WorldWideScience

Sample records for volcanic events based

  1. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  2. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-01-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  3. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  4. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  5. Records of climatic changes and volcanic events in an ice core from ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the volcanic event that occurred in 1815 AD, has been identified based on electrical conductance ... tions and accumulation rates of ice, climatic and ..... The peak saturated values of currents (µ amp) at about 5 and 30m depths identify the past volcanic episodes Augung ..... in promoting the scientific activities by allowing us.

  6. Inferring climate sensitivity from volcanic events

    Energy Technology Data Exchange (ETDEWEB)

    Boer, G.J. [Environment Canada, University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Stowasser, M.; Hamilton, K. [University of Hawaii, International Pacific Research Centre, Honolulu, HI (United States)

    2007-04-15

    The possibility of estimating the equilibrium climate sensitivity of the earth-system from observations following explosive volcanic eruptions is assessed in the context of a perfect model study. Two modern climate models (the CCCma CGCM3 and the NCAR CCSM2) with different equilibrium climate sensitivities are employed in the investigation. The models are perturbed with the same transient volcano-like forcing and the responses analysed to infer climate sensitivities. For volcano-like forcing the global mean surface temperature responses of the two models are very similar, despite their differing equilibrium climate sensitivities, indicating that climate sensitivity cannot be inferred from the temperature record alone even if the forcing is known. Equilibrium climate sensitivities can be reasonably determined only if both the forcing and the change in heat storage in the system are known very accurately. The geographic patterns of clear-sky atmosphere/surface and cloud feedbacks are similar for both the transient volcano-like and near-equilibrium constant forcing simulations showing that, to a considerable extent, the same feedback processes are invoked, and determine the climate sensitivity, in both cases. (orig.)

  7. The thermoluminescence as tool in the reconstruction of volcanic events

    International Nuclear Information System (INIS)

    Ramirez L, A.; Schaaf, P.; Martin del Pozzo, A.L.; Gonzalez M, P.

    2000-01-01

    Within the Mexican land a great number of volcanoes are situated which a considerable part of them are still active. The relevance of dating pomex deposits, ash or lava of these poly genetic volcanoes is to determine the periodicity and magnitude of the volcanic events happened. In this work is presented the preliminary result of the dating by thermoluminescence in a pomex of a pyroclastic flux coming from a volcano in the state of Puebla with the purpose of providing elements to the knowledge which describe the eruptive history of the explosive volcanism at center of Mexico. For the sample dating the volcanic glasses of pomex were separated and it was applied the fine grain technique with a grain size between 4-11 μ m. In order to calculate the rate of annual dose it was carried out the following: in the determination of 238 U and 232 Th radioisotope concentration was used the neutron activation technique in a nuclear reactor, in the determination of the K 40 radioisotope was used a scanning electron microscope, the rate of environmental and cosmic dose was measured arranging Tl dosemeters of CaSO 4 : Dy in the sampling place. In order to calculate the paleodoses it was carried out the following: the equivalent dose (Q) was determined starting form the additive method and the supra linearity factor (I) starting from regenerative method and in both methods the irradiated process was realized with a 90 Sr beta source. With the above determinations it was calculated a paleodoses of 231 Gy and a rate of annual dose of 6.074 x 10 -3 Gy/year, estimating an age of: Age pomez = 231 Gy / 6.074 Gy x 10 -3 Gy /year = 38030 ± 4000 years. (Author)

  8. Lidar data assimilation for improved analyses of volcanic aerosol events

    Science.gov (United States)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  9. Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431–1649 CE

    International Nuclear Information System (INIS)

    Ludlow, Francis; Stine, Alexander R; Leahy, Paul; Kiely, Gerard; Murphy, Enda; Mayewski, Paul A; Taylor, David; Killen, James; Hennessy, Mark; Baillie, Michael G L

    2013-01-01

    Explosive volcanism resulting in stratospheric injection of sulfate aerosol is a major driver of regional to global climatic variability on interannual and longer timescales. However, much of our knowledge of the climatic impact of volcanism derives from the limited number of eruptions that have occurred in the modern period during which meteorological instrumental records are available. We present a uniquely long historical record of severe short-term cold events from Irish chronicles, 431–1649 CE, and test the association between cold event occurrence and explosive volcanism. Thirty eight (79%) of 48 volcanic events identified in the sulfate deposition record of the Greenland Ice Sheet Project 2 ice-core correspond to 37 (54%) of 69 cold events in this 1219 year period. We show this association to be statistically significant at the 99.7% confidence level, revealing both the consistency of response to explosive volcanism for Ireland’s climatically sensitive Northeast Atlantic location and the large proportional contribution of volcanism to historic cold event frequencies here. Our results expose, moreover, the extent to which volcanism has impacted winter-season climate for the region, and can help to further resolve the complex spatial patterns of Northern Hemisphere winter-season cooling versus warming after major eruptions. (letter)

  10. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  11. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  12. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  13. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  14. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    Science.gov (United States)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during

  15. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    Science.gov (United States)

    Alvizuri, Celso R.

    We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalog: (1) 6 isotropic events, (2) 5 tensional crack events, and (3) a swarm of 14 events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes. A seismic moment tensor is a 3x3 symmetric matrix that provides a compact representation of a seismic source. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms for each moment tensor and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M0 for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M0, we first convert the misfit function to a probability function. The uncertainty, or

  16. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.

    Science.gov (United States)

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions.

  17. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  18. Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms

    Science.gov (United States)

    Love, Jeffrey J.

    2012-01-01

    Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.

  19. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  20. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  1. River basin affected by rare perturbation events: the Chaiten volcanic eruption.

    Science.gov (United States)

    Picco, Lorenzo; Iroumé, Andrés; Oss-Cazzador, Daniele; Ulloa, Hector

    2017-04-01

    Natural disasters can strongly and rapidly affect a wide array of environments. Among these, volcanic eruptions can exert severe impacts on the dynamic equilibrium of riverine environment. The production and subsequent mobilization of large amounts of sediment all over the river basin, can strongly affect both hydrology and sediment and large wood transport dynamics. The aim of this research is to quantify the impact of a volcanic eruption along the Blanco River basin (Southern Chile), considering the geomorphic settings, the sediment dynamics and wood transport. Moreover, an overview on the possible management strategies to reduce the risks will be proposed. The research was carried out mainly along a 2.2 km-long reach of the fourth-order Blanco stream. Almost the entire river basin was affected by the volcanic eruption, several meters of tephra (up to 8 m) were deposited, affecting the evergreen forest and the fluvial corridor. Field surveys and remote sense analysis were carried out to investigate the effect of such extreme event. A Terrestrial Laser Scanner (TLS) was used to detect the morphological changes by computing Difference of Dems (DoDs), while field surveys were carried out to detect the amount of in-channel wood; moreover aerial photos have been analyzed to detect the extension of the impact of volcanic eruption over the river basin. As expected, the DoDs analysis permitted to detect predominant erosional processes along the channel network. In fact, over 190569 m2 there was erosion that produced about 362999 m3 of sediment mobilized, while the deposition happened just over 58715 m2 for a total amount of 23957 m3. Looking then to the LW recruited and transported downstream, was possible to detect as along the active channel corridor a total amount of 113 m3/ha of wood was present. Moreover, analyzing aerial photographs taken before and after the volcanic eruption was possible to define as a total area of about 2.19 km2 was affected by tephra

  2. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    Science.gov (United States)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  3. A volcanic event forecasting model for multiple tephra records, demonstrated on Mt. Taranaki, New Zealand

    Science.gov (United States)

    Damaschke, Magret; Cronin, Shane J.; Bebbington, Mark S.

    2018-01-01

    Robust time-varying volcanic hazard assessments are difficult to develop, because they depend upon having a complete and extensive eruptive activity record. Missing events in eruption records are endemic, due to poor preservation or erosion of tephra and other volcanic deposits. Even with many stratigraphic studies, underestimation or overestimation of eruption numbers is possible due to mis-matching tephras with similar chemical compositions or problematic age models. It is also common to have gaps in event coverage due to sedimentary records not being available in all directions from the volcano, especially downwind. Here, we examine the sensitivity of probabilistic hazard estimates using a suite of four new and two existing high-resolution tephra records located around Mt. Taranaki, New Zealand. Previous estimates were made using only single, or two correlated, tephra records. In this study, tephra data from six individual sites in lake and peat bogs covering an arc of 120° downwind of the volcano provided an excellent temporal high-resolution event record. The new data confirm a previously identified semi-regular pattern of variable eruption frequency at Mt. Taranaki. Eruption intervals exhibit a bimodal distribution, with eruptions being an average of 65 years apart, and in 2% of cases, centuries separate eruptions. The long intervals are less common than seen in earlier studies, but they have not disappeared with the inclusion of our comprehensive new dataset. Hence, the latest long interval of quiescence, since AD 1800, is unusual, but not out of character with the volcano. The new data also suggest that one of the tephra records (Lake Rotokare) used in earlier work had an old carbon effect on age determinations. This shifted ages of the affected tephras so that they were not correlated to other sites, leading to an artificially high eruption frequency in the previous combined record. New modelled time-varying frequency estimates suggest a 33

  4. Dome growth behavior at Soufriere Hills Volcano, Montserrat, revealed by relocation of volcanic event swarms, 1995-1996

    Science.gov (United States)

    Rowe, C.A.; Thurber, C.H.; White, R.A.

    2004-01-01

    We have relocated a subset of events from the digital waveform catalogue of ???17,000 volcanic microearthquakes recorded between July 1995 and February 1996 at Soufriere Hills Volcano (SHV), Montserrat, using a cross-correlation-based phase repicking technique with a joint location method. Hypocenters were estimated for 3914 earthquakes having five or more corrected P-wave picks. The seismic source region collapsed to a volume of ???1 km3 from an initial ???100 km3. Relocated events represent 36 swarms, each containing nearly identical waveforms, having source dimensions of 10 to 100 m in diameter and spatial separations on the order of 500 m or less. Each swarm occurred over a span of several hours to a few days.Triggered data appear to miss between 65% and 98% of the events that occur within these swarms, based on review of helicorder records. Visual estimates of summit dome growth show a rough correspondence between episodes of intense swarming and increases in extruded magma, although dome observations are too sparse to make a direct comparison for this time period. The limited depth range over which dome-growth-related events occur is consistent with a dynamic model of cyclic plug extrusion behavior in the shallow conduit, governed by magma supply rate, overpressure buildup and physical properties of the magma and conduit geometry. Seismic sources may occur in locally overpressured regions that result from microlite formation in a zone of rapid decompression; we propose that this zone exists in the vicinity of a detachment plane associated with the cyclic plug extrusion. ?? 2004 Elsevier B.V. All rights reserved.

  5. A new Bayesian Event Tree tool to track and quantify volcanic unrest and its application to Kawah Ijen volcano

    Science.gov (United States)

    Tonini, Roberto; Sandri, Laura; Rouwet, Dmitri; Caudron, Corentin; Marzocchi, Warner; Suparjan

    2016-07-01

    Although most of volcanic hazard studies focus on magmatic eruptions, volcanic hazardous events can also occur when no migration of magma can be recognized. Examples are tectonic and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g., Ontake eruption on September 2014) have demonstrated that phreatic eruptions are still hard to forecast, despite being potentially very hazardous. For these reasons, it is of paramount importance to identify indicators that define the condition of nonmagmatic unrest, in particular for hydrothermal systems. Often, this type of unrest is driven by movement of fluids, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic BET (Bayesian Event Tree) model, specifically developed to include the forecasting of nonmagmatic unrest and related hazards. The structure of the new event tree differs from the previous schemes by adding a specific branch to detail nonmagmatic unrest outcomes. A further goal of this work consists in providing a user-friendly, open-access, and straightforward tool to handle the probabilistic forecast and visualize the results as possible support during a volcanic crisis. The new event tree and tool are here applied to Kawah Ijen stratovolcano, Indonesia, as exemplificative application. In particular, the tool is set on the basis of monitoring data for the learning period 2000-2010, and is then blindly applied to the test period 2010-2012, during which significant unrest phases occurred.

  6. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  7. Shallow marine event sedimentation in a volcanic arc-related setting: The Ordovician Suri Formation, Famatina range, northwest Argentina

    Science.gov (United States)

    Mangano, M.G.; Buatois, L.A.

    1996-01-01

    The Loma del Kilome??tro Member of the Lower Ordovician Suri Formation records arc-related shelf sedimentation in the Famatina Basin of northwest Argentina. Nine facies, grouped into three facies assemblages, are recognized. Facies assemblage 1 [massive and parallel-laminated mudstones (facies A) locally punctuated by normally graded or parallel-laminated silty sandstones (facies B] records deposition from suspension fall-out and episodic storm-induced turbidity currents in an outer shelf setting. Facies assemblage 2 [massive and parallel-laminated mudstones (facies A) interbedded with rippled-top very fine-grained sandstones (facies D)] is interpreted as the product of background sedimentation alternating with distal storm events in a middle shelf environment. Facies assemblage 3 [normally graded coarse to fine-grained sandstones (facies C); parallel-laminated to low angle cross-stratified sandstones (facies E); hummocky cross-stratified sandstones and siltstones (facies F); interstratified fine-grained sandstones and mudstones (facies G); massive muddy siltstones and sandstones (facies H); tuffaceous sandstones (facies I); and interbedded thin units of massive and parallel-laminated mudstones (facies A)] is thought to represent volcaniclastic mass flow and storm deposition coupled with subordinated suspension fall-out in an inner-shelf to lower-shoreface setting. The Loma del Kilo??metro Member records regressive-transgressive sedimentation in a storm- and mass flow-dominated high-gradient shelf. Volcano-tectonic activity was the important control on shelf morphology, while relative sea-level change influenced sedimentation. The lower part of the succession is attributed to mud blanketing during high stand and volcanic quiescence. Progradation of the inner shelf to lower shoreface facies assemblage in the middle part represents an abrupt basinward shoreline migration. An erosive-based, non-volcaniclastic, turbidite unit at the base of this package suggests a sea

  8. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    Science.gov (United States)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  9. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  10. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  11. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  12. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  13. Event recognition by detrended fluctuation analysis: An application to Teide-Pico Viejo volcanic complex, Tenerife, Spain

    International Nuclear Information System (INIS)

    Del Pin, Enrico; Carniel, Roberto; Tarraga, Marta

    2008-01-01

    In this work we investigate the application of the detrended fluctuation analysis (DFA) to seismic data recorded in the island of Tenerife (Canary Islands, Spain) during the month of July 2004, in a phase of possible unrest of the Teide-Pico Viejo volcanic complex. Tectonic events recorded in the area are recognized and located by the Spanish national agency Instituto Geografico Nacional (IGN) and their catalogue is the only currently available dataset, whose completeness unfortunately suffers from the strong presence of anthropogenic noise. In this paper we propose the use of DFA to help to automatically identify events. The evaluation of this case study proves DFA to be a promising tool to be used for rapidly screening large seismic datasets and highlighting time windows with the potential presence of discrete events

  14. Diversity of basaltic lunar volcanism associated with buried impact structures: Implications for intrusive and extrusive events

    Science.gov (United States)

    Zhang, F.; Zhu, M.-H.; Bugiolacchi, R.; Huang, Q.; Osinski, G. R.; Xiao, L.; Zou, Y. L.

    2018-06-01

    Relatively denser basalt infilling and the upward displacement of the crust-mantle interface are thought to be contributing factors for the quasi-circular mass anomalies for buried impact craters in the lunar maria. Imagery and gravity observations from the Lunar Reconnaissance Orbiter (LRO) and dual Gravity Recovery and Interior Laboratory (GRAIL) missions have identified 10 partially or fully buried impact structures where diversity of observable basaltic mare volcanism exists. With a detailed investigation of the characteristics of associated volcanic landforms, we describe their spatial distribution relationship with respect to the subsurface tectonic structure of complex impact craters and propose possible models for the igneous processes which may take advantage of crater-related zones of weakness and enable magmas to reach the surface. We conclude that the lunar crust, having been fractured and reworked extensively by cratering, facilitates substance and energy exchange between different lunar systems, an effect modulated by tectonic activities both at global and regional scales. In addition, we propose that the intrusion-caused contribution to gravity anomalies should be considered in future studies, although this is commonly obscured by other physical factors such as mantle uplift and basalt load.

  15. Cryptic crustal events during the Taconic Orogeny elucidated through LA-ICPMS studies of volcanic zircons, southern Appalachians, Alabama

    Science.gov (United States)

    Herrmann, A. D.; Leslie, S.; Haynes, J.

    2017-12-01

    Despite a long history of stratigraphic work, many questions remain about the tectonic setting of the Taconic orogeny during the early late Ordovician. Several different global paleogeographic hypotheses exist about the driving force that led to this orogeny. While some studies suggest that the closing of the Iapetus ocean was caused by the collision of the North American and South American plates, most studies suggest that island arc systems collided with the passive continental margin of North America. Nevertheless, disagreement exists on how to explain the stratigraphic architecture of the siliciclastic sequences representing the erosion of the Taconic Highlands in an island arc setting. Some studies suggest the collision was analogous to the modern Banda Arc system with the development of a foreland basin and a sedimentary wedge, while other studies call for the presence of a back arc basin. Here we present U-Pb results of volcanic zircons that are associated with the magmatic activity during this time. Previous studies focused on slender zircons for age dating. However, in this study we analyzed several large zircons from close to the volcanic center in Alabama that have inherited cores in order to test for the presence of geochemical evidence for multiple crustal events. While the rims have ages consistent with the Taconic Orogeny ( 450 my), the cores have much older ages ( 1000 my). Our results support the hypothesis that during the closing of the Iapetus ocean, Precambrian and Cambrian sediments from the passive continental margin were subducted and incorporated into the volcanic system. This led to the inclusion of Precambrian zircons into melts associated with the Taconic Orogeny. Overall, our study supports the presence of subduction of preexisting sedimentary rocks and potentially the presence of a sedimentary wedge.

  16. The thermoluminescence as tool in the reconstruction of volcanic events; La termoluminiscencia como herramienta en la reconstruccion de eventos volcanicos

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez L, A.; Schaaf, P.; Martin del Pozzo, A.L.; Gonzalez M, P. [Instituto de Geofisica, UNAM, C.P. 04500, Mexico D.F. (Mexico)

    2000-07-01

    Within the Mexican land a great number of volcanoes are situated which a considerable part of them are still active. The relevance of dating pomex deposits, ash or lava of these poly genetic volcanoes is to determine the periodicity and magnitude of the volcanic events happened. In this work is presented the preliminary result of the dating by thermoluminescence in a pomex of a pyroclastic flux coming from a volcano in the state of Puebla with the purpose of providing elements to the knowledge which describe the eruptive history of the explosive volcanism at center of Mexico. For the sample dating the volcanic glasses of pomex were separated and it was applied the fine grain technique with a grain size between 4-11 {mu} m. In order to calculate the rate of annual dose it was carried out the following: in the determination of {sup 238} U and {sup 232} Th radioisotope concentration was used the neutron activation technique in a nuclear reactor, in the determination of the K 40 radioisotope was used a scanning electron microscope, the rate of environmental and cosmic dose was measured arranging Tl dosemeters of CaSO{sub 4}: Dy in the sampling place. In order to calculate the paleodoses it was carried out the following: the equivalent dose (Q) was determined starting form the additive method and the supra linearity factor (I) starting from regenerative method and in both methods the irradiated process was realized with a {sup 90} Sr beta source. With the above determinations it was calculated a paleodoses of 231 Gy and a rate of annual dose of 6.074 x 10{sup -3} Gy/year, estimating an age of: Age{sub pomez} = 231 Gy / 6.074 Gy x 10{sup -3} Gy /year = 38030 {+-} 4000 years. (Author)

  17. The unzipping of Africa and South America; New insights from the Etendeka and younger volcanic events along the Angola/Namibia margin.

    Science.gov (United States)

    Jerram, D. A.

    2015-12-01

    The volcanic margin along Angola is relatively poorly constrained. This study uses new petrographic, geochronological and geochemical observations on a new sample set collected along the margin to help understand the various types and relative timings of volcanic events along the margin. This new study has identified 3 main volcanic events that occur at ~100Ma (Sumbe event 1), 90-92Ma (Serra de Neve (SDN)-Elefantes event 2) and 80-81Ma (Namibe event 3), with the oldest event in the north of the margin and younging southwards. This is contrasting with the main Etendeka pulse in Namibia at around 130 Ma. There is a marked variety of igneous rocks along the margin with a grouping of evolved alkaline rocks in the central SDN-Elefantes section, basic submarine volcanics in the north, and basanite eruptions in the southern section. There is some overlap with geochemical types along the margin. The Sumbe event contains predominantly submarine volcanics and shallow Intrusions. SDN-Elefantes rocks have a mixed type but with a distinctive feldspar rich evolved alkali suite of rocks (nepheline syenites and variations around this composition) which occur as lava flows and shallow intrusions as well as making up the core of the SDN complex. The SDN complex itself is analogous in size to the main volcanic centres in Namibia (such as Messum, Brandberg etc.) and suggests that large volcanic feeding centres are still active along the margin as young as 90ma. These in turn will form large volcano-topographic features. In the south the Ponta Negra and Canico sites mainly contain basanites in the form of lava flows, invasive flows and shallow intrusions. At Canico one intrusive plug was sampled with a similar composition to the evolved SDN-Elefantes suite. In all three events it is clear that the volcanic systems have interacted with the sedimentary systems, in some cases dynamically, in others with regional implications for volcano-tectonic uplift. Specific thanks is given for

  18. A tephra lattice for Greenland and a reconstruction of volcanic events spanning 25-45 ka b2k

    Science.gov (United States)

    Bourne, A. J.; Cook, E.; Abbott, P. M.; Seierstad, I. K.; Steffensen, J. P.; Svensson, A.; Fischer, H.; Schüpbach, S.; Davies, S. M.

    2015-06-01

    Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000-45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsvötn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfjöll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.

  19. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  20. The 2006 Eruption of Raoul Volcano (Kermadecs): A Phreato-magmatic Event From a Hydrothermally-Sealed Volcanic Conduit System.

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.; Werner, C. A.

    2006-12-01

    The March 17, 2006 eruption from Raoul volcano (Kermadec Islands, NZ), which tragically claimed the life of NZ Department of Conservation staff member Mark Kearney, is being interpreted as a magmatic-hydrothermal event triggered by shaking associated with regional earthquake swarm activity. Although the eruption released ca. 200 T of SO2, thus confirming its magmatic nature, it occurred without significant precursory volcanic seismicity, and without any of the precursory responses of the volcanic hydrothermal system which were observed prior to the last eruption in 1964. Raoul Island has a long and varied eruption history dating back > 1.4 ma, and has been hydrothermally active throughout historic time. Present day fumarolic and hotspring discharges within Raoul caldera point to the existence of a small but well established, mixed meteoric - seawater hydrothermal system within the volcano. Magmatic signatures are apparent in fumarolic gas discharges, but are heavily masked by their interaction with hydrothermal system fluids (eg. near complete scrubbing of sulphur and halogen gases from the boiling point fumarolic discharges). A diffuse degassing study conducted in 2004 revealed that ca. 80 T/d CO2 is passively discharged from the volcano, suggesting that ongoing (albeit low level) convective degassing of magma occurs at depth. Interestingly, vent locations from the 2006 eruption correspond to areas of relatively low CO2 discharge on the crater floor in 2004. This, in conjunction with the preliminary findings of abundant hydrothermal mineralisation (calcite, anhydrite, quartz) in eruption ejecta, suggests that the main volcanic conduits had become effectively sealed during the interval since the last eruption. Calcite-hosted fluid inclusions are CO2 clathrate-bearing, and have relatively low homogenisation temperatures (165-180 °C), suggesting that the seal environment was both gas-charged and shallowly seated (< 200 m). Shaking associated with the regional

  1. Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous)

    Science.gov (United States)

    Scaife, J. D.; Ruhl, M.; Dickson, A. J.; Mather, T. A.; Jenkyns, H. C.; Percival, L. M. E.; Hesselbo, S. P.; Cartwright, J.; Eldrett, J. S.; Bergman, S. C.; Minisini, D.

    2017-12-01

    Oceanic Anoxic Event 2 (OAE 2), during the Cenomanian-Turonian transition (˜94 Ma), was the largest perturbation of the global carbon cycle in the mid-Cretaceous and can be recognized by a positive carbon-isotope excursion in sedimentary strata. Although OAE 2 has been linked to large-scale volcanism, several large igneous provinces (LIPs) were active at this time (e.g., Caribbean, High Arctic, Madagascan, Ontong-Java) and little clear evidence links OAE 2 to a specific LIP. The Mid-Cenomanian Event (MCE, ˜96 Ma), identified by a small, 1‰ positive carbon-isotope excursion, is often referred to as a prelude to OAE 2. However, no underlying cause has yet been demonstrated and its relationship to OAE 2 is poorly constrained. Here we report sedimentary mercury (Hg) concentration data from four sites, three from the southern margin of the Western Interior Seaway and one from Demerara Rise, in the equatorial proto-North Atlantic Ocean. We find that, in both areas, increases in mercury concentrations and Hg/TOC ratios coincide with the MCE and the OAE 2. However, the increases found in these sites are of a lower magnitude than those found in records of many other Mesozoic events, possibly characteristic of a marine rather than atmospheric dispersal of mercury for both events. Combined, the new mercury data presented here are consistent with an initial magmatic pulse at the time of the MCE, with a second, greater pulse at the onset of OAE 2, possibly related to the emplacement of LIPs in the Pacific Ocean and/or the High Arctic.

  2. Neogene Tiporco Volcanic Complex, San Luis, Argentina: An explosive event in a regional transpressive - local transtensive setting in the pampean flat slab

    Science.gov (United States)

    Ibañes, Oscar Damián; Sruoga, Patricia; Japas, María Silvia; Urbina, y. Nilda Esther

    2017-07-01

    The Neogene Tiporco Volcanic Complex (TVC) is located in the Sierras Pampeanas of San Luis, Argentina, at the southeast of the Pampean flat-slab segment. Based on the comprehensive study of lithofacies and structures, the reconstruction of the volcanic architecture has been carried out. The TVC has been modeled in three subsequent stages: 1) initial updoming, 2) ignimbritic eruptive activity and 3) lava dome emplacement. Interplay of magma injection and transtensional tectonic deformation has been invoked to reproduce TVC evolution.

  3. The Middlesex Fells Volcanic Complex: A Revised Tectonic Model based on Geochronology, Geochemistry, and Field Data

    Science.gov (United States)

    Hampton, R.

    2017-12-01

    The Boston Bay area is composed of several terranes originating on the paleocontinent of Avalonia, an arc terrane that accreted onto the continent of Laurentia during the Devonian. Included in these terranes is the Middlesex Fells Volcanic Complex, a bimodal complex composed of both intrusive and extrusive igneous rocks. Initial studies suggested that this volcanic complex formed during a rift event as the Avalonian continent separated from its parent continent 700-900 Ma. New geochemical and geochronological data and field relationships observed in this study establishes a new tectonic model. U-Pb laser ablation zircon data on four samples from different units within the complex reveal that the complex erupted 600 Ma. ICP-MS geochemical analysis of the metabasalt member of the complex yield a trace element signature enriched in Rb, Pb, and Sr and depleted in Th, indicating a subduction component to the melt and interpreted as an eruption into a back-arc basin. The felsic units similarly have an arc related signature when plotted on trace element spider diagrams and tectonic discrimination diagrams. Combined with the field relationships, including an erosional unconformity, stratigraphic and intrusional relationships and large faults from episodic extension events, this data suggests that the Middlesex Fells Volcanic Complex was erupted as part of the arc-sequence of Avalonia and as part of the formation of a back-arc basin well after Avalonia separated from its parent continent. This model presents a significantly younger eruption scenario for the Middlesex Fells Volcanics than previously hypothesized and may be used to study and compare to other volcanics from Avalon terranes in localities such as Newfoundland and the greater Boston area.

  4. The Plio-Quaternary Volcanic Evolution of Gran Canaria Based on new Unspiked K-Ar ages and Magnetostratigraphy

    Science.gov (United States)

    Guillou, H.; Carracedo, J.; Perez Torrado, F.

    2003-12-01

    The combined use of radioisotopic dating, magnetostratigraphy and field geology is a powerful tool to provide reliable chronological frameworks of volcanic edifices. This approach has been used to investigate the last two stages of the volcanic evolution of Gran Canaria. Fifty samples were dated using the unspiked K-Ar method and had their magnetic polarity measured both in the field and in laboratory. Ages were compared to their stratigraphic positions and magnetic polarities before accepting their validity. The unspiked K-Ar chronology constrains the timing of lateral collapses, eruption rates and the contemporaneity of different volcano-magmatic stages at Gran Canaria. Our new data set modifies significantly the previous chronological framework of Gran Canaria, especially between 4 and 2.8 Ma. Based on these new ages, we can bracket the age of the multiple lateral collapses of the Roque Nublo stratovolcano flanks between 3.5 and 3.1 Ma .This time interval corresponds to a main period of volcanic quiescence. Calculated eruptive rates during the stratovolcano edification are about 0.1 km3/kyr which is significantly lower than the published estimates. The dating also reveals that the two main last stages are not separated by a major time gap, but that the early stages of the rift forming eruption and the vanishing activity of the Roque Nublo strato-volcano were contemporaneous for at least 600 kyrs. These results support that our combined approach provides a rapid first-pass and reliable geochronology. Nevertheless, this chronology can be amplified and made more precise where necessary through detailed Ar-Ar incremental-heating methods. Samples which should be investigated using this method are the oldest and youngest K-Ar dated flows of each volcanic stage, and samples from stratigraphic sections that hold potential to study the behaviour of the earth's magnetic field during reversals (Gauss-Gilbert transition, Olduvai and Reunion events).

  5. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  6. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    , Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries - USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom - have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators. ?? Springer Science+Business Media B.V. 2008.

  7. Rb-Sr and Ar-Ar systematics of Malani volcanic rocks of southwest Rajasthan: evidence for a younger post-crystallization thermal event

    International Nuclear Information System (INIS)

    Rathore, S.S.; Srivastava, R.K.

    1996-01-01

    A new Rb-Sr age of 779 ± 10 Ma has been obtained for a suite of andesite-dacite-rhyolite from the Malani igneous province of southwestern Rajasthan, dated earlier at 745 ± 10 Ma by Crawford and Compston (1970). The associated basalts may be slightly younger than the felsic volcanics and have a mantle source. The felsic volcanics on the other hand were most probably derived by fractional crystallization of a crustal magma. 40 Ar- 39 Ar systematics of three samples viz., a basalt, a dacite and a rhyolite show disturbed age spectra indicating a thermal event around 500-550 Ma ago. This secondary thermal event is quite wide-spread and possibly related to the Pan-African thermo-tectonic episode observed in the Himalayas and south India. (author). 38 refs., 5 figs., 2 tabs

  8. Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience

    Science.gov (United States)

    García, Alicia; De la Cruz-Reyna, Servando; Marrero, José M.; Ortiz, Ramón

    2016-05-01

    Under certain conditions, volcano-tectonic (VT) earthquakes may pose significant hazards to people living in or near active volcanic regions, especially on volcanic islands; however, hazard arising from VT activity caused by localized volcanic sources is rarely addressed in the literature. The evolution of VT earthquakes resulting from a magmatic intrusion shows some orderly behaviour that may allow the occurrence and magnitude of major events to be forecast. Thus governmental decision makers can be supplied with warnings of the increased probability of larger-magnitude earthquakes on the short-term timescale. We present here a methodology for forecasting the occurrence of large-magnitude VT events during volcanic crises; it is based on a mean recurrence time (MRT) algorithm that translates the Gutenberg-Richter distribution parameter fluctuations into time windows of increased probability of a major VT earthquake. The MRT forecasting algorithm was developed after observing a repetitive pattern in the seismic swarm episodes occurring between July and November 2011 at El Hierro (Canary Islands). From then on, this methodology has been applied to the consecutive seismic crises registered at El Hierro, achieving a high success rate in the real-time forecasting, within 10-day time windows, of volcano-tectonic earthquakes.

  9. A Comprehensive Training Data Set for the Development of Satellite-Based Volcanic Ash Detection Algorithms

    Science.gov (United States)

    Schmidl, Marius

    2017-04-01

    We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.

  10. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  11. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment

    Science.gov (United States)

    Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.

    2006-01-01

    Belt. However, critical pore water pressure from extraordinary amounts of rainfall associated with hurricanes or other meteorological perturbation cannot be ruled out, particularly for smaller volume collapses. There are examples in the area of small seismogenic debris flows that have occurred in historical times, showing that these processes are not uncommon. Assessing the stability conditions of major volcanic edifices that have experienced catastrophic sector collapses is crucial for forecasting future events. This is particularly true for the Eastern Mexican Volcanic Belt, where in many cases no magmatic activity was associated with the collapse. Therefore, edifice failure could occur again without any precursory warning. ?? 2006 Elsevier B.V. All rights reserved.

  12. Volcanic emissions from soils at the base of La Fossa volcano, Vulcano island, Italy

    Science.gov (United States)

    Obenholzner, J. H.; Parks, J. L.

    2006-12-01

    A top-sealed plastic tube with a diameter of ca. 15 cm had been buried vertically at the base of La Fossa volcano, Volcano island, Italy, next to the front of the obsidian flow. The tube had been filled with quartz wool to condense vapors emanating from the soil. At ca. 75 cm below the surface the sample had been exposed to vapors from Sept. 2005 to April 2006. The leached sample had not been in touch with the ground. Another glass wool cushion (ca. 3 cm thick) had been underneath to minimize capillary effects. Leaching of the quartz wool and ICP-MS analysis documented positive values for: Mg, Al, Si, P, K, Ca, Cr, Mn, Ni, Cu, Zn, Cd, Sn, Pb. Leaching with nitric acid documented also V and Fe. Acid leaching produced higher values for all elements, except K and Sn, than leaching with deionized water. Negative values had been obtained for As, Se, Mo. Influence from soil breathing can be excluded as the active fumaroles contain As and Se. This experiment documents for the first time an unknown element transport by vapors/gases through a volcanic edifice interacting with hydrothermal and magmatic gases. It remains unknown if elements detected are entering the atmosphere or are getting adsorbed onto the volcanic ash soil particles derived from reworked surge beds. This question is very important as soils might be an unknown filter medium to filter volcanically polluted air in case of major volcanic crises. Data can be obtained from the authors.

  13. Nested Architecture of Pyroclastic Bedforms Generated by a Single Flow Event: Outcrop Examples from the Izu Volcanic Islands, Japan

    Science.gov (United States)

    Nemoto, Y.; Yoshida, S.

    2009-12-01

    We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2

  14. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  15. ∼1400 Ma alkali metasomatic event in the sericite deposits and basal Aravalli volcanic rocks of Udaipur region, Rajasthan

    International Nuclear Information System (INIS)

    Padmakumari, V.M.; Sreenivas, B.; Srinivasan, R.; Gopalan, K.; Roy, A.B.

    1996-01-01

    Paleosols are residual soil profiles of the geological past. They throw light on the climatic conditions prevalent during their formation. Constraining their age is of importance for deciphering the paleoclimatic history of a region. A suite of K-rich spilitic volcanic rocks immediately overlying the paleosol near Nagaria have been analysed

  16. Synthetic aperture radar (SAR-based mapping of volcanic flows: Manam Island, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    J. K. Weissel

    2004-01-01

    Full Text Available We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.

  17. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  18. Tsunami Source Identification on the 1867 Tsunami Event Based on the Impact Intensity

    Science.gov (United States)

    Wu, T. R.

    2014-12-01

    The 1867 Keelung tsunami event has drawn significant attention from people in Taiwan. Not only because the location was very close to the 3 nuclear power plants which are only about 20km away from the Taipei city but also because of the ambiguous on the tsunami sources. This event is unique in terms of many aspects. First, it was documented on many literatures with many languages and with similar descriptions. Second, the tsunami deposit was discovered recently. Based on the literatures, earthquake, 7-meter tsunami height, volcanic smoke, and oceanic smoke were observed. Previous studies concluded that this tsunami was generated by an earthquake with a magnitude around Mw7.0 along the Shanchiao Fault. However, numerical results showed that even a Mw 8.0 earthquake was not able to generate a 7-meter tsunami. Considering the steep bathymetry and intense volcanic activities along the Keelung coast, one reasonable hypothesis is that different types of tsunami sources were existed, such as the submarine landslide or volcanic eruption. In order to confirm this scenario, last year we proposed the Tsunami Reverse Tracing Method (TRTM) to find the possible locations of the tsunami sources. This method helped us ruling out the impossible far-field tsunami sources. However, the near-field sources are still remain unclear. This year, we further developed a new method named 'Impact Intensity Analysis' (IIA). In the IIA method, the study area is divided into a sequence of tsunami sources, and the numerical simulations of each source is conducted by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model. After that, the resulting wave height from each source to the study site is collected and plotted. This method successfully helped us to identify the impact factor from the near-field potential sources. The IIA result (Fig. 1) shows that the 1867 tsunami event was a multi-source event. A mild tsunami was trigged by a Mw7.0 earthquake, and then followed by the submarine

  19. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  20. A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain

    Science.gov (United States)

    Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.

    2014-05-01

    This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.

  1. PSA-based evaluation and rating of operational events

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the PSA-based evaluation and rating of operational events, including the following: historical background, procedures for event evaluation using PSA, use of PSA for event rating, current activities

  2. DD4Hep based event reconstruction

    CERN Document Server

    AUTHOR|(SzGeCERN)683529; Frank, Markus; Gaede, Frank-Dieter; Hynds, Daniel; Lu, Shaojun; Nikiforou, Nikiforos; Petric, Marko; Simoniello, Rosa; Voutsinas, Georgios Gerasimos

    The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measuremen...

  3. Estimation of volcanic ash emissions using trajectory-based 4D-Var data assimilation

    NARCIS (Netherlands)

    Lu, S.; Lin, X.; Heemink, A.W.; Fu, G.; Segers, A.J.

    2015-01-01

    Volcanic ash forecasting is a crucial tool in hazard assessment and operational volcano monitoring. Emission parameters such as plume height, total emission mass, and vertical distribution of the emission plume rate are essential and important in the implementation of volcanic ash models. Therefore,

  4. Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity

    Science.gov (United States)

    Lirer, Lucio; Petrosino, Paola; Alberico, Ines; Postiglione, Immacolata

    2001-02-01

    Distributions of pyroclastic deposits from the main explosive events at Somma-Vesuvio during the 8,000-year B.P.-A.D. 1906 time-span have been analysed to provide maps of volcanic hazard for long-term eruption forecasting. In order to define hazard ratings, the spatial distributions and loads (kg/m2) exerted by the fall deposits on the roofs of buildings have been considered. A load higher than 300 kg/m2 is defined as destructive. The relationship load/frequency (the latter defined as the number of times that an area has been impacted by the deposition of fall deposits) is considered to be a suitable parameter for differentiating among areas according to hazard rating. Using past fall deposit distributions as the basis for future eruptive scenarios, the total area that could be affected by the products of a future Vesuvio explosive eruption is 1,500 km2. The perivolcanic area (274 km2) has the greatest hazard rating because it could be buried by pyroclastic flow deposits thicker than 0.5 m and up to several tens of metres in thickness. Currently, the perivolcanic area also has the highest risk because of the high exposed value, mainly arising from the high population density.

  5. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption

  6. Capturing volcanic plumes in 3D with UAV-based photogrammetry at Yasur Volcano - Vanuatu

    Science.gov (United States)

    Gomez, C.; Kennedy, B.

    2018-01-01

    As a precise volume of volcanic ash-plume is essential to understand the dynamic of gas emission, exchanges and the eruptive dynamics, we have measured in 3D using photogrammetry a small-size volcanic plume at the summit of Yasur Volcano, Vanuatu. The objective was to collect the altitude and planform shape of the plume as well as the vertical variations of the shape and size. To reach this objective, the authors have used the Structure from Motion photogrammetric method applied to a series of photographs captured in a very short period of time around and above the plume. A total of 146 photographs at 3000 × 4000 pixel were collected as well as the geolocation, the pitch, tilt and orientation of the cameras. The results revealed a "mushroom"-like shape of the plume with a narrow ascending column topped by a turbulent mixing zone. The volume of the plume was calculated to be 13,430 m3 ± 512 m3 (with the error being the cube of the linear error from the Ground Control Points) for a maximum height above the terrain of 63 m. The included error was also kept high because of the irregular distribution of the Ground Control Points that could not be collected in dangerous areas due to the ongoing eruption. Based on this research, it is therefore worth investigating the usage of multiple cameras to capture plumes in 3D over time and the method is also a good complement to the recent development of photogrammetry from space, which can tackle larger-scale eruption plumes.

  7. Volcanic fluxes of volatiles. Preliminary estimates based on rare gas and major volatile calibration

    International Nuclear Information System (INIS)

    Marty, B.

    1992-01-01

    New estimates for volatile fluxes into the atmosphere and hydrosphere through volcanism have been computed using the measured fluxes of 3 He in oceans and SO 2 in the atmosphere, and the ratios between the volatiles in Mid-Ocean Ridge basalts and in high temperature volcanic gases. These estimates have been checked using independent estimates of the volcanic fluxes. This method provides a reliable means of tracing volatile fluxes, although its precision is restricted by the limited amount of data currently available. (author). 19 refs, 1 tab

  8. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  9. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at contamination are most evident in pre-ore magmas, whereas ore-forming intrusions at low temperatures are dominated by crystal

  10. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  11. Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Directory of Open Access Journals (Sweden)

    Euripides P. Kantzas

    2011-06-01

    Full Text Available Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere.

  12. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  13. Trends and characteristics observed in nuclear events based on international nuclear event scale reports

    International Nuclear Information System (INIS)

    Watanabe, Norio

    2001-01-01

    The International Nuclear Event Scale (INES) is jointly operated by the IAEA and the OECD-NEA as a means designed for providing prompt, clear and consistent information related to nuclear events, that occurred at nuclear facilities, and facilitating communication between the nuclear community, the media and the public. Nuclear events are reported to the INES with the Scale', a consistent safety significance indicator, which runs from level 0, for events with no safety significance, to level 7 for a major accident with widespread health and environmental effects. Since the operation of INES was initiated in 1990, approximately 500 events have been reported and disseminated. The present paper discusses the trends observed in nuclear events, such as overall trends of the reported events and characteristics of safety significant events with level 2 or higher, based on the INES reports. (author)

  14. DEVS representation of dynamical systems - Event-based intelligent control. [Discrete Event System Specification

    Science.gov (United States)

    Zeigler, Bernard P.

    1989-01-01

    It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.

  15. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground

  16. Association of Sub-continental and Asthenosphere related Volcanism in NW Iran,Implication forMantle thermal perturbation induced by slab break off and collision event

    Science.gov (United States)

    Jahangiri, A.

    2017-12-01

    Cenozoic magmatic rocks occur extensively in the north of the Zagros suture zone and constitute a significant component of the continental crust in this segment of the Alpine-Himalayan orogenic belt. They range in age from Eocene to quaternary. Miocene to Plio-Quaternary volcanism with post-collisional related significant is covered vast areas in NW Iran. These volcanic rocks can be divided into three different sub-groups on the basis of their mineralogy, geochemistry and magma sources including: 1. alkaline leucite-bearing mafic rocks, which are characterized with high ratios of K2O/Na2O, high content LILE and low HFS elements like Ti, Nb and Ta. They are display fractionated REE patterns and based on different discrimination diagrams show similarity with subduction related magmas. 2- Olivine basalt to trachy-basaltic samples which shows similarity to within plate basalts with high content of TiO2, Nb, Ta and fractionated REE pattern. However, compared with a global average of OIB, they are display slightly higher LIL elements and lower HFS elements concentrations, features that resemble to the arc magmas and suggest that the source of the magmas may have been contaminated by slab-derived fluids. These rocks have simple mineralogical composition with plagioclase, clinopyroxene and olivine. 3- Dominant dacitic volcanic rocks with adakitic geochemical characteristics such as highly fractionate REE pattern and high Sr/Y ratio. Generation of adakitic magmas can be related to increased temperatures in the subduction zone due to mantle upwelling and slab tearing. Subsequent asthenospheric upwelling could be caused direct melting of sub-continental mantle to produce the alkaline magmas, with high contents of K2O, MgO and volatile rich phase's potassic magmas that led to crystallization of leucite, phlogopite, apatite and olivine in studied samples. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompression

  17. Inflation Leading to a Slow Slip Event and Volcanic Unrest at Mount Etna in 2016: Insights From CGPS Data

    Science.gov (United States)

    Bruno, V.; Mattia, M.; Montgomery-Brown, E.; Rossi, M.; Scandura, D.

    2017-12-01

    Global Positioning System (CGPS) data from Mount Etna between May 2015 and September 2016 show intense inflation and a concurrent Slow Slip Event (SSE) from 11 December 2015 to 17 May 2016. In May 2016, an eruptive phase started from the summit craters, temporarily stopping the ongoing inflation. The CGPS data presented here give us the opportunity to determine (1) the source of the inflating body, (2) the strain rate parameters highlighting shear strain rate accumulating along NE Rift and S Rift, (3) the magnitude of the SSE, and (4) possible interaction between modeled sources and other flank structures through stress calculations. By analytical inversion, we find an inflating source 5.5 km under the summit (4.4 km below sea level) and flank slip in a fragmented shallow structure accommodating displacements equivalent to a magnitude Mw6.1 earthquake. These large displacements reflect a complex mechanism of rotations indicated by the inversion of CGPS data for strain rate parameters. At the scale of the volcano, these processes can be considered precursors of seismic activity in the eastern flank of the volcano but concentrated mainly on the northern boundary of the mobile eastern flank along the Pernicana Fault and in the area of the Timpe Fault System.

  18. An event-based model for contracts

    Directory of Open Access Journals (Sweden)

    Tiziana Cimoli

    2013-02-01

    Full Text Available We introduce a basic model for contracts. Our model extends event structures with a new relation, which faithfully captures the circular dependencies among contract clauses. We establish whether an agreement exists which respects all the contracts at hand (i.e. all the dependencies can be resolved, and we detect the obligations of each participant. The main technical contribution is a correspondence between our model and a fragment of the contract logic PCL. More precisely, we show that the reachable events are exactly those which correspond to provable atoms in the logic. Despite of this strong correspondence, our model improves previous work on PCL by exhibiting a finer-grained notion of culpability, which takes into account the legitimate orderings of events.

  19. Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations

    Directory of Open Access Journals (Sweden)

    S. M. Andersson

    2013-02-01

    Full Text Available Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska, Sarychev (Russia and also during the Eyjafjallajökull (Iceland eruptions in the period 2008–2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10–12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajökull in spring 2010. Elemental concentrations of the collected aerosol were obtained by accelerator-based analysis. Aerosol from the Eyjafjallajökull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajökull were dominated by the ash and sulphate component (∼45% each while samples collected in the tropopause region and LMS mainly consisted of sulphate (50–77% and carbon (21–43%. These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e of sulphur dioxide in the studied volcanic cloud was estimated to be 45 ± 22 days.

  20. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  1. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  2. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Stewart, Carol; Wilson, Thomas M.; Procter, Jonathan N.; Scott, Bradley J.; Keys, Harry J.; Jolly, Gill E.; Wardman, Johnny B.; Cronin, Shane J.; McBride, Sara K.

    2014-10-01

    New Zealand's Tongariro National Park volcanoes produce hazardous eruptions every few years to decades. On 6 August 2012 the Te Maari vent of Tongariro Volcano erupted, producing a series of explosions and a fine ash of minor volume which was dispersed rapidly to the east. This manuscript presents a summary of the eruption impacts and the way these supported science communication during the crisis, particularly in terms of hazard map development. The most significant proximal impact was damage from pyroclastic surges and ballistics to the popular and economically-important Tongariro Alpine Crossing track. The only hazard to affect the medial impact zone was a few mms of ashfall with minor impacts. Field testing indicated that the Te Maari ash had extremely low resistivity when wetted, implying a very high potential to cause disruption to nationally-important power transmission networks via the mechanism of insulator flashover. This was not observed, presumably due to insufficient ash accumulation on insulators. Virtually no impacts from distal ashfall were reported. Post-event analysis of PM10 data demonstrates the additional value of regional air quality monitoring networks in quantifying population exposure to airborne respirable ash. While the eruption was minor, it generated a high level of public interest and a demand for information on volcanic hazards and impacts from emergency managers, the public, critical infrastructure managers, health officials, and the agriculture sector. Meeting this demand fully taxed available resources. We present here aspects of the New Zealand experience which may have wider applicability in moving towards improved integration of hazard impact information, mapping, and communication. These include wide use of a wiki technical clearinghouse and email listservs, a focus on multi-agency consistent messages, and a recently developed environment of collaboration and alignment of both research funding and technical science advice

  3. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat

    Science.gov (United States)

    Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2005-12-01

    For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation

  4. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  5. Origin Of Black Shale (Marl) Formation Aided By Continuous Volcanism For 10Ma Including Oceanic Anoxic Event, OAE2 (93-93.5 Ma) In The Eagle Ford Formation In South Texas

    Science.gov (United States)

    Chakrabarty, P.; Basu, A. R.

    2017-12-01

    We report LA-ICPMS U-Pb ages and Hf isotopes of zircons, petrography, major and trace elements and X-ray diffraction (XRD) analyses of whole rock black shales(marls) from volcanic subsurface as well as surface exposure ash beds of the Eagle Ford and Boquillas Formations in South Texas. Zircons from the middle part of the 300ft long Eagle Ford cores yield ages of 93.2±1.66 Ma, 94.13±1.25 Ma and 93.7±1.9 Ma. These ages are consistent with the Cenomanian-Turonian (C-T) age of deposition in three contiguous cores with spatial separation of 140 miles. An approximate 10Ma duration of deposition of volcanic ash and marl, at a rate of 28ft/Ma for the Eagle Ford is suggested from the 85.76 to 95.5 Ma ages. These ages are from the Eagle Ford ash beds, below the Austin Chalk and above the Buda Limestone and cover the Oceanic Anoxic Event 2 at the C-T boundary. Zircons from 7 ash beds in the surface exposures of the Boquillas Formation near Del Rio, yield ages between 84.63 Ma - 90.91 Ma, implying younger than C-T boundary ages for these samples. The mineralogy, major and trace elements of the ash beds suggest their source from nearby arc-derived calc-alkaline volcanism. The ɛHf(T) of the analyzed ash bed zircons yield values between 0 - +8 averaging at +3.5, clearly indicating a mantle component in the host magmas of the zircons. This initial range of ɛHf(T) is similar to arc-volcanism signatures such as the Quaternary andesitic volcanism in Central Mexico. Petrographic analyses of marls away from the visible tuff layer contain phenocrysts of biotite, alkali feldspar and andesitic rock fragments. The whole rock marl with high concentration of some transition metals (V, Zn, Ni, Pb, Mo) and relatively higher MgO and TiO2 contents indicate contemporaneous arc volcanic activity at the time of marl deposition. XRD of subsurface Eagle Ford bulk marl samples from different depths in 4 cores, show volcanogenic clays, such as montmorillonite, vermiculite, dickite and halloysite

  6. A Bootstrap-Based Probabilistic Optimization Method to Explore and Efficiently Converge in Solution Spaces of Earthquake Source Parameter Estimation Problems: Application to Volcanic and Tectonic Earthquakes

    Science.gov (United States)

    Dahm, T.; Heimann, S.; Isken, M.; Vasyura-Bathke, H.; Kühn, D.; Sudhaus, H.; Kriegerowski, M.; Daout, S.; Steinberg, A.; Cesca, S.

    2017-12-01

    Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Therefore, the interpretation of moment tensors can become difficult, if not the full model space is explored, including all its trade-offs and uncertainties. This is especially true for non-double couple components of weak or shallow earthquakes, as for instance found in volcanic, geothermal or mining environments.We developed a bootstrap-based probabilistic optimization scheme (Grond), which is based on pre-calculated Greens function full waveform databases (e.g. fomosto tool, doi.org/10.5880/GFZ.2.1.2017.001). Grond is able to efficiently explore the full model space, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific problems, the design of objective functions, and the diversity of empirical datasets.It uses an integrated, robust waveform data processing based on a newly developed Python toolbox for seismology (Pyrocko, see Heimann et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.001), and allows for visual inspection of many aspects of the optimization problem. Grond has been applied to the CMT moment tensor inversion using W-phases, to nuclear explosions in Korea, to meteorite atmospheric explosions, to volcano-tectonic events during caldera collapse and to intra-plate volcanic and tectonic crustal events.Grond can be used to optimize simultaneously seismological waveforms, amplitude spectra and static displacements of geodetic data as InSAR and GPS (e.g. KITE, Isken et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.002). We present examples of Grond optimizations to demonstrate the advantage of a full exploration of source parameter uncertainties for interpretation.

  7. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  8. GIS-Based emergency and evacuation planning for volcanic hazards in New Zealand

    DEFF Research Database (Denmark)

    Cole, J. W.; Sabel, C. E.; Blumenthal, E.

    2005-01-01

    (reduction, readiness, response and recovery) can benefit from CIS, including applications related to transportation systems, a critical element in managing effective lifelines in an emergency. This is particularly true immediately before and during a volcanic eruption. The potential for volcanic activity...... in New Zealand is high, with 10 volcanoes or volcanic centres (Auckland, Bay of Islands, Haroharo, Mayor Island, Ruapehu, Taranaki, Tarawera, Taupo, Tongariro (including Ngauruhoe) and White Island) recognised as active or potentially active. In addition there are many active and potentially active...... volcanoes along the Kermadec Island chain. There is a great deal of background information on all of these volcanoes, and GIS is currently being used for some aspects of monitoring (e.g. ERS and Envisat radar interferometry for observing deformation prior to eruptions). If an eruption is considered imminent...

  9. Quantifying Volcanic Emissions of Trace Elements to the Atmosphere: Ideas Based on Past Studies

    Science.gov (United States)

    Rose, W. I.

    2003-12-01

    Extensive data exist from volcanological and geochemical studies about exotic elemental enrichments in volcanic emissions to the atmosphere but quantitative data are quite rare. Advanced, highly sensitive techniques of analysis are needed to detect low concentrations of some minor elements, especially during major eruptions. I will present data from studies done during low levels of activity (incrustations and silica tube sublimates at high temperature fumaroles, from SEM studies of particle samples collected in volcanic plumes and volcanic clouds, from geochemical analysis of volcanic gas condensates, from analysis of treated particle and gas filter packs) and a much smaller number that could reflect explosive activity (from fresh ashfall leachate geochemistry, and from thermodynamic codes modeling volatile emissions from magma). This data describes a highly variable pattern of elemental enrichments which are difficult to quantify, generalize and understand. Sampling in a routine way is difficult, and work in active craters has heightened our awareness of danger, which appropriately inhibits some sampling. There are numerous localized enrichments of minor elements that can be documented and others can be expected or inferred. There is a lack of systematic tools to measure minor element abundances in volcanic emissions. The careful combination of several methodologies listed above for the same volcanic vents can provide redundant data on multiple elements which could lead to overall quantification of minor element fluxes but there are challenging issues about detection. For quiescent plumes we can design combinations of measurements to quantify minor element emission rates. Doing a comparable methodology to succeed in measuring minor element fluxes for significant eruptions will require new strategies and/or ideas.

  10. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    Science.gov (United States)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  11. An event-based account of conformity.

    Science.gov (United States)

    Kim, Diana; Hommel, Bernhard

    2015-04-01

    People often change their behavior and beliefs when confronted with deviating behavior and beliefs of others, but the mechanisms underlying such phenomena of conformity are not well understood. Here we suggest that people cognitively represent their own actions and others' actions in comparable ways (theory of event coding), so that they may fail to distinguish these two categories of actions. If so, other people's actions that have no social meaning should induce conformity effects, especially if those actions are similar to one's own actions. We found that female participants adjusted their manual judgments of the beauty of female faces in the direction consistent with distracting information without any social meaning (numbers falling within the range of the judgment scale) and that this effect was enhanced when the distracting information was presented in movies showing the actual manual decision-making acts. These results confirm that similarity between an observed action and one's own action matters. We also found that the magnitude of the standard conformity effect was statistically equivalent to the movie-induced effect. © The Author(s) 2015.

  12. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  13. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  14. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a

  15. IBES: A Tool for Creating Instructions Based on Event Segmentation

    Directory of Open Access Journals (Sweden)

    Katharina eMura

    2013-12-01

    Full Text Available Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, twenty participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, ten and twelve participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  16. IBES: a tool for creating instructions based on event segmentation.

    Science.gov (United States)

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-12-26

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  17. Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics

    Science.gov (United States)

    Potts, K. A.

    2017-12-01

    ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the

  18. Network-Based Detection and Classification of Seismovolcanic Tremors: Example From the Klyuchevskoy Volcanic Group in Kamchatka

    Science.gov (United States)

    Soubestre, Jean; Shapiro, Nikolai M.; Seydoux, Léonard; de Rosny, Julien; Droznin, Dmitry V.; Droznina, Svetlana Ya.; Senyukov, Sergey L.; Gordeev, Evgeniy I.

    2018-01-01

    We develop a network-based method for detecting and classifying seismovolcanic tremors. The proposed approach exploits the coherence of tremor signals across the network that is estimated from the array covariance matrix. The method is applied to four and a half years of continuous seismic data recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. We compute and analyze daily covariance matrices together with their eigenvalues and eigenvectors. As a first step, most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. Thus, volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the daily array covariance matrix's first eigenvector. Our main hypothesis is that these eigenvectors represent the principal components of the daily seismic wavefield and, for days with tremor activity, characterize dominant tremor sources. Those daily first eigenvectors, which can be used as network-based fingerprints of tremor sources, are then grouped into clusters using correlation coefficient as a measure of the vector similarity. As a result, we identify seven clusters associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge and is fully automatic; and the database of the network-based tremor fingerprints can be continuously enriched with newly available data.

  19. Power quality events recognition using a SVM-based method

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, Augusto Santiago; Ferreira, Danton Diego; Ribeiro, Moises Vidal; Duque, Carlos Augusto [Department of Electrical Circuits, Federal University of Juiz de Fora, Campus Universitario, 36036 900, Juiz de Fora MG (Brazil)

    2008-09-15

    In this paper, a novel SVM-based method for power quality event classification is proposed. A simple approach for feature extraction is introduced, based on the subtraction of the fundamental component from the acquired voltage signal. The resulting signal is presented to a support vector machine for event classification. Results from simulation are presented and compared with two other methods, the OTFR and the LCEC. The proposed method shown an improved performance followed by a reasonable computational cost. (author)

  20. Ground-Based Remote Sensing of Volcanic CO2 Fluxes at Solfatara (Italy—Direct Versus Inverse Bayesian Retrieval

    Directory of Open Access Journals (Sweden)

    Manuel Queißer

    2018-01-01

    Full Text Available CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry information of incredible value, such as periods of volcanic unrest. Ground-based laser remote sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult to estimate, particularly for complex topographies. So, a supplementary or even alternative way of retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for the case of the volcanic crater of Solfatara (Italy, a complex terrain hosting two major CO2 degassing fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of these vents using plume speed derived from optical flow analysis yielded a flux of 717 ± 121 t day−1, in agreement with independent measurements. The flux from Bayesian inversion based on a simple Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed estimation methods fail, e.g., optical flow for transparent plumes. The results have implications beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of satellite soundings.

  1. Human based roots of failures in nuclear events investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag [Commission of the European Communities, Petten (Netherlands). European Clearinghouse on Operational Experience Feedback for Nuclear Power Plants

    2012-10-15

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  2. Human based roots of failures in nuclear events investigations

    International Nuclear Information System (INIS)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag

    2012-01-01

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  3. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  4. Spatiotemporal Features for Asynchronous Event-based Data

    Directory of Open Access Journals (Sweden)

    Xavier eLagorce

    2015-02-01

    Full Text Available Bio-inspired asynchronous event-based vision sensors are currently introducing a paradigm shift in visual information processing. These new sensors rely on a stimulus-driven principle of light acquisition similar to biological retinas. They are event-driven and fully asynchronous, thereby reducing redundancy and encoding exact times of input signal changes, leading to a very precise temporal resolution. Approaches for higher-level computer vision often rely on the realiable detection of features in visual frames, but similar definitions of features for the novel dynamic and event-based visual input representation of silicon retinas have so far been lacking. This article addresses the problem of learning and recognizing features for event-based vision sensors, which capture properties of truly spatiotemporal volumes of sparse visual event information. A novel computational architecture for learning and encoding spatiotemporal features is introduced based on a set of predictive recurrent reservoir networks, competing via winner-take-all selection. Features are learned in an unsupervised manner from real-world input recorded with event-based vision sensors. It is shown that the networks in the architecture learn distinct and task-specific dynamic visual features, and can predict their trajectories over time.

  5. Static Analysis for Event-Based XML Processing

    DEFF Research Database (Denmark)

    Møller, Anders

    2008-01-01

    Event-based processing of XML data - as exemplified by the popular SAX framework - is a powerful alternative to using W3C's DOM or similar tree-based APIs. The event-based approach is a streaming fashion with minimal memory consumption. This paper discusses challenges for creating program analyses...... for SAX applications. In particular, we consider the problem of statically guaranteeing the a given SAX program always produces only well-formed and valid XML output. We propose an analysis technique based on ecisting anglyses of Servlets, string operations, and XML graphs....

  6. Ontology-based prediction of surgical events in laparoscopic surgery

    Science.gov (United States)

    Katić, Darko; Wekerle, Anna-Laura; Gärtner, Fabian; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2013-03-01

    Context-aware technologies have great potential to help surgeons during laparoscopic interventions. Their underlying idea is to create systems which can adapt their assistance functions automatically to the situation in the OR, thus relieving surgeons from the burden of managing computer assisted surgery devices manually. To this purpose, a certain kind of understanding of the current situation in the OR is essential. Beyond that, anticipatory knowledge of incoming events is beneficial, e.g. for early warnings of imminent risk situations. To achieve the goal of predicting surgical events based on previously observed ones, we developed a language to describe surgeries and surgical events using Description Logics and integrated it with methods from computational linguistics. Using n-Grams to compute probabilities of followup events, we are able to make sensible predictions of upcoming events in real-time. The system was evaluated on professionally recorded and labeled surgeries and showed an average prediction rate of 80%.

  7. Multi Agent System Based Wide Area Protection against Cascading Events

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Liu, Leo

    2012-01-01

    In this paper, a multi-agent system based wide area protection scheme is proposed in order to prevent long term voltage instability induced cascading events. The distributed relays and controllers work as a device agent which not only executes the normal function automatically but also can...... the effectiveness of proposed protection strategy. The simulation results indicate that the proposed multi agent control system can effectively coordinate the distributed relays and controllers to prevent the long term voltage instability induced cascading events....

  8. Preventing Medication Error Based on Knowledge Management Against Adverse Event

    OpenAIRE

    Hastuti, Apriyani Puji; Nursalam, Nursalam; Triharini, Mira

    2017-01-01

    Introductions: Medication error is one of many types of errors that could decrease the quality and safety of healthcare. Increasing number of adverse events (AE) reflects the number of medication errors. This study aimed to develop a model of medication error prevention based on knowledge management. This model is expected to improve knowledge and skill of nurses to prevent medication error which is characterized by the decrease of adverse events (AE). Methods: This study consisted of two sta...

  9. A ROOT based event display software for JUNO

    Science.gov (United States)

    You, Z.; Li, K.; Zhang, Y.; Zhu, J.; Lin, T.; Li, W.

    2018-02-01

    An event display software SERENA has been designed for the Jiangmen Underground Neutrino Observatory (JUNO). The software has been developed in the JUNO offline software system and is based on the ROOT display package EVE. It provides an essential tool to display detector and event data for better understanding of the processes in the detectors. The software has been widely used in JUNO detector optimization, simulation, reconstruction and physics study.

  10. Abstracting event-based control models for high autonomy systems

    Science.gov (United States)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1993-01-01

    A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.

  11. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  12. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower

    2016-11-01

    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  13. Event-based Sensing for Space Situational Awareness

    Science.gov (United States)

    Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.

    A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding

  14. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  15. An Oracle-based Event Index for ATLAS

    CERN Document Server

    Gallas, Elizabeth; The ATLAS collaboration; Petrova, Petya Tsvetanova; Baranowski, Zbigniew; Canali, Luca; Formica, Andrea; Dumitru, Andrei

    2016-01-01

    The ATLAS EventIndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS, the services we have built based on this architecture, and our experience with it. We've indexed about 15 billion real data events and about 25 billion simulated events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year for real data and simulation, respectively. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data ...

  16. CMS DAQ Event Builder Based on Gigabit Ethernet

    CERN Document Server

    Bauer, G; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutiérrez-Mlot, E; Gutleber, J; Jacobs, C; Kim, J C; Klute, M; Lipeles, E; Lopez-Perez, Juan Antonio; Maron, G; Meijers, F; Meschi, E; Moser, R; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Rácz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

    2007-01-01

    The CMS Data Acquisition System is designed to build and filter events originating from 476 detector data sources at a maximum trigger rate of 100 KHz. Different architectures and switch technologies have been evaluated to accomplish this purpose. Events will be built in two stages: the first stage will be a set of event builders called FED Builders. These will be based on Myrinet technology and will pre-assemble groups of about 8 data sources. The second stage will be a set of event builders called Readout Builders. These will perform the building of full events. A single Readout Builder will build events from 72 sources of 16 KB fragments at a rate of 12.5 KHz. In this paper we present the design of a Readout Builder based on TCP/IP over Gigabit Ethernet and the optimization that was required to achieve the design throughput. This optimization includes architecture of the Readout Builder, the setup of TCP/IP, and hardware selection.

  17. OBEST: The Object-Based Event Scenario Tree Methodology

    International Nuclear Information System (INIS)

    WYSS, GREGORY D.; DURAN, FELICIA A.

    2001-01-01

    Event tree analysis and Monte Carlo-based discrete event simulation have been used in risk assessment studies for many years. This report details how features of these two methods can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology with some of the best features of each. The resultant Object-Based Event Scenarios Tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible (especially those that exhibit inconsistent or variable event ordering, which are difficult to represent in an event tree analysis). Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST method uses a recursive algorithm to solve the object model and identify all possible scenarios and their associated probabilities. Since scenario likelihoods are developed directly by the solution algorithm, they need not be computed by statistical inference based on Monte Carlo observations (as required by some discrete event simulation methods). Thus, OBEST is not only much more computationally efficient than these simulation methods, but it also discovers scenarios that have extremely low probabilities as a natural analytical result--scenarios that would likely be missed by a Monte Carlo-based method. This report documents the OBEST methodology, the demonstration software that implements it, and provides example OBEST models for several different application domains, including interactions among failing interdependent infrastructure systems, circuit analysis for fire risk evaluation in nuclear power plants, and aviation safety studies

  18. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  19. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    Science.gov (United States)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava

  20. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and

  1. An InSAR-based survey of volcanic deformation in the central Andes

    Science.gov (United States)

    Pritchard, M. E.; Simons, M.

    2004-02-01

    We extend an earlier interferometric synthetic aperture radar (InSAR) survey covering about 900 remote volcanos of the central Andes (14°-27°S) between the years 1992 and 2002. Our survey reveals broad (10s of km), roughly axisymmetric deformation at 4 volcanic centers: two stratovolcanoes are inflating (Uturuncu, Bolivia, and Hualca Hualca, Peru); another source of inflation on the border between Chile and Argentina is not obviously associated with a volcanic edifice (here called Lazufre); and a caldera (Cerro Blanco, also called Robledo) in northwest Argentina is subsiding. We explore the range of source depths and volumes allowed by our observations, using spherical, ellipsoidal and crack-like source geometries. We further examine the effects of local topography upon the deformation field and invert for a spherical point-source in both elastic half-space and layered-space crustal models. We use a global search algorithm, with gradient search methods used to further constrain best-fitting models. Inferred source depths are model-dependent, with differences in the assumed source geometry generating a larger range of accepted depths than variations in elastic structure. Source depths relative to sea level are: 8-18 km at Hualca Hualca; 12-25 km for Uturuncu; 5-13 km for Lazufre, and 5-10 km at Cerro Blanco. Deformation at all four volcanoes seems to be time-dependent, and only Uturuncu and Cerro Blanco were deforming during the entire time period of observation. Inflation at Hualca Hualca stopped in 1997, perhaps related to a large eruption of nearby Sabancaya volcano in May 1997, although there is no obvious relation between the rate of deformation and the eruptions of Sabancaya. We do not observe any deformation associated with eruptions of Lascar, Chile, at 16 other volcanoes that had recent small eruptions or fumarolic activity, or associated with a short-lived thermal anomaly at Chiliques volcano. We posit a hydrothermal system at Cerro Blanco to explain the

  2. Reconstructing volcanic plume evolution integrating satellite and ground-based data: application to the 23 November 2013 Etna eruption

    Science.gov (United States)

    Poret, Matthieu; Corradini, Stefano; Merucci, Luca; Costa, Antonio; Andronico, Daniele; Montopoli, Mario; Vulpiani, Gianfranco; Freret-Lorgeril, Valentin

    2018-04-01

    Recent explosive volcanic eruptions recorded worldwide (e.g. Hekla in 2000, Eyjafjallajökull in 2010, Cordón-Caulle in 2011) demonstrated the necessity for a better assessment of the eruption source parameters (ESPs; e.g. column height, mass eruption rate, eruption duration, and total grain-size distribution - TGSD) to reduce the uncertainties associated with the far-travelling airborne ash mass. Volcanological studies started to integrate observations to use more realistic numerical inputs, crucial for taking robust volcanic risk mitigation actions. On 23 November 2013, Etna (Italy) erupted, producing a 10 km height plume, from which two volcanic clouds were observed at different altitudes from satellites (SEVIRI, MODIS). One was retrieved as mainly composed of very fine ash (i.e. PM20), and the second one as made of ice/SO2 droplets (i.e. not measurable in terms of ash mass). An atypical north-easterly wind direction transported the tephra from Etna towards the Calabria and Apulia regions (southern Italy), permitting tephra sampling in proximal (i.e. ˜ 5-25 km from the source) and medial areas (i.e. the Calabria region, ˜ 160 km). A primary TGSD was derived from the field measurement analysis, but the paucity of data (especially related to the fine ash fraction) prevented it from being entirely representative of the initial magma fragmentation. To better constrain the TGSD assessment, we also estimated the distribution from the X-band weather radar data. We integrated the field and radar-derived TGSDs by inverting the relative weighting averages to best fit the tephra loading measurements. The resulting TGSD is used as input for the FALL3D tephra dispersal model to reconstruct the whole tephra loading. Furthermore, we empirically modified the integrated TGSD by enriching the PM20 classes until the numerical results were able to reproduce the airborne ash mass retrieved from satellite data. The resulting TGSD is inverted by best-fitting the field, ground-based

  3. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  4. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.

    1992-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  5. A new global geomagnetic model based on archeomagnetic, volcanic and historical records

    Science.gov (United States)

    Arneitz, Patrick; Leonhardt, Roman; Fabian, Karl

    2016-04-01

    The major challenge of geomagnetic field reconstruction lies in the inhomogeneous spatio-temporal distribution of the available data and their highly variable quality. Paleo- and archeomagnetic records provide information about the ancient geomagnetic field beyond the historical period. Typically these data types have larger errors than their historical counterparts, and investigated materials and applied experimental methods potentially bias field readings. Input data for the modelling approach were extracted from available collections of archeomagnetic, volcanic and historical records, which were integrated into a single database along with associated meta-data. The used iterative Bayesian inversion scheme targets the implementation of reliable error treatments, which allows to combine the different data types. The proposed model is scrutinized by carrying out tests with artificial records. Records are synthesized using a known field evolution generated by a geodynamo model showing realistic energy characteristics. Using the artificial field, a synthetic data set is generated that exactly mirrors the existing measured records in all meta-data, but provides data that would have been observed if the artificial field would have been real. After inversion of the synthetic data, the comparison of known artificial Gauss coefficients and modelled ones allows for the verification of the applied modelling strategy as well as for the examination of the potential and limits of the current data compilation.

  6. An Oracle-based event index for ATLAS

    Science.gov (United States)

    Gallas, E. J.; Dimitrov, G.; Vasileva, P.; Baranowski, Z.; Canali, L.; Dumitru, A.; Formica, A.; ATLAS Collaboration

    2017-10-01

    The ATLAS Eventlndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS (relational database management system), the services we have built based on this architecture, and our experience with it. We’ve indexed about 26 billion real data events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data with other complementary metadata in ATLAS, the system has been easily extended to perform essential assessments of data integrity and completeness and to identify event duplication, including at what step in processing the duplication occurred.

  7. Rocchio-based relevance feedback in video event retrieval

    NARCIS (Netherlands)

    Pingen, G.L.J.; de Boer, M.H.T.; Aly, Robin; Amsaleg, Laurent; Guðmundsson, Gylfi Þór; Gurrin, Cathal; Jónsson, Björn Þór; Satoh, Shin’ichi

    This paper investigates methods for user and pseudo relevance feedback in video event retrieval. Existing feedback methods achieve strong performance but adjust the ranking based on few individual examples. We propose a relevance feedback algorithm (ARF) derived from the Rocchio method, which is a

  8. Simulation of quantum computation : A deterministic event-based approach

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, K; De Raedt, H

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  9. Simulation of Quantum Computation : A Deterministic Event-Based Approach

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, K. De; Raedt, H. De

    2005-01-01

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  10. An XML-Based Protocol for Distributed Event Services

    Science.gov (United States)

    Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the application of an XML (extensible mark-up language)-based protocol to the developing field of distributed processing by way of a computational grid which resembles an electric power grid. XML tags would be used to transmit events between the participants of a transaction, namely, the consumer and the producer of the grid scheme.

  11. Event-based historical value-at-risk

    NARCIS (Netherlands)

    Hogenboom, F.P.; Winter, Michael; Hogenboom, A.C.; Jansen, Milan; Frasincar, F.; Kaymak, U.

    2012-01-01

    Value-at-Risk (VaR) is an important tool to assess portfolio risk. When calculating VaR based on historical stock return data, we hypothesize that this historical data is sensitive to outliers caused by news events in the sampled period. In this paper, we research whether the VaR accuracy can be

  12. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  13. Event Recognition Based on Deep Learning in Chinese Texts.

    Directory of Open Access Journals (Sweden)

    Yajun Zhang

    Full Text Available Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM. Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN, then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  14. Event Recognition Based on Deep Learning in Chinese Texts.

    Science.gov (United States)

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  15. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    International Nuclear Information System (INIS)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system

  16. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Jr., Mac Roy [Univ. of Nevada, Reno, NV (United States)

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  17. Event-Based Stabilization over Networks with Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xiangyu Meng

    2012-01-01

    Full Text Available This paper investigates asymptotic stabilization for linear systems over networks based on event-driven communication. A new communication logic is proposed to reduce the feedback effort, which has some advantages over traditional ones with continuous feedback. Considering the effect of time-varying transmission delays, the criteria for the design of both the feedback gain and the event-triggering mechanism are derived to guarantee the stability and performance requirements. Finally, the proposed techniques are illustrated by an inverted pendulum system and a numerical example.

  18. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  19. Event-Based control of depth of hypnosis in anesthesia.

    Science.gov (United States)

    Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio

    2017-08-01

    In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Event- and interval-based measurement of stuttering: a review.

    Science.gov (United States)

    Valente, Ana Rita S; Jesus, Luis M T; Hall, Andreia; Leahy, Margaret

    2015-01-01

    Event- and interval-based measurements are two different ways of computing frequency of stuttering. Interval-based methodology emerged as an alternative measure to overcome problems associated with reproducibility in the event-based methodology. No review has been made to study the effect of methodological factors in interval-based absolute reliability data or to compute the agreement between the two methodologies in terms of inter-judge, intra-judge and accuracy (i.e., correspondence between raters' scores and an established criterion). To provide a review related to reproducibility of event-based and time-interval measurement, and to verify the effect of methodological factors (training, experience, interval duration, sample presentation order and judgment conditions) on agreement of time-interval measurement; in addition, to determine if it is possible to quantify the agreement between the two methodologies The first two authors searched for articles on ERIC, MEDLINE, PubMed, B-on, CENTRAL and Dissertation Abstracts during January-February 2013 and retrieved 495 articles. Forty-eight articles were selected for review. Content tables were constructed with the main findings. Articles related to event-based measurements revealed values of inter- and intra-judge greater than 0.70 and agreement percentages beyond 80%. The articles related to time-interval measures revealed that, in general, judges with more experience with stuttering presented significantly higher levels of intra- and inter-judge agreement. Inter- and intra-judge values were beyond the references for high reproducibility values for both methodologies. Accuracy (regarding the closeness of raters' judgements with an established criterion), intra- and inter-judge agreement were higher for trained groups when compared with non-trained groups. Sample presentation order and audio/video conditions did not result in differences in inter- or intra-judge results. A duration of 5 s for an interval appears to be

  1. Event-based state estimation a stochastic perspective

    CERN Document Server

    Shi, Dawei; Chen, Tongwen

    2016-01-01

    This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed. The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems. This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs ...

  2. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  3. System risk evolution analysis and risk critical event identification based on event sequence diagram

    International Nuclear Information System (INIS)

    Luo, Pengcheng; Hu, Yang

    2013-01-01

    During system operation, the environmental, operational and usage conditions are time-varying, which causes the fluctuations of the system state variables (SSVs). These fluctuations change the accidents’ probabilities and then result in the system risk evolution (SRE). This inherent relation makes it feasible to realize risk control by monitoring the SSVs in real time, herein, the quantitative analysis of SRE is essential. Besides, some events in the process of SRE are critical to system risk, because they act like the “demarcative points” of safety and accident, and this characteristic makes each of them a key point of risk control. Therefore, analysis of SRE and identification of risk critical events (RCEs) are remarkably meaningful to ensure the system to operate safely. In this context, an event sequence diagram (ESD) based method of SRE analysis and the related Monte Carlo solution are presented; RCE and risk sensitive variable (RSV) are defined, and the corresponding identification methods are also proposed. Finally, the proposed approaches are exemplified with an accident scenario of an aircraft getting into the icing region

  4. Event-Based User Classification in Weibo Media

    Directory of Open Access Journals (Sweden)

    Liang Guo

    2014-01-01

    Full Text Available Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.

  5. Event-based user classification in Weibo media.

    Science.gov (United States)

    Guo, Liang; Wang, Wendong; Cheng, Shiduan; Que, Xirong

    2014-01-01

    Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.

  6. DYNAMIC AUTHORIZATION BASED ON THE HISTORY OF EVENTS

    Directory of Open Access Journals (Sweden)

    Maxim V. Baklanovsky

    2016-11-01

    Full Text Available The new paradigm in the field of access control systems with fuzzy authorization is proposed. Let there is a set of objects in a single data transmissionnetwork. The goal is to develop dynamic authorization protocol based on correctness of presentation of events (news occurred earlier in the network. We propose mathematical method that keeps compactly the history of events, neglects more distant and least-significant events, composes and verifies authorization data. The history of events is represented as vectors of numbers. Each vector is multiplied by several stochastic vectors. The result is known that if vectors of events are sparse, then by solving the problem of -optimization they can be restored with high accuracy. Results of experiments for vectors restoring have shown that the greater the number of stochastic vectors is, the better accuracy of restored vectors is observed. It has been established that the largest absolute components are restored earlier. Access control system with the proposed dynamic authorization method enables to compute fuzzy confidence coefficients in networks with frequently changing set of participants, mesh-networks, multi-agent systems.

  7. An Oracle-based event index for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00083337; The ATLAS collaboration; Dimitrov, Gancho

    2017-01-01

    The ATLAS Eventlndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS (relational database management system), the services we have built based on this architecture, and our experience with it. We’ve indexed about 26 billion real data events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data with other complementary metadata in AT...

  8. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-08-01

    In this paper a new integral mathematical model for volcanic plumes, named PLUME-MoM, is presented. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. A proper description of such a multi-particle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows for a description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of parameters of the continuous size distribution of the particles. This is achieved by formulation of fundamental transport equations for the multi-particle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows for the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables the investigation of the response of four key output variables (mean and standard deviation of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and standard deviation) characterizing the

  9. Magma-Tectonic Interactions along the Central America Volcanic Arc: Insights from the August 1999 Magmatic and Tectonic Event at Cerro Negro, Nicaragua

    Science.gov (United States)

    La Femina, P.; Connor, C.; Strauch, W.

    2002-12-01

    Volcanic vent alignments form parallel to the direction of maximum horizontal stress, accommodating extensional strain via dike injection. Roughly east-west extension within the Central America Volcanic Arc is accommodated along north-northwest-trending basaltic vent alignments. In Nicaragua, these alignments are located in a northwest-trending zone of dextral shear, with shear accommodated along northeast trending bookshelf faults. The recent eruption of Cerro Negro volcano, Nicaragua and Marabios Range seismic swarm revealed the interaction of these fault systems. A low energy (VEI 1), small volume (0.001 km3 DRE) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5-7, 1999. This eruption followed three tectonic earthquakes (each Mw 5.2) in the vicinity of Cerro Negro hours before the onset of eruptive activity. The temporal and spatial pattern of microseismicity and focal mechanisms of the Mw 5.2 earthquakes suggests the activation of northeast-trending faults northwest and southeast of Cerro Negro within the Marabios Range. The eruption was confined to three new vents formed on the southern flank of Cerro Negro along a preexisting north-northwest trending alignment; the El Hoyo alignment of cinder cones, maars and explosion craters. Surface ruptures formed > 1 km south and southeast of the new vents suggest dike injection. Numerical simulations of conduit flow illustrate that the observed effusion rates (up to 65 ms-1) and fountain heights (50-300 m) can be achieved by eruption of magma with little or no excess fluid pressure, in response to tectonic strain. These observations and models suggest that 1999 Cerro Negro activity is an excellent example of tectonically induced small-volume eruptions in an arc setting.

  10. Poisson-event-based analysis of cell proliferation.

    Science.gov (United States)

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  11. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  12. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  13. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  14. Deep learning based beat event detection in action movie franchises

    Science.gov (United States)

    Ejaz, N.; Khan, U. A.; Martínez-del-Amor, M. A.; Sparenberg, H.

    2018-04-01

    Automatic understanding and interpretation of movies can be used in a variety of ways to semantically manage the massive volumes of movies data. "Action Movie Franchises" dataset is a collection of twenty Hollywood action movies from five famous franchises with ground truth annotations at shot and beat level of each movie. In this dataset, the annotations are provided for eleven semantic beat categories. In this work, we propose a deep learning based method to classify shots and beat-events on this dataset. The training dataset for each of the eleven beat categories is developed and then a Convolution Neural Network is trained. After finding the shot boundaries, key frames are extracted for each shot and then three classification labels are assigned to each key frame. The classification labels for each of the key frames in a particular shot are then used to assign a unique label to each shot. A simple sliding window based method is then used to group adjacent shots having the same label in order to find a particular beat event. The results of beat event classification are presented based on criteria of precision, recall, and F-measure. The results are compared with the existing technique and significant improvements are recorded.

  15. Track-based event recognition in a realistic crowded environment

    Science.gov (United States)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  16. FIREDATA, Nuclear Power Plant Fire Event Data Base

    International Nuclear Information System (INIS)

    Wheelis, W.T.

    2001-01-01

    1 - Description of program or function: FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean 'and' or 'or' logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name of calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information. 2 - Method of solution: The six database files used to store nuclear power plant fire event information, FIRE, DESC, SUM, OPEXPER, OPEXBWR, and EXPERPWR, are accessed by software to display information meeting user-specified criteria or to perform numerical calculations (e.g., to determine the operating experience of a nuclear plant). FIRE contains specific searchable data relating to each of 354 fire events. A keyword concept is used to search each of the 31 separate entries or fields. DESC contains written descriptions of each of the fire events. SUM holds basic plant information for all plants proposed, under construction, in operation, or decommissioned. This includes the initial criticality and commercial operation dates, the physical location of the plant, and its operating capacity. OPEXPER contains date information and data on how various plant locations are

  17. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  18. Observations of volcanic earthquakes and tremor at Deception Island - Antarctica

    Directory of Open Access Journals (Sweden)

    J. Morales

    1999-06-01

    Full Text Available Deception Island - South Shetlands, Antarctica is site of active volcanism. Since 1988 field surveys have been carried out with the aim of seismic monitoring, and in 1994 a seismic array was set up near the site of the Spanish summer base in order to better constrain the source location and spectral properties of the seismic events related to the volcanic activity. The array was maintained during the Antarctic summer of 1995 and the last field survey was carried out in 1996. Data show the existence of three different groups (or families of seismic events: 1 long period events, with a quasi-monochromatic spectral content (1-3 Hz peak frequency and a duration of more than 50 s, often occurring in small swarms lasting from several minutes to some day; 2 volcanic tremor, with a spectral shape similar to the long period events but with a duration of several minutes (2-10; 3 hybrid events, with a waveform characterised by the presence of a high frequency initial phase, followed by a low frequency phase with characteristics similar to those of the long period events. The high frequency phase of the hybrid events was analysed using polarisation techniques, showing the presence of P waves. This phase is presumably located at short epicentral distances and shallow source depth. All the analysed seismic events show back-azimuths between 120 and 330 degrees from north (corresponding to zones of volcanic activity showing no seismic activity in the middle of the caldera. Particle motion, Fourier spectral and spectrogram analysis show that the low frequency part of the three groups of the seismic signals have similar patterns. Moreover careful observations show that the high frequency phase which characterises the hybrid events is present in the long period and in the tremor events, even with lower signal to noise ratios. This evidence suggests that long period events are events in which the high frequency part is simply difficult to observe, due to a very

  19. Address-event-based platform for bioinspired spiking systems

    Science.gov (United States)

    Jiménez-Fernández, A.; Luján, C. D.; Linares-Barranco, A.; Gómez-Rodríguez, F.; Rivas, M.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows a real-time virtual massive connectivity between huge number neurons, located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate "events" according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems, it is absolutely necessary to have a computer interface that allows (a) reading AER interchip traffic into the computer and visualizing it on the screen, and (b) converting conventional frame-based video stream in the computer into AER and injecting it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. In the other hand, the use of a commercial personal computer implies to depend on software tools and operating systems that can make the system slower and un-robust. This paper addresses the problem of communicating several AER based chips to compose a powerful processing system. The problem was discussed in the Neuromorphic Engineering Workshop of 2006. The platform is based basically on an embedded computer, a powerful FPGA and serial links, to make the system faster and be stand alone (independent from a PC). A new platform is presented that allow to connect up to eight AER based chips to a Spartan 3 4000 FPGA. The FPGA is responsible of the network communication based in Address-Event and, at the same time, to map and transform the address space of the traffic to implement a pre-processing. A MMU microprocessor (Intel XScale 400MHz Gumstix Connex computer) is also connected to the FPGA

  20. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  1. Temporal and Location Based RFID Event Data Management and Processing

    Science.gov (United States)

    Wang, Fusheng; Liu, Peiya

    Advance of sensor and RFID technology provides significant new power for humans to sense, understand and manage the world. RFID provides fast data collection with precise identification of objects with unique IDs without line of sight, thus it can be used for identifying, locating, tracking and monitoring physical objects. Despite these benefits, RFID poses many challenges for data processing and management. RFID data are temporal and history oriented, multi-dimensional, and carrying implicit semantics. Moreover, RFID applications are heterogeneous. RFID data management or data warehouse systems need to support generic and expressive data modeling for tracking and monitoring physical objects, and provide automated data interpretation and processing. We develop a powerful temporal and location oriented data model for modeling and queryingRFID data, and a declarative event and rule based framework for automated complex RFID event processing. The approach is general and can be easily adapted for different RFID-enabled applications, thus significantly reduces the cost of RFID data integration.

  2. Estimating the impact of extreme events on crude oil price. An EMD-based event analysis method

    International Nuclear Information System (INIS)

    Zhang, Xun; Wang, Shouyang; Yu, Lean; Lai, Kin Keung

    2009-01-01

    The impact of extreme events on crude oil markets is of great importance in crude oil price analysis due to the fact that those events generally exert strong impact on crude oil markets. For better estimation of the impact of events on crude oil price volatility, this study attempts to use an EMD-based event analysis approach for this task. In the proposed method, the time series to be analyzed is first decomposed into several intrinsic modes with different time scales from fine-to-coarse and an average trend. The decomposed modes respectively capture the fluctuations caused by the extreme event or other factors during the analyzed period. It is found that the total impact of an extreme event is included in only one or several dominant modes, but the secondary modes provide valuable information on subsequent factors. For overlapping events with influences lasting for different periods, their impacts are separated and located in different modes. For illustration and verification purposes, two extreme events, the Persian Gulf War in 1991 and the Iraq War in 2003, are analyzed step by step. The empirical results reveal that the EMD-based event analysis method provides a feasible solution to estimating the impact of extreme events on crude oil prices variation. (author)

  3. Estimating the impact of extreme events on crude oil price. An EMD-based event analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xun; Wang, Shouyang [Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100190 (China); Yu, Lean [Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung [Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon (China)

    2009-09-15

    The impact of extreme events on crude oil markets is of great importance in crude oil price analysis due to the fact that those events generally exert strong impact on crude oil markets. For better estimation of the impact of events on crude oil price volatility, this study attempts to use an EMD-based event analysis approach for this task. In the proposed method, the time series to be analyzed is first decomposed into several intrinsic modes with different time scales from fine-to-coarse and an average trend. The decomposed modes respectively capture the fluctuations caused by the extreme event or other factors during the analyzed period. It is found that the total impact of an extreme event is included in only one or several dominant modes, but the secondary modes provide valuable information on subsequent factors. For overlapping events with influences lasting for different periods, their impacts are separated and located in different modes. For illustration and verification purposes, two extreme events, the Persian Gulf War in 1991 and the Iraq War in 2003, are analyzed step by step. The empirical results reveal that the EMD-based event analysis method provides a feasible solution to estimating the impact of extreme events on crude oil prices variation. (author)

  4. A Bayesian Model for Event-based Trust

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Krukow, Karl; Sassone, Vladimiro

    2007-01-01

    The application scenarios envisioned for ‘global ubiquitous computing’ have unique requirements that are often incompatible with traditional security paradigms. One alternative currently being investigated is to support security decision-making by explicit representation of principals' trusting...... of the systems from the computational trust literature; the comparison is derived formally, rather than obtained via experimental simulation as traditionally done. With this foundation in place, we formalise a general notion of information about past behaviour, based on event structures. This yields a flexible...

  5. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  6. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  7. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources.

    Science.gov (United States)

    Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H

    2013-01-15

    On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  9. Analysis of manufacturing based on object oriented discrete event simulation

    Directory of Open Access Journals (Sweden)

    Eirik Borgen

    1990-01-01

    Full Text Available This paper describes SIMMEK, a computer-based tool for performing analysis of manufacturing systems, developed at the Production Engineering Laboratory, NTH-SINTEF. Its main use will be in analysis of job shop type of manufacturing. But certain facilities make it suitable for FMS as well as a production line manufacturing. This type of simulation is very useful in analysis of any types of changes that occur in a manufacturing system. These changes may be investments in new machines or equipment, a change in layout, a change in product mix, use of late shifts, etc. The effects these changes have on for instance the throughput, the amount of VIP, the costs or the net profit, can be analysed. And this can be done before the changes are made, and without disturbing the real system. Simulation takes into consideration, unlike other tools for analysis of manufacturing systems, uncertainty in arrival rates, process and operation times, and machine availability. It also shows the interaction effects a job which is late in one machine, has on the remaining machines in its route through the layout. It is these effects that cause every production plan not to be fulfilled completely. SIMMEK is based on discrete event simulation, and the modeling environment is object oriented. The object oriented models are transformed by an object linker into data structures executable by the simulation kernel. The processes of the entity objects, i.e. the products, are broken down to events and put into an event list. The user friendly graphical modeling environment makes it possible for end users to build models in a quick and reliable way, using terms from manufacturing. Various tests and a check of model logic are helpful functions when testing validity of the models. Integration with software packages, with business graphics and statistical functions, is convenient in the result presentation phase.

  10. Event-based soil loss models for construction sites

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-05-01

    The elevated rates of soil erosion stemming from land clearing and grading activities during urban development, can result in excessive amounts of eroded sediments entering waterways and causing harm to the biota living therein. However, construction site event-based soil loss simulations - required for reliable design of erosion and sediment controls - are one of the most uncertain types of hydrologic models. This study presents models with improved degree of accuracy to advance the design of erosion and sediment controls for construction sites. The new models are developed using multiple linear regression (MLR) on event-based permutations of the Universal Soil Loss Equation (USLE) and artificial neural networks (ANN). These models were developed using surface runoff monitoring datasets obtained from three sites - Greensborough, Cookstown, and Alcona - in Ontario and datasets mined from the literature for three additional sites - Treynor, Iowa, Coshocton, Ohio and Cordoba, Spain. The predictive MLR and ANN models can serve as both diagnostic and design tools for the effective sizing of erosion and sediment controls on active construction sites, and can be used for dynamic scenario forecasting when considering rapidly changing land use conditions during various phases of construction.

  11. Single event upset threshold estimation based on local laser irradiation

    International Nuclear Information System (INIS)

    Chumakov, A.I.; Egorov, A.N.; Mavritsky, O.B.; Yanenko, A.V.

    1999-01-01

    An approach for estimation of ion-induced SEU threshold based on local laser irradiation is presented. Comparative experiment and software simulation research were performed at various pulse duration and spot size. Correlation of single event threshold LET to upset threshold laser energy under local irradiation was found. The computer analysis of local laser irradiation of IC structures was developed for SEU threshold LET estimation. The correlation of local laser threshold energy with SEU threshold LET was shown. Two estimation techniques were suggested. The first one is based on the determination of local laser threshold dose taking into account the relation of sensitive area to local irradiated area. The second technique uses the photocurrent peak value instead of this relation. The agreement between the predicted and experimental results demonstrates the applicability of this approach. (authors)

  12. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  13. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  14. Proximal stratigraphy and event sequence of the c. 5600 cal. yr BP Whakatane rhyolite eruption episode from Haroharo volcano, Okataina Volcanic Centre, New Zealand

    International Nuclear Information System (INIS)

    Kobayashi, T.; Nairn, I.; Smith, V.; Shane, P.

    2005-01-01

    The c. 5600 cal. yr BP Whakatane eruption episode consisted of a sequence of intracaldera rhyolite eruptions from at least five vents spread over 11 km of the Haroharo linear vent zone within Okataina Volcanic Centre. Initial vent-opening eruptions from the Haroharo vent produced coarse lithic clast 'blast beds' and pyroclastic density currents surges). These were immediately followed by eruption of very mobile pumiceous pyroclastic surges from the Makatiti vent 6 km to the southwest. Major plinian eruptions from the Makatiti vent then dispersed Whakatane Tephra pumice fall deposits (bulk volume c. 6 km 3 ) across the northeastern North Island while smaller explosive eruptions produced pyroclastic flows and falls from the Haroharo-Rotokohu vents and at the Pararoa vent on the caldera rim 11 km northeast from Makatiti. The pyroclastic eruptions at all vents were followed by the extrusion of lava flows and domes; extruded lava volumes ranged from 0.03 km 3 for the Pararoa dome to 7.5 km 3 for the Makatiti-Tapahoro lava flows and domes. Minor variations in whole rock and glass chemistry show that the three main vent areas each tapped a slightly different high-silica rhyolite magma. About 10 km 3 of M-type magma was erupted from the Makatiti-Tapahoro vents; c. 1.3 km 3 of H-type magma from the Haroharo-Rotokohu vents, and 0.04 km 3 of P-type magma from the Pararoa vent. There are no significant weathering or erosional breaks within the Whakatane eruptive sequence, which suggests that all Whakatane eruptions occurred within a short time interval. However, extrusion of the Haroharo dome within the Makatiti pyroclastic eruption sequence suggests a duration of c. 2 yr for the main pyroclastic eruption phase. Emplacement of the following voluminous (7.5 km 3 ) lavas from the Makatiti-Tapahoro vents would have occurred over >10 yr at the c. 10-20 m 3 /s inferred extrusion rates. (author). 19 refs., 16 figs., 7 tabs

  15. Sunshine duration reconstruction in the southeastern Tibetan Plateau based on tree-ring width and its relationship to volcanic eruptions.

    Science.gov (United States)

    Sun, Changfeng; Liu, Yu; Song, Huiming; Cai, Qiufang; Li, Qiang; Wang, Lu; Mei, Ruochen; Fang, Congxi

    2018-07-01

    Sunshine is as essential as temperature and precipitation for tree growth, but sunshine duration reconstructions based on tree rings have not yet been conducted in China. In this study, we presented a 497-year sunshine duration reconstruction for the southeastern Tibetan Plateau using a width chronology of Abies forrestii from the central Hengduan Mountains. The reconstruction accounted for 53.5% of the variance in the observed sunshine during the period of 1961-2013 based on a stable and reliable linear regression. This reconstructed sunshine duration contained six sunny periods (1630-1656, 1665-1697, 1731-1781, 1793-1836, 1862-1895 and 1910-1992) and seven cloudy periods (1522-1629, 1657-1664, 1698-1730, 1782-1792, 1837-1861, 1896-1909 and 1993-2008) at a low-frequency scale. There was an increasing trend from the 16th century to the late 18th and early 19th centuries and a decreasing trend from the mid-19th to the early 21st centuries. Sunshine displayed inverse patterns to the local Palmer drought severity index on a multidecadal scale, indicating that this region likely experienced droughts under more sunshine conditions. The decrease in sunshine particularly in recent decades was mainly due to increasing atmospheric anthropogenic aerosols. In terms of the interannual variations in sunshine, weak sunshine years matched well with years of major volcanic eruptions. The significant cycles of the 2- to 7-year, 20.0-year and 35.2-year durations as well as the 60.2-year and 78.7-year durations related to the El-Niño Southern Oscillation, the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation suggested that the variation in sunshine duration in the southeastern Tibetan Plateau was possibly affected by large-scale ocean-atmosphere circulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  17. Strontium isotopes provide clues for a process shift in base cation dynamics in young volcanic soils

    Science.gov (United States)

    Bingham, N.; Jackson, M. G.; Bookhagen, B.; Maher, K.; Chadwick, O.

    2015-12-01

    Despite advances in soil development theory based on studies of old soils or over long timescales, little is known about soil thresholds (dramatic changes in soil properties associated with only small shifts in external forcing factors) that might be expressed in young soils (less than 10 kyr). Therefore, we seek to understand infant soil development in a tropical environment through the sourcing of plant available base cations by measuring the strontium (Sr) isotopic composition of the soil exchange complex. Our sampling strategy spans soils in three different precipitation ranges (950-1060 mm, 1180-1210 mm, and 1450-1500) and an array of soil ages from 500 to 7500 years in the Kona region on the island of Hawaii. In Hawaiian soils, 87Sr/86Sr values are determined by a mixture of three components: a mantle-derived component from the lava (0.7034), a rainfall component (0.7093) and a component from continental dust (0.720). Elevation-controlled leaching intensity in the wettest localities produces a decline in the concentration of base cations supplied by basalt and a dilute resupply by rainfall. In the driest sites, where leaching intensity is dramatically reduced, there is a buildup of rainfall-derived extractable Sr in the soil over time. Slow rock weathering rates produce a small rock-derived cation input to the soil. Thus, Sr isotope signatures reflect both the input of rainfall-derived cations and rock-derived cations with values that fall between rainfall and basaltic signatures. Soils in the intermediate precipitation range have Sr isotopic signatures consistent with both the wet and dry trends; suggesting that they lie close to the critical precipitation amount that marks a shift between these two processes. For the Kona region, this transition seems to occur at 1200 mm /yr. In contrast to the clear-cut differentiation in strontium isotopes with precipitation shifts observed in older soils, patterns on these young soils in Kona are complicated by low soil

  18. ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi

    Science.gov (United States)

    Jumadi, Carver, Steve; Quincey, Duncan

    2016-05-01

    Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.

  19. Electrophysiological correlates of strategic monitoring in event-based and time-based prospective memory.

    Directory of Open Access Journals (Sweden)

    Giorgia Cona

    Full Text Available Prospective memory (PM is the ability to remember to accomplish an action when a particular event occurs (i.e., event-based PM, or at a specific time (i.e., time-based PM while performing an ongoing activity. Strategic Monitoring is one of the basic cognitive functions supporting PM tasks, and involves two mechanisms: a retrieval mode, which consists of maintaining active the intention in memory; and target checking, engaged for verifying the presence of the PM cue in the environment. The present study is aimed at providing the first evidence of event-related potentials (ERPs associated with time-based PM, and at examining differences and commonalities in the ERPs related to Strategic Monitoring mechanisms between event- and time-based PM tasks.The addition of an event-based or a time-based PM task to an ongoing activity led to a similar sustained positive modulation of the ERPs in the ongoing trials, mainly expressed over prefrontal and frontal regions. This modulation might index the retrieval mode mechanism, similarly engaged in the two PM tasks. On the other hand, two further ERP modulations were shown specifically in an event-based PM task. An increased positivity was shown at 400-600 ms post-stimulus over occipital and parietal regions, and might be related to target checking. Moreover, an early modulation at 130-180 ms post-stimulus seems to reflect the recruitment of attentional resources for being ready to respond to the event-based PM cue. This latter modulation suggests the existence of a third mechanism specific for the event-based PM; that is, the "readiness mode".

  20. Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Harald E. (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland)), e-mail: hr2302@columbia.edu; Jancso, Leonhardt M. (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland); Inst. for Meteorology and Geophysics, Univ. of Innsbruck, Innsbruck (Austria)); Di Rocco, Stefania (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland); Dept. of Geography, Univ. of Zurich, Zurich (Switzerland)) (and others)

    2011-11-15

    We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear 'fingerprints' of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector

  1. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  2. Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka)

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.

    2018-05-01

    Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.

  3. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004--2008

    Science.gov (United States)

    Anderson, Kyle; Segall, Paul

    2013-01-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.

  4. VLSI-based video event triggering for image data compression

    Science.gov (United States)

    Williams, Glenn L.

    1994-02-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  5. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  6. Event-based proactive interference in rhesus monkeys.

    Science.gov (United States)

    Devkar, Deepna T; Wright, Anthony A

    2016-10-01

    Three rhesus monkeys (Macaca mulatta) were tested in a same/different memory task for proactive interference (PI) from prior trials. PI occurs when a previous sample stimulus appears as a test stimulus on a later trial, does not match the current sample stimulus, and the wrong response "same" is made. Trial-unique pictures (scenes, objects, animals, etc.) were used on most trials, except on trials where the test stimulus matched potentially interfering sample stimulus from a prior trial (1, 2, 4, 8, or 16 trials prior). Greater interference occurred when fewer trials separated interference and test. PI functions showed a continuum of interference. Delays between sample and test stimuli and intertrial intervals were manipulated to test how PI might vary as a function of elapsed time. Contrary to a similar study with pigeons, these time manipulations had no discernable effect on the monkey's PI, as shown by compete overlap of PI functions with no statistical differences or interactions. These results suggested that interference was strictly based upon the number of intervening events (trials with other pictures) without regard to elapsed time. The monkeys' apparent event-based interference was further supported by retesting with a novel set of 1,024 pictures. PI from novel pictures 1 or 2 trials prior was greater than from familiar pictures, a familiar set of 1,024 pictures. Moreover, when potentially interfering novel stimuli were 16 trials prior, performance accuracy was actually greater than accuracy on baseline trials (no interference), suggesting that remembering stimuli from 16 trials prior was a cue that this stimulus was not the sample stimulus on the current trial-a somewhat surprising conclusion particularly given monkeys.

  7. The Isopach Mapping of Volcanic Deposits of Mount Samalas 1257 AD Based on the Values of Resistivity and Physical Properties

    Directory of Open Access Journals (Sweden)

    Hiden Hiden

    2017-08-01

    Full Text Available A detailed study had been conducted on the sediment of Mount Samalas’ volcanic eruption in 1257 AD. Using the framework of the reconstruction of the ancient eruption of Mount Samalas, the first step was to map and analyze the deposits of volcanic sediment. Secondly, we analyzed the effect of geomorphology and the distance function to the isopach thickness. The results show that a combination of methods allowed to provide a high resolution map of the distribution of the thickness of the volcanic deposits, both on the slope and in alluvial areas. Geo-electric survey results (both Vertical Electric Sound (VES and 2D mapping show consistent changes in the pattern of contrast resistivity layer interface, for all areas. The pattern changes in a row of the top layer, the high resistivity turned into the low. Furthermore, the second and third layer interface changes from low to the high resistivity. High resistivity on the top layer is interpreted as a layer of unconsolidated volcanic sediment. High resistivity values are range from 736 to 2000 Ohm.m on the top layer in the area of the slopes while in the area of alluvial, the resistivity values range from 20 to 958 Ohm.m. Generally, the volcanic deposits in the area of the slopes have a higher value of isopach (>17 m than in areas of alluvial (<25 m. The geomorphology seemed to have no significant effect on the isopach value, particularly pyroclastic fallout. Such is the case with distance from the source to the site, which is not linear. The value of isopach increases westward from 21 to 31 km, in contrast to the East, which began to occur at a distance of 14 km to 21 km.

  8. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari

    2014-04-01

    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  9. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    Science.gov (United States)

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf

  10. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  11. Event Completion: Event Based Inferences Distort Memory in a Matter of Seconds

    Science.gov (United States)

    Strickland, Brent; Keil, Frank

    2011-01-01

    We present novel evidence that implicit causal inferences distort memory for events only seconds after viewing. Adults watched videos of someone launching (or throwing) an object. However, the videos omitted the moment of contact (or release). Subjects falsely reported seeing the moment of contact when it was implied by subsequent footage but did…

  12. Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: examples from Masaya, Turrialba and Stromboli volcanoes

    Science.gov (United States)

    Rüdiger, Julian; Tirpitz, Jan-Lukas; Maarten de Moor, J.; Bobrowski, Nicole; Gutmann, Alexandra; Liuzzo, Marco; Ibarra, Martha; Hoffmann, Thorsten

    2018-04-01

    Volcanoes are a natural source of several reactive gases (e.g., sulfur and halogen containing species) and nonreactive gases (e.g., carbon dioxide) to the atmosphere. The relative abundance of carbon and sulfur in volcanic gas as well as the total sulfur dioxide emission rate from a volcanic vent are established parameters in current volcano-monitoring strategies, and they oftentimes allow insights into subsurface processes. However, chemical reactions involving halogens are thought to have local to regional impact on the atmospheric chemistry around passively degassing volcanoes. In this study we demonstrate the successful deployment of a multirotor UAV (quadcopter) system with custom-made lightweight payloads for the compositional analysis and gas flux estimation of volcanic plumes. The various applications and their potential are presented and discussed in example studies at three volcanoes encompassing flight heights of 450 to 3300 m and various states of volcanic activity. Field applications were performed at Stromboli volcano (Italy), Turrialba volcano (Costa Rica) and Masaya volcano (Nicaragua). Two in situ gas-measuring systems adapted for autonomous airborne measurements, based on electrochemical and optical detection principles, as well as an airborne sampling unit, are introduced. We show volcanic gas composition results including abundances of CO2, SO2 and halogen species. The new instrumental setups were compared with established instruments during ground-based measurements at Masaya volcano, which resulted in CO2 / SO2 ratios of 3.6 ± 0.4. For total SO2 flux estimations a small differential optical absorption spectroscopy (DOAS) system measured SO2 column amounts on transversal flights below the plume at Turrialba volcano, giving 1776 ± 1108 T d-1 and 1616 ± 1007 T d-1 of SO2 during two traverses. At Stromboli volcano, elevated CO2 / SO2 ratios were observed at spatial and temporal proximity to explosions by airborne in situ measurements. Reactive

  13. Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: examples from Masaya, Turrialba and Stromboli volcanoes

    Directory of Open Access Journals (Sweden)

    J. Rüdiger

    2018-04-01

    Full Text Available Volcanoes are a natural source of several reactive gases (e.g., sulfur and halogen containing species and nonreactive gases (e.g., carbon dioxide to the atmosphere. The relative abundance of carbon and sulfur in volcanic gas as well as the total sulfur dioxide emission rate from a volcanic vent are established parameters in current volcano-monitoring strategies, and they oftentimes allow insights into subsurface processes. However, chemical reactions involving halogens are thought to have local to regional impact on the atmospheric chemistry around passively degassing volcanoes. In this study we demonstrate the successful deployment of a multirotor UAV (quadcopter system with custom-made lightweight payloads for the compositional analysis and gas flux estimation of volcanic plumes. The various applications and their potential are presented and discussed in example studies at three volcanoes encompassing flight heights of 450 to 3300 m and various states of volcanic activity. Field applications were performed at Stromboli volcano (Italy, Turrialba volcano (Costa Rica and Masaya volcano (Nicaragua. Two in situ gas-measuring systems adapted for autonomous airborne measurements, based on electrochemical and optical detection principles, as well as an airborne sampling unit, are introduced. We show volcanic gas composition results including abundances of CO2, SO2 and halogen species. The new instrumental setups were compared with established instruments during ground-based measurements at Masaya volcano, which resulted in CO2 ∕ SO2 ratios of 3.6 ± 0.4. For total SO2 flux estimations a small differential optical absorption spectroscopy (DOAS system measured SO2 column amounts on transversal flights below the plume at Turrialba volcano, giving 1776 ± 1108 T d−1 and 1616 ± 1007 T d−1 of SO2 during two traverses. At Stromboli volcano, elevated CO2 ∕ SO2 ratios were observed at spatial and temporal proximity

  14. The Lanzarote Geodynamic Laboratory: new capabilities for monitoring of volcanic activity at Canary Islands

    Science.gov (United States)

    Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.

    2012-04-01

    The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic

  15. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  16. Ground-Based Remote Sensing and Imaging of Volcanic Gases and Quantitative Determination of Multi-Species Emission Fluxes

    Directory of Open Access Journals (Sweden)

    Ulrich Platt

    2018-01-01

    Full Text Available The physical and chemical structure and the spatial evolution of volcanic plumes are of great interest since they influence the Earth’s atmospheric composition and the climate. Equally important is the monitoring of the abundance and emission patterns of volcanic gases, which gives insight into processes in the Earth’s interior that are difficult to access otherwise. Here, we review spectroscopic approaches (from ultra-violet to thermal infra-red to determine multi-species emissions and to quantify gas fluxes. Particular attention is given to the emerging field of plume imaging and quantitative image interpretation. Here UV SO2 cameras paved the way but several other promising techniques are under study and development. We also give a brief summary of a series of initial applications of fast imaging techniques for volcanological research.

  17. Evidence of volcanic activity in the base of the Pendencia Formation, onshore Potiguar Basin; Evidencia de atividade vulcanica na base da Formacao Pendencia, Bacia Potiguar emersa

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, S.M.C.; Souza, R.S. de; Sombra, C.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Silva Scuta, M. da [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1990-10-01

    The occurrence of volcanic rocks on the Pendencia Formation on the onshore part of Potiguar Basin, the porosity and permeability characteristics, are presented. The studies suggest that the evidence of the volcanic activity occurred associated with the rift process, all the wells drilling in the basin presents profiles characteristics at those volcanos-sedimentary sequences found in other sedimentary basins, and the lithic sandstones permit the conclusion that the occurrence of under water volcanic activity is contemporary of sedimentation in the Pendencia Lake. 4 figs., 8 refs.

  18. A process-oriented event-based programming language

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Zanitti, Francesco

    2012-01-01

    Vi præsenterer den første version af PEPL, et deklarativt Proces-orienteret, Event-baseret Programmeringssprog baseret på den fornyligt introducerede Dynamic Condition Response (DCR) Graphs model. DCR Graphs tillader specifikation, distribuerede udførsel og verifikation af pervasive event...

  19. SPEED : a semantics-based pipeline for economic event detection

    NARCIS (Netherlands)

    Hogenboom, F.P.; Hogenboom, A.C.; Frasincar, F.; Kaymak, U.; Meer, van der O.; Schouten, K.; Vandic, D.; Parsons, J.; Motoshi, S.; Shoval, P.; Woo, C.; Wand, Y.

    2010-01-01

    Nowadays, emerging news on economic events such as acquisitions has a substantial impact on the financial markets. Therefore, it is important to be able to automatically and accurately identify events in news items in a timely manner. For this, one has to be able to process a large amount of

  20. Semantics-based information extraction for detecting economic events

    NARCIS (Netherlands)

    A.C. Hogenboom (Alexander); F. Frasincar (Flavius); K. Schouten (Kim); O. van der Meer

    2013-01-01

    textabstractAs today's financial markets are sensitive to breaking news on economic events, accurate and timely automatic identification of events in news items is crucial. Unstructured news items originating from many heterogeneous sources have to be mined in order to extract knowledge useful for

  1. Logical Discrete Event Systems in a trace theory based setting

    NARCIS (Netherlands)

    Smedinga, R.

    1993-01-01

    Discrete event systems can be modelled using a triple consisting of some alphabet (representing the events that might occur), and two trace sets (sets of possible strings) denoting the possible behaviour and the completed tasks of the system. Using this definition we are able to formulate and solve

  2. A model-based approach to operational event groups ranking

    Energy Technology Data Exchange (ETDEWEB)

    Simic, Zdenko [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2014-04-15

    The operational experience (OE) feedback provides improvements in all industrial activities. Identification of the most important and valuable groups of events within accumulated experience is important in order to focus on a detailed investigation of events. The paper describes the new ranking method and compares it with three others. Methods have been described and applied to OE events utilised by nuclear power plants in France and Germany for twenty years. The results show that different ranking methods only roughly agree on which of the event groups are the most important ones. In the new ranking method the analytical hierarchy process is applied in order to assure consistent and comprehensive weighting determination for ranking indexes. The proposed method allows a transparent and flexible event groups ranking and identification of the most important OE for further more detailed investigation in order to complete the feedback. (orig.)

  3. Prediction problem for target events based on the inter-event waiting time

    Science.gov (United States)

    Shapoval, A.

    2010-11-01

    In this paper we address the problem of forecasting the target events of a time series given the distribution ξ of time gaps between target events. Strong earthquakes and stock market crashes are the two types of such events that we are focusing on. In the series of earthquakes, as McCann et al. show [W.R. Mc Cann, S.P. Nishenko, L.R. Sykes, J. Krause, Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure and Applied Geophysics 117 (1979) 1082-1147], there are well-defined gaps (called seismic gaps) between strong earthquakes. On the other hand, usually there are no regular gaps in the series of stock market crashes [M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study, Physica A 314 (2002) 749-755]. For the case of seismic gaps, we analytically derive an upper bound of prediction efficiency given the coefficient of variation of the distribution ξ. For the case of stock market crashes, we develop an algorithm that predicts the next crash within a certain time interval after the previous one. We show that this algorithm outperforms random prediction. The efficiency of our algorithm sets up a lower bound of efficiency for effective prediction of stock market crashes.

  4. Classifcation of volcanic structure in mesozoic era in the Fuzhou-Shaoxing area

    International Nuclear Information System (INIS)

    Zhang Fengqi.

    1989-01-01

    The volcanic structure in the Fuzhou-Shaoxing area can be classified into IV grades: the grade I be the zone of volcanic activity; the grade II be the second zone of volcanic activity; the grade III be the positive, negative volcanic structure; the grade IV be volcanic conduit, volcanic crater, concealed eruption breccia pipe. Based on the geological situation in this area, the different types of volcanic structure are also dealt with. In the mean time, both the embossed type in the depression area and the depressed type in the embossed area in the volcanic basin are pointed out. It is of great advantage to Uranium mineralization

  5. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  6. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  7. Diet Activity Characteristic of Large-scale Sports Events Based on HACCP Management Model

    OpenAIRE

    Xiao-Feng Su; Li Guo; Li-Hua Gao; Chang-Zhuan Shao

    2015-01-01

    The study proposed major sports events dietary management based on "HACCP" management model. According to the characteristic of major sports events catering activities. Major sports events are not just showcase level of competitive sports activities which have become comprehensive special events including social, political, economic, cultural and other factors, complex. Sporting events conferred reach more diverse goals and objectives of economic, political, cultural, technological and other ...

  8. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    National Research Council Canada - National Science Library

    Japkowicz, Nathalie; Smith, Reuben

    2005-01-01

    .... We use the autoassociator to build prototype software to cluster network alerts generated by a Snort intrusion detection system, and discuss how the results are significant, and how they can be applied to other types of network events.

  9. Balboa: A Framework for Event-Based Process Data Analysis

    National Research Council Canada - National Science Library

    Cook, Jonathan E; Wolf, Alexander L

    1998-01-01

    .... We have built Balboa as a bridge between the data collection and the analysis tools, facilitating the gathering and management of event data, and simplifying the construction of tools to analyze the data...

  10. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  11. Integrated analyzing method for the progress event based on subjects and predicates in events

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Munesawa, Yoshiomi

    2014-01-01

    It is expected to make use of the knowledge that was extracted by analyzing the mistakes of the past to prevent recurrence of accidents. Currently main analytic style is an analytic style that experts decipher deeply the accident cases, but cross-analysis has come to an end with extracting the common factors in the accident cases. We propose an integrated analyzing method for progress events to analyze among accidents in this study. Our method realized the integration of many accident cases by the integration connecting the common keyword called as 'Subject' or 'Predicate' that are extracted from each progress event in accident cases or near-miss cases. Our method can analyze and visualize the partial risk identification and the frequency to cause accidents and the risk assessment from the data integrated accident cases. The result of applying our method to PEC-SAFER accident cases identified 8 hazardous factors which can be caused from tank again, and visualized the high frequent factors that the first factor was damage of tank 26% and the second factor was the corrosion 21%, and visualized the high risks that the first risk was the damage 3.3 x 10 -2 [risk rank / year] and the second risk was the destroy 2.5 x 10 -2 [risk rank / year]. (author)

  12. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  13. Extreme pointer years in tree-ring records of Central Spain as evidence of volcanic eruptions (Huaynaputina, Peru, 1600 AC) and other climatic events

    Science.gov (United States)

    Génova, M.

    2011-12-01

    The study of pointer years based on the numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 years. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation has been the most incident factor in the general variability of growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, the data show that there has been variability over the centuries in the distribution of the frequencies of pointer years and intervals. The first half of the 17th century, together with the second half of the 20th century, constitute the two most notable periods for the frequency of negative pointer years in Central Spain. This variability was sufficiently notable to affirm that, both in the 17th and 20th centuries, the macroclimatic anomalies that affected growth were more frequent and more extreme than in the other two centuries analysed. The period 1600-1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. It is possible to infer that these phenomena are the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of central and southern Europe have been demonstrated.

  14. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  15. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  16. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  17. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  18. Volcanic impediments in the progressive development of pre-Columbian civilizations in the Ecuadorian Andes

    Science.gov (United States)

    Hall, Minard L.; Mothes, Patricia A.

    2008-10-01

    Archaeological investigations in Ecuador have proposed that there appear to be hiatus or anomalous jumps in the progressive development of pre-Columbian indigenous cultures, based upon the fact that their ceramics and tools demonstrate abrupt advances in their sophistication at several horizons in the soil profile. Because some of these horizons are clearly associated with volcanic ash layers, archaeologists have sought a causal relation with volcanism, that is, the eruptive events or their products severely interfered with the early inhabitants, resulting in their abandonment of certain areas. Geological studies of the young volcanoes in the Ecuadorian Andes carried out during the past two decades now allow us to make a more thorough evaluation of the role of volcanism during the Holocene. This contribution briefly describes the principal Holocene volcanic events and the distribution of the corresponding eruptive products found along the InterAndean Valley, from southern Colombia to central Ecuador. Only those events that were sufficiently large that they could have had a detrimental effect on the valley's early residents are discussed. Dacitic and rhyolitic ash flows, as well as numerous debris flows (lahars) have occurred frequently and their deposits cover many valleys and floodplains, where early inhabitants probably settled. The enormous Chillos Valley lahar, associated with the 4500 yBP eruption of Cotopaxi volcano, buried soils containing ceramics of the early Formative Period. However, the greatest impact upon mankind was probably not these short-lived violent events, but rather the burying of settlements and agricultural fields by ash fallout, the effect of which may have lasted hundreds of years. Ash fall layers are observed in pre-Columbian cultural horizons in the soil profile, occurring in the InterAndean Valley, the lower flanks of the Andes, and along Ecuador's Pacific coast, the oldest corresponding to the 5800 yBP eruption of Cotopaxi. This brief

  19. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  20. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  1. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  2. Characterising Event-Based DOM Inputs to an Urban Watershed

    Science.gov (United States)

    Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.

    2017-12-01

    Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest

  3. Event Management for Teacher-Coaches: Risk and Supervision Considerations for School-Based Sports

    Science.gov (United States)

    Paiement, Craig A.; Payment, Matthew P.

    2011-01-01

    A professional sports event requires considerable planning in which years are devoted to the success of that single activity. School-based sports events do not have that luxury, because high schools across the country host athletic events nearly every day. It is not uncommon during the fall sports season for a combination of boys' and girls'…

  4. Web-based online system for recording and examing of events in power plants

    International Nuclear Information System (INIS)

    Seyd Farshi, S.; Dehghani, M.

    2004-01-01

    Occurrence of events in power plants could results in serious drawbacks in generation of power. This suggests high degree of importance for online recording and examing of events. In this paper an online web-based system is introduced, which records and examines events in power plants. Throughout the paper, procedures for design and implementation of this system, its features and results gained are explained. this system provides predefined level of online access to all data of events for all its users in power plants, dispatching, regional utilities and top-level managers. By implementation of electric power industry intranet, an expandable modular system to be used in different sectors of industry is offered. Web-based online recording and examing system for events offers the following advantages: - Online recording of events in power plants. - Examing of events in regional utilities. - Access to event' data. - Preparing managerial reports

  5. Coeval Formation of Zircon Megacrysts and Host Magmas in the Eifel Volcanic Field (Germany) Based on High Spatial Resolution Petrochronology

    Science.gov (United States)

    Schmitt, Axel; Klitzke, Malte; Gerdes, Axel; Ludwig, Thomas; Schäfer, Christof

    2017-04-01

    Zircon megacrysts (approx. 0.5-6 mm in diameter) from the Quaternary West and East Eifel volcanic fields, Germany, occur as euhedral crystals in porous K-spar rich plutonic ejecta clasts, and as partially resorbed xenocrysts in tephrite lava. Their relation to the host volcanic rocks has remained contentious because the dominantly basanitic to phonolitic magma compositions in the Eifel are typically zircon undersaturated. We carried out a detailed microanalytical study of zircon megacrysts from seven locations (Emmelberg and Rockeskyll in the West Eifel; Bellerberg, Laacher See, Mendig, Rieden, and Wehr in the East Eifel). Crystals were embedded in epoxy, sectioned to expose interiors through grinding with abrasives, diamond-polished, and mapped by optical microscopy, backscattered electron, and cathodoluminescence imaging. Subsequently, isotope-specific analysis using secondary ionization mass spectrometry (SIMS) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was carried out placing 100 correlated spots on 20 selected crystals. Concordant U-Th disequilibrium and U-Pb ages determined by SIMS are between ca. 430 ka (Rieden) and 170 ka (Mendig) and indicate that the megacryst zircons crystallized almost always briefly before eruption. A significant gap between zircon megacryst crystallization (ca. 230 ka) and eruption (ca. 45 ka) ages was only detected for the Emmelberg location. SIMS trace element abundances (e.g., rare earth elements) vary by orders-of-magnitude and correlate with domain boundaries visible in cathodoluminescence; trace element patterns match those reported for zircon from syenitic origins. Isotopic compositions are homogeneous within individual crystals, but show some heterogeneity between different crystals from the same locality. Average isotopic values (δ18O SMOW = +5.3±0.6 ‰ by SIMS; present-day ɛHf = +1.7±2.5 ‰ by LA-ICP-MS; 1 standard deviation), however, are consistent with source magmas being dominantly mantle

  6. Model Based Verification of Cyber Range Event Environments

    Science.gov (United States)

    2015-11-13

    that may include users, applications, operating systems, servers, hosts, routers, switches, control planes , and instrumentation planes , many of...which lack models for their configuration. Our main contributions in this paper are the following. First, we have developed a configuration ontology...configuration errors in environment designs for several cyber range events. The rest of the paper is organized as follows. Section 2 provides an overview of

  7. Volcano Modelling and Simulation gateway (VMSg): A new web-based framework for collaborative research in physical modelling and simulation of volcanic phenomena

    Science.gov (United States)

    Esposti Ongaro, T.; Barsotti, S.; de'Michieli Vitturi, M.; Favalli, M.; Longo, A.; Nannipieri, L.; Neri, A.; Papale, P.; Saccorotti, G.

    2009-12-01

    Physical and numerical modelling is becoming of increasing importance in volcanology and volcanic hazard assessment. However, new interdisciplinary problems arise when dealing with complex mathematical formulations, numerical algorithms and their implementations on modern computer architectures. Therefore new frameworks are needed for sharing knowledge, software codes, and datasets among scientists. Here we present the Volcano Modelling and Simulation gateway (VMSg, accessible at http://vmsg.pi.ingv.it), a new electronic infrastructure for promoting knowledge growth and transfer in the field of volcanological modelling and numerical simulation. The new web portal, developed in the framework of former and ongoing national and European projects, is based on a dynamic Content Manager System (CMS) and was developed to host and present numerical models of the main volcanic processes and relationships including magma properties, magma chamber dynamics, conduit flow, plume dynamics, pyroclastic flows, lava flows, etc. Model applications, numerical code documentation, simulation datasets as well as model validation and calibration test-cases are also part of the gateway material.

  8. The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME

    Science.gov (United States)

    Man, W.; Zuo, M.

    2017-12-01

    The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.

  9. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  10. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    Science.gov (United States)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  11. Real-time, high frequency (1 Hz), in situ measurement of HCl and HF gases in volcanic plumes with a novel cavity-enhanced, laser-based instrument

    Science.gov (United States)

    Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.

    2017-12-01

    Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.

  12. Fault trees based on past accidents. Factorial analysis of events

    International Nuclear Information System (INIS)

    Vaillant, M.

    1977-01-01

    The method of the fault tree is already useful in the qualitative step before any reliability calculation. The construction of the tree becomes even simpler when we just want to describe how the events happened. Differently from screenplays that introduce several possibilities by means of the conjunction OR, you only have here the conjunction AND, which will not be written at all. This method is presented by INRS (1) for the study of industrial injuries; it may also be applied to material damages. (orig.) [de

  13. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  14. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  15. Fire!: An Event-Based Science Module. Teacher's Guide. Chemistry and Fire Ecology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school earth science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  16. Volcano!: An Event-Based Science Module. Student Edition. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  17. Volcano!: An Event-Based Science Module. Teacher's Guide. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research,…

  18. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  19. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  20. Event-building and PC farm based level-3 trigger at the CDF experiment

    CERN Document Server

    Anikeev, K; Furic, I K; Holmgren, D; Korn, A J; Kravchenko, I V; Mulhearn, M; Ngan, P; Paus, C; Rakitine, A; Rechenmacher, R; Shah, T; Sphicas, Paris; Sumorok, K; Tether, S; Tseng, J

    2000-01-01

    In the technical design report the event building process at Fermilab's CDF experiment is required to function at an event rate of 300 events/sec. The events are expected to have an average size of 150 kBytes (kB) and are assembled from fragments of 16 readout locations. The fragment size from the different locations varies between 12 kB and 16 kB. Once the events are assembled they are fed into the Level-3 trigger which is based on processors running programs to filter events using the full event information. Computing power on the order of a second on a Pentium II processor is required per event. The architecture design is driven by the cost and is therefore based on commodity components: VME processor modules running VxWorks for the readout, an ATM switch for the event building, and Pentium PCs running Linux as an operation system for the Level-3 event processing. Pentium PCs are also used to receive events from the ATM switch and further distribute them to the processing nodes over multiple 100 Mbps Ether...

  1. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  2. Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust

    International Nuclear Information System (INIS)

    Rossi, Philippe; Cocherie, Alain; Fanning, C. Mark

    2015-01-01

    The U2 group of plutonic rocks constituting the main exposed part of the Corsica-Sardinia batholith (CSB) was emplaced from 308 to 275 Ma (the early Visean U1 group of Mg-K intrusions is not considered here). Field evidence earlier established volcanic-plutonic relationships in the U2 group of calc-alkaline intrusions of the CSB, though detailed chronological data were still lacking. Large outcrops of U2 volcanic formations are restricted to the less eroded zone north-west of the Porto-Ponte Leccia line in Corsica, but volcanic and volcano-sedimentary formations were widely eroded elsewhere since Permian times. They probably covered most of the batholith before the Miocene, as testified by the volcanic nature of the pebbles that form much of the Early Miocene conglomerates of eastern Corsica. U-Pb zircon dating (SHRIMP) was used for deciphering the chronology and duration of different volcanic pulses and for better estimating the time overlap between plutonic and volcanic rock emplacement in the CSB. The obtained ages fit well with field data, showing that most of the U2 and U3 volcanic formations were emplaced within a brief time span of roughly 15 m.y., from 293 to 278 Ma, coeval with most U2 monzo-granodiorites and leuco-monzo-granites (295-280 Ma), alkaline U3 complexes (about 288 Ma), and mafic-ultramafic tholeiitic complexes (295-275 Ma). The same chronological link between deep-seated magma chambers and eruptions was identified in the Pyrenees. These results correlate with U-Pb zircon dating of HT-LP granulites from the Variscan deep crust exhumed along the 'European' margin of the thinned Tethys margin in Corsica and Calabria. Here, the peak of the low-pressure/high-temperature metamorphism was dated at about 285-280 Ma. Our results throw light on the condition of magma production during the orogenic collapse in the southern Variscan realm. While juvenile tholeiitic basaltic magma was produced by the melting of spinel mantle lithosphere, all

  3. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Directory of Open Access Journals (Sweden)

    G. Pappalardo

    2013-04-01

    Full Text Available The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET. Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010. All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL. After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May, material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on

  4. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Directory of Open Access Journals (Sweden)

    M. Hervo

    2012-02-01

    Full Text Available During the Eyjafjallajökull eruption (14 April to 24 May 2010, the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles were detected in the free troposphere above the Puy de Dôme station, (PdD, France with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL. Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD. In agreement with the FLEXPART simulation, up to 65 μg m−3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm−3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98, showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m−2 as opposed to 0.33 ± 0.03 g m−2. Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23

  5. Knowledge based query expansion in complex multimedia event detection

    NARCIS (Netherlands)

    Boer, M. de; Schutte, K.; Kraaij, W.

    2016-01-01

    A common approach in content based video information retrieval is to perform automatic shot annotation with semantic labels using pre-trained classifiers. The visual vocabulary of state-of-the-art automatic annotation systems is limited to a few thousand concepts, which creates a semantic gap

  6. Knowledge based query expansion in complex multimedia event detection

    NARCIS (Netherlands)

    Boer, M.H.T. de; Schutte, K.; Kraaij, W.

    2015-01-01

    A common approach in content based video information retrieval is to perform automatic shot annotation with semantic labels using pre-trained classifiers. The visual vocabulary of state-of-the-art automatic annotation systems is limited to a few thousand concepts, which creates a semantic gap

  7. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez

    2007-01-01

    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  8. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations

    Science.gov (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.

    2018-05-01

    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  9. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  10. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  11. Tag and Neighbor based Recommender systems for Medical events

    DEFF Research Database (Denmark)

    Bayyapu, Karunakar Reddy; Dolog, Peter

    2010-01-01

    This paper presents an extension of a multifactor recommendation approach based on user tagging with term neighbours. Neighbours of words in tag vectors and documents provide for hitting larger set of documents and not only those matching with direct tag vectors or content of the documents. Tag...... in the situations where the quality of tags is lower. We discuss the approach on the examples from the existing Medworm system to indicate the usefulness of the approach....

  12. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    Science.gov (United States)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  13. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  14. Discrete Event System Based Pyroprocessing Modeling and Simulation: Oxide Reduction

    International Nuclear Information System (INIS)

    Lee, H. J.; Ko, W. I.; Choi, S. Y.; Kim, S. K.; Hur, J. M.; Choi, E. Y.; Im, H. S.; Park, K. I.; Kim, I. T.

    2014-01-01

    Dynamic changes according to the batch operation cannot be predicted in an equilibrium material flow. This study began to build a dynamic material balance model based on the previously developed pyroprocessing flowsheet. As a mid- and long-term research, an integrated pyroprocessing simulator is being developed at the Korea Atomic Energy Research Institute (KAERI) to cope with a review on the technical feasibility, safeguards assessment, conceptual design of facility, and economic feasibility evaluation. The most fundamental thing in such a simulator development is to establish the dynamic material flow framework. This study focused on the operation modeling of pyroprocessing to implement a dynamic material flow. As a case study, oxide reduction was investigated in terms of a dynamic material flow. DES based modeling was applied to build a pyroprocessing operation model. A dynamic material flow as the basic framework for an integrated pyroprocessing was successfully implemented through ExtendSim's internal database and item blocks. Complex operation logic behavior was verified, for example, an oxide reduction process in terms of dynamic material flow. Compared to the equilibrium material flow, a model-based dynamic material flow provides such detailed information that a careful analysis of every batch is necessary to confirm the dynamic material balance results. With the default scenario of oxide reduction, the batch mass balance was verified in comparison with a one-year equilibrium mass balance. This study is still under progress with a mid-and long-term goal, the development of a multi-purpose pyroprocessing simulator that is able to cope with safeguards assessment, economic feasibility, technical evaluation, conceptual design, and support of licensing for a future pyroprocessing facility

  15. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  16. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    Science.gov (United States)

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  17. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars

    Science.gov (United States)

    Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji

    2016-01-01

    Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this

  18. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  19. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  20. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  1. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  2. Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors

    International Nuclear Information System (INIS)

    Barker, Kash; Haimes, Yacov Y.

    2009-01-01

    Risk-based decision making often relies upon expert probability assessments, particularly in the consequences of disruptive events and when such events are extreme or catastrophic in nature. Naturally, such expert-elicited probability distributions can be fraught with errors, as they describe events which occur very infrequently and for which only sparse data exist. This paper presents a quantitative framework, the extreme event uncertainty sensitivity impact method (EE-USIM), for measuring the sensitivity of extreme event consequences to uncertainties in the parameters of the underlying probability distribution. The EE-USIM is demonstrated with the Inoperability input-output model (IIM), a model with which to evaluate the propagation of inoperability throughout an interdependent set of economic and infrastructure sectors. The EE-USIM also makes use of a two-sided power distribution function generated by expert elicitation of extreme event consequences

  3. Design a Learning-Oriented Fall Event Reporting System Based on Kirkpatrick Model.

    Science.gov (United States)

    Zhou, Sicheng; Kang, Hong; Gong, Yang

    2017-01-01

    Patient fall has been a severe problem in healthcare facilities around the world due to its prevalence and cost. Routine fall prevention training programs are not as effective as expected. Using event reporting systems is the trend for reducing patient safety events such as falls, although some limitations of the systems exist at current stage. We summarized these limitations through literature review, and developed an improved web-based fall event reporting system. The Kirkpatrick model, widely used in the business area for training program evaluation, has been integrated during the design of our system. Different from traditional event reporting systems that only collect and store the reports, our system automatically annotates and analyzes the reported events, and provides users with timely knowledge support specific to the reported event. The paper illustrates the design of our system and how its features are intended to reduce patient falls by learning from previous errors.

  4. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes

  5. Ground-based remote sensing of volcanic CO2 and correlated SO2, HF, HCl, and BrO, in safe-distance from the crater

    Science.gov (United States)

    Butz, Andre; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi

    2017-04-01

    Remote sensing of CO2 enhancements in volcanic plumes can be a tool to estimate volcanic CO2 emissions and thereby, to gain insight into the geological carbon cycle and into volcano interior processes. However, remote sensing of the volcanic CO2 is challenged by the large atmospheric background concentrations masking the minute volcanic signal. Here, we report on a demonstrator study conducted in September 2015 at Mt. Etna on Sicily, where we deployed an EM27/SUN Fourier Transform Spectrometer together with a UV spectrometer on a mobile remote sensing platform. The spectrometers were operated in direct-sun viewing geometry collecting cross-sectional scans of solar absorption spectra through the volcanic plume by operating the platform in stop-and-go patterns in 5 to 10 kilometers distance from the crater region. We successfully detected correlated intra-plume enhancements of CO2 and volcanic SO2, HF, HCl, and BrO. The path-integrated volcanic CO2 enhancements amounted to about 0.5 ppm (on top of the ˜400 ppm background). Key to successful detection of volcanic CO2 was A) the simultaneous observation of the O2 total column which allowed for correcting changes in the CO2 column caused by changes in observer altitude and B) the simultaneous measurement of volcanic species co-emitted with CO2 which allowed for discriminating intra-plume and extra-plume observations. The latter were used for subtracting the atmospheric CO2 background. The field study suggests that our remote sensing observatory is a candidate technique for volcano monitoring in safe distance from the crater region.

  6. The analysis of the initiating events in thorium-based molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Song Wei; Jing Jianping; Zhang Chunming

    2014-01-01

    The initiation events analysis and evaluation were the beginning of nuclear safety analysis and probabilistic safety analysis, and it was the key points of the nuclear safety analysis. Currently, the initiation events analysis method and experiences both focused on water reactor, but no methods and theories for thorium-based molten salt reactor (TMSR). With TMSR's research and development in China, the initiation events analysis and evaluation was increasingly important. The research could be developed from the PWR analysis theories and methods. Based on the TMSR's design, the theories and methods of its initiation events analysis could be researched and developed. The initiation events lists and analysis methods of the two or three generation PWR, high-temperature gascooled reactor and sodium-cooled fast reactor were summarized. Based on the TMSR's design, its initiation events would be discussed and developed by the logical analysis. The analysis of TMSR's initiation events was preliminary studied and described. The research was important to clarify the events analysis rules, and useful to TMSR's designs and nuclear safety analysis. (authors)

  7. A scheme for PET data normalization in event-based motion correction

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Fulton, Roger; Meikle, Steven R

    2009-01-01

    Line of response (LOR) rebinning is an event-based motion-correction technique for positron emission tomography (PET) imaging that has been shown to compensate effectively for rigid motion. It involves the spatial transformation of LORs to compensate for motion during the scan, as measured by a motion tracking system. Each motion-corrected event is then recorded in the sinogram bin corresponding to the transformed LOR. It has been shown previously that the corrected event must be normalized using a normalization factor derived from the original LOR, that is, based on the pair of detectors involved in the original coincidence event. In general, due to data compression strategies (mashing), sinogram bins record events detected on multiple LORs. The number of LORs associated with a sinogram bin determines the relative contribution of each LOR. This paper provides a thorough treatment of event-based normalization during motion correction of PET data using LOR rebinning. We demonstrate theoretically and experimentally that normalization of the corrected event during LOR rebinning should account for the number of LORs contributing to the sinogram bin into which the motion-corrected event is binned. Failure to account for this factor may cause artifactual slice-to-slice count variations in the transverse slices and visible horizontal stripe artifacts in the coronal and sagittal slices of the reconstructed images. The theory and implementation of normalization in conjunction with the LOR rebinning technique is described in detail, and experimental verification of the proposed normalization method in phantom studies is presented.

  8. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  9. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  10. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  11. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    Science.gov (United States)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  12. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  13. Assessment of the atmospheric impact of volcanic eruptions

    Science.gov (United States)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  14. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  15. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M A; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  16. THE EFFECT OF DEVOTEE-BASED BRAND EQUITY ON RELIGIOUS EVENTS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD JAWAD IQBAL

    2016-04-01

    Full Text Available The objective of this research is to apply DBBE model to discover the constructs to measure the religious event as a business brand on the bases of devotees’ perception. SEM technique was applied to measure the hypothesized model of which CFA put to analyze the model and a theoretical model was made to measure the model fit. Sample size was of 500. The base of brand loyalty was affected directly by image and quality. This information might be beneficial to event management and sponsors in making brand and operating visitors’ destinations. More importantly, the brand of these religious events in Pakistan can be built as a strong tourism product.

  17. U–Pb geochronology and geochemistry of late Palaeozoic volcanism in Sardinia (southern Variscides

    Directory of Open Access Journals (Sweden)

    L. Gaggero

    2017-11-01

    Full Text Available The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime. Volcanism produced a wide range of intermediate–silicic magmas including medium- to high-K calc-alkaline andesites, dacites, and rhyolites. A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins (Nurra, Perdasdefogu, Escalaplano, and Seui–Seulo, and contains substantial stratigraphic, geochemical, and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic. Based on major and trace element data and LA-ICP-MS U–Pb zircon dating, it is possible to reconstruct the timing of post-Variscan volcanism. This volcanism records active tectonism between the latest Carboniferous and Permian, and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides. In particular, igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between 299 ± 1 and 288 ± 3 Ma, thereby constraining the development of continental strike-slip faulting from south (Escalaplano Basin to north (Nurra Basin. Notably, andesites emplaced in medium-grade metamorphic basement (Mt. Cobingius, Ogliastra show a cluster of older ages at 332 ± 12 Ma. Despite the large uncertainty, this age constrains the onset of igneous activity in the mid-crust. These new radiometric ages constitute: (1 a consistent dataset for different volcanic events; (2 a precise chronostratigraphic constraint which fits well with the biostratigraphic data and (3 insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.

  18. WILBER and PyWEED: Event-based Seismic Data Request Tools

    Science.gov (United States)

    Falco, N.; Clark, A.; Trabant, C. M.

    2017-12-01

    WILBER and PyWEED are two user-friendly tools for requesting event-oriented seismic data. Both tools provide interactive maps and other controls for browsing and filtering event and station catalogs, and downloading data for selected event/station combinations, where the data window for each event/station pair may be defined relative to the arrival time of seismic waves from the event to that particular station. Both tools allow data to be previewed visually, and can download data in standard miniSEED, SAC, and other formats, complete with relevant metadata for performing instrument correction. WILBER is a web application requiring only a modern web browser. Once the user has selected an event, WILBER identifies all data available for that time period, and allows the user to select stations based on criteria such as the station's distance and orientation relative to the event. When the user has finalized their request, the data is collected and packaged on the IRIS server, and when it is ready the user is sent a link to download. PyWEED is a downloadable, cross-platform (Macintosh / Windows / Linux) application written in Python. PyWEED allows a user to select multiple events and stations, and will download data for each event/station combination selected. PyWEED is built around the ObsPy seismic toolkit, and allows direct interaction and control of the application through a Python interactive console.

  19. A semi-supervised learning framework for biomedical event extraction based on hidden topics.

    Science.gov (United States)

    Zhou, Deyu; Zhong, Dayou

    2015-05-01

    Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely

  20. Division of volcanic activity cycles in the late mesozoic in South Jiangxi and North Guangdong

    International Nuclear Information System (INIS)

    Li Qinglong; Wu Jianhua

    1999-01-01

    Based on stratigraphical unconformity, rock association, fossil assemblage, isotope age and tectonic features, the volcanic activity in late Mesozoic in south Jiangxi and north Guandong can be divided into four cycles: Yutian volcanic activity cycle, Lianhuazhai volcanic activity cycle. Banshi volcanic activity cycle and Nanxiong volcanic activity cycle. Yutian volcanic cycle which occurs in middle Jurassic epoch is the bimodal rock association composed of rhyolite and basalt. Lianhuazhai volcanic cycle which occurs in late Jurassic epoch is unimodal rock association composed of rhyolite. Banshi volcanic cycle occurs from the late stage of early Cretaceous to the early stage of late Cretaceous epoch. There are two types of rock associations related to this cycle: unimodal rock association composed of rhyolite or basalt and bimodal rock association composed of rhyolite and basalt. Nanxiong volcanic activity cycle which occurred in late stage of late Cretaceous epoch is the unimodal rock association composed of basalt which is the interlayer of the red sedimentary series

  1. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    (Rampino and Self 1984, Pyle et al 1996, Self and Rampino 2012). But as yet, there is little evidence for the consequences of this scale of eruption for the climate system (Miles et al 2004), and few data against which to test simulations of stratospheric sulfur-injection 'geoengineering' scenarios of a similar scale and frequency (e.g. English et al 2012). A hint of the new volcano-observing capability came during the eruption of Eyjafjallajökull, Iceland. For a few days in April 2010 meteorological conditions, coupled with a dramatic increase in volcanic ash production, led to the wide dispersal of fine volcanic particles across northern Europe; an event which was widely tracked by ground-based and satellite-borne instruments, augmented by in situ measurements from balloons and aircraft (Bennett et al 2010, Flentje et al 2010, Harrison et al 2010, Stohl et al 2011). Despite the interest in Eyjafjallajökull at the time, this was, geologically, only a very modest eruption with limited sulfur emissions and an impact restricted mainly to the regional troposphere (e.g. Thomas and Prata 2011, Walker et al 2012). Then, in June 2011, a previously dormant volcano in north-east Africa began to erupt violently. Little is known about Nabro, which is a partially collapsed volcano that straddles the Eritrea-Ethiopia border, and has had no known historical activity (Wiart and Oppenheimer 2005). Despite the remote location, and lack of prior warning, the event and its aftermath were remarkably well captured by remote-sensing instruments, as demonstrated in the new letter by Sawamura et al (2012). Using both ground-based and satellite-borne laser-ranging (lidar) data, Sawamura et al (2012) were able to extract detailed information about the nature of the volcanic aerosol layer, and its spread around the globe. The eruption started strongly, with substantial ash plumes for the first 48 h, rising to 9-14 km altitude (Smithsonian Institution 2011, Bourassa et al 2012), that carried at

  2. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    Science.gov (United States)

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  3. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  4. Central FPGA-based Destination and Load Control in the LHCb MHz Event Readout

    CERN Document Server

    Jacobsson, Richard

    2012-01-01

    The readout strategy of the LHCb experiment [1] is based on complete event readout at 1 MHz [2]. Over 300 sub-detector readout boards transmit event fragments at 1 MHz over a commercial 70 Gigabyte/s switching network to a distributed event building and trigger processing farm with 1470 individual multi-core computer nodes [3]. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a powerful non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. A high-speed FPGA-based central master module controls the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load balancing and trigger rate regulation as a function of the global farm load. It also ...

  5. Central FPGA-based destination and load control in the LHCb MHz event readout

    Science.gov (United States)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  6. Central FPGA-based destination and load control in the LHCb MHz event readout

    International Nuclear Information System (INIS)

    Jacobsson, R.

    2012-01-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  7. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development

    Science.gov (United States)

    Korteniemi, J.; Kukkonen, S.

    2018-04-01

    Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.

  8. An Event-Based Approach to Distributed Diagnosis of Continuous Systems

    Science.gov (United States)

    Daigle, Matthew; Roychoudhurry, Indranil; Biswas, Gautam; Koutsoukos, Xenofon

    2010-01-01

    Distributed fault diagnosis solutions are becoming necessary due to the complexity of modern engineering systems, and the advent of smart sensors and computing elements. This paper presents a novel event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, based on a qualitative abstraction of measurement deviations from the nominal behavior. We systematically derive dynamic fault signatures expressed as event-based fault models. We develop a distributed diagnoser design algorithm that uses these models for designing local event-based diagnosers based on global diagnosability analysis. The local diagnosers each generate globally correct diagnosis results locally, without a centralized coordinator, and by communicating a minimal number of measurements between themselves. The proposed approach is applied to a multi-tank system, and results demonstrate a marked improvement in scalability compared to a centralized approach.

  9. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  10. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Science.gov (United States)

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972

  11. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Directory of Open Access Journals (Sweden)

    Jian Wan

    2011-06-01

    Full Text Available This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.

  12. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    over 60 volcanoes, with an average of 10 volcanoes discussed each week. Notable volcanic activity during November 2000-November 2001 included an eruption beginning on 6 February at Nyamuragira in the Democratic Republic of the Congo; it issued low-viscosity lava flows that traveled towards inhabited towns, and also produced ash clouds that adversely effected the health of residents and livestock near the volcano. Eruptions at Mayon in the Philippines on 24 June and 25 July caused local authorities to raise the alert to the highest level, close area airports, and evacuate thousands of residents near the volcano. Most recently a large flank eruption at Etna in Italy began on 17 July and gained worldwide attention as extensive lava flows threatened a small town and a tourist complex. While the information found in the Weekly Volcanic Activity Report, ranging from large eruptions to small precursory events, is of interest to the general public, it has also proven to be a valuable resource to volcano observatory staff, universities, researchers, secondary schools, and the aviation community.

  13. Noether's Theorem and its Inverse of Birkhoffian System in Event Space Based on Herglotz Variational Problem

    Science.gov (United States)

    Tian, X.; Zhang, Y.

    2018-03-01

    Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.

  14. Tracing the Spatial-Temporal Evolution of Events Based on Social Media Data

    Directory of Open Access Journals (Sweden)

    Xiaolu Zhou

    2017-03-01

    Full Text Available Social media data provide a great opportunity to investigate event flow in cities. Despite the advantages of social media data in these investigations, the data heterogeneity and big data size pose challenges to researchers seeking to identify useful information about events from the raw data. In addition, few studies have used social media posts to capture how events develop in space and time. This paper demonstrates an efficient approach based on machine learning and geovisualization to identify events and trace the development of these events in real-time. We conducted an empirical study to delineate the temporal and spatial evolution of a natural event (heavy precipitation and a social event (Pope Francis’ visit to the US in the New York City—Washington, DC regions. By investigating multiple features of Twitter data (message, author, time, and geographic location information, this paper demonstrates how voluntary local knowledge from tweets can be used to depict city dynamics, discover spatiotemporal characteristics of events, and convey real-time information.

  15. Abnormal Event Detection in Wireless Sensor Networks Based on Multiattribute Correlation

    Directory of Open Access Journals (Sweden)

    Mengdi Wang

    2017-01-01

    Full Text Available Abnormal event detection is one of the vital tasks in wireless sensor networks. However, the faults of nodes and the poor deployment environment have brought great challenges to abnormal event detection. In a typical event detection technique, spatiotemporal correlations are collected to detect an event, which is susceptible to noises and errors. To improve the quality of detection results, we propose a novel approach for abnormal event detection in wireless sensor networks. This approach considers not only spatiotemporal correlations but also the correlations among observed attributes. A dependency model of observed attributes is constructed based on Bayesian network. In this model, the dependency structure of observed attributes is obtained by structure learning, and the conditional probability table of each node is calculated by parameter learning. We propose a new concept named attribute correlation confidence to evaluate the fitting degree between the sensor reading and the abnormal event pattern. On the basis of time correlation detection and space correlation detection, the abnormal events are identified. Experimental results show that the proposed algorithm can reduce the impact of interference factors and the rate of the false alarm effectively; it can also improve the accuracy of event detection.

  16. Improving the extraction of complex regulatory events from scientific text by using ontology-based inference.

    Science.gov (United States)

    Kim, Jung-Jae; Rebholz-Schuhmann, Dietrich

    2011-10-06

    The extraction of complex events from biomedical text is a challenging task and requires in-depth semantic analysis. Previous approaches associate lexical and syntactic resources with ontologies for the semantic analysis, but fall short in testing the benefits from the use of domain knowledge. We developed a system that deduces implicit events from explicitly expressed events by using inference rules that encode domain knowledge. We evaluated the system with the inference module on three tasks: First, when tested against a corpus with manually annotated events, the inference module of our system contributes 53.2% of correct extractions, but does not cause any incorrect results. Second, the system overall reproduces 33.1% of the transcription regulatory events contained in RegulonDB (up to 85.0% precision) and the inference module is required for 93.8% of the reproduced events. Third, we applied the system with minimum adaptations to the identification of cell activity regulation events, confirming that the inference improves the performance of the system also on this task. Our research shows that the inference based on domain knowledge plays a significant role in extracting complex events from text. This approach has great potential in recognizing the complex concepts of such biomedical ontologies as Gene Ontology in the literature.

  17. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  18. Improving the extraction of complex regulatory events from scientific text by using ontology-based inference

    Directory of Open Access Journals (Sweden)

    Kim Jung-jae

    2011-10-01

    Full Text Available Abstract Background The extraction of complex events from biomedical text is a challenging task and requires in-depth semantic analysis. Previous approaches associate lexical and syntactic resources with ontologies for the semantic analysis, but fall short in testing the benefits from the use of domain knowledge. Results We developed a system that deduces implicit events from explicitly expressed events by using inference rules that encode domain knowledge. We evaluated the system with the inference module on three tasks: First, when tested against a corpus with manually annotated events, the inference module of our system contributes 53.2% of correct extractions, but does not cause any incorrect results. Second, the system overall reproduces 33.1% of the transcription regulatory events contained in RegulonDB (up to 85.0% precision and the inference module is required for 93.8% of the reproduced events. Third, we applied the system with minimum adaptations to the identification of cell activity regulation events, confirming that the inference improves the performance of the system also on this task. Conclusions Our research shows that the inference based on domain knowledge plays a significant role in extracting complex events from text. This approach has great potential in recognizing the complex concepts of such biomedical ontologies as Gene Ontology in the literature.

  19. Fluence-based and microdosimetric event-based methods for radiation protection in space

    International Nuclear Information System (INIS)

    Curtis, S.B.

    2002-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has recently published a report (Report no.137) that discusses various aspects of the concepts used in radiation protection and the difficulties in measuring the radiation environment in spacecraft for the estimation of radiation risk to space travelers. Two novel dosimetric methodologies, fluence-based and microdosimetric event-based methods, are discussed and evaluated, along with the more conventional quality factor/linear energy transfer (LET) method. It was concluded that for the present, any reason to switch to a new methodology is not compelling. It is suggested that because of certain drawbacks in the presently-used conventional method, these alternative methodologies should be kept in mind. As new data become available and dosimetric techniques become more refined, the question should be revisited and that in the future, significant improvement might be realized. In addition, such concepts as equivalent dose and organ dose equivalent are discussed and various problems regarding the measurement/estimation of these quantities are presented. (author)

  20. Event-based motion correction for PET transmission measurements with a rotating point source

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger

    2011-01-01

    Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.

  1. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  2. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    Science.gov (United States)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  3. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    OpenAIRE

    Tramblay, Yves; Bouvier, Christophe; Martin, C.; Didon-Lescot, J. F.; Todorovik, D.; Domergue, J. M.

    2010-01-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture,...

  4. Safety based on organisational learning (SOL) - Conceptual approach and verification of a method for event analysis

    International Nuclear Information System (INIS)

    Miller, R.; Wilpert, B.; Fahlbruch, B.

    1999-01-01

    This paper discusses a method for analysing safety-relevant events in NPP which is known as 'SOL', safety based on organisational learning. After discussion of the specific organisational and psychological problems examined in the event analysis, the analytic process using the SOL approach is explained as well as the required general setting. The SOL approach has been tested both with scientific experiments and from the practical perspective, by operators of NPPs and experts from other branches of industry. (orig./CB) [de

  5. Rates for parallax-shifted microlensing events from ground-based observations of the galactic bulge

    International Nuclear Information System (INIS)

    Buchalter, A.; Kamionkowski, M.

    1997-01-01

    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. This can be used to partially remove the degeneracy among the system parameters in the event timescale, t 0 . In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent follow-up observations of ML events in progress, providing the photometric errors are small enough. We calculate the expected fraction of ML events where the shape distortions will be observable by such follow-up observations, adopting Galactic models for the lens and source distributions that are consistent with observed microlensing timescale distributions. We study the dependence of the rates for parallax-shifted events on the frequency of follow-up observations and on the precision of the photometry. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of events where the lens is in the disk (or ∼10% of events overall), will give rise to a measurable parallax shift at the 95% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. While long-duration events are favored, the surveys would be effective in picking out such distortions in events with timescales as low as t 0 ∼20 days. We study the dependence of these fractions on the assumed disk mass function and find that a higher parallax incidence is favored by mass functions with higher mean masses. Parallax measurements yield the reduced transverse speed, v, which gives both the relative transverse speed and lens mass as a function of distance. We give examples of the accuracies with which v may be measured in typical parallax events. (Abstract Truncated)

  6. Managing wildfire events: risk-based decision making among a group of federal fire managers

    Science.gov (United States)

    Robyn S. Wilson; Patricia L. Winter; Lynn A. Maguire; Timothy. Ascher

    2011-01-01

    Managing wildfire events to achieve multiple management objectives involves a high degree of decision complexity and uncertainty, increasing the likelihood that decisions will be informed by experience-based heuristics triggered by available cues at the time of the decision. The research reported here tests the prevalence of three risk-based biases among 206...

  7. Supervision in the PC based prototype for the ATLAS event filter

    CERN Document Server

    Bee, C P; Etienne, F; Fede, E; Meessen, C; Nacasch, R; Qian, Z; Touchard, F

    1999-01-01

    A prototype of the ATLAS event filter based on commodity PCs linked by a Fast Ethernet switch has been developed in Marseille. The present contribution focus on the supervision aspects of the prototype based on Java and Java mobile agents technology. (5 refs).

  8. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.

    2012-01-01

    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  9. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  10. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    Science.gov (United States)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  11. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  12. Neural correlates of attentional and mnemonic processing in event-based prospective memory

    Directory of Open Access Journals (Sweden)

    Justin B Knight

    2010-02-01

    Full Text Available Prospective memory, or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT, followed by a LDT with an embedded prospective memory (PM component. Event-based cues were constituted by color and lexicality (red words. Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  13. Neural correlates of attentional and mnemonic processing in event-based prospective memory.

    Science.gov (United States)

    Knight, Justin B; Ethridge, Lauren E; Marsh, Richard L; Clementz, Brett A

    2010-01-01

    Prospective memory (PM), or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT), followed by a LDT with an embedded PM component. Event-based cues were constituted by color and lexicality (red words). Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP) revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  14. Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

    Directory of Open Access Journals (Sweden)

    Sol Ha

    2016-01-01

    Full Text Available This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

  15. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  16. Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport

    Directory of Open Access Journals (Sweden)

    Paul K. Romano

    2017-09-01

    Full Text Available The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, the vector speedup is also limited by differences in the execution time for events being carried out in a single event-iteration.

  17. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  18. Risk-based ranking of dominant contributors to maritime pollution events

    International Nuclear Information System (INIS)

    Wheeler, T.A.

    1993-01-01

    This report describes a conceptual approach for identifying dominant contributors to risk from maritime shipping of hazardous materials. Maritime transportation accidents are relatively common occurrences compared to more frequently analyzed contributors to public risk. Yet research on maritime safety and pollution incidents has not been guided by a systematic, risk-based approach. Maritime shipping accidents can be analyzed using event trees to group the accidents into 'bins,' or groups, of similar characteristics such as type of cargo, location of accident (e.g., harbor, inland waterway), type of accident (e.g., fire, collision, grounding), and size of release. The importance of specific types of events to each accident bin can be quantified. Then the overall importance of accident events to risk can be estimated by weighting the events' individual bin importance measures by the risk associated with each accident bin. 4 refs., 3 figs., 6 tabs

  19. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    Science.gov (United States)

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  20. Possible Late Pleistocene volcanic activity on Nightingale Island, South Atlantic Ocean, based on geoelectrical resistivity measurements, sediment corings and 14C dating

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Björck, Svante; Cronholm, Anders

    2011-01-01

    . The irregular shapes of the basins and the lack of clear erosional features indicate that they are not eruption craters and were not formed by erosion. Instead, we regard them as morphological depressions formed between ridges of trachytic lava flows and domes at a late stage of the formation of the volcanic...... edifice. The onset of sedimentation within these basins appears to have occurred between 24 and 37 ka with the highest situated wetland yielding the highest ages. These ages are very young compared to the timing of the main phase of the formation of the island, implying volcanic activity on the island......Tristan da Cunha is a volcanic island group situated in the central South Atlantic. The oldest of these islands, Nightingale Island, has an age of about 18Ma. In the interior of the island, there are several wetlands situated in topographic depressions. The ages of these basins have been unknown...

  1. Improving the Critic Learning for Event-Based Nonlinear $H_{\\infty }$ Control Design.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    In this paper, we aim at improving the critic learning criterion to cope with the event-based nonlinear H ∞ state feedback control design. First of all, the H ∞ control problem is regarded as a two-player zero-sum game and the adaptive critic mechanism is used to achieve the minimax optimization under event-based environment. Then, based on an improved updating rule, the event-based optimal control law and the time-based worst-case disturbance law are obtained approximately by training a single critic neural network. The initial stabilizing control is no longer required during the implementation process of the new algorithm. Next, the closed-loop system is formulated as an impulsive model and its stability issue is handled by incorporating the improved learning criterion. The infamous Zeno behavior of the present event-based design is also avoided through theoretical analysis on the lower bound of the minimal intersample time. Finally, the applications to an aircraft dynamics and a robot arm plant are carried out to verify the efficient performance of the present novel design method.

  2. Integral-based event triggering controller design for stochastic LTI systems via convex optimisation

    Science.gov (United States)

    Mousavi, S. H.; Marquez, H. J.

    2016-07-01

    The presence of measurement noise in the event-based systems can lower system efficiency both in terms of data exchange rate and performance. In this paper, an integral-based event triggering control system is proposed for LTI systems with stochastic measurement noise. We show that the new mechanism is robust against noise and effectively reduces the flow of communication between plant and controller, and also improves output performance. Using a Lyapunov approach, stability in the mean square sense is proved. A simulated example illustrates the properties of our approach.

  3. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  4. Improved Discrimination of Volcanic Complexes, Tectonic Features, and Regolith Properties in Mare Serenitatis from Earth-Based Radar Mapping

    Science.gov (United States)

    Campbell, Bruce A.; Hawke, B. Ray; Morgan, Gareth A.; Carter, Lynn M.; Campbell, Donald B.; Nolan, Michael

    2014-01-01

    Radar images at 70 cm wavelength show 4-5 dB variations in backscatter strength within regions of relatively uniform spectral reflectance properties in central and northern Mare Serenitatis, delineating features suggesting lava flow margins, channels, and superposition relationships. These backscatter differences are much less pronounced at 12.6 cm wavelength, consistent with a large component of the 70 cm echo arising from the rough or blocky transition zone between the mare regolith and the intact bedrock. Such deep probing is possible because the ilmenite content, which modulates microwave losses, of central Mare Serenitatis is generally low (2-3% by weight). Modeling of the radar returns from a buried interface shows that an average regolith thickness of 10m could lead to the observed shifts in 70 cm echo power with a change in TiO2 content from 2% to 3%. This thickness is consistent with estimates of regolith depth (10-15m) based on the smallest diameter for which fresh craters have obvious blocky ejecta. The 70 cm backscatter differences provide a view of mare flow-unit boundaries, channels, and lobes unseen by other remote sensing methods. A localized pyroclastic deposit associated with Rima Calippus is identified based on its low radar echo strength. Radar mapping also improves delineation of units for crater age dating and highlights a 250 km long, east-west trending feature in northern Mare Serenitatis that we suggest is a large graben flooded by late-stage mare flows.

  5. Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K.; Siegel, Andrew R.

    2017-04-16

    The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of two parameters: the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size in order to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, however, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration. For some problems, this implies that vector effciencies over 50% may not be attainable. While there are many factors impacting performance of an event-based algorithm that are not captured by our model, it nevertheless provides insights into factors that may be limiting in a real implementation.

  6. Observations of volcanic plumes using small balloon soundings

    Science.gov (United States)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  7. Measurement of the underlying event using track-based event shapes in Z→l{sup +}l{sup -} events with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Holger

    2014-09-11

    This thesis describes a measurement of hadron-collider event shapes in proton-proton collisions at a centre of momentum energy of 7 TeV at the Large Hadron Collider (LHC) at CERN (Conseil Europeenne pour la Recherche Nucleaire) located near Geneva (Switzerland). The analysed data (integrated luminosity: 1.1 fb{sup -1}) was recorded in 2011 with the ATLAS-experiment. Events where a Z-boson was produced in the hard sub-process which subsequently decays into an electron-positron or muon-antimuon pair were selected for this analysis. The observables are calculated using all reconstructed tracks of charged particles within the acceptance of the inner detector of ATLAS except those of the leptons of the Z-decay. Thus, this is the first measurement of its kind. The observables were corrected for background processes using data-driven methods. For the correction of so-called ''pile-up'' (multiple overlapping proton-proton collisions) a novel technique was developed and successfully applied. The data was further unfolded to correct for remaining detector effects. The obtained distributions are especially sensitive to the so-called ''Underlying Event'' and can be compared with predictions of Monte-Carlo event-generators directly, i.e. without the necessity of running time-consuming simulations of the ATLAS-detector. Finally, it was tried to improve the predictions of the event generators Pythia8 and Sherpa by finding an optimised setting of relevant model parameters in a technique called ''Tuning''. It became apparent, however, that the underlying Sjoestrand-Zijl model is unable to give a good description of the measured event-shape distributions.

  8. Life review based on remembering specific positive events in active aging.

    Science.gov (United States)

    Latorre, José M; Serrano, Juan P; Ricarte, Jorge; Bonete, Beatriz; Ros, Laura; Sitges, Esther

    2015-02-01

    The aim of this study is to evaluate the effectiveness of life review (LR) based on specific positive events in non-depressed older adults taking part in an active aging program. Fifty-five older adults were randomly assigned to an experimental group or an active control (AC) group. A six-session individual training of LR based on specific positive events was carried out with the experimental group. The AC group undertook a "media workshop" of six sessions focused on learning journalistic techniques. Pre-test and post-test measures included life satisfaction, depressive symptoms, experiencing the environment as rewarding, and autobiographical memory (AM) scales. LR intervention decreased depressive symptomatology, improved life satisfaction, and increased specific memories. The findings suggest that practice in AM for specific events is an effective component of LR that could be a useful tool in enhancing emotional well-being in active aging programs, thus reducing depressive symptoms. © The Author(s) 2014.

  9. Declarative event based models of concurrency and refinement in psi-calculi

    DEFF Research Database (Denmark)

    Normann, Håkon; Johansen, Christian; Hildebrandt, Thomas

    2015-01-01

    Psi-calculi constitute a parametric framework for nominal process calculi, where constraint based process calculi and process calculi for mobility can be defined as instances. We apply here the framework of psi-calculi to provide a foundation for the exploration of declarative event-based process...... calculi with support for run-time refinement. We first provide a representation of the model of finite prime event structures as an instance of psi-calculi and prove that the representation respects the semantics up to concurrency diamonds and action refinement. We then proceed to give a psi......-calculi representation of Dynamic Condition Response Graphs, which conservatively extends prime event structures to allow finite representations of (omega) regular finite (and infinite) behaviours and have been shown to support run-time adaptation and refinement. We end by outlining the final aim of this research, which...

  10. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  11. Automated reasoning with dynamic event trees: a real-time, knowledge-based decision aide

    International Nuclear Information System (INIS)

    Touchton, R.A.; Gunter, A.D.; Subramanyan, N.

    1988-01-01

    The models and data contained in a probabilistic risk assessment (PRA) Event Sequence Analysis represent a wealth of information that can be used for dynamic calculation of event sequence likelihood. In this paper we report a new and unique computerization methodology which utilizes these data. This sub-system (referred to as PREDICTOR) has been developed and tested as part of a larger system. PREDICTOR performs a real-time (re)calculation of the estimated likelihood of core-melt as a function of plant status. This methodology uses object-oriented programming techniques from the artificial intelligence discipline that enable one to codify event tree and fault tree logic models and associated probabilities developed in a PRA study. Existence of off-normal conditions is reported to PREDICTOR, which then updates the relevant failure probabilities throughout the event tree and fault tree models by dynamically replacing the off-the-shelf (or prior) probabilities with new probabilities based on the current situation. The new event probabilities are immediately propagated through the models (using 'demons') and an updated core-melt probability is calculated. Along the way, the dominant non-success path of each event tree is determined and highlighted. (author)

  12. Studies on switch-based event building systems in RD13

    International Nuclear Information System (INIS)

    Bee, C.P.; Eshghi, S.; Jones, R.

    1996-01-01

    One of the goals of the RD13 project at CERN is to investigate the feasibility of parallel event building system for detectors at the LHC. Studies were performed by building a prototype based on the HiPPI standard and by modeling this prototype and extended architectures with MODSIM II. The prototype used commercially available VME-HiPPI interfaces and a HiPPI switch together with a modular software. The setup was tested successfully as a parallel event building system in different configurations and with different data flow control schemes. The simulation program was used with realistic parameters from the prototype measurements to simulate large-scale event building systems. This includes simulations of a realistic setup of the ATLAS event building system. The influence of different parameters and scaling behavior were investigated. The influence of realistic event size distributions was checked with data from off-line simulations. Different control schemes for destination assignment and traffic shaping were investigated as well as a two-stage event building system. (author)

  13. The global magnitude-frequency relationship for large explosive volcanic eruptions

    Science.gov (United States)

    Rougier, Jonathan; Sparks, R. Stephen J.; Cashman, Katharine V.; Brown, Sarah K.

    2018-01-01

    For volcanoes, as for other natural hazards, the frequency of large events diminishes with their magnitude, as captured by the magnitude-frequency relationship. Assessing this relationship is valuable both for the insights it provides about volcanism, and for the practical challenge of risk management. We derive a global magnitude-frequency relationship for explosive volcanic eruptions of at least 300Mt of erupted mass (or M4.5). Our approach is essentially empirical, based on the eruptions recorded in the LaMEVE database. It differs from previous approaches mainly in our conservative treatment of magnitude-rounding and under-recording. Our estimate for the return period of 'super-eruptions' (1000Gt, or M8) is 17ka (95% CI: 5.2ka, 48ka), which is substantially shorter than previous estimates, indicating that volcanoes pose a larger risk to human civilisation than previously thought.

  14. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  15. A browser-based event display for the CMS experiment at the LHC

    International Nuclear Information System (INIS)

    Hategan, M; McCauley, T; Nguyen, P

    2012-01-01

    The line between native and web applications is becoming increasingly blurred as modern web browsers are becoming powerful platforms on which applications can be run. Such applications are trivial to install and are readily extensible and easy to use. In an educational setting, web applications permit a way to deploy deploy tools in a highly-restrictive computing environment. The I2U2 collaboration has developed a browser-based event display for viewing events in data collected and released to the public by the CMS experiment at the LHC. The application itself reads a JSON event format and uses the JavaScript 3D rendering engine pre3d. The only requirement is a modern browser using HTML5 canvas. The event display has been used by thousands of high school students in the context of programs organized by I2U2, QuarkNet, and IPPOG. This browser-based approach to display of events can have broader usage and impact for experts and public alike.

  16. Event-based plausibility immediately influences on-line language comprehension.

    Science.gov (United States)

    Matsuki, Kazunaga; Chow, Tracy; Hare, Mary; Elman, Jeffrey L; Scheepers, Christoph; McRae, Ken

    2011-07-01

    In some theories of sentence comprehension, linguistically relevant lexical knowledge, such as selectional restrictions, is privileged in terms of the time-course of its access and influence. We examined whether event knowledge computed by combining multiple concepts can rapidly influence language understanding even in the absence of selectional restriction violations. Specifically, we investigated whether instruments can combine with actions to influence comprehension of ensuing patients of (as in Rayner, Warren, Juhuasz, & Liversedge, 2004; Warren & McConnell, 2007). Instrument-verb-patient triplets were created in a norming study designed to tap directly into event knowledge. In self-paced reading (Experiment 1), participants were faster to read patient nouns, such as hair, when they were typical of the instrument-action pair (Donna used the shampoo to wash vs. the hose to wash). Experiment 2 showed that these results were not due to direct instrument-patient relations. Experiment 3 replicated Experiment 1 using eyetracking, with effects of event typicality observed in first fixation and gaze durations on the patient noun. This research demonstrates that conceptual event-based expectations are computed and used rapidly and dynamically during on-line language comprehension. We discuss relationships among plausibility and predictability, as well as their implications. We conclude that selectional restrictions may be best considered as event-based conceptual knowledge rather than lexical-grammatical knowledge.

  17. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  18. Application and Use of PSA-based Event Analysis in Belgium

    International Nuclear Information System (INIS)

    Hulsmans, M.; De Gelder, P.

    2003-01-01

    The paper describes the experiences of the Belgian nuclear regulatory body AVN with the application and the use of the PSAEA guidelines (PSA-based Event Analysis). In 2000, risk-based precursor analysis has increasingly become a part of the AVN process of feedback of operating experience, and constitutes in fact the first PSA application for the Belgian plants. The PSAEA guidelines were established by a consultant in the framework of an international project. In a first stage, AVN applied the PSAEA guidelines to two test cases in order to explore the feasibility and the interest of this type of probabilistic precursor analysis. These pilot studies demonstrated the applicability of the PSAEA method in general, and its applicability to the computer models of the Belgian state-of-the- art PSAs in particular. They revealed insights regarding the event analysis methodology, the resulting event severity and the PSA model itself. The consideration of relevant what-if questions allowed to identify - and in some cases also to quantify - several potential safety issues for improvement. The internal evaluation of PSAEA was positive and AVN decided to routinely perform several PSAEA studies per year. During 2000, PSAEA has increasingly become a part of the AVN process of feedback of operating experience. The objectives of the AVN precursor program have been clearly stated. A first pragmatic set of screening rules for operational events has been drawn up and applied. Six more operational events have been analysed in detail (initiating events as well as condition events) and resulted in a wide spectrum of event severity. In addition to the particular conclusions for each event, relevant insights have been gained regarding for instance event modelling and the interpretation of results. Particular attention has been devoted to the form of the analysis report. After an initial presentation of some key concepts, the particular context of this program and of AVN's objectives, the

  19. Location aware event driven multipath routing in Wireless Sensor Networks: Agent based approach

    Directory of Open Access Journals (Sweden)

    A.V. Sutagundar

    2013-03-01

    Full Text Available Wireless Sensor Networks (WSNs demand reliable and energy efficient paths for critical information delivery to sink node from an event occurrence node. Multipath routing facilitates reliable data delivery in case of critical information. This paper proposes an event triggered multipath routing in WSNs by employing a set of static and mobile agents. Every sensor node is assumed to know the location information of the sink node and itself. The proposed scheme works as follows: (1 Event node computes the arbitrary midpoint between an event node and the sink node by using location information. (2 Event node establishes a shortest path from itself to the sink node through the reference axis by using a mobile agent with the help of location information; the mobile agent collects the connectivity information and other parameters of all the nodes on the way and provides the information to the sink node. (3 Event node finds the arbitrary location of the special (middle intermediate nodes (above/below reference axis by using the midpoint location information given in step 1. (4 Mobile agent clones from the event node and the clones carry the event type and discover the path passing through special intermediate nodes; the path above/below reference axis looks like an arc. While migrating from one sensor node to another along the traversed path, each mobile agent gathers the node information (such as node id, location information, residual energy, available bandwidth, and neighbors connectivity and delivers to the sink node. (5 The sink node constructs a partial topology, connecting event and sink node by using the connectivity information delivered by the mobile agents. Using the partial topology information, sink node finds the multipath and path weight factor by using link efficiency, energy ratio, and hop distance. (6 The sink node selects the number of paths among the available paths based upon the criticalness of an event, and (7 if the event is non

  20. Event-based computer simulation model of aspect-type experiments strictly satisfying Einstein's locality conditions

    NARCIS (Netherlands)

    De Raedt, Hans; De Raedt, Koen; Michielsen, Kristel; Keimpema, Koenraad; Miyashita, Seiji

    2007-01-01

    Inspired by Einstein-Podolsky-Rosen-Bohtn experiments with photons, we construct an event-based simulation model in which every essential element in the ideal experiment has a counterpart. The model satisfies Einstein's criterion of local causality and does not rely on concepts of quantum and

  1. Lyapunov design of event-based controllers for the rendez-vous of coupled systems

    NARCIS (Netherlands)

    De Persis, Claudio; Postoyan, Romain

    2014-01-01

    The objective is to present a new type of triggering conditions together with new proof concepts for the event-based coordination of multi-agents. As a first step, we focus on the rendez-vous of two identical systems modeled as double integrators with additional damping in the velocity dynamics. The

  2. Multi-agent system-based event-triggered hybrid control scheme for energy internet

    DEFF Research Database (Denmark)

    Dou, Chunxia; Yue, Dong; Han, Qing Long

    2017-01-01

    This paper is concerned with an event-triggered hybrid control for the energy Internet based on a multi-agent system approach with which renewable energy resources can be fully utilized to meet load demand with high security and well dynamical quality. In the design of control, a multi-agent system...

  3. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  4. Mind the gap: modelling event-based and millennial-scale landscape dynamics

    NARCIS (Netherlands)

    Baartman, J.E.M.

    2012-01-01

    This research looks at landscape dynamics – erosion and deposition – from two different perspectives: long-term landscape evolution over millennial timescales on the one hand and short-term event-based erosion and deposition at the other hand. For the first, landscape evolution models (LEMs) are

  5. Component-Based Data-Driven Predictive Maintenance to Reduce Unscheduled Maintenance Events

    NARCIS (Netherlands)

    Verhagen, W.J.C.; Curran, R.; de Boer, L.W.M.; Chen, C.H.; Trappey, A.C.; Peruzzini, M.; Stjepandić, J.; Wognum, N.

    2017-01-01

    Costs associated with unscheduled and preventive maintenance can contribute significantly to an airline's expenditure. Reliability analysis can help to identify and plan for maintenance events. Reliability analysis in industry is often limited to statistically based

  6. Automatic detection of esophageal pressure events. Is there an alternative to rule-based criteria?

    DEFF Research Database (Denmark)

    Kruse-Andersen, S; Rütz, K; Kolberg, Jens Godsk

    1995-01-01

    of relevant pressure peaks at the various recording levels. Until now, this selection has been performed entirely by rule-based systems, requiring each pressure deflection to fit within predefined rigid numerical limits in order to be detected. However, due to great variations in the shapes of the pressure...... curves generated by muscular contractions, rule-based criteria do not always select the pressure events most relevant for further analysis. We have therefore been searching for a new concept for automatic event recognition. The present study describes a new system, based on the method of neurocomputing.......79-0.99 and accuracies of 0.89-0.98, depending on the recording level within the esophageal lumen. The neural networks often recognized peaks that clearly represented true contractions but that had been rejected by a rule-based system. We conclude that neural networks have potentials for automatic detections...

  7. The role of musical training in emergent and event-based timing

    Directory of Open Access Journals (Sweden)

    Lawrence eBaer

    2013-05-01

    Full Text Available Musical performance is thought to rely predominantly on event-based timing involving a clock-like neural process and an explicit internal representation of the time interval. Some aspects of musical performance may rely on emergent timing, which is established through the optimization of movement kinematics, and can be maintained without reference to any explicit representation of the time interval. We predicted that musical training would have its largest effect on event-based timing, supporting the dissociability of these timing processes and the dominance of event-based timing in musical performance. We compared 22 musicians and 17 non-musicians on the prototypical event-based timing task of finger tapping and on the typically emergently timed task of circle drawing. For each task, participants first responded in synchrony with a metronome (Paced and then responded at the same rate without the metronome (Unpaced. Analyses of the Unpaced phase revealed that non-musicians were more variable in their inter-response intervals for finger tapping compared to circle drawing. Musicians did not differ between the two tasks. Between groups, non-musicians were more variable than musicians for tapping but not for drawing. We were able to show that the differences were due to less timer variability in musicians on the tapping task. Correlational analyses of movement jerk and inter-response interval variability revealed a negative association for tapping and a positive association for drawing in non-musicians only. These results suggest that musical training affects temporal variability in tapping but not drawing. Additionally, musicians and non-musicians may be employing different movement strategies to maintain accurate timing in the two tasks. These findings add to our understanding of how musical training affects timing and support the dissociability of event-based and emergent timing modes.

  8. Making Sense of Collective Events: The Co-creation of a Research-based Dance

    OpenAIRE

    Katherine M. Boydell

    2011-01-01

    A symbolic interaction (Blumer, 1969; Mead, 1934; Prus, 1996; Prus & Grills, 2003) approach was taken to study the collective event (Prus, 1997) of creating a research-based dance on pathways to care in first episode psychosis. Viewing the co-creation of a research-based dance as collective activity attends to the processual aspects of an individual's experiences. It allowed the authors to study the process of the creation of the dance and its capacity to convert abstract research into concre...

  9. Neural bases of event knowledge and syntax integration in comprehension of complex sentences.

    Science.gov (United States)

    Malaia, Evie; Newman, Sharlene

    2015-01-01

    Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.

  10. Declarative Event-Based Workflow as Distributed Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2010-01-01

    We present Dynamic Condition Response Graphs (DCR Graphs) as a declarative, event-based process model inspired by the workflow language employed by our industrial partner and conservatively generalizing prime event structures. A dynamic condition response graph is a directed graph with nodes repr...... exemplify the use of distributed DCR Graphs on a simple workflow taken from a field study at a Danish hospital, pointing out their flexibility compared to imperative workflow models. Finally we provide a mapping from DCR Graphs to Buchi-automata....

  11. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  12. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  13. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  14. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    Science.gov (United States)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  15. Central San Juan caldera cluster: Regional volcanic framework

    Science.gov (United States)

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  16. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  17. Research on Crowdsourcing Emergency Information Extraction of Based on Events' Frame

    Science.gov (United States)

    Yang, Bo; Wang, Jizhou; Ma, Weijun; Mao, Xi

    2018-01-01

    At present, the common information extraction method cannot extract the structured emergency event information accurately; the general information retrieval tool cannot completely identify the emergency geographic information; these ways also do not have an accurate assessment of these results of distilling. So, this paper proposes an emergency information collection technology based on event framework. This technique is to solve the problem of emergency information picking. It mainly includes emergency information extraction model (EIEM), complete address recognition method (CARM) and the accuracy evaluation model of emergency information (AEMEI). EIEM can be structured to extract emergency information and complements the lack of network data acquisition in emergency mapping. CARM uses a hierarchical model and the shortest path algorithm and allows the toponomy pieces to be joined as a full address. AEMEI analyzes the results of the emergency event and summarizes the advantages and disadvantages of the event framework. Experiments show that event frame technology can solve the problem of emergency information drawing and provides reference cases for other applications. When the emergency disaster is about to occur, the relevant departments query emergency's data that has occurred in the past. They can make arrangements ahead of schedule which defense and reducing disaster. The technology decreases the number of casualties and property damage in the country and world. This is of great significance to the state and society.

  18. Event-based rainfall-runoff modelling of the Kelantan River Basin

    Science.gov (United States)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  19. Event-based rainfall-runoff modelling of the Kelantan River Basin

    International Nuclear Information System (INIS)

    Basarudin, Z; Adnan, N A; Latif, A R A; Syafiqah, N; Tahir, W

    2014-01-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area

  20. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.

    1995-12-31

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  1. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  2. PYROCLASTIC FLOW MODELING TO RECONSTRUCT A VOLCANIC EDIFICE IN PAIPA (BOYACÁ-COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Rodríguez Óscar

    2004-06-01

    Full Text Available Pyroclastic deposits produced by the domes collapse (resurgence of a caldera collapse, at the west of the Honda Grande creek (Paipa, Boyacá-Colombia were related by INGEOMINAS. These deposits fill the valleys of Olitas, Calderitas and a creek at the south of the Alto de los Volcanes reaching distances near to 3 km from the focus between the Alto de los Volcanes and El Mirador Hill.The flows were modeled using 3D Software (Sheridan and Kover, 1996. A volcanic simulation was done obtaining the height and morphology of the volcanic edifice before the collapse during the last eruptive event.

  3. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER)system.

    Science.gov (United States)

    Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard

    2018-01-01

    Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.

  4. Large Volcanic Rises on Venus

    Science.gov (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  5. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  6. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  7. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  8. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    Science.gov (United States)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of

  9. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    Science.gov (United States)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  10. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  11. Discrete event model-based simulation for train movement on a single-line railway

    International Nuclear Information System (INIS)

    Xu Xiao-Ming; Li Ke-Ping; Yang Li-Xing

    2014-01-01

    The aim of this paper is to present a discrete event model-based approach to simulate train movement with the considered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption. (general)

  12. LCP method for a planar passive dynamic walker based on an event-driven scheme

    Science.gov (United States)

    Zheng, Xu-Dong; Wang, Qi

    2018-06-01

    The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

  13. Pull-Based Distributed Event-Triggered Consensus for Multiagent Systems With Directed Topologies.

    Science.gov (United States)

    Yi, Xinlei; Lu, Wenlian; Chen, Tianping

    2017-01-01

    This paper mainly investigates consensus problem with a pull-based event-triggered feedback control. For each agent, the diffusion coupling feedbacks are based on the states of its in-neighbors at its latest triggering time, and the next triggering time of this agent is determined by its in-neighbors' information. The general directed topologies, including irreducible and reducible cases, are investigated. The scenario of distributed continuous communication is considered first. It is proved that if the network topology has a spanning tree, then the event-triggered coupling algorithm can realize the consensus for the multiagent system. Then, the results are extended to discontinuous communication, i.e., self-triggered control, where each agent computes its next triggering time in advance without having to observe the system's states continuously. The effectiveness of the theoretical results is illustrated by a numerical example finally.

  14. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  15. Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection.

    Science.gov (United States)

    Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash

    2010-04-01

    The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.

  16. Event-Based Control Strategy for Mobile Robots in Wireless Environments.

    Science.gov (United States)

    Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto

    2015-12-02

    In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.

  17. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  18. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  19. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  20. Nest-crowdcontrol: Advanced video-based crowd monitoring for large public events

    OpenAIRE

    Monari, Eduardo; Fischer, Yvonne; Anneken, Mathias

    2015-01-01

    Current video surveillance systems still lack of intelligent video and data analysis modules for supporting situation awareness of decision makers. Especially in mass gatherings like large public events, the decision maker would benefit from different views of the area, especially from crowd density estimations. This article describes a multi-camera system called NEST and its application for crowd density analysis. First, the overall system design is presented. Based on this, the crowd densit...

  1. Spatio-Temporal Story Mapping Animation Based On Structured Causal Relationships Of Historical Events

    Science.gov (United States)

    Inoue, Y.; Tsuruoka, K.; Arikawa, M.

    2014-04-01

    In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.

  2. Using Bayesian Belief Networks and event trees for volcanic hazard assessment and decision support : reconstruction of past eruptions of La Soufrière volcano, Guadeloupe and retrospective analysis of 1975-77 unrest.

    Science.gov (United States)

    Komorowski, Jean-Christophe; Hincks, Thea; Sparks, Steve; Aspinall, Willy; Legendre, Yoann; Boudon, Georges

    2013-04-01

    the contemporary volcanological narrative, and demonstrates that a formal evidential case could have been made to support the authorities' concerns and decision to evacuate. Revisiting the circumstances of the 1976 crisis highlights many contemporary challenges of decision-making under conditions of volcanological uncertainty. We suggest the BBN concept is a suitable framework for marshalling multiple observations, model results and interpretations - and all associated uncertainties - in a methodical manner. Base-rate eruption probabilities for Guadeloupe can be updated now with a new chronology of activity suggesting that 10 major explosive phases and 9 dome-forming phases occurred in the last 9150 years, associated with ≥ 8 flank-collapses and ≥ 6-7 high-energy pyroclastic density currents (blasts). Eruptive recurrence, magnitude and intensity place quantitative constraints on La Soufrière's event tree to elaborate credible scenarios. The current unrest offers an opportunity to update the BBN model and explore the uncertainty on inferences about the system's internal state. This probabilistic formalism would provoke key questions relating to unrest evolution: 1) is the unrest hydrothermal or magmatic? 2) what controls dyke/intrusion arrest and hence failed-magmatic eruptions like 1976? 3) what conditions could lead to significant pressurization with potential for explosive activity and edifice instability, and what monitoring signs might be manifest?

  3. Triassic volcanic units in coastal region of Antofagasta, northern Chile

    International Nuclear Information System (INIS)

    Basso, M.; Cortes, J.A.; Marinovic, N

    2001-01-01

    U-Pb geochronological evidence of a Middle to Late Triassic volcanic event was found in the coastal region of Antofagasta, northern Chile (23 o -23 o 30 ). Two new ages were obtained from rhyolitic tuffs and an associated dome, which have classically been attributed to the Jurassic La Negra Formation (au)

  4. Network based on statistical multiplexing for event selection and event builder systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Calvet, D.

    2000-03-01

    Systems for on-line event selection in future high energy physics experiments will use advanced distributed computing techniques and will need high speed networks. After a brief description of projects at the Large Hadron Collider, the architectures initially proposed for the Trigger and Data AcQuisition (TD/DAQ) systems of ATLAS and CMS experiments are presented and analyzed. A new architecture for the ATLAS T/DAQ is introduced. Candidate network technologies for this system are described. This thesis focuses on ATM. A variety of network structures and topologies suited to partial and full event building are investigated. The need for efficient networking is shown. Optimization techniques for high speed messaging and their implementation on ATM components are described. Small scale demonstrator systems consisting of up to 48 computers (∼1:20 of the final level 2 trigger) connected via ATM are described. Performance results are presented. Extrapolation of measurements and evaluation of needs lead to a proposal of implementation for the main network of the ATLAS T/DAQ system. (author)

  5. An Event-Based Approach to Design a Teamwork Training Scenario and Assessment Tool in Surgery.

    Science.gov (United States)

    Nguyen, Ngan; Watson, William D; Dominguez, Edward

    2016-01-01

    Simulation is a technique recommended for teaching and measuring teamwork, but few published methodologies are available on how best to design simulation for teamwork training in surgery and health care in general. The purpose of this article is to describe a general methodology, called event-based approach to training (EBAT), to guide the design of simulation for teamwork training and discuss its application to surgery. The EBAT methodology draws on the science of training by systematically introducing training exercise events that are linked to training requirements (i.e., competencies being trained and learning objectives) and performance assessment. The EBAT process involves: Of the 4 teamwork competencies endorsed by the Agency for Healthcare Research Quality and Department of Defense, "communication" was chosen to be the focus of our training efforts. A total of 5 learning objectives were defined based on 5 validated teamwork and communication techniques. Diagnostic laparoscopy was chosen as the clinical context to frame the training scenario, and 29 KSAs were defined based on review of published literature on patient safety and input from subject matter experts. Critical events included those that correspond to a specific phase in the normal flow of a surgical procedure as well as clinical events that may occur when performing the operation. Similar to the targeted KSAs, targeted responses to the critical events were developed based on existing literature and gathering input from content experts. Finally, a 29-item EBAT-derived checklist was created to assess communication performance. Like any instructional tool, simulation is only effective if it is designed and implemented appropriately. It is recognized that the effectiveness of simulation depends on whether (1) it is built upon a theoretical framework, (2) it uses preplanned structured exercises or events to allow learners the opportunity to exhibit the targeted KSAs, (3) it assesses performance, and (4

  6. Agent Based Simulation of Group Emotions Evolution and Strategy Intervention in Extreme Events

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Agent based simulation method has become a prominent approach in computational modeling and analysis of public emergency management in social science research. The group emotions evolution, information diffusion, and collective behavior selection make extreme incidents studies a complex system problem, which requires new methods for incidents management and strategy evaluation. This paper studies the group emotion evolution and intervention strategy effectiveness using agent based simulation method. By employing a computational experimentation methodology, we construct the group emotion evolution as a complex system and test the effects of three strategies. In addition, the events-chain model is proposed to model the accumulation influence of the temporal successive events. Each strategy is examined through three simulation experiments, including two make-up scenarios and a real case study. We show how various strategies could impact the group emotion evolution in terms of the complex emergence and emotion accumulation influence in extreme events. This paper also provides an effective method of how to use agent-based simulation for the study of complex collective behavior evolution problem in extreme incidents, emergency, and security study domains.

  7. A Cluster-Based Fuzzy Fusion Algorithm for Event Detection in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ZiQi Hao

    2015-01-01

    Full Text Available As limited energy is one of the tough challenges in wireless sensor networks (WSN, energy saving becomes important in increasing the lifecycle of the network. Data fusion enables combining information from several sources thus to provide a unified scenario, which can significantly save sensor energy and enhance sensing data accuracy. In this paper, we propose a cluster-based data fusion algorithm for event detection. We use k-means algorithm to form the nodes into clusters, which can significantly reduce the energy consumption of intracluster communication. Distances between cluster heads and event and energy of clusters are fuzzified, thus to use a fuzzy logic to select the clusters that will participate in data uploading and fusion. Fuzzy logic method is also used by cluster heads for local decision, and then the local decision results are sent to the base station. Decision-level fusion for final decision of event is performed by base station according to the uploaded local decisions and fusion support degree of clusters calculated by fuzzy logic method. The effectiveness of this algorithm is demonstrated by simulation results.

  8. Combined adaptive multiple subtraction based on optimized event tracing and extended wiener filtering

    Science.gov (United States)

    Tan, Jun; Song, Peng; Li, Jinshan; Wang, Lei; Zhong, Mengxuan; Zhang, Xiaobo

    2017-06-01

    The surface-related multiple elimination (SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.

  9. Networked Estimation for Event-Based Sampling Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Young Soo Suh

    2009-04-01

    Full Text Available This paper is concerned with a networked estimation problem in which sensor data are transmitted over the network. In the event-based sampling scheme known as level-crossing or send-on-delta (SOD, sensor data are transmitted to the estimator node if the difference between the current sensor value and the last transmitted one is greater than a given threshold. Event-based sampling has been shown to be more efficient than the time-triggered one in some situations, especially in network bandwidth improvement. However, it cannot detect packet dropout situations because data transmission and reception do not use a periodical time-stamp mechanism as found in time-triggered sampling systems. Motivated by this issue, we propose a modified event-based sampling scheme called modified SOD in which sensor data are sent when either the change of sensor output exceeds a given threshold or the time elapses more than a given interval. Through simulation results, we show that the proposed modified SOD sampling significantly improves estimation performance when packet dropouts happen.

  10. Asymptotic Effectiveness of the Event-Based Sampling According to the Integral Criterion

    Directory of Open Access Journals (Sweden)

    Marek Miskowicz

    2007-01-01

    Full Text Available A rapid progress in intelligent sensing technology creates new interest in a development of analysis and design of non-conventional sampling schemes. The investigation of the event-based sampling according to the integral criterion is presented in this paper. The investigated sampling scheme is an extension of the pure linear send-on- delta/level-crossing algorithm utilized for reporting the state of objects monitored by intelligent sensors. The motivation of using the event-based integral sampling is outlined. The related works in adaptive sampling are summarized. The analytical closed-form formulas for the evaluation of the mean rate of event-based traffic, and the asymptotic integral sampling effectiveness, are derived. The simulation results verifying the analytical formulas are reported. The effectiveness of the integral sampling is compared with the related linear send-on-delta/level-crossing scheme. The calculation of the asymptotic effectiveness for common signals, which model the state evolution of dynamic systems in time, is exemplified.

  11. Software failure events derivation and analysis by frame-based technique

    International Nuclear Information System (INIS)

    Huang, H.-W.; Shih, C.; Yih, Swu; Chen, M.-H.

    2007-01-01

    A frame-based technique, including physical frame, logical frame, and cognitive frame, was adopted to perform digital I and C failure events derivation and analysis for generic ABWR. The physical frame was structured with a modified PCTran-ABWR plant simulation code, which was extended and enhanced on the feedwater system, recirculation system, and steam line system. The logical model is structured with MATLAB, which was incorporated into PCTran-ABWR to improve the pressure control system, feedwater control system, recirculation control system, and automated power regulation control system. As a result, the software failure of these digital control systems can be properly simulated and analyzed. The cognitive frame was simulated by the operator awareness status in the scenarios. Moreover, via an internal characteristics tuning technique, the modified PCTran-ABWR can precisely reflect the characteristics of the power-core flow. Hence, in addition to the transient plots, the analysis results can then be demonstrated on the power-core flow map. A number of postulated I and C system software failure events were derived to achieve the dynamic analyses. The basis for event derivation includes the published classification for software anomalies, the digital I and C design data for ABWR, chapter 15 accident analysis of generic SAR, and the reported NPP I and C software failure events. The case study of this research includes: (1) the software CMF analysis for the major digital control systems; and (2) postulated ABWR digital I and C software failure events derivation from the actual happening of non-ABWR digital I and C software failure events, which were reported to LER of USNRC or IRS of IAEA. These events were analyzed by PCTran-ABWR. Conflicts among plant status, computer status, and human cognitive status are successfully identified. The operator might not easily recognize the abnormal condition, because the computer status seems to progress normally. However, a well

  12. Strategies to Automatically Derive a Process Model from a Configurable Process Model Based on Event Data

    Directory of Open Access Journals (Sweden)

    Mauricio Arriagada-Benítez

    2017-10-01

    Full Text Available Configurable process models are frequently used to represent business workflows and other discrete event systems among different branches of large organizations: they unify commonalities shared by all branches and describe their differences, at the same time. The configuration of such models is usually done manually, which is challenging. On the one hand, when the number of configurable nodes in the configurable process model grows, the size of the search space increases exponentially. On the other hand, the person performing the configuration may lack the holistic perspective to make the right choice for all configurable nodes at the same time, since choices influence each other. Nowadays, information systems that support the execution of business processes create event data reflecting how processes are performed. In this article, we propose three strategies (based on exhaustive search, genetic algorithms and a greedy heuristic that use event data to automatically derive a process model from a configurable process model that better represents the characteristics of the process in a specific branch. These strategies have been implemented in our proposed framework and tested in both business-like event logs as recorded in a higher educational enterprise resource planning system and a real case scenario involving a set of Dutch municipalities.

  13. Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies.

    Science.gov (United States)

    Balador, Ali; Uhlemann, Elisabeth; Calafate, Carlos T; Cano, Juan-Carlos

    2018-03-23

    Timely and reliable inter-vehicle communications is a critical requirement to support traffic safety applications, such as vehicle platooning. Furthermore, low-delay communications allow the platoon to react quickly to unexpected events. In this scope, having a predictable and highly effective medium access control (MAC) method is of utmost importance. However, the currently available IEEE 802.11p technology is unable to adequately address these challenges. In this paper, we propose a MAC method especially adapted to platoons, able to transmit beacons within the required time constraints, but with a higher reliability level than IEEE 802.11p, while concurrently enabling efficient dissemination of event-driven messages. The protocol circulates the token within the platoon not in a round-robin fashion, but based on beacon data age, i.e., the time that has passed since the previous collection of status information, thereby automatically offering repeated beacon transmission opportunities for increased reliability. In addition, we propose three different methods for supporting event-driven messages co-existing with beacons. Analysis and simulation results in single and multi-hop scenarios showed that, by providing non-competitive channel access and frequent retransmission opportunities, our protocol can offer beacon delivery within one beacon generation interval while fulfilling the requirements on low-delay dissemination of event-driven messages for traffic safety applications.

  14. Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies

    Directory of Open Access Journals (Sweden)

    Ali Balador

    2018-03-01

    Full Text Available Timely and reliable inter-vehicle communications is a critical requirement to support traffic safety applications, such as vehicle platooning. Furthermore, low-delay communications allow the platoon to react quickly to unexpected events. In this scope, having a predictable and highly effective medium access control (MAC method is of utmost importance. However, the currently available IEEE 802.11p technology is unable to adequately address these challenges. In this paper, we propose a MAC method especially adapted to platoons, able to transmit beacons within the required time constraints, but with a higher reliability level than IEEE 802.11p, while concurrently enabling efficient dissemination of event-driven messages. The protocol circulates the token within the platoon not in a round-robin fashion, but based on beacon data age, i.e., the time that has passed since the previous collection of status information, thereby automatically offering repeated beacon transmission opportunities for increased reliability. In addition, we propose three different methods for supporting event-driven messages co-existing with beacons. Analysis and simulation results in single and multi-hop scenarios showed that, by providing non-competitive channel access and frequent retransmission opportunities, our protocol can offer beacon delivery within one beacon generation interval while fulfilling the requirements on low-delay dissemination of event-driven messages for traffic safety applications.

  15. Mining web-based data to assess public response to environmental events

    International Nuclear Information System (INIS)

    Cha, YoonKyung; Stow, Craig A.

    2015-01-01

    We explore how the analysis of web-based data, such as Twitter and Google Trends, can be used to assess the social relevance of an environmental accident. The concept and methods are applied in the shutdown of drinking water supply at the city of Toledo, Ohio, USA. Toledo's notice, which persisted from August 1 to 4, 2014, is a high-profile event that directly influenced approximately half a million people and received wide recognition. The notice was given when excessive levels of microcystin, a byproduct of cyanobacteria blooms, were discovered at the drinking water treatment plant on Lake Erie. Twitter mining results illustrated an instant response to the Toledo incident, the associated collective knowledge, and public perception. The results from Google Trends, on the other hand, revealed how the Toledo event raised public attention on the associated environmental issue, harmful algal blooms, in a long-term context. Thus, when jointly applied, Twitter and Google Trend analysis results offer complementary perspectives. Web content aggregated through mining approaches provides a social standpoint, such as public perception and interest, and offers context for establishing and evaluating environmental management policies. - The joint application of Twitter and Google Trend analysis to an environmental event offered both short and long-term patterns of public perception and interest on the event

  16. A Geo-Event-Based Geospatial Information Service: A Case Study of Typhoon Hazard

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-03-01

    Full Text Available Social media is valuable in propagating information during disasters for its timely and available characteristics nowadays, and assists in making decisions when tagged with locations. Considering the ambiguity and inaccuracy in some social data, additional authoritative data are needed for important verification. However, current works often fail to leverage both social and authoritative data and, on most occasions, the data are used in disaster analysis after the fact. Moreover, current works organize the data from the perspective of the spatial location, but not from the perspective of the disaster, making it difficult to dynamically analyze the disaster. All of the disaster-related data around the affected locations need to be retrieved. To solve these limitations, this study develops a geo-event-based geospatial information service (GEGIS framework and proceeded as follows: (1 a geo-event-related ontology was constructed to provide a uniform semantic basis for the system; (2 geo-events and attributes were extracted from the web using a natural language process (NLP and used in the semantic similarity match of the geospatial resources; and (3 a geospatial information service prototype system was designed and implemented for automatically retrieving and organizing geo-event-related geospatial resources. A case study of a typhoon hazard is analyzed here within the GEGIS and shows that the system would be effective when typhoons occur.

  17. The taxable events for the Value-Added Tax (VAT based on a Comparative Law approach

    Directory of Open Access Journals (Sweden)

    Walker Villanueva Gutiérrez

    2014-07-01

    Full Text Available This article analyzes the definitions of the main taxable events for the Value-Added Tax (VAT based on a comparative approach to thelegislation of different countries (Spain, Mexico, Chile, Colombia, Argentina and Peru. In this regard, it analyzes which legislations offer definitions according to the principles of generality, fiscal neutrality and legal certainty for VAT. Moreover, it points out that the VAT systems of those countries do not require as a condition for the configuration of the taxable events that the transactions involve a «value added» or a final consumption. In the specificcase of «supplies of goods», the VAT systems have a similar definition of the taxable event, although there are a few differences. However, in the case of«supplies of services», which is the most important taxable event for VAT, there are important differences at the time each country defines it. This is not a desirable effect for the international trade of services, since the lack of harmonization produces double taxation or double non taxation.

  18. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  19. Post-Laramide and pre-Basin and Range deformation and implications for Paleogene (55-25 Ma) volcanism in central Mexico: A geological basis for a volcano-tectonic stress model

    Science.gov (United States)

    Tristán-González, Margarito; Aguirre-Díaz, Gerardo J.; Labarthe-Hernández, Guillermo; Torres-Hernández, José Ramón; Bellon, Hervé

    2009-06-01

    At central-eastern Mexico, in the Mesa Central province, there are several ranges that were formed after the K/T Laramide compression but before the Basin and Range peak extensional episodes at middle-late Oligocene. Two important volcano-tectonic events happened during this time interval, 1) uplift of crustal blocks exhuming the Triassic-Jurassic metamorphic sequence and formation of basins that were filled with red beds and volcanic sequences, and 2) normal faulting and tilting to the NE of these blocks and fanglomerate filling of graben and half-graben structures. The first event, from late Paleocene to early Eocene, was related to NNE and NNW oriented dextral strike-slip faults. These faults were combined with NW-SE en echelon faulting in these blocks through which plutonism and volcanism occurred. The second event lasted from early Oligocene to early Miocene and coincided with Basin and Range extension. Intense volcanic activity occurred synchronously with the newly-formed or reactivated old fault systems, producing thick sequences of silicic pyroclastic rocks and large domes. Volcano-tectonic peaks occurred in three main episodes during the middle-late Oligocene in this part of Mexico, at about 32-30 Ma, 30-28 Ma, and 26-25 Ma. The objectives of this work is to summarize the volcano-tectonic events that occurred after the end of the Laramide orogeny and before the peak episodes of Basin and Range faulting and Sierra Madre Occidental Oligocene volcanism, and to discuss the influence of these events on the following Oligocene-Miocene volcano-tectonic peak episodes that formed the voluminous silicic volcanism in the Mesa Central, and hence, in the Sierra Madre Occidental. A model based upon geological observations summarizes the volcanic-tectonic evolution of this part of Mexico from the late Paleocene to the Early Miocene.

  20. Remote Sensing and GIS as Tools for Identifying Risk for Phreatomagmatic Eruptions in the Bishoftu Volcanic Field, Ethiopia

    Science.gov (United States)

    Pennington, H. G.; Graettinger, A.

    2017-12-01

    Bishoftu is a fast-growing town in the Oromia region of Ethiopia, located 47 km southeast of the nation's capital, Addis Ababa. It is situated atop a monogenetic basaltic volcanic field, called the Bishoftu Volcanic Field (BVF), which is composed of maar craters, scoria cones, lava flows, and rhyolite domes. Although not well dated, the morphology and archeological evidence have been used to infer a Holocene age, indicating that the community is exposed to continued volcanic risk. The presence of phreatomagmatic constructs in particular indicates that the hazards are not only vent-localized, but may have far reaching impacts. Hazard mapping is an essential tool for evaluating and communicating risks. This study presents the results of GIS analyses of proximal and distal syn-eruptive hazards associated with phreatomagmatic eruptions in the BVF. A digitized infrastructure map based on a SPOT 6 satellite image is used to identify the areas at risk from eruption scenarios. Parameters such as wind direction, vent location, and explosion energy are varied for hazard simulations to quantify the area impacted by different eruption scenarios. Proximal syn-eruptive hazards include tephra fall, base pyroclastic surges, and ballistic bombs. Distal hazards include predominantly ash fall. Eruption scenarios are simulated using Eject and Plumeria models as well as similar case studies from other urban volcanic fields. Within 5 km of the volcanic field center, more than 30 km2 of residential and commercial/industrial infrastructure will be damaged by proximal syn-eruptive hazards, in addition to 34 km2 of agricultural land, 291 km of roads, more than 10 km of railway, an airport, and two health centers. Within 100 km of the volcanic field center, ash fall will affect 3946 km2 of agricultural land, 179 km2 of residential land, and 28 km2 of commercial/industrial land. Approximately 2700 km of roads and railways, 553 km of waterways, an airport, and 14 health centers are located

  1. Magma intrusion near Volcan Tancítaro: Evidence from seismic analysis

    Science.gov (United States)

    Pinzón, Juan I.; Núñez-Cornú, Francisco J.; Rowe, Charlotte A.

    2017-01-01

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ∼1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. We used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9-10 km and 3-4 km depth respectively. The average location error estimates are rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ∼5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. These features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.

  2. An adverse events potential costs analysis based on Drug Programs in Poland. Dermatology focus

    Directory of Open Access Journals (Sweden)

    Szkultecka-Debek Monika

    2014-09-01

    Full Text Available The aim of the project, carried out within the Polish Society for Pharmacoeconomics (PTFE, was to estimate the potential costs of treatment of the side effects which (theoretically may occur as a result of treatments for the selected diseases. This paper deals solely with dermatology related events. Herein, several Drug Programs financed by the National Health Fund in Poland, in 2012, were analyzed. The adverse events were selected based on the Summary of Product Characteristics of the chosen products. We focused the project on those potential adverse events which were defined in SPC as frequent and very frequent. The results are presented according to their therapeutic areas, and in this paper, the focus is upon that which is related to dermatology. The events described as ‘very common’ had an incidence of ≥ 1/10, and that which is ‘common’ - ≥ 1/100, <1 /10. In order to identify the resources used, we, with the engagement of clinical experts, performed a survey. In our work, we employed only the total direct costs incurred by the public payer, based on valid individual cost data in February 2014. Moreover, we calculated the total spending from the public payer’s perspective, as well as the patient’s perspective, and the percentage of each component of the total cost in detail. The paper, thus, informs the reader of the estimated costs of treatment of side effects related to the dermatologic symptoms and reactions. Based on our work, we can state that the treatment of skin adverse drug reactions generates a significant cost - one incurred by both the public payer and the patient.

  3. ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology.

    Science.gov (United States)

    Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.

  4. Results from a data acquisition system prototype project using a switch-based event builder

    International Nuclear Information System (INIS)

    Black, D.; Andresen, J.; Barsotti, E.; Baumbaugh, A.; Esterline, D.; Knickerbocker, K.; Kwarciany, R.; Moore, G.; Patrick, J.; Swoboda, C.; Treptow, K.; Trevizo, O.; Urish, J.; VanConant, R.; Walsh, D.; Bowden, M.; Booth, A.; Cancelo, G.

    1991-11-01

    A prototype of a high bandwidth parallel event builder has been designed and tested. The architecture is based on a simple switching network and is adaptable to a wide variety of data acquisition systems. An eight channel system with a peak throughput of 160 Megabytes per second has been implemented. It is modularly expandable to 64 channels (over one Gigabyte per second). The prototype uses a number of relatively recent commercial technologies, including very high speed fiber-optic data links, high integration crossbar switches and embedded RISC processors. It is based on an open architecture which permits the installation of new technologies with little redesign effort. 5 refs., 6 figs

  5. Making Sense of Collective Events: The Co-creation of a Research-based Dance

    OpenAIRE

    Boydell, Katherine M.

    2011-01-01

    A symbolic interaction (BLUMER, 1969; MEAD, 1934; PRUS, 1996; PRUS & GRILLS, 2003) approach was taken to study the collective event (PRUS, 1997) of creating a research-based dance on pathways to care in first episode psychosis. Viewing the co-creation of a research-based dance as collective activity attends to the processual aspects of an individual's experiences. It allowed us to study the process of the creation of the dance and its capacity to convert abstract research into concrete form a...

  6. Results from a data acquisition system prototype project using a switch-based event builder

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.; Andresen, J.; Barsotti, E.; Baumbaugh, A.; Esterline, D.; Knickerbocker, K.; Kwarciany, R.; Moore, G.; Patrick, J.; Swoboda, C.; Treptow, K.; Trevizo, O.; Urish, J.; VanConant, R.; Walsh, D. (Fermi National Accelerator Lab., Batavia, IL (United States)); Bowden, M.; Booth, A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Cancelo, G. (La Plata Univ. Nacional (Argentina))

    1991-11-01

    A prototype of a high bandwidth parallel event builder has been designed and tested. The architecture is based on a simple switching network and is adaptable to a wide variety of data acquisition systems. An eight channel system with a peak throughput of 160 Megabytes per second has been implemented. It is modularly expandable to 64 channels (over one Gigabyte per second). The prototype uses a number of relatively recent commercial technologies, including very high speed fiber-optic data links, high integration crossbar switches and embedded RISC processors. It is based on an open architecture which permits the installation of new technologies with little redesign effort. 5 refs., 6 figs.

  7. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  8. Building a knowledge base of severe adverse drug events based on AERS reporting data using semantic web technologies.

    Science.gov (United States)

    Jiang, Guoqian; Wang, Liwei; Liu, Hongfang; Solbrig, Harold R; Chute, Christopher G

    2013-01-01

    A semantically coded knowledge base of adverse drug events (ADEs) with severity information is critical for clinical decision support systems and translational research applications. However it remains challenging to measure and identify the severity information of ADEs. The objective of the study is to develop and evaluate a semantic web based approach for building a knowledge base of severe ADEs based on the FDA Adverse Event Reporting System (AERS) reporting data. We utilized a normalized AERS reporting dataset and extracted putative drug-ADE pairs and their associated outcome codes in the domain of cardiac disorders. We validated the drug-ADE associations using ADE datasets from SIDe Effect Resource (SIDER) and the UMLS. We leveraged the Common Terminology Criteria for Adverse Event (CTCAE) grading system and classified the ADEs into the CTCAE in the Web Ontology Language (OWL). We identified and validated 2,444 unique Drug-ADE pairs in the domain of cardiac disorders, of which 760 pairs are in Grade 5, 775 pairs in Grade 4 and 2,196 pairs in Grade 3.

  9. Identifying Typhoon Tracks based on Event Synchronization derived Spatially Embedded Climate Networks

    Science.gov (United States)

    Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen

    2017-04-01

    Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.

  10. GIS-based rare events logistic regression for mineral prospectivity mapping

    Science.gov (United States)

    Xiong, Yihui; Zuo, Renguang

    2018-02-01

    Mineralization is a special type of singularity event, and can be considered as a rare event, because within a specific study area the number of prospective locations (1s) are considerably fewer than the number of non-prospective locations (0s). In this study, GIS-based rare events logistic regression (RELR) was used to map the mineral prospectivity in the southwestern Fujian Province, China. An odds ratio was used to measure the relative importance of the evidence variables with respect to mineralization. The results suggest that formations, granites, and skarn alterations, followed by faults and aeromagnetic anomaly are the most important indicators for the formation of Fe-related mineralization in the study area. The prediction rate and the area under the curve (AUC) values show that areas with higher probability have a strong spatial relationship with the known mineral deposits. Comparing the results with original logistic regression (OLR) demonstrates that the GIS-based RELR performs better than OLR. The prospectivity map obtained in this study benefits the search for skarn Fe-related mineralization in the study area.

  11. An asynchronous data-driven event-building scheme based on ATM switching fabrics

    International Nuclear Information System (INIS)

    Letheren, M.; Christiansen, J.; Mandjavidze, I.; Verhille, H.; De Prycker, M.; Pauwels, B.; Petit, G.; Wright, S.; Lumley, J.

    1994-01-01

    The very high data rates expected in experiments at the next generation of high luminosity hadron colliders will be handled by pipelined front-end readout electronics and multiple levels (2 or 3) of triggering. A variety of data acquisition architectures have been proposed for use downstream of the first level trigger. Depending on the architecture, the aggregate bandwidths required for event building are expected to be of the order 10--100 Gbit/s. Here, an Asynchronous Transfer Mode (ATM) packet-switching network technology is proposed as the interconnect for building high-performance, scalable data acquisition architectures. This paper introduces the relevant characteristics of ATM and describes components for the construction of an ATM-based event builder: (1) a multi-path, self-routing, scalable ATM switching fabric, (2) an experimental high performance workstation ATM-interface, and (3) a VMEbus ATM-interface. The requirement for traffic shaping in ATM-based event-builders is discussed and an analysis of the performance of several such schemes is presented

  12. Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout

    Science.gov (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner

    2014-12-01

    During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly

  13. A Hospital Nursing Adverse Events Reporting System Project: An Approach Based on the Systems Development Life Cycle.

    Science.gov (United States)

    Cao, Yingjuan; Ball, Marion

    2017-01-01

    Based on the System Development Life Cycle, a hospital based nursing adverse event reporting system was developed and implemented which integrated with the current Hospital Information System (HIS). Besides the potitive outcomes in terms of timeliness and efficiency, this approach has brought an enormous change in how the nurses report, analyze and respond to the adverse events.

  14. Discrete event dynamic system (DES)-based modeling for dynamic material flow in the pyroprocess

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Kim, Kiho; Kim, Ho Dong; Lee, Han Soo

    2011-01-01

    A modeling and simulation methodology was proposed in order to implement the dynamic material flow of the pyroprocess. Since the static mass balance provides the limited information on the material flow, it is hard to predict dynamic behavior according to event. Therefore, a discrete event system (DES)-based model named, PyroFlow, was developed at the Korea Atomic Energy Research Institute (KAERI). PyroFlow is able to calculate dynamic mass balance and also show various dynamic operational results in real time. By using PyroFlow, it is easy to rapidly predict unforeseeable results, such as throughput in unit process, accumulated product in buffer and operation status. As preliminary simulations, bottleneck analyses in the pyroprocess were carried out and consequently it was presented that operation strategy had influence on the productivity of the pyroprocess.

  15. Triggerless Readout with Time and Amplitude Reconstruction of Event Based on Deconvolution Algorithm

    International Nuclear Information System (INIS)

    Kulis, S.; Idzik, M.

    2011-01-01

    In future linear colliders like CLIC, where the period between the bunch crossings is in a sub-nanoseconds range ( 500 ps), an appropriate detection technique with triggerless signal processing is needed. In this work we discuss a technique, based on deconvolution algorithm, suitable for time and amplitude reconstruction of an event. In the implemented method the output of a relatively slow shaper (many bunch crossing periods) is sampled and digitalised in an ADC and then the deconvolution procedure is applied to digital data. The time of an event can be found with a precision of few percent of sampling time. The signal to noise ratio is only slightly decreased after passing through the deconvolution filter. The performed theoretical and Monte Carlo studies are confirmed by the results of preliminary measurements obtained with the dedicated system comprising of radiation source, silicon sensor, front-end electronics, ADC and further digital processing implemented on a PC computer. (author)

  16. A data-based model to locate mass movements triggered by seismic events in Sichuan, China.

    Science.gov (United States)

    de Souza, Fabio Teodoro

    2014-01-01

    Earthquakes affect the entire world and have catastrophic consequences. On May 12, 2008, an earthquake of magnitude 7.9 on the Richter scale occurred in the Wenchuan area of Sichuan province in China. This event, together with subsequent aftershocks, caused many avalanches, landslides, debris flows, collapses, and quake lakes and induced numerous unstable slopes. This work proposes a methodology that uses a data mining approach and geographic information systems to predict these mass movements based on their association with the main and aftershock epicenters, geologic faults, riverbeds, and topography. A dataset comprising 3,883 mass movements is analyzed, and some models to predict the location of these mass movements are developed. These predictive models could be used by the Chinese authorities as an important tool for identifying risk areas and rescuing survivors during similar events in the future.

  17. Reliability research based experience with systems and events at the Kozloduy NPP units 1-4

    Energy Technology Data Exchange (ETDEWEB)

    Khristova, R; Kaltchev, B; Dimitrov, B [Energoproekt, Sofia (Bulgaria); Nedyalkova, D; Sonev, A [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    An overview of equipment reliability based on operational data of selected safety systems at the Kozloduy NPP is presented. Conclusions are drawn on reliability of the service water system, feed water system, emergency power supply - category 2, emergency high pressure ejection system and spray system. For the units 1-4 all recorded accident protocols in the period 1974-1993 have been processed and the main initiators identified. A list with 39 most frequent initiators of accidents/incidents is compiled. The human-caused errors account for 27% of all events. The reliability characteristics and frequencies have been calculated for all initiating events. It is concluded that there have not been any accidents with consequences for fuel integrity or radioactive release. 14 refs.

  18. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    Science.gov (United States)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  19. Reliability research based experience with systems and events at the Kozloduy NPP units 1-4

    International Nuclear Information System (INIS)

    Khristova, R.; Kaltchev, B.; Dimitrov, B.; Nedyalkova, D.; Sonev, A.

    1995-01-01

    An overview of equipment reliability based on operational data of selected safety systems at the Kozloduy NPP is presented. Conclusions are drawn on reliability of the service water system, feed water system, emergency power supply - category 2, emergency high pressure ejection system and spray system. For the units 1-4 all recorded accident protocols in the period 1974-1993 have been processed and the main initiators identified. A list with 39 most frequent initiators of accidents/incidents is compiled. The human-caused errors account for 27% of all events. The reliability characteristics and frequencies have been calculated for all initiating events. It is concluded that there have not been any accidents with consequences for fuel integrity or radioactive release. 14 refs

  20. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  1. Precursor analyses - The use of deterministic and PSA based methods in the event investigation process at nuclear power plants

    International Nuclear Information System (INIS)

    2004-09-01

    The efficient feedback of operating experience (OE) is a valuable source of information for improving the safety and reliability of nuclear power plants (NPPs). It is therefore essential to collect information on abnormal events from both internal and external sources. Internal operating experience is analysed to obtain a complete understanding of an event and of its safety implications. Corrective or improvement measures may then be developed, prioritized and implemented in the plant if considered appropriate. Information from external events may also be analysed in order to learn lessons from others' experience and prevent similar occurrences at our own plant. The traditional ways of investigating operational events have been predominantly qualitative. In recent years, a PSA-based method called probabilistic precursor event analysis has been developed, used and applied on a significant scale in many places for a number of plants. The method enables a quantitative estimation of the safety significance of operational events to be incorporated. The purpose of this report is to outline a synergistic process that makes more effective use of operating experience event information by combining the insights and knowledge gained from both approaches, traditional deterministic event investigation and PSA-based event analysis. The PSA-based view on operational events and PSA-based event analysis can support the process of operational event analysis at the following stages of the operational event investigation: (1) Initial screening stage. (It introduces an element of quantitative analysis into the selection process. Quantitative analysis of the safety significance of nuclear plant events can be a very useful measure when it comes to selecting internal and external operating experience information for its relevance.) (2) In-depth analysis. (PSA based event evaluation provides a quantitative measure for judging the significance of operational events, contributors to

  2. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  3. Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code

    Science.gov (United States)

    Ye, S. H.; Young, R. P.

    2017-12-01

    Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by

  4. WSR-88D observations of volcanic ash

    Science.gov (United States)

    Wood, J.; Scott, C.; Schneider, D.

    2007-01-01

    Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.

  5. Multi-scale seismic tomography of the Merapi-Merbabu volcanic complex, Indonesia

    Science.gov (United States)

    Mujid Abdullah, Nur; Valette, Bernard; Potin, Bertrand; Ramdhan, Mohamad

    2017-04-01

    Merapi-Merbabu volcanic complex is the most active volcano located on Java Island, Indonesia, where the Indian plate subducts beneath Eurasian plate. We present a preliminary study of a multi-scale seismic tomography of the substructures of the volcanic complex. The main objective of our study is to image the feeding paths of the volcanic complex at an intermediate scale by using the data from the dense network (about 5 km spacing) constituted by 53 stations of the French-Indonesian DOMERAPI experiment complemented by the data of the German-Indonesian MERAMEX project (134 stations) and of the Indonesia Tsunami Early Warning System (InaTEWS) located in the vicinity of the complex. The inversion was performed using the INSIGHT algorithm, which follows a non-linear least squares approach based on a stochastic description of data and model. In total, 1883 events and 41846 phases (26647 P and 15199 S) have been processed, and a two-scale approach was adopted. The model obtained at regional scale is consistent with the previous studies. We selected the most reliable regional model as a prior model for the local tomography performed with a variant of the INSIGHT code. The algorithm of this code is based on the fact that inverting differences of data when transporting the errors in probability is equivalent to inverting initial data while introducing specific correlation terms in the data covariance matrix. The local tomography provides images of the substructure of the volcanic complex with a sufficiently good resolution to allow identification of a probable magma chamber at about 20 km.

  6. Social importance enhances prospective memory: evidence from an event-based task.

    Science.gov (United States)

    Walter, Stefan; Meier, Beat

    2017-07-01

    Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.

  7. Ant colony optimization and event-based dynamic task scheduling and staffing for software projects

    Science.gov (United States)

    Ellappan, Vijayan; Ashwini, J.

    2017-11-01

    In programming change organizations from medium to inconceivable scale broadens, the issue of wander orchestrating is amazingly unusual and testing undertaking despite considering it a manual system. Programming wander-organizing requirements to deal with the issue of undertaking arranging and in addition the issue of human resource portion (also called staffing) in light of the way that most of the advantages in programming ventures are individuals. We propose a machine learning approach with finds respond in due order regarding booking by taking in the present arranging courses of action and an event based scheduler revives the endeavour arranging system moulded by the learning computation in perspective of the conformity in event like the begin with the Ander, the instant at what time possessions be free starting to ended errands, and the time when delegates stick together otherwise depart the wander inside the item change plan. The route toward invigorating the timetable structure by the even based scheduler makes the arranging method dynamic. It uses structure components to exhibit the interrelated surges of endeavours, slip-ups and singular all through different progression organizes and is adjusted to mechanical data. It increases past programming wander movement ask about by taking a gander at a survey based process with a one of a kind model, organizing it with the data based system for peril assessment and cost estimation, and using a choice showing stage.

  8. A Markovian event-based framework for stochastic spiking neural networks.

    Science.gov (United States)

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  9. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  10. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  11. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  12. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just

    2018-04-03

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  13. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

    Directory of Open Access Journals (Sweden)

    Daniel G. Costa

    2018-04-01

    Full Text Available Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  14. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  15. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  16. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2017-09-01

    Full Text Available Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  17. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.

    Science.gov (United States)

    Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi

    2017-09-21

    Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  18. An analysis of potential costs of adverse events based on Drug Programs in Poland. Pulmonology focus

    Directory of Open Access Journals (Sweden)

    Szkultecka-Debek Monika

    2014-06-01

    Full Text Available The project was performed within the Polish Society for Pharmacoeconomics (PTFE. The objective was to estimate the potential costs of treatment of side effects, which theoretically may occur as a result of treatment of selected diseases. We analyzed the Drug Programs financed by National Health Fund in Poland in 2012 and for the first analysis we selected those Programs where the same medicinal products were used. We based the adverse events selection on the Summary of Product Characteristics of the chosen products. We extracted all the potential adverse events defined as frequent and very frequent, grouping them according to therapeutic areas. This paper is related to the results in the pulmonology area. The events described as very common had an incidence of ≥ 1/10, and the common ones ≥ 1/100, <1/10. In order to identify the resources used, we performed a survey with the engagement of clinical experts. On the basis of the collected data we allocated direct costs incurred by the public payer. We used the costs valid in December 2013. The paper presents the estimated costs of treatment of side effects related to the pulmonology disease area. Taking into account the costs incurred by the NHF and the patient separately e calculated the total spending and the percentage of each component cost in detail. The treatment of adverse drug reactions generates a significant cost incurred by both the public payer and the patient.

  19. Leading indicators of community-based violent events among adults with mental illness.

    Science.gov (United States)

    Van Dorn, R A; Grimm, K J; Desmarais, S L; Tueller, S J; Johnson, K L; Swartz, M S

    2017-05-01

    The public health, public safety and clinical implications of violent events among adults with mental illness are significant; however, the causes and consequences of violence and victimization among adults with mental illness are complex and not well understood, which limits the effectiveness of clinical interventions and risk management strategies. This study examined interrelationships between violence, victimization, psychiatric symptoms, substance use, homelessness and in-patient treatment over time. Available data were integrated from four longitudinal studies of adults with mental illness. Assessments took place at baseline, and at 1, 3, 6, 9, 12, 15, 18, 24, 30 and 36 months, depending on the parent studies' protocol. Data were analysed with the autoregressive cross-lag model. Violence and victimization were leading indicators of each other and affective symptoms were a leading indicator of both. Drug and alcohol use were leading indicators of violence and victimization, respectively. All psychiatric symptom clusters - affective, positive, negative, disorganized cognitive processing - increased the likelihood of experiencing at least one subsequent symptom cluster. Sensitivity analyses identified few group-based differences in the magnitude of effects in this heterogeneous sample. Violent events demonstrated unique and shared indicators and consequences over time. Findings indicate mechanisms for reducing violent events, including trauma-informed therapy, targeting internalizing and externalizing affective symptoms with cognitive-behavioral and psychopharmacological interventions, and integrating substance use and psychiatric care. Finally, mental illness and violence and victimization research should move beyond demonstrating concomitant relationships and instead focus on lagged effects with improved spatio-temporal contiguity.

  20. Event recognition in personal photo collections via multiple instance learning-based classification of multiple images

    Science.gov (United States)

    Ahmad, Kashif; Conci, Nicola; Boato, Giulia; De Natale, Francesco G. B.

    2017-11-01

    Over the last few years, a rapid growth has been witnessed in the number of digital photos produced per year. This rapid process poses challenges in the organization and management of multimedia collections, and one viable solution consists of arranging the media on the basis of the underlying events. However, album-level annotation and the presence of irrelevant pictures in photo collections make event-based organization of personal photo albums a more challenging task. To tackle these challenges, in contrast to conventional approaches relying on supervised learning, we propose a pipeline for event recognition in personal photo collections relying on a multiple instance-learning (MIL) strategy. MIL is a modified form of supervised learning and fits well for such applications with weakly labeled data. The experimental evaluation of the proposed approach is carried out on two large-scale datasets including a self-collected and a benchmark dataset. On both, our approach significantly outperforms the existing state-of-the-art.

  1. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  2. Seasonal variations of volcanic eruption frequencies

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  3. An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring

    International Nuclear Information System (INIS)

    Giri, Suman; Bergés, Mario

    2015-01-01

    Highlights: • Energy estimation is NILM has not yet accounted for complexity of appliance models. • We present a data-driven framework for appliance modeling in supervised NILM. • We test the framework on 3 houses and report average accuracies of 5.9–22.4%. • Appliance models facilitate the estimation of energy consumed by the appliance. - Abstract: Non-Intrusive Load Monitoring (NILM) is a set of techniques used to estimate the electricity consumed by individual appliances in a building from measurements of the total electrical consumption. Most commonly, NILM works by first attributing any significant change in the total power consumption (also known as an event) to a specific load and subsequently using these attributions (i.e. the labels for the events) to estimate energy for each load. For this last step, most published work in the field makes simplifying assumptions to make the problem more tractable. In this paper, we present a framework for creating appliance models based on classification labels and aggregate power measurements that can help to relax many of these assumptions. Our framework automatically builds models for appliances to perform energy estimation. The model relies on feature extraction, clustering via affinity propagation, perturbation of extracted states to ensure that they mimic appliance behavior, creation of finite state models, correction of any errors in classification that might violate the model, and estimation of energy based on corrected labels. We evaluate our framework on 3 houses from standard datasets in the field and show that the framework can learn data-driven models based on event labels and use that to estimate energy with lower error margins (e.g., 1.1–42.3%) than when using the heuristic models used by others

  4. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Markus; Eichbaum, Kathrin [Department of Ecosystem Analysis, Institute for Environmental Research,ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kammann, Ulrike [Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg (Germany); Hudjetz, Sebastian [Department of Ecosystem Analysis, Institute for Environmental Research,ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Cofalla, Catrina [Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Buchinger, Sebastian; Reifferscheid, Georg [Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz (Germany); Schüttrumpf, Holger [Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Preuss, Thomas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research,ABBt- Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); and others

    2014-07-01

    Highlights: • A PBTK model for trout was coupled with a sediment equilibrium partitioning model. • The influence of physical exercise on pollutant uptake was studies using the model. • Physical exercise during flood events can increase the level of biliary metabolites. • Cardiac output and effective respiratory volume were identified as relevant factors. • These confounding factors need to be considered also for bioconcentration studies. - Abstract: As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24 °C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios.

  5. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events

    International Nuclear Information System (INIS)

    Brinkmann, Markus; Eichbaum, Kathrin; Kammann, Ulrike; Hudjetz, Sebastian; Cofalla, Catrina; Buchinger, Sebastian; Reifferscheid, Georg; Schüttrumpf, Holger; Preuss, Thomas

    2014-01-01

    Highlights: • A PBTK model for trout was coupled with a sediment equilibrium partitioning model. • The influence of physical exercise on pollutant uptake was studies using the model. • Physical exercise during flood events can increase the level of biliary metabolites. • Cardiac output and effective respiratory volume were identified as relevant factors. • These confounding factors need to be considered also for bioconcentration studies. - Abstract: As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24 °C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios

  6. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    Directory of Open Access Journals (Sweden)

    Ninna Reitzel Jensen

    2015-06-01

    Full Text Available Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our model by conducting scenario analysis based on Monte Carlo simulation, but the model applies to scenarios in general and to worst-case and best-estimate scenarios in particular. In addition to easy computations, our model offers a common framework for the valuation of life insurance payments across product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account the Markov model for the state of the policyholder and, hereby, facilitating event risk.

  7. Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition

    Science.gov (United States)

    Daigle, Matthew; Roychoudhury, Indranil

    2010-01-01

    We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approach

  8. A data base approach for prediction of deforestation-induced mass wasting events

    Science.gov (United States)

    Logan, T. L.

    1981-01-01

    A major topic of concern in timber management is determining the impact of clear-cutting on slope stability. Deforestation treatments on steep mountain slopes have often resulted in a high frequency of major mass wasting events. The Geographic Information System (GIS) is a potentially useful tool for predicting the location of mass wasting sites. With a raster-based GIS, digitally encoded maps of slide hazard parameters can be overlayed and modeled to produce new maps depicting high probability slide areas. The present investigation has the objective to examine the raster-based information system as a tool for predicting the location of the clear-cut mountain slopes which are most likely to experience shallow soil debris avalanches. A literature overview is conducted, taking into account vegetation, roads, precipitation, soil type, slope-angle and aspect, and models predicting mass soil movements. Attention is given to a data base approach and aspects of slide prediction.

  9. A Novel Event-Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS).

    Science.gov (United States)

    Rigi, Amin; Baghaei Naeini, Fariborz; Makris, Dimitrios; Zweiri, Yahya

    2018-01-24

    In this paper, a novel approach to detect incipient slip based on the contact area between a transparent silicone medium and different objects using a neuromorphic event-based vision sensor (DAVIS) is proposed. Event-based algorithms are developed to detect incipient slip, slip, stress distribution and object vibration. Thirty-seven experiments were performed on five objects with different sizes, shapes, materials and weights to compare precision and response time of the proposed approach. The proposed approach is validated by using a high speed constitutional camera (1000 FPS). The results indicate that the sensor can detect incipient slippage with an average of 44.1 ms latency in unstructured environment for various objects. It is worth mentioning that the experiments were conducted in an uncontrolled experimental environment, therefore adding high noise levels that affected results significantly. However, eleven of the experiments had a detection latency below 10 ms which shows the capability of this method. The results are very promising and show a high potential of the sensor being used for manipulation applications especially in dynamic environments.

  10. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series

    Science.gov (United States)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz

    2015-02-01

    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  11. Non-Cooperative Regulation Coordination Based on Game Theory for Wind Farm Clusters during Ramping Events

    DEFF Research Database (Denmark)

    Qi, Yongzhi; Liu, Yutian; Wu, Qiuwei

    2017-01-01

    With increasing penetration of wind power in power systems, it is important to track scheduled wind power output as much as possible during ramping events to ensure security of the system. In this paper, a non‐cooperative coordination strategy based on the game theory is proposed for the regulation...... of the regulation revenue function according to the derived Nash equilibrium condition, the ER strategy is the Nash equilibrium of the regulation competition. Case studies were conducted with the power output data of wind farms from State Grid Jibei Electric Power Company Limited of China to demonstrate...

  12. Arachne-A web-based event viewer for MINER{nu}A

    Energy Technology Data Exchange (ETDEWEB)

    Tagg, N., E-mail: ntagg@otterbein.edu [Department of Physics, Otterbein University, 1 South Grove Street, Westerville, OH 43081 (United States); Brangham, J. [Department of Physics, Otterbein University, 1 South Grove Street, Westerville, OH 43081 (United States); Chvojka, J. [Rochester, NY 14610 (United States); Clairemont, M. [Department of Physics, Otterbein University, 1 South Grove Street, Westerville, OH 43081 (United States); Day, M. [Rochester, NY 14610 (United States); Eberly, B. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Felix, J. [Lascurain de Retana No. 5, Col. Centro. Guanajuato, Guanajuato 36000 (Mexico); Fields, L. [Northwestern University, Evanston, IL 60208 (United States); Gago, A.M. [Seccion Fisica, Departamento de Ciencias, Pontificia Universidad Catolica del Peru, Apartado 1761, Lima (Peru); Gran, R. [Department of Physics, University of Minnesota - Duluth, Duluth, MN 55812 (United States); Harris, D.A. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kordosky, M. [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Lee, H. [Rochester, NY 14610 (United States); Maggi, G. [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680 Casilla 110-V Valparaiso (Chile); Maher, E. [Massachusetts College of Liberal Arts, 375 Church Street, North Adams, MA 01247 (United States); Mann, W.A. [Physics Department, Tufts University, Medford, MA 02155 (United States); Marshall, C.M.; McFarland, K.S.; McGowan, A.M.; Mislivec, A. [Rochester, NY 14610 (United States); and others

    2012-06-01

    Neutrino interaction events in the MINER{nu}A detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINER{nu}A to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  13. Arachne - A web-based event viewer for MINERvA

    International Nuclear Information System (INIS)

    Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A.M.; Gran, R.; Harris, D.A.

    2011-01-01

    Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  14. Ptaquiloside from bracken in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr. Bruun

    2016-01-01

    not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA...... rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl(-)) in the pulse experiment...

  15. Modeling crowd behavior based on the discrete-event multiagent approach

    OpenAIRE

    Лановой, Алексей Феликсович; Лановой, Артем Алексеевич

    2014-01-01

    The crowd is a temporary, relatively unorganized group of people, who are in close physical contact with each other. Individual behavior of human outside the crowd is determined by many factors, associated with his intellectual activities, but inside the crowd the man loses his identity and begins to obey more simple laws of behavior.One of approaches to the construction of multi-level model of the crowd using discrete-event multiagent approach was described in the paper.Based on this analysi...

  16. Arachne—A web-based event viewer for MINERνA

    International Nuclear Information System (INIS)

    Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A.M.; Gran, R.; Harris, D.A.; Kordosky, M.; Lee, H.; Maggi, G.; Maher, E.; Mann, W.A.; Marshall, C.M.; McFarland, K.S.; McGowan, A.M.; Mislivec, A.

    2012-01-01

    Neutrino interaction events in the MINERνA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERνA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  17. Real-time identification of residential appliance events based on power monitoring

    Science.gov (United States)

    Yang, Zhao; Zhu, Zhicheng; Wei, Zhiqiang; Yin, Bo; Wang, Xiuwei

    2018-03-01

    Energy monitoring for specific home appliances has been regarded as the pre-requisite for reducing residential energy consumption. To enhance the accuracy of identifying operation status of household appliances and to keep pace with the development of smart power grid, this paper puts forward the integration of electric current and power data on the basis of existing algorithm. If average power difference of several adjacent cycles varies from the baseline and goes beyond the pre-assigned threshold value, the event will be flagged. Based on MATLAB platform and domestic appliances simulations, the results of tested data and verified algorithm indicate that the power method has accomplished desired results of appliance identification.

  18. BAT: An open-source, web-based audio events annotation tool

    OpenAIRE

    Blai Meléndez-Catalan, Emilio Molina, Emilia Gómez

    2017-01-01

    In this paper we present BAT (BMAT Annotation Tool), an open-source, web-based tool for the manual annotation of events in audio recordings developed at BMAT (Barcelona Music and Audio Technologies). The main feature of the tool is that it provides an easy way to annotate the salience of simultaneous sound sources. Additionally, it allows to define multiple ontologies to adapt to multiple tasks and offers the possibility to cross-annotate audio data. Moreover, it is easy to install and deploy...

  19. Arachne - A web-based event viewer for MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Tagg, N.; /Otterbein Coll.; Brangham, J.; /Otterbein Coll.; Chvojka, J.; /Rochester U.; Clairemont, M.; /Otterbein Coll.; Day, M.; /Rochester U.; Eberly, B.; /Pittsburgh U.; Felix, J.; /Guanajuato U.; Fields, L.; /Northwestern U.; Gago, A.M.; /Lima, Pont. U. Catolica; Gran, R.; /Maryland U.; Harris, D.A.; /Fermilab /William-Mary Coll.

    2011-11-01

    Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  20. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  1. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  2. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism

    Science.gov (United States)

    Hattori, Shohei; Schmidt, Johan A.; Johnson, Matthew S.; Danielache, Sebastian O.; Yamada, Akinori; Ueno, Yuichiro; Yoshida, Naohiro

    2013-01-01

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores, but the concentration of glacial sulfate does not distinguish between tropospheric and stratospheric eruptions. Stable sulfur isotope abundances contain additional information, and recent studies show a correlation between volcanic plumes that reach the stratosphere and mass-independent anomalies in sulfur isotopes in glacial sulfate. We describe a mechanism, photoexcitation of SO2, that links the two, yielding a useful metric of the explosivity of historic volcanic events. A plume model of S(IV) to S(VI) conversion was constructed including photochemistry, entrainment of background air, and sulfate deposition. Isotopologue-specific photoexcitation rates were calculated based on the UV absorption cross-sections of 32SO2, 33SO2, 34SO2, and 36SO2 from 250 to 320 nm. The model shows that UV photoexcitation is enhanced with altitude, whereas mass-dependent oxidation, such as SO2 + OH, is suppressed by in situ plume chemistry, allowing the production and preservation of a mass-independent sulfur isotope anomaly in the sulfate product. The model accounts for the amplitude, phases, and time development of Δ33S/δ34S and Δ36S/Δ33S found in glacial samples. We are able to identify the process controlling mass-independent sulfur isotope anomalies in the modern atmosphere. This mechanism is the basis of identifying the magnitude of historic volcanic events. PMID:23417298

  3. A database of volcanic hazards and their physical impacts to critical infrastructure

    Science.gov (United States)

    Wilson, Grant; Wilson, Thomas; Deligne, Natalia

    2013-04-01

    Approximately 10% of the world's population lives within 100 km of historically active volcanoes. Consequently, considerable critical infrastructure is at risk of being affected by volcanic eruptions, where critical infrastructure includes: electricity and wastewater networks; water supply systems; transport routes; communications; and buildings. Appropriate risk management strategies are required to minimise the risk to infrastructure, which necessitates detailed understanding of both volcanic hazards and infrastructure parameters and vulnerabilities. To address this, we are developing a database of the physical impacts and vulnerability of critical infrastructure observed during/following historic eruptions, placed in the context of event-specific volcanic hazard and infrastructure parameters. Our database considers: volcanic hazard parameters for each case study eruption (tephra thickness, dynamic pressure of PDCs, etc.); inventory of infrastructure elements present within the study area (geographical extent, age, etc.); the type and number of impacts and disruption caused to particular infrastructure sectors; and the quantified assessment of the vulnerability of built environments. Data have been compiled from a wide range of literature, focussing in particular on impact assessment studies which document in detail the damage sustained by critical infrastructure during a given eruption. We are creating a new vulnerability ranking to quantify the vulnerability of built environments affected by volcanic eruptions. The ranking is based upon a range of physical impacts and service disruption criteria, and is assigned to each case study. This ranking will permit comparison of vulnerabilities between case studies as well as indicate expected vulnerability during future eruptions. We are also developing hazard intensity thresholds indicating when specific damage states are expected for different critical infrastructure sectors. Finally, we have developed a data quality

  4. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    Science.gov (United States)

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Location-based technologies for supporting elderly pedestrian in "getting lost" events.

    Science.gov (United States)

    Pulido Herrera, Edith

    2017-05-01

    Localization-based technologies promise to keep older adults with dementia safe and support them and their caregivers during getting lost events. This paper summarizes mainly technological contributions to support the target group in these events. Moreover, important aspects of the getting lost phenomenon such as its concept and ethical issues are also briefly addressed. Papers were selected from scientific databases and gray literature. Since the topic is still in its infancy, other terms were used to find contributions associated with getting lost e.g. wandering. Trends of applying localization systems were identified as personal locators, perimeter systems and assistance systems. The first system barely considered the older adult's opinion, while assistance systems may involve context awareness to improve the support for both the elderly and the caregiver. Since few studies report multidisciplinary work with a special focus on getting lost, there is not a strong evidence of the real efficiency of localization systems or guidelines to design systems for the target group. Further research about getting lost is required to obtain insights for developing customizable systems. Moreover, considering conditions of the older adult might increase the impact of developments that combine localization technologies and artificial intelligence techniques. Implications for Rehabilitation Whilst there is no cure for dementia such as Alzheimer's, it is feasible to take advantage of technological developments to somewhat diminish its negative impact. For instance, location-based systems may provide information to early diagnose the Alzheimer's disease by assessing navigational impairments of older adults. Assessing the latest supportive technologies and methodologies may provide insights to adopt strategies to properly manage getting lost events. More user-centered designs will provide appropriate assistance to older adults. Namely, customizable systems could assist older adults

  6. Knowledge base about earthquakes as a tool to minimize strong events consequences

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  7. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation

    Science.gov (United States)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan

    2018-04-01

    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the

  8. Hazard Potential of Volcanic Flank Collapses Raised by New Megatsunami Evidence

    Science.gov (United States)

    Ramalho, R. S.; Winckler, G.; Madeira, J.; Helffrich, G. R.; Hipólito, A.; Quartau, R.; Adena, K.; Schaefer, J. M.

    2015-12-01

    Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet evidence for the existence and impact of collapsed-triggered megatsunamis and their run-up heights remains scarce and/or is highly contentious. Therefore a considerable debate still exists over the potential magnitude of collapse-triggered tsunamis and their inherent hazard. In particular, doubts still remain whether or not large-scale flank failures typically generate enough volume flux to result in megatsunamis, or alternatively operate by slow-moving or multiple smaller episodic failures with much lower tsunamigenic potential. Here we show that one of the tallest and most active oceanic volcanoes on Earth - Fogo, in the Cape Verde Islands - collapsed catastrophically and triggered a megatsunami with devastating near-field effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic 3He dating of tsunamigenic deposits - comprising fields of stranded megaclasts, chaotic conglomerates, and sand sheets - found on the adjacent Santiago Island, which attest to the impact of this megatsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo's flank failure involved at least one sudden and voluminous event that resulted in a megatsunami, in contrast to what has been suggested before. Our work thus provides another line of evidence that large-scale flank failures at steep volcanic islands may indeed happen catastrophically and are capable of triggering tsunamis of enormous height and energy. This new line of evidence therefore reinforces the hazard potential of volcanic island collapses and stands as a warning that such hazard should not be underestimated, particularly in areas where volcanic island edifices are close to other islands or to highly populated continental margins.

  9. Pucarilla-Cerro Tipillas volcanic complex: the oldest recognized caldera in the southeastern portion of central volcanic zone of Central Andes?

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Silvina; Petrinovic, Ivan [CONICET -IBIGEO. Museo de Cs. Naturales, Universidad de Salta, Mendoza 2 (4400), Salta (Argentina)], E-mail: guzmansilvina@gmail.com

    2008-10-01

    We recognize the most eastern and oldest collapse caldera structure in the southern portion of the Central Volcanic Zone of the Andes. A description of Middle-Upper Miocene successions related to explosive- effusive events is presented. The location of this centre close to Cerro Galn Caldera attests a recurrence in the volcanism between 12 and 2 Ma in this portion of the Altiplano - Puna Plateau.

  10. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    Science.gov (United States)

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  11. Discrimination of Rock Fracture and Blast Events Based on Signal Complexity and Machine Learning

    Directory of Open Access Journals (Sweden)

    Zilong Zhou

    2018-01-01

    Full Text Available The automatic discrimination of rock fracture and blast events is complex and challenging due to the similar waveform characteristics. To solve this problem, a new method based on the signal complexity analysis and machine learning has been proposed in this paper. First, the permutation entropy values of signals at different scale factors are calculated to reflect complexity of signals and constructed into a feature vector set. Secondly, based on the feature vector set, back-propagation neural network (BPNN as a means of machine learning is applied to establish a discriminator for rock fracture and blast events. Then to evaluate the classification performances of the new method, the classifying accuracies of support vector machine (SVM, naive Bayes classifier, and the new method are compared, and the receiver operating characteristic (ROC curves are also analyzed. The results show the new method obtains the best classification performances. In addition, the influence of different scale factor q and number of training samples n on discrimination results is discussed. It is found that the classifying accuracy of the new method reaches the highest value when q = 8–15 or 8–20 and n=140.

  12. Event-based prospective memory in mildly and severel