reduce the damage on the built environment. The issues related to the identification of technical solutions for mitigating the impact on buildings and infrastructure, to the socio-economic benefits arising from widespread interventions on the territory, as well as to the drafting of preparatory guidelines for the implementation of regional regulations and local building codes for volcanic risk-prone areas, have been developed at PLINIVS Study Centre of University of Naples Federico II. The methodological approach for the definition of appropriate technologies aimed at reducing the impact in relation to eruptive phenomena and construction types in the area is based on PLINIVS Volcanic Impact Simulation Model, a unique tool to define impact scenarios consequent to a volcanic eruption in the region, able to evaluate the cumulative effects given by the action of volcanic phenomena, such as earthquake, ash fall, pyroclastic flows and landslides. The study aims to demonstrate how the application of appropriate technologies for retrofit interventions or new constructions, aimed at reducing the vulnerability of building components, represents at the same time an opportunity to encourage a diffuse redevelopment of the territory driven by energy and environmental efficiency issues.

  10. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier

  11. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt (<4 Myr) of the NTS region and southern Death Valley area, California, indicate an enrichment in incompatible elements, with the exception of rubidium. The conditional probability of recurring basaltic volcanism and disruption of a repository by that event is bounded by the range of 10{sup -8} to 10{sup -10} as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes.

  12. People's behaviour in the face of volcanic hazards: Perspectives from Javanese communities, Indonesia

    Science.gov (United States)

    Lavigne, Franck; De Coster, Benjamin; Juvin, Nancy; Flohic, François; Gaillard, Jean-Christophe; Texier, Pauline; Morin, Julie; Sartohadi, Junun

    2008-05-01

    This paper is concerned with the way in which the Indonesian people living on the slopes or near active volcanoes behave in the face of volcanic threats. It explores the role of three factors in the shaping of this behaviour, e.g. risk perception, cultural beliefs and socio-economic constraints. The paper is mainly based on field data collected during the last 5 years on four volcanoes in Central Java, namely Sumbing, Sindoro, Dieng, and Merapi. The common assumption that hazard knowledge, risk perception and people's behaviour are closely related and conditional on volcanic activity is debatable in the Indonesian context. Factors that play a role in hazard knowledge—e.g. basic knowledge of volcanic processes, personal experience of volcanic crisis, time lapsed since the last volcanic eruption, etc.—differ from those that influence risk perception. Indeed, local people often underestimate the scientifically or statistically estimated risk. This poor risk perception is characterized by an approximate personal representation of the volcanic processes, an excess of trust in concrete countermeasures, the presence of a physical-visual obstructions, or cultural beliefs related to former eruptions. In addition, the commonly-acknowledged factors that influence hazard knowledge and/or risk perception may be at odds with the non hazard-related factors that prompt or force people to live in or to exploit areas at risk. These factors may be either socio-cultural—e.g., attachment to place, cultural beliefs, etc.—or social and socio-economical —e.g., standard of living, strength of people's livelihoods, well-being. These factors are fundamental in explaining the short-term behaviour in the face of a developing threat during a volcanic crisis.

  13. An Interdisciplinary Approach to Volcanic Hazard Assessment, Risk Perception and Social Vulnerability

    Science.gov (United States)

    Lechner, H. N.

    2011-12-01

    During a volcanic crisis there often exists a gap in communication among scientists, decision makers and members of the affected community. While the physical processes of these events are of scientific interest and may be well understood by the scientists involved, it is the communication of the risk and possible consequences to human population within the hazard zone that is most important during the actual time of a crisis. The use of hazard maps is often an integral tool employed by scientists to communicate risk to decision makers and the general public; unfortunately, in regions that are commonly affected by volcanic events, volcanic hazard maps may be too abstract for use by the general public. The objective of this paper is to open a discussion about an interdisciplinary approach to risk communication using a four-pronged methodology: 1) identification of multiple communities that have experienced a volcanic crisis over the last 20years and an examination of the events, decisions, responses and outcomes before, during and after; 2) participatory mapping and hazards assessments with community members and decision makers to define a community's geospatial orientation relative to the hazard source; 3) develop new or modify and incorporate existing hazard educational curricula; and 4) integrate a GIS and cartographic component that will produce quality maps that communicate both hazard and risk based on spatial and social variables. The long term goal is to develop a model that will allow us to effectively identify vulnerable populations, communicate risk and map both the hazard and the associated risk in a manner that can be interpreted at all levels in the decision making process.

  14. Preliminary overview map of volcanic hazards in the 48 conterminous United States

    Science.gov (United States)

    Mullineaux, D.R.

    1976-01-01

    Volcanic eruptions and related phenomena can be expected to occur in the Western United States, and in some places are potentially hazardous enough to be considered in longe-range land-use planning. But the immediate risk from volcanic hazards is low because eruptions are so infrequent in the conterminous United States that few, if any, occur during any one person 1s lifetime. Furthermore, severely destructive effects of eruptions, other than extremely rare ones of catastrophic scale, probably would be limited to areas within a few tens of kilometers downvalley or downwind from a volcano. Thus, the area seriously endangered by any one eruption would be only a very small part of the Western United States. The accompanying map identifies areas in which volcanic hazards pose some degree of risk, and shows that the problem is virtually limited to the far western States. The map also shows the possible areal distribution of several kinds of dangerous eruptive events and indicates the relative likelihood of their occurrence at various volcanoes. The kinds of events described here as hazards are those that can occur suddenly and with little or no warning; they do not include long-term geologic processes. Table 1 summarizes the origin and some characteristics of potentially hazardous volcanic phenomena. The map is diagrammatic. It does not show the specific location of the next expected eruption , because such an event cannot be reliably predicted . Instead, the map shows general areas or zones that, over a long period of time, are relatively likely to be affected in one or more places by various kinds of hazardous volcanic events. However, only a small part of one of these areas would be affected by any single eruption.

  15. Effect of gas emissions from Tianchi volcano (NE China) on environment and its potential volcanic hazards

    Institute of Scientific and Technical Information of China (English)

    GUO; Zhengfu; LIU; Jiaqi; HAN; Jingtai; HE; Huaiyu; DAI; Guoliang; YOU; Haitao

    2006-01-01

    The Tianchi volcano in the Changbai Mountains is located on the boundary between China and North Korea. There are many times of eruptions of the Tianchi volcano during the Holocene. One of its large eruptions occurred around 1000 years ago dated by 14C method and historical records. Composition of products of the largest Tianchi volcanic eruption studied is characterized by comenditic Plinian fallout and unwelded ignimbrite, which are mainly distributed in China and North Korea. Caldera is about 4.4 km long and 3.4 km wide, which had filled with water (e.g. Tianchi Lake). The Tianchi volcanic cone is about 2700 m high above sea level. The Tianchi Lake is located on the summit of the volcanic cone, that is also highest peak of the Changbai Mountains in northeastern China. This study analyzed Cl, F, S and H2O concentrations of melt inclusions in the phenocryst minerals (anorthoclase and quartz) and co-existing matrix glasses using the electron microprobe and estimated environmental effect of Tianchi volcanic gases. The authors proposed a new method to evaluate future eruption of active volcano and estimate potential volcanic hazards based on contents of volatile emissions. Using this method, we made a perspective of future volcanic hazard in this region.

  16. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    Directory of Open Access Journals (Sweden)

    Mark Stirling

    2017-06-01

    Full Text Available We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration, and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g., short-term forecasting. The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  17. Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation

    Science.gov (United States)

    Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.

    2006-12-01

    An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes

  18. Combining Geological and Geophysical Data in Volcanic Hazard Estimation for Dominica, Lesser Antilles

    Science.gov (United States)

    George, O.; Latchman, J. L.; Connor, C.; Malservisi, R.; Connor, L.

    2014-12-01

    Risk posed by volcanic eruptions are generally quantified in a few ways; in the short term geophysical data such as seismic activity or ground deformation are used to assess the state of volcanic unrest while statistical approaches such as spatial density estimates are used for long term hazard assessment. Spatial density estimates have been used in a number of monogenetic volcanic fields for hazard map generation and utilize the age, location and volumes of previous eruptions to calculate the probability of a new event occurring at a given location within this field. In a previously unpublished study, spatial density estimates of the Lesser Antilles volcanic arc showed the island of Dominica to have the highest likelihood of future vent formation. In this current study, this technique was used in combination with relocated seismic events occurring beneath Dominica within the last ~ 20 years as well as InSAR images of ground deformation to generate a hazard map which not only takes into consideration the past events but also the current state of unrest. Here, geophysical data serve as a weighting factor in the estimates with those centers showing more vigorous activity receiving stronger favorability in the assessment for future activity. In addition to this weighting, the bandwidth utilized in the 2D-radially symmetric kernel density function was optimized using the SAMSE method so as to find the value which best minimizes the error in the estimate. The end results of this study are dynamic volcanic hazards maps which will be readily updatable as changes in volcanic unrest occurs within the system.

  19. Hazards posed by distal ash transport and sedimentation from extreme volcanic eruptions

    Science.gov (United States)

    Sahagian, D. L.; Proussevitch, A. A.; White, C. M.; Klewicki, J.

    2016-12-01

    Volcanic ash injected into the upper troposphere and lower stratosphere poses a significant hazard to aviation and human security as a result of extreme, explosive eruptions. These have occurred in the recent geologic past, and are expected to occur again, now that modern society and its infrastructure is far more vulnerable than ever before. Atmospheric transport, dispersion, and sedimentation of Ash particles is controlled by fundamentally different processes than control other particles normally transported in the atmosphere due to their complex internal and external morphology. It is thus necessary to elucidate the fundamental processes of particle-fluid interactions in the upper troposphere and lower stratosphere, where most air traffic resides, and thereby enhance the capability of volcanic ash transport models to predict the ash concentration in distal regions that pose aviation and other hazards. Current Volcanic Ash Transport and Dispersion (VATD) models use simplistic stokes settling velocities for larger ash particles, and treat smaller ash particles (that are a large part of the hazard) merely as passive tracers. By incorporating the dynamics of fine ash particle-atmosphere interactions into existing VATD models provides the foundation for a much more accurate assessment framework applied to the hazard posed by specific future extreme eruptions, and thus dramatically reduce both the risk to air traffic and the cost of airport and flight closures, in addition to human health, water quality, agricultural, infrastructure hazards, as well as ice cap albedo and short term climate impacts.

  20. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    Science.gov (United States)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  1. Combining observations and model simulations to reduce the hazard of Etna volcanic ash plumes

    Science.gov (United States)

    Scollo, Simona; Boselli, Antonella; Coltelli, Mauro; Leto, Giuseppe; Pisani, Gianluca; Prestifilippo, Michele; Spinelli, Nicola; Wang, Xuan; Zanmar Sanchez, Ricardo

    2014-05-01

    Etna is one of the most active volcanoes in the world with a recent activity characterized by powerful lava fountains that produce several kilometres high eruption columns and disperse volcanic ash in the atmosphere. It is well known that, to improve the volcanic ash dispersal forecast of an ongoing explosive eruption, input parameters used by volcanic ash dispersal models should be measured during the eruption. In this work, in order to better quantify the volcanic ash dispersal, we use data from the video-surveillance system of Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, and from the lidar system together with a volcanic ash dispersal model. In detail, the visible camera installed in Catania, 27 km from the vent is able to evaluate the evolution of column height with time. The Lidar, installed at the "M.G. Fracastoro" astrophysical observatory (14.97° E, 37.69° N) of the Istituto Nazionale di Astrofisica in Catania, located at a distance of 7 km from the Etna summit craters, uses a frequency doubled Nd:YAG laser source operating at a 532-nm wavelength, with a repetition rate of 1 kHz. Backscattering and depolarization values measured by the Lidar system can give, with a certain degree of uncertainty, an estimation of volcanic ash concentration in atmosphere. The 12 August 2011 activity is considered a perfect test case because volcanic plume was retrieved by both camera and Lidar. We evaluated the mass eruption rate from the column height and used best fit procedures comparing simulated volcanic ash concentrations with those extracted by the Lidar data. During this event, powerful lava fountains were well visible at about 08:30 GMT and a sustained eruption column was produced since about 08:55 GMT. Ash emission completely ceased around 11:30 GMT. The proposed approach is an attempt to produce more robust ash dispersal forecasts reducing the hazard to air traffic during Etna volcanic crisis.

  2. BET-VH: A Probabilistic Tool for Long- and Short-Term Volcanic Hazard Assessment

    Science.gov (United States)

    Marzocchi, W.; Selva, J.; Sandri, L.

    2005-12-01

    The purpose of this work is to present the probabilistic code BET-VH (Bayesian Event Tree for Volcanic Hazard) for long- and short-term volcanic hazard assessment. BET-VH follows the probabilistic scheme recently published by Marzocchi et al. (2004; Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt. Vesuvius, J. Geophys. Res., vol. 109, B11201, doi:10.1029/2004JB003155), and it includes the fuzzy logic to minimize the effects of the choice of some particular thresholds of the model. In brief, BET-VH is based on a Bayesian approach applied to an Event Tree scheme that produces the probability estimation of any possible event in which we are interested, using all available information including theoretical models, historical and geological data, and monitoring observations. The general sequence is to estimate an a priori probability distribution based upon theoretical knowledge, to modify that using data. The procedure deals with epistemic and aleatory uncertainties in a formal way, through the estimation of probability distributions at each node of the Event Tree. In order to illustrate the potentiality of BET-VH in managing emergencies and in land use planning, we present applications of the code to some explosive volcanoes.

  3. Global Assessment of Volcanic Debris Hazards from Space

    Science.gov (United States)

    Watters, Robert J.

    2003-01-01

    Hazard (slope stability) assessment for different sectors of volcano edifices was successfully obtained from volcanoes in North and South America. The assessment entailed Hyperion images to locate portions of the volcano that were hydrothermally altered to clay rich rocks with zones that were also rich in alunite and other minerals. The identified altered rock zones were field checked and sampled. The rock strength of these zones was calculated from the field and laboratory measurements. Volcano modeling utilizing the distinct element method and limit equilibrium technique, with the calculated strength data was used to assess stability and deformation of the edifice. Modeling results give indications of possible failure volumes, velocities and direction. The models show the crucial role hydrothermally weak rock plays in reducing the strength o the volcano edifice and the rapid identification of weak rock through remote sensing techniques. Volcanoes were assessed in the Cascade Range (USA), Mexico, and Chile (ongoing).

  4. The price of safety: costs for mitigating and coping with Alpine hazards

    Science.gov (United States)

    Pfurtscheller, C.; Thieken, A. H.

    2013-10-01

    Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany), Tyrol (Austria), South Tyrol (Italy) and Switzerland. On the basis of PPP values (purchasing power parities), annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable) costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria) as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.

  5. The price of safety: costs for mitigating and coping with Alpine hazards

    Directory of Open Access Journals (Sweden)

    C. Pfurtscheller

    2013-10-01

    Full Text Available Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany, Tyrol (Austria, South Tyrol (Italy and Switzerland. On the basis of PPP values (purchasing power parities, annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.

  6. Volcanic hazard assessment in the Phlegraean Fields: A contribution based on stratigraphic and historical data

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, M.; Santacroce, R. (Universita di Pisa (Italy) Gruppo Nazionale per la Vulcanologia, Roma (Italy))

    1984-01-01

    Phenomena occurring since 1982 in the Phlegraean fields, interpreted as precursors of a potential renewal of volcanic activity, have forced the authors to anticipate some conclusions of a volcanic-hazard study based on the reconstruction of past eruptions in the area, to serve as basis for civil defense preparedness plans. The eruptive history of the Phlegraean Fields suggests a progressive decrease with time in the strength of eruptive phenomena paralleling a migration of vents towards the center of the Phlegraean caldera. Studies concerning the volcanic risk zonation were therefore concentrated on activities during the last 4,500 years and two eruptions (Monte Nuovo and Agnano Monte Spina), that occurred in 1538 and 4,400 years B.P., respectively were selected as the reference eruptions from which possible eruption scenarios were drawn.

  7. Oxygen deficiency at CERN: Hazards, risks & mitigation measures

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Compressed and liquified gases are used at many places at CERN. If they are introduced to the atmosphere, they can present an oxygen deficiency hazard (ODH) and lead to reduced abilities, unconsciousness or even death. The CERN method for ODH risk assessments is done on a case-by-case basis as each situation is unique. It is crucial to make sure the personnel can evacuate safely in case of an ODH situation. My talk will explain human reactions to reduced oxygen levels and I will give some practical examples on how one can assess and control the hazards from a possible oxygen deficient atmosphere. Some real accidents involving oxygen deficiency will also be mentioned.

  8. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  9. International collaboration towards a global analysis of volcanic hazards and risk

    Science.gov (United States)

    Loughlin, Susan; Duncan, Melanie; Volcano Model Network, Global

    2017-04-01

    Approximately 800 million people live within 100km of an active volcano and such environments are often subject to multiple natural hazards. Volcanic eruptions and related volcanic hazards are less frequent than many other natural hazards but when they occur they can have immediate and long-lived impacts so it is important that they are not overlooked in a multi-risk assessment. Based on experiences to date, it's clear that natural hazards communities need to address a series of challenges in order to move to a multi-hazard approach to risk assessment. Firstly, the need to further develop synergies and coordination within our own communities at local to global scales. Secondly, we must collaborate and identify opportunities for harmonisation across natural hazards communities: for instance, by ensuring our databases are accessible and meet certain standards, a variety of users will be then able to contribute and access data. Thirdly, identifying the scale and breadth of multi-risk assessments needs to be co-defined with decision-makers, which will constrain the relevant potential cascading/compounding hazards to consider. Fourthly, and related to all previous points, multi-risk assessments require multi-risk knowledge, requiring interdisciplinary perspectives, as well as discipline specific expertise. The Global Volcano Model network (GVM) is a growing international network of (public and private) institutions and organisations, which have the collective aim of identifying and reducing volcanic risks. GVM's values embody collaboration, scientific excellence, open-access (wherever possible) and, above all, public good. GVM highlights and builds on the best research available within the volcanological community, drawing on the work of IAVCEI Commissions and other research initiatives. It also builds on the local knowledge of volcano observatories and collaborating scientists, ensuring that global efforts are underpinned by local evidence. Some of GVM's most

  10. A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines

    Directory of Open Access Journals (Sweden)

    M. Neri

    2013-08-01

    Full Text Available Hazard mapping in poorly known volcanic areas is complex since much evidence of volcanic and non-volcanic hazards is often hidden by vegetation and alteration. In this paper, we propose a semi-quantitative method based on hazard event tree and multi-hazard map constructions developed in the frame of the FP7 MIAVITA project. We applied this method to the Kanlaon volcano (Philippines, which is characterized by poor geologic and historical records. We combine updated geological (long-term and historical (short-term data, building an event tree for the main types of hazardous events at Kanlaon and their potential frequencies. We then propose an updated multi-hazard map for Kanlaon, which may serve as a working base map in the case of future unrest. The obtained results extend the information already contained in previous volcanic hazard maps of Kanlaon, highlighting (i an extensive, potentially active ~5 km long summit area striking north–south, (ii new morphological features on the eastern flank of the volcano, prone to receiving volcanic products expanding from the summit, and (iii important riverbeds that may potentially accumulate devastating mudflows. This preliminary study constitutes a basis that may help local civil defence authorities in making more informed land use planning decisions and in anticipating future risk/hazards at Kanlaon. This multi-hazard mapping method may also be applied to other poorly known active volcanoes.

  11. Wenchuan Earthquake Surface Fault Rupture and Disaster: A Lesson on Seismic Hazard Assessment and Mitigation

    Directory of Open Access Journals (Sweden)

    Yi Du

    2012-01-01

    Full Text Available The Ms 8.0 Wenchuan earthquake occurred along the Longmenshan Faults in China and was a great disaster. Most of the damage and casualties during the quake were concentrated along surface rupture zones: the 240-km-long Beichuan-Yingxiu Fault and the 70-km-long Jiangyou-Guanxian Fault. Although the Longmenshan Faults are well known and studied, the surface Fault ruptures were not considered in mitigation planning, and the associated ground-motion hazard was therefore underestimated. Not considering Fault rupture and underestimating ground-motion hazard contributed to the disastrous effects of the earthquake. The lesson from the Wenchuan earthquake disaster is that the fault rupture hazard must be assessed and considered in mitigation. Furthermore, the deterministic approach is more appropriate for fault rupture hazard assessment than the probabilistic approach.

  12. Understanding and Identifying Natural Hazard for Bandung City Preparedness and Mitigation against Natural Disaster

    Directory of Open Access Journals (Sweden)

    Raharjo Paulus P.

    2017-01-01

    Full Text Available Understanding Natural Hazard is an important aspect for the City Planning and Implementation of Policy and Development. The Local Government of Bandung City is developing a map of Hazard and Disasters based on the Natural Condition, Geography and Existing Condition. This paper discuss the scenario of the natural and main emphasis on geological hazard in the City of Bandung related to the Mitigation and Disaster Management as an input that should be adopted by the Local Government. The City is surrounded by active volcanoes and a number of faults that might cause natural disasters including earthquakes, volcano eruptions, flood and landslides. on the other hand the city developement can be directed towards the mitigation and risk reduction against these hazards.

  13. Development and application of indices using large volcanic databases for a global hazard and risk assessment

    Science.gov (United States)

    Brown, Sarah; Auker, Melanie; Cottrell, Elizabeth; Delgado Granados, Hugo; Loughlin, Sue; Ortiz Guerrero, Natalie; Sparks, Steve; Vye-Brown, Charlotte; Taskforce, Indices

    2015-04-01

    The Global Volcano Model (GVM) and IAVCEI were commissioned by the United Nations Office for Disaster Risk Reduction to produce a global assessment of volcanic hazard and risk for the Global Assessment Report 2015 (GAR15). This involved presenting both an introduction to volcanology and developing indices to assess hazard and risk on a global scale. To this end two open-access databases were of utmost importance: the Global Volcanism Program's Volcanoes of the World (http://www.volcano.si.edu) and the Large Magnitude Explosive Volcanic Eruptions database (LaMEVE; http://www.bgs.ac.uk/vogripa/). Indices were developed to enable a relative global assessment cognisant of data uncertainty and availability to broadly identify how hazard and risk varies around the world, the extent of monitoring and strengths and limitations in knowledge. The accessibility of both physical (e.g. volcano, eruption) and social data is crucial to our understanding of past behaviour, forecasting probable future behaviour and the potential impacts on communities. Such data is regionally highly variable and the eruption record worsens back in time. The Volcanic Hazard Index (VHI) was designed to quantify hazard levels globally, based on the Holocene eruption record. Vulnerability to eruptions was measured using the Population Exposure Index, which weights the population within 100 km of volcanoes by area and historical fatalities. The combination of these indices provides an indicator of population risk at individual volcanoes. The VHI was also combined with the total populations living within 30 km of volcanoes in each country to develop an understanding of the global distribution of volcano threat, and to rank countries by this measure. About half of the historically active volcanoes have insufficient information to adequately calculate VHI and these are highlighted as requiring future research. A database currently in development, GLOVOREMID, collates monitoring data to understand

  14. An Assessment of the Volcanic Hazards on the Island of Heimaey, Vestmannaeyjar, Iceland

    Science.gov (United States)

    Andrew, R.

    2005-12-01

    The Vestmannaeyjar Islands, off the southern coast of Iceland, mark the most recent area of activity in the southward propagation of the East Volcanic Zone. The eruptions of the islands of Surtsey in 1963 to 1967 and of Heimaey in 1973 indicate a phase of increased activity. The Vestmannaeyjar Islands are thought to be developing into the central (composite) volcano within the volcanic system of the same name. The magma of the 1973 Heimaey eruption is of the same general composition, although slightly more evolved, as that of the 1963 Surtsey eruption. Increased volcanic activity in the area automatically creates increased risk to the island of Heimaey with a population of 5300. Thus a study of the evolution of the island up to and including the 1973 eruption was carried out and a hazard map compiled for the island. The hazard map encapsulates the areas of highest risk, as well as alternative evacuation routes from the island. The logistics of an evacuation of the island are an issue that needs to be addressed; following the favorable evacuation during the 1973 eruption, a false sense of security could be said to be in place. The study also looked at the awareness of the population and their education as regards the volcanic hazards in the area. The hazard map for the island recognizes that a future eruption could be further away from the populated areas of the island, though this does alter the risk involved. A future eruption could occur to the northeast of the island, in which case it would block the natural harbor. Aside from evacuation in an emergency, further questions arise from this study in relation to the future of the island and its predominant fishing industry. The main conclusions of the study are, first, that the people of the island feel that an imminent eruption of the Katla Volcano on the mainland poses perhaps the only future volcanic hazard. Katla Volcano being on the mainland, its future eruption will not much affect them. A second main

  15. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    Energy Technology Data Exchange (ETDEWEB)

    F.V. Perry

    2005-10-13

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight

  16. Looking before we leap: an ongoing, quantative investigation of asteroid and comet impact hazard mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2010-01-01

    There are many outstanding questions about the correct response to an asteroid or comet impact threat on Earth. Nuclear munitions are currently thought to be the most efficient method of delivering an impact-preventing impulse to a potentially hazardous object (PHO). However, there are major uncertainties about the response of PHOs to a nuclear burst, and the most appropriate ways to use nuclear munitions for hazard mitigation.

  17. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Directory of Open Access Journals (Sweden)

    Juliano Calil

    Full Text Available Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S.Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  18. Landslide hazard assessment and mitigation measures in Philippine geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Leynes, R.D.; Pioquinto, W.P.C.; Caranto, J.A. [PNOC Energy Development Corporation, Fort Bonifacio (Philippines)

    2005-04-01

    Simple, yet reliable, field criteria have been developed and are being used to qualitatively assess slope instability and slope failure potential in Philippine geothermal fields. Based on a hazard assessment classification of slopes along corridor facilities, sites for implementation of engineering measures are selected. Two case studies are presented. In Mindanao field, the ''very high-risk'' classification of an area resulted in the installation of pipe shelters, which subsequently shielded a section of a pipeline from landslides. Follow-up monitoring is also conducted using cheap, locally fabricated tools, such as surface extensometers. This is being done in Leyte field, where a landslide has threatened a transmission line tower. (author)

  19. Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout

    Science.gov (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner

    2014-12-01

    During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly

  20. Volcanic-glacial interactions: GIS applications to the assessment of lahar hazards (case study of Kamchatka

    Directory of Open Access Journals (Sweden)

    Ya. D. Muraviev

    2014-01-01

    Full Text Available On the Kamchatka peninsula, lahars or volcanogenic mudflows arise as a result of intensive snow melting caused by incandescent material ejected by volcanoes onto the surface. Such flows carrying volcanic ash and cinders together with lava fragments and blocks move with a speed up to 70 km/h that can result in significant destructions and even human victims. Formation of such water flows is possible during the whole year.Large-scale GIS «Hazards of lahars (volcanogenic mudflows» has been developed for some volcano group as well as for individual volcanoes on the peninsula in framework of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc». Main components of this database are the following: physic-geographical information on region of active volcanism and adjacent areas, on human settlements; data on the mudflow activity; data on distribution of the snow and ice reserves. This database is aimed at mapping of surrounding territories and estimating a hazard of lahars.For illustration the paper presents a map of the lahar hazards, results of calculations of the distances of ejects and maximal area of ejected material spreading in dependence on a character and power of an eruption. In future we plan to perform operational calculations of maximal possible volumes of such flows and areas of their spreading. The calculations will be made on the basis of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc».A volume of hard material carried by lahars onto slopes and down to foot of the Kluchevskaya volcanic massif is estimated on the basis of data on the snow and ice reserves on volcano slopes. On the average for many years, the snow accumulation in zones of the mudflow formations their volume often reaches 15–17 millions of cubic meters. Depending on the snowfall activity in different years this value may vary within 50% relative to the norm. Further on, calculations of maximal possible volume of such flows will be performed in a

  1. Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment

    Science.gov (United States)

    Legg, M.; Eguchi, R. T.

    2015-12-01

    The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and

  2. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  3. Understanding volcanic hazard at the most populated caldera in the world: Campi Flegrei, Southern Italy

    Science.gov (United States)

    De Natale, Giuseppe; Troise, Claudia; Kilburn, Christopher R. J.; Somma, Renato; Moretti, Roberto

    2017-05-01

    Naples and its hinterland in Southern Italy are one of the most urbanized areas in the world under threat from volcanic activity. The region lies within range of three active volcanic centers: Vesuvius, Campi Flegrei, and Ischia. The Campi Flegrei caldera, in particular, has been in unrest for six decades. The unrest followed four centuries of quiescence and has heightened concern about an increased potential for eruption. Innovative modeling and scientific drilling are being used to investigate Campi Flegrei, and the results highlight key directions for better understanding the mechanisms of caldera formation and the roles of magma intrusion and geothermal activity in determining the volcano's behavior. They also provide a framework for evaluating and mitigating the risk from this caldera and other large ones worldwide.

  4. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    The Ceboruco Volcano (21° 7.688 N, 104° 30.773 W) is located in the northwestern part of the Tepic-Zacoalco graben. Its volcanic activity can be divided in four eruptive cycles differentiated by their VEI and chemical variations as well. As a result of andesitic effusive activity, the "paleo-Ceboruco" edifice was constructed during the first cycle. The end of this cycle is defined by a plinian eruption (VEI between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome built up in the interior of the caldera. The dome collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by the andesitic lava flows of the nineteenth century located in the southwestern flank of the volcano. Actually, moderate fumarolic activity occurs in the upper part of the volcano showing temperatures ranging between 20° and 120°C. Some volcanic high frequency tremors have also been registered near the edifice. Shows the updating of the volcanic hazard maps published in 1998, where we identify with SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east sides of the Ceboruco volcano. The population inhabiting the area is 70,224 people in 2010, concentrated in 107 localities and growing at an annual rate of 0.37%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by highway, high road, railroad, and the construction of new highway to Puerto Vallarta, which is built in the southeast sector of the volcano and electrical infrastructure that connect the Cajon and Yesca Dams to Guadalajara city. The most important economic activity in the area is agriculture, with crops of sugar cane (Saccharum officinarum), corn, and jamaica

  5. The Volcanic Hazards Simulation: Students behaving expert-like when faced with challenging, authentic tasks during a simulated Volcanic Crisis

    Science.gov (United States)

    Dohaney, J. A.; kennedy, B.; Brogt, E.; Gravley, D.; Wilson, T.; O'Steen, B.

    2011-12-01

    This qualitative study investigates behaviors and experiences of upper-year geosciences undergraduate students during an intensive role-play simulation, in which the students interpret geological data streams and manage a volcanic crisis event. We present the development of the simulation, its academic tasks, (group) role assignment strategies and planned facilitator interventions over three iterations. We aim to develop and balance an authentic, intensive and highly engaging capstone activity for volcanology and geo-hazard courses. Interview data were collected from academic and professional experts in the fields of Volcanology and Hazard Management (n=11) in order to characterize expertise in the field, characteristics of key roles in the simulation, and to validate the authenticity of tasks and scenarios. In each iteration, observations and student artifacts were collected (total student participants: 68) along with interviews (n=36) and semi-structured, open-ended questionnaires (n=26). Our analysis of these data indicates that increasing the structure (i.e. organization, role-specific tasks and responsibilities) lessens non-productive group dynamics, which allows for an increase in difficulty of academic tasks within the simulation without increasing the cognitive load on students. Under these conditions, students exhibit professional expert-like behaviours, in particular in the quality of decision-making, communication skills and task-efficiency. In addition to illustrating the value of using this simulation to teach geosciences concepts, this study has implications for many complex situated-learning activities.

  6. Mitigating the consequences of extreme events on strategic facilities: evaluation of volcanic and seismic risk affecting the Caspian oil and gas pipelines in the Republic of Georgia.

    Science.gov (United States)

    Pasquarè, F A; Tormey, D; Vezzoli, L; Okrostsvaridze, A; Tutberidze, B

    2011-07-01

    In this work we identify and quantify new seismic and volcanic risks threatening the strategic Caspian oil and gas pipelines through the Republic of Georgia, in the vicinity of the recent Abuli Samsari Volcanic Ridge, and evaluate risk reduction measures, mitigation measures, and monitoring. As regards seismic risk, we identified a major, NW-SE trending strike-slip fault; based on the analysis of fault planes along this major transcurrent structure, an about N-S trend of the maximum, horizontal compressive stress (σ1) was determined, which is in good agreement with data instrumentally derived after the 1986, M 5.6 Paravani earthquake and its aftershock. Particularly notable is the strong alignment of volcanic vents along an about N-S trend that suggests a magma rising controlled by the about N-S-directed σ1. The original pipeline design included mitigation measures for seismic risk and other geohazards, including burial of the pipeline for its entire length, increased wall thickness, block valve spacing near recognized hazards, and monitoring of known landslide hazards. However, the design did not consider volcanic risk or the specific seismic hazards revealed by this study. The result of our analysis is that the Baku-Tbilisi-Ceyhan (BTC) oil pipeline, as well as the Baku-Tbilisi-Erzerum South Caucasian natural gas pipeline (SCP) were designed in such a way that they significantly reduce the risk posed by the newly-identified geohazards in the vicinity of the Abuli-Samsari Ridge. No new measures are recommended for the pipeline itself as a result of this study. However, since the consequences of long-term shut-down would be very damaging to the economies of Western Europe, we conclude that the regionally significant BTC and SCP warrant greater protections, described in the final section of or work. The overall objective of our effort is to present the results in a matrix framework that allows the technical information to be used further in the decision

  7. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    Science.gov (United States)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  8. LAV@HAZARD: a web-GIS interface for volcanic hazard assessment

    Directory of Open Access Journals (Sweden)

    Giovanni Gallo

    2011-12-01

    Full Text Available Satellite data, radiative power of hot spots as measured with remote sensing, historical records, on site geological surveys, digital elevation model data, and simulation results together provide a massive data source to investigate the behavior of active volcanoes like Mount Etna (Sicily, Italy over recent times. The integration of these heterogeneous data into a coherent visualization framework is important for their practical exploitation. It is crucial to fill in the gap between experimental and numerical data, and the direct human perception of their meaning. Indeed, the people in charge of safety planning of an area need to be able to quickly assess hazards and other relevant issues even during critical situations. With this in mind, we developed LAV@HAZARD, a web-based geographic information system that provides an interface for the collection of all of the products coming from the LAVA project research activities. LAV@HAZARD is based on Google Maps application programming interface, a choice motivated by its ease of use and the user-friendly interactive environment it provides. In particular, the web structure consists of four modules for satellite applications (time-space evolution of hot spots, radiant flux and effusion rate, hazard map visualization, a database of ca. 30,000 lava-flow simulations, and real-time scenario forecasting by MAGFLOW on Compute Unified Device Architecture.

  9. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakes – Lakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  10. An updated Probabilistic Seismic Hazard Analysis of the Trans Mexican Volcanic Belt, Mexico.

    Science.gov (United States)

    Bayona, J. A., Sr.; Suarez, G.; Zuniga, R. R.; Jaimes, M. Á.

    2014-12-01

    The Trans Mexican Volcanic Belt is the volcanic arc located in Central Mexico. This zone is not as seismically active as some other regions in Mexico, such as the subduction zone along the Pacific coast. However, there is evidence of major historical earthquakes (M > 7) occurring on the volcanic belt near densely populated cities such as Mexico City, Guadalajara and Morelia. Furthermore, almost 50% of the population of the country lives in cities and towns located on the Volcanic Belt. Using empirical magnitude-Intensity regressions, data obtained from historical descriptions of earthquakes were calibrated with instrumental data to determine their moment magnitude in order to create a complete seismic catalogue of this geological province. We propose a methodology to solve the problem of merging both historical and instrumental datasets. The method consists of dividing our catalogue into three different segments, according to the temporary nature and magnitude of our records. This segmentation was made considering the cut-off magnitude of our catalogue. In this way, we determined three Gutenberg-Richter distributions and correlated them geometrical and statistically. Based on the local seismic sources and using Bayesian statistics as well as appropriate seismic waves attenuation models, we generate seismic hazard maps that would be useful for more than 40 million people that live in the zone.

  11. Mapping and Mitigating the International Rip Current Health Hazard

    Science.gov (United States)

    Trimble, S. M.; Houser, C.

    2016-12-01

    Rip currents are concentrated seaward flows of water originating in the surf zones of beaches. Rips cause hundreds of international drownings each year. Calculating exact numbers is barred by logistical difficulties in obtaining accurate incident reports, but annual rip current fatalities are estimated at 100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Notably, Australia's lifeguards rescue 17,600 swimmers from rips each year. This project addresses the geophysical, social, and systematic causes of fatalities in hopes of decreasing the global number of rip-related deaths. We demonstrate a novel method for mapping bathymetry in the surf zone (20m deep or less), specifically within rip channels (topographic low spots in the nearshore that result from feedback amongst waves, substrate, and antecedent bathymetry). We calculate bathymetry using 8-band multispectral imagery from the Digital Globe WorldView2 (WV2) satellite and field measurements of depth, generating maps of the changing nearshore at two embayed, rip-prone beaches: Playa Cocles, Costa Rica, and Bondi Beach, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including `yellow' (585-625 nm) and `coastal blue' (400-450 nm). Methods are tested for consistency amongst dates and locations. Previous research shows drownings result from a combination of the physical environment with personal and group behaviors; for this reason we build on rip-detection by evaluating tourists' and locals' knowledge and understanding of their beach's rip behavior. By combining the geomorphologic maps developed from WV2 with interview data, we evaluate how the physical environment dictates the exposure of certain swimmers. Controls include rip channel location, beach access points, and environmental factors favored by swimmers. The project serves as an evaluation of the landscape's creation of a physical feature that becomes a hazard when vulnerable humans

  12. Volcano Hazard Tracking and Disaster Risk Mitigation: A Detailed Gap Analysis from Data-Collection to User Implementation

    Science.gov (United States)

    Faied, D.; Sanchez, A.

    2009-04-01

    Volcano Hazard Tracking and Disaster Risk Mitigation: A Detailed Gap Analysis from Data-Collection to User Implementation Dohy Faied, Aurora Sanchez (on behalf of SSP08 VAPOR Project Team) Dohy.Faied@masters.isunet.edu While numerous global initiatives exist to address the potential hazards posed by volcanic eruption events and assess impacts from a civil security viewpoint, there does not yet exist a single, unified, international system of early warning and hazard tracking for eruptions. Numerous gaps exist in the risk reduction cycle, from data collection, to data processing, and finally dissemination of salient information to relevant parties. As part of the 2008 International Space University's Space Studies Program, a detailed gap analysis of the state of volcano disaster risk reduction was undertaken, and this paper presents the principal results. This gap analysis considered current sensor technologies, data processing algorithms, and utilization of data products by various international organizations. Recommendations for strategies to minimize or eliminate certain gaps are also provided. In the effort to address the gaps, a framework evolved at system level. This framework, known as VIDA, is a tool to develop user requirements for civil security in hazardous contexts, and a candidate system concept for a detailed design phase. VIDA also offers substantial educational potential: the framework includes a centralized clearinghouse for volcanology data which could support education at a variety of levels. Basic geophysical data, satellite maps, and raw sensor data are combined and accessible in a way that allows the relationships between these data types to be explored and used in a training environment. Such a resource naturally lends itself to research efforts in the subject but also research in operational tools, system architecture, and human/machine interaction in civil protection or emergency scenarios.

  13. Fractal analysis of experimentally generated pyroclasts: A tool for volcanic hazard assessment

    Science.gov (United States)

    Perugini, Diego; Kueppers, Ulrich

    2012-06-01

    Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes. Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition. The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.

  14. Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations.

    Science.gov (United States)

    Heggie, Travis W

    2009-09-01

    Volcano tourism and tourism to geothermal destinations is increasingly popular. If such endeavors are to be a sustainable sector of the tourism industry, tourists must be made aware of the potential health hazards facing them in volcanic environments. With the aim of creating awareness amongst the tourism industry and practitioners of travel medicine, this paper reviews the potential influences and effects of volcanic gases such as carbon dioxide (CO(2)), hydrogen sulfide (H(2)S), sulfur dioxide (SO(2)), and hydrogen chloride/hydrochloric acid (HCl). It also reviews the negative health impacts of tephra and ash, lava flows, landslides, and mudflows. Finally, future research striving to quantify the health risks facing volcano tourists is recommended.

  15. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  16. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  17. Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results

    Science.gov (United States)

    Faria, B.; Fonseca, J. F. B. D.

    2014-02-01

    We describe a new geophysical network deployed in the Cape Verde Archipelago for the assessment and monitoring of volcanic hazards as well as the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression of eruptive activity as widely separated islands have erupted contemporaneously on geological timescales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo Island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions, including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that on Fogo, the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium-frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.

  18. Estimating building exposure and impact to volcanic hazards in Icod de los Vinos, Tenerife (Canary Islands)

    Science.gov (United States)

    Marti, J.; Spence, R.; Calogero, E.; Ordoñez, A.; Felpeto, A.; Baxter, P.

    2008-12-01

    Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).

  19. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory

    Science.gov (United States)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2011-10-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the distribution of repose

  20. Volcanic hazard assessment for the Canary Islands (Spain using extreme value theory

    Directory of Open Access Journals (Sweden)

    R. Sobradelo

    2011-10-01

    Full Text Available The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the

  1. Volcanic-glacial interactions: GIS applications to the assessment of lahar hazards (case study of Kamchatka)

    OpenAIRE

    2014-01-01

    On the Kamchatka peninsula, lahars or volcanogenic mudflows arise as a result of intensive snow melting caused by incandescent material ejected by volcanoes onto the surface. Such flows carrying volcanic ash and cinders together with lava fragments and blocks move with a speed up to 70 km/h that can result in significant destructions and even human victims. Formation of such water flows is possible during the whole year.Large-scale GIS «Hazards of lahars (volcanogenic mudflows)» has been deve...

  2. A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico

    Science.gov (United States)

    Alcorn, R.; Panter, K. S.; Gorsevski, P.; Ye, X.

    2013-05-01

    The Jemez Volcanic field in New Mexico is best known for the two cataclysmic eruptions that formed the Valles Caldera and deposited the Bandelier tuff at 1.61 and 1.25 Ma. This was followed by a period of small-scale activity limited to within the moat until ~ 55 ka when plinian eruptions sourced from the El Cajete crater dispersed tephra well beyond the caldera wall. These deposits include the El Cajete pyroclastic beds and the Battleship Rock Ignimbrite. Following the eruption of the Banco Bonito lava flow at ~40 ka, the Valles caldera has lain dormant. However, there is potential for future activity and it is prudent to assess the risk to the surrounding area and consider possible mitigation strategies well before a disaster strikes. The objective of this study is to evaluate the spatial extent of a possible future eruption using a GIS-based volcanic hazards tool designed to simulate pyroclastic fallout and density currents (PDCs) as well as lava flows [1] and to assess the social and economic vulnerability of the area at risk. Simulated pyroclastic fall deposits originating from the El Cajete crater are calibrated to isopach and lithic isopleth maps of the Lower and Upper El Cajete as constructed by [2]. The change in the axial orientation of fall deposits between the Lower and Upper El Cajete is best matched using seasonal variations in wind speed and direction based on modern atmospheric records. The calibration of PDCs is based on the distribution and run-out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at two other vent locations determined from probability distributions of structural features. The resulting hazard maps show the potential distribution of pyroclastic fall, PDCs and lava flows, indicating areas to the S/SE of Valles Caldera to be at greatest risk. To assess hazard preparedness, social vulnerability is evaluated for all census-designated places (CDP) within the study site. Based on methods by [3], twenty

  3. Probabilistic hazard analysis of Citlaltépetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Carrasco-Núñez, Gerardo

    2002-03-01

    Citlaltépetl or Pico de Orizaba is the highest active volcano in the North American continent. Although Citlaltépetl is at present in repose, its eruptive history reveals repetitive explosive eruptions in the past. Its relatively low eruption rate has favored significant population growth in areas that may be affected by a potential eruptive activity. The need of some criteria for hazards assessment and land-use planning has motivated the use of statistical methods to estimate the time and space distribution of volcanic hazards around this volcano. The analysis of past activity, from late Pleistocene to historic times, and the extent of some well-identified deposits are used to calculate the recurrence probabilities of eruptions of various size during time periods useful for land-use planning.

  4. Probabilistic volcanic hazard assessments of Pyroclastic Density Currents: ongoing practices and future perspectives

    Science.gov (United States)

    Tierz, Pablo; Sandri, Laura; Ramona Stefanescu, Elena; Patra, Abani; Marzocchi, Warner; Costa, Antonio; Sulpizio, Roberto

    2014-05-01

    Explosive volcanoes and, especially, Pyroclastic Density Currents (PDCs) pose an enormous threat to populations living in the surroundings of volcanic areas. Difficulties in the modeling of PDCs are related to (i) very complex and stochastic physical processes, intrinsic to their occurrence, and (ii) to a lack of knowledge about how these processes actually form and evolve. This means that there are deep uncertainties (namely, of aleatory nature due to point (i) above, and of epistemic nature due to point (ii) above) associated to the study and forecast of PDCs. Consequently, the assessment of their hazard is better described in terms of probabilistic approaches rather than by deterministic ones. What is actually done to assess probabilistic hazard from PDCs is to couple deterministic simulators with statistical techniques that can, eventually, supply probabilities and inform about the uncertainties involved. In this work, some examples of both PDC numerical simulators (Energy Cone and TITAN2D) and uncertainty quantification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature -PCQ- and Bayesian Linear Emulation -BLE-) are presented, and their advantages, limitations and future potential are underlined. The key point in choosing a specific method leans on the balance between its related computational cost, the physical reliability of the simulator and the pursued target of the hazard analysis (type of PDCs considered, time-scale selected for the analysis, particular guidelines received from decision-making agencies, etc.). Although current numerical and statistical techniques have brought important advances in probabilistic volcanic hazard assessment from PDCs, some of them may be further applicable to more sophisticated simulators. In addition, forthcoming improvements could be focused on three main multidisciplinary directions: 1) Validate the simulators frequently used (through comparison with PDC deposits and other simulators), 2) Decrease

  5. UQ -- Fast Surrogates Key to New Methodologies in an Operational and Research Volcanic Hazard Forecasting System

    Science.gov (United States)

    Hughes, C. G.; Stefanescu, R. E. R.; Patra, A. K.; Bursik, M. I.; Madankan, R.; Pouget, S.; Jones, M.; Singla, P.; Singh, T.; Pitman, E. B.; Morton, D.; Webley, P.

    2014-12-01

    As the decision to construct a hazard map is frequently precipitated by the sudden initiation of activity at a volcano that was previously considered dormant, timely completion of the map is imperative. This prohibits the calculation of probabilities through direct sampling of a numerical ash-transport and dispersion model. In developing a probabilistic forecast for ash cloud locations following an explosive volcanic eruption, we construct a number of possible meta-models (a model of the simulator) to act as fast surrogates for the time-expensive model. We will illustrate the new fast surrogates based on both polynomial chaos and multilevel sparse representations that have allowed us to conduct the Uncertainty Quantification (UQ) in a timely fashion. These surrogates allow orders of magnitude improvement in cost associated with UQ, and are likely to have a major impact in many related domains.This work will be part of an operational and research volcanic forecasting system (see the Webley et al companion presentation) moving towards using ensembles of eruption source parameters and Numerical Weather Predictions (NWPs), rather than single deterministic forecasts, to drive the ash cloud forecasting systems. This involves using an Ensemble Prediction System (EPS) as input to an ash transport and dispersion model, such as PUFF, to produce ash cloud predictions, which will be supported by a Decision Support System. Simulation ensembles with different input volcanic source parameters are intelligently chosen to predict the average and higher-order moments of the output correctly.

  6. MED SUV TASK 6.3 Capacity building and interaction with decision makers: Improving volcanic risk communication through volcanic hazard tools evaluation, Campi Flegrei Caldera case study (Italy)

    Science.gov (United States)

    Nave, Rosella; Isaia, Roberto; Sandri, Laura; Cristiani, Chiara

    2016-04-01

    In the communication chain between scientists and decision makers (end users), scientific outputs, as maps, are a fundamental source of information on hazards zoning and the related at risk areas definition. Anyway the relationship between volcanic phenomena, their probability and potential impact can be complex and the geospatial information not easily decoded or understood by not experts even if decision makers. Focusing on volcanic hazard the goal of MED SUV WP6 Task 3 is to improve the communication efficacy of scientific outputs, to contribute in filling the gap between scientists and decision-makers. Campi Flegrei caldera, in Neapolitan area has been chosen as the pilot research area where to apply an evaluation/validation procedure to provide a robust evaluation of the volcanic maps and its validation resulting from end users response. The selected sample involved are decision makers and officials from Campanian Region Civil Protection and municipalities included in Campi Flegrei RED ZONE, the area exposed to risk from to pyroclastic currents hazard. Semi-structured interviews, with a sample of decision makers and civil protection officials have been conducted to acquire both quantitative and qualitative data. The tested maps have been: the official Campi Flegrei Caldera RED ZONE map, three maps produced by overlapping the Red Zone limit on Orthophoto, DTM and Contour map, as well as other maps included a probabilistic one, showing volcanological data used to border the Red Zone. The outcomes' analysis have assessed level of respondents' understanding of content as displayed, and their needs in representing the complex information embedded in volcanic hazard. The final output has been the development of a leaflet as "guidelines" that can support decision makers and officials in understanding volcanic hazard and risk maps, and also in using them as a communication tool in information program for the population at risk. The same evaluation /validation process

  7. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  8. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps

    Science.gov (United States)

    Bevilacqua, Andrea; Isaia, Roberto; Neri, Augusto; Vitale, Stefano; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Esposti Ongaro, Tomaso; Iannuzzi, Enrico; Pistolesi, Marco; Rosi, Mauro

    2015-04-01

    Campi Flegrei is an active volcanic area situated in the Campanian Plain (Italy) and dominated by a resurgent caldera. The great majority of past eruptions have been explosive, variable in magnitude, intensity, and in their vent locations. In this hazard assessment study we present a probabilistic analysis using a variety of volcanological data sets to map the background spatial probability of vent opening conditional on the occurrence of an event in the foreseeable future. The analysis focuses on the reconstruction of the location of past eruptive vents in the last 15 ka, including the distribution of faults and surface fractures as being representative of areas of crustal weakness. One of our key objectives was to incorporate some of the main sources of epistemic uncertainty about the volcanic system through a structured expert elicitation, thereby quantifying uncertainties for certain important model parameters and allowing outcomes from different expert weighting models to be evaluated. Results indicate that past vent locations are the most informative factors governing the probabilities of vent opening, followed by the locations of faults and then fractures. Our vent opening probability maps highlight the presence of a sizeable region in the central eastern part of the caldera where the likelihood of new vent opening per kilometer squared is about 6 times higher than the baseline value for the whole caldera. While these probability values have substantial uncertainties associated with them, our findings provide a rational basis for hazard mapping of the next eruption at Campi Flegrei caldera.

  9. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  10. Assessing the long-term probabilistic volcanic hazard for tephra fallout in Reykjavik, Iceland: a preliminary multi-source analysis

    Science.gov (United States)

    Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús

    2015-04-01

    Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results

  11. Volcanic hazard assessment for disposal of high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1986-12-31

    Volcanic hazards are evaluated through risk assessment, which is a product of probability and consequences. These studies have been completed for a potential waste disposal site in the Nevada Test Site (NTS). Cenozoic volcanism of the NTS region is divided into three distinct episodes. The youngest episode, 3.7 to 0.3 m.y., comprises scattered, monogenetic Strombolian centers of small volume (<1 km{sup 3}). Rates of volcanic activity for the NTS region are estimated to be about 10{sup -6} event/yr, based on vent counts through time and calculation of rates of magma production. The conditional probability of disruption of the possible waste disposal site at the NTS by basaltic volcanism is bounded by the range of 10{sup -8} to 10{sup -10} yr{sup -1}. Consequences, expressed as radiological release levels, were evaluated by assuming disruption of a repository by basaltic magmas fed along narrow dikes. Limits are placed on the volume of waste material incorporated in magma by analogy to the abundance of lithic fragments in basalt scoria and lava. These consequences would be increased if rising magma encountered water and produced magma/water vapor explosions, which can eject large volumes of country rock. Such a mechanism would be important only if the vapor explosions excavated a crater to repository depths (380 m) - an unlikely event, based on the dimensions of hydrovolcanic craters. The total expected release from disruption of a repository by basaltic magma for a 10{sup 4}-yr period is 1.8 Ci for spent fuel and 1.3 Ci for high-level waste. 34 references.

  12. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  13. Individual risk evaluation and interventions for mitigation in the transportation of hazardous goods: a case study

    Directory of Open Access Journals (Sweden)

    Rada Elena Cristina

    2017-01-01

    Full Text Available The transport of hazardous substances is an economic activity essential for goods’ transference chain. However, the risk in transporting hazardous materials is related to the occur of accidents causing environmental damages and public health dangerous consequences. A quite recent Italian example is the Viareggio accident (2010, which involved a train with tank cars containing liquefied petroleum gas (LPG which caused more than thirty deaths. This paper describes the safety state in the Varese district (an area of northern Italy with a very high population density and industrial activities, with the aim at comparing the current situation (considering the risks due to the transportation of hazardous materials on the main motorways and main national roads with a potential scenario that introduces a few mitigating interventions, such as a partial conversion from road haulage to rail transport. This comparison can be accomplished by developing the existing intermodal platforms and implementing new ones in strategic areas.

  14. Characteristics of Large Low-frequency Debris Flow Hazards and Mitigation Strategies

    Institute of Scientific and Technical Information of China (English)

    WANG Shige

    2005-01-01

    A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.

  15. A portfolio approach to evaluating natural hazard mitigation policies: An Application to lateral-spread ground failure in Coastal California

    Science.gov (United States)

    Bernknopf, R.L.; Dinitz, L.B.; Rabinovici, S.J.M.; Evans, A.M.

    2001-01-01

    In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site-specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate-scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard, and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type. The usefulness of this approach is demonstrated through an integrated assessment of earthquake-induced lateral-spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral-spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (GIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does: However, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses

  16. Volcanic hazards: extent and severity of potential tephra hazard interpreted from layer Yn from Mount St. Helens, Washington (Abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Mullineaux, D.R.

    1977-02-01

    Volcanoes in the conterminous United States erupt infrequently but represent a significant potential hazard. Tephra eruptions can affect broader areas and reach population centers at greater distances from a volcano than any other kind of volcanic event. Lava flows, pyroclastic flows, mudflows, and floods can be more hazardous, but they seldom extend beyond a volcano except along valleys. Severity of risk from tephra depends in part on rate of fall and grain size, but mainly on thickness. Rates of fall from future eruptions in the Cascade Range must be estimated from historic eruptions elsewhere; potential grain sizes and thicknesses can be judged from past tephra eruptions of the Cascade volcanoes themselves. Pumice layer Yn, erupted by Mount St. Helens about BC 2000, exemplifies an extensive and thick tephra resulting from a single eruptive pulse of a Cascade volcano; in thickness and volume it resembles tephra of the type Plinian eruption of Vesuvius in Italy in 79 AD. Layer Yn trends NNE from Mount St. Helens in a long narrow lobe that is much thicker at any given distance than if the layer had formed a wide lobe. On broad ridges where it should be nearly unaffected by thickening or erosion, its present (compacted) thickness is as much as 70 cm at about 50 km from the volcano, 20 cm at 100 km, and 5 cm at about 280 km. Future eruptions like that of layer Yn could produce similar thicknesses in any easterly direction between about NNE and SSE downwind from Mount St. Helens or any other explosive Cascade volcano. Weaker winds toward the west indicate that potential thicknesses are less in westerly directions.

  17. ST-HASSET for volcanic hazard assessment: A Python tool for evaluating the evolution of unrest indicators

    Science.gov (United States)

    Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan

    2016-08-01

    Short-term hazard assessment is an important part of the volcanic management cycle, above all at the onset of an episode of volcanic agitation (unrest). For this reason, one of the main tasks of modern volcanology is to use monitoring data to identify and analyse precursory signals and so determine where and when an eruption might occur. This work follows from Sobradelo and Martí [Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis. Journal of Volcanology and Geothermal Research 290, 111, 2015] who defined the principle for a new methodology for conducting short-term hazard assessment in unrest volcanoes. Using the same case study, the eruption on Pinatubo (15 June 1991), this work introduces a new free Python tool, ST-HASSET, for implementing Sobradelo and Martí (2015) methodology in the time evolution of unrest indicators in the volcanic short-term hazard assessment. Moreover, this tool is designed for complementing long-term hazard assessment with continuous monitoring data when the volcano goes into unrest. It is based on Bayesian inference and transforms different pre-eruptive monitoring parameters into a common probabilistic scale for comparison among unrest episodes from the same volcano or from similar ones. This allows identifying common pre-eruptive behaviours and patterns. ST-HASSET is especially designed to assist experts and decision makers as a crisis unfolds, and allows detecting sudden changes in the activity of a volcano. Therefore, it makes an important contribution to the analysis and interpretation of relevant data for understanding the evolution of volcanic unrest.

  18. The asteroid and comet impact hazard: risk assessment and mitigation options.

    Science.gov (United States)

    Gritzner, Christian; Dürfeld, Kai; Kasper, Jan; Fasoulas, Stefanos

    2006-08-01

    The impact of extraterrestrial matter onto Earth is a continuous process. On average, some 50,000 tons of dust are delivered to our planet every year. While objects smaller than about 30 m mainly disintegrate in the Earth's atmosphere, larger ones can penetrate through it and cause damage on the ground. When an object of hundreds of meters in diameter impacts an ocean, a tsunami is created that can devastate coastal cities. Further, if a km-sized object hit the Earth it would cause a global catastrophe due to the transport of enormous amounts of dust and vapour into the atmosphere resulting in a change in the Earth's climate. This article gives an overview of the near-Earth asteroid and comet (near-Earth object-NEO) impact hazard and the NEO search programmes which are gathering important data on these objects. It also points out options for impact hazard mitigation by using deflection systems. It further discusses the critical constraints for NEO deflection strategies and systems as well as mitigation and evacuation costs and benefits. Recommendations are given for future activities to solve the NEO impact hazard problem.

  19. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland

    Science.gov (United States)

    Leadbetter, Susan J.; Hort, Matthew C.

    2011-01-01

    Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour 'explosive' eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption. Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.

  20. Developing Sustainable Modeling Software and Necessary Data Repository for Volcanic Hazard Analysis -- Some Lessons Learnt

    Science.gov (United States)

    Patra, A. K.; Connor, C.; Webley, P.; Jones, M.; Charbonnier, S. J.; Connor, L.; Gallo, S.; Bursik, M. I.; Valentine, G.; Hughes, C. G.; Aghakhani, H.; Renschler, C. S.; Kosar, T.

    2014-12-01

    We report here on an effort to improve the sustainability, robustness and usability of the core modeling and simulation tools housed in the collaboratory VHub.org and used in the study of complex volcanic behavior. In particular, we focus on tools that support large scale mass flows (TITAN2D), ash deposition/transport and dispersal (Tephra2 and PUFF), and lava flows (Lava2). These tools have become very popular in the community especially due to the availability of an online usage modality. The redevelopment of the tools ot take advantage of new hardware and software advances was a primary thrust for the effort. However, as we start work we have reoriented the effort to also take advantage of significant new opportunities for supporting the complex workflows and use of distributed data resources that will enable effective and efficient hazard analysis.

  1. Doubly stochastic models for volcanic hazard assessment at Campi Flegrei caldera

    CERN Document Server

    Bevilacqua, Andrea

    2016-01-01

    This study provides innovative mathematical models for assessing the eruption probability and associated volcanic hazards, and applies them to the Campi Flegrei caldera in Italy. Throughout the book, significant attention is devoted to quantifying the sources of uncertainty affecting the forecast estimates. The Campi Flegrei caldera is certainly one of the world’s highest-risk volcanoes, with more than 70 eruptions over the last 15,000 years, prevalently explosive ones of varying magnitude, intensity and vent location. In the second half of the twentieth century the volcano apparently once again entered a phase of unrest that continues to the present. Hundreds of thousands of people live inside the caldera and over a million more in the nearby city of Naples, making a future eruption of Campi Flegrei an event with potentially catastrophic consequences at the national and European levels.

  2. Physical Volcanology and Hazard Analysis of a Young Volcanic Field: Black Rock Desert, Utah, USA

    Science.gov (United States)

    Hintz, A. R.

    2009-05-01

    The Black Rock Desert volcanic field, located in west-central Utah, consists of ~30 small-volume monogenetic volcanoes with compositions ranging from small rhyolite domes to large basaltic lava flow fields. The field has exhibited bimodal volcanism for > 9 Ma with the most recent eruption of Ice Springs volcano ˜ 600 yrs ago. Together this eruptive history along with ongoing geothermal activity attests to the usefulness of a hazard assessment. The likelihood of a future eruption in this area has been calculated to be ˜ 8% over the next 1 Ka (95% confidence). However, many aspects of this field such as the explosivity and nature of many of these eruptions are not well known. The physical volcanology of the Tabernacle Hill volcano, suggests a complicated episodic eruption that may have lasted up to 50 yrs. The initial phreatomagmatic eruptions at Tabernacle Hill are reported to have begun ~14 Ka. This initial eruptive phase produced a tuff cone approximately 150 m high and 1.5 km in diameter with distinct bedding layers. Recent mapping and sampling of Tabernacle Hill's lava field, tuff cone and intra-crater deposits were aimed at better constraining the eruptive history, physical volcanology, and explosive energy associated with this eruption. Blocks ejected during the eruption were mapped and analyzed to yield minimum muzzle velocities of 60 - 70 meters per second. These velocities were used in conjunction with an estimated shallow depth of explosion to calculate an energy yield of ˜ 0.5 kT.

  3. Flood hazard mitigation by actions in the hillslopes: does the context change the assessment of efficiency?

    Directory of Open Access Journals (Sweden)

    Benmamar Saâdia

    2016-01-01

    Full Text Available For sustainable and integrated flood management, small actions in the hillslopes and non-structural measures appear interesting, either to diminish the need for large flood mitigation infrastructures (whether sewerage networks or hydraulic structures in the river – which may have severe impact on the river ecosystems, or as complementary to these structures. However, the effect on flood mitigation of land-use modification and small storage or runoff control facilities is still debated in scientific literature. The effect of various structures spread over the catchment is difficult to assess, and hazardous to generalize from one studied catchment to another, which explains why the debate is still open. This study contributes to identify context features that could also explain constrasting results. Focusing on a West-Mediterranean Northern and Southern countries literature, we compare first traditionnal and modern hillslope actions against runoff in both countries. Then, we search in the physical contexts differences that might explain why actions in the hillslopes are more studied in Europe than in Maghreb. But the priorities of national or regional policies also explain differences in the perception of efficiency: the interest of hillslope actions is different if the aim is to limit erosion and pollutant transfer and/or to mitigate large floods. Pollution and how ecological status is taken into account in flood mitigation project assessment are also crucial points.

  4. Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand

    Science.gov (United States)

    Cronin, Shane J.; Neall, V. E.; Lecointre, J. A.; Hedley, M. J.; Loganathan, P.

    2003-03-01

    The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m 3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995-1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF 6 phases, demonstrated to be the carriers of 'available' F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF 2, AlF 3 and Ca 5(PO 4) 3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.

  5. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  6. PyBetVH: A Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps

    Science.gov (United States)

    Tonini, Roberto; Sandri, Laura; Anne Thompson, Mary

    2015-06-01

    PyBetVH is a completely new, free, open-source and cross-platform software implementation of the Bayesian Event Tree for Volcanic Hazard (BET_VH), a tool for estimating the probability of any magmatic hazardous phenomenon occurring in a selected time frame, accounting for all the uncertainties. New capabilities of this implementation include the ability to calculate hazard curves which describe the distribution of the exceedance probability as a function of intensity (e.g., tephra load) on a grid of points covering the target area. The computed hazard curves are (i) absolute (accounting for the probability of eruption in a given time frame, and for all the possible vent locations and eruptive sizes) and (ii) Bayesian (computed at different percentiles, in order to quantify the epistemic uncertainty). Such curves allow representation of the full information contained in the probabilistic volcanic hazard assessment (PVHA) and are well suited to become a main input to quantitative risk analyses. PyBetVH allows for interactive visualization of both the computed hazard curves, and the corresponding Bayesian hazard/probability maps. PyBetVH is designed to minimize the efforts of end users, making PVHA results accessible to people who may be less experienced in probabilistic methodologies, e.g. decision makers. The broad compatibility of Python language has also allowed PyBetVH to be installed on the VHub cyber-infrastructure, where it can be run online or downloaded at no cost. PyBetVH can be used to assess any type of magmatic hazard from any volcano. Here we illustrate how to perform a PVHA through PyBetVH using the example of analyzing tephra fallout from the Okataina Volcanic Centre (OVC), New Zealand, and highlight the range of outputs that the tool can generate.

  7. Time correlation by palaeomagnetism of the 1631 eruption of Mount Vesuvius. Volcanological and volcanic hazard implications

    Science.gov (United States)

    Carracedo, J. C.; Principe, C.; Rosi, M.; Soler, V.

    1993-11-01

    The 1631 eruption of Mount Vesuvius was the most destructive episode in the recent volcanic history of Vesuvius and the last in which large pyroclastic flows were emitted. The controversy about whether lava flows were also generated in this eruption, as sustained in the mapping by Le Hon (1866) and by the interpretation by some authors (Burri et al., 1975; Rolandi et al., 1991) of eyewitness accounts, is important not only for a better understanding of the eruption but also for the implications in the prediction of volcanic hazards of this volcano, set in an overpopulated area with more than 3 million people potentially at risk. Short-period palaeomagnetic techniques (secular variation curve) have been applied to correlate lava flows interpreted as produced in the event of 1631 with the pyroclastic flow of this same eruption and other lava flows unquestionably emitted prior to this eruptive event. The model that best fits the results obtained suggests that the presumed 1631 lava flows were not the result of a single eruptive event but were, in fact, produced by several different eruptions. These lava flows also have a better palaeomagnetic correlation with the medieval lava flows than with the pyroclastic flow of 1631, whose juvenile pumice clasts have a well-defined single component magnetization that fits in the expected corresponding position of the secular variation curve for that age. The palaeomagnetic characteristics of the 1631 pyroclastic flow are compatible with a "hot" depositional temperature (apparently above the Curie point of magnetite, 585 °C) for the juvenile pumice fragments (magmatic fraction) and a "cold" deposition for the non-magmatic fraction. This suggests the lack of thermal equilibration during transport of the larger clasts, probably due to the short distance travelled by the pyroclastic flows. The main volcanological and volcanic hazard issues of this work are that the 1631 event was entirely explosive and that pyroclastic flow activity

  8. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment

    Science.gov (United States)

    Geyer, A.; Martí, J.; Villaseñor, A.

    2016-06-01

    In volcanic areas, the existing stress field is a key parameter controlling magma generation, location and geometry of the magmatic plumbing systems and the distribution of the resulting volcanism at surface. Therefore, knowing the stress configuration in the lithosphere at any scale (i.e. local, regional and plate-scale) is fundamental to understand the distribution of volcanism and, subsequently, to interpret volcanic unrest and potential tectonic controls of future eruptions. The objective of the present work is to provide a first-order estimate of the plate-scale tectonic stresses acting on the Canary Islands, one of the largest active intraplate volcanic regions of the World. In order to obtain the orientation of the minimum and maximum horizontal compressive stresses, we perform a series of 2D finite element models of plate scale kinematics assuming plane stress approximation. Results obtained are used to develop a regional model, which takes into account recognized archipelago-scale structural discontinuities. Maximum horizontal compressive stress directions obtained are compared with available stress, geological and geodynamic data. The methodology used may be easily applied to other active volcanic regions, where a first order approach of their plate/regional stresses can be essential information to be used as input data for volcanic hazard assessment models.

  9. Volcanic hazard zonation of the Nevado de Toluca volcano, México

    Science.gov (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.

    2008-10-01

    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  10. Spatial analysis of the Los Tuxtlas Volcanic Field (LTVF) and hazard implications

    Science.gov (United States)

    Sieron, K.; Alvarez, D.

    2013-05-01

    The Tuxtlas volcanic field (LTVF) is located in the southern part of Veracruz state (Mexico) adjacent to the Gulf of Mexico and consists of 4 large volcanic edifices, 3 of them considered inactive and the active San Martin shield volcano. The monogenetic volcanoes belonging to the younger series are represented by hundreds of scoria cones and tens of maars and tuff cones, all of which show ages less than 50,000 years. In comparison to other monogenetic fields, the scoria cone density is quite elevated with 0.2 cones/km2, although the highest scoria cone density can be observed along narrow zones corresponding to the main NW-SE fault system where it reaches 0.7 cones/km2. Scoria cones occur as single edifices and in clusters and show individual edifice volumes of 0.0009 km3 to 0.2 km3, cone heights varying between 21.39 m and 299.21 m. Lava flows associated to scoria cones originate especially along the main NW-SE trending main fault and present run out distances up to 11 kilometers. Only few radiocarbon and Ar-Ar dates exist for the LTVF, mostly because of the high cone density and dense vegetation of the Los Tuxtlas region. Therefore, morphological parameters were used to estimate relative ages. In consequence, the scoria cones can be subdivided into four age groups; the members of each group do not seem to follow any particular trend and are rather scattered throughout the field. The explosive (or wet) equivalents of the mainly basaltic strombolian scoria cones are explosion craters, such as maars and tuff cones, show the highest concentration along the border of the two main geological units to the S of the area with the highest scoria cone concentration. Although the relatively small scale strombolian eruptions associated to scoria cone emplacement do not represent a considerable hazard for the surrounding population, lava flows can easily extent to the main urban zones accommodating about 262,384 inhabitants. Within the area prone to maar formation, the hazard

  11. Advances in Remote Sensing Approaches for Hazard Mitigation and Natural Resource Protection in Pacific Latin America: A Workshop for Advanced Graduate Students, Post- Doctoral Researchers, and Junior Faculty

    Science.gov (United States)

    Gierke, J. S.; Rose, W. I.; Waite, G. P.; Palma, J. L.; Gross, E. L.

    2008-12-01

    Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety, they often lack resources for advancing the development and practice of remote sensing. All countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development. With National Science Foundation support from the Partnerships in International Research and Education program, we are developing a new educational system of applied research and engineering for advancing collaborative linkages among agencies and institutions in Pacific Latin American countries (to date: Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, and Ecuador) in the development of remote sensing tools for hazard mitigation and water resources management. The project aims to prepare students for careers in science and engineering through their efforts to solve suites of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. In addition to traditional approaches for graduate and undergraduate research, we have built new educational systems of applied research and engineering: (1) the Peace Corp/Master's International program in Natural Hazards which features a 2-year field assignment during service in the U.S. Peace Corps, (2) the Michigan Tech Enterprise program for undergraduates, which gives teams of students from different disciplines the opportunity to work for three years in a business-like setting to solve real-world problems, and (3) a unique university exchange

  12. Automatized near-real-time short-term Probabilistic Volcanic Hazard Assessment of tephra dispersion before and during eruptions: BET_VHst for Mt. Etna

    Science.gov (United States)

    Selva, Jacopo; Scollo, Simona; Costa, Antonio; Brancato, Alfonso; Prestifilippo, Michele

    2015-04-01

    Tephra dispersal, even in small amounts, may heavily affect public health and critical infrastructures, such as airports, train and road networks, and electric power supply systems. Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at managing and mitigating the risk posed by activity during volcanic crises and during eruptions. Short-term PVHA (over time intervals in the order of hours to few days) must account for rapidly changing information coming from the monitoring system, as well as, updated wind forecast, and they must be accomplished in near-real-time. In addition, while during unrest the primary goal is to forecast potential eruptions, during eruptions it is also fundamental to correctly account for the real-time status of the eruption and of tephra dispersal, as well as its potential evolution in the short-term. Here, we present a preliminary application of BET_VHst model (Selva et al. 2014) for Mt. Etna. The model has its roots into present state deterministic procedure, and it deals with the large uncertainty that such procedures typically ignore, like uncertainty on the potential position of the vent and eruptive size, on the possible evolution of volcanological input during ongoing eruptions, as well as, on wind field. Uncertainty is treated by making use of Bayesian inference, alternative modeling procedures for tephra dispersal, and statistical mixing of long- and short-term analyses. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252

  13. Assessing the costs of hazard mitigation through landscape interventions in the urban structure

    Science.gov (United States)

    Bostenaru-Dan, Maria; Aldea Mendes, Diana; Panagopoulos, Thomas

    2014-05-01

    In this paper we look at an issue rarely approached, the economic efficiency of natural hazard risk mitigation. The urban scale at which a natural hazard can impact leads to the importance of urban planning strategy in risk management. However, usually natural, engineering, and social sciences deal with it, and the role of architecture and urban planning is neglected. Climate change can lead to risks related to increased floods, desertification, sea level rise among others. Reducing the sealed surfaces in cities through green spaces in the crowded centres can mitigate them, and can be foreseen in restructuration plans in presence or absence of disasters. For this purpose we reviewed the role of green spaces and community centres such as churches in games, which can build the core for restructuration efforts, as also field and archive studies show. We look at the way ICT can contribute to organize the information from the building survey to economic computations in direct modeling or through games. The roles of game theory, agent based modeling and networks and urban public policies in designing decision systems for risk management are discussed. Games rules are at the same time supported by our field and archive studies, as well as research by design. Also we take into consideration at a rare element, which is the role of landscape planning, through the inclusion of green elements in reconstruction after the natural and man-made disasters, or in restructuration efforts to mitigate climate change. Apart of existing old city tissue also landscape can be endangered by speculation and therefore it is vital to highlight its high economic value, also in this particular case. As ICOMOS highlights for the 2014 congress, heritage and landscape are two sides of the same coin. Landscape can become or be connected to a community centre, the first being necessary for building a settlement, the second raising its value, or can build connections between landmarks in urban routes

  14. The VORISA Project: An Integrated Approach to Assessing Volcanic Hazard and Risk in the Kingdom of Saudi Arabia

    Science.gov (United States)

    Lindsay, J. M.; Moufti, R.

    2013-12-01

    The Kingdom of Saudi Arabia has numerous large monogenetic volcanic fields, known locally as 'Harrat'. The largest of these, Harrat Rahat, produced a basaltic fissure eruption in 1256 AD with lava flows travelling within 20 km of the Islamic holy city Al-Madinah. With over 900 visible basaltic and trachytic vents and periodic seismic swarms indicating stalled eruptions, an understanding of the risk of future eruptions in this volcanic field is vital. To systematically address this need we developed the Volcanic Risk in Saudi Arabia (VORISA) Project, a 3-year, multi-disciplinary international research collaboration that integrates geological, geophysical, hazard and risk studies. Detailed mapping and geochemical studies are being combined with new and existing age determinations to determine the style and sequence of events during past basaltic and trachytic eruptions. Data from gravity and magnetotelluric surveys are being integrated with microearthquake data from an 8-station borehole seismic research array to geophysically characterise the structure and nature of the crust, and thus constrain possible physical controls on magma propagation. All available data are being synthesised in hazard models to determine patterns in eruption frequency, magnitude, and style of past activity, as well as the probable location and style of a future event. Combined with geospatial vulnerability data, these hazard models, which include a reconstruction of the 1256 AD eruption, enable us to calculate and communicate volcanic risk to the city of Al-Madinah.

  15. Numerical and probabilistic analysis of asteroid and comet impact hazard mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2010-09-09

    The possibility of asteroid and comet impacts on Earth has received significant recent media and scientific attention. Still, there are many outstanding questions about the correct response once a potentially hazardous object (PHO) is found. Nuclear munitions are often suggested as a deflection mechanism because they have a high internal energy per unit launch mass. However, major uncertainties remain about the use of nuclear munitions for hazard mitigation. There are large uncertainties in a PHO's physical response to a strong deflection or dispersion impulse like that delivered by nuclear munitions. Objects smaller than 100 m may be solid, and objects at all sizes may be 'rubble piles' with large porosities and little strength. Objects with these different properties would respond very differently, so the effects of object properties must be accounted for. Recent ground-based observations and missions to asteroids and comets have improved the planetary science community's understanding of these objects. Computational power and simulation capabilities have improved such that it is possible to numerically model the hazard mitigation problem from first principles. Before we know that explosive yield Y at height h or depth -h from the target surface will produce a momentum change in or dispersion of a PHO, we must quantify energy deposition into the system of particles that make up the PHO. Here we present the initial results of a parameter study in which we model the efficiency of energy deposition from a stand-off nuclear burst onto targets made of PHO constituent materials.

  16. Suitability of energy cone for probabilistic volcanic hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei (Italy)

    Science.gov (United States)

    Tierz, Pablo; Sandri, Laura; Costa, Antonio; Zaccarelli, Lucia; Di Vito, Mauro Antonio; Sulpizio, Roberto; Marzocchi, Warner

    2016-11-01

    Pyroclastic density currents (PDCs) are gravity-driven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ˜8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.

  17. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    Science.gov (United States)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two

  18. The Geologic Basis for Volcanic Hazard Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry

    2002-10-15

    Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} per year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near

  19. Volcanic Hazard Map as a Tool of City Planning: Experiences at Galeras Volcano and the county of Pasto, Colombia.

    Science.gov (United States)

    Calvache, M. L.

    2001-12-01

    Large populated areas located near active volcanoes emphasize the importance to take effective actions towards risk reduction. A volcanic hazard map is believed to be the first step in order to inform government officials, private institutions and community about the danger that poses a particular volcano. The hazard map is a tool that must be used to evaluate risk and elaborate risk map. The risk map must be used by decision makers to take measurements about the land-use accordingly with the hazard present in the area and to prepare contingency plans. In 1998 and 1999 the Colombian government pass a law, where every county of the country has to have a plan of land-use and development (POT) for the following 10 years. The POT must consider natural hazard and risk such as seismicity, landslide and volcanic activity. Without the plan, the county will not receive any economical support from the central government. In the county of Pasto, the largest city in the influence zone of Galeras volcano, the hazard map has been used to promote educational plan in schools, increasing public awareness of Galeras and its hazard, advise and persuade decision makers to consider Galeras hazard in the city development plans. On the other hand, the hazard map has been mistaken as a risk map and it has originated opposition due to the measurements taken as a consequence of the map. This presentation deal with the gain experience of using the hazard map as a tool of information and planing and the confrontation that any decision implies with political, social and economic interest.

  20. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards

    Science.gov (United States)

    Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.

    2017-10-01

    This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.

  1. The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program (PR-NTHMP)

    Science.gov (United States)

    Vanacore, E. A.; Huerfano Moreno, V. A.; Lopez, A. M.

    2015-12-01

    The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. Of particular interest is the Puerto Rico - Virgin Islands (PRVI) region, where the proximity of the coast to prominent tectonic faults would result in near-field tsunamis. Tsunami hazard assessment, detection capabilities, warning, education and outreach efforts are common tools intended to reduce loss of life and property. It is for these reasons that the PRSN is participating in an effort with local and federal agencies to develop tsunami hazard risk reduction strategies under the NTHMP. This grant supports the TsunamiReady program, which is the base of the tsunami preparedness and mitigation in PR. In order to recognize threatened communities in PR as TsunamiReady by the US NWS, the PR Component of the NTHMP have identified and modeled sources for local, regional and tele-tsunamis and the results of simulations have been used to develop tsunami response plans. The main goal of the PR-NTHMP is to strengthen resilient coastal communities that are prepared for tsunami hazards, and recognize PR as TsunamiReady. Evacuation maps were generated in three phases: First, hypothetical tsunami scenarios of potential underwater earthquakes were developed, and these scenarios were then modeled through during the second phase. The third phase consisted in determining the worst-case scenario based on the Maximum of Maximums (MOM). Inundation and evacuation zones were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Maps and related evacuation products, like evacuation times, can be accessed online via the PR Tsunami Decision Support Tool. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were

  2. Earth sciences, GIS and geomatics for natural hazards assessment and risks mitigation: a civil protection perspective

    Science.gov (United States)

    Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara

    2010-05-01

    Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta

  3. Assessment of indirect losses and costs of emergency for project planning of alpine hazard mitigation

    Science.gov (United States)

    Amenda, Lisa; Pfurtscheller, Clemens

    2013-04-01

    By virtue of augmented settling in hazardous areas and increased asset values, natural disasters such as floods, landslides and rockfalls cause high economic losses in Alpine lateral valleys. Especially in small municipalities, indirect losses, mainly stemming from a breakdown of transport networks, and costs of emergency can reach critical levels. A quantification of these losses is necessary to estimate the worthiness of mitigation measures, to determine the appropriate level of disaster assistance and to improve risk management strategies. There are comprehensive approaches available for assessing direct losses. However, indirect losses and costs of emergency are widely not assessed and the empirical basis for estimating these costs is weak. To address the resulting uncertainties of project appraisals, a standardized methodology has been developed dealing with issues of local economic effects and emergency efforts needed. In our approach, the cost-benefit-analysis for technical mitigation of the Austrian Torrent and Avalanche Control (TAC) will be optimized and extended using the 2005-debris flow as a design event, which struggled a small town in the upper Inn valley in southwest Tyrol (Austria). Thereby, 84 buildings were affected, 430 people were evacuated and due to this, the TAC implemented protection measures for 3.75 million Euros. Upgrading the method of the TAC and analyzing to what extent the cost-benefit-ratio is about to change, is one of the main objectives of this study. For estimating short-run indirect effects and costs of emergency on the local level, data was collected via questionnaires, field mapping, guided interviews, as well as intense literature research. According to this, up-to-date calculation methods were evolved and the cost-benefit-analysis of TAC was recalculated with these new-implemented results. The cost-benefit-ratio will be more precise and specific and hence, the decision, which mitigation alternative will be carried out

  4. Special Issue: Risk Management Challenges: Mitigate the Risk from Natural Hazards

    Directory of Open Access Journals (Sweden)

    Douglas Paton

    2011-07-01

    Full Text Available Within minutes of the March 2011 earthquake in Japan, news media provided unprecedented coverage of an unfolding natural catastrophe. Events such as this place natural disasters firmly in the public eye but only for a short time. It falls to the research community to learn the lessons offered by these events and turn them into opportunities for developing more effective risk management and mitigation strategies and identifying the factors that contribute to the vulnerability and resilience of communities and response and recovery agencies. Disasters such as the Japanese tsunami also highlight the ever-present need for systematic, rigorous research into the risk posed by natural hazards and how these risks can be managed. Of course it is vital to ensure that the findings from such research endeavours are disseminated to those who can use the findings.

  5. Operational short-term Probabilistic Volcanic Hazard Assessment of tephra fallout: an example from the 1982-1984 unrest at Campi Flegrei

    Science.gov (United States)

    Sandri, Laura; Selva, Jacopo; Costa, Antonio; Macedonio, Giovanni; Marzocchi, Warner

    2014-05-01

    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology for the short-term PVHA and its operational implementation, based on the model BET_EF, in which measures from the monitoring system are used to routinely update the forecast of some parameters related to the eruption dynamics, that is, the probabilities of eruption, of every possible vent position and every possible eruption size. Then, considering all possible vent positions and eruptive sizes, tephra dispersal models are coupled with frequently updated meteorological forecasts. Finally, these results are merged through a Bayesian procedure, accounting for epistemic uncertainties at all the considered steps. As case study we retrospectively study some stages of the volcanic unrest that took place in Campi Flegrei (CF) in 1982-1984. In particular, we aim at presenting a practical example of possible operational tephra fall PVHA on a daily basis, in the surroundings of CF at different stages of the 1982-84 unrest. Tephra dispersal is simulated using the analytical HAZMAP code. We consider three possible eruptive sizes (a low, a medium and a

  6. Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts

    Science.gov (United States)

    Yeck, William; Hayes, Gavin; McNamara, Daniel E.; Rubinstein, Justin L.; Barnhart, William; Earle, Paul; Benz, Harley M.

    2017-01-01

    The 3 September 2016, Mw 5.8 Pawnee earthquake was the largest recorded earthquake in the state of Oklahoma. Seismic and geodetic observations of the Pawnee sequence, including precise hypocenter locations and moment tensor modeling, shows that the Pawnee earthquake occurred on a previously unknown left-lateral strike-slip basement fault that intersects the mapped right-lateral Labette fault zone. The Pawnee earthquake is part of an unprecedented increase in the earthquake rate in Oklahoma that is largely considered the result of the deep injection of waste fluids from oil and gas production. If this is, indeed, the case for the M5.8 Pawnee earthquake, then this would be the largest event to have been induced by fluid injection. Since 2015, Oklahoma has undergone wide-scale mitigation efforts primarily aimed at reducing injection volumes. Thus far in 2016, the rate of M3 and greater earthquakes has decreased as compared to 2015, while the cumulative moment—or energy released from earthquakes—has increased. This highlights the difficulty in earthquake hazard mitigation efforts given the poorly understood long-term diffusive effects of wastewater injection and their connection to seismicity.

  7. RIO SOLIETTE (HAITI: AN INTERNATIONAL INITIATIVE FOR FLOOD-HAZARD ASSESSMENT AND MITIGATION

    Directory of Open Access Journals (Sweden)

    S. Gandolfi

    2014-01-01

    Full Text Available Natural catastrophic events are one of most critical aspects for health and economy all around the world. However, the impact in a poor region can impact more dramatically than in others countries. Isla Hispaniola (Haiti and the Dominican Republic, one of the poorest regions of the planet, has repeatedly been hit by catastrophic natural disasters that caused incalculable human and economic losses. After the catastrophic flood event occurred in the basin of River Soliette on May 24th, 2004, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded an international cooperation initiative (ICI coordinated by the University of Bologna, that involved Haitian and Dominican institutions.Main purpose of the ICI was hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures. In this contest, a topographic survey was necessary to realize the hydrological model and to improve the knowledge in some areas candidates to be site for mitigation measures.To overcome the difficulties arising from the narrowness of funds, surveyors and limited time available for the survey, only GPS technique have been used, both for framing aspects (using PPP approach, and for geometrical survey of the river by means of river cross-sections and detailed surveys in two areas (RTK technique. This allowed us to reconstruct both the river geometry and the DTM’s of two expansion areas (useful for design hydraulic solutions for mitigate flood-hazard risk.

  8. TSUNAMI HAZARD MITIGATION AND THE NOAA NATIONAL WATER LEVEL OBSERVATION NETWORK

    Directory of Open Access Journals (Sweden)

    James R. Hubbard

    2002-01-01

    Full Text Available With the renewed interest in regional Tsunami Warning Systems and the potential tsunami threats throughout the Caribbean and West coast of the United States, the National Ocean Service (NOS, National Water Level Observation Network (NWLON consisting of 175 primary stations, is well situated to play a role in the National Hazard Mitigation effort. In addition, information regarding local mean sea level trends and GPS derived geodetic datum relationships at numerous coastal locations is readily available for tsunami hazard assessment and mapping applications.Tsunami inundation maps and modeling are just two of the more important products which may be derived from NWLON data. In addition to the seven water level gauges that are hardwired into the West Coast and Alaska Tsunami Warning Center (WClATWC, NOS has a significant number of gauges with real-time satellite telemetry capabilities located along the Pacific Northwest coastline, the Gulf of Mexico and the Caribbean. These gauges, in concert with near shore buoy systems, have the potential for increasing the effectiveness of the existing tsunami warning system.The recent expansion of the Caribbean Sea Level Gauge Network through the NOS regional partnerships with Central American and Caribbean countries have opened an opportunity for a basin-wide tsunami warning network in a region which is ill prepared for a major tsunami event.

  9. Developing a scientific procedure for community based hazard mapping and risk mitigation

    Science.gov (United States)

    Verrier, M.

    2011-12-01

    As an international exchange student from the Geological Sciences Department at San Diego State University (SDSU), I joined the KKN-PPM program at Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia, in July 2011 for 12 days (July 4th to July 16th) of its two month duration (July 4th to August 25th). The KKN-PPM group I was attached was designated 154 and was focused in Plosorejo Village, Karanganyar, Kerjo, Central Java, Indonesia. The mission of KKN-PPM 154 was to survey Plosorejo village for existing landslides, to generate a simple hazard susceptibility map that can be understood by local villagers, and then to begin dissemination of that map into the community. To generate our susceptibility map we first conducted a geological survey of the existing landslides in the field study area, with a focus on determining landslide triggers and gauging areas for susceptibility for future landslides. The methods for gauging susceptibility included lithological observation, the presence of linear cracking, visible loss of structural integrity in structures such as villager homes, as well as collaboration with local residents and with the local rescue and response team. There were three color distinctions used in representing susceptibility which were green, where there is no immediate danger of landslide damage; orange, where transportation routes are at risk of being disrupted by landslides; and red, where imminent landslide potential puts a home in direct danger. The landslide inventory and susceptibility data was compiled into digital mediums such as CorelDraw, ArcGIS and Google Earth. Once a technical map was generated, we presented it to the village leadership for confirmation and modification based on their experience. Finally, we began to use the technical susceptibility map to draft evacuation routes and meeting points in the event of landslides, as well as simple susceptibility maps that can be understood and utilized by local villagers. Landslide mitigation

  10. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  11. Application of Geographical Information Systems to Lahar Hazard Assessment on an Active Volcanic System

    OpenAIRE

    2010-01-01

    Lahars (highly dynamic mixtures of volcanic debris and water) have been responsible for some of the most serious volcanic disasters and have killed tens of thousands of people in recent decades. Despite considerable lahar model development in the sciences, many research tools have proved wholly unsuitable for practical application on an active volcanic system where it is difficult to obtain field measurements. In addition, geographic information systems are tools that offer a great potenti...

  12. The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard

    Directory of Open Access Journals (Sweden)

    Horwell Claire J

    2012-11-01

    Full Text Available Abstract Background Respirable crystalline silica (RCS continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1 the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2 particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3 the cristobalite surface is occluded by an annealed rim; 4 dissolution of other volcanic particles affects the surfaces of RCS in the lung. Methods The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch’s two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. Results Volcanic cristobalite contains up to 4 wt. % combined Al2O3 and Na2O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. Conclusions The composition of volcanic

  13. Using a ballistic-caprock model for developing a volcanic projectiles hazard map at Santorini caldera

    Science.gov (United States)

    Konstantinou, Konstantinos

    2015-04-01

    Volcanic Ballistic Projectiles (VBPs) are rock/magma fragments of variable size that are ejected from active vents during explosive eruptions. VBPs follow almost parabolic trajectories that are influenced by gravity and drag forces before they reach their impact point on the Earth's surface. Owing to their high temperature and kinetic energies, VBPs can potentially cause human casualties, severe damage to buildings as well as trigger fires. Since the Minoan eruption the Santorini caldera has produced several smaller (VEI = 2-3) vulcanian eruptions, the last of which occurred in 1950, while in 2011 it also experienced significant deformation/seismicity even though no eruption eventually occurred. In this work, an eruptive model appropriate for vulcanian eruptions is used to estimate initial conditions (ejection height, velocity) for VBPs assuming a broad range of gas concentration/overpressure in the vent. These initial conditions are then inserted into a ballistic model for the purpose of calculating the maximum range of VBPs for different VBP sizes (0.35-3 m), varying drag coefficient as a function of VBP speed and varying air density as a function of altitude. In agreement with previous studies a zone of reduced drag is also included in the ballistic calculations that is determined based on the size of vents that were active in the Kameni islands during previous eruptions (< 1 km). Results show that the horizontal range of VBPs varies between 0.9-3 km and greatly depends on gas concentration, the extent of the reduced drag zone and the size of VBP. Hazard maps are then constructed by taking into account the maximum horizontal range values as well as potential locations of eruptive vents along a NE-SW direction around the Kameni islands (the so-called "Kameni line").

  14. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  15. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    Science.gov (United States)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  16. Toward an Integrated Solution to Mitigate the Impact of Volcanic Ash to Aviation

    Science.gov (United States)

    Murray, John J.; Dezitter, Fabien; Fairlie, T. Duncan; Krotkov, Nickolay; Lekki, John; Lindsay, Francis; Pavolonis, Mike; Pieri, David; Prata, Fred; Vernier, Jean-Paul

    2015-01-01

    The science community is making a concerted effort to improve the reliability of dispersion models for the forecasting of volcanic ash plumes. Toward this end, it has been observed that the assimilation of diverse, accurate and frequent surface, airborne and satellite observations of the source and distal ash plumes may hold the key. Various international research organizations and operational agencies make these observations using a variety of active and passive remote sensing systems and use them to initialize atmospheric trajectory and dispersion models. These observation systems range from surface LIDAR and ceilometers, to airborne radiometers and nephelometers, to satellite radiometers, multi-spectral imagers, LIDAR and UV-photometers. None of these systems alone is a panacea, however, their synergistic application holds great promise toward solving this complex problem. Additionally, the aeronautical and science communities are working to better understand the quantitative thresholds and tolerances of aviation systems to volcanic ash to better inform scientists of the accuracy requirements for dispersion model forecasts. A number of the most recent and promising efforts in all of these area are discussed in this presentation.

  17. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    Science.gov (United States)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    Extremely heavy rainfall with accumulated rainfall amount more than 2900mm within continuous 3 day event occurred at southern Taiwan has been recognized as a serious natural hazard caused by Morakot typhoon in august, 2009. Very destructive large scale landslides and debris flows were induced by this heavy rainfall event. According to the satellite image processing and monitoring project was conducted by Soil & Water Conservation Bureau after Morakot typhoon. More than 10904 sites of landslide with total sliding area of 18113 ha were significantly found by this project. Also, the field investigation on all landslide areas were executed by this research on the basis of disaster type, scale and location related to the topographic condition, colluvium soil characteristics, bedrock formation and geological structure after Morakot hazard. The mechanism, characteristics and behavior of this large scale landslide combined with debris flow disasters are analyzed and Investigated to rule out the interaction of factors concerned above and identify the disaster extent of rainfall induced landslide during the period of this study. In order to reduce the disaster risk of large scale landslide and debris flow, the adaption strategy of hazard mitigation system should be set up as soon as possible and taken into consideration of slope land conservation, landslide control countermeasure planning, disaster database establishment, environment impact analysis and disaster risk assessment respectively. As a result, this 3-year research has been focused on the field investigation by using GPS/GIS/RS integration, mechanism and behavior study regarding to the rainfall induced landslide occurrence, disaster database and hazard mitigation system establishment. In fact, this project has become an important issue which was seriously concerned by the government and people live in Taiwan. Hopefully, all results come from this research can be used as a guidance for the disaster prevention and

  18. Improving Tsunami Hazard Mitigation and Preparedness Using Real-Time and Post-Tsunami Field Data

    Science.gov (United States)

    Wilson, R. I.; Miller, K. M.

    2012-12-01

    The February 27, 2010 Chile and March 11, 2011 Japan tsunamis caused dramatic loss of life and damage in the near-source region, and notable impacts in distant coastal regions like California. Comprehensive real-time and post-tsunami field surveys and the availability of hundreds of videos within harbors and marinas allow for detailed documentation of these two events by the State of California Tsunami Program, which receives funding through the National Tsunami Hazard Mitigation Program. Although neither event caused significant inundation of dry land in California, dozens of harbors sustained damage totaling nearly $100-million. Information gathered from these events has guided new strategies in tsunami evacuation planning and maritime preparedness. Scenario-specific, tsunami evacuation "playbook" maps and guidance are being produced detailing inundation from tsunamis of various size and source location. These products help coastal emergency managers prepare local response plans when minor distant source tsunamis or larger tsunamis from local and regional sources are generated. In maritime communities, evaluation of strong tsunami currents and damage are being used to validate/calibrate numerical tsunami model currents and produce in-harbor hazard maps and identify offshore safety zones for potential boat evacuation when a tsunami Warning is issued for a distant source event. Real-time and post-tsunami field teams have been expanded to capture additional detailed information that can be shared in a more timely manner during and after an event through a state-wide clearinghouse. These new products and related efforts will result in more accurate and efficient emergency response by coastal communities, potentially reducing the loss of lives and property during future tsunamis.

  19. Updating Parameters for Volcanic Hazard Assessment Using Multi-parameter Monitoring Data Streams And Bayesian Belief Networks

    Science.gov (United States)

    Odbert, Henry; Aspinall, Willy

    2014-05-01

    Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss

  20. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland

    Science.gov (United States)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.

    2012-12-01

    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see http://www.icao.int/safety/meteorology/ivatf/Pages/default.aspx for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. 4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial challenge. A

  1. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data

    Science.gov (United States)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.

    2010-12-01

    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion

  2. Health hazards and mitigation of chronic poisoning from arsenic in drinking water: Taiwan experiences.

    Science.gov (United States)

    Chen, Chien-Jen

    2014-01-01

    There are two endemic areas of long-term exposure to arsenic from drinking water in Taiwan. Residents in the southwestern and northeastern endemic areas started using high-arsenic artesian well water in the early 1910s and late 1940s, respectively. Public water supply system using surface water was implemented in southwestern and northeastern endemic areas in the 1970s and 1990s, respectively. Systemic health hazards of long-term exposure to arsenic in drinking water have been intensively investigated since the 1960s, especially after 1985 in Taiwan. Several diseases have been well documented to be associated with chronic arsenic poisoning from drinking water showing a dose-response relation. They include characteristic skin lesions like hyperpigmentation or depigmentation, hyperkeratosis in palms and soles, and Bowen disease, peripheral vascular disease (specifically blackfoot disease), ischemic heart disease, cerebral infarction, microvascular diseases, abnormal peripheral microcirculation, carotid atherosclerosis, QT prolongation and increased dispersion in electrocardiography, hypertension, goiter, diabetes mellitus, cataract (specifically posterior subcapsular lens opacity), pterygium, slow neural conduction, retarded neurobehavioral development, erectile dysfunction, and cancers of the skin, lung, urinary bladder, kidney, and liver. The method of choice to mitigate arsenic poisoning through drinking water is to use safe drinking water from uncontaminated sources.

  3. A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico

    Science.gov (United States)

    Alcorn, Rebecca; Panter, Kurt S.; Gorsevski, Pece V.

    2013-11-01

    The objective of this study is to evaluate the spatial extent of a possible future eruption using a GIS-based volcanic hazard tool designed to simulate pyroclastic fallout and density currents (PDCs) as well as lava flows and to assess the social and economic vulnerabilities of the area at risk. Simulated pyroclastic fallout deposits originating from the El Cajete crater within the Valles Caldera, Jemez Mountains volcanic field, New Mexico, are calibrated to isopach and lithic isopleth maps of the Lower and Upper El Cajete as constructed by Wolff et al. (2011). The change in the axial orientation of fallout deposits between the Lower and Upper El Cajete is best matched using seasonal variations in wind speed and direction based on modern atmospheric records. The calibration of PDCs is based on the distribution and run-out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at a second vent location determined from probability distributions of structural features. The resulting hazard simulation maps show the potential distribution of pyroclastic fallout, PDCs and lava flows, indicating areas to the S/SE of Valles Caldera to be at greatest risk.

  4. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models

    Science.gov (United States)

    Miller, Craig A.; Williams-Jones, Glyn

    2016-06-01

    A new 3D geophysical model of the Mt Tongariro Volcanic Massif (TgVM), New Zealand, provides a high resolution view of the volcano's internal structure and hydrothermal system, from which we derive implications for volcanic hazards. Geologically constrained 3D inversions of potential field data provides a greater level of insight into the volcanic structure than is possible from unconstrained models. A complex region of gravity highs and lows (± 6 mGal) is set within a broader, ~ 20 mGal gravity low. A magnetic high (1300 nT) is associated with Mt Ngauruhoe, while a substantial, thick, demagnetised area occurs to the north, coincident with a gravity low and interpreted as representing the hydrothermal system. The hydrothermal system is constrained to the west by major faults, interpreted as an impermeable barrier to fluid migration and extends to basement depth. These faults are considered low probability areas for future eruption sites, as there is little to indicate they have acted as magmatic pathways. Where the hydrothermal system coincides with steep topographic slopes, an increased likelihood of landslides is present and the newly delineated hydrothermal system maps the area most likely to have phreatic eruptions. Such eruptions, while small on a global scale, are important hazards at the TgVM as it is a popular hiking area with hundreds of visitors per day in close proximity to eruption sites. The model shows that the volume of volcanic material erupted over the lifespan of the TgVM is five to six times greater than previous estimates, suggesting a higher rate of magma supply, in line with global rates of andesite production. We suggest that our model of physical property distribution can be used to provide constraints for other models of dynamic geophysical processes occurring at the TgVM.

  5. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight

    Science.gov (United States)

    Matthews, Zoe; Manning, Christina J.

    2017-04-01

    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  6. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards.

    Science.gov (United States)

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C

    2012-08-21

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.

  7. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards

    Science.gov (United States)

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.

    2012-01-01

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  8. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  9. Using high-precision 40Ar/39Ar geochronology to understand volcanic hazards within the Rio Grande rift and along the Jemez lineament, New Mexico

    Science.gov (United States)

    Zimmerer, M. J.; McIntosh, W. C.; Heizler, M. T.; Lafferty, J.

    2014-12-01

    High-precision Ar/Ar ages were generated for late Quaternary volcanic fields in the Rio Grande rift and along the Jemez Lineament, New Mexico, to assess the time-space patterns of volcanism and begin quantifying volcanic hazards for the region. The published chronology of most late Quaternary volcanic centers in the region is not sufficiently precise, accurate, or complete for a comprehensive volcanic hazard assessment. Ar/Ar ages generated as part of this study were determined using the high-sensitivity, multi-collector ARGUS VI mass spectrometer, which provides about an order of magnitude more precise isotopic measurements compared to older generation, single-detector mass spectrometers. Ar/Ar ages suggest an apparent increase in eruption frequency during the late Quaternary within the Raton-Clayton volcanic field, northeastern NM. Only four volcanoes erupted between 426±8 and 97±3 ka. Contrastingly, four volcanoes erupted between 55±2 and 32±5 ka. This last eruptive phase displays a west to east migration of volcanism, has repose periods of 0 to 17 ka, and an average recurrence rate of 1 eruption per 5750 ka. The Zuni-Bandera volcanic field, west-central NM, is composed of the ~100 late Quaternary basaltic vents. Preliminary results suggest that most of the Chain of Craters, the largest and oldest part of the Zuni-Bandera field, erupted between ~100 and 250 ka. Volcanism then migrated to the east, where published ages indicate at least seven eruptions between 50 and 3 ka. Both volcanic fields display a west to east migration of volcanism during the last ~500 ka, although the pattern is more pronounced in the Zuni-Bandera field. A reassessment of low-precision published ages for other late Quaternary volcanic fields in region indicates that most fields display a similar west to east migration of volcanism during the last ~500 ka. One possible mechanism to explain the observed patterns of volcanism is the westward migration of the North American plate relative

  10. Enhancing sediment flux control and natural hazard risk mitigation through a structured conceptual planning approach

    Science.gov (United States)

    Simoni, S.; Vignoli, G.; Mazzorana, B.

    2017-08-01

    Sediment fluxes from mountain rivers contribute to shape the geomorphologic features of lowland rivers and to establish the physical basis for an optimal set of ecosystem functions and related services to people. Through significant public funding, the hydro-morphological regimes of mountain rivers in the European Alps have been progressively altered over the last century, with the aim to provide a safe dwelling space, to boost transport, mobility and to support economic growth. We claim that the underlying planning weaknesses contribute to determine these inefficient resource allocations, since flood risk is still high and the ecosystem services are far from being optimal. Hence, with the overall aim to enhance sediment flux control and hazard risk mitigation in such heavily modified alpine streams, we propose a structured design workflow which guides the planner through system analysis and synthesis. As a first step the proposed workflow sets the relevant planning goals and assesses the protection structure functionality. Then a methodology is proposed to achieve the goals. This methodology consists in characterising the hydrologic basin of interest and the sediment availability and determining the sediment connectivity to channels. The focus is set on the detailed analysis of existing river cross sections where the sediment continuity is interrupted (e.g. slit and check dams). By retaining relevant sediment volumes these structures prevent the reactivation of hydro-morphological and associated ecological functionalities. Since their actual performance can be unsatisfying with respect to flood risk mitigation (e.g. mainly old structures), we introduce specific efficiency indicators as a support for the conceptual design stage to quantify effects related to sediment flux control and risk management. The proposed planning approach is then applied to the Gadria system (stream, slit dam, retention basin and culvert), located in South Tyrol, Italy. This case study

  11. Impact hazard mitigation: understanding the effects of nuclear explosive outputs on comets and asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Ralph R C [Los Alamos National Laboratory; Plesko, Catherine S [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Conlon, Leann M [Los Alamos National Laboratory

    2009-01-01

    The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with

  12. Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua

    Science.gov (United States)

    Avellán, Denis Ramón; Macías, José Luis; Pardo, Natalia; Scolamacchia, Teresa; Rodriguez, Dionisio

    2012-02-01

    The Nejapa Volcanic Field (NVF) is located on the western outskirts of Managua, Nicaragua. It consists of at least 30 volcanic structures emplaced along the N-S Nejapa fault, which represents the western active edge of the Managua Graben. The study area covers the central and southern parts of the volcanic field. We document the basic geomorphology, stratigraphy, chemistry and evolution of 17 monogenetic volcanic structures: Ticomo (A, B, C, D and E); Altos de Ticomo; Nejapa; San Patricio; Nejapa-Norte; Motastepe; El Hormigón; La Embajada; Asososca; Satélite; Refinería; and Cuesta El Plomo (A and B). Stratigraphy aided by radiocarbon dating suggests that 23 eruptions have occurred in the area during the past ~ 34,000 years. Fifteen of these eruptions originated in the volcanic field between ~ 28,500 and 2,130 yr BP with recurrence intervals varying from 400 to 7,000 yr. Most of these eruptions were phreatomagmatic with minor strombolian and fissural lava flow events. A future eruption along the fault might be of a phreatomagmatic type posing a serious threat to the more than 500,000 inhabitants in western Managua.

  13. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  14. Late-Pleistocene to precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards

    Science.gov (United States)

    Siebert, Lee; Carrasco-Núñez, Gerardo

    2002-06-01

    initially produced the high effusion rate, short-duration Toxtlacuaya alkaline aa lava flow from the southeastern crater. This 12-km-long hawaiite (average 50.5% SiO 2) flow was followed by extrusion of the calc-alkaline Rı´o Naolinco lava flow from the northwestern crater. This large-volume (˜1.3 km 3) tube-fed basaltic pahoehoe flow (average SiO 2 49%) traveled 50 km. Inferred effusion rates suggest emplacement over a decade-long period. Flows of all three age groups are transected by Highway 140 and the railway that form major transportation arteries between Jalapa and Puebla. This area has not previously been considered to be at volcanic risk, but volcanism here has continued into precolumbian time. Future eruptions of similar magnitude and location to those documented here could pose significant hazards to transportation corridors and to densely populated areas in and to the north of Jalapa. Slight variations in vent locations could produce future flows down one or more of more than a half dozen drainages with widely varying population densities.

  15. GIS-Based emergency and evacuation planning for volcanic hazards in New Zealand

    DEFF Research Database (Denmark)

    Cole, J. W.; Sabel, C. E.; Blumenthal, E.

    2005-01-01

    in New Zealand is high, with 10 volcanoes or volcanic centres (Auckland, Bay of Islands, Haroharo, Mayor Island, Ruapehu, Taranaki, Tarawera, Taupo, Tongariro (including Ngauruhoe) and White Island) recognised as active or potentially active. In addition there are many active and potentially active...... (reduction, readiness, response and recovery) can benefit from CIS, including applications related to transportation systems, a critical element in managing effective lifelines in an emergency. This is particularly true immediately before and during a volcanic eruption. The potential for volcanic activity...... volcanoes along the Kermadec Island chain. There is a great deal of background information on all of these volcanoes, and GIS is currently being used for some aspects of monitoring (e.g. ERS and Envisat radar interferometry for observing deformation prior to eruptions). If an eruption is considered imminent...

  16. Bringing New Tools and Techniques to Bear on Earthquake Hazard Analysis and Mitigation

    Science.gov (United States)

    Willemann, R. J.; Pulliam, J.; Polanco, E.; Louie, J. N.; Huerta-Lopez, C.; Schmitz, M.; Moschetti, M. P.; Huerfano Moreno, V.; Pasyanos, M.

    2013-12-01

    During July 2013, IRIS held an Advanced Studies Institute in Santo Domingo, Dominican Republic, that was designed to enable early-career scientists who already have mastered the fundamentals of seismology to begin collaborating in frontier seismological research. The Institute was conceived of at a strategic planning workshop in Heredia, Costa Rica, that was supported and partially funded by USAID, with a goal of building geophysical capacity to mitigate the effects of future earthquakes. To address this broad goal, we drew participants from a dozen different countries of Middle America. Our objectives were to develop understanding of the principles of earthquake hazard analysis, particularly site characterization techniques, and to facilitate future research collaborations. The Institute was divided into three main sections: overviews on the fundamentals of earthquake hazard analysis and lectures on the theory behind methods of site characterization; fieldwork where participants acquired new data of the types typically used in site characterization; and computer-based analysis projects in which participants applied their newly-learned techniques to the data they collected. This was the first IRIS institute to combine an instructional short course with field work for data acquisition. Participants broke into small teams to acquire data, analyze it on their own computers, and then make presentations to the assembled group describing their techniques and results.Using broadband three-component seismometers, the teams acquired data for Spatial Auto-Correlation (SPAC) analysis at seven array locations, and Horizontal to Vertical Spectral Ratio (HVSR) analysis at 60 individual sites along six profiles throughout Santo Domingo. Using a 24-channel geophone string, the teams acquired data for Refraction Microtremor (SeisOptReMi™ from Optim) analysis at 11 sites, with supplementary data for active-source Multi-channel Spectral Analysis of Surface Waves (MASW) analysis at

  17. Neotectonics of Graciosa island (Azores: a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting

    Directory of Open Access Journals (Sweden)

    Ana Hipólito

    2014-02-01

    Full Text Available Graciosa is a mid-Pleistocene to Holocene volcanic island that lies in a complex plate boundary between the North American, Eurasian, and Nubian plates. Large fault scarps displace the oldest (Middle Pleistocene volcanic units, but in the younger areas recent volcanism (Holocene to Upper Pleistocene conceals the surface expression of faulting, limiting neotectonic observations. The large displacement accumulated by the older volcanic units when compared with the younger formations suggests a variability of deformation rates and the possibility of alternating periods of higher and lower tectonic deformation rates; this would increase the recurrence interval of surface rupturing earthquakes. Nevertheless, in historical times a few destructive earthquakes affected the island attesting for its seismic hazard. Regarding the structural data, two main fault systems, incompatible with a single stress field, were identified at Graciosa Island. Thus, it is proposed that the region is affected by two alternating stress fields. The stress field #1 corresponds to the regional stress regime proposed by several authors for the interplate shear zone that constitutes the Azorean segment of the Eurasia-Nubia plate boundary. It is suggested that the stress field #2 will act when the area under the influence of the regional stress field #1 narrows as a result of variations in the differential spreading rates north and south of Azores. The islands closer to the edge of the sheared region will temporarily come under the influence of a different (external stress field (stress field #2. Such data support the concept that, in the Azores, the Eurasia-Nubia boundary corresponds to a complex and wide deformation zone, variable in time.

  18. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  19. Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk

    Science.gov (United States)

    Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ

    2015-01-01

    Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...

  20. The Brave New World of Real-time GPS for Hazards Mitigation

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2016-12-01

    Real-time GPS position streams are desirable for a variety of seismic and tsunami monitoring and hazard mitigation applications. We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, in-line stream editor that produces independent estimations of carrier phase integer biases and other parameters. Positions are then estimated using streamed satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built aggregation-distribution software based on RabbitMQ messaging platform. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, displacement vector fields, and map-view, contoured, peak ground displacement. This Java-based front-end is available for download through the PANGA(.org) website. We currently analyze 120 PBO and PANGA stations along the Cascadia margin and San Andreas system in California along with another 50 from the circum-Pacific. We are gearing up to process all available west-coast real-time stations. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition, we have developed a Kalman filter to combine CWU real-time PPP solutions with those from Scripps Institute of Oceanography's PPP-AR real-time solutions as well as real-time solutions from other

  1. Using Robust Decision Making to Assess and Mitigate the Risks of Natural Hazards in Developing Countries

    Science.gov (United States)

    Kalra, N.; Lempert, R. J.; Peyraud, S.

    2012-12-01

    Ho Chi Minh City (HCMC) ranks fourth globally among coastal cities most vulnerable to climate change and already experiences extensive routine flooding. In the coming decades, increased precipitation, rising sea levels, and land subsidence could permanently inundate a large portion of the city's population, place the poor at particular risk, and threaten new economic development in low-lying areas. HCMC is not alone in facing the impacts of natural hazards exacerbated by uncertain future climate change, development, and other deep uncertainties. Assessing and managing these risks is a tremendous challenge, particularly in developing countries which face pervasive shortages of the data and models generally used to plan for such changes. Using HCMC as a case study, this talk will demonstrate how a scenario-based approach that uses robustness as a decision and planning element can help developing countries assess future climate risk and manage the risk of natural disasters. In contrast to traditional approaches which treat uncertainty with a small number of handcrafted scenarios, this talk will emphasize how robust decision making, which uses modeling to explore over thousands of scenarios, can identify potential vulnerabilities to HCMC's emerging flood risk management strategy and suggest potential responses. The talk will highlight several novel features of the collaboration with the HCMC Steering Committee for Flood Control. First, it examines several types of risk -- risk to the poor, risk to the non-poor, and risk to the economy -- and illustrates how management policies have different implications for these sectors. Second, it demonstrates how diverse and sometimes incomplete climate, hydrologic, socioeconomic, GIS, and other data and models can be integrated into a modeling framework to develop and evaluate many scenarios of flood risk. Third, it illustrates the importance of non-structural policies such as land use management and building design to manage

  2. Tube coalescence in the Jingfudong lava tube and implications for lava flow hazard of Tengchong volcanism

    OpenAIRE

    Zhengquan Chen; Yongshun Liu; Haiquan Wei; Jiandong Xu; Wenfeng Guo

    2016-01-01

    Tube-fed structure occurs as a general phenomenon in Tengchong basic lavas, such as lava tubes, lava plugs and tube-related collapse depressions. We deduced the development of Laoguipo lava flows, which is the longest lava tube (Jingfudong lava tube) evolved in Tengchong volcanic area. Following the detailed documentation of the tube morphology of the Jingfudong lava tube, we propose that the Jingfudong lava tube was formed through vertical coalescence of at least three tubes. The coalescence...

  3. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall

    Science.gov (United States)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo

    2016-04-01

    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  4. A Possible Paradigm for the Mitigation of the Adverse Impacts of Natural Hazards in the Developing Countries

    Science.gov (United States)

    Aswathanarayana, U.

    2001-05-01

    The proneness of a country or region to a given natural hazard depends upon its geographical location, physiography, geological and structural setting, landuse/landcover situation, and biophysical and socioeconomic environments (e.g. cyclones and floods in Bangladesh, earthquakes in Turkey, drought in Sub-Saharan Africa). While the natural hazards themselves cannot be prevented, it is possible to mitigate their adverse effects, by a knowledge-based, environmentally-sustainable approach, involving the stakeholder communities: (i) by being prepared: on the basis of the understanding of the land conditions which are prone to a given hazard and the processes which could culminate in damage to life and property (e.g. planting of dense-rooted vegetation belts to protect against landslides in the earthquake-prone areas), (ii) by avoiding improper anthropogenic activities that may exacerbate a hazard (e.g. deforestation accentuating the floods and droughts), and (iii) by putting a hazard to a beneficial use, where possible (groundwater recharging of flood waters), etc. Mitigation strategies need to be custom-made for each country/region by integrating the biophysical and socioeconomic components. The proposed paradigm is illustrated in respect of Extreme Weather Events (EWEs), which is based on the adoption of three approaches: (i) Typology approach, involving the interpretation of remotely sensed data, to predict (say) temporal and spatial distribution of precipitation, (ii) "black box" approach, whereby the potential environmental consequences of an EWE are projected on the basis of previously known case histories, and (iii) Information Technology approach, to translate advanced technical information in the form of "virtual" do-it-yourself steps understandable to lay public.

  5. Use of a Novel Visual Metaphor Measure (PRISM) to Evaluate School Children's Perceptions of Natural Hazards, Sources of Hazard Information, Hazard Mitigation Organizations, and the Effectiveness of Future Hazard Education Programs in Dominica, Eastern Caribbean

    Science.gov (United States)

    Parham, M.; Day, S. J.; Teeuw, R. M.; Solana, C.; Sensky, T.

    2014-12-01

    This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education.Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.

  6. Use of a Novel Visual Metaphor Measure (PRISM) to Evaluate School Children's Perceptions of Natural Hazards, Sources of Hazard Information, Hazard Mitigation Organizations, and the Effectiveness of Future Hazard Education Programs in Dominica, Eastern Car

    Science.gov (United States)

    Parham, Martin; Day, Simon; Teeuw, Richard; Solana, Carmen; Sensky, Tom

    2015-04-01

    This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education. Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.

  7. Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. [Federal Center, Denver, CO (United States); Delaney, P.T. [2255 North Gemini Drive, Flagstaff, AZ (United States); Kauahikaua, J.P. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

    1993-10-01

    This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa`s northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu`ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

  8. Possible asphyxiation from carbon dioxide of a cross-country skier in eastern California: a deadly volcanic hazard.

    Science.gov (United States)

    Hill, P M

    2000-01-01

    This report describes an incident in which exceedingly high levels of carbon dioxide may have contributed to the death of a skier in eastern California. A cross-country skier was found dead inside a large, mostly covered snow cave, 1 day after he was reported missing. The autopsy report suggests that the skier died of acute pulmonary edema consistent with asphyxiation; carbon dioxide measurements inside the hole in which he was found reached 70%. This area is known for having a high carbon dioxide flux attributed to degassing of a large body of magma (molten rock) 10 to 20 km beneath the ski area. The literature describes many incidents of fatal carbon dioxide exposures associated with volcanic systems in other parts of the world. We believe this case represents the first reported death associated with volcanically produced carbon dioxide in the United States. Disaster and wilderness medicine specialists should be aware of and plan for this potential health hazard associated with active volcanoes.

  9. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    Science.gov (United States)

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, U.S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2??-7?? to 12?? where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35-45 km deep) beneath the Cascade Range, with thinner crust (30-35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ???25 km depth beneath the coastline to perhaps as far west as the deformation front ???120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  10. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Madankan, R. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pouget, S. [Department of Geology, University at Buffalo (United States); Singla, P., E-mail: psingla@buffalo.edu [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Bursik, M. [Department of Geology, University at Buffalo (United States); Dehn, J. [Geophysical Institute, University of Alaska, Fairbanks (United States); Jones, M. [Center for Computational Research, University at Buffalo (United States); Patra, A. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pavolonis, M. [NOAA-NESDIS, Center for Satellite Applications and Research (United States); Pitman, E.B. [Department of Mathematics, University at Buffalo (United States); Singh, T. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Webley, P. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  11. Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2012-04-01

    By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.

  12. Bike Helmets and Black Riders: Experiential Approaches to Helping Students Understand Natural Hazard Assessment and Mitigation Issues

    Science.gov (United States)

    Stein, S. A.; Kley, J.; Hindle, D.; Friedrich, A. M.

    2014-12-01

    Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? These topics are challenging because they are far from normal experience, in that they involve rare events and large sums. To help students in natural hazard classes conceptualize them, we pose tough and thought-provoking questions about complex issues involved and explore them together via lectures, videos, field trips, and in-class and homework questions. We discuss analogous examples from the students' experiences, drawing on a new book "Playing Against Nature, Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World". Asking whether they wear bicycle helmets and why or why not shows the cultural perception of risk. Individual students' responses vary, and the overall results vary dramatically between the US, UK, and Germany. Challenges in hazard assessment in an uncertain world are illustrated by asking German students whether they buy a ticket on public transportation - accepting a known cost - or "ride black" - not paying but risking a heavy fine if caught. We explore the challenge of balancing mitigation costs and benefits via the question "If you were a student in Los Angeles, how much more would you pay in rent each month to live in an earthquake-safe building?" Students learn that interdisciplinary thinking is needed, and that due to both uncertainties and sociocultural factors, no unique or right strategies exist for a particular community, much the less all communities. However, we can seek robust policies that give sensible results given

  13. Looking Before We Leap: Recent Results From An Ongoing Quantitative Investigation Of Asteroid And Comet Impact Hazard Mitigation.

    Science.gov (United States)

    Plesko, Catherine; Weaver, R. P.; Korycansky, D. G.; Huebner, W. F.

    2010-10-01

    The asteroid and comet impact hazard is now part of public consciousness, as demonstrated by movies, Super Bowl commercials, and popular news stories. However, there is a popular misconception that hazard mitigation is a solved problem. Many people think, `we'll just nuke it.’ There are, however, significant scientific questions remaining in the hazard mitigation problem. Before we can say with certainty that an explosive yield Y at height of burst h will produce a momentum change in or dispersion of a potentially hazardous object (PHO), we need to quantify how and where energy is deposited into the rubble pile or conglomerate that may make up the PHO. We then need to understand how shock waves propagate through the system, what causes them to disrupt, and how long gravitationally bound fragments take to recombine. Here we present numerical models of energy deposition from an energy source into various materials that are known PHO constituents, and rigid body dynamics models of the recombination of disrupted objects. In the energy deposition models, we explore the effects of porosity and standoff distance as well as that of composition. In the dynamical models, we explore the effects of fragment size and velocity distributions on the time it takes for gravitationally bound fragments to recombine. Initial models indicate that this recombination time is relatively short, as little as 24 hours for a 1 km sized PHO composed of 1000 meter-scale self-gravitating fragments with an initial velocity field of v/r = 0.001 1/s.

  14. "Canary Islands, a volcanic window in the Atlantic Ocean": a 7 year effort of public awareness on volcano hazards and risk management

    Science.gov (United States)

    Rodríguez, Fátima; Calvo, David; Pérez, Nemesio M.; Padrón, Eleazar; Melián, Gladys; Padilla, Germán; Barrancos, José; Hernández, Pedro A.; Asensio-Ramos, María; Alonso, Mar

    2016-04-01

    "Canary Islands: A volcanic window in the Atlantic Ocean" is an educational program born from the need to inform and educate citizens residing in the Canary Islands on the various hazards associated to volcanic phenomena. The Canary Islands is the only territory of Spain that hosts active volcanism, as is shown by the 16 historical eruptions that have occurred throughout this territory, being the last one a submarine eruption taking place on October 12, 2011, offshore El Hierro Island. In the last 7 years, ITER as well as INVOLCAN have been performing an educative program focused on educating to the population about the benefits of a volcanic territory, volcanic hazards, how to reduce volcanic risk and the management of volcanic risk in the Canary Islands. "Canary Islands: A volcanic window in the Atlantic Ocean" consists of three units, the first two dedicated to the IAVCEI/UNESCO videos "Understanding Volcanic Hazards" and "Reducing Volcanic Risk" and the third one dedicated to the management of volcanic risk in the Canary Islands, as well as some other aspects of the volcanic phenomena. Generally the three units are shown consecutively on Tuesday, Wednesday and Thursday. This educative program has been roaming all around the 88 municipalities of the archipelago since this initiative started in 2008. The total number of attendees since then amounts to 18,911 people. The increase of assistance was constant until 2011, with annual percentages of 7.8, 17.1 and 20.9 respectively, regarding to ratio assistant/municipality. Despite the heterogeneity of the audience, the main audience is related to aged people of 45 years and older. This could be related to the memories of the recent eruptions occurred at La Palma Island in 1949 and 1971. It is important to point out that many of those people attending the educative program are representatives of local government (i.e. civil protection). Regarding the interest of the audience, the educational program attendees have

  15. Numerical Simulation of Tsunami Hazard Mitigation by Mangrove Forest in North Coast Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Putu Harry Gunawan

    2015-06-01

    Full Text Available Mangrove forest or known as bakau forest is important forest as a natural wave barrier or tsunami wave mitigation. Some advantages of mangrove forest to reduce the water waves are already studied. Mangrove forest in north coast of Bali’s island, Buleleng regency, Indonesia is in damaged condition. The aim of this paper is to present the importance of mangrove forest as the water wave mitigation in numerical simulation point of view. Moreover, the results also show the effect of tsunami propagation to the coastal area with and without mangrove resistance. Here, the nonlinear shallow water equations are used to govern the model of numerical simulation.

  16. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results

    Science.gov (United States)

    Mani, Lara; Cole, Paul D.; Stewart, Iain

    2016-07-01

    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  17. Managing a Monogenetic Volcanic Field As a World Heritage Nomination: Implications for Science, Outreach, and Hazards

    Science.gov (United States)

    Olive-Garcia, C.; van Wyk de Vries, B.

    2014-12-01

    Monogenetic volcanoes form a large proportion of the world's volcanoes. They are in all tectonic environments and thus provide a significant link to understand fundamental geological processes such as plate tectonics. The Chaîne des Puys - Limagne fault World Heritage nomination is a prime example of this link where monogenetic volcanism, continental rifting, uplift and erosion are highlighted, and are made understandable to the lay person, though the actions on over 80 aligned monogenetic volcanoes. Such geoheritage is essential for monogenetic and other geological risks to be communicated to the wider public. The current scientific interest on monogenetic volcanoes is quite recent, and because of this, and probably their global distribution but small size, they have not received their due importance from a geoheritage standpoint. Some individual sites and some fields are protected and developed as attractions, but there has been no coherent global strategy for defining monogenetic heritage, or for linking sites. This is starting through the monogenetic commission of IAVCEI, and with wider participation of the IUGS and other bodies. The Chaîne des Puys - Limagne Fault UNESCO project is an example of how public awareness, at a global scale, and be increased through geoheritage. This is done integrating local stakeholders: population, industry, science, landscapers, artists, sports, government. This builds on existing protection and sustainable activities, integrating them with education programs. The result is to create a populace that 'thinks geological', and which leads visitors to also become geologically aware. This is helped by a monogenetic landscape that is easily readable and by links made to other geological sites around the world. We will explain how this process is ongoing. The project started over 35 years ago, and is a long-term vision to develop geological understanding and protection of this unique monogenetic and tectono-volcanic site.

  18. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data

    Science.gov (United States)

    Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Núñez, Gerardo; Díaz-Castellón, Rodolfo; Rodríguez, Sergio Raúl

    2007-02-01

    In this study, we evaluated and compared the utility of spaceborne SRTM and ASTER DEMs with baseline DTED-1 "bald-earth" topography for mapping lahar inundation hazards from volcan Citlaltépetl, Mexico, a volcano which has had a history of producing debris flows of various extents. In particular, we tested the utility of these topographic datasets for resolving ancient valley-filling deposits exposed around the flanks of the volcano, for determining their magnitude using paleohydrologic methods and for forecasting their inundation limits in the future. We also use the three datasets as inputs to a GIS stream inundation flow model, LAHARZ, and compare the results. In general all three datasets, with spatial resolution of 90 m or better, were capable of resolving debris flow and lahar deposits at least 3 × 10 6 m 3 in volume or larger. Canopy- and slope-related height errors in the ASTER and SRTM DEMs limit their utility for measuring valley-filling cross-sectional area and deriving flow magnitude for the smallest deposits using a cross-sectional area to volume scaling equation. Height errors in the ASTER and SRTM DEMs also causes problems in resolving stream valley hydrography which controls lahar flow paths and stream valley morphology which controls lahar filling capacity. However, both of the two spaceborne DEM datasets are better than DTED-1 at resolving fine details in stream hydrography and erosional morphologies of volcaniclastics preserved in the valleys around the more humid, eastern flanks of the volcanic range. The results of LAHARZ flow inundation modeling using all three DEMs as inputs are remarkably similar and co-validate one another. For example, at Citlaltépetl all lahar simulations show that the city of Orizaba is the most vulnerable to flows similar in magnitude to, or larger than, one that occurred in 1920. Many of the other cities and towns illustrated are built higher up on terrace deposits of older debris flows, and are safe from all but

  19. Preliminary Results of Bedrock Variations in the Tekirdag Region (NW Turkey) by Multidisciplinary Geophysical Methods for Earthquake Hazard Mitigation

    Science.gov (United States)

    Tuncer, M. K.; Arslan, M. S.; Ozel, A. O.; İşseven, T.; Genc, T.; Aksahin, B. B.

    2016-12-01

    As it is well known, North Anatolian fault Zone is highly capable of producing destructive earthquakes. Hence, earthquake hazard mitigation studies are very important for the urban areas which is close to the major faults. From this point of view, multidisciplinary geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. Our study area Tekirdag region which located western end of Nort Anatolian Fault Zone is quite close to the North Anatolian Fault which is capable of producing a large earthquake. We carried out research on determination of bedrock variations has been carried out in the Tekirdag Region which took place in the western end of North Anatolian Fault Zone by using multidisciplinary geophysical methods. This research has been performed in the frame of a national project, which is a complimentary project of the joint project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education. Microgravity and magnetic measurements are performed on the seven profiles of 45km to 60km length. We attempt to map variations in bedrock, its geologic structure along the profiles. According to the results obtained in the region where the north-south direction is toward the north branch of the bedrock, and also in the east-west direction it was determined to be deepening westward. Final target would be 3-dimensional mapping of bedrock in the area.

  20. Quantitative analysis of the 1981 and 2001 Etna flank eruptions: a contribution for future hazard evaluation and mitigation

    Directory of Open Access Journals (Sweden)

    Cristina Proietti

    2011-12-01

    Full Text Available Lava flows produced during Etna flank eruptions represent severe hazards for the nearby inhabited areas, which can be protected by adopting prompt mitigation actions, such as the building of diversion barriers. Lava diversion measures were attempted recently during the 1983, 1991-93, 2001 and 2002 Etna eruptions, although with different degrees of success. In addition to the complexity of barrier construction (due to the adverse physical conditions, the time available to successfully slow the advance of a lava flow depends on the lava effusion rate, which is not easily measurable. One method to estimate the average lava effusion rate over a specified period of time is based on a volumetric approach; i.e. the measurement of the volume changes of the lava flow over that period. Here, this has been compared to an approach based on thermal image processing, as applied to estimate the average effusion rates of lava flows during the 1981 and 2001 Etna eruptions. The final volumes were measured by the comparison of pre-eruption and post-eruption photogrammetric digital elevation models and orthophotographs. Lava volume growth during these eruptions was estimated by locating the flow-front positions from analyses of scientific papers and newspapers reports, as well as from helicopter photographs. The analyses of these two eruptions contribute to the understanding of the different eruptive mechanisms, highlighting the role of the peak effusion rate, which represents a critical parameter for planning of mitigation actions and for hazard evaluation.

  1. Environmental legislation as the legal framework for mitigating natural hazards in Spain

    Science.gov (United States)

    Garrido, Jesús; Arana, Estanislao; Jiménez Soto, Ignacio; Delgado, José

    2015-04-01

    In Spain, the socioeconomic losses due to natural hazards (floods, earthquakes or landslides) are considerable, and the indirect costs associated with them are rarely considered because they are very difficult to evaluate. The prevention of losses due to natural hazards is more economic and efficient through legislation and spatial planning rather than through structural measures, such as walls, anchorages or structural reinforcements. However, there isn't a Spanish natural hazards law and national and regional sector legislation make only sparse mention of them. After 1978, when the Spanish Constitution was enacted, the Autonomous Communities (Spanish regions) were able to legislate according to the different competences (urban planning, environment or civil protection), which were established in the Constitution. In the 1990's, the Civil Protection legislation (national law and regional civil protection tools) dealt specifically with natural hazards (floods, earthquakes and volcanoes), but this was before any soil, seismic or hydrological studies were recommended in the national sector legislation. On the other hand, some Autonomous Communities referred to natural hazards in the Environmental Impact Assessment legislation (EIA) and also in the spatial and urban planning legislation and tools. The National Land Act, enacted in 1998, established, for the first time, that those lands exposed to natural hazards should be classified as non-developable. The Spanish recast text of the Land Act, enacted by Royal Legislative Decree 2/2008, requires that a natural hazards map be included in the Environmental Sustainability Report (ESR), which is compulsory for all master plans, according to the provisions set out by Act 9/2006, known as Spanish Strategic Environmental Assessment (SEA). Consequently, the environmental legislation, after the aforementioned transposition of the SEA European Directive 2001/42/EC, is the legal framework to prevent losses due to natural hazards

  2. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  3. La Yeguada volcanic complex in the Republic of Panama: an assessment of the geologic hazards using 40ar/39ar geochronology

    Directory of Open Access Journals (Sweden)

    Karinne L. Knutsen

    2013-12-01

    Full Text Available Abstract: La Yeguada volcanic complex is one of three Quaternary volcanic centers in Panama. To assess potential geologic hazards, new samples were analyzed using argon analysis (40Ar/39Ar , and obtained the following: the most recent eruption occurred approximately 32,000 years ago at the Media Luna cinder cone; the youngest dated eruption from the main dome complex occurred 357 ± 19 ka, producing the Castillo dome unit; Cerro Picacho, a separate dacite dome 1.5 km east of the main complex is 4.47 ± 0.23 Ma; and the El Satro Pyroclastic Flow unit surrounds the northern portion of the volcanic complex is 11.26 ± 0.17 Ma. No Holocene (10,000 years ago to present activity is recorded at the La Yeguada volcanic complex and therefore, it is unlikely to produce another eruption. The main geologic hazard at the La Yeguada volcanic complex is from landslides coming off the many steep slopes.

  4. Remote Sensing for Hazard Mitigation and Resource Protection in Pacific Latin America: New NSF sponsored initiative at Michigan Tech.

    Science.gov (United States)

    Rose, W. I.; Bluth, G. J.; Gierke, J. S.; Gross, E.

    2005-12-01

    Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety and, eventually, economic development, they lack the resources required to advance the development and practice of remote sensing. Both developed and developing countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development, and this common commitment creates a solid foundation upon which to build an integrated education and research project. This will prepare students for careers in science and engineering through their efforts to solve a suite of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. This project makes two important advances: (1) We intend to develop the first formal linkage among geoscience agencies from four Pacific Latin American countries (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing tools for hazard mitigation and water resource development; (2) We will build a new educational system of applied research and engineering, using two existing educational programs at Michigan Tech: a new Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems This project will involve 1-2 post-doctoral researchers, 3 Ph.D., 9 PC/MI, and roughly 20 undergraduate students each year.

  5. Toward a pro-active scientific advice on global volcanic activity within the multi-hazard framework of the EU Aristotle project

    Science.gov (United States)

    Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos

    2017-04-01

    The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of

  6. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    Science.gov (United States)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    conceptual integrated approach, the mathematical tool will be transportable to other regions affected by volcanic eruption and tsunami. We will involve students in the work, incorporate the results into our teaching portfolio and work closely with the IUGG GeoRisk Commission and AGU Natural Hazards Focus Group to communicate our findings to the broader public, specifically local communities that will be most impacted. Under the PIRE education component, a cohort of U.S. and Russian post-doctoral researchers and students will receive training and contribute to the overall natural hazards SGD science agenda in cooperation with senior U.S. researchers and leading investigators from the Russian institutions. Overall, the extensive team of researchers, students and institutions is poised to deliver an innovative and broad spectrum of science associated with the study of SGD in the volcanic eruption and tsunami affected areas, in a way not possible to achieve in isolation.

  7. Volcanic activity: a review for health professionals.

    Science.gov (United States)

    Newhall, C G; Fruchter, J S

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  8. Influence of behavioral biases on the assessment of multi-hazard risks and the implementation of multi-hazard risks mitigation measures: case study of multi-hazard cyclone shelters in Tamil Nadu, India

    Science.gov (United States)

    Komendantova, Nadejda; Patt, Anthony

    2013-04-01

    In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the

  9. Assessing NEO hazard mitigation in terms of astrodynamics and propulsion systems requirements.

    Science.gov (United States)

    Remo, John L

    2004-05-01

    Uncertainties associated with assessing valid near-Earth object (NEO) threats and carrying out interception missions place unique and stringent burdens on designing mission architecture, astrodynamics, and spacecraft propulsion systems. A prime uncertainty is associated with the meaning of NEO orbit predictability regarding Earth impact. Analyses of past NEO orbits and impact probabilities indicate uncertainties in determining if a projected NEO threat will actually materialize within a given time frame. Other uncertainties regard estimated mass, composition, and structural integrity of the NEO body. At issue is if one can reliably estimate a NEO threat and its magnitude. Parameters that determine NEO deflection requirements within various time frames, including the terminal orbital pass before impact, and necessary energy payloads, are quantitatively discussed. Propulsion system requirements for extending space capabilities to rapidly interact with NEOs at ranges of up to about 1 AU (astronomical unit) from Earth are outlined. Such missions, without gravitational boosts, are deemed critical for a practical and effective response to mitigation. If an impact threat is confirmed on an immediate orbital pass, the option for interactive reconnaissance, and interception, and subsequent NEO orbit deflection must be promptly carried out. There also must be an option to abort the mitigation mission if the NEO is subsequently found not to be Earth threatening. These options require optimal decision latitude and operational possibilities for NEO threat removal while minimizing alarm. Acting too far in advance of the projected impact could induce perturbations that ultimately exacerbate the threat. Given the dilemmas, uncertainties, and limited options associated with timely NEO mitigation within a decision making framework, currently available propulsion technologies that appear most viable to carry out a NEO interception/mitigation mission within the greatest margin of

  10. Mitigation of hydrogen hazard in a fusion reactor by reduction of metallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Chaudron, V. [Technicatome, Dir. de l' Ingenierie, SEPS, 13 - Aix-en-Provence (France); Latge, C. [CEA/Cadarache, Dept. d' Etudes des Reacteurs (DER), 13 - Saint-Paul-lez-Durance (France); Laurent, A. [Institut National Polytechnique de Lorraine, Lab. des Sciences du Genie Chimique, 54 - Nancy (France)

    1998-07-01

    Significant quantities of hydrogen could be generated inside a fusion reactor during a loss of coolant accident (LOCA) by chemical reaction between steam released into the torus and plasma-facing components at high temperature. On the basis of functional specifications stemming from ITER accident sequence analyses, it appears that the implementation of an anaerobic hydrogen elimination system inside the torus or its expansion volume is the most advisable mitigation means because it allows removal of the hydrogen at its source of production before it comes into contact with oxygen. After a review of literature data and an experimental evaluation of various types of metallic oxides at laboratory scale, manganese oxide catalyzed by silver compounds was found to be the most efficient hydrogen getter. In order to test this hydrogen mitigation technique in representative fusion plant accident conditions, Technicatome and the CEA designed and built a pilot installation named MIRHABEL (MItigation of the Risk linked to Hydrogen by ABsorption and ELimination). After a short description of MIRHABEL, this paper presents and discusses the test results with respect to ITER accident conditions. (authors)

  11. Neo-deterministic seismic hazard scenarios for India—a preventive tool for disaster mitigation

    Science.gov (United States)

    Parvez, Imtiyaz A.; Magrin, Andrea; Vaccari, Franco; Ashish; Mir, Ramees R.; Peresan, Antonella; Panza, Giuliano Francesco

    2017-08-01

    Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489-508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93-165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489-508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.

  12. Science at the policy interface: volcano-monitoring technologies and volcanic hazard management

    Science.gov (United States)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2012-07-01

    This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

  13. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  14. Using Websites to Convey Scientific Uncertainties for Volcanic Processes and Potential Hazards

    Science.gov (United States)

    Venezky, D. Y.; Lowenstern, J. B.; Hill, D. P.

    2005-12-01

    The Yellowstone Volcano Observatory (YVO) and Long Valley Observatory (LVO) websites have greatly increased the public's awareness and access to information about scientific uncertainties for volcanic processes by communicating at multiple levels of understanding and varied levels of detail. Our websites serve a broad audience ranging from visitors unaware of the calderas, to lay volcano enthusiasts, to scientists, federal agencies, and emergency managers. Both Yellowstone and Long Valley are highly visited tourist attractions with histories of caldera-forming eruptions large enough to alter global climate temporarily. Although it is much more likely that future activity would be on a small scale at either volcano, we are constantly posed questions about low-probability, high-impact events such as the caldera-forming eruption depicted in the recent BBC/Discovery movie, "Supervolcano". YVO and LVO website objectives include: providing monitoring data, explaining the likelihood of future events, summarizing research results, helping media provide reliable information, and expanding on information presented by the media. Providing detailed current information is a crucial website component as the public often searches online to augment information gained from often cryptic pronouncements by the media. In May 2005, for example, YVO saw an order of magnitude increase in page requests on the day MSNBC ran the misleading headline, "Yellowstone eruption threat high." The headline referred not to current events but a general rating of Yellowstone as one of 37 "high threat" volcanoes in the USGS National Volcano Early Warning System report. As websites become a more dominant source of information, we continuously revise our communication plans to make the most of this evolving medium. Because the internet gives equal access to all information providers, we find ourselves competing with various "doomsday" websites that sensationalize and distort the current understanding of

  15. The Identification of Filters and Interdependencies for Effective Resource Allocation: Coupling the Mitigation of Natural Hazards to Economic Development.

    Science.gov (United States)

    Agar, S. M.; Kunreuther, H.

    2005-12-01

    Policy formulation for the mitigation and management of risks posed by natural hazards requires that governments confront difficult decisions for resource allocation and be able to justify their spending. Governments also need to recognize when spending offers little improvement and the circumstances in which relatively small amounts of spending can make substantial differences. Because natural hazards can have detrimental impacts on local and regional economies, patterns of economic development can also be affected by spending decisions for disaster mitigation. This paper argues that by mapping interdependencies among physical, social and economic factors, governments can improve resource allocation to mitigate the risks of natural hazards while improving economic development on local and regional scales. Case studies of natural hazards in Turkey have been used to explore specific "filters" that act to modify short- and long-term outcomes. Pre-event filters can prevent an event from becoming a natural disaster or change a routine event into a disaster. Post-event filters affect both short and long-term recovery and development. Some filters cannot be easily modified by spending (e.g., rural-urban migration) but others (e.g., land-use practices) provide realistic spending targets. Net social benefits derived from spending, however, will also depend on the ways by which filters are linked, or so-called "interdependencies". A single weak link in an interdependent system, such as a power grid, can trigger a cascade of failures. Similarly, weak links in social and commercial networks can send waves of disruption through communities. Conversely, by understanding the positive impacts of interdependencies, spending can be targeted to maximize net social benefits while mitigating risks and improving economic development. Detailed information on public spending was not available for this study but case studies illustrate how networks of interdependent filters can modify

  16. Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, lipari, and vesuvius

    Science.gov (United States)

    Sheridan, Michael F.; Malin, Michael C.

    1983-09-01

    A previously developed computer-assisted model has been applied to several pyroclastic-surge eruptions at three active volcanoes in Italy. Model hazard maps created for various vent locations, eruption types, and mass production rates reasonably reproduced pyroclastic-surge deposits from several recent eruptions on Vulcano, Lipari, and Vesuvius. Small-scale phreatic eruptions on the island of Vulcano (e.g. the 1727 explosion of Forgia Vecchia) pose a limited but serious threat to the village of Porto. The most dangerous zone affected by this type of eruption follows a NNW fissure system between Fossa and Vulcanello. Moderate-sized eruptions on Vulcano, such as those associated with the present Fossa Crater are a much more serious threat to Porto as well as the entire area within the caldera surrounding the cone. The less frequent surge eruptions on Lipari have been even more violent. The extreme mobility of surges like those produced from Monte Guardia (approx. 20,000 y.b.p.) and Monte Pilato would not only threaten the entire island of Lipari, but also the northern part of neighboring Vulcano. Eruptions at Vesuvius with energy and efficiency similar to that of the May 18, 1980 blast of Mount St. Helens would be still more destructive because of the great initial elevation of the summit vent. In addition, surge eruptions at Vesuvius are generally part of more complex eruption cycles that involve several other types of volcanic phenomena including Plinian fall and pyroclastic flows.

  17. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina)

    Science.gov (United States)

    Marcato, G.; Bossi, G.; Rivelli, F.; Borgatti, L.

    2012-06-01

    For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

  18. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina

    Directory of Open Access Journals (Sweden)

    G. Marcato

    2012-06-01

    Full Text Available For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis.

    In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works.

    The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

  19. Sustainable and non-conventional monitoring systems to mitigate natural hazards in low income economies: the 4onse project approach.

    Science.gov (United States)

    Cannata, Massimiliano; Ratnayake, Rangajeewa; Antonovic, Milan; Strigaro, Daniele

    2017-04-01

    Environmental monitoring systems in low economies countries are often in decline, outdated or missing with the consequence that there is a very scarce availability and accessibility to these information that are vital for coping and mitigating natural hazards. Non-conventional monitoring systems based on open technologies may constitute a viable solution to create low cost and sustainable monitoring systems that may be fully developed, deployed and maintained at local level without lock-in dependances on copyrights or patents or high costs of replacements. The 4onse research project , funded under the Research for Development program of the Swiss National Science Foundation and the Swiss Office for Development and Cooperation, propose a complete monitoring system that integrates Free & Open Source Software, Open Hardware, Open Data, and Open Standards. After its engineering, it will be tested in the Deduru Oya catchment (Sri Lanka) to evaluate the system and develop a water management information system to optimize the regulation of artificial basins levels and mitigate flash floods. One of the objective is to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. Results, challenges and experiences from the first six months of the projects will be presented with particular focus on the activities of synergies building and data collection and dissemination system advances.

  20. Societal transformation and adaptation necessary to manage dynamics in flood hazard and risk mitigation (TRANS-ADAPT)

    Science.gov (United States)

    Fuchs, Sven; Thaler, Thomas; Bonnefond, Mathieu; Clarke, Darren; Driessen, Peter; Hegger, Dries; Gatien-Tournat, Amandine; Gralepois, Mathilde; Fournier, Marie; Mees, Heleen; Murphy, Conor; Servain-Courant, Sylvie

    2015-04-01

    Facing the challenges of climate change, this project aims to analyse and to evaluate the multiple use of flood alleviation schemes with respect to social transformation in communities exposed to flood hazards in Europe. The overall goals are: (1) the identification of indicators and parameters necessary for strategies to increase societal resilience, (2) an analysis of the institutional settings needed for societal transformation, and (3) perspectives of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. This proposal assesses societal transformations from the perspective of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. Yet each risk mitigation measure is built on a narrative of exchanges and relations between people and therefore may condition the outputs. As such, governance is done by people interacting and defining risk mitigation measures as well as climate change adaptation are therefore simultaneously both outcomes of, and productive to, public and private responsibilities. Building off current knowledge this project will focus on different dimensions of adaptation and mitigation strategies based on social, economic and institutional incentives and settings, centring on the linkages between these different dimensions and complementing existing flood risk governance arrangements. The policy dimension of adaptation, predominantly decisions on the societal admissible level of vulnerability and risk, will be evaluated by a human-environment interaction approach using multiple methods and the assessment of social capacities of stakeholders across scales. As such, the challenges of adaptation to flood risk will be tackled by converting scientific frameworks into practical assessment and policy advice. In addressing the relationship between these dimensions of adaptation on different temporal and spatial scales, this

  1. Assessment, prevention and mitigation of landslide hazard in the Lesser Himalaya of Himachal Pradesh

    Directory of Open Access Journals (Sweden)

    Patra Punyatoya

    2015-09-01

    Full Text Available Landslides are destructive geological processes that have globally caused deaths and destruction to property worth billion dollars. Landslide occurrences are widespread and prolific in India covering more than 15 per cent of the total area. These are mostly concentrated in the Himalayan belt, parts of Meghalaya Plateau, Nilgiri Hills, Western and Eastern Ghats. The slope failure in the hilly terrain is due to geological processes and events. The frequency and magnitude of slope failure also increased due to anthropogenic activities such as road construction, deforestation and urban expansion. Keeping all these problems in mind research focuses on the Lesser Himalaya of Himachal Himalaya as it falls under very high risk zone in case of landslides and comprise of three objectives. They are: a to analyse the spatial pattern of landslides in the Lesser Himalaya, b to assess the causes of landslides vulnerability in the study region and c to suggests some preventive measures to mitigate landslides. In this work an attempt has been made to collect data on landslides incidences and damage from the secondary sources like Geological Survey of India, Building Material and Technology Promotion council from Ministry of Urban Affairs. The methodologies adopted for data analysis are simple tabulations, bar diagrams, statistical and mapping techniques to represent the Landslide vulnerability of the Lesser Himalaya. The analysis of the study reveals that there is increase in the number of landslides. The spatial pattern of landslide shows linear patterns, viz. along roads, rivers or lineaments/ faults. Besides, heavy rainfall, floods and earthquakes enhance the vulnerability condition. The landslides may be part and parcel of the Himalayan landscape, but they can be mitigated by some suitable measures. Few methods of landslide prevention in the study region have been suggested.

  2. Seismicity and seismotectonics of southern Ghana: lessons for seismic hazard mitigation

    Science.gov (United States)

    Amponsah, Paulina

    2014-05-01

    Ghana is located on the West African craton and is far from the major earthquake zone of the world. It is therefore largely considered a stable region. However, the southern part of the country is seismically active. Records of damaging earthquakes in Ghana date as far back as 1615. A study on the microseismic activity in southern Ghana shows that the seismic activity is linked with active faulting between the east-west trending Coastal boundary fault and a northeast-southwest trending Akwapim fault zone. Epicentres of most of the earthquakes have been located close to the area where the two major faults intersect. This can be related to the level of activity of the faults. Some of the epicentres have been located offshore and can be associated with the level of activity of the coastal boundary fault. A review of the geological and instrumental recordings of earthquakes in Ghana show that earthquakes have occurred in the past and are still liable to occur within the vicinity of the intersection of the Akwapim fault zone and the Coastal boundary fault. Data from both historical and instrumental records indicate that the most seismically active areas in Ghana are the west of Accra, where the Akwapim fault zone and the Coastal boundary fault intersect. There are numerous minor faults in the intersection area between the Akwapim fault zone and the Coastal boundary fault. This mosaic of faults has a major implication for seismic activity in the area. Earthquake disaster mitigation measures are being put in place in recent times to reduce the impact of any major event that may occur in the country. The National Disaster Management Organization has come out with a building guide to assist in the mitigation effort of earthquake disasters and floods in the country. The building guide clearly stipulates the kind of material to be used, the proportion, what should go into the foundation for one or two storey building, the electrical materials to be used and many others.

  3. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  4. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    de la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  5. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-02-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System (VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green-yellow-red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  6. Smart Oceans BC: Supporting Coastal and Ocean Natural Hazards Mitigation for British Columbia

    Science.gov (United States)

    Moran, K.; Insua, T. L.; Pirenne, B.; Hoeberechts, M.; McLean, S.

    2014-12-01

    Smart Oceans BC is a new multi-faceted program to support decision-makers faced with responding to natural disasters and hazards in Canada's Province of British Columbia. It leverages the unique capabilities of Ocean Networks Canada's cabled ocean observatories, NEPTUNE and VENUS to enhance public safety, marine safety and environmental monitoring. Smart Oceans BC combines existing and new marine sensing technology with its robust data management and archive system, Oceans 2.0, to deliver information and science for good ocean management and responsible ocean use. Smart Oceans BC includes new ocean observing infrastructure for: public safety, through natural hazard detection for earthquake groundshaking and near-field tsunamis; marine safety, by monitoring and providing alerts on sea state, ship traffic, and marine mammal presence; and environmental protection, by establishing baseline data in critical areas, and providing real-time environmental observations. Here we present the elements of this new ocean observing initiative that are focused on tsunami and earthquake early warning including cabled and autonomous sensor systems, real-time data delivery, software developments that enable rapid detection, analytics used in notification development, and stakeholder engagement plans.

  7. Natural Hazards and Mitigation Measures in USA%美国的自然灾害和防灾减灾

    Institute of Scientific and Technical Information of China (English)

    吴佳尔

    2009-01-01

    美国是一个自然灾害多发国家,整个西部、中部和东部是地震活跃地区,南部沿海地区遭受飓风袭击,干旱和洪水也非常严重.由于对公共安全的重视,许多自然灾害并未造成严重的人员伤害.例如,1994年北加州地震袭击了人口稠密的洛杉矶地区,人员伤亡仅61人.文章讨论了美国的自然灾害,并认为长期的防灾工作是非常必要的.%Natural disasters frequently happers in U.S.A.,frequent earthquakes in the whole western, central and eastern pant, hurricanes in the costal area in the south, and serious drought and floods. Because public security was paid great attention to,many to natural disasters didit cause heary casualties. For example, 61 died in the northern califoria earthquake in 1994 which atlacked populous Los Angeles.This paper discusses the presence of natural hazards in the US and the response measures that the author believes are keys to the long-term hazard mitigation.

  8. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Stewart, Carol; Wilson, Thomas M.; Procter, Jonathan N.; Scott, Bradley J.; Keys, Harry J.; Jolly, Gill E.; Wardman, Johnny B.; Cronin, Shane J.; McBride, Sara K.

    2014-10-01

    New Zealand's Tongariro National Park volcanoes produce hazardous eruptions every few years to decades. On 6 August 2012 the Te Maari vent of Tongariro Volcano erupted, producing a series of explosions and a fine ash of minor volume which was dispersed rapidly to the east. This manuscript presents a summary of the eruption impacts and the way these supported science communication during the crisis, particularly in terms of hazard map development. The most significant proximal impact was damage from pyroclastic surges and ballistics to the popular and economically-important Tongariro Alpine Crossing track. The only hazard to affect the medial impact zone was a few mms of ashfall with minor impacts. Field testing indicated that the Te Maari ash had extremely low resistivity when wetted, implying a very high potential to cause disruption to nationally-important power transmission networks via the mechanism of insulator flashover. This was not observed, presumably due to insufficient ash accumulation on insulators. Virtually no impacts from distal ashfall were reported. Post-event analysis of PM10 data demonstrates the additional value of regional air quality monitoring networks in quantifying population exposure to airborne respirable ash. While the eruption was minor, it generated a high level of public interest and a demand for information on volcanic hazards and impacts from emergency managers, the public, critical infrastructure managers, health officials, and the agriculture sector. Meeting this demand fully taxed available resources. We present here aspects of the New Zealand experience which may have wider applicability in moving towards improved integration of hazard impact information, mapping, and communication. These include wide use of a wiki technical clearinghouse and email listservs, a focus on multi-agency consistent messages, and a recently developed environment of collaboration and alignment of both research funding and technical science advice

  9. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    Science.gov (United States)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  10. Novel bio-inspired smart control for hazard mitigation of civil structures

    Science.gov (United States)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  11. The Relative Severity of Single Hazards within a Multi-Hazard Framework

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2013-04-01

    Here we present a description of the relative severity of single hazards within a multi-hazard framework, compiled through examining, quantifying and ranking the extent to which individual hazards trigger or increase the probability of other hazards. Hazards are broken up into six major groupings (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space), with the interactions for 21 different hazard types examined. These interactions include both one primary hazard triggering a secondary hazard, and one primary hazard increasing the probability of a secondary hazard occurring. We identify, through a wide-ranging review of grey- and peer-review literature, >90 interactions. The number of hazard-type linkages are then summed for each hazard in terms of their influence (the number of times one hazard type triggers another type of hazard, or itself) and their sensitivity (the number of times one hazard type is triggered by other hazard types, or itself). The 21 different hazards are then ranked based on (i) influence and (ii) sensitivity. We found, by quantification and ranking of these hazards, that: (i) The strongest influencers (those triggering the most secondary hazards) are volcanic eruptions, earthquakes and storms, which when taken together trigger almost a third of the possible hazard interactions identified; (ii) The most sensitive hazards (those being triggered by the most primary hazards) are identified to be landslides, volcanic eruptions and floods; (iii) When sensitivity rankings are adjusted to take into account the differential likelihoods of different secondary hazards being triggered, the most sensitive hazards are found to be landslides, floods, earthquakes and ground heave. We believe that by determining the strongest influencing and the most sensitive hazards for specific spatial areas, the allocation of resources for mitigation measures might be done more effectively.

  12. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W.

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  13. Educational Approach to Seismic Risk Mitigation in Indian Himalayas -Hazard Map Making Workshops at High Schools-

    Science.gov (United States)

    Koketsu, K.; Oki, S.; Kimura, M.; Chadha, R. K.; Davuluri, S.

    2014-12-01

    How can we encourage people to take preventive measures against damage risks and empower them to take the right actions in emergencies to save their lives? The conventional approach taken by scientists had been disseminating intelligible information on up-to-date seismological knowledge. However, it has been proven that knowledge alone does not have enough impact to modify people's behaviors in emergencies (Oki and Nakayachi, 2012). On the other hand, the conventional approach taken by practitioners had been to conduct emergency drills at schools or workplaces. The loss of many lives from the 2011 Tohoku earthquake has proven that these emergency drills were not enough to save people's lives, unless they were empowered to assess the given situation on their own and react flexibly. Our challenge is to bridge the gap between knowledge and practice. With reference to best practices observed in Tohoku, such as The Miracles of Kamaishi, our endeavor is to design an effective Disaster Preparedness Education Program that is applicable to other disaster-prone regions in the world, even with different geological, socio-economical and cultural backgrounds. The key concepts for this new approach are 1) empowering individuals to take preventive actions to save their lives, 2) granting community-based understanding of disaster risks and 3) building a sense of reality and relevancy to disasters. With these in mind, we held workshops at some high schools in the Lesser Himalayan Region, combining lectures with an activity called "Hazard Map Making" where students proactively identify and assess the hazards around their living areas and learn practical strategies on how to manage risks. We observed the change of awareness of the students by conducting a preliminary questionnaire survey and interviews after each session. Results strongly implied that the significant change of students' attitudes towards disaster preparedness occurred not by the lectures of scientific knowledge, but

  14. Natural Hazard Mitigation Strategies in the Continental Caribbean: The Case of Belize

    Directory of Open Access Journals (Sweden)

    Kareem M. Usher

    2008-02-01

    Full Text Available La petite nation de Belize est nichée au cœur de l’Amérique Centrale, bordée au nord par le Mexique, à l'ouest et au sud par le Guatemala ; la mer Caraïbe constituant sa frontière orientale. Situé sur la trajectoire des cyclones tropicaux atlantiques, le pays est exposé aux catastrophes atmosphériques. Parmi les plus notables dans l’histoire de Bélize : l'ouragan de 1931 et l'ouragan Hattie qui ont fait 275 victimes et causé des dommages évalués à plus de 1 milliard de dollars. En réponse, le pays a mis en place diverses politiques responsables et inédites visant la réduction des risques afin de sauvegarder sa population et de protéger l’essor du tourisme. Malgré ces efforts, la majorité des populations côtières demeure vulnérable aux ouragans et aux inondationsThe small nation of Belize is nestled on the Central American Continent bounded on its north by Mexico, the west and south by Guatemala and the Caribbean Sea on its eastern border.  Located in the path of Atlantic Tropical Cyclones, the country is susceptible to atmospheric disasters.  Most notably are the Hurricane of 1931 and Hurricane Hattie which claimed 275 lives and caused damages in excess of US$1 Billion. Consequently, Belize has implemented several responsible and original mitigation policies to safeguard its population and protect the bourgeoning tourism industry. In spite of those efforts, most of its coastal populations remain vulnerable to hurricanes and floods.

  15. On the asteroid-comet hazard mitigation problem for the earth

    Institute of Scientific and Technical Information of China (English)

    V V Ivashkin

    2003-01-01

    In frame of the asteroid-comet hazard problem study, a qualitative analysis of some methods for the effect on a celestial near-Earth object (NEO) -an asteroid, a comet - is carried out. The goal of the effect is a correction of this object' s orbit, its deflection from the Earth to prevent their collision. There are studied a mechanical impact-kinetic effect of the spacecraft ( SC), a thermonuclear effect, an effect on a cometary nucleus for a controlled change of its dusty mantle and, therefore, its sublimation activity. Qualitative models of these effects are developed. Numerical analysis results are given for a group of NEOs such as some asteroids from the Apollo family (Apollo, Castalia, Nereus, Orpheus, Phaethon, Toutatis, etc. ) and from the Aten family (Aten, Hathor, Khufu, etc. ) as well as some short-periodic comets like the comet P/Biela. There are studied some characteristics of the effects on the NEOs such as the velocity impulse ( or acceleration) applied to the celestial body, its deflection from the Earth. The study is supported by the Russian Foundation of Basic Studies (Grant N 01-01-00133).

  16. Scientific Animations for Tsunami Hazard Mitigation: The Pacific Tsunami Warning Center's YouTube Channel

    Science.gov (United States)

    Becker, N. C.; Wang, D.; Shiro, B.; Ward, B.

    2013-12-01

    Outreach and education save lives, and the Pacific Tsunami Warning Center (PTWC) has a new tool--a YouTube Channel--to advance its mission to protect lives and property from dangerous tsunamis. Such outreach and education is critical for coastal populations nearest an earthquake since they may not get an official warning before a tsunami reaches them and will need to know what to do when they feel strong shaking. Those who live far enough away to receive useful official warnings and react to them, however, can also benefit from PTWC's education and outreach efforts. They can better understand a tsunami warning message when they receive one, can better understand the danger facing them, and can better anticipate how events will unfold while the warning is in effect. The same holds true for emergency managers, who have the authority to evacuate the public they serve, and for the news media, critical partners in disseminating tsunami hazard information. PTWC's YouTube channel supplements its formal outreach and education efforts by making its computer animations available 24/7 to anyone with an Internet connection. Though the YouTube channel is only a month old (as of August 2013), it should rapidly develop a large global audience since similar videos on PTWC's Facebook page have reached over 70,000 viewers during organized media events, while PTWC's official web page has received tens of millions of hits during damaging tsunamis. These animations are not mere cartoons but use scientific data and calculations to render graphical depictions of real-world phenomena as accurately as possible. This practice holds true whether the animation is a simple comparison of historic earthquake magnitudes or a complex simulation cycling through thousands of high-resolution data grids to render tsunami waves propagating across an entire ocean basin. PTWC's animations fall into two broad categories. The first group illustrates concepts about seismology and how it is critical to

  17. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    Science.gov (United States)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  18. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy)

    Science.gov (United States)

    Della Seta, Marta; Marotta, Enrica; Orsi, Giovanni; de Vita, Sandro; Sansivero, Fabio; Fredi, Paola

    2012-01-01

    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island's coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.

  19. "Curso de Vulcanología General": Web-education efforts on volcanic hazards for the Latin American region from Mexico.

    Science.gov (United States)

    Delgado, Hugo

    2016-04-01

    Education of volcanic hazards is a never-ending task in countries where volcanoes erupt very frequently as they do in the Latin American region (LAR). Eleven countries in the LAR have active volcanoes within their territories and some volcanoes are located in between countries so the volcanic hazards associated to the eruption of those volcanoes affect more than one country. Besides, countries without volcanoes within their territory (i. e. Belize, Honduras or Brazil) can be impacted as well. Personnel working at several volcano observatories in the LAR need training in Volcanology and, more importantly, in Volcanic Hazards. Unfortunately, Volcanology is a discipline that is not taught at universities of some countries. Even worse, Earth Sciences are not even taught at high education centers in some countries of the LAR. Thus, there is an important need for the acquisition of volcanological knowledge by the personnel working at volcano observatories but there are no possibilities for them to study at their countries or they are impended for travel abroad for training. The international course: "Curso de Vulcanología General" taught from Mexico City at the Universidad Nacional Autónoma de México (UNAM) has been successfully implemented and has been active over the last five years. Nearly 700 students have participated in this course although only ~150 have been awarded the certificate UNAM grants to the students who have concluded the course successfully. This course has been sponsored by UNAM, ALVO (Latin American Volcanological Association) and IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior). More than 50 lecturers from LAR, Europe and US have been involved in these courses. Here, Reflections on the course, the opportunities sparkled, the educational tools, benefits, statistics and virtues of the course are presented.

  20. Gas emission from diffuse degassing structures (DDS) of the Cameroon volcanic line (CVL): Implications for the prevention of CO2-related hazards

    Science.gov (United States)

    Issa; Ohba, T.; Chako Tchamabé, B.; Padrón, E.; Hernández, P.; Eneke Takem, E. G.; Barrancos, J.; Sighomnoun, D.; Ooki, S.; Nkamdjou, Sigha; Kusakabe, M.; Yoshida, Y.; Dionis, S.

    2014-08-01

    In the mid-1980s, lakes Nyos and Monoun violently released massive gas, mainly magmatic CO2 killing about 1800 people. Subsequent geochemical surveys and social studies indicate that lakes Nyos and Monoun event is cyclic in nature and may occur anywhere in the about 37 other volcanic lakes located in the corridor of the Cameroon volcanic line (CVL). This potential threat motivated us to check if, alike Nyos and Monoun, the internal dynamic of the other lakes is also controlled by inputs of deep-seated-derived CO2 and attempt to measure and provide comprehensive insights on the passive gas emission along the CVL. This knowledge shall contribute to the prevention of volcanic lake-related hazards in Cameroon and the refinement of the Global Carbon Cycle. We used in situ fixation and dry gas phase sampling methods to determine CO2 origin and the concentration, and the accumulation chamber technique to measure diffuse CO2 emission from nine lakes and on soil at Nyos Valley and Mount Manenguba Caldera. The results suggest that, although in minor concentrations (compared to Nyos and Monoun), ranging from 0.56 mmol kg- 1 to 8.75 mmol kg- 1, the bottom waters of some lakes also contain measurable magmatic CO2 with δ13C varies from - 4.42‰ to - 9.16‰ vs. PDB. That finding implies that, under certain circumstances, e.g. increase to volcanic and/or tectonic activities along the CVL, the concerned lakes could develop a Nyos-type behavioural scheme. The diffuse gas emission results indicate that the nine surveyed lakes release approximately 3.69 ± 0.37 kt km- 2 yr- 1 of CO2 to the atmosphere; extrapolation to the approximately 39 volcanic lakes located on the CVL yields an approximate CO2 output of 27.37 ± 0.5 kt km- 2 yr- 1, representing 0.023% of the global CO2 output from volcanic lakes. In addition to the precedent value, the gas removal operation in lakes Nyos and Monoun released approximately 2.52 ± 0.46 × 108 mol km- 2 yr- 1 CO2 to the atmosphere from January

  1. 防洪减灾GIS常用功能需求浅议%Analysis on GIS Functions for Flood Hazard Mitigation

    Institute of Scientific and Technical Information of China (English)

    李昌志; 姜晓明

    2013-01-01

    According to the map construction , flood simulation , flood risk assessment and flood control management , this paper analy-zes the GIS functions for flood hazard mitigation and the attainment of common GIS software for these functions .Finally, it looks pros-pect of GIS functions and flood hazard mitigation .%从图件绘制、洪水模拟、洪水风险评价、防洪管理等方面分析了防洪减灾对地理信息系统( GIS )的功能需求;进而分析了现有常见GIS软件对这些功能的实现程度;最后,展望了GIS功能研发与防洪减灾的前景。

  2. Hazard Mitigation Grants - API

    Data.gov (United States)

    Department of Homeland Security — The dataset contains funded (financial obligation to grantee) open projects still under pre-obligation processing are not represented. This is raw, unedited data...

  3. Assisted Living Facilities, Locations of Assisted Living Facilities identifed visually and placed on the Medical Multi-Hazard Mitigation layer., Published in 2006, 1:1200 (1in=100ft) scale, Noble County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Assisted Living Facilities dataset current as of 2006. Locations of Assisted Living Facilities identifed visually and placed on the Medical Multi-Hazard Mitigation...

  4. Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)

    Science.gov (United States)

    Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto

    2014-05-01

    Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. On the other hand the use of acoustic emission records has been often a good tool in underground mining for slope monitoring. Here we aim to identify the characteristic signs of impending failure, by deploying a "site specific" microseismic monitoring system on an unstable patch of the Madonna del Sasso landslide on the Italian Western Alps designed to monitor subtle changes of the mechanical properties of the medium and installed as close as possible to the source region. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design the monitoring systems to be placed. Stability analysis showed that the stability of the slope is due to rock bridges. Their failure progress can results in a global slope failure. Consequently the rock bridges potentially generating dynamic ruptures need to be monitored. A first array consisting of instruments provided by University of Turin, has been deployed on October 2013, consisting of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger arranged in a 'large aperture' configuration which encompasses the entire unstable rock mass. Preliminary data indicate the occurrence of microseismic swarms with different spectral contents. Two additional geophones and 4 triaxial piezoelectric accelerometers able to operate at frequencies up to 23 KHz will be installed during summer 2014. This will allow us to develop a network capable of recording events with Mw < 0.5 and frequencies between 700 Hz and 20 kHz. Rock physical and mechanical characterization along with rock deformation laboratory experiments during which the evolution of related physical parameters under

  5. Fusion of High-Rate GPS and Seismic Data: Applications to Early Warning Systems for Mitigation of Geological Hazards

    Science.gov (United States)

    Bock, Y.; Crowell, B.; Webb, F.; Kedar, S.; Clayton, R.; Miyahara, B.

    2008-12-01

    We discuss the fusion of low-latency (1 s) high-rate (1 Hz or greater) CGPS displacements and traditional seismic data, in order to extend the frequency range and timeliness of surface displacement data already available at lower frequencies from space borne InSAR and (typically daily) CGPS coordinate time series. The goal is development of components of early warning systems for mitigation of geological hazards (direct seismic damage, tsunamis, landslides, volcanoes). The advantage of the GPS data is that it is a direct measurement of ground displacement. With seismic data, this type of measure has to be obtained by deconvolution of the instrument response and integration of the broadband (velocity) measurements, or a double integration of the strong motion (acceleration) measurements. Due to the bandwidth and the dynamic range limits of seismometers the accuracy of absolute displacements so derived is poor. This problem is not present in the high-sample rate GPS data. While the seismic measurement provides a powerful constraint on the much noisier GPS measurements, unlike the seismometer, the GPS receiver never clips. Using the Network for Earthquake Engineering Simulation (NEES) Large High-Performance Outdoor Shake Table at USCD, we present an example of combining in real-time 50 Hz GPS displacements and 250 Hz raw accelerometer data using a multi-rate Kalman filter, previously applied to bridge monitoring. A full-scale 7- story building atop the shake table was subjected to high intensity shaking by replaying the Sylmar accelerometer record from the Mw 6.7 1994 Northridge earthquake. The resulting 250 Hz displacement waveform is significantly more accurate than obtained solely by low-pass filtering and double integration of the 250 Hz accelerometer records. Next we demonstrate the elements of an earthquake early warning system by analyzing the 2003 Mw 8.3 Tokachi-Oki thrust earthquake off Hokkaido Island detected by the dense Japan national real-time CGPS

  6. Identifying hazard parameter to develop quantitative and dynamic hazard map of an active volcano in Indonesia

    Science.gov (United States)

    Suminar, Wulan; Saepuloh, Asep; Meilano, Irwan

    2016-05-01

    Analysis of hazard assessment to active volcanoes is crucial for risk management. The hazard map of volcano provides information to decision makers and communities before, during, and after volcanic crisis. The rapid and accurate hazard assessment, especially to an active volcano is necessary to be developed for better mitigation on the time of volcanic crises in Indonesia. In this paper, we identified the hazard parameters to develop quantitative and dynamic hazard map of an active volcano. The Guntur volcano in Garut Region, West Java, Indonesia was selected as study area due population are resided adjacent to active volcanoes. The development of infrastructures, especially related to tourism at the eastern flank from the Summit, are growing rapidly. The remote sensing and field investigation approaches were used to obtain hazard parameters spatially. We developed a quantitative and dynamic algorithm to map spatially hazard potential of volcano based on index overlay technique. There were identified five volcano hazard parameters based on Landsat 8 and ASTER imageries: volcanic products including pyroclastic fallout, pyroclastic flows, lava and lahar, slope topography, surface brightness temperature, and vegetation density. Following this proposed technique, the hazard parameters were extracted, indexed, and calculated to produce spatial hazard values at and around Guntur Volcano. Based on this method, the hazard potential of low vegetation density is higher than high vegetation density. Furthermore, the slope topography, surface brightness temperature, and fragmental volcanic product such as pyroclastics influenced to the spatial hazard value significantly. Further study to this proposed approach will be aimed for effective and efficient analyses of volcano risk assessment.

  7. Assessing the Relationship Between Hazard Mitigation Plan Quality and Rural Status in a Cohort of 57 Counties from 3 States in the Southeastern U.S.

    Directory of Open Access Journals (Sweden)

    David Salvesen

    2012-08-01

    Full Text Available Rural counties face unique challenges with regard to disaster vulnerability and resilience. We compared the quality of hazard mitigation plans (HMPs completed in accordance with provisions of the Disaster Mitigation Act of 2000 from 21 urban and 36 rural counties in three southeastern states. HMPs were content analyzed to calculate a score for six principles of plan quality. Generalized linear models were used to assess how the mean number of items within each of the six principles was related to urban status, adjusting for total county population and state-level differences. Adjusted mean ratios were higher in urban areas for goals, fact base, policies and participation. Rural areas performed better than urban counterparts in both implementation and monitoring and inter-organizational coordination. Our results suggest that there are important differences in hazard mitigation plan quality between urban and rural counties. Future research should explore characteristics of urban and rural counties that explain the observed differences, and whether such differences can help explain the inequalities in response and recovery to disasters between urban and rural counties.

  8. The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation – a review of current knowledge and practice

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-07-01

    Full Text Available Questionnaires are popular and fundamental tools for acquiring information on public knowledge and perception of natural hazards. Questionnaires can provide valuable information to emergency management agencies for developing risk management procedures. Although many natural hazards researchers describe results generated from questionnaires, few explain the techniques used for their development and implementation. Methodological detail should include, as a minimum, response format (open/closed questions, mode of delivery, sampling technique, response rate and access to the questionnaire to allow reproduction of or comparison with similar studies. This article reviews current knowledge and practice for developing and implementing questionnaires. Key features include questionnaire design, delivery mode, sampling techniques and data analysis. In order to illustrate these aspects, a case study examines methods chosen for the development and implementation of questionnaires used to obtain information on knowledge and perception of volcanic hazards in a tourist region in southern Iceland. Face-to-face interviews highlighted certain issues with respect to question structure and sequence. Recommendations are made to overcome these problems before the questionnaires are applied in future research projects. In conclusion, basic steps that should be disclosed in the literature are provided as a checklist to ensure that reliable, replicable and valid results are produced from questionnaire based hazard knowledge and risk perception research.

  9. Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation

    Science.gov (United States)

    Sulpizio, Roberto; Folch, Arnau; Costa, Antonio; Scaini, Chiara; Dellino, Pierfrancesco

    2012-11-01

    Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallajökull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38 %) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7 days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2 mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallajökull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment

  10. Numerical Simulation and Probabilistic Hazard Assessment of Tephra Fallout at Jinlongdingzi Volcano, Longgang Volcanic Field in Jilin Province%龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估

    Institute of Scientific and Technical Information of China (English)

    于红梅; 许建东; 吴建平; 栾鹏; 赵波

    2013-01-01

    空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法.本文根据改进的Suzuki (1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序.通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性.根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图.本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据.%Tephra fallout is an important type of hazard caused by explosive volcanic eruption. Numerical simulation has become a fast and effective approach to assess the dispersion and deposition of tephra fallout. According to a modified 2D diffusion model of Suzuki (1983), we develop a tephra diffusion program that can run in Windows system. Based on previous data, we simulated the diffusion scope of Jinlongdingzi volcanic eruption, which is the latest eruption in Longgang volcanic field. The simulated results are in good agreement with the results from measurement in situ, indicating that the model is reliable and the parameters used in the model are suitable. By using wind profiles of ten years, 7021 simulations under different wind profile were carried out, and then probabilistic hazard maps of tephra fallout were constructed for tephra thickness thresholds of 1 cm and 0.5 cm. This study can provide an important scientific basis to the volcanic hazard analysis and risk mitigation plans countermeasure in Longgang volcanic area.

  11. A Decade of Volcanic Observations from Aura and the A-Train

    Science.gov (United States)

    Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer

    2014-01-01

    Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.

  12. Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation

    Directory of Open Access Journals (Sweden)

    Carolin Klonner

    2016-06-01

    Full Text Available With the rise of new technologies, citizens can contribute to scientific research via Web 2.0 applications for collecting and distributing geospatial data. Integrating local knowledge, personal experience and up-to-date geoinformation indicates a promising approach for the theoretical framework and the methods of natural hazard analysis. Our systematic literature review aims at identifying current research and directions for future research in terms of Volunteered Geographic Information (VGI within natural hazard analysis. Focusing on both the preparedness and mitigation phase results in eleven articles from two literature databases. A qualitative analysis for in-depth information extraction reveals auspicious approaches regarding community engagement and data fusion, but also important research gaps. Mainly based in Europe and North America, the analysed studies deal primarily with floods and forest fires, applying geodata collected by trained citizens who are improving their knowledge and making their own interpretations. Yet, there is still a lack of common scientific terms and concepts. Future research can use these findings for the adaptation of scientific models of natural hazard analysis in order to enable the fusion of data from technical sensors and VGI. The development of such general methods shall contribute to establishing the user integration into various contexts, such as natural hazard analysis.

  13. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  14. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  15. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps

    Science.gov (United States)

    Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano

    2015-04-01

    Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.

  16. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    Science.gov (United States)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars

  17. Mega-Tsunami of 26th December, 2004: Indian initiative for early warning system and mitigation of oceanogenic hazards

    Institute of Scientific and Technical Information of China (English)

    HarshGupta

    2005-01-01

    The 26th December 2004 earthquake of Mw 9.3 is the second largest earthquake ever to have been recorded.This generated a tsunami which affected several Asian countries. In India, the Andaman & Nicobar group of islands, and coastal states of Tamil Nadu, Andhra Pradesh and Kerala were severely affected. Here, we briefly provide an outline of the approach taken by India for an early warning system for mitigation of oceanogenic disasters.

  18. Multivariate factorial analysis to design a robust batch leaching test to assess the volcanic ash geochemical hazard.

    Science.gov (United States)

    Ruggieri, Flavia; Gil, Raúl A; Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Gimeno, Domingo; Lobo, Agustin; Martinez, Luis D; Rodriguez-Gonzalez, Alejandro

    2012-04-30

    A method to obtain robust information on short term leaching behaviour of volcanic ashes has been developed independently on the sample age. A mixed factorial design (MFD) was employed as a multivariate strategy for the evaluation of the effects of selected control factors and their interactions (amount of sample (A), contact time (B), and liquid to solid ratio or L/S (C)) on the leaching process of selected metals (Na, K, Mg, Ca, Si, Al, V, Mn, Fe, and Co) and anions (Cl(-) and SO(4)(2-)). Box plots of the data acquired were used to evaluate the reproducibility achieved at different experimental conditions. Both the amount of sample (A) and leaching time (B) had a significant effect on the element stripping whereas the L/S ratio influenced only few elements. The lowest dispersion values have been observed when 1.0 g was leached with an L/S ratio equal to 10, shaking during 4 h. The entire method is completed within few hours, and it is simple, feasible and reliable in laboratory conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A complex geo-scientific strategy for landslide hazard mitigation ─ from airborne mapping to ground monitoring

    Directory of Open Access Journals (Sweden)

    W. Jaritz

    2008-01-01

    Full Text Available After a large landslide event in Sibratsgfäll/Austria several exploration methods were evaluated on their applicability to investigate and monitor landslide areas. The resulting optimised strategy consists of the combined application of airborne electromagnetics, ground geoelectrical measurements and geoelectrical monitoring combined with hydrological and geological mapping and geotechnical modelling. Interdisciplinary communication and discussion was the primary key to assess this complicated hazard situation.

  20. Mitigation of hazards from future lahars from Mount Merapi in the Krasak River channel near Yogyakarta, central Java

    Science.gov (United States)

    Ege, John R.; ,

    1983-01-01

    Procedures for reducing hazards from future lahars and debris flows in the Krasak River channel near Yogyakarta, Central Java, Indonesia, include (1) determining the history of the location, size, and effects of previous lahars and debris flows, and (2) decreasing flow velocities. The first may be accomplished by geologic field mapping along with acquiring information by interviewing local residents, and the second by increasing the cross sectional area of the river channel and constructing barriers in the flow path.

  1. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  2. Natural hazards and motivation for mitigation behavior: people cannot predict the affect evoked by a severe flood.

    Science.gov (United States)

    Siegrist, Michael; Gutscher, Heinz

    2008-06-01

    Past research indicates that personal flood experience is an important factor in motivating mitigation behavior. It is not fully clear, however, why such experience is so important. This study tested the hypothesis that people without flooding experience underestimate the negative affect evoked by such an event. People who were affected by a severe recent flood disaster were compared with people who were not affected, but who also lived in flood-prone areas. Face-to-face interviews with open and closed questions were conducted (n= 201). Results suggest that people without flood experience envisaged the consequences of a flood differently from people who had actually experienced severe losses due to a flood. People who were not affected strongly underestimated the negative affect associated with a flood. Based on the results, it can be concluded that risk communication must not focus solely on technical aspects; in order to trigger motivation for mitigation behavior, successful communication must also help people to envisage the negative emotional consequences of natural disasters.

  3. Human uses of forested watersheds and riparian corridors: hazard mitigation as an ecosystem service, with examples from Panama, Puerto Rico, and Venezuela

    Science.gov (United States)

    Larsen, M. C.

    2015-12-01

    Humans have long favored settlement along rivers for access to water supply for drinking and agriculture, for transport corridors, and for food sources. Additionally, settlement in or near montane forests include benefits such as food sources, wood supply, esthetic values, and high quality water resources derived from watersheds where upstream human disturbance and environmental degradation is generally reduced. However, the advantages afforded by these riparian and montane settings pose episodic risks for communities located there as floods, landslides, and wildfires cause loss of life, destroy infrastructure, and damage or destroy crops. A basic understanding of flood probability and magnitude as well as hillslope stability by residents in these environments can mitigate these risks. Early humans presumably developed some degree of knowledge about these risks by means of their long periods of occupation in these environments and their observations of seasonal and storm rainfall patterns and river discharge, which became more refined as agriculture developed over the past 10,000 years. Modern global urbanization, particularly in regions of rapid economic growth, has resulted in much of this "organic" knowledge being lost, as rural populations move into megacities, many of which encroach on floodplains and mountain fronts. Moreover, the most likely occupants of these hazardous locations are often economically constrained, increasing their vulnerabity. Effective stewardship of river floodplains and upstream montane forests yields a key ecosystem service, which in addition to the well-known services, ie. water, hydroelectric energy, etc., provides a risk mitigation service, by reducing hazard and vulnerability. Puerto Rico, Panama, and Venezuela illustrate a range of practices and results, providing useful examples for planners and land use managers.

  4. Effects of stand-off bursts on rubble-pile targets: Evaluation of a hazardous asteroid mitigation strategy

    Science.gov (United States)

    Korycansky, D. G.; Plesko, C. S.

    2012-04-01

    We explore the aftereffects of stand-off burst mitigation on kilometer-scale rubble pile asteroids. We use a simple model of X-ray energy deposition to calculate the impulse transferred to the target, in particular to burst-facing blocks on the target surface. The impulse allows us to estimate an initial velocity field for the blocks on the outer side of the target facing the burst. We model the dynamics using an N-body polyhedron program built on the Open Dynamics Engine, a "physics engine" that integrates the dynamical equations for objects of general shapes and includes collision detection, friction, and dissipation. We tested several different models for target objects: rubble piles with different mass distributions, a "brick-pile" made of closely fitting blocks and zero void space, and a non-spherical "contact binary" rubble pile. Objects were bound together by self-gravity and friction/inelastic restitution with no other cohesive forces. Our fiducial cases involved objects of m=3.5×1012 kg (corresponding to a radius of 0.7 km for the bulk object), an X-ray yield of 1 megaton, and stand-off burst distances of R=0.8-2.5 km from the target center of mass. Kilometer-scale rubble piles are robust to stand-off bursts of a yield (Y˜1 megaton) that would be sufficient to provide an effective velocity change (Δv˜0.05ms-1). Disaggregation involving some tens of percent of the target mass happens immediately after the impulse; the bulk of the object re-accretes on a few gravitational timescales, and the final deflected target contains over 95% (typically, 98-99%) of the original mass. Off-center components of the mitigation impulse and the target mass distribution cause a small amount of induced spin and off-axis components of velocity change. The off-axis velocity component amounts to an angular deviation of ˜ 0.05-0.1 radians from the nominal impulse vector, which may be important for mitigation planning.

  5. Modeling lahar behavior and hazards

    Science.gov (United States)

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  6. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-08-26

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10{sup -8} dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  7. Rockslide susceptibility and hazard assessment for mitigation works design along vertical rocky cliffs: workflow proposal based on a real case-study conducted in Sacco (Campania), Italy

    Science.gov (United States)

    Pignalosa, Antonio; Di Crescenzo, Giuseppe; Marino, Ermanno; Terracciano, Rosario; Santo, Antonio

    2015-04-01

    The work here presented concerns a case study in which a complete multidisciplinary workflow has been applied for an extensive assessment of the rockslide susceptibility and hazard in a common scenario such as a vertical and fractured rocky cliffs. The studied area is located in a high-relief zone in Southern Italy (Sacco, Salerno, Campania), characterized by wide vertical rocky cliffs formed by tectonized thick successions of shallow-water limestones. The study concerned the following phases: a) topographic surveying integrating of 3d laser scanning, photogrammetry and GNSS; b) gelogical surveying, characterization of single instabilities and geomecanichal surveying, conducted by geologists rock climbers; c) processing of 3d data and reconstruction of high resolution geometrical models; d) structural and geomechanical analyses; e) data filing in a GIS-based spatial database; f) geo-statistical and spatial analyses and mapping of the whole set of data; g) 3D rockfall analysis; The main goals of the study have been a) to set-up an investigation method to achieve a complete and thorough characterization of the slope stability conditions and b) to provide a detailed base for an accurate definition of the reinforcement and mitigation systems. For this purposes the most up-to-date methods of field surveying, remote sensing, 3d modelling and geospatial data analysis have been integrated in a systematic workflow, accounting of the economic sustainability of the whole project. A novel integrated approach have been applied both fusing deterministic and statistical surveying methods. This approach enabled to deal with the wide extension of the studied area (near to 200.000 m2), without compromising an high accuracy of the results. The deterministic phase, based on a field characterization of single instabilities and their further analyses on 3d models, has been applied for delineating the peculiarity of each single feature. The statistical approach, based on geostructural

  8. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.

    Science.gov (United States)

    Scheckel, Kirk G; Diamond, Gary L; Burgess, Michele F; Klotzbach, Julie M; Maddaloni, Mark; Miller, Bradley W; Partridge, Charles R; Serda, Sophia M

    2013-01-01

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils conducted in humans and animal models. Practical implementation issues, such as criteria and methods for evaluating efficacy, and potential effects of phosphate on mobility and bioavailability of co-contaminants in soil are also discussed.

  9. Basaltic lava characterization using magnetic susceptibility identification and presence of opaque minerals in Ijen volcanic complex, Banyuwangi, East Java

    Science.gov (United States)

    Pratama, Aditya; Hafidz, Abd.; Bijaksana, Satria; Abdurrachman, Mirzam

    2017-07-01

    Reliable volcanic map and deep understanding of magmatic processes are very important in exploration of natural resources and mitigation of volcanic hazards. The conservative method in volcanic mapping still depends on qualitative approach thus it often failed to characterize volcanic products properly. Rock magnetic methods are quantitative approaches that classify rocks based on their magnetic properties. In this study, magmatic processes in basaltic lavas from Ijen volcanic complex in Banyuwangi, East Java were studied using combined rock magnetic and petrogenesis approaches. Samples of basaltic lavas from 13 localities, taken from three eruption sources were measuredfor their mass-specific magnetic susceptibility. The samples were then also subjected to petrographic and X-ray Fluorescence Spectrometry (XRF) analyses for their minerals composition and petrogenesis. Preliminary results show that the distinction in magnetic characters might be due to the quantity of magnetic minerals contained in rocks.

  10. The significance of SAR remote sensing in volcano-geology for hazard and resource potential mapping

    Science.gov (United States)

    Saepuloh, Asep; Bakker, Erwin; Suminar, Wulan

    2017-07-01

    Geological mapping at volcanic terrain is crucial for providing accurate information related to the distribution of volcanic products and volcano-related structures. The volcano-geology map is basis information, not only for hazard mitigation related to volcanic activity, but also for resource exploration as well as scientific purposes. Therefore, the accurate detection and observation of volcanic products and their genetics are necessary for volcano-geology mapping. The classical problem at Torrid Zone such as cloud, dense vegetation, heavy weathering, and erosion usually hamper the detection and observation of volcanic products and their structures. Moreover, the stratigraphic of volcanic products generally follows paleo-topography which was buried by the products. Overcoming the problem, we exploited the applicability of remotely sensed data to provide the great assistance for field based observations at volcanic field in Indonesia. The Geomorphologic and Structural Features (GSF) of the Synthetic Aperture Radar (SAR) are the selected parameters to define the distribution of the volcanic products. We explained about the significant of SAR identification to detect and interpret volcano-geology parameters such as eruption centers, volcanic products, depositional mechanisms, and volcanic structures especially at complex of volcanoes. The fall and flowing mechanisms controlled the depositional process were also analyzed to obtain the genetic of volcanic products. For young volcanoes, the quantitative techniques based on SAR surface roughness and polarized signatures are effective to identify volcanic formations and their sources. However, for old volcanoes the visual analyses of GSF is superior to identify the volcanic units and structures. We selected two volcanic complexes at Mts. Guntur and Malabar in West Java (Indonesia) presenting the young and old volcanic field characteristics under Torrid Zone condition.

  11. Is research on soil erosion hazard and mitigation in the Global South still needed? (Alexander von Humbold Medal Lecture)

    Science.gov (United States)

    Poesen, Jean

    2016-04-01

    Soil erosion represents a geomorphological and geological hazard that may cause environmental damage (land degradation), property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers the quality of our soils on site, resulting in a drastic reduction of their ecosystem functions that play a vital role in daily life, but causes also significant sediment-related problems off site. To curb soil erosion problems, a range of soil conservation techniques and strategies have been designed and are being applied. Worldwide, ca. 62 000 research papers on soil erosion and 116 000 on soil conservation have been published (Web of Science, Dec. 2015). The number of such papers dealing with the Global South represents less than 20 % of all papers, despite the fact that many regions in this part of the world face significant soil erosion problems, aggravated by a rapidly growing population and major environmental changes. Given the large number of research papers on this topic, one might therefore conclude that we now know almost everything about the various soil erosion processes and rates, their factors and consequences as well as their control so that little new knowledge can still be added to the vast amount of available information. We refute this conclusion by pointing to some major research gaps that still need to be addressed if we want to use our soils in a more sustainable way. More specifically the following topics need more research attention: 1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, 2) scaling up soil erosion processes and rates in space and time, and 3) innovative techniques and strategies to prevent or reduce erosion rates. This will be illustrated with case studies from the Global South. If future research focuses on these research gaps, we will 1) better understand processes and their interactions operating at a range of spatial and temporal

  12. Decay extent evaluation of wood degraded by a fungal community using NIRS: application for ecological engineering structures used for natural hazard mitigation

    Science.gov (United States)

    Baptiste Barré, Jean; Bourrier, Franck; Bertrand, David; Rey, Freddy

    2015-04-01

    Ecological engineering corresponds to the design of efficient solutions for protection against natural hazards such as shallow landslides and soil erosion. In particular, bioengineering structures can be composed of a living part, made of plants, cuttings or seeds, and an inert part, a timber logs structure. As wood is not treated by preservatives, fungal degradation can occur from the start of the construction. It results in wood strength loss, which practitioners try to evaluate with non-destructive tools (NDT). Classical NDT are mainly based on density measurements. However, the fungal activity reduces the mechanical properties (modulus of elasticity - MOE) well before well before a density change could be measured. In this context, it would be useful to provide a tool for assessing the residual mechanical strength at different decay stages due to a fungal community. Near-infrared spectroscopy (NIRS) can be used for that purpose, as it can allow evaluating wood mechanical properties as well as wood chemical changes due to brown and white rots. We monitored 160 silver fir samples (30x30x6000mm) from green state to different levels of decay. The degradation process took place in a greenhouse and samples were inoculated with silver fir decayed debris in order to accelerate the process. For each sample, we calculated the normalized bending modulus of elasticity loss (Dw moe) and defined it as decay extent. Near infrared spectra collected from both green and decayed ground samples were corrected by the subtraction of baseline offset. Spectra of green samples were averaged into one mean spectrum and decayed spectra were subtracted from the mean spectrum to calculate the absorption loss. Partial least square regression (PLSR) has been performed between the normalized MOE loss Dw moe (0 wood decay extent in the context of ecological engineering structures used for natural hazard mitigation.

  13. Multi-scale earthquake hazard and risk in the Chinese mainland and countermeasures for the preparedness, mitigation, and management: an overview

    Science.gov (United States)

    Wu, Z.; Jiang, C.; Ma, T.

    2012-12-01

    Earthquake hazard and risk in the Chinese mainland exhibit multi-scale characteristics. Temporal scales from centuries to months, spatial scales from the whole mainland to specific engineering structures, and energy scales from great disastrous earthquakes to small earthquakes causing social disturbance and economic loss, feature the complexity of earthquake disasters. Coping with such complex challenge, several research and application projects have been undertaken since recent years. Lessons and experiences of the 2008 Wenchuan earthquake contributed much to the launching and conducting of these projects. Understandings of the scientific problems and technical approaches taken in the mainstream studies in the Chinese mainland have no significant difference from those in the international scientific communities, albeit using of some of the terminologies have "cultural differences" - for instance, in the China Earthquake Administration (CEA), the terminology "earthquake forecast/prediction (study)" is generally used in a much broader sense, mainly indicating time-dependent seismic hazard at different spatio-temporal scales. Several scientific products have been produced serving the society in different forms. These scientific products have unique academic merits due to the long-term persistence feature and the forward forecast nature, which are all essential for the evaluation of the technical performance and the falsification of the scientific ideas. On the other hand, using the language of the "actor network theory (ANT)" in science studies (or the sociology of science), at present, the hierarchical "actors' network", making the science transformed to the actions of the public and government for the preparedness, mitigation, and management of multi-scale earthquake disasters, is still in need of careful construction and improvement.

  14. United States-Chile binational exchange for volcanic risk reduction, 2015—Activities and benefits

    Science.gov (United States)

    Pierson, Thomas C.; Mangan, Margaret T.; Lara Pulgar, Luis E.; Ramos Amigo, Álvaro

    2017-07-25

    In 2015, representatives from the United States and Chile exchanged visits to discuss and share their expertise and experiences dealing with volcano hazards. Communities in both countries are at risk from various volcano hazards. Risks to lives and property posed by these hazards are a function not only of the type and size of future eruptions but also of distances from volcanoes, structural integrity of volcanic edifices, landscape changes imposed by recent past eruptions, exposure of people and resources to harm, and any mitigative measures taken (or not taken) to reduce risk. Thus, effective risk-reduction efforts require the knowledge and consideration of many factors, and firsthand experience with past volcano crises provides a tremendous advantage for this work. However, most scientists monitoring volcanoes and most officials delegated with the responsibility for emergency response and management in volcanic areas have little or no firsthand experience with eruptions or volcano hazards. The reality is that eruptions are infrequent in most regions, and individual volcanoes may have dormant periods lasting hundreds to thousands of years. Knowledge may be lacking about how to best plan for and manage future volcanic crises, and much can be learned from the sharing of insights and experiences among counterpart specialists who have had direct, recent, or different experiences in dealing with restless volcanoes and threatened populations. The sharing of information and best practices can help all volcano scientists and officials to better prepare for future eruptions or noneruptive volcano hazards, such as large volcanic mudflows (lahars), which could affect their communities.

  15. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  16. Coulomb static stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake (MW= 7.1: implications for the earthquake hazard mitigation

    Directory of Open Access Journals (Sweden)

    M. Utkucu

    2013-07-01

    Full Text Available Coulomb stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake have been analysed using available data related to the background and the aftershock seismicity and the source faults. The coseismic stress changes of the background seismicity had slightly promoted stress over the rupture plane of the 2011 Van earthquake, while it yielded a stress shadow over the Gürpı nar Fault which has been argued to have produced the 7 April 1646 Van earthquake. The stress shadow over the Gürpi nar fault has become more pronounced following the occurrence of the 2011 Van earthquake, meaning that the repetition of the 1646 Van earthquake has been further suppressed. Spatial distribution and source mechanisms of the 2011 Van earthquake's aftershocks have been utilised to define four clusters with regard to their relative location to the mainshock rupture. In addition, the aftershock sequence covers a much broader area toward the northeast. Correlations between the observed spatial patterns of the aftershocks and the coseismic Coulomb stress changes caused by the mainshock are determined by calculating the stress changes over both optimally oriented and specified fault planes. It is shown here that there is an apparent correlation between the mainshock stress changes and the observed spatial pattern of the aftershock occurrence, demonstrating the usefulness of the stress maps in constraining the likely locations of the upcoming aftershocks and mitigating earthquake hazard.

  17. Research Status of the Near-Earth Asteroids’ Hazard and Mitigation%近地小行星威胁与防御研究现状

    Institute of Scientific and Technical Information of China (English)

    马鹏斌; 宝音贺西

    2016-01-01

    近地小行星与地球碰撞虽然罕见但可能会造成灾难性后果。近年来,各国加强了对近地小行星的监控、跟踪力度,并且实施了几次卓有成效的探测任务,如何防御近地小行星威胁的研究越来越多。总结了目前近地小行星的主要观测监视设施和现状,讨论了国际上对小行星威胁的评估情况,分析和评估了目前提出的防御手段的研究现状及其可行性。%Terrestrial impact by a near-Earth asteroid or comet occurs rare but may result in potentially catastrophic hazard.The researches on how to defense threat of near-Earth asteroids attract more and more attention. The paper summarizes the current situation of survey and detection of near-Earth asteroids and the major survey telescopes. And it also discusses the current state of assessing the potential impact risk and sequence in the recent researches. Finally, several proposed approaches that could prevent or mitigate the effects of potential impacting of near-Earth asteroids are analyzed and evaluated.

  18. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  19. Exploring Volcanism with Digital Technology in Undergraduate Education

    Science.gov (United States)

    McCoy, F. W.; Parisky, A.

    2016-12-01

    Volcanism as one of the most dynamic geological processes on this planet is also one of the most dramatic for attracting students to the earth sciences. At the University of Hawaii (UH) volcanism is used to attract students into the geosciences, coupled with its significant association to Hawaiian culture and contemporary issues such as those associated with related hazards - example: during the past century five towns were buried by lava flows on the Big Island, another recently threatened with destruction. To bring this dynamism into undergraduate education, UH focuses on field trips and courses to all islands; at Windward Community College (WCC/UH) a focus is provided through a series of field courses (1 credit) to all islands, especially the Big Island. Critical to the WCC effort are computer-generated animations and descriptions of volcanological processes for illustrating concepts undergraduate students find difficult: tumescence as an indicator of an eruption, fractional crystallization, collapse of volcanic edifices, explosive eruptions, weathering processes, hazards and mitigation, all embedded in the evolutionary story of mid-ocean volcanic islands such as those in Hawaii. Field courses require intense field labs, which are significantly assisted by digital platforms that include computer-generated illustrations, descriptions, animations, and more. The consequence for developing geoscientists has been outstanding.

  20. Volcanic jet noise: infrasonic source processes and atmospheric propagation

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; Ogden, D. E.

    2011-12-01

    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  1. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada)

    Science.gov (United States)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.

    2012-12-01

    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  2. Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo

    CSIR Research Space (South Africa)

    Mavonga, T

    2010-11-01

    Full Text Available In recent decades, civil wars in the eastern provinces of the Democratic Republic of Congo have caused massive social disruptions, which have been exacerbated by volcanic and earthquake disasters. Seismic data were gathered and analysed as part...

  3. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Science.gov (United States)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  4. 四川雅安芦山地震灾区次生地质灾害评估及对策建议%Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan, Ya'an Earthquake, Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    兰恒星; 周成虎; 高星; 程维明; 王治华; 杨志华; 李郎平; 伍宇明

    2013-01-01

    2013年4月20日08点02分,四川雅安芦山县发生了7.0级强震.此次地震发生的区域地形条件复杂,地震烈度大,使得震区地质条件进一步恶化,在强降雨等叠加等条件下,次生地质灾害风险显著加剧.本文收集了震区地形、地质、构造断层分布、地震烈度分布、历史灾害、降雨以及卫星影像等资料,对震区的次生地质灾害的危险性从以下3个方面进行了评估:①地震力触发下震区次生地质灾害空间分布;②不同降雨触发下震区次生地质灾害空间分布及趋势分析;③地震与降雨共同作用下震区次生地质灾害空间分布.在此基础上圈定了震区次生地质灾害高危和需要重点监测防范区域,为灾害救援与重建过程中次生地质灾害的防范提出了对策建议.%A strong earthquake with a magnitude of 7.0 struck the Lushan County, Ya'an City, Sichuan Province on April 20th 2013 at 8:02 AM. This seismic area is extremely prone to the secondary geological hazard due to its rugged geomorphology, adverse geological conditions caused by high seismic intensity and intensive precipi tation. Important data have been collected in Lushan seismic area including topological data, geological data, tec tonic data, historical geohazards, seismic intensity, rainfall data, satellite images, etc.. We conducted the compre hensive hazard assessment on secondary geological hazards including: (1) Hazard assessment and spatial distri bution of secondary geohazard induced by seismic force; (2) Spatial distribution and developing trend of second ary geohazard induced by precipitation; (3) Comprehensive secondary geohazard assessment in Lushan seismic area induced by earthquake superposed by precipitation. Based on the assessment result, vital influencing re gions are identified that need intensive monitoring and mitigation. This work is expected to provide important suggestions for both the emergency rescue and the reconstruction of

  5. "Last mile" challenges to in situ volcanic data transmission

    Directory of Open Access Journals (Sweden)

    J. F. B. D. Fonseca

    2013-08-01

    Full Text Available Scientists play a key role in volcanic risk mitigation, but rely heavily on fast access to data acquired in the vicinity of an active volcano. Hazardous volcanoes are often located in remote areas were telecommunications infrastructure is fragile. Besides being exposed directly to the volcanic hazard, the infrastructure in such remote areas can suffer also from "last mile" limitations derived from lack of market demand for data transmission services. In this paper, we report on the findings of FP7 MIAVITA project in the topic of volcanic data transmission. We draw on the contribution of partners from emergent or developing countries to identify the main bottlenecks and fragilities. We present also the results of an experiment conducted in Fogo island, Cape Verde, to test the availability of VSAT services adequate for volcanic monitoring. We warn against the false sense of security resulting from increasingly ubiquitous connectivity, and point out the lack of reliability of many consumer-type services, particularly during emergencies when such services are likely to crash due to excess of demand from the public. Finally, we propose guidelines and recommend best practices for the design of volcanic monitoring networks in what concerns data transmission. In particular, we advise that the data transmission equipment close to the exposed area should be owned, operated and maintained by the volcanic monitoring institution. We exemplify with the setup of the Fogo telemetric interface, which uses low-power licence-free radio modems to reach a robust point of entry into the public network at a suitable distance from the volcano.

  6. 长白山天池火山减灾对策初探%Preliminary Study on Mitigation Countermeasure of Volcanic Hazards of Tianchi Volcano,Changbai Mountains

    Institute of Scientific and Technical Information of China (English)

    杨清福; 刘若新; 魏海泉; 张兴科

    2003-01-01

    国内外专家学者认为,长白山天池火山是一座具潜在灾害性喷发危险的活火山,因此制定火山减灾对策理应提到议事日程.针对天池火山研究现状和火山灾害特点,制定了火山活动各阶段的减灾对策.中长期阶段应加强火山监测与研究和火山知识宣传工作,采取必要的工程防护措施,重大工程进行火山安全性评价,制定火山喷发应急预案;短期阶段请求国际火山流动监测台网给予支援;临近喷发阶段重点是有组织的撤离;喷发及其后阶段应及时救灾抢险,对火山喷发趋势进行科学判定,合理地重建家园.

  7. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  8. GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.

    2010-05-01

    Approximately one tenth of the Earth's human population lives in direct reach of volcanic hazards. Being able to provide sufficiently early and scientifically sound warning is a key to volcanic hazard mitigation. Quantitative time-series monitoring of volcanic CO2 emissions will likely play a key role in such early warning activities in the future. Impending volcanic eruptions or any potentially disastrous activity that involves movement of magma in the subsurface, is often preceded by an early increase of CO2 emissions. Conventionally, volcanic CO2 monitoring is done either in campaigns of soil emission measurements (grid of one-time measuring points) that are labor intensive and slow, or by ground-based remote FTIR measurements in emission plumes. These methods are not easily available at all sites of potential activity and prohibitively costly to employ on a large number of volcanoes. In addition, both of these ground-based approaches pose a significant risk to the workers conducting these measurements. Some aircraft-based measurements have been conducted as well in the past, however these are limited by the usually meager funding situation of individual observatories, the hazard such flights pose to equipment and crew, and by the inaccessibility of parts of the plume due to ash hazards. The core motivation for this study is therefore to develop a method for volcanic CO2 monitoring from space that will provide sufficient coverage, resolution, and data quality for an application to quantitative time series monitoring and correlation with other available datasets, from a safe distance and with potentially global reach. In summary, the purpose of the proposed research is to quantify volcanic CO2 emissions using satellite-borne observations. Quantitative estimates will be useful for warning of impending volcanic eruptions, and assessing the contribution of volcanic CO2 to global GHG. Our approach encompasses method development and testing for the detection of

  9. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment

    Science.gov (United States)

    Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.

    2006-01-01

    The Citlalte??petl-Cofre de Perote volcanic chain forms an important physiographic barrier that separates the Central Altiplano (2500??masl) from the Gulf Coastal Plain (GCP) (1300??masl). The abrupt eastward drop in relief between these provinces gives rise to unstable conditions and consequent gravitational collapse of large volcanic edifices built at the edge of the Altiplano. Eastward sloping substrate, caused by the irregular configuration of the basement rocks, is the dominant factor that controls the direction of collapsing sectors in all major volcanoes in the region to be preferentially towards the GCP. These collapses produced voluminous debris avalanches and lahars that inundated the well-developed drainages and clastic aprons that characterize the Coastal Plain. Large catastrophic collapses from Citlalte??petl, Las Cumbres, and Cofre de Perote volcanoes are well documented in the geologic record. Some of the avalanches and transformed flows have exceptionally long runouts and reach the Gulf of Mexico traveling more than 120??km from their source. So far, no direct evidence has been found for magmatic activity associated with the initiation of these catastrophic flank-collapses. Apparently, instability of the volcanic edifices has been strongly favored by very intense hydrothermal alteration, abrupt topographic change, and intense fracturing. In addition to the eastward slope of the substrate, the reactivation of pre-volcanic basement structures during the Late Tertiary, and the E-W to ENE-SSW oriented regional stress regimes may have played an important role in the preferential movement direction of the avalanches and flows. In addition to magmatic-hydrothermal processes, high amounts of rainfall in the area is another factor that enhances alteration and eventually weakens the rocks. It is very likely that seismic activity may be the principal triggering mechanism that caused the flank collapse of large volcanic edifices in the Eastern Mexican Volcanic

  10. New Insights Into Volcanic Hazards in Western Mexico: Multiple Cone-Building Episodes at Arc Stratovolcanoes Revealed by 40Ar/39Ar Geochronology

    Science.gov (United States)

    Frey, H. M.; Lewis-Kenedi, K.; Lange, R. A.; Hall, C. M.; Delgado-Granados, H.

    2003-12-01

    The detailed eruptive histories of two andesitic stratocones, Volcáns Ceboruco and Tequila, in the western Mexican arc have been documented using 40Ar/39Ar geochronology. The volumes of these volcanoes were obtained with mapping, airphotos, and digital elevation models. The age and volume data constrain the rate and duration of major cone-building events, which bears on the longevity of the underlying upper-crustal magma chambers that fed the eruptions. The results indicate that at each stratovolcano there were two discrete cone-building events, separated by a hiatus. At V. Tequila, six samples from the edifice yielded dates (196 +/- 8, 196 +/- 19, 178 +/- 8, 191 +/- 13, 216 +/- 11, and 198 +/- 11 ka; errors are 1 sigma) with a mean eruption age of 196 +/- 12 ka. Thus the bulk of the main edifice ( ˜31 km3) erupted within 24 kyrs (at the 2 sigma level), leading to a cone-building rate of > 1.3 km3/kyr. After a hiatus of ˜110 kyrs, ˜14 km3 of andesite erupted along the NW and SE flanks of V. Tequila at 90 +/- 19 ka. The last activity at V. Tequila produced a ˜2 km3 parasitic cone at ˜60 ka. Since an eruption has not occurred in the last 60 kyrs, V. Tequila is often considered an extinct volcano. This may be the view held by the > 75,000 inhabitants of the town of Tequila located on the northern flanks. A similar history of two discrete cone-building events is found at V. Ceboruco, ˜75 km to the NW. Seven samples taken from various parts of the edifice, including the inner caldera wall, indicate an initial cone-building event at ˜45 ka in which ˜37 km3 of andesite erupted. After a hiatus of nearly 44 kyrs, a second eruptive period began ˜1000 years ago. The first eruption to occur after the hiatus was Plinian and released 3-4 km3 of dacite. In the last 1 kyr, 9.5 km3 of andesite and dacite erupted effusively, culminating in the historic 1870 flow. The sobering conclusion, in terms of volcanic hazards assessment, is that the only Plinian eruption to occur

  11. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    Science.gov (United States)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  12. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  13. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  14. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  15. Palaeoclimate: Volcanism caused ancient global warming

    Science.gov (United States)

    Meissner, Katrin J.; Bralower, Timothy J.

    2017-08-01

    A study confirms that volcanism set off one of Earth's fastest global-warming events. But the release of greenhouse gases was slow enough for negative feedbacks to mitigate impacts such as ocean acidification. See Letter p.573

  16. Mitigation of Natural Hazards and Disasters. International Perspectives. Improving Access to Water Resources through Rainwater Harvesting as A Mitigation Measure. The Case of the Brazilian Semi-Arid Region

    Energy Technology Data Exchange (ETDEWEB)

    De Melo Branco, A.; Suassuna, J.; Adler Vainsencher, S. [Independent Consultant, Rua Cardeal Arcoverde, 100/701, Gracas, Recife, Pernambuco (Brazil)

    2005-07-15

    This paper focuses on the importance of rainwater harvesting to mitigate the scarcity of water in the semi-arid region of Brazil. It is a case study about the Million Cisterns Project, an initiative developed by NGOs with the support of Brazilian Federal Government Institutions and international funding organizations. The project is innovative in a series of ways when compared to mitigation measures previously implemented by the government. Instead of focussing on short-term, top-down, palliative measures based on the construction of dams and wells, it focuses on low cost, bottom-up, long-term measures and, most importantly, it involves an educational component. Thus, the provision of water is closely related to the empowerment of the most destitute population and this leads to the sustainability of the actions. The case study serves to illustrate the relevance of the partnership between grassroots organizations and governmental institutions in the context of mitigation.

  17. The Brief Introduction to "The 5th International Workshop on the Fundamental Research for Mitigation Earthquake Hazards" Held in Korea%中日美韩"地震减灾国际研讨会"简介

    Institute of Scientific and Technical Information of China (English)

    郑秀芬; 郑需要

    2006-01-01

    @@ 应韩国气象厅气象研究所的邀请, 中国地震局地球物理研究所的郑需要研究员和郑秀芬博士于2005年12月18日至23日期间, 赴韩国济州岛参加了由韩国气象厅气象研究所主办的第五届中、日、美、韩"地震减灾国际研讨会"(The 5th International Workshop on the Fundamental Research for Mitigation Earthquake Hazards).

  18. Geohazards (floods and landslides) in the Ndop plain, Cameroon volcanic line

    Science.gov (United States)

    Wotchoko, Pierre; Bardintzeff, Jacques-Marie; Itiga, Zénon; Nkouathio, David Guimolaire; Guedjeo, Christian Suh; Ngnoupeck, Gerald; Dongmo, Armand Kagou; Wandji, Pierre

    2016-07-01

    The Ndop Plain, located along the Cameroon Volcanic Line (CVL), is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually) and landslides (occasionally) occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people) tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide) maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered. The hazard maps revealed that 25% of the area is exposed to flood hazard (13% exposed to high flood hazard, 12% to moderate) and 5% of the area is exposed to landslide hazard (2% exposed to high landslide hazard, 3% to moderate). Some mitigation measures for floods (building of artificial levees, raising foundations of buildings and the meticulous regulation of the flood guards at Bamendjing Dam) and landslides (slope terracing, planting of trees, and building retaining walls) are proposed.

  19. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  20. Abstracts for the October 2012 meeting on Volcanism in the American Southwest, Flagstaff, Arizona

    Science.gov (United States)

    Lowenstern, Jacob B.

    2013-01-01

    Though volcanic eruptions are comparatively rare in the American Southwest, the States of Arizona, Colorado, New Mexico, Nevada, and Utah host Holocene volcanic eruption deposits and are vulnerable to future volcanic activity. Compared with other parts of the western United States, comparatively little research has been focused on this area, and eruption probabilities are poorly constrained. Monitoring infrastructure consists of a variety of local seismic networks, and ”backbone“ geodetic networks with little integration. Emergency response planning for volcanic unrest has received little attention by either Federal or State agencies. On October 18–20, 2012, 90 people met at the U.S. Geological Survey campus in Flagstaff, Arizona, providing an opportunity for volcanologists, land managers, and emergency responders to meet, converse, and begin to plan protocols for any future activity. Geologists contributed data on recent findings of eruptive ages, eruption probabilities, and hazards extents (plume heights, ash dispersal). Geophysicists discussed evidence for magma intrusions from seismic, geodetic, and other geophysical techniques. Network operators publicized their recent work and the relevance of their equipment to volcanic regions. Land managers and emergency responders shared their experiences with emergency planning for earthquakes. The meeting was organized out of the recognition that little attention had been paid to planning for or mitigation of volcanic hazards in the American Southwest. Moreover, few geological meetings have hosted a session specifically devoted to this topic. This volume represents one official outcome of the meeting—a collection of abstracts related to talks and poster presentations shared during the first two days of the meeting. In addition, this report includes the meeting agenda as a record of the proceedings. One additional intended outcome will be greater discussion and coordination among emergency responders, geologists

  1. Hazard responses in the pre-industrial era: vulnerability and resilience of traditional societies to volcanic disasters and the implications for present-day disaster planning

    Science.gov (United States)

    Sangster, Heather

    2014-05-01

    A major research frontier in the study of natural hazard research involves unravelling the ways in which societies have reacted historically to disasters, and how such responses influence current policies of disaster reduction. For societies it is common to classify responses to natural hazards into: pre-industrial (folk); industrial; and post-industrial (comprehensive) responses. Pre-industrial societies are characterised by: a pre-dominantly rural location; an agricultural economic focus; artisan handicrafts rather than industrial production, parochialism, with people rarely travelling outside their local area and being little affected by external events and a feudal or semi-feudal social structure. In the past, hazard assessment focused on the physical processes that produced extreme and potentially damaging occurrences, however from the middle of the twenty-first century research into natural hazards has been cast within a framework defined by the polarities (or opposites) of vulnerability and resilience, subject to a blend of unique environmental, social, economic and cultural forces in hazardous areas, that either increase or decrease the impact of extreme events on a given society. In the past decade research of this type has been facilitated by a 'revolution' of source materials across a range of languages and in a variety of electronic formats (e.g. official archives; major contemporary and near-contemporary publications - often available as reprints; national and international newspapers of record; newsreel-films; and, photographs) and in the introduction of more reliable translation software (e.g. Systrans) that provides far more scope to the researcher in the study of natural hazards than was the case even a few years ago. Knowledge of hazard responses in the pre-industrial era is, not only important in its own right because it reveals indigenous strategies of coping, but also informs present-day disaster planners about how people have reacted to past

  2. Natural Hazards Image Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photographs and other visual media provide valuable pre- and post-event data for natural hazards. Research, mitigation, and forecasting rely on visual data for...

  3. Developing an Internet Oriented Platform for Earthquake Engineering Application and Web-based Virtual Reality Simulation System for Seismic hazards: Towards Disaster Mitigation in Metropolises

    Directory of Open Access Journals (Sweden)

    Ali Alaghehbandian

    2003-04-01

    Full Text Available This paper reviews the state of the art on risk communication to the public, with an emphasis on simulation of seismic hazards using VRML. Rapid growth computer technologies, especially the Internet provide human beings new measures to deal with engineering and social problems which were hard to solve in traditional ways. This paper presents a prototype of an application platform based on the Internet using VR (Virtual Reality for civil engineering considering building an information system of risk communication for seismic hazards and at the moment in the case of bridge structure.

  4. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    Science.gov (United States)

    Gregg, Chris E.; Houghton, B.F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    In 1960, Kīlauea volcano in Hawaii erupted, destroying most of the village of Kapoho and forcing evacuation of its approximately 300 residents. A large and unprecedented social science survey was undertaken during the eruption to develop an understanding of human behavior, beliefs, and coping strategies among the adult evacuees (n = 160). Identical studies were also performed in three control towns located at varying distances from the eruption site (n = 478). During these studies data were collected that characterized ethnic grouping and attitudes toward Hawaiian cultural issues such as belief in Pele and two lava flow mitigation measures—use of barriers and bombs to influence the flow of lava, but the data were never published. Using these forgotten data, we examined the relationship between Hawaiian cultural issues and attitudes toward the use of barriers and bombs as mitigation strategies to protect Kapoho.

  5. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  6. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft

    Science.gov (United States)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy

    2014-01-01

    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  7. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Science.gov (United States)

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  8. 44 CFR 78.5 - Flood Mitigation Plan development.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  9. Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska

    Science.gov (United States)

    Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.

    2015-06-01

    In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and

  10. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the

  11. Exploring Hawaiian Volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  12. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  13. The interest of cartography for a better perception and management of volcanic risk: From scientific to social representations: The case of Mt. Pelée volcano, Martinique (Lesser Antilles)

    Science.gov (United States)

    Leone, Frédéric; Lesales, Thierry

    2009-10-01

    The study develops an innovative GIS-based integrated approach for the assessment of a comprehensive volcanic risk. This is based on a four-step methodology which has been developed at Mt. Pelée volcano, in Martinique, a French island in the Lesser Antilles. The first stage of the methodological framework integrates the spatial extent of volcanic hazards for a maximal credible eruptive scenario. The second stage covers an assessment of the elements (especially the buildings) that may be affected in the event of an eruption and defines their level of damages by given volcanic hazards. A computerized analysis leads to the definition of an index for the risk of total loss in a 500-meter grid. The third stage consists of designing regulative land use maps which should orient and limit the occupation of areas exposed to severe hazards. Finally, the fourth stage, based on survey data, includes a spatial assessment of collective representations for a future eruption by the surrounding communities. These maps turn out to be powerful communication tools which help planners and disaster authorities in mitigating damages from volcanic hazards. They can contribute to enhance the perception of volcanic risk in Martinique.

  14. Timing, origin and emplacement dynamics of mass flows offshore of SE Montserrat in the last 110 ka: implications for landslide and tsunami hazards, eruption history, and volcanic island evolution

    OpenAIRE

    Trofimovs, J.; Talling, P. J.; Fisher, J. K.; Sparks, R.S.J.; Watt, S.F.L.; Hart, M. B.; Smart, C.; Le Friant, A.; Cassidy, M.; Moreton, S.G.; Leng, M.J.

    2013-01-01

    Mass flows on volcanic islands generated by volcanic lava dome collapse and by larger volume flank collapse, can be highly dangerous locally and may generate tsunamis that threaten a wider area. It is therefore important to understand their frequency, emplacement dynamics and relationship to volcanic eruption cycles. The best record of mass flow on volcanic islands may be found offshore, where most material is deposited, and where intervening hemipelagic sediment aids dating. Here we analyse ...

  15. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    Science.gov (United States)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  16. Monitoring and characterizing natural hazards with satellite InSAR imagery

    Science.gov (United States)

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel

    2010-01-01

    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  17. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2014-12-01

    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  18. Monitoring volcanic systems through cross-correlation of coincident A-Train satellite data.

    Science.gov (United States)

    Flower, V. J. B.; Carn, S. A.; Wright, R.

    2014-12-01

    The remote location and inaccessibility of many active volcanic systems around the world hinders detailed investigation of their eruptive dynamics. One methodology for monitoring such locations is through the utilisation of multiple satellite datasets to elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation, including the Ozone Monitoring Instrument (OMI) on Aura and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. OMI measures volcanic emissions (e.g. sulphur dioxide, ash) whilst MODIS enables monitoring of thermal anomalies (e.g. lava flows, lava lakes, pyroclastic deposits), allowing analysis of a more diverse range of volcanic unrest than is possible using a single measurement technique alone, and permitting cross-correlation between datasets for specific locations to assess cyclic activity. A Multi-taper (MTM) Fast Fourier Transform (FFT) analysis was implemented at an initial sample site (Soufriere Hills volcano [SHV], Montserrat) facilitating cycle identification and subsequent comparison with existing ground-based data. Corresponding cycles at intervals of 8, 12 and ~50 days were identified in both the satellite-based SO2 and thermal infrared signals and ground-based SO2 measurements (Nicholson et al. 2013), validating the methodology. Our analysis confirms the potential for identification of cyclical volcanic activity through synergistic analysis of satellite data, which would be of particular value at poorly monitored volcanic systems. Following our initial test at SHV, further sample sites have been selected in locations with varied eruption dynamics and monitoring capabilities including Ambrym (Vanuatu), Kilauea (Hawaii), Nyiragongo (DR Congo) and Etna (Italy) with the intention of identifying not only cyclic signals that can be attributed to volcanic systems but also those which are

  19. Probabilistic approach to decision making under uncertainty during volcanic crises. Retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands

    Science.gov (United States)

    Sobradelo, Rosa; Martí, Joan; Kilburn, Christopher; López, Carmen

    2014-05-01

    Understanding the potential evolution of a volcanic crisis is crucial to improving the design of effective mitigation strategies. This is especially the case for volcanoes close to densely-populated regions, where inappropriate decisions may trigger widespread loss of life, economic disruption and public distress. An outstanding goal for improving the management of volcanic crises, therefore, is to develop objective, real-time methodologies for evaluating how an emergency will develop and how scientists communicate with decision makers. Here we present a new model BADEMO (Bayesian Decision Model) that applies a general and flexible, probabilistic approach to managing volcanic crises. The model combines the hazard and risk factors that decision makers need for a holistic analysis of a volcanic crisis. These factors include eruption scenarios and their probabilities of occurrence, the vulnerability of populations and their activities, and the costs of false alarms and failed forecasts. The model can be implemented before an emergency, to identify actions for reducing the vulnerability of a district; during an emergency, to identify the optimum mitigating actions and how these may change as new information is obtained; and after an emergency, to assess the effectiveness of a mitigating response and, from the results, to improve strategies before another crisis occurs. As illustrated by a retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands, BADEMO provides the basis for quantifying the uncertainty associated with each recommended action as an emergency evolves, and serves as a mechanism for improving communications between scientists and decision makers.

  20. The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: A guide for assessing local volcanic hazards

    Science.gov (United States)

    Scott, William E.; Gardner, Cynthia A.; Devoli, Graziella; Alvarez, Antonio

    2006-01-01

    The January 1835 eruption of Volcán Cosigüina in northwestern Nicaragua was one of the largest and most explosive in Central America since Spanish colonization. We report on the results of reconnaissance stratigraphic studies and laboratory work aimed at better defining the distribution and character of deposits emplaced by the eruption as a means of developing a preliminary hazards assessment for future eruptions. On the lower flanks of the volcano, a basal tephra-fall deposit comprises either ash and fine lithic lapilli or, locally, dacitic pumice. An overlying tephra-fall deposit forms an extensive blanket of brown to gray andesitic scoria that is 35–60 cm thick at 5–10 km from the summit-caldera rim, except southwest of the volcano, where it is considerably thinner. The scoria fall produced the most voluminous deposit of the eruption and underlies pyroclastic-surge and -flow deposits that chiefly comprise gray andesitic scoria. In northern and southeastern sectors of the volcano, these flowage deposits form broad fans and valley fills that locally reach the Gulf of Fonseca. An arcuate ridge 2 km west of the caldera rim and a low ridge east of the caldera deflected pyroclastic flows northward and southeastward. Pyroclastic flows did not reach the lower west and southwest flanks, which instead received thick, fine-grained, accretionary-lapilli–rich ashfall deposits that probably derived chiefly from ash clouds elutriated from pyroclastic flows. We estimate the total bulk volume of erupted deposits to be ∼6 km3. Following the eruption, lahars inundated large portions of the lower flanks, and erosion of deposits and creation of new channels triggered rapid alluviation. Pre-1835 eruptions are poorly dated; however, scoria-fall, pyroclastic-flow, and lahar deposits record a penultimate eruption of smaller magnitude than that of 1835. It occurred a few centuries earlier—perhaps in the fifteenth century. An undated sequence of thick tephra-fall deposits on

  1. A UAV System for Observing Volcanoes and Natural Hazards

    Science.gov (United States)

    Saggiani, G.; Persiani, F.; Ceruti, A.; Tortora, P.; Troiani, E.; Giuletti, F.; Amici, S.; Buongiorno, M.; Distefano, G.; Bentini, G.; Bianconi, M.; Cerutti, A.; Nubile, A.; Sugliani, S.; Chiarini, M.; Pennestri, G.; Petrini, S.; Pieri, D.

    2007-12-01

    Fixed or rotary wing manned aircraft are currently the most commonly used platforms for airborne reconnaissance in response to natural hazards, such as volcanic eruptions, oil spills, wild fires, earthquakes. Such flights are very often undertaken in hazardous flying conditions (e.g., turbulence, downdrafts, reduced visibility, close proximity to dangerous terrain) and can be expensive. To mitigate these two fundamental issues-- safety and cost--we are exploring the use of small (less than 100kg), relatively inexpensive, but effective, unmanned aerial vehicles (UAVs) for this purpose. As an operational test, in 2004 we flew a small autonomous UAV in the airspace above and around Stromboli Volcano. Based in part on this experience, we are adapting the RAVEN UAV system for such natural hazard surveillance missions. RAVEN has a 50km range, with a 3.5m wingspan, main fuselage length of 4.60m, and maximum weight of 56kg. It has autonomous flight capability and a ground control Station for the mission planning and control. It will carry a variety of imaging devices, including a visible camera, and an IR camera. It will also carry an experimental Fourier micro-interferometer based on MOEMS technology, (developed by IMM Institute of CNR), to detect atmospheric trace gases. Such flexible, capable, and easy-to-deploy UAV systems may significantly shorten the time necessary to characterize the nature and scale of the natural hazard threats if used from the outset of, and systematically during, natural hazard events. When appropriately utilized, such UAVs can provide a powerful new hazard mitigation and documentation tool for civil protection hazard responders. This research was carried out under the auspices of the Italian government, and, in part, under contract to NASA at the Jet Propulsion Laboratory.

  2. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  3. „Blue-green“ corridors as a tool for mitigation of natural hazards and restoration of urbanized areas: A case study of Belgrade city

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2013-01-01

    Full Text Available Urbanized areas constantly need new surfaces for building of commercial, residental or infrastructure facilities. Belgrade, the capital of Serbia and a big regional center, with 2,000,000 inhabitants, covers a territory of 3,500 km2. Decreasing of surfaces under forest vegetation, urbanization and inadequate agricultural measures have caused intensive erosion and more frequent torrential floods. Belgrade authorities have defined a new strategy for land use and urban planning in order to decrease the risk from destructive erosion processes and torrential floods and help the establishment of new recreational areas, preservation of biodiversity and mitigation of the „heat island“ effect. The strategy is based on the restoration of „blue-green“ corridors (residuals of open streams and fragments of forest vegetation. The restoration of „blue-green“ corridors is presented at the experimental watersheds of the Kaljavi and Jelezovac streams. The restoration works will be performed in the 2014-2020 period, on the basis of erosion and stream control demands, as well as environmental and social requests, including biological, soil-bioengineering activities and certain administrative measures. The forest surfaces will be increased by 1.38 km2 (18.11% of the total area. The restoration of “blue-green” corridors in the experimental watersheds will decrease the values of maximal discharges (p = 1% by about 50%, and the volumes of direct runoff by about 40%. Erosive material production and transport will be decreased by about 44% in the Kaljavi stream watershed, and 37% in the Jelezovac stream watershed. Ten kilometers of sealed walking and cycling paths, 1.7 km of unsealed forest paths, six open gyms and seven rest areas will strengthen the potential of this area for sports and recreation. The restoration will help the protection and controlled usage of the natural and cultural values in the area, and the connection of

  4. Submarine landslides: processes, triggers and hazard prediction.

    Science.gov (United States)

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  5. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  6. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  7. Abstract on the Effective validation of both new and existing methods for the observation and forecasting of volcanic emissions

    Science.gov (United States)

    Sathnur, Ashwini

    2017-04-01

    Validation of the Existing products of the Remote Sensing instruments Review Comment Number 1 Ground - based instruments and space - based instruments are available for remote sensing of the Volcanic eruptions. Review Comment Number 2 The sunlight spectrum appears over the volcanic geographic area. This sunlight is reflected with the image of the volcano geographic area, to the satellite. The satellite captures this emitted spectrum of the image and further calculates the occurrences of the volcanic eruption. Review Comment Number 3 This computation system derives the presence and detection of sulphur dioxide and Volcanic Ash in the emitted spectrum. The temperature of the volcanic region is also measured. If these inputs derive the possibility of occurrence of an eruption, then the data is manually captured by the system for further usage and hazard mitigation. Review Comment Number 4 The instrument is particularly important in capturing the volcanogenic signal. This capturing operation should be carried out during the appropriate time of the day. This is carried out ideally at the time of the day when the reflected image spectra is best available. Capturing the data is not advisable to be performed at the night time, as the sunlight spectra is at its minimum. This would lead to erroneous data interpretation, as there is no sunlight for reflection of the volcanic region. Thus leading to the least capture of the emitted light spectra. Review Comment Number 5 An ideal area coverage of the spectrometer is mandatory. This is basically for the purpose of capturing the right area of data, in order to precisely derive the occurrence of a volcanic eruption. The larger the spatial resolution, there would be a higher capture of the geographic region, and this would lead to a lesser precise data capture. This would lead to missing details in the data capture. Review Comment Number 6 Ideal qualities for the remote sensing instrument are mentioned below:- Minimum "false

  8. Spatio-temporal patterns of hazards and their use in risk assessment and mitigation. Case study of road accidents in Romania

    Science.gov (United States)

    Catalin Stanga, Iulian

    2013-04-01

    the spatial or temporal clustering of crash accidents. Since the 1990's, Geographical Informational Systems (GIS) became a very important tool for traffic and road safety management, allowing not only the spatial and multifactorial analysis, but also graphical and non-graphical outputs. The current paper presents an accessible GIS methodology to study the spatio-temporal pattern of injury related road accidents, to identify the high density accidents zones, to make a cluster analysis, to create multicriterial typologies, to identify spatial and temporal similarities and to explain them. In this purpose, a Geographical Information System was created, allowing a complex analysis that involves not only the events, but also a large set of interrelated and spatially linked attributes. The GIS includes the accidents as georeferenced point elements with a spatially linked attribute database: identification information (date, location details); accident type; main, secondary and aggravating causes; data about driver; vehicle information; consequences (damages, injured peoples and fatalities). Each attribute has its own number code that allows both the statistical analysis and the spatial interrogation. The database includes those road accidents that led to physical injuries and loss of human lives between 2007 and 2012 and the spatial analysis was realized using TNTmips 7.3 software facilities. Data aggregation and processing allowed creating the spatial pattern of injury related road accidents through Kernel density estimation at three different levels (national - Romania; county level - Iasi County; local level - Iasi town). Spider graphs were used to create the temporal pattern or road accidents at three levels (daily, weekly and monthly) directly related to their causes. Moreover the spatial and temporal database relates the natural hazards (glazed frost, fog, and blizzard) with the human made ones, giving the opportunity to evaluate the nature of uncertainties in risk

  9. A new multi-disciplinary model for the assessment and reduction of volcanic risk: the example of the island of Vulcano, Italy

    Science.gov (United States)

    Simicevic, Aleksandra; Bonadonna, Costanza; di Traglia, Federico; Rosi, Mauro

    2010-05-01

    Volcanic eruptions are accompanied by numerous hazards which pose short- and long-term threats to people and property. Recent experiences have shown that successful responses to hazard events correlate strongly with the degree to which proactive policies of risk reduction are already in place before an eruption occurs. Effective proactive risk-reduction strategies require contributions from numerous disciplines. A volcanic eruption is not a hazard, per se, but rather an event capable of producing a variety of hazards (e.g. earthquakes, pyroclastic density currents, lava flows, tephra fall, lahars, landslides, gas release, and tsunamis) that can affect the built environment in a variety of ways, over different time scales and with different degrees of intensity. Our proposed model for the assessment and mitigation of exposure-based volcanic risk is mainly based on the compilation of three types of maps: hazard maps, hazard-specific vulnerability maps and exposure-based risk maps. Hazard maps identify the spatial distribution of individual volcanic hazard and it includes both event analysis and impact analysis. Hazard-specific vulnerability maps represent the systematic evaluation of physical vulnerability of the built environment to a range of volcanic phenomena, i.e. spatial distribution of buildings vulnerable to a given hazard based on the analysis of selected building elements. Buildings are classified on the basis of their major components that are relevant for different volcanic hazards, their strength, their construction materials and are defined taking into account the potential damage that each group of building elements (e.g. walls, roof, load-bearing structure) will suffer under a volcanic hazard. All those factors are enumerated in a checklist and are used for the building survey. Hazard-specific vulnerability maps are then overlapped with hazard maps in order to compile exposure-based risk maps and so quantify the potential damage. Such quantification

  10. The spatial and temporal `cost' of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand

    Science.gov (United States)

    McDonald, Garry W.; Smith, Nicola J.; Kim, Joon-hwan; Cronin, Shane J.; Proctor, Jon N.

    2017-07-01

    Volcanic risk assessment has historically concentrated on quantifying the frequency, magnitude, and potential diversity of physical processes of eruptions and their consequent impacts on life and property. A realistic socio-economic assessment of volcanic impact must however take into account dynamic properties of businesses and extend beyond only measuring direct infrastructure/property loss. The inoperability input-output model, heralded as one of the 10 most important accomplishments in risk analysis over the last 30 years (Kujawaski Syst Eng. 9:281-295, 2006), has become prominent over the last decade in the economic impact assessment of business disruptions. We develop a dynamic inoperability input-output model to assess the economic impacts of a hypothetical volcanic event occurring at each of 7270 unique spatial locations throughout the Auckland Volcanic Field, New Zealand. This field of at least 53 volcanoes underlies the country's largest urban area, the Auckland region, which is home to 1.4 million people and responsible for 35.3% (NZ201481.2 billion) of the nation's GDP (Statistics New Zealand 2015). We apply volcanic event characteristics for a small-medium-scale volcanic eruption scenario and assess the economic impacts of an `average' eruption in the Auckland region. Economic losses are quantified both with, and without, business mitigation and intervention responses in place. We combine this information with a recent spatial hazard probability map (Bebbington and Cronin Bull Volcanol. 73(1):55-72, 2011) to produce novel spatial economic activity `at risk' maps. Our approach demonstrates how business inoperability losses sit alongside potential life and property damage assessment in enhancing our understanding of volcanic risk mitigation.

  11. Caldera rim collapse: A hidden volcanic hazard

    OpenAIRE

    Merle, Olivier; Michon, Laurent; Bachèlery, Patrick

    2008-01-01

    International audience; Following the emblematic flank collapse of Mount St Helens in 1981, numerous models of flank sliding have been proposed. These models have allowed to largely improve the understanding of mechanisms involved in such landslides, which represent a tremendous risk for populations living around volcanoes. In this article, a new mode of landslide formation, related to buried calderas, is described. The model emphasizes the paramount importance of the hidden ring fault that, ...

  12. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  13. Landsat TM and ETM+ Time Sequence of Lahar Hazards on Fuego Volcano, Guatemala

    Science.gov (United States)

    Reif, S. L.; Bluth, G. J.; Rose, W. I.; Matias, O.

    2003-12-01

    Volcanic hazards pose a threat to a large number of the world's population, especially secondary hazards due to remobilization of volcanic material such as landslides and lahars. Many hazard-prone areas would benefit by remote sensing tools for hazard mitigation. In this study, we propose to use remote sensing and GIS techniques to map these hazard prone areas around Fuego volcano, Guatemala and provide information to local organizations to assist in mitigation. Fuego is a steep sided volcano with a history of large eruptive events, including the well-studied 1974 eruption, that have extruded a large amount of material onto the upper reaches of its watersheds. The volcano is well studied, but historically more emphasis has been placed on eruption processes. A study of the way material moves down Fuego and to the extent that it moves is needed to help mitigate the range of potential hazards. We propose an in-depth remote sensing survey to map the hazard-prone areas. The study will consist of processing 20 years (15 cloud-free images) of Landsat TM and ETM+ data to look at changes in landforms and vegetation. Vegetation indices will be calculated to locate areas devoid of vegetation and a masking process will be used These area changes will be related to field measurements to create GIS to measure the area of these zones. layers denoting geometry changes in the channels around Fuego. These changes will be loaded into a GIS, along with regional climate data, DEMs, hydrologic data, infrastructure, and information about the known volcanic activity recorded in the area by the local volcanologists. Modeling of lahars using LAHARZ and climate data will also be done to determine an estimate of the amount of material moved and to what distances it can be transported. A field survey undertaken in January 2003 acquired GPS ground truth data of landslide boundaries and channel volumes for the GIS. The deposits that were seen in the channels 10 km from the source of the sediment

  14. Software safety hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper.

  15. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA)

    Science.gov (United States)

    Diefenbach, Angela K.; Wood, Nathan J.; Ewert, John W.

    2015-01-01

    Understanding how communities are vulnerable to lahar hazards provides critical input for effective design and implementation of volcano hazard preparedness and mitigation strategies. Past vulnerability assessments have focused largely on hazards posed by a single volcano, even though communities and officials in many parts of the world must plan for and contend with hazards associated with multiple volcanoes. To better understand community vulnerability in regions with multiple volcanic threats, we characterize and compare variations in community exposure to lahar hazards associated with five active volcanoes in Washington State, USA—Mount Baker, Glacier Peak, Mount Rainier, Mount Adams and Mount St. Helens—each having the potential to generate catastrophic lahars that could strike communities tens of kilometers downstream. We use geospatial datasets that represent various population indicators (e.g., land cover, residents, employees, tourists) along with mapped lahar-hazard boundaries at each volcano to determine the distributions of populations within communities that occupy lahar-prone areas. We estimate that Washington lahar-hazard zones collectively contain 191,555 residents, 108,719 employees, 433 public venues that attract visitors, and 354 dependent-care facilities that house individuals that will need assistance to evacuate. We find that population exposure varies considerably across the State both in type (e.g., residential, tourist, employee) and distribution of people (e.g., urban to rural). We develop composite lahar-exposure indices to identify communities most at-risk and communities throughout the State who share common issues of vulnerability to lahar-hazards. We find that although lahars are a regional hazard that will impact communities in different ways there are commonalities in community exposure across multiple volcanoes. Results will aid emergency managers, local officials, and the public in educating at-risk populations and developing

  16. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    Science.gov (United States)

    ,

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  17. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  18. Moral Hazard and Stability

    DEFF Research Database (Denmark)

    Tumennasan, Norovsambuu

    2014-01-01

    Economists perceive moral hazard as an undesirable problem because it undermines efficiency. Carefully designed contracts can mitigate the moral hazard problem, but this assumes that a team is already formed. This paper demonstrates that these contracts are sometimes the reason why teams do...... not form. Formally, we study the team formation problem in which the agents’ efforts are not verifiable and the size of teams does not exceed quota r . We show that if the team members cannot make transfers, then moral hazard affects stability positively in a large class of games. For example, a stable...

  19. Mitigating flood exposure

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  20. 无线传感网络于地下结构环控防灾监测应用研究%Study of Underground Structure Environmental Control and Hazard Mitigation Monitoring by Using Wireless Sensor Network (WSN)

    Institute of Scientific and Technical Information of China (English)

    张达德; 蔡育秀; 杨凯钧; 郭晢维

    2012-01-01

    本研究针对在台湾已完成的个案子予以整理研讨,说明WSN应用在环控防灾监测上的具体方案.其中包括隧道环控与边坡坡面倾度监测,其成效显着,数据稳定.基于上述稳定的成果,建议WSN系统应用于地下结构物监控,例如地铁隧道.至今地铁定期都会有养护人员到地下结构体里进行目视检查,但此方法无法达到实时、有效、全面性的控制.当地下信道结构产生变化,未能实时掌握了解,并立即进场修复,而造成结构严重之损坏.导致难以修复,甚至需改线重建.本研究另拟于上海同济大学的地下通道作为示范应用地点.对于隧道断面变形,藉由倾度计并运用WSN系统间接量测.不只监测振动频率,包括裂缝的开裂以及渗水也必须纳入考虑.此外,配合固接式Wi-Max传输/储存,布置一套实时环控监测系统,达到实时量测感知、防灾之目的.%In this study, WSN applications in environmental control and hazard mitigation monitoring which completed in Taiwan are organized. The effectiveness of these applications, including monitoring on tunnel environmental control and slope inclination are significant. Based on the satisfied result, the WSN system is suggested to be used in the underground structures, such as the subway tunnels. Since the subway on a regular basis will have a visual inspection by maintenance personnel to the underground structure, but this method can not achieve real timing, effective and comprehensive control. If the structure changes not readily grasp the understanding and approach to repair immediately, resulting in the severe damage of the structure makes it difficult to repair, or even need to line change and reconstruction. In this study, the underground passageway of the Tongji University in ' Shanghai is also proposed as a demonstration application site. Concerning the deformation of the tunnel cross section, indirect measurement by tilt meter on the segment

  1. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds

    Science.gov (United States)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic anal