WorldWideScience

Sample records for volcanic depressions part

  1. Mud volcanism of South-Caspian depression

    International Nuclear Information System (INIS)

    Aliyev, A.A.

    2002-01-01

    Full text : South-Caspian depression is presented by area of large warping with thick (more than 25 km) sedimentary series and with wide development of mud volcanism. This depression is unique according to its number of mud volcanoes and intensity of their eruptions. There are about 400 mud volcanoes in this area, which is more than than a half of all volcanoes of the planet. Among them - 220 are continental, more 170 are marine, defined by different methods in the South-Caspian aquatorium. As a result of mudvolcanic activity islands, banks, shoals and underwater ridges are formed in marine conditions. Depths of underwater volcanoes vary from few meters to 900 m as the height of cones are different too. Marine mud volcanoes in geological history of Caspian sea evolution and in its recent history had and important significance. Activity of mud volcanoes in sea conditions lead to the formation of positive elements of relief. Products of ejection take part in the formation of microrelief of surrounding areas of sea bottom influence upon its dynamics and composition of bottom sediments. The carried out comparative analysis of mud volcanism manifestation both onshore and offshore showed the basic differences and similarities in morphology of volcanoes and geology-geochemical peculiarities of eruption products. New data on tectonics of mud volcanism development has been obtained over recent years. Mud volcanoes of South-Caspian depression are studied for assessment and oil-gas content of deep-seated deposits. Geochemical method of search of oil and gas deposits in mudvolcanic areas had been worked out.

  2. Maars to calderas: end-members on a spectrum of explosive volcanic depressions

    Directory of Open Access Journals (Sweden)

    Danilo M. Palladino

    2015-07-01

    Full Text Available We discuss maar-diatremes and calderas as end-members on a spectrum of negative volcanic landforms (depressions produced by explosive eruptions (note – we focus on calderas formed during explosive eruptions, recognizing that some caldera types are not related to such activity. The former are dominated by ejection of material during numerous discrete phreatomagmatic explosions, brecciation, and subsidence of diatreme fill, while the latter are dominated by subsidence over a partly evacuated magma chamber during sustained, magmatic volatile-driven discharge. Many examples share characteristics of both, including landforms that are identified as maars but preserve deposits from non-phreatomagmatic explosive activity, and ambiguous structures that appear to be coalesced maars but that also produced sustained explosive eruptions with likely magma reservoir subsidence. A convergence of research directions on issues related to magma-water interaction and shallow reservoir mechanics is an important avenue toward developing a unified picture of the maar-diatreme-caldera spectrum.

  3. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  4. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  5. DEPRESSION IN PRIMARY CARE. PART 2: MANAGEMENT

    Directory of Open Access Journals (Sweden)

    XV Pereira

    2007-01-01

    Full Text Available The management of depression in the primary care setting should ideally take a biological, psychological, and sociologicalapproach. Antidepressants are the most commonly used biological agents in the treatment of depression. Psychologicaltherapies and psychosocial interventions improve the outcome of treatment when combined with pharmacotherapy.Clinical depression is treatable and thus efforts should be made to alleviate the suffering of patients with depression.

  6. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  7. DEPRESSION, ANXIETY AND MYOCARDIAL INFARCTION: EVERYTHING JUST BEGINS (PART I

    Directory of Open Access Journals (Sweden)

    Y. A. Vasyuk

    2015-12-01

    Full Text Available A review is devoted to a comorbidity of myocardial infarction and anxious and depressive disorders. In the first part data concerning prevalence of depression in myocardial infarction, pathophysiological mechanisms connecting depression and ischemic heart disease (IHD are given. Influence of concomitant depressive disorders on clinical state and forecast of patients after myocardial infarction is discussed. The second part of the review (Rational Pharmacother. Cardiol. 2007, 4 will be devoted to the anxious disorders in myocardial infarction as well as to influence of anxious and depressive disorders on life quality of patients with myocardial infarction. Besides, contemporary approaches to the therapy of anxious and depressive disorders in patients with IHD will be discussed.

  8. DEPRESSION, ANXIETY AND MYOCARDIAL INFARCTION: EVERYTHING JUST BEGINS. PART II

    Directory of Open Access Journals (Sweden)

    Y. A. Vasyuk

    2015-12-01

    Full Text Available A review is devoted to a comorbidity of myocardial infarction and anxious and depressive disorders. In the first part (Rational Pharmacother. Cardiol. 2007;3:41-51 data concerning prevalence of depression in myocardial infarction, pathophysiological mechanisms connecting depression and ischemic heart disease (IHD were given. Influence of concomitant depressive disorders on clinical state and forecast of patients after myocardial infarction was discussed. The second part of the review is devoted to the anxious disorders in myocardial infarction as well as to influence of anxious and depressive disorders on life quality of patients with myocardial infarction. Besides, contemporary approaches to the therapy of anxious and depressive disorders in patients with IHD are discussed.

  9. Geology and zircon fission track ages of volcanic rocks in the western part of Hoshino gold area, Fukuoka Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Ahmed; Himeno, Osamu; Watanabe, Koichiro; Izawa, Eiji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1999-12-01

    The Hoshino gold area is located in the western part of the Hohi volcanic zone, northern Kyushu. Volcanic rocks in this area vary from andesitic rocks in the north to dacite and rhyolite in the South. The basement is constituted by metamorphic rocks of pre-Cretaceous age. The volcanic rocks of Pliocene age were subdivided into eight volcanic units. Seven fission track ages of zircons from five volcanic units have been determined, using the external detector method. The age data obtained, combined with some previously reported ages, show that two main volcanic activities have occurred in the area. The first volcanic activity took place around 4.3 Ma, and resulted into the deposition of the Hoshino Andesite and the Ikenoyama Conglomerate. The second main volcanism started around 3.5 Ma, and was characterized by the eruption of the Shakadake Andesite and the Reiganji Andesite at the early stage, then, by more acidic rocks of the Takeyama Andesite, the Hyugami Dacite and the Kuroki Rhyolite at the later stage. The main volcanism in the area ceased around 2.6 Ma. (author)

  10. Depression

    Science.gov (United States)

    ... in the winter. Depression is one part of bipolar disorder. There are effective treatments for depression, including antidepressants, talk therapy, or both. NIH: National Institute of Mental Health

  11. Mapping local singularities using magnetic data to investigate the volcanic rocks of the Qikou depression, Dagang oilfield, eastern China

    Directory of Open Access Journals (Sweden)

    G. Chen

    2013-07-01

    Full Text Available The spatial structural characteristics of geological anomaly, including singularity and self-similarity, can be analysed using fractal or multifractal modelling. Here we apply the multifractal methods to potential fields to demonstrate that singularities can characterise geological bodies, including rock density and magnetic susceptibility. In addition to enhancing weak gravity and magnetic anomalies with respect to either strong or weak background levels, the local singularity index (α ≈ 2 can be used to delineate the edges of geological bodies. Two models were established to evaluate the effectiveness of mapping singularities for extracting weak anomalies and delineating edges of buried geological bodies. The Qikou depression of the Dagang oilfield in eastern China has been chosen as a study area for demonstrating the extraction of weak anomalies of volcanic rocks, using the singularity mapping technique to analyse complex magnetic anomalies caused by complex geological background. The results have shown that the singularities of magnetic data mapped in the paper are associated with buried volcanic rocks, which have been verified by both drilling and seismic survey, and the S–N and E–W faults in the region. The targets delineated for deeply seated faults and volcanic rocks in the Qikou depression should be further investigated for the potential application in undiscovered oil and gas reservoirs exploration.

  12. K-Ar ages of the Nyuto-Takakura volcanic products, southern part of the Sengan geothermal area, northeast Japan

    International Nuclear Information System (INIS)

    Suto, Shigeru; Uto, Kozo; Uchiumi, Shigeru

    1990-01-01

    The K-Ar age determination of the volcanic rocks from the Nyuto-Takakura volcano group, northeast Japan, was carried out. Nyuto-Takakura volcanoes are situated in the southern part of the Sengan geothermal area. And the Young Volcanic Rocks in the area were already divided into the Early stage volcanics (erupted in Matsuyama reversed epoch or more older epoch) and the Later stage volcanics (erupted in Brunhes normal epoch) by accumulated paleomagnetic and K-Ar age data. The results in this study are as follows; Nyuto Volcano: 0.63±0.06, 0.36±0.07 Ma, Sasamoriyama Volcano: 0.09±0.07, 0.3±0.3 Ma, Marumori Lava Dome: 0.4±0.3, 0.31±0.12 Ma, Mikadoyama Lava Dome: <1 Ma, Takakurayama-Kotakakurayama volcano: 1.4±0.5, 1.0±0.4, <0.4 Ma. The determinated ages are concordant with the volcanic stratigraphy and the paleomagnetic data. Nyuto Volcano, Sasamoriyama Volcano, Marumori Lava Dome, Mikadoyama Lava Dome and upper part of the Takakurayama-Kotakakurayama Volcano are interpreted to be erupted in Brunhes normal epoch. The volcanic rocks from the lower part of the Takakurayama-Kotakakurayama volcano show normal magnetic polarity, so they are interpreted to be erupted in Jaramillo normal polarity event. The Early stage volcanics and the Later stage volcanics in the studied area are tend to be distributed in the central part and the outer part of the area, respectively. But the determinated ages in this study show that there is no simple migration of the eruption center of the volcanic rocks from the central part to the peripheral part. There is no geothermal manifestation or alteration area around the Sasamoriyama Volcano and the Marumori Lava Dome, which are the youngest volcanoes in the studied area. So it is concluded that there is no direct correlation between the eruption age of the nearest volcano and the geothermal activity. (author)

  13. Various origins of clinopyroxene megacrysts from basanites from the eastern part of Central European Volcanic Province

    Science.gov (United States)

    Lipa, Danuta; Puziewicz, Jacek; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Kukuła, Anna

    2014-05-01

    Clinopyroxene megacrysts up to few centimetres in size occur in Cenozoic alkaline lavas forming the north-eastern part of Central European Volcanic Province in Lower Silesia (SW Poland). The megacrysts occur, among other, in the Miocene basanite from Ostrzyca Proboszczowicka (bulk rock mg# 0.65-0.66) and in that from Lutynia (Pliocene, K-Ar age: 4.56 +/- 0.2 Ma; Birkenmajer et al. 2002; bulk rock mg# 0.64). The megacrysts typically consist of homogeneous core surrounded by patchy and spongy mantle, which is covered by a thin outermost rim of composition similar to that of the groundmass clinopyroxene occurring in the host basanite. The mantles of the megacrysts have been affected by melting, whereas the cores preserve their primary composition. We compare the core parts of megacrysts in the following. The Ostrzyca clinopyroxene megacrysts contain euhedral apatite intergrowths. The clinopyroxene has the composition of Fe-rich diopside (mg# = 0.61 - 0.70), contain significant sodium (to 0.12 a pfu) and are calcium rich (0.89-0.92 a pfu). The Lutynia megacrysts have the composition of augite and diopside (mg# 0.80-0.83). The sodium content is also high (to 0.12 a pfu), but calcium varies from 0.68 to 0.77 a pfu. The REE concentrations for Lutynia (1-10 x PM) are lower relative to Ostrzyca, enriched 10-100 times relative to PM. In both sites the megacrysts are strongly enriched in LREE relative to HREE and TE are characterized by positive Th, La and Ce anomalies, slight negative Sr and Y anomalies and strong Pb anomaly in the PM normalised patterns. The megacrysts from Ostrzyca reveal slight negative Ti and strong positive Zr and Hf anomalies, whereas those Lutynia have negative Zr anomaly and Ti anomaly is absent. Major and trace element composition shows that the megacrysts from Ostrzyca formed as coarse-grained cumulate at significant depth (lower crust?) from the LREE enriched alkaline melt. That melt was very rich in phosphorous which enabled its saturation in

  14. The geochemical characteristics of basaltic and acidic volcanics around the Myojin depression in the Izu arc, Japan

    Science.gov (United States)

    Haraguchi, S.; Tamaki, K.; Kato, Y.; Machida, S.

    2012-12-01

    Around the Myojin Depression, westside of the Myojin-sho caldera in the Izu arc, seamounts are circular distributed and hydrothermal activity with sulfide deposition are found from the Baiyonneise Caldera, one of seamounts at the northern side. Some knoll chains distribute in the eastside of the Myojin Depression, and connect between these knolls. This circulator distribution of seamounts and connected knoll chains considered to the dykes are similar to the geographical features of the Kuroko Depositions in the Hokuroku Region, Northwest Japan (Tanahashi et al., 2008). Hydrothermal activities are also found from the other rifts (Urabe and Kusakabe 1990). Based on these observations, the cruise KT09-12 by R/V Tansei-Maru, Ocean Research Institute (ORI), University of Tokyo, investigated in the Myojin Rift. During the cruise, basaltic to dacitic volcanic rocks and some acidic plutonic rocks were recovered by dredge system. Herein, we present petrographical and chemical analyses of these rock samples with sample dredged by the cruise MW9507 by R/V MOANA WAVE, and consider the association with hydrothermal activities and depositions. Dredges during the cruise KT09-12 were obtained at the Daini-Beiyonneise Knoll at the northern side, Daisan-Beiyonneise Knoll at the southern side, and the Dragonborn Hill, small knoll chains, at the southeastern side of the depression. Many volcanic rocks are basalt, and recovered mainly from the Dragonborn Hill. Andesite and dacite was recovered from the Daini- and the Daini-Bayonneise Knoll. Tonalites were recovered from the Daisan-Bayonneise Knoll. Basalts from the Dragonborn Hill show less than 50% of SiO2 and more than 6 wt% and 0.88 wt% of MgO and TiO2 content. Basalts from the rift zone show depleted in the volcanic front (VF) side and enriched in the reararc (RA) side. The Dragonborn Hill is distributed near the VF, and basalts show depleted geochemical characteristics. However, these characteristics are different from the basalts

  15. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene

    International Nuclear Information System (INIS)

    Leroy, L.; Jimenez, N.

    1996-01-01

    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs

  16. DEPRESSION IN PRIMARY CARE. PART 1: SCREENING AND DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    XV Pereira

    2007-01-01

    Full Text Available One of the commonest psychological problems that a clinician would encounter in primary care is depression. Theprevalence of depression is high in women, the elderly and those with underlying physical problems or during the postpartumperiod. The spectrum of clinical presentations is wide and somatic complaints are more common in primary care clinics.Depression may present as a primary disorder and co-morbidity with other psychological problems or physical illnessesis high. A good clinical interview is an important form of assessment and a quick screening of depression can be donewith the administration of proper rating scales, such as the Patient Health Questionnaire, Hamilton Depression RatingScale or Geriatric Depression Scale. Repeated use of the same scale in a patient would help the clinician to monitor theprogress objectively.

  17. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  18. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    Science.gov (United States)

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years

  19. Results of Paleomagnetic Investigation of Angara - Taseeva Depression and Central Part of Tunguska Syncline (Siberian Trap Province, Russia)

    Science.gov (United States)

    Latyshev, A.; Veselovskiy, R. V.; Pavlov, V.

    2014-12-01

    Results of paleomagnetic investigation of two regions of Siberian Trap province (Angara - Taseeva depression and central part of Tunguska syncline) are performed here. Our work was dedicated to the estimation of dynamics and duration of magmatic activity during Siberian Traps emplacement. The conclusions are based on paleomagnetic study of large dolerite sills in the periphery of Siberian Trap province, tuffaceous deposits, small intrusions and lava flows of Tunguska syncline, and on geochronological data (Ivanov et al., 2013; Reichow et al., 2009). The presented data show that formation of Siberian Traps in these regions took place as several short bursts of magmatic activity led to large sill intrusions and eruptions of tuffs. This data are in agreement with the pulsating character of magmatic activity in the Northern part of Siberian platform (Pavlov et al., 2014). The most powerful burst of magmatic activity in Angara-Taseeva syncline is supposed to be synchronous to the main phase of volcanic eruptions in the Northern part of Siberian platform and emplacement of ore-bearing intrusions in Noril'sk district. This study was funded by grant RFBR # 14-05-31447.

  20. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  1. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  2. Geochronology and petrology of OIB-type lavas from the central part of the Mexican Volcanic Belt

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Uto, Kozo; Uchiumi, Shigeru

    1995-01-01

    In Mexican Volcanic Belt, typical continental margin arc volcanic activities have occurred accompanying the subduction of Rivera Plate and Cocos Plate into North American Plate. It has been known by recent geochemical research that the oceanic island type magma which does not show the characteristic chemical composition of subduction zone has extruded. In order to investigate the relation of the development of volcanic belt in continental margin are with the change of wide area tectonics, and to impose important limit on magma formation models, it is important to know the state of production of oceanic island type magma in continental margin arc and the age of its activities. In this report, the results of the K-Ar age measurement for the oceanic island type lava produced in the middle of Mexican Volcanic Belt are shown, and the geochemical features of those samples are clarified. The state of production and the petrography of oceanic island type igneous rock samples are explained. The K-Ar age measurement experiment and the results are reported. The chemical composition of oceanic island type lava determined by photon activation process and fluorescent X-ray analysis is shown. (K.I.)

  3. Evolution and relationships between volcanism and tectonics in the central-eastern part of the Oligocene Borovitsa caldera (Eastern Rhodopes, Bulgaria)

    Science.gov (United States)

    Dhont, Damien; Yanev, Yotzo; Bardintzeff, Jacques-Marie; Chorowicz, Jean

    2008-04-01

    The nested Borovitsa caldera emplaced during the collision-related Paleogene volcanism in the Eastern Rhodopes. The pre-caldera succession consists in Priabonian to Early Oligocene sediments and lavas (absarokites, shoshonites, latites). The caldera filling corresponds to an acid volcanism Early Oligocene in age. The tectono-magmatic evolution of the caldera can be divided into six main stages. (1) Ignimbritic units (more than 1.5 km thick) with a trachydacitic to trachytic composition deposited. The K-Ar method yields an age of 34-33.5 Ma. The volcanic products are either strongly or not welded in the western and eastern parts of the caldera, respectively. (2) An initial Murga caldera, 7-10 km in diameter, collapsed. This event was accompanied by the intrusion of a circular body consisting of lenses-bearing rocks of trachyrhyodacitic to rhyolitic composition within the border faults. (3) The emission of pyroclastic rocks continued and a large sub-volcanic body (33 Ma) of trachydacitic to trachyrhyolitic composition intruded in the western part of the circular body. (4) The Borovitsa caldera (15 km × 34 km) collapsed. Rhyolitic and trachydacitic dykes dated at 32.5 Ma intruded along its border faults. (5) High-Si trachyrhyolitic-perlitic domes intruded in the eastern part of the Borovitsa caldera at 30-32 Ma and the Dushka caldera collapsed within the Borovitsa structure. (6) Dykes of various compositions (from shoshonite to rhyolite) and trachydacitic to rhyolitic sub-volcanic stocks finally intruded within the caldera and along its rims at 27.5-29.5 Ma. Observations on radar and optical satellite imagery allowed both a new mapping of the structural pattern in the Borovitsa caldera and the understanding of the relationships between faulting and volcanism in this area. Horse-tail features accommodating the right-lateral throw component at the termination of NW-SE and N-S right-lateral strike-slip faults are superimposed upon the Murga caldera and the eastern part

  4. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios

    Directory of Open Access Journals (Sweden)

    M. Grutter

    2012-02-01

    Full Text Available The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006–2009 using a Scanning Infrared Gas Imaging System (SIGIS. The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm−1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2 to calculate the emission rates at different distances from the crater.

  5. Depression

    Science.gov (United States)

    ... reasons why a woman may have depression: Family history . Women with a family history of depression may be more at risk. But depression can also happen in women who don’t have a family history of depression. Brain changes. The brains of people ...

  6. Timing of volcanism and initiation of rifting in the Omo-Turkana depression, southwest Ethiopia: Evidence from paleomagnetism

    Science.gov (United States)

    Erbello, Asfaw; Kidane, Tesfaye

    2018-03-01

    Lava flows of the Gombe Group basalt cover the base of the Omo-Turkana rift in southwestern Ethiopia and northern Kenya. Paleomagnetic study results on these basalts are integrated with previous geochronologic data to better constrain the timing of volcanism and rifting in the area. A total of 80 drilled core samples were collected from nine sites. Experimental methods of Alternating Field (AF) demagnetization, Thermal (TH) demagnetization and Isothermal Remanent Magnetization (IRM) experiments are performed to unravel components of magnetizations. Two components of Natural Remnant Magnetization (NRM) directions are identified; the first one considered as Viscous Remanent Magnetization (VRM) is removed by 5-25 mT AF or a temperature of 120 °C-250 °C, the second component isolated after these steps defined a straight-line segment directed towards the origin and is interpreted as the Characteristic Remanent Magnetization (ChRM). In the IRM Acquisition experiment all analyzed samples showed a sharp rise in acquisition and reached to their saturation magnetization by an applied field of 300 mT. This together with the AF demagnetization and TH demagnetization behaviors suggest pseudo single domain titanomagnetite as a dominant magnetic carrier of the remanence. From a total of nine sites, six sites are reversed polarity, two sites are normal polarity and pass the reversal test of McFadden and McElhinny (1990) while one site is of erratic behavior probably due to lightning strike. The mean direction for the reversed polarity is DS = 186.1°, IS = -1.9° (N = 2, KS = 38.8, α95 = 10.9°) and that for the normal polarity is DS = 348.4°, IS = 4.6° (N = 6, K = 378.9, α95 = 12.9°). The overall mean direction DS = 1.7°, IS = 2.6° (N = 8, KS = 34.2, α95 = 9.6°), is statistically identical to the expected mean direction Ds = 2.1°, Is = 7.8° (N = 26, α95 = 2.3) obtained from the African Apparent Polar Waner Path (APWP) curve of African plate for a mean age of 4.25 Ma

  7. Depression

    DEFF Research Database (Denmark)

    Kessing, Lars Veddel; Bukh, Jens Drachmann

    2014-01-01

    The prevalence of depression is not clearly established, but estimated to 3-4% in a Danish questionnaire study. Lifetime's prevalences of 12-17% are reported in other community samples. In the current diagnostic system depression is defined categorically and operationally. It has been argued......, that these diagnostic criteria represent an oversimplification, which has blurred the concept of depression. We suggest a greater emphasis on the depressed mood as the core symptom of depression, which may increase the specificity of the diagnosis. Furthermore, basic principles for the treatment of depression...

  8. Depressants

    Science.gov (United States)

    ... For Teens / Depressants Print en español Depresores del sistema nervioso What They Are: Tranquilizers and other depressants ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on TeensHealth® is for ...

  9. Estimation of hydrodinamics parameters in a volcanic fractured phreatic aquifer in Costa Rica. Part II. Double porosity model

    International Nuclear Information System (INIS)

    Macias, Julio; Vargas, Asdrubal

    2017-01-01

    MIM 1D transport model was successfully applied to simulate the asymmetric behavior observed in three breakthrough curves of tracer tests performed under natural gradient conditions in a phreatic fractured volcanic aquifer. The transport parameters obtained after adjustment with a computer program, suggest that only 50% of the total porosity effectively contributed to the advective-dispersive transport (mobile fraction) and the other 50% behaved as a temporary reservoir for the tracer (immobile fraction). The estimated values of hydraulic properties and MIM model parameters are within the range of values reported by other researchers. It was possible to establish a conceptual and numerical framework to explain the three-tracer tests curves behavior, despite the limitations in quality and quantity of available field information. (author) [es

  10. Depression

    DEFF Research Database (Denmark)

    Cizza, G; Ravn, Pernille; Chrousos, G P

    2001-01-01

    Existing studies of the relationship between depression and osteoporosis have been heterogeneous in their design and use of diagnostic instruments for depression, which might have contributed to the different results on the comorbidity of these two conditions. Nevertheless, these studies reveal...... a strong association between depression and osteoporosis. Endocrine factors such as depression-induced hypersecretion of corticotropin-releasing hormone and hypercortisolism, hypogonadism, growth hormone deficiency and increased concentration of circulating interleukin 6, might play a crucial role...... in the bone loss observed in subjects suffering from major depression....

  11. Depression

    DEFF Research Database (Denmark)

    Pouwer, Frans

    2017-01-01

    There is ample evidence that depression is000  a common comorbid health issue in people with type 1 or type 2 diabetes. Reviews have also concluded that depression in diabetes is associated with higher HbA1c levels, less optimal self-care behaviours, lower quality of life, incident vascular...... complications and higher mortality rates. However, longitudinal studies into the course of depression in people with type 1 diabetes remain scarce. In this issue of Diabetologia, Kampling and colleagues (doi: 10.1007/s00125-016-4123-0 ) report the 5 year trajectories of depression in adults with newly diagnosed...... type 1 diabetes (mean age, 28 years). Their baseline results showed that shortly after the diagnosis of type 1 diabetes a major depressive episode was diagnosed in approximately 6% of participants, while 8% suffered from an anxiety disorder. The longitudinal depression data showed that, in a 5 year...

  12. Classifcation of volcanic structure in mesozoic era in the Fuzhou-Shaoxing area

    International Nuclear Information System (INIS)

    Zhang Fengqi.

    1989-01-01

    The volcanic structure in the Fuzhou-Shaoxing area can be classified into IV grades: the grade I be the zone of volcanic activity; the grade II be the second zone of volcanic activity; the grade III be the positive, negative volcanic structure; the grade IV be volcanic conduit, volcanic crater, concealed eruption breccia pipe. Based on the geological situation in this area, the different types of volcanic structure are also dealt with. In the mean time, both the embossed type in the depression area and the depressed type in the embossed area in the volcanic basin are pointed out. It is of great advantage to Uranium mineralization

  13. The volcaniclastic sequence of Aranzazu: Record of the impact of volcanism on Neogene fluvial system in the middle part of the Central Cordillera, Colombia

    International Nuclear Information System (INIS)

    Borrero Pena, Carlos Alberto; Rosero Cespedes, Juan Sebastian; Valencia M, Julian David; Pardo Trujillo, Andres

    2008-01-01

    The volcaniclastic sequence of Aranzazu (VSA, late Pliocene - early Pleistocene?) was sourced from the northernmost sector of the Machin - Cerro Bravo volcanic complex. The volcaniclastic accumulations filled the pre-existing fault-bend depressions in the surroundings of Aranzazu town (Caldas department, Colombia). A new classification of volcaniclastic deposits is proposed, in which the lahars are defined as volcaniclastic resedimented deposits, and differentiated from the primary volcaniclastic and epiclastic deposits. The updating the sedimentology and rheology of the deposits related with the laharic events is aimed. The VSA stratigraphy is based on the lithofacies identification and the definition of the architectural elements for syn- and inter-eruptive periods. The VSA lower member corresponds to the successive aggradation of syneruptive lahars (SV and SB elements) resulted from re-sedimentation of pumice-rich pyroclastic deposits and transported as debris and hyperconcentrated stream/flood flows. The VSA middle and upper members defined by coal contents were formed during the dominion of inter-eruptive (FF element) over the syn-eruptive (SV and SB elements) periods. They were formed during the reestablishment of the fluvial condition after the syn-eruptive laharic activity. Once the fluvial deposition was strengthened, the necessary conditions for the peat formation were propitious and the coal-bearing bed sets were developed.

  14. Depression

    DEFF Research Database (Denmark)

    Johansen, Jon O. J.

    2013-01-01

    Nyhederne er fulde af historier om depression. Overskrifter som: ’Danskerne propper sig med lykkepiller’ eller ‘depression er stadigvæk tabu’ går tit igen i dagspressen. Men hvor er nuancerne, og hvorfor gider vi læse de samme historier igen og igen? Måske er det fordi, vores egne forestillinger er...

  15. Mapping the sub-trappean Mesozoic sediments in the western part of Narmada-Tapti region of Deccan Volcanic Province, India

    Science.gov (United States)

    Murty, A. S. N.; Sarkar, Dipankar; Sen, Mrinal K.; Sridher, V.; Prasad, A. S. S. S. R. S.

    2014-10-01

    Deccan Traps spread over large parts of south, west and central India, possibly hiding underneath sediments with hydrocarbon potential. Here, we present the results of seismic refraction and wide-angle reflection experiments along three profiles, and analyze them together the results from all other refraction profiles executed earlier in the western part of Narmada-Tapti region of the Deccan Volcanic Province (DVP). We employ travel time modelling to derive the granitic basement configuration, including the overlying Trap and sub-trappean sediment thickness, if any. Travel time skips and amplitude decay in the first arrival refraction data are indicative of the presence of low velocity sediments (Mesozoic), which are the low velocity zones (LVZ) underneath the Traps. Reflection data from the top of LVZ and basement along with the basement refraction data have been used to derive the Mesozoic sediment thickness. In the middle and eastern parts of the study region between Narmada and Tapti, the Mesozoic sediment thickness varies between 0.5 and 2.0 km and reaches more than 2.5 km south of Sendhwa between Narmada and Tapti Rivers. Thick Mesozoic sediments in the eastern parts are also accompanied by thick Traps. The Mesozoic sediments along the present three profiles may not be much prospective in terms of its thickness, except inside the Cambay basin, where the subtrappean sediment thickness is about 1000-1500 m. In the eastern part of the study area, the deepest section (>4 km) has thick (∼2 km) Mesozoic sediments, but with almost equally thick Deccan Trap cover. Results of the present study provide important inputs for future planning for hydrocarbon exploration in this region.

  16. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    , Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries - USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom - have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators. ?? Springer Science+Business Media B.V. 2008.

  17. Being part of an enacted togetherness: narratives of elderly people with depression.

    Science.gov (United States)

    Nyman, Anneli; Josephsson, Staffan; Isaksson, Gunilla

    2012-12-01

    In this article, we explored how five elderly persons with depression engaged in everyday activities with others, over time, and how this was related to their experience of meaning. Repeated interviews and participant observations generated data that was analysed using a narrative approach. Analysis identified togetherness as an acted relation, "enacted togetherness", emphasising how the act of doing everyday activities with someone created togetherness and belonging, and being part of an enacted togetherness seemed to be a way for the participants to negotiate and construct meaning. Opportunities for doing things together with someone were closely associated to the place where the participants lived. Furthermore, engagement in activities together with others created hope and expectations of future acting. Findings from this research can extend our understanding of how participating in everyday activities is experienced as a social process including change over time, presenting the perspective of elderly people themselves. In light of these findings, we highlight the need to consider how opportunities to become part of an enacted togetherness can be created. Also, we aspire to contribute to the debate on how to understand the complexity related to social aspects of ageing and add to the emerging understanding of everyday activities as transactional, incorporating people and the environment in a dynamic process that goes beyond the individual. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Prediction and experimental verification of performance of box type solar cooker. Part II: Cooking vessel with depressed lid

    International Nuclear Information System (INIS)

    Reddy, Avala Raji; Rao, A.V. Narasimha

    2008-01-01

    Our previous article (Part I) discussed the theoretical and experimental study of the performance boost obtained by a cooking vessel with central cylindrical cavity on lugs when compared to that of a conventional cylindrical vessel on floor/lugs. This article compares the performance of the cooking vessel with depressed lid on lugs with that of the conventional vessel on lugs. A mathematical model is presented to understand the heat flow process to the cooking vessel and, thereby, to the food material. It is found from the experiments that the cooking vessel with depressed lid results in higher temperature of the thermic fluid loaded in the cooking vessel compared to that of the thermic fluid kept in the conventional vessel when both are placed on lugs. Similar results were obtained by modeling the process mathematically. The average improvement of performance of the vessel with depressed lid is found to be 8.4% better than the conventional cylindrical vessel

  19. Anxiety and depression in care homes in Malta and Australia: Part 1.

    Science.gov (United States)

    Baldacchino, Donia R; Bonello, Lilian

    This cross-sectional comparative study, conducted in two phases, assessed the levels of and factors contributing towards anxiety and depression in older people in residential homes in Malta and Australia. A mixed-method approach was adopted and the cognitive theory of stress and coping (Lazarus and Folkman, 1984) guided the study. Maltese residents were recruited from four church-run homes in Malta and Australia and two state residences in Malta. Response rates were high, with phase 1 at 94.48% (n = 137; mean age = 72.8 years) and phase 2 at 89.4%, (n = 42, mean age = 71.9 years). All the residents were mobile, were Roman Catholics and had lived in the homes for at least 6 months. In phase 1, quantitative data was collected using a demographic questionnaire and the hospital anxiety and depression scale. Normal ranges of anxiety and depression were found (anxiety: mean = 3.53-4.35; depression: mean = 2.67-4.72). No significant differences were found in anxiety and depression between countries, demographic characteristics and some other variables. The only significant difference lay in depression by mobility (F = 5.263; P = 0.006; df = 2), with wheelchair users scoring the highest mean (mean = 6.77; SD = 5.847; P = 0.007). Mobility was linked to functional abilities, which appeared to control anxiety and depression. Recommendations are made for rehabilitation and cross-cultural longitudinal research to investigate other influencing variables such as spirituality and caring relationships.

  20. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  1. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  2. Medical students and stigma of depression. Part 2. Self-stigma.

    Science.gov (United States)

    Suwalska, Julia; Suwalska, Aleksandra; Szczygieł, Marta; Łojko, Dorota

    2017-06-18

    Up to 30% of medical students suffer from depression. They have better access to healthcare, but still receive appropriate treatment less frequently than people with depression in the general population. Most of them do not seek medical help as depression is perceived as a stigmatizing disorder, which leads to self-stigma and hampers early diagnosis and treatment. Thus, self-stigma means less effective therapy, unfavorable prognosis and relapses. According to the literature, self-stigma results in lowered self-esteem and is a major obstacle in the performance of social roles at work and in personal life. Stigmatization and self-stigma of depression among medical students are also associated with effects in their later professional life: they can lead to long-term consequences in the process of treating their patients in the future. Currently there are no unequivocal research results indicating the most effective ways of reducing stigmatization and self-stigma. It is necessary to educate about the symptoms and treatment of depression and to implement diverse intervention techniques to change behaviors and attitudes as early as possible.

  3. Tectono-karst depressions in the central-western part of the MehedinTi Mountains (SW Romania

    Directory of Open Access Journals (Sweden)

    Ioan Povara

    2014-03-01

    Full Text Available The horst structure of the Mehedinţi Mountains, bounded to the east by the Mehedinţi Plateau, and to the west by the Cerna Graben, has been leveled by the Râul Şes II karst planation surface, at an altitude of 1250-1030 m. Part of the Mesozoic sedimentary cover, limestones developed in Urgonian facies widely outcrop, overlying the crystalline-granite bedrock. On a system of faults adjacent to the graben, close to the Cerna Valley slope, uvala and mega-sinkhole depressions, with various depths, have been developed. From NNE to SSW they are extended over a distance of 14 km and an area of 10.376 km 2 . Their orientation follows the direction of the faults to which they are related. The entire plateau presents an endorhei c character. There were three different stages of genesis and evolution of the depressions: (1 active valley; (2 Quaternary tectonic hanging of the valley; (3 endorheic evolution. Recent depressions evolved only during the last two stages. The most developed depressions are opened westward, as a consequence of the eastward retreat of the Cerna Valley tectonic slope. The rainfall infiltration water is drained towards east and west, outflowing at the base of tectonic sunken blocks as permanent springs with maximum flow rates of up to 50 l/s.

  4. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  5. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    Science.gov (United States)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  6. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  7. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.

    1995-12-31

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  8. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  9. Age of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Lindsay, J.; Leonard, G.S.

    2009-01-01

    In 2008 a multi-disciplinary research programme was launched, a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland (DEVORA). A major aspiration of DEVORA is development of a probabilistic hazard model for the Auckland Volcanic Field (AVF). This will be achieved by investigating past eruption magnitude-frequency relationships and comparing these with similar data from analogous volcanic fields. A key data set underpinning this is an age database for the AVF. To this end a comprehensive dating campaign is planned as part of DEVORA. This report, Age of the Auckland Volcanic Field, is a synthesis of all currently available age data for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from all previous work is collated and summarised, so that gaps in current knowledge can be identified and addressed. (author). 60 refs., 7 figs., 31 tabs.

  10. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  11. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  12. The olistostroms and cretaceous-Paleocene olistoplakes in sediments of Northern part of Tajik depression

    International Nuclear Information System (INIS)

    Kukhtikov, M.M.; Vinnichenko, G.P.

    1991-01-01

    In sediments of Northern part of Tajikistan the great amount of massives without foundation and accumulated blocks without order were found. These sediments are from rock of chalk-Palaeogene period. They belong to olistostrom and olistoplaka category. They are found inside neogenic cut

  13. An approximate inversion method of geoelectrical sounding data using linear and bayesian statistical approaches. Examples of Tritrivakely volcanic lake and Mahitsy area (central part of Madagascar)

    International Nuclear Information System (INIS)

    Ranaivo Nomenjanahary, F.; Rakoto, H.; Ratsimbazafy, J.B.

    1994-08-01

    This paper is concerned with resistivity sounding measurements performed from single site (vertical sounding) or from several sites (profiles) within a bounded area. The objective is to present an accurate information about the study area and to estimate the likelihood of the produced quantitative models. The achievement of this objective obviously requires quite relevant data and processing methods. It also requires interpretation methods which should take into account the probable effect of an heterogeneous structure. In front of such difficulties, the interpretation of resistivity sounding data inevitably involves the use of inversion methods. We suggest starting the interpretation in simple situation (1-D approximation), and using the rough but correct model obtained as an a-priori model for any more refined interpretation. Related to this point of view, special attention should be paid for the inverse problem applied to the resistivity sounding data. This inverse problem is nonlinear, while linearity inherent in the functional response used to describe the physical experiment. Two different approaches are used to build an approximate but higher dimensional inversion of geoelectrical data: the linear approach and the bayesian statistical approach. Some illustrations of their application in resistivity sounding data acquired at Tritrivakely volcanic lake (single site) and at Mahitsy area (several sites) will be given. (author). 28 refs, 7 figs

  14. Inter-annual variability of urolithiasis epidemic from semi-arid part of Deccan Volcanic Province, India: climatic and hydrogeochemical perspectives.

    Science.gov (United States)

    Kale, Sanjay S; Ghole, Vikram Shantaram; Pawar, N J; Jagtap, Deepak V

    2014-01-01

    Semi-arid Karha basin from Deccan Volcanic Province, India was investigated for inter-annual variability of urolithiasis epidemic. The number of reported urolith patient, weather station data and groundwater quality results was used to assess impact of geoenvironment on urolithiasis. Data of 7081 urolith patient were processed for epidemiological study. Gender class, age group, year-wise cases and urolith type were studied in epidemiology. Rainfall, temperature, pan evaporation and sunshine hours were used to correlate urolithiasis. Further, average values of groundwater parameters were correlated with the number of urolith episodes. A total of 52 urolith samples were collected from hospitals and analysed using FTIR technique to identify dominant urolith type in study area. Result shows that male population is more prone, age group of 20-40 is more susceptible and calcium oxalate uroliths are dominant in study area. Year-wise distribution revealed that there is steady increase in urolithiasis with inflation in drought years. In climatic parameters, hot days are significantly correlated with urolithiasis. In groundwater quality, EC, Na and F are convincingly correlated with urolith patients, which concludes the strong relation between geo-environment and urolithiasis.

  15. Venus - Volcanic features in Atla Region

    Science.gov (United States)

    1991-01-01

    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  16. Diretrizes da World Federation of Societies of Biological Psychiatry (WFSBP para tratamento biológico de transtornos depressivos unipolares, 2ª parte: tratamento de manutenção do transtorno depressivo maior e tratamento dos transtornos depressivos crônicos e das depressões subliminares World Federation of Societies of Biological Psychiatry (WFSBP Guidelines for biological treatment of unipolar depressive disorders, part 2: maintenance treatment of major depressive disorder and treatment of chronic depressive disorders and subthreshold depressions

    Directory of Open Access Journals (Sweden)

    Michael Bauer

    2009-01-01

    Full Text Available Estas diretrizes práticas para o tratamento biológico de transtornos depressivos unipolares foram desenvolvidas por uma Força-Tarefa internacional da Federação Mundial de Sociedades de Psiquiatria Biológica (WFSBP. O objetivo ao desenvolver tais diretrizes foi rever sistematicamente todas as evidências existentes referentes ao tratamento de transtornos depressivos unipolares e produzir uma série de recomendações práticas com significado clínico e científico, baseadas nas evidências existentes. Têm como objetivo seu uso por todos os médicos que atendam e tratem pacientes com essas afecções. Os dados usados para o desenvolvimento das diretrizes foram extraídos primariamente de várias diretrizes e painéis nacionais de tratamento para transtornos depressivos, bem como de metanálises e revisões sobre a eficácia dos antidepressivos e outras intervenções de tratamento biológico identificadas por uma busca no banco de dados MEDLINE e Cochrane Library. A literatura identificada foi avaliada quanto à força das evidências sobre sua eficácia e, então, categorizada em quatro níveis de evidências (A a D. Esta primeira parte das diretrizes abrange definição, classificação, epidemiologia e evolução dos transtornos depressivos unipolares, bem como tratamento das fases aguda e de manutenção. As diretrizes se referem primariamente ao tratamento biológico (incluindo antidepressivos, outros medicamentos psicofarmacológicos e hormonais, eletroconvulsoterapia, fototerapia, estratégias terapêuticas complementares e novas de adultos jovens e também, embora em menor grau, de crianças, adolescentes e adultos idosos.These practice guidelines for the biological treatment of unipolar depressive disorders were developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP. The goal for developing these guidelines was to systematically review all available evidence pertaining to the

  17. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  18. Inexpensive Instrument for In Situ Characterization of Particulate Matter in Volcanic Ash Plumes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic research is a significant part of the "Earth Surface & Interior" focus area of the NASA Earth Science program. After a volcanic eruption, the smallest...

  19. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  20. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  1. [Integral Care Guide for Early Detection and Diagnosis of Depressive Episodes and Recurrent Depressive Disorder in Adults. Integral Attention of Adults with a Diagnosis of Depressive Episodes and Recurrent Depressive Disorder: Part III: Treatment of Resistant Depression and Psychotic Depression, Occupational Therapy and Day Hospital Treatment].

    Science.gov (United States)

    Gómez-Restrepo, Carlos; Peñaranda, Adriana Patricia Bohórquez; Valencia, Jenny García; Guarín, Maritza Rodríguez; Ángel, Juliana Rodríguez; Jaramillo, Luis Eduardo; Acosta, Carlos Alberto Palacio; Pedraza, Ricardo Sánchez; Díaz, Sergio Mario Castro; de la Hoz Bradford, Ana María

    2012-12-01

    This article presents recommendations based on the evidence gathered to answer a series of clinical questions concerning the depressive episode and the recurrent depressive disorder. Emphasis was given to general treatment issues of resistant depression and psychotic depression, occupational therapy and day hospital treatment so as to grant diagnosed adult patients the health care parameters based on the best and more updated evidence available and achieve minimum quality standards. A practical clinical guide was elaborated according to standards of the Methodological Guide of the Ministry of Social Protection. Recommendation from NICE90 and CANMAT guides were adopted and updated so as to answer the questions posed while de novo questions were developed. Recommendations 23-25 corresponding to the management of depression are presented. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  2. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    volcano operated by ERI, Tokyo University. In all cases, we could estimated volcanic gas compositions, such as CO2/SO2 ratios, but also found out that it is necessary to improve the techniques to avoid the contamination of the exhaust gases and to approach more concentrated part of the plume. It was also revealed that the aerial measurements have an advantage of the stable background. The error of the volcanic gas composition estimates are largely due to the large fluctuation of the atmospheric H2O and CO2 concentrations near the ground. The stable atmospheric background obtained by the UAV measurements enables accurate estimate of the volcanic gas compositions. One of the most successful measurements was that on May 18, 2011 at Shinomoedake, Kirishima volcano during repeating Vulcanian eruption stage. The major component composition was obtained as H2O=97, CO2=1.5, SO2=0.2, H2S=0.24, H2=0.006 mol%; the high CO2 contents suggests relatively deep source of the magma degassing and the apparent equilibrium temperature obtained as 400°C indicates that the gas was cooled during ascent to the surface. The volcanic plume measurement with UAV will become an important tool for the volcano monitoring that provides important information to understand eruption processes.

  3. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  4. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  5. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  6. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  7. Major depression

    Science.gov (United States)

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  8. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene; Le volcanisme de la bordure occidentale de la Meseta de Los Frailes (Bolivie): un jalon representatif du volcanisme andin depuis l`Oligocene superieur

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, L. [Nancy-1 Univ., 54 (France); Jimenez, N.

    1996-12-31

    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs.

  9. Depression and Associated Suicidal Behaviour in Children and Adolescents: Current Views and the Problem State Part 2

    Directory of Open Access Journals (Sweden)

    S.V. Rymsha

    2014-10-01

    Full Text Available There has been performed the analytical analysis of the world literature dedicated to the epidemiology, etiology, current approaches to the pathogenesis, clinical picture and diagnosis criteria for the depressive disorders in children and adolescents as well as the associated suicidal behavior and the social significance of this disease with its consequences. Key recommendations on the treatment and prophylaxis of depression in children and adolescents according to the last evidence-base European and American guidelines are considered.

  10. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  11. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  12. Volcanic Eruptions in Kamchatka

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and

  13. Evidence for volcanism in NW Ishtar Terra, Venus

    International Nuclear Information System (INIS)

    Gaddis, L.; Greeley, R.

    1989-01-01

    Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred larg/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas

  14. Dinasour extinction and volcanic activity

    Science.gov (United States)

    Gledhill, J. A.

    There is at present some controversy about the reason for the mass extinction of dinosaurs and other forms of life at the end of the Cretaceous. A suggestion by Alvarez et al. [1980] that this was due to the collision of the earth with a meteorite 10 km or so in diameter has excited considerable interest [Silver and Schultz, 1982] and also some criticism [Stanley, 1984]. A recent publication [Wood, 1984] describing the catastrophic effects of a relatively minor lava flow in Iceland suggests that intense volcanic activity could have played a large part in the extinctions. In this letter it is pointed out that the Deccan lava flows in India took place in the appropriate time and may well have been of sufficient magnitude to be a major factor in the Cretaceous-Tertiary (C-T) boundary catastrophe.

  15. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  16. Evidence for sub-lacustrine volcanic activity in Lake Bolsena (central Italy) revealed by high resolution seismic data sets

    Science.gov (United States)

    Lindhorst, Katja; Krastel, Sebastian; Wagner, Bernd; Schuerer, Anke

    2017-06-01

    The Bolsena caldera that formed between 0.6 and 0.2 Ma has a well preserved structural rim, which makes it an ideal site to study the tectonic and volcanic evolution of calderas. However, the main area is covered by a 150 m deep lake which makes it rather difficult to investigate the subsurface structure directly. To overcome this problem new high resolution hydro-acoustic surveys using a multichannel reflection seismic system and a sediment echo-sounder system were conducted in September 2012. As space was limited we used a rowing boat towed by a rubber boat to handle a 36 m long and 24 channel streamer to receive seismic reflections produced using a Mini GI-Gun (0.25 l). The subsurface structure of Lake Bolsena was imaged up to a sediment depth of 190 m, which is estimated to have filled over a period of 333 kyrs. However, massive pyroclastic flow deposits found in the deeper parts of the basin indicate an initial infill of volcanic deposits from two adjacent younger calderas, the Latera (W) and Montefiascone (SE) calderas. Our data suggest that the caldera has a long history of active volcanism, because the lacustrine sediments show post-sedimentary influences of geothermal fluids. We mapped several mound structures at various stratigraphic depths. Two volcanic structures outcrop at the modern lake surface implying recent activity. One of these structures is hardly covered by sediments and has a crater-like feature in its summit. The other structure shows a pockmark-like depression on top. Another observable feature is a partially sediment filled crater located in the western part of the lake which further implies the existence of a magma chamber located beneath the Bolsena caldera. Since the late Pleistocene and Holocene, the sedimentation was mainly hemipelagic evidenced by a sediment drape of up to 10 m thick sediment drape on the uppermost sediments. Beneath the drape we found evidence for a distal tephra layer likely related to an explosive eruption from

  17. Submarine Volcanic Eruptions and Potential Analogs for Venus

    Science.gov (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  18. Depression (Major Depressive Disorder)

    Science.gov (United States)

    ... generally miserable or unhappy without really knowing why. Depression symptoms in children and teens Common signs and ... in normal activities, and avoidance of social interaction. Depression symptoms in older adults Depression is not a ...

  19. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  20. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    -rift volcanism is accordingly not fed directly by mantle derived liquids. The model predicts that all volcanic fluids, with the exception of those which are associated with the most primitive olivine tholeiites, are partly or wholly recycled through all stages of hydrothermal and metamorphic reactions. In that sense associated volcanic and geothermal systems are a part of the same chemical fractionation column. It is concluded that the chemistry of fluids in volcanic and geothermal systems can be viewed in the perspective of predictable crustal fractionation processes before any conclusion need be drawn concerning more deep seated causes for chemical anomalies.

  1. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    Science.gov (United States)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  2. Handling Depression | Smokefree 60+

    Science.gov (United States)

    Everyone feels blue now and then. It's a part of life. But if your feelings last more than few days and interfere with your normal daily activities, you may be suffering from depression. On this page: Symptoms of depression Who gets depressed and why?

  3. [Integral Care Guide for Early Detection and Diagnosis of Depressive Episodes and Recurrent Depressive Disorder in Adults. Integral Attention of Adults with a Diagnosis of Depressive Episodes and Recurrent Depressive Disorder: Part II: General Aspects of Treatment, Management of the Acute Phase, Continuation and Maintenance of Patients with a Depression Diagnosis].

    Science.gov (United States)

    Peñaranda, Adriana Patricia Bohórquez; Valencia, Jenny García; Guarín, Maritza Rodríguez; Borrero, Álvaro Enrique Arenas; Díaz, Sergio Mario Castro; de la Hoz Bradford, Ana María; Riveros, Patricia Maldonado; Jaramillo, Luis Eduardo; Brito, Enrique; Acosta, Carlos Alberto Palacio; Pedraza, Ricardo Sánchez; González-Pacheco, Juan; Gómez-Restrepo, Carlos

    2012-12-01

    This article presents recommendations based on evidence gathered to answer a series of clinical questions concerning the depressive episode and the recurrent depressive disorder, with emphasis on general treatment aspects, treatment in the acute phase and management of the continuation/maintenance, all intended to grant health care parameters based on the best and more updated available evidence for achieving minimum quality standards with adult patients thus diagnosed. A practical clinical guide was elaborated according to standards of the Methodological Guide of the Ministry of Social Protection. Recommendation from NICE90 and CANMAT guides were adopted and updated so as to answer the questions posed while de novo questions were developed. Recommendations 5-22 corresponding to management of depression are presented. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  5. How academic psychiatry can better prepare students for their future patients. Part I: the failure to recognize depression and risk for suicide in primary care; problem identification, responsibility, and solutions.

    Science.gov (United States)

    Lake, C Raymond

    2008-01-01

    The author, after a review of the relevant literature, found that depression and the risk for suicide remain unacceptably underrecognized in primary care (PC). The negative consequences are substantial for patients and their physicians. Suicide prevention in PC begins with the recognition of depression because suicide occurs largely during depression. In this article (Part I), the author suggests causes, responsibilities, and solutions for that failure. He also addresses the role of academic psychiatry's traditional curriculum. The comprehensive, initial diagnostic interview that is typically taught to medical students in psychiatry may decrease recognition in PC care because of the time required to complete it. In Part II, the author offers guidelines to develop a weekly interview course with an instrument targeting abbreviated diagnostic screening for only the most critical psychiatric problems such as depression and the risk for suicide.

  6. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia

    Science.gov (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.

    2017-12-01

    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  7. The scaling of experiments on volcanic systems

    Directory of Open Access Journals (Sweden)

    Olivier eMERLE

    2015-06-01

    Full Text Available In this article, the basic principles of the scaling procedure are first reviewed by a presentation of scale factors. Then, taking an idealized example of a brittle volcanic cone intruded by a viscous magma, the way to choose appropriate analogue materials for both the brittle and ductile parts of the cone is explained by the use of model ratios. Lines of similarity are described to show that an experiment simulates a range of physical processes instead of a unique natural case. The pi theorem is presented as an alternative scaling procedure and discussed through the same idealized example to make the comparison with the model ratio procedure. The appropriateness of the use of gelatin as analogue material for simulating dyke formation is investigated. Finally, the scaling of some particular experiments such as pyroclastic flows or volcanic explosions is briefly presented to show the diversity of scaling procedures in volcanology.

  8. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  9. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  10. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  11. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  12. [Integral Care Guide for Early Detection and Diagnosis of Depressive Episodes and Recurrent Depressive Disorder in Adults. Integral Attention of Adults with a Diagnosis of Depressive Episodes and Recurrent Depressive Disorder: Part I: Risk Factors, Screening, Suicide Risk Diagnosis and Assessment in Patients with a Depression Diagnosis].

    Science.gov (United States)

    Gómez-Restrepo, Carlos; Peñaranda, Adriana Patricia Bohórquez; Valencia, Jenny García; Guarín, Maritza Rodríguez; Narváez, Eliana Bravo; Jaramillo, Luis Eduardo; Acosta, Carlos Alberto Palacio; Pedraza, Ricardo Sánchez; Díaz, Sergio Mario Castro

    2012-12-01

    Depression is an important cause of morbidity and disability in the world; however, it is under-diagnosed at all care levels. The purpose here is to present recommendations based on the evidence gathered to answer a series of clinical questions concerning risk factors, screening, suicide risk diagnosis and evaluation in patients undergoing a depressive episode and recurrent depressive disorder. Emphasis has been made upon the approach used at the primary care level so as to grant adult diagnosed patients the health care guidelines based on the best and more updated evidence available thus achieving minimum quality standards. A practical clinical guide was elaborated according to standards of the Methodological Guide of the Ministry of Social Protection. Recommendation from guides NICE90 and CANMAT were adopted and updated so as to answer the questions posed while de novo questions were developed. Recommendations 1-22 corresponding to screening, suicide risk and depression diagnosis were presented. The corresponding degree of recommendation is included. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  13. Depression - resources

    Science.gov (United States)

    Resources - depression ... Depression is a medical condition. If you think you may be depressed, see a health care provider. ... following organizations are good sources of information on depression : American Psychological Association -- www.apa.org/topics/depression/ ...

  14. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    30 km trend that then arcs NE into the caldera. These anomalies reflect near surface rhyolite intrusions that underlie the caldera-fill sediments that have been altered to K-feldpar and clay minerals. K gamma ray anomalies also delineate this zone of alteration. The last phase of volcanism occurs in the central part of the caldera and is associated with a broad aeromagnetic high with individual high-amplitude aeromagnetic highs coincident with three large volcanic vents. No hydrothermal alteration is associated with this last phase of volcanism. On the SW side of the McDermitt volcanic field a 10 km wide, 60 km long, NNW-trending zone of late Miocene normal faults developed after cessation of volcanism and prior to Basin and Range faulting. We propose that this extensional fault zone is the eastern continuation of the NW trending Brothers Fault Zone, but changes to a NNW trend where it is deflected by the plutons that underlies the McDermitt volcanic field. Plutons that underlie all three of these Mid Miocene volcanic fields have minimized post-caldera extensional faulting. Thus only caldera ring fracture faults were available for the development of hydrothermal systems in areas where post caldera intrusive activity was localized.

  15. Depression (Major Depressive Disorder)

    Science.gov (United States)

    ... your mood. Chronic pain causes a number of problems that can lead to depression, such as trouble sleeping and stress. Disabling pain can cause low self-esteem due to work, legal or financial issues. Depression ...

  16. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  17. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

    Science.gov (United States)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.

    2014-01-01

    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  18. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  19. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  20. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  1. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  2. Life adversity in depressed and non-depressed older adults : A cross-sectional comparison of the brief LTE-Q questionnaire and life events and difficulties interview as part of the CASPER study

    OpenAIRE

    Donoghue, Hjördis M; Traviss-Turner, Gemma D; House, Allan O; Lewis, Helen; Gilbody, Simon

    2016-01-01

    BACKGROUND: There is a paucity of research on the nature of life adversity in depressed and non-depressed older adults. Early life events work used in-depth interviews; however, larger epidemiological trials investigate life adversity using brief questionnaires. This study investigates the type of life adversity experienced in later life and its association with depression and compares adversity captured using a brief (LTE-Q) and in-depth (LEDS) measure. METHODS: 960 participants over 65 year...

  3. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang

    2010-01-01

    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  4. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  5. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  6. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez

    2007-01-01

    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  7. Northern hemispheric response to large volcanic eruptions in relation to El Nino - winter case studies

    International Nuclear Information System (INIS)

    Kirchner, I.

    1994-01-01

    A large part of the global climate variability is attributed to variations of the Indian Monsoon and of El Nino/Southern Oscillation. Facing the recent violent volcanic eruption of Mount Pinatubo in June 1991, and searching for the climate signal of the increased greenhouse effect, the climate impact of volcanic aerosols becomes more and more interesting

  8. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  9. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  10. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago)

    Science.gov (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from

  11. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  12. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  13. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  14. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  15. Evidence for young volcanism on Mercury from the third MESSENGER flyby.

    Science.gov (United States)

    Prockter, Louise M; Ernst, Carolyn M; Denevi, Brett W; Chapman, Clark R; Head, James W; Fassett, Caleb I; Merline, William J; Solomon, Sean C; Watters, Thomas R; Strom, Robert G; Cremonese, Gabriele; Marchi, Simone; Massironi, Matteo

    2010-08-06

    During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that pervasive volcanism occurred early in the planet's history. MESSENGER's third Mercury flyby revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen, having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely cratered, postdate the formation of the basin, apparently formed from material that once flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular depression surrounded by a halo of bright deposits northeast of the basin marks a candidate explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the planet thus spanned a considerable duration, perhaps extending well into the second half of solar system history.

  16. The Whole Is Greater than the Sum of the Parts: The Effects of an Antenatal Orientation Interviews Training for Prospective Parents Postnatal Depression Levels

    Science.gov (United States)

    Bulut, Pinar; Barut, Yasar

    2016-01-01

    The aim of this study was to examine an antenatal orientation interviews training for prospective parents' postnatal depression levels. A quasi-experimental study carried out with 26 (12 experimental, 14 control) prospective mother and father. Participants completed the Edinburgh Postnatal Depression Scale one week before the intervention and 12…

  17. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  18. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.

    1992-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  19. Volcanic influence on centennial to millennial Holocene Greenland temperature change.

    Science.gov (United States)

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu

    2017-05-03

    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  20. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    studies on weathering of volcanic ash and developing volcanic soils under cold climatic conditions were carried out, especially in areas with permafrost (Bäumler, 2003). Most of research on volcanic permafrost soils was done in Yukon (Canada), Kamchatka (Russia), and Antarctica, or on seasonal frost in mountain area in Iceland, Japan, New Zealand, and Ecuador. Soils of Iceland and Antarctica are used as terrestrial analogs to Martian soils (Gooding & Keil, 1978; Allen et al., 1981). The review of existing data demonstrates that there is a strong correlation between the thermal conductivity, the water-ice content, and the mineralogy of the weathered part of the volcanic ash, enhanced amount of amorphous clay minerals (allophane, palagonite) increase the proportion of unfrozen water and decrease thermal conductivity (Kuznetsova et al., 2012, 2013; Kuznetsova & Motenko, 2014), and amorphous silica does not alter to halloysite or other clay minerals even in ashes of Early Pleistocene age (Kamchatka) or Miocene and Pliocene deposits (Antarctica) due to cold temperatures. The significance of these findings is discussed in relation to the reconstruction of past climates and the influence of volcanic ash on permafrost aggradation and degradation, snow and ice ablation, and the development of glaciers.

  1. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-01-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  2. Candidate constructional volcanic edifices on Mercury

    OpenAIRE

    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-01-01

    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  3. Life adversity in depressed and non-depressed older adults: A cross-sectional comparison of the brief LTE-Q questionnaire and life events and difficulties interview as part of the CASPER study.

    Science.gov (United States)

    Donoghue, Hjördis M; Traviss-Turner, Gemma D; House, Allan O; Lewis, Helen; Gilbody, Simon

    2016-03-15

    There is a paucity of research on the nature of life adversity in depressed and non-depressed older adults. Early life events work used in-depth interviews; however, larger epidemiological trials investigate life adversity using brief questionnaires. This study investigates the type of life adversity experienced in later life and its association with depression and compares adversity captured using a brief (LTE-Q) and in-depth (LEDS) measure. 960 participants over 65 years were recruited in UK primary care to complete the PHQ-9 and LTE-Q. A sub-sample (n=19) completed the LEDS and a question exploring the subjective experience of the LTE-Q and LEDS. Important life adversity was reported on the LTE-Q in 48% of the sample. In the LTE-Q sample the prevalence of depression (PHQ-9≥10) was 12%. Exposure to recent adversity was associated with doubling of the odds of depression. The LTE-Q only captured a proportion of adversity measured by the LEDS (42% vs 84%). Both measures showed health, bereavement and relationship events were most common. The cross-sectional design limits the extent to which inferences can be drawn around the direction of causality between adversity and depression. Recall in older adults is questionable. UK older adults face adversity in areas of health, bereavement and relationships which are associated with depression. This has clinical relevance for psychological interventions for older adults to consider social context and social support. It helps identify the strengths and weaknesses of a brief adversity measure in large scale research. Further research is needed to explore the mechanisms of onset and direction of causality. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  5. Global Volcanism on Mercury at About 3.8 Ga

    Science.gov (United States)

    Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.

    2014-12-01

    four study sites, are spatially associated with impact structures; even the NP lie in a regional depression that may be impact-related. Because impacts remove overburden, deposit subsurface heat, and relax pre-existing stress, basins and craters may represent preferential sites for volcanic resurfacing on a globally contracting planet.

  6. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  7. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  8. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  9. Caregiver Depression

    Science.gov (United States)

    ... will not sell or share your name. Caregiver Depression Tweet Bookmark this page | Email | Print Many caregivers ... depression See your doctor Treatment Coping Symptoms of depression Caregiving is hard — and can lead to feelings ...

  10. Depression FAQs

    Science.gov (United States)

    Depression affects about 15 million American adults every year. Women are more likely to get depression than men. In general, about one out of every four women will get depression at some point in her life.

  11. Depression Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Depression Screening (PHQ-9) - Instructions The following questions are ... this tool, there is also text-only version . Depression Screening - Manual Instructions The following questions are a ...

  12. Communicating Uncertainty in Volcanic Ash Forecasts: Decision-Making and Information Preferences

    Science.gov (United States)

    Mulder, Kelsey; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel; Lickiss, Matthew

    2016-04-01

    The Robust Assessment and Communication of Environmental Risk (RACER) consortium, an interdisciplinary research team focusing on communication of uncertainty with respect to natural hazards, hosted a Volcanic Ash Workshop to discuss issues related to volcanic ash forecasting, especially forecast uncertainty. Part of the workshop was a decision game in which participants including forecasters, academics, and members of the Aviation Industry were given hypothetical volcanic ash concentration forecasts and asked whether they would approve a given flight path. The uncertainty information was presented in different formats including hazard maps, line graphs, and percent probabilities. Results from the decision game will be presented with a focus on information preferences, understanding of the forecasts, and whether different formats of the same volcanic ash forecast resulted in different flight decisions. Implications of this research will help the design and presentation of volcanic ash plume decision tools and can also help advise design of other natural hazard information.

  13. Trace elements studies on Karachi population part IV: blood copper, zinc, magnesium and lead levels in psychiatric patients with depression, mental retardation and seizure disorder

    International Nuclear Information System (INIS)

    Manser, W.T.

    1989-01-01

    Blood copper, zinc, magnesium and lead levels were determined by atomic absorption spectroscopy for 15 males and 16 female suffering from depression, 6 males and 1 female with mental retardation and 3 males and 4 females with seizure disorders. They were all under no medication and belong to low income groups. No difference in copper levels was found between the sexes in any of the groups. The levels in all the groups were significantly higher than in the normals. In depressives, males had significantly higher zinc levels than females and only female depressives had lower levels from normals. In both depressives and normals, males had higher magnesium levels than females but no group of patients had significantly different levels from normals. Lead levels were significantly higher in female depressives and for those with seizure disorders than for controls. At least one metal abnormality was found in 21 (67.7%) depressive, 5 (71.4%) of those with mental retardation and 6 (85.7%) with seizure disorders. (author)

  14. 3D-Reconstruction of recent volcanic activity from ROV-video, Charles Darwin Seamounts, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Devey, C. W.

    2011-12-01

    As well as providing well-localized samples, Remotely Operated Vehicles (ROVs) produce huge quantities of visual data whose potential for geological data mining has seldom if ever been fully realized. We present a new workflow to derive essential results of field geology such as quantitative stratigraphy and tectonic surveying from ROV-based photo and video material. We demonstrate the procedure on the Charles Darwin Seamounts, a field of small hot spot volcanoes recently identified at a depth of ca. 3500m southwest of the island of Santo Antao in the Cape Verdes. The Charles Darwin Seamounts feature a wide spectrum of volcanic edifices with forms suggestive of scoria cones, lava domes, tuff rings and maar-type depressions, all of comparable dimensions. These forms, coupled with the highly fragmented volcaniclastic samples recovered by dredging, motivated surveying parts of some edifices down to centimeter scale. ROV-based surveys yielded volcaniclastic samples of key structures linked by extensive coverage of stereoscopic photographs and high-resolution video. Based upon the latter, we present our workflow to derive three-dimensional models of outcrops from a single-camera video sequence, allowing quantitative measurements of fault orientation, bedding structure, grain size distribution and photo mosaicking within a geo-referenced framework. With this information we can identify episodes of repetitive eruptive activity at individual volcanic centers and see changes in eruptive style over time, which, despite their proximity to each other, is highly variable.

  15. When Nothing Matters Anymore: A Survival Guide for Depressed Teens.

    Science.gov (United States)

    Cobain, Bev

    This guide provides adolescents with information on depression. An introduction discusses symptoms of depression and lists famous people who were known to be depressed. Part 1, "What's Wrong," explores how it feels to be depressed, the causes and types of depression, and the connections between depression, suicide, and drug and alcohol abuse. A…

  16. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  17. Geochronology of the Turkana depression of northern Kenya and southern Ethiopia.

    Science.gov (United States)

    Brown, Francis H; McDougall, Ian

    2011-01-01

    Mesozoic and Cenozoic sedimentary rocks in the Turkana Depression of northern Kenya and southern Ethiopia rest on basement rocks that yield K/Ar cooling ages between 433 and 522 Ma. Proven Cretaceous strata are exposed in Lokitaung Gorge in northwest Kenya. Eocene basalts and rhyolites in Lokitaung Gorge, the Nabwal Hills, and at Kangamajoj, date between 34 and 36 Ma, recording the earliest volcanism in the region. Oligocene volcanic rocks, with associated fossiliferous sedimentary strata at Eragaleit, Nakwai, and Lokone, all west of Lake Turkana, are 23 to 28 Ma old, as is the Langaria Formation east of Lake Turkana. Lower and Middle Miocene volcanic and sedimentary sequences are present both east and west of Lake Turkana, where ages from 17.9 to 9.1 Ma have been measured at many levels. Upper Miocene strata are presently known only at Lothagam, with ages ranging from 7.4 to 6.5 Ma. Deposition of Pliocene strata of the Omo Group begins in the Omo-Turkana, Kerio, and South Turkana basins -4.3 Ma ago and continues in parts of those basins until nearly the present time, but with some gaps. These strata are linked through volcanic ash correlations at many levels, as are Pleistocene strata of the Omo Group (principally the Shungura, Koobi Fora, and Nachukui formations). (40) Ar/(39) Ar dates on many volcanic ash layers within the Omo Group, supplemented by K/Ar ages on intercalated basalts and paleomagnetic polarity stratigraphy, provide excellent age control from 4.2 to 0.75 Ma, although there is a gap in the record between -1 Ma and 0.8 Ma. Members I to III of the Kibish Formation in the lower Omo Valley record deposition between 0.2 and 0.1 Ma ago; Member IV, correlative with the Galana Boi Formation, was deposited principally between 12 and 7 ka BP. Copyright © 2011 Wiley Periodicals, Inc.

  18. Anxiety, depression, suicidal ideation, and stressful life events in non-cardiac adolescent chest pain: a comparative study about the hidden part of the iceberg.

    Science.gov (United States)

    Eliacik, Kayi; Kanik, Ali; Bolat, Nurullah; Mertek, Hilal; Guven, Baris; Karadas, Ulas; Dogrusoz, Buket; Bakiler, Ali Rahmi

    2017-08-01

    Chest pain in adolescents is rarely associated with cardiac disease. Adolescents with medically unexplained chest pain usually have high levels of anxiety and depression. Psychological stress may trigger non-cardiac chest pain. This study evaluated risk factors that particularly characterise adolescence, such as major stressful events, in a clinical population. The present study was conducted on 100 adolescents with non-cardiac chest pain and 76 control subjects. Stressful life events were assessed by interviewing patients using a 36-item checklist, along with the Children's Depression Inventory and Spielberger's State-Trait Anxiety Inventory for children, in both groups. Certain stressful life events, suicidal thoughts, depression, and anxiety were more commonly observed in adolescents with non-cardiac chest pain compared with the control group. Moreover, binary logistic regression analysis showed that trouble with bullies, school-related problems, and depression may trigger non-cardiac chest pain in adolescents. Non-cardiac chest pain on the surface may point to the underlying psychosocial health problems such as depression, suicidal ideas, or important life events such as academic difficulties or trouble with bullies. The need for a psychosocial evaluation that includes assessment of negative life events and a better management have been discussed in light of the results.

  19. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  20. Can rain cause volcanic eruptions?

    Science.gov (United States)

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  1. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  2. Volcanic hazards in Central America

    Science.gov (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  3. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  4. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  5. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  6. Volcanic mercury in Pinus canariensis.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  7. The New Data on Dynamics of Permian - Triassic Magmatic Activity on Siberian Platform: Paleomagnetic Results from Tunguska Syncline and Angara - Taseeva Depression

    Science.gov (United States)

    Latyshev, A.; Veselovskiy, R. V.

    2015-12-01

    We perform the new paleomagnetic data from intrusive complexes of two regions of Siberian Trap province (Angara - Taseeva depression and Tunguska syncline). Results of paleomagnetic and geological investigation indicate that two different patterns of magmatic process took place in these regions. In Angara - Taseeva depression short intense peaks of magmatic activity alternate with more prolonged periods of relative quietness. These bursts of magmatic activity resulted in intruding of large dolerite sills. In the central part of Tunguska syncline local intrusive events took place on the background of effusive volcanic activity. Considering the new data together with previous paleomagnetic results from Norilsk and Maymecha - Kotuy regions (Pavlov et al., 2015), western part of Viluy basin (Konstantinov et al., 2014) and Angara-Taseeva depression (Latyshev et al., 2013), it can be concluded that pulsating character of magmatic activity is typical for the periphery of Tunguska syncline. However, the central part of Tunguska syncline is characterized by more prolonged and even style of volcanic process and less widescale intrusive events. This conclusion is important for understanding of LIPs formation and mantle plumes dynamics. This study was funded by grants RFBR # 14-05-31447 and 15-35-20599 and Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0017).

  8. Crustal Structure of the Tengchong Intra-plate Volcanic Area

    Science.gov (United States)

    Qian, Rongyi; Tong, Vincent C. H.

    2015-09-01

    We here provide an overview of our current understanding of the crustal structure of Tengchong in southwest China, a key intra-plate volcanic area along the Himalayan geothermal belt. Given that there is hitherto a lack of information about the near-surface structure of intra-plate volcanic areas, we present the first seismic reflection and velocity constraints on the shallow crust between intra-plate volcanoes. Our near-surface seismic images reveal the existence of dome-shaped seismic reflectors (DSRs) in the shallow crust between intra-plate volcanic clusters in Tengchong. The two DSRs are both ~2 km wide, and the shallowest parts of the DSRs are found at the depth of 200-300 m. The velocity model shows that the shallow low-velocity layer (<4 km/s) is anomalously thick (~1 km) in the region where the DSRs are observed. The presence of DSRs indicates significant levels of intra-plate magmatism beneath the along-axis gap separating two volcano clusters. Along-axis gaps between volcano clusters are therefore not necessarily an indicator of lower levels of magmatism. The seismic images obtained in this technically challenging area for controlled-source seismology allow us to conclude that shallow crustal structures are crucial for understanding the along-axis variations of magmatism and hydrothermal activities in intra-plate volcanic areas.

  9. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  10. Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Mountainous parts of the Yakama Nation lands in south-central Washington are mostly covered by basaltic lava flows and cinder cones that make up the Simcoe Mountains volcanic field. The accompanying geologic map of the central part of the volcanic field has been produced by the U.S. Geological Survey (USGS) on behalf of the Water Resources Program of the Yakama Nation. The volcanic terrain stretches continuously from Mount Adams eastward as far as Satus Pass and Mill Creek Guard Station. Most of the many hills and buttes are volcanic cones where cinders and spatter piled up around erupting vents while lava flows spread downslope. All of these small volcanoes are now extinct, and, even during their active lifetimes, most of them erupted for no more than a few years. On the Yakama Nation lands, the only large long-lived volcano capable of erupting again in the future is Mount Adams, on the western boundary.

  11. Diffuse Helium Emission as a Precursory Sign of Volcanic Unrest

    Science.gov (United States)

    Padron, E.; Perez, N.; Hernandez Perez, P. A.; Sumino, H.; Melian Rodriguez, G.; Barrancos, J.; Nolasco, D.; Padilla, G.; Dionis, S.; Rodriguez, F.; Hernandez, I.; Calvo, D.; Peraza, M.; Nagao, K.

    2012-12-01

    Since July 16, 2011, an anomalous seismicity at El Hierro island, the youngest and smallest of the Canary Islands, was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 of the October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of October 12 a large light-green coloured area was observed in the sea to the souht of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. As part of the volcanic surveillance of the island, the Instituto Volcanologico de Canarias (INVOLCAN) geochemical monitoring program is carrying out diffuse helium surveys on the surface environment of El Hierro (soil atmosphere). This nobel gas has been investigated because it has been considered an almost ideal geochemical indicator because it is chemically inert, physically stable, nonbiogenic, sparingly soluble in water under ambient conditions and almost non-adsorbable. At each survey, 600 sampling sites covering the whole island and following an homogeneous distribution are selected for helium measurements in the soil gases, The helium concentration gradients with respect to its value on air (5.24 ppm) allow us to estimate a pure diffusive emission rate of helium throughout the island. The first survey was carried out on the summer of 2003, when the island was on a quiescence period. At this survey, the amount of helium released by the volcanic system of El Hierro was estimated in 6 kg/d. Since the beginning of the seismic unrest, 13 helium emission surveys have been carried out. The helium emission rate has shown an excellent agreement with the evolution of the volcanic crisis of the island, reaching 30 kg

  12. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula)

    Science.gov (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-11-01

    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  13. Determining Whether a Definitive Causal Relationship Exists Between Aripiprazole and Tardive Dyskinesia and/or Dystonia in Patients With Major Depressive Disorder, Part 3: Clinical Trial Data.

    Science.gov (United States)

    Preskorn, Sheldon H; Macaluso, Matthew

    2016-03-01

    This series of columns has 3 main goals: (1) to explain class warnings as used by the United States Food and Drug Administration, (2) to increase awareness of movement disorders that may occur in patients treated with antipsychotic medications, and (3) to understand why clinicians should refrain from immediately assuming a diagnosis of tardive dyskinesia/dystonia (TD) in patients who develop abnormal movements during treatment with antipsychotics. The first column in the series presented a patient who developed abnormal movements while being treated with aripiprazole as an augmentation strategy for major depressive disorder (MDD) and reviewed data concerning the historical background, incidence, prevalence, and risk factors for tardive and spontaneous dyskinesias, the clinical presentations of which closely resemble each other. The second column in the series reviewed the unique mechanism of action of aripiprazole and preclinical studies and an early-phase human translational study that suggest a low, if not absent, risk of TD with aripiprazole. This column reviews clinical trial data to assess whether those data support the conclusion that aripiprazole has a low to absent risk of causing TD when used as an augmentation strategy to treat MDD. To date, no randomized, placebo-controlled trials have established a definitive link between exposure to aripiprazole and TD in patients with MDD. One long-term, open-label, safety trial examined aripiprazole as an augmentation strategy in individuals with MDD and found a rare occurrence (4/987, 0.4%, the confidence interval of which overlaps with zero) of an adverse event termed TD. In all 4 cases, the observed movements resolved within weeks of aripiprazole discontinuation, suggesting that they were either amenable to treatment or represented an acute syndrome rather than TD. No cases of TD were reported in the registration trials for the MDD indication for aripiprazole. These data were presented in a pooled analysis of

  14. Volcanic stratigraphy and geochemistry of the Soufrière Volcanic Centre, Saint Lucia with implications for volcanic hazards

    Science.gov (United States)

    Lindsay, Jan M.; Trumbull, Robert B.; Schmitt, Axel K.; Stockli, Daniel F.; Shane, Phil A.; Howe, Tracy M.

    2013-05-01

    The Soufrière Volcanic Complex (SVC), Saint Lucia, represents one of the largest silicic centres in the Lesser Antilles arc. It comprises extensive pumiceous pyroclastic flow deposits, lava flows as well as Peléan-style domes and dome collapse block-and-ash-flow deposits. These deposits occur within and around the Qualibou Depression, a ~ 10-km diameter wide sector collapse structure. To date, vent locations for SVC pyroclastic deposits and their relationship to the sector collapse have been unclear because of limited stratigraphic correlation and few radiometric ages. In this study we reconstruct the geologic history of the SVC in light of new and recently published (U-Th)/He, U-Th and U-Pb zircon chronostratigraphic data, aided by mineralogical and geochemical correlation. Compositionally, SVC deposits are monotonous medium-K, calc-alkaline rocks with 61.6 to 67.7 wt.% SiO2 and display similar trace element abundances. Combined U-Th and (U-Th)/He zircon dating together with 14C ages and mineral fingerprinting reveals significant explosive eruptions at 640, 515, 265, 104, 60 and 40 ka (producing deposits previously grouped together as the "Choiseul" unit) and at 20 ka (Belfond unit). The mineralogically and geochemically distinct Belfond unit is a large, valley-filling pumiceous pyroclastic flow deposit distributed to the north, northeast, south and southeast of the Qualibou Depression that was probably deposited during a single plinian eruption. The unit previously referred to as ‘Choiseul tuff' is much less well defined. The typical Choiseul unit comprises a series of yellowish-white, crystal-poor, non-welded pumiceous pyroclastic deposits cropping out to the north and southeast of the Qualibou depression; however its age is poorly constrained. A number of other units previously mapped as Choiseul can be distinguished based on age, and in some cases mineral and whole rock chemistry. Pyroclastic deposits at Micoud (640 ± 19 ka), Bellevue (264 ± 8 ka), Anse

  15. Uranium occurrences in the volcanic rocks of Upper Mahakam, east Kalimantan

    International Nuclear Information System (INIS)

    Djokolelono, S.; Agoes, E.

    1988-01-01

    The Kawat area, which is about 35 km 2 in size, is located in the Upper Mahakam region and is one of the areas being prospected in Kalimantan. It has already been covered by general, detailed and systematic prospection. The Kawat area formed a tectonical depression and was intercepted by the volcanic products of various episodes. The regional stratigraphy of this area, from the bottom upwards, is as follows: Unit 1: quartzite and ophiolitic green rock; Unit 2: black shale, sometimes with boulders of quartzite and radiolarite; Unit 3: massive conglomeratic sandstone, alternating with claystone and sandstone sequences; Unit 4: sandstone, siltstone and claystone, with an intercalation of volcanic rocks. Uraniferous occurrences are reflected by anomalous zones located in the volcanic facies of Unit 4, usually in aphanitic rhyolite. Mineralization consists of pitchblende associated with molybdenite and pyrite. Although the Kawat area is very remote, future development is of great interest. (author). 4 figs

  16. Chemical deposits in volcanic caves of Argentina

    Directory of Open Access Journals (Sweden)

    Carlos Benedetto

    1998-01-01

    Full Text Available During the last Conference of the FEALC (Speleological Federation of Latin America and Caribbean Islands which was held in the town of Malargue, Mendoza, in February 1997, two volcanic caves not far from that town were visited and sampled for cave mineral studies. The first cave (Cueva del Tigre opens close to the Llancanelo lake, some 40 kms far from Malargue and it is a classical lava tube. Part of the walls and of the fallen lava blocks are covered by white translucent fibres and grains. The second visited cave is a small tectonic cavity opened on a lava bed some 100 km southward of Malargue. The cave “El Abrigo de el Manzano” is long no more than 10-12 meters with an average width of 3 meters and it hosts several bird nests, the larger of which is characterized by the presence of a relatively thick pale yellow, pale pink flowstone. Small broken or fallen samples of the secondary chemical deposits of both these caves have been collected in order to detect their mineralogical composition. In the present paper the results of the detailed mineralogical analyses carried out on the sampled material are shortly reported. In the Cueva del Tigre lava tube the main detected minerals are Sylvite, Thenardite, Bloedite and Kieserite, all related to the peculiar dry climate of that area. The flowstone of “El Abrigo de el Manzano” consists of a rather complex admixture of several minerals, the large majority of which are phosphates but also sulfates and silicates, not all yet identified. The origin of all these minerals is related to the interaction between bird guano and volcanic rock.

  17. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  18. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  19. Depression in nursing homes.

    Science.gov (United States)

    Snowdon, John

    2010-11-01

    Although studies have shown the prevalence of depression in nursing homes to be high, under-recognition of depression in these facilities is widespread. Use of screening tests to enhance detection of depressive symptoms has been recommended. This paper aims to provoke discussion about optimal management of depression in nursing homes. The utility of the Cornell Scale for Depression in Dementia (CSDD) is considered. CSDD data relating to residents assessed in 2008-2009 were collected from three Sydney nursing homes. CSDD scores were available from 162 residents, though raters stated they were unable to score participants on at least one item in 47 cases. Scores of 13 or more were recorded for 23% of residents in these facilities, but in most of these cases little was documented in case files to show that the results had been discussed by staff, or that they led to interventions, or that follow-up testing was arranged. Results of CSDD testing should prompt care staff (including doctors) to consider causation of depression in cases where residents are identified as possibly depressed. In particular, there needs to be discussion of how to help residents to cope with disability, losses, and feelings of powerlessness. Research is needed, examining factors that might predict response to antidepressants, and what else helps. Accreditation of nursing homes could be made to depend partly on evidence that staff regularly search for, and (if found) ensure appropriate responses to, depression.

  20. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  1. [Effects of volcanic eruptions on environment and health].

    Science.gov (United States)

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  2. Review of the petrology of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Smith, I.E.M.; McGee, L.E.; Lindsay, J.M.

    2009-01-01

    Research has long shown that the petrology of suites of volcanic rock can be used to define and understand the fundamental parameters of the magmatic systems that feed volcanoes. The geochemistry of volcanic rocks provides information about the nature of the source rocks, depths and amounts of melting, the processes that act on magmas as they rise to the surface and, most importantly, the rates of these processes. In turn, the answers to fundamental petrological questions can provide input to important questions concerning volcano hazard scenarios and hazard mitigation challenges. The multi-disciplinary DEVORA research programme, launched in 2008, is a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland. One of its main themes is the development of an integrated geological model for the Auckland Volcanic Field (AVF) by investigating the physical controls on magma generation, ascent and eruption though detailed structural and petrological investigations. A key data set underpinning this theme is a comprehensive geochemical database for the rocks of the AVF. This report, Review of the Petrology of the Auckland Volcanic Field, is a synthesis and commentary of all petrological and geochemical data currently available for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from previous work is collated and summarised, so that gaps in current knowledge can be appropriately addressed. In this report we utilise published and unpublished sources to summarise the petrological data available up to May 2009, and identify where new data and approaches will improve our understanding of the magmatic system which feeds the field. (author). 53 refs., 7 figs., 2 tabs.

  3. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone

    2007-09-01

    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  4. Atmospheric dispersion simulations of volcanic gas from Miyake Island by SPEEDI

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Furuno, Akiko; Terada, Hiroaki; Umeyama, Nobuaki; Yamazawa, Hiromi; Chino, Masamichi

    2001-03-01

    Japan Atomic Energy Research Institute is advancing the study for prediction of material circulation in the environment to cope with environmental pollution, based on SPEEDI (System for Prediction of Environmental Emergency Dose Information) and WSPEEDI (Worldwide version of SPEEDI), which are originally developed aiming at real-time prediction of atmospheric dispersion of radioactive substances accidentally released from nuclear facility. As a part of this study, dispersion simulation of volcanic gas erupted from Miyake Island is put into practice. After the stench incident at the west Kanto District on 28 August 2000 caused by volcanic gas from Miyake Island, the following simulations dealing with atmospheric dispersion of volcanic gas from Miyake Island have been carried out. (1) Retrospective simulation to analyze examine the mechanism of the transport of high concentration volcanic gas to the west Kanto District on 28 August and to estimate the release amount of volcanic gas. (2) Retrospective simulation to analyze the mechanism of the transport of volcanic gas to Tokai and Kansai districts in a case of stench incident on 13 September. (3) Automated real-time simulation from the acquisition of meteorological data to the output of figures for operational prediction of the transport of volcanic gas to Tokai and Kanto districts. This report describes the details of these studies. (author)

  5. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 4. Effect on physical self-concept and depression.

    Science.gov (United States)

    Guest, R S; Klose, K J; Needham-Shropshire, B M; Jacobs, P L

    1997-08-01

    To determine whether persons with spinal cord injury (SCI) paraplegia who participated in an electrical stimulation walking program experienced changes in measures of physical self-concept and depression. Before-after trial. Human SCI applied research laboratory. Volunteer sample of 12 men and 3 women with SCI paraplegia, mean age 28.75 +/- 6.6yrs and mean duration of injury 3.8 +/- 3.2yrs. Thirty-two FNS ambulation training sessions using a commercially available system (Parastep 1). The hybrid system consists of a microprocessor-controlled stimulator and a modified walking frame with finger-operated switches that permit the user to control the stimulation parameters and activate the stepping. The Tennessee Self-Concept Scale (TSCS) and the Beck Depression Inventory (BDI) were administered before and after training. Only the Physical Self subscale of the TSCS was analyzed. After training, individual interviews were performed to assess participants' subjective reactions to the training program. A repeated measures analysis of variance indicated that desired directional and statistically significant changes occurred on the Physical Self subscale of the TSCS (F(1,14) = 8.54, p self-concept scores and decreases in depression scores.

  6. Depression (PDQ)

    Science.gov (United States)

    ... Data Conducting Clinical Trials Statistical Tools and Data Terminology Resources NCI Data Catalog Cryo-EM NCI's Role ... that may also cause depression. There are many medical conditions that can cause depression. Medical conditions that ...

  7. Postpartum Depression

    Science.gov (United States)

    ... do not need treatment. The symptoms of postpartum depression last longer and are more severe. You may ... treatment right away, often in the hospital. Postpartum depression can begin anytime within the first year after ...

  8. Depression Treatment

    Science.gov (United States)

    ... 3286 After hours (404) 639-2888 Contact Media Depression Treatment Recommend on Facebook Tweet Share Compartir On ... How Do I Know if I Am Experiencing Depression? The following questions may help you determine if ...

  9. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  10. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  11. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  12. Teen Depression

    Science.gov (United States)

    What is depression in teens? Teen depression is a serious medical illness. It's more than just a feeling of being sad or "blue" for a few days. It is ... trouble focusing and have no motivation or energy. Depression can make you feel like it is hard ...

  13. Risk factors for antenatal depression, postnatal depression and parenting stress

    Directory of Open Access Journals (Sweden)

    Milgrom Jeannette

    2008-04-01

    Full Text Available Abstract Background Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Methods Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program 1. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26–32 weeks gestation. A subsample of these women (N = 161 also completed questionnaires at 10–12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI. Results Regression analyses identified significant risk factors for the three outcome measures. (1. Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2. Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3. Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator

  14. Risk factors for antenatal depression, postnatal depression and parenting stress.

    Science.gov (United States)

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-04-16

    Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program 1. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26-32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10-12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors. Risk factor profiles for

  15. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  16. Atla Regio, Venus: Geology and origin of a major equatorial volcanic rise

    Science.gov (United States)

    Senske, D. A.; Head, James W., III

    1992-01-01

    Regional volcanic rises form a major part of the highlands in the equatorial region of Venus. These broad domical uplands, 1000 to 3000 km across, contain centers of volcanism forming large edifices and are associated with extension and rifting. Two classes of rises are observed: (1) those that are dominated by tectonism, acting as major centers for converging rifts such as Beta Regio and Alta Regio, and are termed tectonic junctions; and (2) those forming uplands characterized primarily by large-scale volcanism forming edifices. Western Eistla Regio and Bell Regio, where zones of extension and rifting are less developed. Within this second class of features the edifices are typically found at the end of a single rift, or are associated with a linear belt of deformation. We examine the geologic characteristics of the tectonic junction at Alta Regio, concentrating on documenting the styles of volcanism and assessing mechanisms for the formation of regional topography.

  17. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate

    DEFF Research Database (Denmark)

    Jones, David T; Davies, D. R.; Campbell, I. H.

    2017-01-01

    Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth's core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub......-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion...... of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent...

  18. Mode switching in volcanic seismicity: El Hierro 2011-2013

    Science.gov (United States)

    Roberts, Nick S.; Bell, Andrew F.; Main, Ian G.

    2016-05-01

    The Gutenberg-Richter b value is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. Such studies typically analyze discrete time windows or phases, but the choice of such windows is subjective and can introduce significant bias. Here we minimize this sample bias by iteratively sampling catalogs with randomly chosen windows and then stack the resulting probability density functions for the estimated b>˜ value to determine a net probability density function. We examine data from the El Hierro seismic catalog during a period of unrest in 2011-2013 and demonstrate clear multimodal behavior. Individual modes are relatively stable in time, but the most probable b>˜ value intermittently switches between modes, one of which is similar to that of tectonic seismicity. Multimodality is primarily associated with intermittent activation and cessation of activity in different parts of the volcanic system rather than with respect to any systematic inferred underlying process.

  19. Descartes region - Evidence for Copernican-age volcanism.

    Science.gov (United States)

    Head, J. W., III; Goetz, A. F. H.

    1972-01-01

    A model that suggests that the high-albedo central region of the Descartes Formation was formed by Copernican-age volcanism was developed from Orbiter photography, Apollo 12 multispectral photography, earth-based spectrophotometry, and thermal IR and radar data. The bright surface either is abundant in centimeter-sized rocks or is formed from an insulating debris layer overlying a surface with an abundance of rocks in the 1- to 20-cm size range. On the basis of these data, the bright unit is thought to be a young pyroclastic deposit mantling older volcanic units of the Descartes Formation. Since the Apollo 16 target point is only 50 km NW of the central part of this unit, evidence for material associated with this unique highland formation should be searched for in returned soil and rock samples.

  20. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  1. Petrography of the Paleogene Volcanic Rocks of the Sierra Maestra, Southeastern Cuba

    Science.gov (United States)

    Bemis, V. L.

    2006-12-01

    This study is a petrographic analysis of over 200 specimens of the Paleogene volcanic rocks of the Sierra Maestra (Southerneastern Cuba), a key structure in the framework of the northern Caribbean plate boundary evolution. The purpose of this study is to understand the eruptive processes and the depositional environments. The volcanic sequence in the lower part of the Sierra Maestra begins with highly porphyritic pillow lavas, topped by massive tuffs and autoclastic flows. The presence of broken phenocrystals, palagonitic glass and hyaloclastites in this section of the sequence suggests that the prevalent mode of eruption was explosive. The absence of welding in the tuffs suggests that the rocks were emplaced in a deep submarine environment. Coherent flows, much less common than the massive tuffs, show evidence of autoclastic fracturing, also indicating low temperature-submarine environments. These observations support the hypothesis that the Sierra Maestra sequence may be neither part of the Great Antilles Arc of the Mesozoic nor any other fully developed volcanic arc, rather a 250 km long, submarine eruptive system of dikes, flows and sills, most likely a back-arc structure. The volcanic rocks of the upper sequence are all very fine grained, reworked volcaniclastic materials, often with the structures of distal turbidities, in mode and texture similar to those drilled on the Cayman Rise. This study suggests that the Sierra Maestra most likely records volcanism of diverse sources: a local older submarine source, and one or more distal younger sources, identifiable with the pan-Caribbean volcanic events of the Tertiary.

  2. Validity of the definite and semidefinite questionnaire version of the Hamilton Depression Scale, the Hamilton subscale and the Melancholia Scale. Part I

    DEFF Research Database (Denmark)

    Hansen, Jesper Bent; Bech, Per

    2011-01-01

    , and their corresponding definite versions of the self-rating questionnaires DMQ and DHAM6 were accepted by the Rasch analysis, and only these four valid scales discriminated significantly between the effect of citalopram and placebo treatment. Our results are limited to patients with moderate depression. Two new self......-report scales with unparalleled construct validity, reliability, sensitivity, and convergent validity have been identified (DMQ and DHAM6). We have also identified a crucial importance of format for the means and variances of self-rating scales. These findings are of high practical and scientific value....

  3. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh, India

    Science.gov (United States)

    Goswami, Sukanta; Upadhyay, P. K.; Bhagat, Sangeeta; Zakaulla, Syed; Bhatt, A. K.; Natarajan, V.; Dey, Sukanta

    2018-03-01

    The lower stratigraphic part of the Cuddapah basin is marked by mafic and felsic volcanism. Tadpatri Formation consists of a greater variety of rock types due to bimodal volcanism in the upper part. Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes involved in the formation of such volcanic sequence result in original textures which are classified into volcaniclastic and coherent categories. Detailed and systematic field works in Tadpatri-Tonduru transect of SW Cuddapah basin have provided information on the physical processes producing this diversity of rock types. Felsic volcanism is manifested here with features as finger print of past rhyolite-dacite eruptions. Acid volcanics, tuffs and associated shale of Tadpatri Formation are studied and mapped in the field. With supporting subordinate studies on geochemistry, mineralogy and petrogenesis of the volcanics to validate field features accurately, it is understood that volcanism was associated with rifting and shallow marine environmental condition. Four facies (i.e., surge, flow, fall and resedimented volcaniclastic) are demarcated to describe stratigraphic units and volcanic history of the mapped area. The present contribution focuses on the fundamental characterization and categorization of field-based features diagnostic of silica-rich volcanic activities in the Tadpatri Formation.

  4. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  5. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.

    2015-12-01

    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern

  6. Large Volcanic Rises on Venus

    Science.gov (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  7. The Lanzarote Geodynamic Laboratory: new capabilities for monitoring of volcanic activity at Canary Islands

    Science.gov (United States)

    Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.

    2012-04-01

    The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic

  8. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins

    Science.gov (United States)

    Buck, W. Roger

    2017-05-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including most that border the Atlantic Ocean. Whether their formation requires large magnitude (i.e. 10 s of km) of normal fault slip or results from the deflection of the lithosphere by the weight of volcanic flows is controversial. Though there is evidence for faulting associated with some SDRs, this paper considers the range of structures that can be produced by magmatic and volcanic loading alone. To do this an idealized mechanical model for the construction of rift-related volcanic flow structures is developed. Dikes open as plates move away from the center of a model rift and volcanic flows fill the depression produced by the load caused by dike solidification. The thin elastic plate flexure approximation allows a closed form description of the shape of both the contacts between flows and between the flows and underlying dikes. The model depends on two independent parameters: the flexure parameter, α, and the maximum isostatically supported extrusive layer thickness, w0. For reasonable values of these parameters the model reproduces the observed down-dip thickening of flows and the range of reflector dip angles. A numerical scheme using the analytic results allows simulation of the effect of temporal changes in the locus of magmatic spreading as well as changes in the amount of volcanic infill. Either jumps in the location of the center of diking or periods with no volcanism result in separate units or "packages" of model SDRs, in which the flow-dike contact dips landward, consistent with observations previously attributed only to listric normal fault offset. When jumps in the spreading center are small (i.e. less than α) they result in thicker, narrower volcanic units on one side of a rift compared to those on the other side. This is similar to the asymmetric distributions of volcanic packages seen

  9. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    Science.gov (United States)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  10. Communicating Volcanic Hazards in the North Pacific

    Science.gov (United States)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  11. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  12. Volcaniclastic and sedimentary deposits in Late Oligocene/Early Miocene Smrekovec Volcanic Complex, northern Slovenia

    Science.gov (United States)

    Kralj, Polona

    2010-05-01

    Late Oligocene/Early Miocene volcanic activity in northern Slovenia is related to post-collisional accommodation of continental Apulian and oceanic European plates (von Blanckenburg and Davis, 1996). It occurred in one of small south-western marginal depressions of the Pannonian basin system, locally termed the Smrekovec Basin (Hanfland et al., 2004). Contemporaneous clastic sedimentation is evidenced by several hundred metres thick succession composed mainly of mudstone, siltstone and sand. Smrekovec Volcanic Complex (SVC) is an eroded and tectonically uplifted remain of a larger submarine stratovolcano edifice, built of lavas, shallow or subsurface intrusive bodies, and pyroclastic, hyaloclastic, syn-eruptively resedimented volcaniclastic and reworked volcaniclastic-sedimentary deposits (Kralj, 1996). The development of lithofacies of syn-eruptively resedimented deposits is controlled by the proximity to the ancient volcano summit and the volcano sloping. Moreover, close to the rising volcano edifice, distinct shallow-water environments with siliciclastic sedimentation developed. Syn-eruptively resedimented deposits are the most widespread and are related to volcaniclastic debris flows and volcaniclastic tubidity flows. Volcaniclastic debris flow deposits are subdivided into lithofacies Bx - polymict volcaniclastic breccia, and Bt - volcaniclastic tuff-breccia. Bx occurs as tabular, up to some ten metres thick bodies with abundant up to 5 dm large angular lava clasts and angular or rounded clasts of fine-grained tuff, and tuffaceous matrix. Bt forms basal, massive layers in fining-upward sequences. The main constituent is tuffaceous matrix; up to 1.5 dm large clasts of lavas and tuffs are subordinate. In a distance up to 2 km from the former volcano summit (proximal area), Bt predominates in the sequence lithofacies composition (~75 %), and attains a thickness of up to 4 m. At a distance of 2-4 km (distal area), a maximum Bt thickness rarely exceeds 5 dm, an

  13. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.

  14. The Archaen volcanic facies in the Migori segment, Nyanza greenstone belt, Kenya: stratigraphy, geochemistry and mineralisation

    Science.gov (United States)

    Ichang'l, D. W.; MacLean, W. H.

    The Migori segment is an 80 by 20 km portion of the Nyanza greenstone belt which forms the northern part of the Archean Tanzanian Craton in western Kenya, northern Tanzania and southeastern Uganda. It consists of two volcanic centres, each with central, proximal and distal volcanic facies, comprising the Migori Group, the Macalder and Lolgorien Subgroups, and eleven volcano-sedimentary formations. The centres are separated by a basin of tuffs and greywacke turbidites. The volcanics are bimodal mafic basalt and dolerite ( Zr/Y = 3.8 - 6.5, La N/Yb N = 1.0 - 2.4) , and felsic calc-alkaline dacite-rhyolite ( Zr/Y = 10 - 21, La N/Yb N = 19 - 42 ) and high-K dacite ( Zr/Y = 9 - 16, La N/Yb N = 21 - 22 ). Felsic units form approximately three-fourths of the volcanic stratigraphy. Basalts, calc-alkaline dacites and rhyolites were deposited in a submarine environment, but the voluminous high-K dacites were erupted subaerially. The turbidites contain units of iron-formations. Granitic intrusions are chemically continuous with the high-K dacites. The felsic volcanics are anologous to those found at modern volcanic arc subduction settings involving continental crust. The Macalder ZnCuAuAg volcanogenic massive sulphide deposits is in central facies basalts-greywacke-rhyolite. Gold mineralisation occurs in proximal facies tuffs and iron formation, and in oblique and semi-conformable quartz veins. Greenstones in the Nyanza belt are dominated by calc-alkaline felsic volcanics in constrast to the komatiite-tholeiitic basalt volcanism in the Kaapvaal Craton of South Africa, and a mixture of the two types in the Zimbabwe Craton.

  15. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores)

    Science.gov (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  16. Volcanic evolution of central Basse-Terre Island revisited on the basis of new geochronology and geomorphology data

    Science.gov (United States)

    Ricci, J.; Quidelleur, X.; Lahitte, P.

    2015-10-01

    Twenty-six new and seven previous K-Ar ages obtained on groundmass separates for samples from the Axial Chain massif (Guadeloupe, F.W.I.), associated with geomorphological investigations, allow us to propose a new model of the volcanic evolution of the central part of Basse-Terre Island. The Axial Chain is composed of four edifices, Moustique, Matéliane, Capesterre, and Icaque mounts, showing coeval activity from 681 ± 12 to 509 ± 10 ka, which contradicts a previous hypothesis that flank collapse affected them successively. Our geomorphological reconstruction shows that the Axial Chain can be considered as a single large volcano, named the Southern Axial Chain volcano (SCA), rather than a succession of several smaller volcanoes. It raises questions regarding the formation of a large depression within the SCA volcano, prior to the construction of the Sans-Toucher volcano between 451 ± 13 and 412 ± 8 ka. Given presently available evidence, a slump affecting the western part of the SCA volcano is the most probable scenario to reconcile the complete age dataset and the present-day morphology of central Basse-Terre. Finally, our study shows that the SCA volcano had a post-activity volume of 90 km3, implying a construction rate of 0.5 km3/kyr. This value strongly constrains interpretations of magma generation processes throughout the Lesser Antilles arc.

  17. Negative symptoms, anxiety, and depression as mechanisms of change of a 12-month trial of assertive community treatment as part of integrated care in patients with first- and multi-episode schizophrenia spectrum disorders (ACCESS I trial).

    Science.gov (United States)

    Schmidt, Stefanie J; Lange, Matthias; Schöttle, Daniel; Karow, Anne; Schimmelmann, Benno G; Lambert, Martin

    2017-05-24

    Assertive community treatment (ACT) has shown to be effective in improving both functional deficits and quality of life (QoL) in patients with severe mental illness. However, the mechanisms of this beneficial effect remained unclear. We examined mechanisms of change by testing potential mediators including two subdomains of negative symptoms, i.e. social amotivation as well as expressive negative symptoms, anxiety, and depression within a therapeutic ACT model (ACCESS I trial) in a sample of 120 first- and multi-episode patients with a schizophrenia spectrum disorder (DSM-IV). Path modelling served to test the postulated relationship between the respective treatment condition, i.e. 12-month ACT as part of integrated care versus standard care, and changes in functioning and QoL. The final path model resulted in 3 differential pathways that were all significant. Treatment-induced changes in social amotivation served as a starting point for all pathways, and had a direct beneficial effect on functioning and an additional indirect effect on it through changes in anxiety. Expressive negative symptoms were not related to functioning but served as a mediator between changes in social amotivation and depressive symptoms, which subsequently resulted in improvements in QoL. Our results suggest that social amotivation, expressive negative symptoms, depression, and anxiety functioned as mechanisms of change of ACCESS. An integrated and sequential treatment focusing on these mediators may optimise the generalisation effects on functioning as well as on QoL by targeting the most powerful mechanism of change that fits best to the individual patient.

  18. 40Ar/39Ar ages of the post-collision volcanic rocks and their geological significance in Yangyingxiang area, south Tibet

    International Nuclear Information System (INIS)

    Zhou Su; Mo Xuanxue; Zhao Zhidan; Zhang Shuangquan; Guo Tieying; Qiu Ruizhao

    2003-01-01

    Ten new 40 Ar/ 39 Ar age determination of mineral separates have been carried out to date volcanic rocks of Yangyingxiang in the eastern part of the Gangdese, Tibet. The age range of Sanidine and biotite in the five volcanic rock samples from the Yangyingxiang is 10.68 ± 0.05 - 11.42 ± 0.09 Ma. These results, combining with the previously published data, confirmed that Neogene post-collision volcanic rocks in the Gangdese widely occurred and their ages were getting younger eastwards. These volcanic rocks are different from those in Pana Formation of Linzizhong group (52.9 ± 2 Ma) outside Yangyingxiang geothermal field. (authors)

  19. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  20. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  1. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  2. Volcanic geology and geochemistry of Motuhora (Whale Island), Bay of Plenty, New Zealand

    International Nuclear Information System (INIS)

    Burt, R.M.; Cole, J.W.; Vroon, P.Z.

    1996-01-01

    Motuhora (Whale Island) lies c. 11 km offshore from Whakatane in the Bay of Plenty, New Zealand, and comprises tuffaceous marine sediments of the Camp Bay and Motuhora Formations separated by lavas, volcanic breccias, and slope-wash deposits of the Whale Volcanics. Whale Volcanics can be divided into East Dome, Central Dome Complex, and Pa Hill Dome. East Dome is a flow banded, chaotically jointed dacite that is probably extrusive. Central Dome comprises lava flows, and extensive volcanic breccias and tuffs which thicken into a local depression to the north of the central high, suggesting rapid growth and erosion of the dome. Pa Hill Dome is largely intrusive into Camp Bay Formation, although blocks of Pa Hill dacite in an upper slope-wash cobble bed suggest it was partially extrusive. The lavas are porphyritic with phenocrysts of plagioclase, orthopyroxene, and titanomagnetite with subordinate clinopyroxene and amphibole (particularly in Pa Hill Dome), and rare biotite. Rounded or broken and embayed quartz crystals are found in the Central Dome Complex and Pa Hill domes. Magmatic xenoliths are common in all lavas. Chemically the lavas are medium-K, calc-alkaline andesites and dacites, and show relative LILE enrichment and HFSE depletion typical of arc volcanics. Isotopically, samples tend to have more radiogenic Sr and less radiogenic Nd than volcanics from neighbouring White Island. It is likely that Motuhora lavas were formed by a multi-stage process involving partial melting of N-MORB-type mantle that had been fluxed by fluids rich in incompatible elements derived from the dehydrating downgoing slab and followed by crystal fractionation of the magma. As the magma rose through the lower continental crust it was contaminated, probably by Torlesse metasediment. Petrographic textures and mineral chemistry indicate that magma mixing, while in an upper crustal magma chamber, is the norm for Motuhora lavas. (author). 69 refs., 12 figs., 2 tabs

  3. Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder.

    Science.gov (United States)

    Niciu, Mark J; Ionescu, Dawn F; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-10-01

    The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid-based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed.

  4. Influences of volcanism on coal quality - Examples from the western United States

    International Nuclear Information System (INIS)

    Hildebrand, R.T.; Affolter, R.H.

    1986-01-01

    Several small Tertiary coal deposits in Idaho, Nevada, and Washington formed in fresh-water basins located near active continental (salic) volcanic centers. Metastable glassy material (tephra) ejected during volcanic eruptions was introduced into the coal-forming environment of these basins as ash falls. This tephra contributed to the high ash content of many of the coal beds, formed laterally persistent partings (''tonsteins'') in the coal, and constitutes a large part of the strata enclosing the deposits. In order to study the possible relationships between the presence of tephra and coal quality, chemical data for 65 coal samples from 12 of these deposits were compiled and statistically analyzed. The results indicate that, in addition to the high ash content, coal from Tertiary deposits containing appreciable amounts of tephra generally is enriched in many elements compared to 460 coal samples from 11 deposits of similar ages remote from volcanic activity

  5. Depressive Disorders

    Science.gov (United States)

    Brown, Jacqueline A.; Russell, Samantha; Rasor, Kaitlin

    2017-01-01

    Depression is among the most common mental disorders in the United States. Its diagnosis is often related to impairment of functioning across several domains, including how an individual thinks, feels, and participates in daily activities. Although depression has a relatively high prevalence among adults, the rate is alarmingly higher among…

  6. Postpartum Depression

    Science.gov (United States)

    ... professionals for help. With support and treatment, new mothers with depression can go on to be healthy, happy parents. ... or two, talk to your doctor. A new mother who feels like giving up, who feels that life is not ... depression can last for several months or even longer ...

  7. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the

  8. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  9. Volcanic risk perception in the Campi Flegrei area

    Science.gov (United States)

    Ricci, T.; Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.

    2013-03-01

    The Campi Flegrei which includes part of the city of Naples, is an active volcanic system; its last eruption occurred in 1538 AD. More recently two significant crises occurred between 1969 and 72 and 1982-84 and were accompanied by ground movements (bradyseism) and seismic activity, forcing people of the town of Pozzuoli to be evacuated. Since 1984 development of a volcanic emergency plan has been underway. In 2000 Civil Protection published a risk map which defined the Red Zone, an area highly at risk from pyroclastic flows, which would need to be evacuated before an eruption. The first study to evaluate the volcanic risk perceptions of the people living within the Campi Flegrei area was completed in spring 2006, resulting in the largest sample ever studied on this topic except for one on Vesuvio area residents by Barberi et al. (2008). A 46 item questionnaire was distributed to 2000 of the approximately 300,000 residents of the Campi Flegrei Red Zone, which includes three towns and four neighborhoods within the city of Naples. A total of 1161 questionnaires were returned, for an overall response rate of 58%. Surveys were distributed to junior high and high school students, as well as to adult members of the general population. Results indicated that unlike issues such as crime, traffic, trash, and unemployment, volcanic hazards are not spontaneously mentioned as a major problem facing their community. However, when asked specific questions about volcanic risks, respondents believe that an eruption is likely and could have serious consequences for themselves and their communities and they are quite worried about the threat. Considering the events of 1969-72 and 1982-84, it was not surprising that respondents indicated earthquakes and ground deformations as more serious threats than eruptive phenomena. Of significant importance is that only 17% of the sample knows about the existence of the Emergency Plan, announced in 2001, and 65% said that they have not received

  10. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2014-12-01

    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  11. Global scale concentrations of volcanic activity on Venus: A summary of three 23rd Lunar and Planetary Science Conference abstracts. 1: Venus volcanism: Global distribution and classification from Magellan data. 2: A major global-scale concentration of volcanic activity in the Beta-Atla-Themis region of Venus. 3: Two global concentrations of volcanism on Venus: Geologic associations and implications for global pattern of upwelling and downwelling

    Science.gov (United States)

    Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.

    1992-01-01

    As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.

  12. Thermal Mapper (TMAP) concept to study volcanism on Io

    OpenAIRE

    Maturilli, A.; Helbert, J.; Walter, Ingo; Peter, Gisbert

    2016-01-01

    Thermal Mapper (TMAP) is part of the payload of the proposed Discovery mission IVO. TMAP will provide near-global coverage at 0.1–20 km/pixel to map heat flow and monitor volcanism. It is a high spatial- resolution thermal imaging system optimized for observing Io with heritage from the ESA AIDA mission’s Minaturized Asteroid infrared Imager (MAIR) and Radiometer instrument and the Bepi-Colombo mission’s MErcury Radiometer and Thermal Infrared Spectrometer (MERTIS). Minor modifications of the...

  13. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  14. Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico

    Science.gov (United States)

    Jaimes-Viera, M. C.; Martin Del Pozzo, A. L.; Layer, P. W.; Benowitz, J. A.; Nieto-Torres, A.

    2018-05-01

    The unique nature of monogenetic volcanism has always raised questions about its origin, longevity and spatial distribution. Detailed temporal and spatial boundaries resulted from a morphometric study, mapping, relative dating, twenty-four new 40Ar/39Ar dates, and chemical analyses for the Sierra Chichinautzin, Central Mexico. Based on these results the monogenetic cones were divided into four groups: (1) Peñón Monogenetic Volcanic Group (PMVG); (2) Older Chichinautzin Monogenetic Volcanic Group (Older CMVG); (3) Younger Chichinautzin Monogenetic Volcanic Group (Younger CMVG) and (4) Sierra Santa Catarina Monogenetic Volcanic Group (SSC). The PMVG cover the largest area and marks the northern and southern boundaries of this field. The oldest monogenetic volcanism (PMVG; 1294 ± 36 to 765 ± 30 ka) started in the northern part of the area and the last eruption of this group occurred in the south. These basaltic-andesite cones are widely spaced and are aligned NE-SW (N60°E). After this activity, monogenetic volcanism stopped for 527 ka. Monogenetic volcanism was reactivated with the birth of the Tezoyuca 1 Volcano, marking the beginning of the second volcanic group (Older CMVG; 238 ± 51 to 95 ± 12 ka) in the southern part of the area. These andesitic to basaltic andesite cones plot into two groups, one with high MgO and Nb, and the other with low MgO and Nb, suggesting diverse magma sources. The eruption of the Older CMVG ended with the eruption of Malacatepec volcano and then monogenetic volcanism stopped again for 60 ka. At 35 ka, monogenetic volcanism started again, this time in the eastern part of the area, close to Popocatépetl volcano, forming the Younger CMVG (<35 ± 4 ka). These cones are aligned in an E-W direction. Geochemical composition of eruptive products of measured samples varies from basalts to dacites with low and high MgO. The Younger CMVG is considered still active since the last eruptions took place <2 ka. The SSC (132 ± 70 to 2 ± 56 ka

  15. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  16. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province

    Science.gov (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.

    2005-12-01

    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  17. Depressive realism and clinical depression.

    Science.gov (United States)

    Carson, Richard C; Hollon, Steven D; Shelton, Richard C

    2010-04-01

    Depressive realism suggests that depressed individuals make more accurate judgments of control than their nondepressed counterparts. However, most studies demonstrating this phenomenon were conducted in nonclinical samples. In this study, psychiatric patients who met criteria for major depressive disorder underestimated control in a contingent situation and were consistently more negative in their judgments than were nondepressed controls. Depressed patients were less likely than their nondepressed counterparts to overestimate control in a noncontingent situation, but largely because they perceived receiving less reinforcement. Depressed patients were no more likely to use the appropriate logical heuristic to generate their judgments of control than their nondepressed counterparts and each appeared to rely on different primitive heuristics. Depressed patients were consistently more negative than their nondepressed counterparts and when they did appear to be more "accurate" in their judgments of control (as in the noncontingent situation) it was largely because they applied the wrong heuristic to less accurate information. These findings do not support the notion of depressive realism and suggest that depressed patients distort their judgments in a characteristically negative fashion. 2009 Elsevier Ltd. All rights reserved.

  18. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.

  19. Depression in the Workplace

    Science.gov (United States)

    ... You are here Home » Depression In The Workplace Depression In The Workplace Clinical depression has become one ... will die by suicide vi . Employees' Attitudes Towards Depression Often times a depressed employee will not seek ...

  20. Genetics Home Reference: depression

    Science.gov (United States)

    ... Share: Email Facebook Twitter Home Health Conditions Depression Depression Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Depression (also known as major depression or major depressive ...

  1. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  2. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  3. Los Volcanes: un enfoque sistémico de un tema clásico

    OpenAIRE

    Brusi i Belmonte, David

    2001-01-01

    Si consideramos nuestro planeta como un conjunto de subsistemas interdependientes las relaciones que se establecen entre todos sus elementos definen un sistema complejo donde cualquiera de sus partes puede influir en la evolución del resto. En este escenario de interconexiones los volcanes asumen un papel muy importante

  4. Postpartum Depression

    DEFF Research Database (Denmark)

    Smith-Nielsen, Johanne

    Background: In three academic articles, this PhD thesis investigates maternal postpartum depression (PPD) as a risk factor for the infant-mother attachment and infant development. Previous studies have been contradictory with respect to the question of whether PPD can have long term effects...... on offspring. This may be due to not differing between when PPD is only occurring in the postpartum period and when effects are also due to ongoing or recurrent depression. However, it may also be due to viewing maternal depression as a unitary construct, and not considering underlying maternal psychological...... difficulties which may moderate potential adverse effects. The present thesis investigates two potential maternal moderators of risk:. Comorbid personality disorder and adult attachment insecurity. Moreover, the question of early environmental effects of PPD versus effects of later or ongoing depression...

  5. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula)

    Science.gov (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-05-01

    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  6. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany

    Science.gov (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.

    2016-06-01

    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  7. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  8. Late Cenozoic Samtskhe-Javakheti Volcanic Highland, Georgia:The Result of Mantle Plumes Activity

    Science.gov (United States)

    Okrostsvaridze, Avtandil

    2017-04-01

    Late Cenozoic Samtskhe-Javakheti continental volcanic highland (1500-2500 m a.s.l) is located in the SW part of the Lesser Caucasus. In Georgia the highland occupies more than 4500 km2, however its large part spreads towards the South over the territories of Turkey and Armenia. One can point out three stages of magmatic activity in this volcanic highland: 1. Early Pliocene activity (5.2-2.8 Ma; zircons U-Pb age) - when a large part of the highland was built up. It is formed from volcanic lava-breccias of andesite-dacitic composition, pyroclastic rocks and andesite-basalt lava flow. The evidences of this structure are: a large volume of volcanic material (>1500 km3); big thickness (700-1100 m in average), large-scale of lava flows (length 35 km, width 2.5-3.5 km, thickness 30-80 m), big thickness of volcanic ash horizons (300 cm at some places) and big size of volcanic breccias (diameter >1 m). Based on this data we assume that a source of this structure was a supervolcano (Okrostsvaridze et al., 2016); 2. Early Pleistocene activity (2.4 -1.6 Ma; zircons U-Pb age) - when continental flood basalts of 100-300 m thickness were formed. The flow is fully crystalline, coarse-grained, which mainly consist of olivine and basic labradorite. There 143Nd/144Nd parameter varies in the range of +0.41703 - +0.52304, and 87Sr/88Sr - from 0.7034 to 0.7039; 3. Late Pleistocene activity (0.35-0.021 Ma; zircons U-Pb age) - when intraplate Abul-Samsari linear volcanic ridge of andesite composition was formed stretching to the S-N direction for 40 km with the 8-12 km width and contains more than 20 volcanic edifices. To the South of the Abul-Samsari ridge the oldest (0.35-0.30 Ma; zircons U-Pb age) volcano Didi Abuli (3305 m a.s.l.) is located. To the North ages of volcano edifices gradually increase. Farther North the youngest volcano Tavkvetili (0.021-0. 030 Ma) is located (2583 m a.s.l.). One can see from this description that the Abul-Samsari ridge has all signs characterizing

  9. Active Volcanic Eruptions on Io

    Science.gov (United States)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can

  10. Metallogenic characteristics of volcanic hydrothermal type U-Au-polymetallic deposits in Yanshan-Liaoning region

    International Nuclear Information System (INIS)

    Luo Yi; Zhou Dean; He Yiqiang; Tao Quan; Xia Yuliang; Cui Huanmin; Zhu Deling

    1996-03-01

    Yanshan-Liaoning area is located in the east part of the northern margin of North-China platform. It is a famous metallogenic region of Mesozoic volcanic hydrothermal type U-Au-polymetallic deposits in the country. The metallogenesis is controlled by a united Late Mesozoic continental taphrogenic volcano-magmatic activity. The metallogenic epochs are concentrated in Late Jurassic-Early Cretaceous periods. The metallogenic media are moderate and moderate-low temperature volcanic hydrothermal solutions originated from the mixing of volcano-magmatic water, metamorphic water and atmospheric water. The ore-forming materials are mainly derived from enrichment type upper mantle and lower crust. (8 refs., 5 figs.)

  11. Sr–Nd isotopic compositions of Paleoproterozoic metavolcanic rocks from the southern Ashanti volcanic belt, Ghana

    OpenAIRE

    Dampare, Samuel; Shibata, Tsugio; Asiedu, Daniel; Okano, Osamu; Manu, Johnson; Sakyi, Patrick

    2009-01-01

    Neodymium (Nd) and strontium (Sr) isotopic data are presented for Paleoproterozoic metavolcanic rocks in the southern part of the Ashanti volcanic belt of Ghana. The metavolcanic rocks are predominantly basalts/basaltic andesites and andesites with minor dacites. Two types of basalts/basaltic andesites (B/A), Type I and Type II, have been identified. The Type I B/A are stratigraphically overlain by the Type II B/A, followed by the andesites and the dacites. The analyzed volcanic rocks commonl...

  12. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 years after volcanic eruption, while the solar signal and the different

  13. Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2013-11-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780-1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2-3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 yr after volcanic eruption, while the solar signal and the different

  14. Comparative assessment of geo dynamics processes of oil and gas production areas at the west and east boards of the south-Caspian depression

    International Nuclear Information System (INIS)

    Zhardecki, A.V; Zhukov, V.S; Poloudin, G.A

    2002-01-01

    Full text: Alpine geosynclinals s belt including fold mountains up Carpathian and Crimea Mountainous to Copetdag and Pamirs divided to two unequal parts by the South-Caspian depression.Ashgabadian depression at the east side and Kyrian depression extends and get deeper at the east direction and transforms to South-Caspian depression. Large in number of oil and gas deposits and fields are situated at the areas of this depressions on the west and east boards of the South Caspian. They have a many common characteristics. They are:1.Anticline highs are form tectonic structure like a line. Lines was branching, anticline highs are shingling.2.Red color reservoir of the depression at the east board and production reservoir at the west board of the depression are the main oil and gas containing reservoirs and are stratigraphic analogy of the middle Pliocene age.3.Both side of the depression are areas of the diapiric folding and mud volcanic activity. 4.The intensive seismic activity.5 Marine gryphons, island and sandbank sometime appear and disappear at the littoral area. 6.The Caspian Sea level has quick changes at the geological history and present time.Thus, it is possible to mark two main factors of activation of the geo dynamic processes. First deformation terrestrial surface, and second -induced seismic activity. Comparing above mentioned data on western and east it is visible to boards of the South-Caspian hollow, that for want of availability of the large number identical tectonic of features there are essential distinctions in a character of induced geo dynamic activity. In the long term, in accordance with me development of oil deposits, it is possible to expect manifestation of both factors of activation of geo dynamic processes on both boards of the South-Caspian hollow

  15. Possible Late Pleistocene volcanic activity on Nightingale Island, South Atlantic Ocean, based on geoelectrical resistivity measurements, sediment corings and 14C dating

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Björck, Svante; Cronholm, Anders

    2011-01-01

    . The irregular shapes of the basins and the lack of clear erosional features indicate that they are not eruption craters and were not formed by erosion. Instead, we regard them as morphological depressions formed between ridges of trachytic lava flows and domes at a late stage of the formation of the volcanic...... edifice. The onset of sedimentation within these basins appears to have occurred between 24 and 37 ka with the highest situated wetland yielding the highest ages. These ages are very young compared to the timing of the main phase of the formation of the island, implying volcanic activity on the island......Tristan da Cunha is a volcanic island group situated in the central South Atlantic. The oldest of these islands, Nightingale Island, has an age of about 18Ma. In the interior of the island, there are several wetlands situated in topographic depressions. The ages of these basins have been unknown...

  16. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  17. Dynamic Associations between Maternal Depressive Symptoms and Adolescents' Depressive and Externalizing Symptoms

    Science.gov (United States)

    Kouros, Chrystyna D.; Garber, Judy

    2010-01-01

    The current prospective study investigated transactional relations between maternal depressive symptoms and children's depressive and externalizing symptoms. Participants included 240 children (M age = 11.86 years, SD = 0.56; 53.9% female) and their mothers who were part of a 6-year longitudinal study. Measures of maternal depression (Beck…

  18. Observations of volcanic earthquakes and tremor at Deception Island - Antarctica

    Directory of Open Access Journals (Sweden)

    J. Morales

    1999-06-01

    Full Text Available Deception Island - South Shetlands, Antarctica is site of active volcanism. Since 1988 field surveys have been carried out with the aim of seismic monitoring, and in 1994 a seismic array was set up near the site of the Spanish summer base in order to better constrain the source location and spectral properties of the seismic events related to the volcanic activity. The array was maintained during the Antarctic summer of 1995 and the last field survey was carried out in 1996. Data show the existence of three different groups (or families of seismic events: 1 long period events, with a quasi-monochromatic spectral content (1-3 Hz peak frequency and a duration of more than 50 s, often occurring in small swarms lasting from several minutes to some day; 2 volcanic tremor, with a spectral shape similar to the long period events but with a duration of several minutes (2-10; 3 hybrid events, with a waveform characterised by the presence of a high frequency initial phase, followed by a low frequency phase with characteristics similar to those of the long period events. The high frequency phase of the hybrid events was analysed using polarisation techniques, showing the presence of P waves. This phase is presumably located at short epicentral distances and shallow source depth. All the analysed seismic events show back-azimuths between 120 and 330 degrees from north (corresponding to zones of volcanic activity showing no seismic activity in the middle of the caldera. Particle motion, Fourier spectral and spectrogram analysis show that the low frequency part of the three groups of the seismic signals have similar patterns. Moreover careful observations show that the high frequency phase which characterises the hybrid events is present in the long period and in the tremor events, even with lower signal to noise ratios. This evidence suggests that long period events are events in which the high frequency part is simply difficult to observe, due to a very

  19. Volcanic Outgassing and the Rise of Atmospheric O2

    Science.gov (United States)

    Kasting, J. F.

    2012-12-01

    The release of reduced volcanic gases played a major role in determining atmospheric composition and redox state during the Earth's Archean era. Along with anerobic iron oxidation during deposition of banded iron-formations (BIFs), volcanic outgassing was one of two major sources of reductants, typically monitored as H2 equivalents, to the early atmosphere. These H2 sources were balanced by sinks of reductants, including escape of hydrogen to space and burial of organic matter and pyrite. The sinks for H2 can alternatively be thought of as sources for O2, following the stoichiometry: 2 H2 + O2 2 H2O. During the Archean, H2 sources were large enough to balance burial of organic matter and pyrite and still allow lots of hydrogen to escape. Sometime close to 2.4 Ga, the redox balance shifted: Either the H2 sources became smaller, or the H2 sinks became larger. The result was that O2 began to accumulate in the atmosphere for the first time, even though it was being produced by cyanobacteria well before this. This allowed a new O2 sink (H2 source) to become operative, namely, oxidative weathering of the land surface and seafloor. On the modern Earth, the redox budget is largely a balance between burial of organic matter and pyrite and oxidative weathering on land. What caused the system to shift to the oxidized state at 2.4 Ga remains a matter of debate. A secular decrease in volcanic outgassing rates alone cannot do this, as organic carbon burial is (loosely) tied to outgassing by the carbon isotope record. Roughly 15-20% of CO2 entering the combined atmosphere-ocean system appears to have been buried as organic carbon; hence, more volcanic outgassing implies more organic carbon burian (and, hence, more O2 production), if everything else stays the same. Other factors were not the same, however. Progressive growth of the continents may have helped O2 to rise, both by changing the ratio of submarine to subaerial outgassing and by facilitating greater recycling of carbon

  20. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  1. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.

    2012-01-01

    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  2. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  3. Central San Juan caldera cluster: Regional volcanic framework

    Science.gov (United States)

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  4. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  5. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  6. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  7. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  8. Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo

    CSIR Research Space (South Africa)

    Mavonga, T

    2010-11-01

    Full Text Available In recent decades, civil wars in the eastern provinces of the Democratic Republic of Congo have caused massive social disruptions, which have been exacerbated by volcanic and earthquake disasters. Seismic data were gathered and analysed as part...

  9. Stratigraphy and eruption age of the volcanic rocks in the west of Miyanoharu area, Kumamoto Prefecture

    International Nuclear Information System (INIS)

    Kamata, Hiroki

    1985-01-01

    The detailed stratigraphic survey, K-Ar age determinations and NRM measurements of the volcanic rocks in the west of Miyanoharu area revealed the volcanic history as follows: Hornblende andesite lava with plagioclase megacryst (Yoshinomoto lava) erupted during 2.8 - 2.5 Ma (Gauss normal epoch), accompanied by small amount of pyroclastic materials. After this eruption, Kamitarumizu hypersthene-augite andesite lava (1.7 - 1.3 Ma; reversed), Yabakei pyroclastic flow (0.99 Ma; Jaramillo normal event), Yamakogawa biotite rhyolite lava (0.9 Ma; reversed) and Daikanbo hypersthene-augite andesite lava (0.8 Ma; normal) erupted successively prior to the Aso-1 pyroclastic flow (0.3 - 0.4 Ma). Both the K-Ar ages and NRM data are consistent with the stratigraphic sequence (Fig. 2), which suggests that the activity of andesite and rhyolite is intercalated with each other during Pleistocene in the studied area. The compiled radiometric age data in the central-north Kyushu show that the age of volcanic activity that has previously been inferred as middle Miocene is of Pliocene, and its distribution is limited within the quadrilateral (60 km x 40 km) where the pre-Tertiary basement rocks are absent. The distribution of volcanic rocks is historically zonated such that the rocks of older age up to 5 Ma develop toward the outer rim of the quadrilateral, which coincides with the 0 mgal contour bordering the large low Bouguer anomaly. These facts suggest that the volcanic activity is remarkably relevant to the subsidence of this area, where the volcano-tectonic depression has been formed after 5 Ma to the present, and filled with lavas and pyroclastic materials with scarce sedimentary rocks in the tension stress field during Plio-Pleistocene age. (Kubozono, M.)

  10. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  11. The thermoluminescence as tool in the reconstruction of volcanic events

    International Nuclear Information System (INIS)

    Ramirez L, A.; Schaaf, P.; Martin del Pozzo, A.L.; Gonzalez M, P.

    2000-01-01

    Within the Mexican land a great number of volcanoes are situated which a considerable part of them are still active. The relevance of dating pomex deposits, ash or lava of these poly genetic volcanoes is to determine the periodicity and magnitude of the volcanic events happened. In this work is presented the preliminary result of the dating by thermoluminescence in a pomex of a pyroclastic flux coming from a volcano in the state of Puebla with the purpose of providing elements to the knowledge which describe the eruptive history of the explosive volcanism at center of Mexico. For the sample dating the volcanic glasses of pomex were separated and it was applied the fine grain technique with a grain size between 4-11 μ m. In order to calculate the rate of annual dose it was carried out the following: in the determination of 238 U and 232 Th radioisotope concentration was used the neutron activation technique in a nuclear reactor, in the determination of the K 40 radioisotope was used a scanning electron microscope, the rate of environmental and cosmic dose was measured arranging Tl dosemeters of CaSO 4 : Dy in the sampling place. In order to calculate the paleodoses it was carried out the following: the equivalent dose (Q) was determined starting form the additive method and the supra linearity factor (I) starting from regenerative method and in both methods the irradiated process was realized with a 90 Sr beta source. With the above determinations it was calculated a paleodoses of 231 Gy and a rate of annual dose of 6.074 x 10 -3 Gy/year, estimating an age of: Age pomez = 231 Gy / 6.074 Gy x 10 -3 Gy /year = 38030 ± 4000 years. (Author)

  12. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  13. QVAST: a new Quantum GIS plugin for estimating volcanic susceptibility

    Science.gov (United States)

    Bartolini, S.; Cappello, A.; Martí, J.; Del Negro, C.

    2013-11-01

    One of the most important tasks of modern volcanology is the construction of hazard maps simulating different eruptive scenarios that can be used in risk-based decision making in land-use planning and emergency management. The first step in the quantitative assessment of volcanic hazards is the development of susceptibility maps (i.e., the spatial probability of a future vent opening given the past eruptive activity of a volcano). This challenging issue is generally tackled using probabilistic methods that use the calculation of a kernel function at each data location to estimate probability density functions (PDFs). The smoothness and the modeling ability of the kernel function are controlled by the smoothing parameter, also known as the bandwidth. Here we present a new tool, QVAST, part of the open-source geographic information system Quantum GIS, which is designed to create user-friendly quantitative assessments of volcanic susceptibility. QVAST allows the selection of an appropriate method for evaluating the bandwidth for the kernel function on the basis of the input parameters and the shapefile geometry, and can also evaluate the PDF with the Gaussian kernel. When different input data sets are available for the area, the total susceptibility map is obtained by assigning different weights to each of the PDFs, which are then combined via a weighted summation and modeled in a non-homogeneous Poisson process. The potential of QVAST, developed in a free and user-friendly environment, is here shown through its application in the volcanic fields of Lanzarote (Canary Islands) and La Garrotxa (NE Spain).

  14. K-Ar Geochronology and isotopic composition of the late oligocene- early miocene Ancud volcanic complex, Chiloe

    International Nuclear Information System (INIS)

    Munoz B, Jorge; Duhart O, Paul; Farmer, G. Lang; Stern, Charles R

    2001-01-01

    The Ancud Volcanic Complex (Gally and Sanchez , 1960) forms a portion of the Mid-Tertiary Coastal Magmatic Belt which outcrops in the area of northern Chiloe island. Main exposures occur at Ancud, Punta Polocue, Punihuil, Pumillahue, Tetas de Teguaco and Bahia Cocotue. The Ancud Volcanic Complex consists of basaltic to basaltic andesites lava flows and volcanic necks and rhyolitic pyroclastic flows and vitric domes. Previous studies indicate a Late Oligocene-Early Miocene age (Garcia et al., 1988; Stern and Vergara, 1992; Munoz et al., 2000). The Ancud Volcanic Complex covers and intrudes Palaeozoic-Triassic metamorphic rocks and is partially covered by an early to middle Miocene marine sedimentary sequence known as Lacui Formation (Valenzuela, 1982) and by Pleistocene glacial deposits (Heusser, 1990). At Punihuil locality, lava flows are interbedded with the lower part of the marine sedimentary sequence, which includes significant amounts of redeposited pyroclastic components. Locally, the presence of hyaloclastic breccias suggests interaction of magma with marine water (au)

  15. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  16. GIS database and discussion for the distribution, composition, and age of Cenozoic volcanic rocks of the Pacific Northwest Volcanic Aquifer System study area

    Science.gov (United States)

    Sherrod, David R.; Keith, Mackenzie K.

    2018-03-30

    A substantial part of the U.S. Pacific Northwest is underlain by Cenozoic volcanic and continental sedimentary rocks and, where widespread, these strata form important aquifers. The legacy geologic mapping presented with this report contains new thematic categorization added to state digital compilations published by the U.S. Geological Survey for Oregon, California, Idaho, Nevada, Utah, and Washington (Ludington and others, 2005). Our additional coding is designed to allow rapid characterization, mainly for hydrogeologic purposes, of similar rocks and deposits within a boundary expanded slightly beyond that of the Pacific Northwest Volcanic Aquifer System study area. To be useful for hydrogeologic analysis and to be more statistically manageable, statewide compilations from Ludington and others (2005) were mosaicked into a regional map and then reinterpreted into four main categories on the basis of (1) age, (2) composition, (3) hydrogeologic grouping, and (4) lithologic pattern. The coding scheme emphasizes Cenozoic volcanic or volcanic-related rocks and deposits, and of primary interest are the codings for composition and age.

  17. Unexpected HIMU-type late-stage volcanism on the Walvis Ridge

    Science.gov (United States)

    Homrighausen, S.; Hoernle, K.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Portnyagin, M.; Werner, R.; van den Bogaard, P.; Garbe-Schönberg, D.

    2018-06-01

    Volcanic activity at many oceanic volcanoes, ridges and plateaus often reawakens after hiatuses of up to several million years. Compared to the earlier magmatic phases, this late-stage (rejuvenated/post-erosional) volcanism is commonly characterized by a distinct geochemical composition. Late-stage volcanism raises two hitherto unanswered questions: Why does volcanism restart after an extended hiatus and what is the origin of this volcanism? Here we present the first 40Ar/39Ar age and comprehensive trace element and Sr-Nd-Pb-Hf isotopic data from seamounts located on and adjacent to the Walvis Ridge in the South Atlantic ocean basin. The Walvis Ridge is the oldest submarine part of the Tristan-Gough hotspot track and is famous as the original type locality for the enriched mantle one (EM I) end member. Consistent with the bathymetric data, the age data indicates that most of these seamounts are 20-40 Myr younger than the underlying or nearby Walvis Ridge basement. The trace element and isotope data reveal a distinct compositional range from the EM I-type basement. The composition of the seamounts extend from the St. Helena HIMU (high time-integrated 238U/204Pb mantle with radiogenic Pb isotope ratios) end member to an enriched (E) Mid-Ocean-Ridge Basalt (MORB) type composition, reflecting a two-component mixing trend on all isotope diagrams. The EMORB end member could have been generated through mixing of Walvis Ridge EM I with normal (N) MORB source mantle, reflecting interaction of Tristan-Gough (EM I-type) plume melts with the upper mantle. The long volcanic quiescence and the HIMU-like geochemical signature of the seamounts are unusual for classical hotspot related late-stage volcanism, indicating that these seamounts are not related to the Tristan-Gough hotspot volcanism. Two volcanic arrays in southwestern Africa (Gibeon-Dicker Willem and Western Cape province) display similar ages to the late-stage Walvis seamounts and also have HIMU-like compositions

  18. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  19. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  20. Apollo 15 mare volcanism: constraints and problems

    International Nuclear Information System (INIS)

    Delano, J.W.

    1985-01-01

    The Apollo 15 landing site contains more volcanics in the form of crystalline basalts and pristine glasses, which form the framework for all models dealing with the mantle beneath that site. Major issues on the petrology of the mare source regions beneath that portion of Mare Imbrium are summarized

  1. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  2. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  3. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  4. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  5. Amazonian volcanism inside Valles Marineris on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Wray, J. J.; Michael, G.

    2017-01-01

    Roč. 473, September (2017), s. 122-130 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * Valles Marineris * volcanism * scoria cone * hydrothermal activity Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 4.409, year: 2016

  6. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  7. Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt

    Science.gov (United States)

    Gonzalez, T.

    2011-12-01

    The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by

  8. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  9. Geothermal surveys in the oceanic volcanic island of Mauritius

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked

  10. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    We present new major and trace element and Sr, Nd, Pb and Os isotope data for Quaternary basaltic lavas and tephra from the Itasy and Ankaratra volcanic fields, representing the most recent volcanism in Madagascar. Mafic magmas from Itasy and Ankaratra exhibit significant inter- and intra-volcanic field geochemical heterogeneity. The Itasy eruptive products range in composition from foidite to phonotephrite whereas Ankaratra lavas range from basanite to trachybasalts. Trace element signatures of samples from both volcanic fields are very similar to those of ocean island basalts (OIB), with significant enrichment in Nb and Ta, depletion in Rb, Cs, and K, and relatively high Nb/U and Ce/Pb. However, the Itasy volcanic rocks show enrichment relative to those of Ankaratra in most incompatible elements, indicative of a more enriched source and/or lower degrees of partial melting. Significant inter- and intra-volcanic field heterogeneity is also observed in Sr, Nd, Pb and Os isotope signatures. The Itasy volcanic rocks generally have less radiogenic Sr and Nd isotopic ratios but more radiogenic Pb isotopic signatures than the Ankaratra volcanic field. Together, the Itasy and Ankaratra volcanic rocks form a well-defined negative correlation in Sr vs. Pb isotopes that could be attributed to lithospheric contamination or variable degrees of mixing between distinct mantle sources. However, the lack of correlation between isotopes and indices of crustal contamination (e.g. MgO and Nb/U) are inconsistent with shallow lithospheric contamination, and instead suggest mixing between compositionally distinct mantle sources. Furthermore, although Sr-Pb isotope systematics are apparently consistent with mixing between two different sources, distinct trends in Sr vs. Nd isotopes displayed by samples from Itasy and Ankaratra, respectively, argue for more complex source mixing involving three or more sources. The current data demonstrate that although the Itasy and Ankaratra volcanic

  11. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  12. Transition of magma genesis estimated by change of chemical composition of Izu-bonin arc volcanism associated with spreading of Shikoku Basin

    Science.gov (United States)

    Haraguchi, S.; Ishii, T.

    2006-12-01

    Arc volcanism in the Izu-Ogasawara arc is separated into first and latter term at the separate of Shikoku Basin. Middle to late Eocene early arc volcanism formed a vast terrane of boninites and island arc tholeiites that is unlike active arc systems. A following modern-style arc volcanism was active during the Oligocene, along which intense tholeiitic and calc-alkaline volcanism continued until 29Ma, before spreading of the back- arc basin. The recent arc volcanism in the Izu-Ogasawara arc have started in the middle Miocene, and it is assumed that arc volcanism were decline during spreading of back-arc basin. In the northern Kyushu-Palau Ridge, submarine bottom materials were dredged during the KT95-9 and KT97-8 cruise by the R/V Tansei-maru, Ocean Research Institute, university of Tokyo, and basaltic to andesitic volcanic rocks were recovered during both cruise except for Komahashi-Daini Seamount where recovered acidic plutonic rocks. Komahashi-Daini Seamount tonalite show 37.5Ma of K-Ar dating, and this age indicates early stage of normal arc volcanism. These volcanic rocks are mainly cpx basalt to andesite. Two pyroxene basalt and andesite are only found from Miyazaki Seamount, northern end of the Kyushu-Palau Ridge. Volcanic rocks show different characteristics from first term volcanism in the Izu-Ogasawara forearc rise and recent arc volcanism. The most characteristic is high content of incompatible elements, that is, these volcanics show two to three times content of incompatible elements to Komahashi-Daini Seamount tonalite and former normal arc volcanism in the Izu outer arc (ODP Leg126), and higher content than recent Izu arc volcanism. This characteristic is similar to some volcanics at the ODP Leg59 Site448 in the central Kyushu- Palau Ridge. Site448 volcanic rocks show 32-33Ma of Ar-Ar ages, which considered beginning of activity of Parece Vela Basin. It is considered that the dredged volcanic rocks are uppermost part of volcanism before spreading of

  13. Investigating the Deep Seismic Structure of Volcan de Colima, Mexico

    Science.gov (United States)

    Gardine, M. D.; Reyes, T. D.; West, M. E.

    2006-12-01

    We present early-stage results from a novel seismic investigation at Volcan de Colima. The project is a collaboration between the Observatorio Vulcanologico de la Universidad de Colima and the University of Alaska Fairbanks. In January 2006, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL-supported Colima Volcano Deep Seismic Experiment (CODEX). They are scheduled to be in the field for eighteen months. Data from the first several months of the deployment have been used to characterize both the regional seismicity and the seismicity of the volcano, as recorded by the temporary array. Colima volcano has an unusually well-distributed suite of earthquakes on the local, regional and teleseismic scale. Data recorded close to the edifice provide an opportunity to explore the daily explosive activity exhibited by the volcano. The diversity of regional and teleseismic earthquake source regions make Colima an ideal place to probe the deep magmatic structure of a prodigous volcanic center. Results will be interpreted in the context of pre-existing petrologic models to address the relative role of crust and mantle in governing the evolution of an andesitic arc volcano.

  14. NO2 column changes induced by volcanic eruptions

    Science.gov (United States)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  15. Depression and Multiple Sclerosis

    Science.gov (United States)

    ... Symptoms Depression Share this page Facebook Twitter Email Depression Depression Fatigue Walking (Gait) Difficulties Numbness or Tingling ... away from addictive substances such as alcohol. Clinical depression It’s important to distinguish between mild, everyday “blues” — ...

  16. Depression in Older Adults

    Science.gov (United States)

    ... here Home » Depression In Older Adults: More Facts Depression In Older Adults: More Facts Depression affects more ... combination of both. [8] Older Adult Attitudes Toward Depression: According to a Mental Health America survey [9] ...

  17. Older Adults and Depression

    Science.gov (United States)

    ... find more information? Reprints Share Older Adults and Depression Download PDF Download ePub Order a free hardcopy ... depression need treatment to feel better. Types of Depression There are several types of depression. The most ...

  18. Depression and Caregiving

    Science.gov (United States)

    ... FCA - A A + A You are here Home Depression and Caregiving Order this publication Printer-friendly version ... a more serious depression over time. Symptoms of Depression People experience depression in different ways. Some may ...

  19. Depression and Suicide Risk

    Science.gov (United States)

    ... due to another medical disorder Relationship Between Depression & Suicide: 1. Depression is the psychiatric diagnosis most commonly associated with ... of patients with treated depression eventually die by suicide. xiv 4. Depression is present in at least 50 percent of ...

  20. Pacific seamount volcanism in space and time

    Science.gov (United States)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  1. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  2. Paleoproterozoic volcanism in the southern Amazon Craton (Brazil): insight into its origin and deposit textures

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano

    2014-05-01

    The Brazilian Amazon craton hosts a primitive volcanic activity that took place in a region completely stable since 1.87 Ga. The current geotectonic context is very different from what caused the huge volcanism that we are presenting in this work. Volcanic rocks in several portions of the Amazon craton were grouped in the proterozoic Uatumã supergroup, a well-preserved magmatic region that covers an area with more than 1,200,000 km2. In this work one specific region is considered, the southwestern Tapajos Gold province (TGP) that is part of the Tapajós-Parina tectonic province (Tassinari and Macambri, 1999). TGP consists of metamorphic, igneous and sedimentary sequences resulted from a ca. 2.10-1.87 Ga ocean-continent orogeny. High-K andesites to felsic volcanic sequences and plutonic bodies, andesitic/rhyolitic epiclastic volcanic rocks and A-type granitic intrusions form part of this volcanism/plutonism. In this work we focus particularly our attention on welded, reomorphic and lava-like rhyolitic ignimbrites and co-ignimbrite brecchas. Fiamme texture of different welding intensity, stretched obsidian fragments, "glassy folds", relict pumices, lithics, rotated crystals of feldspars, bipiramidal quarz, and devetrification spherulites are the common features represented by our samples. Microscopical images are provided to characterize the deposits analyzed during this preliminary research. The lack of continuum outcrops in the field made more difficult the stratigraphic reconstruction, but the superb preservation of the deposits, apparently without any metamorphic evidences (not even low-grade), permits a clearly description of the textures and a differentiation between deposits. A detailed exploration of this ancient andesitic and rhyolitic volcanic activity could contribute greatly to the knowledge of the Amazon territory and in particular for the recognition of the various units that form the supergroup Uatumã, especially in relation to different eruptive

  3. Welcoming a monster to the world: Myths, oral tradition, and modern societal response to volcanic disasters

    Science.gov (United States)

    Cashman, Katharine V.; Cronin, Shane J.

    2008-10-01

    Volcanic eruptions can overwhelm all senses of observers in their violence, spectacle and sheer incredibility. When an eruption is catastrophic or unexpected, neither individuals nor communities can easily assimilate the event into their world view. Psychological studies of disaster aftermaths have shown that trauma can shake the very foundations of a person's faith and trigger a search - supernatural, religious, or scientific - for answers. For this reason, the ability to rapidly comprehend a traumatic event by "accepting" the catastrophe as part the observer's world represents an important component of community resilience to natural hazards. A relationship with the event may be constructed by adapting existing cosmological, ancestral, or scientific frameworks, as well as through creative and artistic expression. In non-literate societies, communal perceptions of an event may be transformed into stories that offer myth-like explanations. As these stories make their way into oral traditions, they often undergo major changes to allow transmission through generations and, in some cases, to serve political or religious purposes. Disaster responses in literate societies are no different, except that they are more easily recorded and therefore are less prone to change over time. Here we explore ways in which the language, imagery and metaphor used to describe volcanic events may link disparate societies (both present and past) in their search for understanding of volcanic catastrophes. Responses to modern eruptions (1980 Mount St Helens, USA, and 1995-present Soufriere Hills, Montserrat) provide a baseline for examining the progression to older historic events that have already developed oral traditions (1886 Tarawera, New Zealand) and finally to oral traditions many hundreds of years old in both the Pacific Northwest US and New Zealand (NZ). We see that repeated volcanism over many generations produces rich webs of cosmology and history surrounding volcanoes. NZ Maori

  4. An experimental investigation of emotional reasoning processes in depression.

    Science.gov (United States)

    Berle, David; Moulds, Michelle L

    2013-09-01

    Cognitive models of depression emphasize how distorted thoughts and interpretations contribute to low mood. Emotional reasoning is considered to be one such interpretative style. We used an experimental procedure to determine whether elevated levels of emotional reasoning characterize depression. Participants who were currently experiencing a major depressive episode (n = 27) were compared with those who were non-depressed (n = 25 who had never been depressed and n = 26 previously but not currently depressed) on an emotional reasoning task. Although there were some trends for depressed participants to show greater levels of emotional reasoning relative to non-depressed participants, none of these differences attained significance. Interestingly, previously depressed participants engaged in more non-self-referent emotional reasoning than never-depressed participants. Emotional reasoning does not appear to characterize mild to moderate levels of depression. The lack of significant differences in emotional reasoning between currently depressed and non-depressed participants may have been a consequence of the fact that participants in our currently depressed group were, for the most part, only mildly depressed. Non-self-referent emotional reasoning may nevertheless be a risk factor for subsequent depressive episodes, or else serve as a 'cognitive scar' from previous episodes. In contrast with the predictions of cognitive models of depression, emotional reasoning tendencies may not be especially prominent in currently depressed individuals. Depressed individuals vary greatly in the degree to which they engage in emotional reasoning. Individuals with remitted depression may show elevated of levels non-self-referent emotional reasoning compared with those who have never had a depressive episode, that is, rely on their emotions when forming interpretations about situations. Our findings require replication using alternative indices of emotional reasoning. Our currently

  5. Postpartum Depression

    Science.gov (United States)

    ... or guilty. These emotions can affect a woman’s self-esteem and how she deals with stress. Fatigue—Many ... FAQs Exercise After Pregnancy (FAQ131) Depression (FAQ106) Patient Education FAQs Resources & Publications Committee Opinions Practice Bulletins Patient ...

  6. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  7. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  8. WOVOdat: A New Tool for Managing and Accessing Data of Worldwide Volcanic Unrest

    Science.gov (United States)

    Venezky, D. Y.; Malone, S. D.; Newhall, C. G.

    2002-12-01

    WOVOdat (World Organization of Volcano Observatories database of volcanic unrest) will for the first time bring together data of worldwide volcanic seismicity, ground deformation, fumarolic activity, and other changes within or adjacent to a volcanic system. Although a large body of data and experience has been built over the past century, currently, we have no means of accessing that collective experience for use during crises and for research. WOVOdat will be the central resource of a data management system; other components will include utilities for data input and archiving, structured data retrieval, and data mining; educational modules; and links to institutional databases such as IRIS (global seismicity), UNAVCO (global GPS coordinates and strain vectors), and Smithsonian's Global Volcanism Program (historical eruptions). Data will be geospatially and time-referenced, to provide four dimensional images of how volcanic systems respond to magma intrusion, regional strain, and other disturbances prior to and during eruption. As part of the design phase, a small WOVOdat team is currently collecting information from observatories about their data types, formats, and local data management. The database schema is being designed such that responses to common, yet complex, queries are rapid (e.g., where else has similar unrest occurred and what was the outcome?) while also allowing for more detailed research analysis of relationships between various parameters (e.g., what do temporal relations between long-period earthquakes, transient deformation, and spikes in gas emission tell us about the geometry and physical properties of magma and a volcanic edifice?). We are excited by the potential of WOVOdat, and we invite participation in its design and development. Next steps involve formalizing and testing the design, and, developing utilities for translating data of various formats into common formats. The large job of populating the database will follow, and eventually

  9. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    Science.gov (United States)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  10. Abstracts for the October 2012 meeting on Volcanism in the American Southwest, Flagstaff, Arizona

    Science.gov (United States)

    Lowenstern, Jacob B.

    2013-01-01

    Though volcanic eruptions are comparatively rare in the American Southwest, the States of Arizona, Colorado, New Mexico, Nevada, and Utah host Holocene volcanic eruption deposits and are vulnerable to future volcanic activity. Compared with other parts of the western United States, comparatively little research has been focused on this area, and eruption probabilities are poorly constrained. Monitoring infrastructure consists of a variety of local seismic networks, and ”backbone“ geodetic networks with little integration. Emergency response planning for volcanic unrest has received little attention by either Federal or State agencies. On October 18–20, 2012, 90 people met at the U.S. Geological Survey campus in Flagstaff, Arizona, providing an opportunity for volcanologists, land managers, and emergency responders to meet, converse, and begin to plan protocols for any future activity. Geologists contributed data on recent findings of eruptive ages, eruption probabilities, and hazards extents (plume heights, ash dispersal). Geophysicists discussed evidence for magma intrusions from seismic, geodetic, and other geophysical techniques. Network operators publicized their recent work and the relevance of their equipment to volcanic regions. Land managers and emergency responders shared their experiences with emergency planning for earthquakes. The meeting was organized out of the recognition that little attention had been paid to planning for or mitigation of volcanic hazards in the American Southwest. Moreover, few geological meetings have hosted a session specifically devoted to this topic. This volume represents one official outcome of the meeting—a collection of abstracts related to talks and poster presentations shared during the first two days of the meeting. In addition, this report includes the meeting agenda as a record of the proceedings. One additional intended outcome will be greater discussion and coordination among emergency responders, geologists

  11. Development of Air Quality Impact Assessment Method of Potential Volcanic Hazard near the Korean Peninsula

    Science.gov (United States)

    Sunwoo, Y.; Kim, Y. J.; Kim, D.; Park, J. E.; Hong, K. H.

    2016-12-01

    Many volcanos are located within 1,500 km of Korea which implies that a potential disaster is always possible. Several eruption precursors were observed rather recently at Mt. Baekdu, which has sparked intensive research on volcanic disasters in Korea. For assessment of potential volcanic hazard in Korea, we developed classification method of volcanic eruption dates using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT-4) regarding air quality impact. And, we conducted 3 dimensional chemistry transport modeling for selected eruption dates. WRF-ARW(version 3.6.1) meteorological modeling was employed for high resolution HYSPLIT input meteorological data,. The modeling domain covers Northeast Asia including Korea, Japan, east China, and part of Russia. Forward trajectories were calculated every 3 hours for 1 year (2010) and the trajectories were initiated from 3 volcanoes, Mt. Baekdu, Mt. Aso, and Mt. Tarumae. Selected eruption dates were classified into 5 classes using 4 parameters, PBL, trajectory retention time, initial trajectory altitude and exposed population. The number of significant days for volcanic eruption impact were 7 for Mt. Baekdu (spring and fall), 7 for Mt. Aso (summer), 1 for Mt. Tarumae (spring), and these were classified as class A, with the highest risk of incurring severe air pollution episodes in the receptor area. In addition, we analyzed the spatio-temporal distributions of these trajectories in the receptor area to help determine the period and domain of the volcanic eruption 3 dimensional chemistry transport modeling. Using class A eruption dates, we conducted CMAQ(v5.0.2) modeling for calculate full chemical reactions of volcanic gases and ashes in troposphere.

  12. How Academic Psychiatry Can Better Prepare Students for Their Future Patients: Part I--The Failure to Recognize Depression and Risk for Suicide in Primary Care; Problem Identification, Responsibility, and Solutions

    Science.gov (United States)

    Lake, C. Raymond

    2008-01-01

    The author, after a review of the relevant literature, found that depression and the risk for suicide remain unacceptably underrecognized in primary care (PC). The negative consequences are substantial for patients and their physicians. Suicide prevention in PC begins with the recognition of depression because suicide occurs largely during…

  13. [Risk factors for post partum depression].

    Science.gov (United States)

    Dois, Angelina; Uribe, Claudia; Villarroel, Luis; Contreras, Aixa

    2012-06-01

    Postpartum depression (PPD) is a public health problem with high prevalence in Chile. Many factors are associated with PPD. To analyze the factors associated with the incidence of depressive symptoms (SD) in women with low obstetric risk. Cross-sectional analytical study on a sample of 105 postpartum women with low obstetric risk assessed by the Edinburgh Depression Scale at the eighth week postpartum. A 37% prevalence of depressive symptoms was found. Univariate analysis showed that the perception of family functioning, overcrowding and number of siblings, were significantly associated with postpartum depressive symptoms. A multiple regression model only accepted family functioning as a predictor of depression. Perception of family functioning was the only variable that explained in part the presence of depressive symptoms in women with low obstetric risk.

  14. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    Science.gov (United States)

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994

    Directory of Open Access Journals (Sweden)

    Priatna Priatna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20074Volcanic gases, collected from Gendol and Woro solfatara fields, the summit of Merapi Volcano during 1990-1994, show an increase in chemical composition of H , CO, CO , SO , and HCl prior to the volcanic events, on the contrary to the drastic decreasing water vapour. The carbon/sulfur ratio of the volcanic gases lies between 1.5 and 5.7 which means that they were derived from the fresh magma. The Apparent Equilibrium Temperature (AET which is calculated from chemical compositions of volcanic gases using reaction of SO +3H = H S+2H O showed an increasing value prior to the volcanic events. The Merapi activities lasted during August 1990 to November 1994 showed a significant increase in ratio SO /H S prior to the November 1994 pyroclastic flow. The isotopic composition of volcanic gas condensates indicates that water vapour in Gendol is directly derived from the fresh magma. On the other hand, the contamination and cooling by the subsurface water occurred around the Woro field at a shallow part

  16. Volcanism on Jupiter's moon Io and its relation to interior processes

    Science.gov (United States)

    Hamilton, Christopher

    2013-04-01

    agrees with predictions from asthensopheric-dominated tidal heating models, but the nearest neighbor analysis of hotspots (i.e., sites of active volcanism) and paterae (i.e., caldera-like volcano-tectonic depressions) reveals a random to uniform spatial organization. This suggests that Io may have an extensive subsurface magma reservoir with vigorous mantle convection, and/or a deep-mantle heating component, which reduces the amplitude of surface heat flux variations that would otherwise favor clustering. The tendency toward uniformity among volcanic systems may reflect their interaction through a process of magmatic lensing that focuses rising magma and inhibits volcanism in the surrounding capture zone. In summary, the distribution of volcanism on Io generally supports the presence of a globally extensive asthenosphere with local interactions occurring between volcanic systems, but a 30-60° eastward offset in the location of enhanced volcanism relative to predicted surface heat flux maxima cannot be explained by existing solid body tidal heating models. This may imply faster than synchronous rotation, state of stress controls on the locations of magma ascent, and/or a missing component in models of Io's interior, such as fluid tides generated within a globally extensive layer of interconnected partial melt.

  17. Fluid volcanism on Miranda and Ariel - Flow morphology and composition

    Science.gov (United States)

    Schenk, Paul M.

    1991-01-01

    Several types of volcanic units have been recognized on the icy Uranian satellites Miranda and Ariel. On Miranda, ridges characterized by crest grooves are up to 10 km wide and 500 m high. A continuous flat-topped flow band also 10 km wide and 500 m high forms the outer southern margin of Elsinore Corona, which appears to comprise coalesced flow bands and ridges. On Ariel, in addition to at least one ridge unit similar to those on Miranda, flood plains material has covered the floors of deep chasmata (grabens) and an irregular depression. Flows on both satellites are characterized by linear vent geometries and distinct topographic margins, which indicate extrusion of a relatively viscous material. The topography of the flows can be used to estimate flow viscosity or yield strength using a Bingham plastic model. Extrusion viscosity estimates, incorporating plausible volcanologically based emplacement time scales and a rigid crust correction, range from 10 MP to 1 GP (10 TP in the unlikely absence of a chilled crust). Viscosity estimates are dependent on the assumed emplacement time scale, however, and could be as high as 10 PP, if a solid-state-based time scale is assumed.

  18. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  19. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  20. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  1. [Psychostimulants for late life depression].

    Science.gov (United States)

    Delsalle, P; Schuster, J-P; von Gunten, A; Limosin, F

    2017-11-28

    The use of psychostimulants in the treatment of depressive disorders is receiving renewed interest. Recent publications suggest a particular interest of psychostimulants in the treatment of depression in the elderly. The aim of this article is to review the literature on the role of psychostimulants in the treatment of depression in older adults. The literature review focused on efficacy and tolerability studies of psychostimulants in the treatment of depression for the elderly that were published between 1980 and 2016. The only inclusion criterion applied was an average age of the sample studied greater than or equal to 60 years. Overall, 12 trials were selected: 3 controlled trials and 9 uncontrolled trials. Of the 3 controlled trials, one compared parallel groups and the other two were cross-tests. Among the psychostimulants, methylphenidate was the most studied molecule. The trials demonstrate an efficacy of this molecule in particular as an add-on therapy in old-age depression but for the most part with a level of proof that remains insufficient. The small size of the samples and the methodological limitations of the studies obviate the possibility of extracting definitive conclusions concerning the place of psychostimulants in the treatment of depression in the elderly. Further studies are required in particular in the treatment of resistant depressive episodes. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  2. Studies on the Neogene Tertiary strata distributed in the central part of Tottori prefecture

    International Nuclear Information System (INIS)

    Yoshitani, Akihiko; Yoshizawa, Junko.

    1978-01-01

    The Neogene Tertiary strata, distributed in the central part of Tottori Prefecture, are volcano-stratigraphically classified, as shown in Figure 3. The Miocene strata are divided into Ojika formation and Mitoku formation in ascending order. Ojika formation, composed of plagio-rhyolitic pyroclastics and lavas, abuts against the basement rocks. Furthermore, some breaccias derived from the talus basal conglomerate beds are found in Ojika formation. Mitoku formation abuts both against the basement rocks and Ojika formation, and sometimes overlaps on the basement rocks. From the investigation into the Miocene strata, it is clarified that the depression took place prior to the volcanic activities at the earliest stage of the present Miocene sedimentary basin. (author)

  3. Hollow volcanic tumulus caves of Kilauea Caldera, Hawaii County, Hawaii

    Directory of Open Access Journals (Sweden)

    William R. Halliday

    1998-01-01

    Full Text Available In addition to lava tube caves with commonly noted features, sizable subcrustal spaces of several types exist on the floor of Kilauea Caldera. Most of these are formed by drainage of partially stabilized volcanic structures enlarged or formed by injection of very fluid lava beneath a plastic crust. Most conspicuous are hollow tumuli, possibly first described by Walker in 1991. Walker mapped and described the outer chamber of Tumulus E-I Cave. Further exploration has revealed that it has a hyperthermic inner room beneath an adjoining tumulus with no connection evident on the surface. Two lengthy, sinuous hollow tumuli also are present in this part of the caldera. These findings support Walkers conclusions that hollow tumuli provide valuable insights into tumulus-forming mechanisms, and provide information about the processes of emplacement of pahoehoe sheet flows.

  4. The frequency of explosive volcanic eruptions in Southeast Asia.

    Science.gov (United States)

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  5. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    Science.gov (United States)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  6. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  7. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  8. Magnetic properties of frictional volcanic materials

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  9. Seasonal variations of volcanic eruption frequencies

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  10. Anxiety, depression and tobacco abstinence.

    Science.gov (United States)

    Almadana Pacheco, Virginia; Gómez-Bastero Fernández, Ana Paulina; Valido Morales, Agustín; Luque Crespo, Estefanía; Monserrat, Soledad; Montemayor Rubio, Teodoro

    2017-09-29

    There is evidence of the relationship between mental illness and smoking and increased risk of depressive episodes after quitting smoking, even with specific treatments for abstinence. To assess the influence of a cessation program on the emotional state of patients by measuring levels of anxiety / depression and differences depending on the presence of psychiatric history. A prospective observational study of patients taking part in a combined program (pharmacological and cognitive-behavioral) for giving up smoking. Anxiety (A) and depression (D) were measured using the HADS questionnaire at baseline, first and third month of abstinence. Anxiety and depression showed significant and progressive improvement during treatment (A: baseline 9.2 ± 4.5, 5.9 ± 3.6 1 month, 3 months 4.5 ± 3.1, p.

  11. Coping with volcanic hazards; a global perspective

    Science.gov (United States)

    Tilling, R.I.

    1990-01-01

    Compared to some other natural hazards-such as floods, storms, earthquakes, landslides- volcanic hazards strike infrequently. However, in populated areas , even very small eruptions can wreak havoc and cause widespread devastation. For example, the 13 November 1985 eruption of Nevado del Ruiz in Colombia ejected only about 3 percent of the volume of ash produced during the 18 May 1980 eruption of Mount St. Helens. Yet, the mudflows triggered by this tiny eruption killed more than 25,000 people.

  12. Feasibility study on volcanic power generation system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Investigations were carried out to determine the feasibility of volcanic power generation on Satsuma Io Island. Earthquakes were studied, as were the eruptions of subaerial and submarine hot springs. Hydrothermal rock alteration was studied and electrical surveys were made. General geophysical surveying was performed with thermocameras and radiation monitoring equipment. In particular, the Toyoba mine was studied, both with respect to its hot spring and its subsurface temperatures.

  13. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  14. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  15. The Middlesex Fells Volcanic Complex: A Revised Tectonic Model based on Geochronology, Geochemistry, and Field Data

    Science.gov (United States)

    Hampton, R.

    2017-12-01

    The Boston Bay area is composed of several terranes originating on the paleocontinent of Avalonia, an arc terrane that accreted onto the continent of Laurentia during the Devonian. Included in these terranes is the Middlesex Fells Volcanic Complex, a bimodal complex composed of both intrusive and extrusive igneous rocks. Initial studies suggested that this volcanic complex formed during a rift event as the Avalonian continent separated from its parent continent 700-900 Ma. New geochemical and geochronological data and field relationships observed in this study establishes a new tectonic model. U-Pb laser ablation zircon data on four samples from different units within the complex reveal that the complex erupted 600 Ma. ICP-MS geochemical analysis of the metabasalt member of the complex yield a trace element signature enriched in Rb, Pb, and Sr and depleted in Th, indicating a subduction component to the melt and interpreted as an eruption into a back-arc basin. The felsic units similarly have an arc related signature when plotted on trace element spider diagrams and tectonic discrimination diagrams. Combined with the field relationships, including an erosional unconformity, stratigraphic and intrusional relationships and large faults from episodic extension events, this data suggests that the Middlesex Fells Volcanic Complex was erupted as part of the arc-sequence of Avalonia and as part of the formation of a back-arc basin well after Avalonia separated from its parent continent. This model presents a significantly younger eruption scenario for the Middlesex Fells Volcanics than previously hypothesized and may be used to study and compare to other volcanics from Avalon terranes in localities such as Newfoundland and the greater Boston area.

  16. Early onset depression: the relevance of anxiety.

    Science.gov (United States)

    Parker, G; Wilhelm, K; Asghari, A

    1997-01-01

    The aim of this study was to determine risk factors that may differentiate early onset from late onset depression. A non-clinical cohort that had been assessed from 1978 to 1993 at 5 yearly intervals and that had a high prevalence rate of lifetime depression took part in the study. We established an appropriate age cut-off to distinguish early onset (i.e. before 26 years) of major and of minor depression, and examined the relevance of a number of possible determinants of early onset depression assessed over the life of the study. Despite several dimensional measures of depression, self-esteem and personality being considered, they generally failed (when assessed early in the study) to discriminate subsequent early onset depression, with the exception of low masculinity scores being a weak predictor of major and/or minor depression. Early onset depression was strongly predicted, however, by a lifetime episode of a major anxiety disorder, with generalised anxiety being a somewhat stronger and more consistent predictor than panic disorder, agoraphobia and minor anxiety disorders (ie social phobia, simple phobia). The possibility that anxiety may act as a key predispositional factor to early onset depression and to a greater number of depressive episodes is important in that clinical assessment and treatment of any existing anxiety disorder may be a more efficient and useful strategy than focussing primarily on the depressive disorder.

  17. Evidence of volcanic activity in the base of the Pendencia Formation, onshore Potiguar Basin; Evidencia de atividade vulcanica na base da Formacao Pendencia, Bacia Potiguar emersa

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, S.M.C.; Souza, R.S. de; Sombra, C.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Silva Scuta, M. da [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1990-10-01

    The occurrence of volcanic rocks on the Pendencia Formation on the onshore part of Potiguar Basin, the porosity and permeability characteristics, are presented. The studies suggest that the evidence of the volcanic activity occurred associated with the rift process, all the wells drilling in the basin presents profiles characteristics at those volcanos-sedimentary sequences found in other sedimentary basins, and the lithic sandstones permit the conclusion that the occurrence of under water volcanic activity is contemporary of sedimentation in the Pendencia Lake. 4 figs., 8 refs.

  18. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  19. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  20. Excessive daytime sleepiness among depressed patients | Mume ...

    African Journals Online (AJOL)

    Background: Excessive daytime sleepiness (EDS) has been reported among depressed patients in many populations. Many depressed patients seek medical attention partly to deal with EDS, but this sleep disorder is often overlooked in clinical practice. Objectives: The objectives of this study were to determine the ...

  1. Excessive daytime sleepiness among depressed patients | Mume ...

    African Journals Online (AJOL)

    Abstract. Background: Excessive daytime sleepiness (EDS) has been reported among depressed patients in many populations. Many depressed patients seek medical attention partly to deal with EDS, but this sleep disorder is often overlooked in clinical practice. Objectives: The objectives of this study were to determine the ...

  2. A Case of Depression Screening in Schools

    Science.gov (United States)

    Miloseva, Lence

    2016-01-01

    Adolescent clinical and subclinical depression has a significant negative impact on adolescents well being, school performance and consequently produces maladaptive outcomes in terms of subsequent education and occupational functioning. This research is a part of a larger research project with a focus on clinical and subclinical depression during…

  3. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  4. Evolution of volcaniclastic apron during initiation of Cascade volcanism in southern Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bestland, E.A.

    1986-05-01

    The Oligocene Colestin Formation consists of volcaniclastic apron sequence that records the initiation of Cascade volcanism in the western Cascade Range of southern Oregon. The formation in the type area is largely confined to an east-west-trending graben approximately 8 km wide. This graben and other smaller grabens within it developed to the west of and perpendicular to the axis of the Oligocene Cascade arc. The apron, which fills and locally overflows the graben, consists of coalesced lobes of volcaniclastic and pyroclastic deposits and lesser amounts of lava flows. Abrupt lateral facies changes on a scale of tens to hundreds of meters were produced by the lobe style of deposition and contemporaneous basin faulting. Interstratified with the discontinuous apron sediments are marker units that consist of pyroclastic flows, paleosols, and lava-flow sequences. In the upper half of the formation, the apron can be subdivided into informal members (lobes and sequences of lobes), which can be mapped according to their composition and stratigraphic position. Each member formed during a distinct interval of volcanism. An epiclastic lobe in the upper part of the formation, containing debris-flow and hyperconcentrated flood-flow deposits, represents a period of effusive or mildly explosive andesitic and basaltic volcanism. This epiclastic lobe pinches out to the south under a member that consists of tuffaceous sandstones and interbedded welded and nonwelded pyroclastic flows. The pulselike style of apron growth was produced by the episodic shifting of volcanism along the arc.

  5. Geologic structure and volcanic history of the Yanaizu-Nishiyama (Okuaizu) geothermal field, Northeast Japan

    Energy Technology Data Exchange (ETDEWEB)

    Mizugaki, Keiko [Geological Survey of Japan, Geothermal Research Dept., Higashi Tsukuba (Japan)

    2000-04-01

    The Yanaizu-Nishiyama geothermal field, also known as Okuaizu, supports a 65 MWe geothermal power station. It is located in the western part of Fukushima Prefecture, northeast Japan. This field is characterised by rhyolitic volcanism of about 0.3-0.2 Ma that formed Sunagohara volcano. Drillcore geology indicates that volcanism began with a caldera-forming eruption in the center of this field, creating a 2-km-diameter funnel-shaped caldera. Subsequently, a fault-bounded block including this caldera subsided to form a 5-km-wide lake that accumulated lake sediments. Post-caldera volcanism formed lava domes and intrusions within the lake, and deposited ash-flow tuffs in and around the lake. The hydrothermal system of this field is strongly controlled by subvertical faults that have no relation to the volcanism. The principal production zone occurs at a depth of 1.0-2.6 km within fractured Neogene formations along two northwest-trending faults to the southeast of the caldera. These faults also formed fracture zones in the lake sediments, but there was no apparent offset of the sediments. Stratigraphic studies suggest that post-caldera activities of Sunagohara volcano have migrated southeastward to the present high-temperature zone. The source magma of Sunagohara volcano may contribute to the thermal potential of this field. (Author)

  6. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China

    Directory of Open Access Journals (Sweden)

    Tian H.S.

    2014-07-01

    Full Text Available The Yishu Fault Zone runs through the centre of Shandong Province (E China; it is a deep-seated large fault system that still is active. Two volcanic faulted basins (the Shanwang and Linqu Basins in the Linqu area, west of the fault zone, are exposed to rifting, which process is accompanied by a series of tectonic and volcanic earthquakes with a magnitude of 5-8. Lacustrine sediments in the basins were affected by these earthquakes so that seismites with a variety of soft-sediment deformation structures originated. The seismites form part of the Shanwang Formation of the Linqu Group. Semi-consolidated fluvial conglomerates became deformed in a brittle way; these seismites are present at the base of the Yaoshan Formation. Intense earthquakes triggered by volcanic activity left their traces in the form of seismic volcanic rocks associated with liquefied-sand veins in the basalt/sand intercalations at the base of the Yaoshan Formation. These palaeo-earthquake records are dated around 14-10 Ma; they are responses to the intense tectonic extension and the basin rifting in this area and even the activity of the Yishu Fault Zone in the Himalayan tectonic cycle.

  7. A Comprehensive Training Data Set for the Development of Satellite-Based Volcanic Ash Detection Algorithms

    Science.gov (United States)

    Schmidl, Marius

    2017-04-01

    We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.

  8. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  9. Volcanic styles at Alba Patera, Mars: implications of lava flow morphology to the volcanic history

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process

  10. Methodology for the study of the Mexican Volcanic Belt; Metodologia para el estudio del Cinturon Volcanico Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Pal Verma, Surendra [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The Mexican Volcanic Belt (MVB) is an structure 20 to 150 kilometers wide an {approx}1000 km long, oriented approximately east-west, from nearby Puerto Vallarta up until Veracruz; it contains a great number ({approx}7000) of volcanic apparatus or volcanic centers (Verma, 1987a, and the cited references in this paper). Fig. 1 represents the location of some of its main volcanic centers. The MVB forms part of the ring of fire that extends all along the circumpacific region (see Fig. 2) named this way because it refers to a very high volcanoes population (many of them active volcanoes), to its seismic activity and to the large geothermal manifestations. [Espanol] El Cinturon Volcanico Mexicano (CVM) es una estructura de 20 a 150 kilometros de ancho, {approx}1,000 km de largo, orientada aproximadamente este-oeste desde cerca de Puerto Vallarta hasta Veracruz; contiene gran numero ({approx}7,000) de aparatos o centros volcanicos (Verma, 1987a, y las referencias citadas en este trabajo). La figura 1 presenta la localizacion de algunos de sus principales centros volcanicos. El CVM forma parte del llamado anillo del fuego, que se extiende a todo lo largo de la region circumpacifica (vease la Fig. 2), denominada asi porque se trata de una poblacion muy alta de volcanes (mucho de ellos activos), de la actividad sismica y de grandes manifestaciones geotermicas.

  11. Methodology for the study of the Mexican Volcanic Belt; Metodologia para el estudio del Cinturon Volcanico Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Pal Verma, Surendra [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    The Mexican Volcanic Belt (MVB) is an structure 20 to 150 kilometers wide an {approx}1000 km long, oriented approximately east-west, from nearby Puerto Vallarta up until Veracruz; it contains a great number ({approx}7000) of volcanic apparatus or volcanic centers (Verma, 1987a, and the cited references in this paper). Fig. 1 represents the location of some of its main volcanic centers. The MVB forms part of the ring of fire that extends all along the circumpacific region (see Fig. 2) named this way because it refers to a very high volcanoes population (many of them active volcanoes), to its seismic activity and to the large geothermal manifestations. [Espanol] El Cinturon Volcanico Mexicano (CVM) es una estructura de 20 a 150 kilometros de ancho, {approx}1,000 km de largo, orientada aproximadamente este-oeste desde cerca de Puerto Vallarta hasta Veracruz; contiene gran numero ({approx}7,000) de aparatos o centros volcanicos (Verma, 1987a, y las referencias citadas en este trabajo). La figura 1 presenta la localizacion de algunos de sus principales centros volcanicos. El CVM forma parte del llamado anillo del fuego, que se extiende a todo lo largo de la region circumpacifica (vease la Fig. 2), denominada asi porque se trata de una poblacion muy alta de volcanes (mucho de ellos activos), de la actividad sismica y de grandes manifestaciones geotermicas.

  12. Helping your teen with depression

    Science.gov (United States)

    Teen depression - helping; Teen depression - talk therapy; Teen depression - medicine ... teen the most. The most effective treatments for depression are: Talk therapy Antidepressant medicines If your teen ...

  13. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    Science.gov (United States)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  14. Upper pliocene-lower pleistocene 40Ar/39Ar ages of Pudahuel ignimbrite (Diamante-Maipo volcanic complex), Central Chile (33.50S)

    International Nuclear Information System (INIS)

    Wall, R.M.; Lara, L.E.; Perez de Arce, C

    2001-01-01

    brittle deformation, the age of N-S compressive event recognized by Lavenu and Cembrano (1999) toward the south in the Central Depression is constrained. Thus, the Pudahuel Ignimbrite (Diamante-Maipo Volcanic Complex) is part of a Plio-Quaternary silicic magmatic belt formed by the NNW alignment of volcanic centres and complexes like the Calabozos Caldera (35.5 o S ), with pleistocene pyroclastic flow deposits (Hildreth et al., 1984; Grunder and Mahood, 1988); the Puelche Volcanic Field (35.7 o S ), with rhyolitic lavas of Early Pleistocene age (Hildreth et al., 1999); the Laguna del Maule Volcanic Field (36 o S ) with plio-pleistocene lavas and ignimbrites (Hildreth et al., 1999) and Domuyo volcano (36.7 o S ) in Argentina. This belt is superimposed on rocks which are deformed by the Tertiary Malargue fold and thrust belt. To the south of 38 o S , and with the same orientation, another coeval magmatic belt is formed by alkaline basaltic centres (Munoz y Stern, 1989) (au)

  15. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Tectonics, seismicity, volcanism, and erosion rates in the southern Great Basin

    International Nuclear Information System (INIS)

    Carr, W.J.; Rogers, A.M.

    1982-01-01

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. The following approaches are being used: (1) investigating the rate, intensity, and distribution of faulting during approximately the last 25 m.y., with emphasis on the last 10 m.y.; (2) monitoring and interpreting present seismicity; (3) studying the history of volcanism; and (4) evaluating past rates of erosion and deposition. Progress is reported

  16. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  17. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1992-01-01

    The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed

  18. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  19. Sr isotopes at Copahue Volcanic Center, Neuquen, Argentina: Preliminary report

    International Nuclear Information System (INIS)

    Linares, E.; Ostera, H.A.; Cagnoni, M.C

    2001-01-01

    The Copahue Volcanic Center is located in the Cordillera Principal, at 38 L.S., in the Argentina- Chilean border. Detailed geological, geochronological and structural studies were carried out during the last decade (Pesce, 1989; Delpino y Bermudez, 1993; Linares et al., 1995, 1999; Folguera y Ramos, 2000; among others). We present Sr isotopes data on the main units of the Volcanic Center, coupled with a major element geochemistry, to constrain the evolution of the volcanic center (au)

  20. Eocene volcanism and the origin of horizon A

    Science.gov (United States)

    Gibson, T.G.; Towe, K.M.

    1971-01-01

    A series of closely time-equivalent deposits that correlate with seismic reflector horizon A exists along the coast of eastern North America. These sediments of Late-Early to Early-Middle Eocene age contain an authigenic mineral suite indicative of the alteration of volcanic glass. A volcanic origin for these siliceous deposits onshore is consistent with a volcanic origin for the cherts of horizon A offshore.

  1. UK Hazard Assessment for a Laki-type Volcanic Eruption

    Science.gov (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  2. Origin of seamount volcanism in northeast Indian Ocean with emphasis on Christmas Island

    Science.gov (United States)

    Taneja, R.; O'Neill, C.; Rushmer, T. A.; Jourdan, F.; Blichert-Toft, J.; Turner, S.; Lackie, M. A.

    2012-12-01

    The Northeast Indian Ocean has been a central point of research in the recent past due to its intraplate geophysical and geochemical characteristics. It is dominated by sub-aerial volcanic islands and submerged guyots and two islands, namely, Cocos (Keeling) Island and Christmas Island. Christmas Island, the focus of this study, consists of limestone and mafic intraplate volcanics. The origin of most of the features in northeast Indian Ocean is not fully understood. Christmas Island has experienced multiple stages of intraplate volcanic activity as previously established by 40Ar/39Ar radioisotopic analyses of basalts from the island (Hoernl et al., 2011). Here, we present new 40Ar/39Ar ages where the rock samples from Waterfall Spring (WS), Ethel Beach (EB) & Dolly Beach (DB) on the east coast of the island yielded plateau and mini-plateau ages of 37.75±0.77 Ma, 37.10±0.66 Ma and 43.37±0.45 Ma respectively, whereas a sample from Flying Fish Cove (FFC) in the north of the island yielded a minimum age of 38.6±0.5 Ma. All these units are part of the Lower Volcanics Series. The samples from the west coast (Winifred Beach, WB) are younger with an age of 4.32 ± 0.17 Ma, and are part of the Upper Volcanic Series. This confirms two stages of volcanism at the island with a gap of around 38 Ma. The 40Ar/39Ar radioisotopic ages were overlayed on Gplates and seismic tomography models to determine its paleo motion. The present position of the island is 10.5°S, 105.5°E. During Eocene its reconstructed position was 30°S latitude. Seismic tomography models have highlighted a low velocity zone beneath the island during Eocene. Geochemically, the two volcanic suites (Upper & Lower) are mostly similar in their major and trace element composition. The majority of localities (WS, EB, and WB) are basanites; where as that from Dolly Beach is basaltic. The Dale's (west coast), are trachyte and appear evolved with high SiO2. They also have low Ba and Sr ~25ppm, whereas those from

  3. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    Science.gov (United States)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  4. Gene-environment interplay in depressive symptoms

    DEFF Research Database (Denmark)

    Petkus, A. J.; Beam, C. R.; Johnson, W.

    2017-01-01

    that genetic factors play a larger part in the association between depressive symptoms and physical illness for men than for women. For both sexes, across all ages, physical illness may similarly trigger social and health limitations that contribute to depressive symptoms.......Background Numerous factors influence late-life depressive symptoms in adults, many not thoroughly characterized. We addressed whether genetic and environmental influences on depressive symptoms differed by age, sex, and physical illness. Method The analysis sample included 24 436 twins aged 40......-90 years drawn from the Interplay of Genes and Environment across Multiple Studies (IGEMS) Consortium. Biometric analyses tested age, sex, and physical illness moderation of genetic and environmental variance in depressive symptoms. Results Women reported greater depressive symptoms than men. After age 60...

  5. Collaborative care for depression in general practice

    DEFF Research Database (Denmark)

    Brinck-Claussen, Ursula Ødum; Curth, Nadja Kehler; Davidsen, Annette Sofie

    2017-01-01

    Background: Depression is a common illness with great human costs and a significant burden on the public economy. Previous studies have indicated that collaborative care (CC) has a positive effect on symptoms when provided to people with depression, but CC has not yet been applied in a Danish...... context. We therefore developed a model for CC (the Collabri model) to treat people with depression in general practice in Denmark. Since systematic identification of patients is an “active ingredient” in CC and some literature suggests case finding as the best alternative to standard detection, the two...... detection methods are examined as part of the study. The aim is to investigate if treatment according to the Collabri model has an effect on depression symptoms when provided to people with depression in general practice in Denmark, and to examine if case finding is a better method to detect depression...

  6. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  7. Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation

    Science.gov (United States)

    Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.

    2018-04-01

    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.

  8. Postpartum Depression - Multiple Languages

    Science.gov (United States)

    ... Русский (Russian) Bilingual PDF Health Information Translations Postpartum Depression - English PDF Postpartum Depression - Русский (Russian) PDF Postpartum Depression - English MP3 ...

  9. Major Depression Among Adults

    Science.gov (United States)

    ... Depressive Episode Among Adolescents Data Sources Share Major Depression Definitions Major depression is one of the most ... Bethesda, MD 20892-9663 Follow Us Facebook Twitter YouTube Google Plus NIMH Newsletter NIMH RSS Feed NIMH ...

  10. Recognizing teen depression

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000648.htm Recognizing teen depression To use the sharing features on this page, ... life. Be Aware of the Risk for Teen Depression Your teen is more at risk for depression ...

  11. Sadness and Depression

    Science.gov (United States)

    ... Videos for Educators Search English Español Sadness and Depression KidsHealth / For Kids / Sadness and Depression Print en ... big difference in your life. When Sadness Is Depression When you're in a sad mood, it ...

  12. Postpartum Depression Facts

    Science.gov (United States)

    ... Where can I find more information? Share Postpartum Depression Facts Download PDF Download ePub Download Mobi Order ... for herself or her family. What is postpartum depression? Postpartum depression is a mood disorder that can ...

  13. Depression and College Students

    Science.gov (United States)

    ... depression and other mental health issues? Reference Share Depression and College Students Download PDF Download ePub Order ... Answers to college students’ frequently asked questions about depression Feeling moody, sad, or grouchy? Who doesn’t ...

  14. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Science.gov (United States)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  15. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  16. Widespread Neogene and Quaternary Volcanism on Central Kerguelen Plateau, Southern Indian Ocean

    Science.gov (United States)

    Duncan, R. A.; Falloon, T.; Quilty, P. G.; Coffin, M. F.

    2016-12-01

    We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a 125,000 km2 region that includes Heard and McDonald islands. Large early Miocene (16-22 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW-SSE line of volcanic centers that lie between Îles Kerguelen and Heard and McDonald islands. A second group of large sea knolls is aligned E-W across the center of this region. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of Heard Island. Compositions include basanite, basalt, and trachybasalt, that are broadly similar to plateau lava flows from nearby Ocean Drilling Program (ODP) Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. The western line of sea knolls has been related to hotspot activity now underlying the Heard Island area. In view of the now recognized much larger area of young volcanic activity, we propose that a broad region of CKP became volcanically active in Neogene time due to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults promotes access for melts from the Heard mantle plume to rise to the surface.

  17. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    Science.gov (United States)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  18. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  19. Facies analysis of tuffaceous volcaniclastics and felsic volcanics of Tadpatri Formation, Cuddapah basin, Andhra Pradesh, India

    Science.gov (United States)

    Goswami, Sukanta; Dey, Sukanta

    2018-05-01

    The felsic volcanics, tuff and volcaniclastic rocks within the Tadpatri Formation of Proterozoic Cuddapah basin are not extensively studied so far. It is necessary to evaluate the extrusive environment of felsic lavas with associated ash fall tuffs and define the resedimented volcaniclastic components. The spatial and temporal bimodal association were addressed, but geochemical and petrographic studies of mafic volcanics are paid more attention so far. The limited exposures of eroded felsic volcanics and tuffaceous volcaniclastic components in this terrain are highly altered and that is the challenge of the present facies analysis. Based on field observation and mapping of different lithounits a number of facies are categorized. Unbiased lithogeochemical sampling have provided major and selective trace element data to characterize facies types. Thin-section studies are also carried out to interpret different syn- and post- volcanic features. The facies analysis are used to prepare a representative facies model to visualize the entire phenomenon with reference to the basin evolution. Different devitrification features and other textural as well as structural attributes typical of flow, surge and ash fall deposits are manifested in the middle, lower and upper stratigraphic levels. Spatial and temporal correlation of lithologs are also supportive of bimodal volcanism. Felsic and mafic lavas are interpreted to have erupted through the N-S trending rift-associated fissures due to lithospheric stretching during late Palaeoproterozoic. It is also established from the facies model that the volcaniclastics were deposited in the deeper part of the basin in the east. The rifting and associated pressure release must have provided suitable condition of decompression melting at shallow depth with high geothermal gradient and this partial melting of mantle derived material at lower crust must have produced mafic magmas. Such upwelling into cold crust also caused partial heat

  20. Volcanism/tectonics working group summary

    International Nuclear Information System (INIS)

    Kovach, L.A.; Young, S.R.

    1995-01-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described

  1. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  2. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  3. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    Science.gov (United States)

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  4. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    Science.gov (United States)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  5. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China

    Science.gov (United States)

    Yan, Lili; He, Zhenyu; Beier, Christoph; Klemd, Reiner

    2018-01-01

    The Yunshan caldera complex is part of a larger scale, ca. 2000-km-long volcanic-plutonic complex belt in the coastal region of SE China. The volcanic rocks in the caldera complex are characterized by high-silica peraluminous and peralkaline rhyolites associated with an intracaldera porphyritic quartz monzonite pluton. In this study, we present zircon U-Pb, Hf and stable O isotopes along with geochemical data of both volcanic and plutonic rocks to evaluate the potential petrogenetic link between volcanism and plutonism in the Yunshan caldera complex. SHRIMP zircon U-Pb geochronology of both volcanic and plutonic rocks yields almost identical ages ranging from 95.6 to 93.1 Ma. The peraluminous and peralkaline rhyolites show negative anomalies of Sr, P, Ti and Ba and to a lesser extent negative Nb and Ta anomalies, along with positive Rb anomalies and `seagull-like' rare earth element (REE) patterns with negative Eu anomalies and low (La/Yb)N ratios. The intracaldera porphyritic quartz monzonite displays minor negative Rb, Nb, Ta, Sr, P and Ti anomalies and a positive Ba anomaly with REE patterns characterized by relatively high (La/Yb)N ratios and lack significant Eu anomalies. The peraluminous and peralkaline rhyolites and the porphyritic quartz monzonite exhibit consistent ɛ Nd( t) of - 3.7 to - 2.2 and display zircon ɛ Hf( t) values of - 2.1 to 3.7. They further have similar, mantle-like, zircon oxygen isotopic compositions (δ18OVSMOW mainly = 4.63 to 5.76‰). We interpret these observations to be in agreement with a crystal mush model in which the parental magma of the volcanic and plutonic rocks of the Yunshan caldera complex was likely produced by interaction of asthenosphere melts with subduction-influenced enriched mantle wedge. The peralkaline rhyolites are interpreted to represent the most differentiated magma that has subsequently experienced significant fluid-melt interactions, whereas the porphyritic quartz monzonite may be representative of the

  6. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    A. Mortier

    2013-04-01

    Full Text Available Routine sun-photometer and micro-lidar measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observations of the volcanic aerosol particles. This paper presents the main results of a joint micro-lidar/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, whenever weather conditions permitted. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the aerosol optical depth (AOD increased, whereas Ångström exponent decreased, thus indicating coarse-mode dominance in the volume size distribution. Moreover, the non-spherical fraction retrieved by AERONET significantly increased. The real part of the complex refractive index was up to 1.55 at 440 nm during the eruption, compared to background data of about 1.46 before the eruption. Collocated lidar data revealed that several aerosol layers were present between 2 and 5 km, all originating from the Iceland region as confirmed by backward trajectories. The volcanic ash AOD was derived from lidar extinction profiles and sun-photometer AOD, and its maximum was estimated around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponds to an ash mass concentration (AMC slightly higher than 1000 μg m−3 (±50%. An effective lidar ratio of ash particles of 48 sr was retrieved at 532 nm for 17 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multiwavelength lidar systems, this study demonstrates the opportunity of micro-lidar and sun-photometer joint data

  7. Seismic and GPS constraints on the dynamics and kinematics of the Yellowstone volcanic field

    Science.gov (United States)

    Smith, R. B.; Farrell, J.; Jordan, M.; Puskas, C.; Waite, G. P.

    2007-12-01

    The seismically and volcanically Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have modified continental lithosphere producing the Yellowstone-Snake River Plain-Newberry silicic volcanic field (YSRPN) system, with its NE volcanically active Yellowstone volcanic field. The size and accessibility of the Yellowstone area has allowed a range of geophysical experiments including earthquake monitoring and seismic and GPS imaging of this system. Seismicity is dominated by small-magnitude normal- to oblique-slip faulting earthquake swarms with shallow focal depths, maximum of ~5 km, restricted by high temperatures and a weak elastic layer. There is developing evidence of non-double couple events. Outside the caldera, earthquakes are deeper, ~20 km, and capable of M 7+ earthquakes. We integrate the results from a multi-institution experiment that recorded data from 110 seismic stations and 180 GPS stations for 1999-2004. The tomographic images confirm the existence of a low Vp-body beneath the Yellowstone caldera at depths greater than 8 km, possibly representing hot, crystallizing magma. A key result of our study is a volume of anomalously low Vp and Vp/Vs in the northwestern part of the volcanic field at shallow depths of stress field inverted from seismic and GPS data is dominated by regional SW extension with superimposed volumetric expansion and uplift from local volcanic sources. Mantle tomography derived from integrated inversion of teleseismic and local earthquake data constrained by geoid, crustal structure, discontinuity structure reveals an upper-mantle low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected westward tilt to the west at ~60° with a 1% to 2% melt. This geometry is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. Some remaining

  8. Unrest at Bárdarbunga: Preparations for possible flooding due to subglacial volcanism

    Science.gov (United States)

    Hardardottir, Jorunn; Roberts, Matthew; Pagneux, Emmanuel; Einarsson, Bergur; Thorarinsdottir, Tinna; Johannesson, Tomas; Sigurdsson, Oddur; Egilson, David; Sigurdsson, Gunnar; Imo hydrological-monitoring-team

    2015-04-01

    Located partly beneath northwest Vatnajökull, Iceland, the Bárdarbunga volcanic system comprises an ice-capped central volcano and a fissure swarm extending beyond the ice margin. During the last 1100 years the volcano has erupted on at least 26 occasions. Outburst floods (jökulhlaups) on a scale of >100,000 m3 s-1 are known to have occurred during major explosive eruptions. Repeated jökulhlaups from Bárdarbunga have inundated the Jökulsá á Fjöllum River, which drains over 200 km northwards from the Dyngjujökull outlet glacier to the north coast of Iceland. Depending on the location of the eruption within the 80 km2 caldera, jökulhlaups could also flow northwards along Skjálfandafljót River and towards west and southwest into present-day tributaries of the extensively hydropower-harnessed Thjórsá River. On 16 August 2014, an intense earthquake swarm began within the Bárdarbunga caldera. Seismicity propagated from the caldera, extending ~10 km northwards of the ice margin where a fissure eruption developed in late August and remains ongoing in early January 2015. In connection with the lateral migration of magma from the caldera, the ice surface of Bárdarbunga has lowered by over 60 m; also associated with increased geothermal heat on the caldera rim, as manifested by the development of ice-surface depressions. In preparation for a subglacial eruption in the Bárdarbunga volcanic system, the Icelandic Meteorological Office (IMO) has made several assessments of likely hydrological hazards. Assessments were undertaken on Jökulsá á Fjöllum and Skjálfandafljót at key locations where preliminary evacuation plans for populated areas were made in cooperation with the local police. Floodwater extent was estimated for key infrastructures, such as bridges, telecommunication and power lines for maximum discharge levels ranging from 3,000 to 20,000 m3 s-1. The estimations were made using either simple Manning's calculations or HEC-RAS modelling

  9. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  10. Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor

    Science.gov (United States)

    Delph, J. R.; Levander, A.; Niu, F.

    2017-12-01

    The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc

  11. Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping

    OpenAIRE

    Leat, Philip T.; Tate, Alex J.; Tappin, David R.; Day, Simon J.; Owen, Matthew J.

    2010-01-01

    New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55° 45′S and 57° 20′S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. T...

  12. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism

    Science.gov (United States)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Klaver, Gerard Th.; Saunders, Andrew D.

    1996-03-01

    Late Cretaceous mafic volcanic sequences in Western Colombia and in the southern Caribbean have a striking coherence in their chemistry and compositional range which suggests they are part of the same magmatic province. The chemical characteristics of the majority of the mafic lavas are totally unlike those of island arc or marginal basin basalts, so the sequences cannot represent accreted arc terranes. On the other hand their trace element characteristics closely resemble those of Icelandic/Reykjanes Ridge basalts that represent an oceanic plateau formed by extensive decompression melting of an uprising deep mantle plume. The occurrence of komatiites on Gorgona and high-MgO picritic lavas in S.E. Colombia and on Curaçao, representing high temperature melts of the plume tail, confirms this analogy. Likewise, late stage rhyolites within the Colombian mafic volcanics may well be the equivalent of the extensive silicic magmas on Iceland and at Galapagos, possibly formed by remelting of the deep parts of the overthickened basaltic crust above the plume head. These volcanics, plus others around the Caribbean, including the floor of the Central Caribbean, probably all represent part of an oceanic plateau that formed rapidly at the Galapagos hotspot at 88 Ma, and that was too hot and buoyant to subduct beneath the margin of S. America as it migrated westwards with the opening of the South Atlantic, and so was imbricated along the continental margin. Minor arc-like volcanics, tonalites and hornblende leucogabbro veins may represent the products of subduction-flip of normal ocean crust against the buoyant plateau, or hydrous melts developed during imbrication/obduction.

  13. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  14. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    Science.gov (United States)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess

  15. Timing and Duration of Volcanism in the North Atlantic Igneous Province: Implications for Geodynamics and Links to the Iceland Hotspot

    DEFF Research Database (Denmark)

    Storey, M.; Duncan, R. A.; Tegner, Christian

    2007-01-01

    estimates of erupted magmas and their cumulates to calculate melt production rates for the early Tertiary flood basalts of East Greenland and the Faeroes Islands. The lavas lie at opposite ends of the Greenland-Iceland-Faeroes Ridge, the postulated Iceland hotspot track, and record volcanic activity leading...... of plate separation. The upper part of this crust comprises seismically imaged, seaward-dipping, subaerially erupted lavas. By  50 Ma, eruption rates had diminished drastically and volcanic activity had narrowed to a much restricted portion of the East Greenland margin, at the western end of the Greenland......We combine new and published 40Ar/39Ar age determinations from incremental heating experiments on whole rocks and mineral separates to assess the timing, duration and distribution of volcanic activity during construction of the North Atlantic Igneous Province. We use these ages together with volume...

  16. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    Science.gov (United States)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  17. Reduced cooling following future volcanic eruptions

    Science.gov (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  18. Supercomputer modeling of volcanic eruption dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  19. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  20. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  1. The scientific management of volcanic crises

    Science.gov (United States)

    Marzocchi, Warner; Newhall, Christopher; Woo, Gordon

    2012-12-01

    Sound scientific management of volcanic crises is the primary tool to reduce significantly volcanic risk in the short-term. At present, a wide variety of qualitative or semi-quantitative strategies is adopted, and there is not yet a commonly accepted quantitative and general strategy. Pre-eruptive processes are extremely complicated, with many degrees of freedom nonlinearly coupled, and poorly known, so scientists must quantify eruption forecasts through the use of probabilities. On the other hand, this also forces decision-makers to make decisions under uncertainty. We review the present state of the art in this field in order to identify the main gaps of the existing procedures. Then, we put forward a general quantitative procedure that may overcome the present barriers, providing guidelines on how probabilities may be used to take rational mitigation actions. These procedures constitute a crucial link between science and society; they can be used to establish objective and transparent decision-making protocols and also clarify the role and responsibility of each partner involved in managing a crisis.

  2. WSR-88D observations of volcanic ash

    Science.gov (United States)

    Wood, J.; Scott, C.; Schneider, D.

    2007-01-01

    Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.

  3. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  4. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  5. A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain

    Science.gov (United States)

    Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.

    2014-05-01

    This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.

  6. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    Science.gov (United States)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  7. Fewer self-reported depressive symptoms in young adults exposed to maternal depressed mood during pregnancy.

    Science.gov (United States)

    Zohsel, Katrin; Holz, Nathalie E; Hohm, Erika; Schmidt, Martin H; Esser, Günter; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2017-02-01

    Depressed mood is prevalent during pregnancy, with accumulating evidence suggesting an impact on developmental outcome in the offspring. However, the long-term effects of prenatal maternal depression regarding internalizing psychopathology in the offspring are as yet unclear. As part of an ongoing epidemiological cohort study, prenatal maternal depressed mood was assessed at the child's age of 3 months. In a sample of n=307 offspring, depressive symptoms were obtained via questionnaire at the ages of 19, 22, 23 and 25 years. At age 25 years, diagnoses of depressive disorder were obtained using a diagnostic interview. In a subsample of currently healthy participants, voxel-based morphometry was conducted and amygdala volume was assessed. In n=85 young adults exposed to prenatal maternal depressed mood, no significantly higher risk for a diagnosis of depressive disorder was observed. However, they reported significantly lower levels of depressive symptoms. This association was especially pronounced when prenatal maternal depressed mood was present during the first trimester of pregnancy and when maternal mood was depressed pre- as well as postnatally. At an uncorrected level only, prenatal maternal depressed mood was associated with decreased amygdala volume. Prenatal maternal depressed mood was not assessed during pregnancy, but shortly after childbirth. No diagnoses of maternal clinical depression during pregnancy were available. Self-reported depressive symptoms do not imply increased, but rather decreased symptom levels in young adults who were exposed to prenatal maternal depressed mood. A long-term perspective may be important when considering consequences of prenatal risk factors. Copyright © 2016. Published by Elsevier B.V.

  8. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  9. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    modeled volcanic cloud area is systematically wider than the retrieved area, the ash total mass is comparable and varies between 35 and 60 kt and between 20 and 42 kt for FALL3D and MODIS respectively. The mean AOD values are in good agreement and approximately equal to 0.8. When the whole volcanic clouds are considered the ash areas and the total ash masses, computed by FALL3D model are significantly greater than the same parameters retrieved from the MODIS data, while the mean AOD values remain in a very good agreement and equal to about 0.6. The volcanic cloud direction in its distal part is not coincident for the 29 and 30 October 2002 images due to the difference between the real and the modeled local wind fields. Finally the MODIS maps show regions of high mass and AOD due to volcanic puffs not modeled by FALL3D.

  10. Rumination mediates the relationship between overgeneral autobiographical memory and depression in patients with major depressive disorder.

    Science.gov (United States)

    Liu, Yansong; Yu, Xinnian; Yang, Bixiu; Zhang, Fuquan; Zou, Wenhua; Na, Aiguo; Zhao, Xudong; Yin, Guangzhong

    2017-03-21

    Overgeneral autobiographical memory has been identified as a risk factor for the onset and maintenance of depression. However, little is known about the underlying mechanisms that might explain overgeneral autobiographical memory phenomenon in depression. The purpose of this study was to test the mediation effects of rumination on the relationship between overgeneral autobiographical memory and depressive symptoms. Specifically, the mediation effects of brooding and reflection subtypes of rumination were examined in patients with major depressive disorder. Eighty-seven patients with major depressive disorder completed the 17-item Hamilton Depression Rating Scale, Ruminative Response Scale, and Autobiographical Memory Test. Bootstrap mediation analysis for simple and multiple mediation models through the PROCESS macro was applied. Simple mediation analysis showed that rumination significantly mediated the relationship between overgeneral autobiographical memory and depression symptoms. Multiple mediation analyses showed that brooding, but not reflection, significantly mediated the relationship between overgeneral autobiographical memory and depression symptoms. Our results indicate that global rumination partly mediates the relationship between overgeneral autobiographical memory and depressive symptoms in patients with major depressive disorder. Furthermore, the present results suggest that the mediating role of rumination in the relationship between overgeneral autobiographical memory and depression is mainly due to the maladaptive brooding subtype of rumination.

  11. Assessing the long-term probabilistic volcanic hazard for tephra fallout in Reykjavik, Iceland: a preliminary multi-source analysis

    Science.gov (United States)

    Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús

    2015-04-01

    Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results

  12. Volcanism and Tectonics of the Central Deep Basin, Sea of Japan

    Science.gov (United States)

    Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.

    2018-01-01

    The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.

  13. Breaking the rhythm of depression : Cognitive Behavior Therapy and relapse prevention for depression

    NARCIS (Netherlands)

    Bockting, Claudi L.H.

    2010-01-01

    A crucial part of the treatment of depression is the prevention of relapse and recurrence. Psychological interventions, especially cognitive behavior therapy (CBT) are helpful in preventing relapse and recurrence in depression. The effectivity of four types of relapse prevention cognitive behavior

  14. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands

    Science.gov (United States)

    Ford, Anabel; Rose, William I.

    1995-07-01

    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  15. Compositional Differences between Felsic Volcanic rocks from the ...

    African Journals Online (AJOL)

    The elemental and Sr-Nd isotopic compositions of the volcanic rocks suggest that fractional crystallization from differing basic parents accompanied by a limited assimilation (AFC) was the dominant process controlling the genesis of the MER felsic volcanic rocks. Keywords: Ethiopia; Northern Main Ethiopian Rift; Bimodal ...

  16. Assessment of the atmospheric impact of volcanic eruptions

    Science.gov (United States)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  17. Volcanic Ash from the 1999 Eruption of Mount Cameroon Volcano ...

    African Journals Online (AJOL)

    2008-10-21

    Oct 21, 2008 ... fluorine (F) content of the ash was determined by the selective ion electrode method. The results ... the main mineral in volcanic ash responsible for causing silicosis. The F ... volcanic ash with little or no attention to the < 4 µm.

  18. Improving communication during volcanic crises on small, vulnerable islands

    Science.gov (United States)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.

    2009-05-01

    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  19. Formation and evolution of mesozoic volcanic basins in Gan-Hang tectonic belt

    International Nuclear Information System (INIS)

    Zhang Xingpu

    1999-01-01

    The author mainly discusses the principle model for the formation and the evolution of Mesozoic volcanic basins in the Gan-Hang Tectonic Belt, and describes the distinct evolution features between the internal and external sites of volcanic basins, the natural relation between the down-warped, down-faulted, collapse volcanic basins and volcanic domes, the relationship between the formation of inter layered fractured zones of the volcanic cover and the evolution of volcanic basins

  20. Regional analysis of tertiary volcanic Calderas (western U.S.) using Landsat Thematic Mapper imagery

    Science.gov (United States)

    Spatz, David M.; Taranik, James V.

    1989-01-01

    The Landsat Thematic Mapper (TM) imagery of the Basin and Range province of southern Nevada was analyzed to identify and map volcanic rock assemblages at three Tertiary calderas. It was found that the longer-wavelength visible and the NIR TM Bands 3, 5, and 7 provide more effective lithologic discrimination than the shorter-wavelength bands, due partly to deeper penetration of the longer-wavelength bands, resulting in more lithologically driven radiances. Shorter-wavelength TM Bands 1 and 2 are affected more by surficial weathering products including desert varnish which may or may not provide an indirect link to lithologic identity. Guidelines for lithologic analysis of volcanic terrains using Landsat TM imagery are outlined.

  1. Internal structure of the 85°E ridge, Bay of Bengal: Evidence for multiphase volcanism

    Digital Repository Service at National Institute of Oceanography (India)

    Ismaiel, M.; Krishna, K.S.; Srinivas, K.; Mishra, J.; Saha, D.

    fragments 3 of Elan Bank and part of the present Kerguelen Plateau (Talwani et al., 2016). As a result, age of the oceanic floor in the Western Basin of the Bay of Bengal is older than the other parts. In southeastern quarter of the Bay of Bengal... interpreted as carbonate bank (Gopala Rao et al., 1997; Karuppuswamy, 2013), therefore, we too conjecture the lens shaped reflection free zone identified on our profiles as a carbonate bank, and this may have formed when the defunct volcanic structure...

  2. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) measured by satellite radar interferometry

    Science.gov (United States)

    Feigl, K.; Ali, T.; Singer, B. S.; Pesicek, J. D.; Thurber, C. H.; Jicha, B. R.; Lara, L. E.; Hildreth, E. W.; Fierstein, J.; Williams-Jones, G.; Unsworth, M. J.; Keranen, K. M.

    2011-12-01

    volcanoes (Singer et al., 2008) and five times the average rate for the LdM field over the last 1.5 Myr (Hildreth et al., 2010). Moreover, post-glacial rhyolite flows along the western side of LdM exhibit paleo-shorelines several meters above the current lake level, suggesting that rapid uplift of this part of the volcanic field may have occurred episodically. The number and circular distribution of vents through which silicic magma of remarkably coherent major and trace element composition has erupted, and the lack of any post-glacial mafic lavas, suggest two end-member hypotheses: (1) an upper crustal silicic magma chamber of potentially caldera-forming dimensions has been evolving during the last 25 kyr, possibly to the present day, with magma leaking to the surface through a ring-fracture, or (2) a wide (> 20 km) MASH zone exists in the deep crust (Hildreth and Moorbath, 1988; Annen et al., 2006) which has repeatedly created and released batches of silicic magma since 25 ka.

  3. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  4. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  5. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  6. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  7. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  8. Depression After Heart Attack

    Science.gov (United States)

    ... Can Be Done to Reduce the Impact of Depression on My Mental and Physical Health? There is some good news here. Depression is ... Can Be Done to Reduce the Impact of Depression on My Mental and Physical Health? What Can I Do About the Depression I’ ...

  9. Volcanism in the Sumisu Rift. Pt. 2

    International Nuclear Information System (INIS)

    Hochstaedter, A.G.; Gill, J.B.; Morris, J.D.

    1990-01-01

    A bimodal suite of volcanic rocks collected from the Sumisu Rift by ALVIN provide present day example of the first magmatic products of arc rifting during the initiation of back-arc spreading. The trace element and isotopic composition of these rocks, which are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, differ from those of arc rocks and N-MORB in their relative incorporation of both subduction-related and non-subduction-related components. Subduction-related components, i.e., those that distinguish volcanic arc basalts from N-MORB, are less pronounced in rift lavas than in arc lavas. Alkali and alkaline earth to high field strength element and REE ratios as well as 87 Sr/ 86 Sr are intermediate between those of N-MORB and Izu arc lavas and indicate that Sumisu Rift basalts are similar to BABB erupted in other, more mature back-arc basins. These results show that back-arc basins may begin their magmatic evolution with BABB rather than more arc-like lavas. Evidence of non-subduction related components remains after the effects of subduction related components are removed or accounted for. Compared to the arc, higher HFSE and REE concentrations, contrasting REE patterns, and ≤ε Nd in the rift reflect derivation of rift lavas from more enriched components. Although SR basalt resembles E-MORB in many trace element ratios, it is referred to as BABB because low concentrations of Nb are similar to those in volcanic arcs and H 2 O/REE and H 2 O/K 2 O exceed those of E-MORB. Differences in HREE pattern and ε Nd require that the E-MORB characteristics result from source heterogeneities and not lower degrees of melting. Enriched mantle beneath the rift may reflect enriched blobs entrained in a more depleted matrix, or injection of new, more enriched mantle. High 208 Pb/ 204 Pb and moderate 207 Pb/ 204 Pb ratios with respect to Pacific MORB also reflect ancient mantle enrichment. (orig.)

  10. Depression associated with dementia.

    Science.gov (United States)

    Gutzmann, H; Qazi, A

    2015-06-01

    Depression and cognitive disorders, including dementia and mild cognitive impairment, are common disorders in old age. Depression is frequent in dementia, causing distress, reducing the quality of life, exacerbating cognitive and functional impairment and increasing caregiver stress. Even mild levels of depression can significantly add to the functional impairment of dementia patients and the severity of psychopathological and neurological impairments increases with increasing severity of depression. Depressive symptoms may be both a risk factor for, as well as a prodrome of dementia. Major depressive syndrome of Alzheimer's disease may be among the most common mood disorders of older adults. Treating depression is therefore a key clinical priority to improve the quality of life both of people with dementia as well as their carergivers. Nonpharmacological approaches and watchful waiting should be attempted first in patients who present with mild to moderate depression and dementia. In cases of severe depression or depression not able to be managed through nonpharmacological means, antidepressant therapy should be considered.

  11. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Directory of Open Access Journals (Sweden)

    G. Pappalardo

    2013-04-01

    Full Text Available The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET. Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010. All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL. After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May, material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on

  12. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  13. Tungsten abundances in some volcanic rocks

    International Nuclear Information System (INIS)

    Helsen, J.N.; Shaw, D.M.; Crocket, J.H.

    1978-01-01

    A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments. These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19; continental margin, 0.40; continental subalkaline, 0.30; continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05. Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively. (author)

  14. Inside the volcanic boiler room: knowledge exchange among stakeholders of volcanic unrest

    Science.gov (United States)

    Gottsmann, Joachim; Christie, Ryerson; Bretton, Richard

    2014-05-01

    The knowledge of the causative links between subsurface processes, resulting monitoring signals and imminent eruption is incomplete. As a consequence, hazard assessment and risk mitigation strategies are subject to uncertainty. Discussion of unrest and pre-eruptive scenarios with uncertain outcomes are central during the discourse between a variety of stakeholders in volcanic unrest including scientists, emergency managers, policy makers and the public. Drawing from research within the EC FP7 VUELCO project, we argue that knowledge exchange amongst the different stakeholders of volcanic unrest evolves along three dimensions: 1) the identification of knowledge holders (including local communities) and their needs and expectations, 2) vehicles of communication and 3) trust. In preparing products that feed into risk assessment and management, scientists need to ensure that their deliverables are timely, accurate, clear, understandable and cater to the expectations of emergency managers. The means and content of communication amongst stakeholders need to be defined and adhered to. Finally, efficient and effective interaction between stakeholders is ideally based on mutual trust between those that generate knowledge and those that receive knowledge. For scientists, this entails contextualising volcanic hazard and risk in the framework of environmental and social values. Periods of volcanic quiescence are ideally suited to test established protocols of engagement between stakeholders in preparation for crises situations. The different roles of stakeholders and associated rules of engagement can be scrutinised and reviewed in antecessum rather than ad-hoc during a crisis situation to avoid issues related to distrust, loss of credibility and overall poor risk management. We will discuss these themes drawing from exploitation of research results from Mexico and Ecuador.

  15. The monogenetic Bayuda Volcanic Field, Sudan - New insights into geology and volcanic morphology

    Science.gov (United States)

    Lenhardt, Nils; Borah, Suranjana B.; Lenhardt, Sukanya Z.; Bumby, Adam J.; Ibinoof, Montasir A.; Salih, Salih A.

    2018-05-01

    The small monogenetic Bayuda Volcanic Field (BVF; 480 km2), comprising at least 53 cinder cones and 15 maar volcanoes in the Bayuda desert of northern Sudan is one of a few barely studied volcanic occurrences of Quaternary age in Sudan. The exact age of the BVF and the duration of volcanic activity has not yet been determined. Furthermore, not much is known about the eruptional mechanisms and the related magmatic and tectonic processes that led to the formation of the volcanic field. In the framework of a larger project focusing on these points it is the purpose of this contribution to provide a first account of the general geology of the BVF volcanoes as well as a first description of a general stratigraphy, including a first description of their morphological characteristics. This was done by means of fieldwork, including detailed rock descriptions, as well as the analysis of satellite images (SRTM dataset at 30 m spatial resolution). The BVF cinder cones are dominated by scoracious lapilli tephra units, emplaced mainly by pyroclastic fallout from Strombolian eruptions. Many cones are breached and are associated with lava flows. The subordinate phreatomagmatism represented by maar volcanoes suggests the presence of ground and/or shallow surface water during some of the eruptions. The deposits constituting the rims around the maar volcanoes are interpreted as having mostly formed due to pyroclastic surges. Many of the tephra rings around the maars are underlain by thick older lava flows. These are inferred to be the horizons where rising magma interacted with groundwater. The existence of phreatomagmatic deposits may point to a time of eruptive activity during a phase with wetter conditions and therefore higher groundwater levels than those encountered historically. This is supported by field observations as well as the morphological analysis, providing evidence for relatively high degrees of alteration of the BVF volcanoes and therefore older eruption ages as

  16. Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina)

    Science.gov (United States)

    Agusto, M.; Tassi, F.; Caselli, A. T.; Vaselli, O.; Rouwet, D.; Capaccioni, B.; Caliro, S.; Chiodini, G.; Darrah, T.

    2013-05-01

    Copahue volcano is part of the Caviahue-Copahue Volcanic Complex (CCVC), which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina-Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe-Ofqui strike slip and the northern Copahue-Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from - 8.8‰ to - 6.8‰ vs. V-PDB), δ15N values (+ 5.3‰ to + 5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°-220 °C. On the contrary, rock-fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006-2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and

  17. Subcortical brain alterations in major depressive disorder : findings from the ENIGMA Major Depressive Disorder working group

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D. J.; van Erp, T. G. M.; Saemann, P. G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W. J.; Vernooij, M. W.; Ikram, M. A.; Wittfeld, K.; Grabe, H. J.; Block, A.; Hegenscheid, K.; Voelzke, H.; Hoehn, D.; Czisch, M.; Lagopoulos, J.; Hatton, S. N.; Hickie, I. B.; Goya-Maldonado, R.; Kraemer, B.; Gruber, O.; Couvy-Duchesne, B.; Renteria, M. E.; Strike, L. T.; Mills, N. T.; de Zubicaray, G. I.; McMahon, K. L.; Medland, S. E.; Martin, N. G.; Gillespie, N. A.; Wright, M. J.; Hall, G.B.; MacQueen, G. M.; Frey, E. M.; Carballedo, A.; van Velzen, L. S.; van Tol, M. J.; van der Wee, N. J.; Veer, I. M.; Walter, H.; Schnell, K.; Schramm, E.; Normann, C.; Schoepf, D.; Konrad, C.; Penninx, B. W. J. H.

    The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical

  18. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  19. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  20. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  1. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  2. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.

    1992-01-01

    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  3. Sleep Problems, Suicidality and Depression among American Indian Youth.

    Science.gov (United States)

    Arnold, Elizabeth Mayfield; McCall, Vaughn W; Anderson, Andrea; Bryant, Alfred; Bell, Ronny

    2013-09-01

    Mental health and sleep problems are important public health concerns among adolescents yet little is known about the relationship between sleep, depressive symptoms, and suicidality among American Indian youth. This study examined the impact of sleep and other factors on depressive symptoms and suicidality among Lumbee American Indian adolescents (N=80) ages 11-18. At the bivariate level, sleepiness, was associated with depression but not with suicidality. Time in bed (TIB) was not associated with depression, but more TIB decreased the likelihood of suicidality. Higher levels of depressive symptoms were associated with increased likelihood of suicidality. At the multivariate level, sleepiness, suicidality, and self-esteem were associated with depression. TIB and depressive symptoms were the only variables associated with suicidality. In working with American Indian youth, it may be helpful to consider sleep patterns as part of a comprehensive assessment process for youth who have or are at risk for depression and suicide.

  4. Emotional recognition in depressed epilepsy patients.

    Science.gov (United States)

    Brand, Jesse G; Burton, Leslie A; Schaffer, Sarah G; Alper, Kenneth R; Devinsky, Orrin; Barr, William B

    2009-07-01

    The current study examined the relationship between emotional recognition and depression using the Minnesota Multiphasic Personality Inventory, Second Edition (MMPI-2), in a population with epilepsy. Participants were a mixture of surgical candidates in addition to those receiving neuropsychological testing as part of a comprehensive evaluation. Results suggested that patients with epilepsy reporting increased levels of depression (Scale D) performed better than those patients reporting low levels of depression on an index of simple facial recognition, and depression was associated with poor prosody discrimination. Further, it is notable that more than half of the present sample had significantly elevated Scale D scores. The potential effects of a mood-congruent bias and implications for social functioning in depressed patients with epilepsy are discussed.

  5. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    Science.gov (United States)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    continue to operate as Emergency Aircraft for some time Further scientific investigations (ash plume dispersion, aerosol ageing, mass concentration estimates, heterogeneous chemistry, comparison to other observations and models) have been initiated. The results had been provided to the German Weather Service (DWD) and others partly during the flights by satellite telephone and within 24 hours as quicklooks, and made available to the public by internet. The results had immediate impact on the decisions of the responsible agencies in Germany and the Volcanic Ash Advisory Centre (VAAC) in London. After the flights the Falcon inspections showed no obvious damage due to volcanic ash impact.

  6. What, When, Where, and Why of Secondary Hawaiian Hotspot Volcanism

    Science.gov (United States)

    Garcia, M. O.; Ito, G.; Applegate, B.; Weis, D.; Swinnard, L.; Flinders, A.; Hanano, D.; Nobre-Silva, I.; Bianco, T.; Naumann, T.; Geist, D.; Blay, C.; Sciaroni, L.; Maerschalk, C.; Harpp, K.; Christensen, B.

    2007-12-01

    Secondary hotspot volcanism occurs on most oceanic island groups (Hawaii, Canary, Society) but its origins remain enigmatic. A 28-day marine expedition used multibeam bathymetry and acoustic imagery to map the extent of submarine volcanic fields around the northern Hawaiian Islands (Kauai, Niihau and Kaula), and the JASON2 ROV to sample many volcanoes to characterize the petrology, geochemistry (major and trace elements, and isotopes) and ages of the lavas from these volcanoes. Our integrated geological, geochemical and geophysical study attempts to examine the what (compositions and source), where (distribution and volumes), when (ages), and why (mechanisms) of secondary volcanism on and around the northern Hawaiian Islands. A first-order objective was to establish how the submarine volcanism relates in space, time, volume, and composition to the nearby shield volcanoes and their associated onshore secondary volcanism. Our surveying and sampling revealed major fields of submarine volcanoes extending from the shallow slopes of these islands to more than 100 km offshore. These discoveries dramatically expand the volumetric importance, distribution and geodynamic framework for Hawaiian secondary volcanism. New maps and rock petrology on the samples collected will be used to evaluate currently proposed mechanisms for secondary volcanism and to consider new models such as small-scale mantle convection driven by thermal and melt-induced buoyancy to produce the huge volume of newly discovered lava. Our results seem to indicate substantial revisions are needed to our current perceptions of hotspot dynamics for Hawaii and possibly elsewhere.

  7. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  8. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  9. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.

    2015-02-01

    Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M3, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement.

  10. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling

    Science.gov (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis

    2009-11-01

    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ɛNd = +1.5 to +6, 87Sr/86Sr = 0

  11. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall

    Science.gov (United States)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo

    2016-04-01

    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  12. Glacial alteration of volcanic terrains: A chemical investigation of the Three Sisters, Oregon, USA.

    Science.gov (United States)

    Rutledge, Alicia; Horgan, Briony; Havig, Jeff

    2017-04-01

    Glacial silica cycling is more efficient than previously reported, and in some settings, particularly glaciated mafic volcanics, can be the dominant weathering process. Based on field work at glaciated volcanic sites, we hypothesize that this is due to a combination of high rates of silica dissolution from mafic bedrock and reprecipitation of silica in the form of opaline silica coatings and other poorly crystalline silicate alteration phases. The high rate of bedrock comminution in subglacial environments results in high rates of both chemical and physical weathering, due to the increased reactive mineral surface area formed through glacial grinding. In most bedrock types, carbonate weathering is enhanced and silica fluxes are depressed in glacial outwash compared with global average riverine catchment runoff due to low temperatures and short residence times. However, in mafic systems, higher dissolved SiO2 concentrations have been observed. The major difference between observed glacial alteration of volcanic bedrock and more typical continental terrains is the absence of significant dissolved carbonate in the former. In the absence of carbonate minerals which normally dominate dissolution processes at glacier beds, carbonation of feldspar can become the dominant weathering process, which can result in a high proportion of dissolved silica fluxes in glacial outwash waters compared to the total cation flux. Mafic volcanic rocks are particularly susceptible to silica mobility, due to the high concentration of soluble minerals (i.e. plagioclase) as compared to the high concentration of insoluble quartz found in felsic rocks. To investigate melt-driven chemical weathering of mafic volcanics, water and rock samples were collected during July 2016 from glaciated volcanic bedrock in the Three Sisters Wilderness, Oregon, U.S.A. (44°9'N, 121°46'W): Collier Glacier (basaltic andesite, andesite), Hayden Glacier (andesite, dacite), and Diller Glacier (basalt). Here we

  13. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  14. Magmas in motion: Degassing in volcanic conduits and fabrics of pyroclastic density current

    Science.gov (United States)

    Burgisser, Alain

    Volcanoes are caused by the transport of magma batches from the Earth's crust to the surface. These magmas in motion undergo drastic changes of rheologic properties during their journey to the surface and this work explores how these changes affect volcanic eruptions. The first part of this study is devoted to the dynamic aspects of degassing and permeability in magmas with high pressure, high temperature experiments on natural volcanic rocks. Degassing is measured by the influence of decompression rate on the growth of the bubbles present in the magma while permeability is deduced from the temporal evolution of these bubbles. The parameterization of our results in a numerical model of volcanic conduit flow show that previous models based on equilibrium degassing overestimate the acceleration and the decompression rate of the magma. Assessing permeability effects derived form our results show that the transition between explosive and effusive eruptions is a strong function of the magma initial ascent rate. The second part of this work is a unification of two end-members of pyroclastic currents (highly concentrated pyroclastic flows and dilute, turbulent pyroclastic surges) using theoretical scaling arguments based on multiphase physics. Starting from the dynamics of the particle interactions with a fundamental eddy, we consider the full spectrum of eddies generated within a turbulent current. We demonstrate that the presence of particles with various sizes induces a density stratification of the current, leading to its segregation into a basal concentrated part overlain by a dilute cloud. To verify our predictions on the interactions of such a segregated pyroclastic current with its surroundings (hills and sea), we studied the products of the 2050 BP caldera-forming eruption of Okmok Volcano (Alaska). This field study allowed us to reconstruct the eruptive sequence and to validate the main aspects of our theoretical model, such as the superposition of a dense and

  15. Improved Near Real Time WRF-Chem Volcanic Emission Prediction and Impacts of Ash Aerosol on Weather.

    Science.gov (United States)

    Stuefer, M.; Webley, P. W.; Hirtl, M.

    2017-12-01

    We use the numerical Weather Research Forecasting (WRF) model with online Chemistry (WRF-Chem) to investigate the regional effects of volcanic aerosol on weather. A lot of observational data have become available since the Icelandic eruption of Eyjafjallajökull in spring 2010. The observed plume characteristics and meteorological data have been exploited for volcanic WRF-Chem case studies. We concluded that the Eyjafjallajökull ash plume resulted in significant direct aerosol effects altering the state of the atmosphere over large parts of Europe. The WRF-Chem model runs show near surface temperature differences up to 3ºC, altered vertical stability, changed pressure- and wind fields within the atmosphere loaded with ash aerosol. The modeled results have been evaluated with lidar network data, and ground and balloon based observations all over Europe. Besides case studies, we use WRF-Chem to build an improved volcanic ash decision support system that NOAA can use within the Volcanic Ash Advisory Center (VAAC) system. Realistic eruption source parameter (ESP) estimates are a main challenge in predicting volcanic emission dispersion in near real time. We implemented historic ESP into the WRF-Chem preprocessing routine, which can be used as a first estimate to assess a volcanic plume once eruption activity is reported. In a second step, a range of varying plume heights has been associated with the different ash variables within WRF-Chem, resulting in an assembly of different plume scenarios within one WRF-Chem model run. Once there is plume information available from ground or satellite observations, the forecaster has the option to select the corresponding ash variable that best matches the observations. In addition we added an automatic domain generation tool to create near real time WRF-Chem model runs anywhere on the globe by reducing computing expenses at the same time.

  16. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora

    Directory of Open Access Journals (Sweden)

    L. Marshall

    2018-02-01

    Full Text Available The eruption of Mt. Tambora in 1815 was the largest volcanic eruption of the past 500 years. The eruption had significant climatic impacts, leading to the 1816 year without a summer, and remains a valuable event from which to understand the climatic effects of large stratospheric volcanic sulfur dioxide injections. The eruption also resulted in one of the strongest and most easily identifiable volcanic sulfate signals in polar ice cores, which are widely used to reconstruct the timing and atmospheric sulfate loading of past eruptions. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP, five state-of-the-art global aerosol models simulated this eruption. We analyse both simulated background (no Tambora and volcanic (with Tambora sulfate deposition to polar regions and compare to ice core records. The models simulate overall similar patterns of background sulfate deposition, although there are differences in regional details and magnitude. However, the volcanic sulfate deposition varies considerably between the models with differences in timing, spatial pattern and magnitude. Mean simulated deposited sulfate on Antarctica ranges from 19 to 264 kg km−2 and on Greenland from 31 to 194 kg km−2, as compared to the mean ice-core-derived estimates of roughly 50 kg km−2 for both Greenland and Antarctica. The ratio of the hemispheric atmospheric sulfate aerosol burden after the eruption to the average ice sheet deposited sulfate varies between models by up to a factor of 15. Sources of this inter-model variability include differences in both the formation and the transport of sulfate aerosol. Our results suggest that deriving relationships between sulfate deposited on ice sheets and atmospheric sulfate burdens from model simulations may be associated with greater uncertainties than previously thought.

  17. Geochemical Signatures of Potassic to Sodic Adang Volcanics, Western Sulawesi: Implications for Their Tectonic Setting and Origin

    Directory of Open Access Journals (Sweden)

    Godang Shaban

    2016-11-01

    Full Text Available DOI:10.17014/ijog.3.3.195-214The Adang Volcanics represent a series of (ultra potassic to sodic lavas and tuffaceous rocks of predominantly trachytic composition, which forms the part of a sequence of Late Cenozoic high-K volcanic and associated intrusive rocks occurring extensively throughout Western Sulawesi. The tectonic setting and origin of these high-K rocks have been the subject of considerable debates. The Adang Volcanics have mafic to mafitic-intermediate characteristics (SiO2: 46 - 56 wt% and a wide range of high alkaline contents (K2O: 0.80 - 9.08 %; Na2O: 0.90 - 7.21 % with the Total Alkali of 6.67 - 12.60 %. Al2O3 values are relatively low (10.63 - 13.21 % and TiO2 values relatively high (1.27 - 1.91 %. Zr and REE concentrations are also relatively high (Zr: 1154 - 2340 ppm; Total REE (TREY = TRE: 899.20 - 1256.50 ppm; TRExOy: 1079.76 - 1507.97 ppm, with an average Zr/TRE ratio of ~ 1.39. The major rock forming minerals are leucite/pseudoleucite, diopside/aegirine, and high temperature phlogopite. Geochemical plots (major oxides and trace elements using various diagrams suggest the Adang Volcanics formed in a postsubduction, within-plate continental extension/initial rift tectonic setting. It is further suggested magma was generated by minor (< 0.1 % partial melting of depleted MORB mantle material (garnet-lherzolite with the silicate melt having undergone strong metasomatism. Melt enrichment is reflected in the alkaline nature of the rocks and geochemical signatures such as Nb/Zr > 0.0627 and (Hf/SmPM > 1.23. A comparison with the Vulsini ultrapotassic volcanics from the Roman Province in Italy shows both similarities (spidergram pattern indicating affinity with Group III ultrapotassics volcanics and differences (nature of mantle metasomatism.

  18. ST-HASSET for volcanic hazard assessment: A Python tool for evaluating the evolution of unrest indicators

    Science.gov (United States)

    Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan

    2016-08-01

    Short-term hazard assessment is an important part of the volcanic management cycle, above all at the onset of an episode of volcanic agitation (unrest). For this reason, one of the main tasks of modern volcanology is to use monitoring data to identify and analyse precursory signals and so determine where and when an eruption might occur. This work follows from Sobradelo and Martí [Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis. Journal of Volcanology and Geothermal Research 290, 111, 2015] who defined the principle for a new methodology for conducting short-term hazard assessment in unrest volcanoes. Using the same case study, the eruption on Pinatubo (15 June 1991), this work introduces a new free Python tool, ST-HASSET, for implementing Sobradelo and Martí (2015) methodology in the time evolution of unrest indicators in the volcanic short-term hazard assessment. Moreover, this tool is designed for complementing long-term hazard assessment with continuous monitoring data when the volcano goes into unrest. It is based on Bayesian inference and transforms different pre-eruptive monitoring parameters into a common probabilistic scale for comparison among unrest episodes from the same volcano or from similar ones. This allows identifying common pre-eruptive behaviours and patterns. ST-HASSET is especially designed to assist experts and decision makers as a crisis unfolds, and allows detecting sudden changes in the activity of a volcano. Therefore, it makes an important contribution to the analysis and interpretation of relevant data for understanding the evolution of volcanic unrest.

  19. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2011-07-01

    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  20. Struggling with a depression diagnosis

    DEFF Research Database (Denmark)

    Rønberg, Mette

    2017-01-01

    In this article, I explore how an adult experiences and negotiates the process of being diagnosed with depression, and how she struggles to learn to live under this particular diagnostic descrip- tion. It is based on two interviews with one informant, Bridget, being part of a larger ethnograph- ic...... eldwork in Denmark among adults diagnosed with depression. Psychiatric diagnoses are the most common categories used when su ering and life problems are to be understood, interpret- ed, and acted upon in Denmark. Bridget’s story is a case in which resistance against, and ongoing negotiations...... and complicated struggles with, a psychiatric diagnosis stand out, as she continu- ously struggles to articulate an oppositional stance to the dominant diagnostic categories. The negotiations take place in a complex network where medical authorities, the workplace and the diagnostic cultures play a crucial part...

  1. Synthetic aperture radar (SAR-based mapping of volcanic flows: Manam Island, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    J. K. Weissel

    2004-01-01

    Full Text Available We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.

  2. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    Science.gov (United States)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  3. Imaging an off-axis volcanic field in the Main Ethiopian Rift using 3-D magnetotellurics

    Science.gov (United States)

    Huebert, J.; Whaler, K. A.; Fisseha, S.; Hogg, C.

    2017-12-01

    In active continental rifts, asthenospheric upwelling and crustal thinning result in the ascent of melt through the crust to the surface. In the Main Ethiopian Rift (MER), most volcanic activity is located in magmatic segments in the rift centre, but there are areas of significant off-axis magmatism as well. The Butajira volcanic field is part of the Silti Debre Zeyt Fault (SDZF) zone in the western Main Ethiopian Rift. It is characterized by densely clustered volcanic vents (mostly scoria cones) and by limited seismic activity, which is mainly located along the big border faults that form the edge of a steep escarpment. Seismic P-Wave tomography reveals a crustal low velocity anomaly in this area. We present newly collected Magnetotelluric (MT) data to image the electrical conductivity structure of the area. We deployed 12 LMT instruments and 27 broadband stations in the western flank of the rift to further investigate the along-rift and depth extent of a highly conductive region under the SDZF which was previously identified by MT data collected on the central volcano Aluto and along a cross-rift transverse. This large conductor was interpreted as potential pathways for magma and fluid in the crust. MT Stations were positioned in five NW-SE running 50 km long profiles, covering overall 100km along the rift and providing good coverage for a 3-D inversion of the data to image this enigmatic area of the MER.

  4. Three-dimensional interpretation of MT data in volcanic environments (computer simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Spichak, V. [Geoelectromagnetic Research Institute RAS, Troitsk, Moscow (Russian Federation)

    2001-04-01

    The research is aimed, first, to find components of MT-fields and their transforms, which facilitate the imaging of the internal structure of volcanoes and, second, to study the detectability of conductivity variations in a magma chamber due to alterations of other physical parameters. The resolving power of MT data with respect to the electric structure of volcanic zones is studied using software developed by the author for three-dimensional (3D) numerical modeling, analysis and imaging. A set of 3D volcano models are constructed and synthetic MT data on the relief Earth's surface are analysed. It is found that impedance phases as well as in-phase and quadrature parts of the electric field type transforms enable the best imaging of the volcanic interior. The determinant impedance is, however, the most suitable for adequate interpretation of measurements carried out for the purpose of monitoring conductivity variations in a magma chamber. The way of removing the geological noise from the MT data by means of its upward analytical continuation to the artificial reference plane is discussed. Interpretation methodologies are suggested aimed at 3D imaging and monitoring volcanic interiors by MT data.

  5. Aeromagnetic survey of the Somma-Vesuvius volcanic area

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2005-06-01

    Full Text Available In this paper we present and discuss the results of a geophysical airborne survey carried out in the Somma-Vesuvius volcanic area, Southern Italy, in 1999. The helicopter-borne survey was aimed at giving new detailed insights into the distribution of the magnetization of the area and, therefore, into the volcanological characteristics of the region, enhancing the knowledge given by a previous low resolution survey carried out at a regional scale by Agip. The new survey was carried out by flying on a surface parallel to the topography of the area, along flight lines spaced 600 m apart. The obtained total field map is dominated by a large anomaly related to the Mt. Somma-Vesuvius complex itself and characterized by a roughly elliptical shape. High-frequency anomalies occur in the edifice and in the area east of it, partly produced by cultural noise due to the densely inhabited area. The compilation of the maps of the analytic signal and of the horizontal derivative of the field allowed the location of the lateral boundaries of the magnetic sources of the area and represents a first step toward the interpretation of the maps in terms of geological structures.

  6. Relationships between mineralization and silicic volcanism in the central Andes

    Science.gov (United States)

    Francis, P. W.; Halls, C.; Baker, M. C. W.

    1983-01-01

    Existing models for the genesis of porphyry copper deposits indicate that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. It is noted that sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit is thought to be an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile indicates that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano. The dome of La Soufriere, Guadeloupe is offered as a modern analog for the surface expression of subvolcanic mineralization processes, with the phreatic eruptions there indicating the formation of hydrothermal breccia bodies in depths. It is pointed out that the occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that tin intrusions and mineralization are not genetically related to the subcaldera pluton, but may be a consequence of the long thermal histories (1-10 million years) of the lowermost parts of large plutons.

  7. Median Filtering Methods for Non-volcanic Tremor Detection

    Science.gov (United States)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  8. Volcanic hazards of North Island, New Zealand-overview

    Science.gov (United States)

    Dibble, R. R.; Nairn, I. A.; Neall, V. E.

    1985-10-01

    In October 1980, a National Civil Defence Planning Committee on Volcanic Hazards was formed in New Zealand, and solicited reports on the likely areas and types of future eruptions, the risk to public safety, and the need for special precautions. Reports for eight volcanic centres were received, and made available to the authors. This paper summarises and quantifies the type and frequency of hazard, the public risk, and the possibilities for mitigation at the 7 main volcanic centres: Northland, Auckland, White Island, Okataina, Taupo, Tongariro, and Egmont. On the basis of Recent tephrostratigraphy, eruption probabilities up to 20% per century (but commonly 5%), and tephra volumes up to 100 km 3 are credible.

  9. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  10. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  11. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  12. Patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1993-01-01

    Magellan radar imaging and topography data are now available for a number of volcanoes on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Venus, erosion and sediment deposition are negligible, so tectonic evidence of deformation around large volcanoes should be evident except where buried by very young flows. Radar images reveal that most tectonic features and flow units on the flanks of these volcanoes have predominantly radial orientations. However, both Tepev Mons in Bell Regio and Sapas Mons in Atla Regio exhibit circumferential graben on their flanks. In addition, images reveal several flow units with an annular character around the north and west flanks of Tepev Mons. This pattern most likely results from ponding of flows in an annular flexural moat. Maat Mons in Atla Regio and Sif Mons in Eistla Regio are examples of volcanoes that lack circumferential graben and annular flows; discernible flow units and fractures on these constructs appear to be predominantly radial. Altimetry data can also provide evidence of flexural response. Tepev Mons is partially encircled by depressions that may be sections of a flexural moat that has not been completely filled. The locations of these depressions generally coincide with the annular flows described above. There is weaker evidence for such depressions around Maat Mons as well. The lack of circumferential tectonic features around most volcanoes on Venus might be explained by gradual moat filling and coverage by radial flows. The depressions around Tepev (and possible Maat) may indicate that this process is currently continuing. We use analytic models of plate flexure in an axisymmetric geometry to constrain the elastic plate thickness supporting Tepev Mons. If we consider the outer radius of the ponded flows to be the edge of a moat, we find that models with elastic plate thickness of 10-20 km fit best. Finite element

  13. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  14. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    Science.gov (United States)

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  15. Permo-triassic volcanism in the San Rafael Block (Mendoza province) and its uraniferous potential

    International Nuclear Information System (INIS)

    Kleiman, L.E.

    1993-01-01

    This paper describes the Permo-triassic volcanism in the San Rafael Block, Mendoza, Argentina, which forms part of the Choiyoi province and it represents by large volumes of intermediate to silicic ignimbrites with minor sub volcanic bodies of rhyolites, andesites and basandesites. Three different suites can be distinguished: the first one (Lower Section) of Early Permian age, is composed of dacites and rhyolites (SiO 2 up to 71 %) with minor andesites, the second one (Upper Section) of Late Permian-Early Triassic age is made up of rhyolites (SiO 2 up to 77 %) with some basandesites and andesites, and the third one, of Triassic age is composed of rhyolites (SiO 2 > 75 %) and basandecites. These suites are easily distinguished by means of trace element data and are believed to represent the transition between a subduction-related magmatic arc and an extensional tectonic regime. This tectonic setting is similar to the prevalent during the Cenozoic in the Sierra Occidental of Mexico and is favourable for the development of long-lived hydrothermal systems which lead to economic U concentrations (i.e. Sierra de Pena Blanca). In the San Rafael Block, the Dr. Baulies-Los Reyunos U deposit, which is hosted in volcanic sediments, is associated to the first suite (Lower Section). Although minor U concentrations are known, up to date, to be related to the second and third suites, these rocks are fertile and seen to be potential source for the formation of uranium deposits within a volcanic caldera environment. (Author)

  16. Applying the GNSS Volcanic Ash Plume Detection Technique to Consumer Navigation Receivers

    Science.gov (United States)

    Rainville, N.; Palo, S.; Larson, K. M.

    2017-12-01

    Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) rely on predictably structured and constant power RF signals to fulfill their primary use for navigation and timing. When the received strength of GNSS signals deviates from the expected baseline, it is typically due to a change in the local environment. This can occur when signal reflections from the ground are modified by changes in snow or soil moisture content, as well as by attenuation of the signal from volcanic ash. This effect allows GNSS signals to be used as a source for passive remote sensing. Larson et al. (2017) have developed a detection technique for volcanic ash plumes based on the attenuation seen at existing geodetic GNSS sites. Since these existing networks are relatively sparse, this technique has been extended to use lower cost consumer GNSS receiver chips to enable higher density measurements of volcanic ash. These low-cost receiver chips have been integrated into a fully stand-alone sensor, with independent power, communications, and logging capabilities as part of a Volcanic Ash Plume Receiver (VAPR) network. A mesh network of these sensors transmits data to a local base-station which then streams the data real-time to a web accessible server. Initial testing of this sensor network has uncovered that a different detection approach is necessary when using consumer GNSS receivers and antennas. The techniques to filter and process the lower quality data from consumer receivers will be discussed and will be applied to initial results from a functioning VAPR network installation.

  17. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan.

    Science.gov (United States)

    Chio, Shih-Hong; Lin, Cheng-Horng

    2017-07-18

    Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems), thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle) to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System) OEM (Original Equipment Manufacturer) board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK) technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs). The digital surface model (DSM) and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan's Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging) data are about 37% between -1 m and 1 m, and 66% between -2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  18. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Shih-Hong Chio

    2017-07-01

    Full Text Available Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems, thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System OEM (Original Equipment Manufacturer board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs. The digital surface model (DSM and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan’s Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging data are about 37% between −1 m and 1 m, and 66% between −2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  19. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    Science.gov (United States)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  20. Historical evidence for a connection between volcanic eruptions and climate change

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  1. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    Science.gov (United States)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  2. Depression in focal, segmental and generalized dystonia.

    Science.gov (United States)

    Lewis, L; Butler, A; Jahanshahi, M

    2008-11-01

    Dystonia causes body disfigurement in the majority of those affected. Our aim was to test the hypothesis that low self-esteem resulting from the sense of disfigurement is an important component of self-reported depression in focal, segmental and generalized dystonia. Questionnaires to assess self-reported depression, self-esteem, body concept, disfigurement, disability and quality of life were completed by 329 community based dystonia patients. Moderate to severe depression was reported by 30 %. Self-reported depression had a strong somatic component, but patients also showed a specific concern with self-image. Extent of dystonia, body parts affected and marital status influenced self-reported depression in dystonia. Self esteem, body concept, disfigurement and quality of life emerged as factors which accounted for the variance of self-reported depression in dystonia. These results suggest that in dystonia, disfigurement, negative body concept, low self-esteem, and the impact of the disease on quality of life make important contributions to depression. However, longitudinal followup is required to firmly establish the direction of causality between depression and these psychosocial variables in dystonia.

  3. Timing of the volcanism of the southern Kivu province: Implications for the evolution of the western branch of the East African rift system

    International Nuclear Information System (INIS)

    Pasteels, P.

    1989-01-01

    New K-Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural eruptions; from 7.5 to 5 Ma alkali basalts and their differentiates are mainly erupted in localized rifts. A culmination of activity occurs between 6.0 and 5.5 Ma ago. Pleistocene alkalic volcanism is restricted to localized areas. The transition from tholeiites to alkali-basaltic volcanism dated around 7.5 Ma would correspond to a major rifting phase which corresponds with the initiation of Lake Kivu Basin formation. The distribution of tholeiitic rocks in the central part of the rift, and predominantly alkalic rocks along the western active border fault, strengthens the idea that the former are associated with tension, the latter with vertical, possibly also strike-slip movements. Volcanism in the Western Rift is restricted to areas where tension occurs in a zone which is located between two zones of strike-slip. In the South Kivu area normal faults intersect strike-slip faults and this seems to have determined the location of volcanic activity. Magma formation is considered to be related with shear heating combined with adiabatic decompression in ascending diapirs. This implies heating at the lithosphere-asthenosphere boundary as a result of extension. Generation of tholeiitic or alkalic magmas is connected with the variable ascent velocity of mantle diapirs or with variable shear heating along the shear zone. Changes in both magma composition and intensity of volcanic activity with time are considered to be related to major phases of rift evolution. (orig.)

  4. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    Science.gov (United States)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of particles.

  5. Variational data assimilation of satellite observations to estimate volcanic ash emissions

    NARCIS (Netherlands)

    Lu, S.

    2017-01-01

    Volcanic eruptions release a large amount of volcanic ash, which can pose hazard to human and animal health, land transportation, and aviation safety. Volcanic Ash Transport and Dispersion (VATD) models are critical tools to provide advisory information and timely volcanic ash forecasts. Due to the

  6. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  7. The Variable Climate Impact of Volcanic Eruptions

    Science.gov (United States)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  8. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry

    Science.gov (United States)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.

    2014-12-01

    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  9. Glacial evolution of the Ampato Volcanic Complex (Peru)

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    these climatic conditions, glaciers expanded and their fronts descended to a minimum altitude of 3900 m a.s.l. in the Huayuray valley. The ELA was at 4980 m a.s.l., implying an ELA depression of 900 m compared to the situation in 2000 AD. The age obtained for the Ampato Volcanic Complex using cosmogenic methods is 16,500 ± 0.37 y. AP, similar to the dates proposed by Clapperton (1993) - around 18,800 y. BP-, and far away from those proposed by Seltzer (2002) -30,000 y. BP- or by Smith et al. (2005) -21,000 y. BP-, although there is no certainty that the samples represent the oldest ridges of this period. Several records exist of Neoglacial advances, mainly well preserved moraines located in the glacial valleys immediately behind LGM moraines. One of these reached a minimum altitude of 4300 m a.s.l., with the ELA at 5240 m a.s.l., which implies an ELA depression of 560 m compared to the 2000 AD situation. 36Cl dating indicates that this Neoglacial advance occurred in 11,400 ± 0.21 y. BP. Two main glacial readvancement events due to climatic conditions have been noted in the Central Andes: The first between 15,000 and 13,000 yr. BP and the second at 12,000-10,000 yr. BP (Clapperton, 1993; Zech, et al., 2007). The latter has been dated with sufficient precision on the Chimborazo (Ecuador), the Junin Plains (Peru), and the Quelccaya Glacier (Peru) (Clapperton, 1993; Seltzer, 1990 and Smith et al. 2005) and corresponds to the described event in the Ampato Complex. There is limited data on the Little Ice Age for the Central Andes. This phase is represented by small moraines, located at high altitudes, very near the current glacial fronts. Ice cores extracted from some Central Andean glaciers, such as the Quelccaya Glacier (Peru), show a cooling episode between 1500 and 1820 AD, which corresponds to the LIA (Seltzer, 1990). During this recent global cold event, the minimum altitude of glaciers on the Ampato Volcanic Complex reached 5400 m a.s.l., 250 m below their 2000

  10. Palynology and clay mineralogy of the Deccan volcanic associated ...

    Indian Academy of Sciences (India)

    ontological studies of Deccan volcanic associated intertrappean sediments at ... and also for bridging the gap in the knowledge of palynofloral ..... G P, Systematic Association Special Volume, (Oxford: Clarendon .... Traps: A review; Geol. Surv.

  11. Observations of volcanic plumes using small balloon soundings

    Science.gov (United States)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  12. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng

    2009-01-01

    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  13. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  14. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  15. Global Significant Volcanic Eruptions Database, 4360 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  16. eVADE: Volcanic Ash Detection Raman LIDAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  17. Volcanic Ash Detection Using Raman LIDAR: "VADER", Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  18. A great volcanic eruption around AD 1300 recorded in lacustrine ...

    Indian Academy of Sciences (India)

    2National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, .... Island; and (d) sampling sites of sediment cores DY6 in Cattle Pond. ..... African dust and volcanic ash inputs to terra rossa soils on.

  19. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-01-01

    . The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial

  20. Compositional Differences between Felsic Volcanic Rocks from the ...

    African Journals Online (AJOL)

    Bheema

    characteristics of the volcanic units, we describe the compositional differences ...... Geology and mineral resources of Somalia and surrounding regions. ... zone (Ethiopia) Journal of Volcanological and Geothermal Research, 80: 267-280.

  1. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya; Stenchikov, Georgiy L.; Wittenberg, Andrew T.; Zeng, Fanrong

    2017-01-01

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been

  2. Behandlingsresistent depression kan behandles

    DEFF Research Database (Denmark)

    Vinberg, Maj; Levinsen, Mette Frandsen; Kessing, Lars Vedel

    2011-01-01

    Depression is considered resistant when two treatment attempts with antidepressants from different classes fail to produce significant clinical improvement. In cases of treatment-resistant depression, it is recommended to reevaluate the diagnosis, clarify comorbidity, substance abuse and lack of ...

  3. Learning about depression

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000325.htm Learning about depression To use the sharing features on this page, ... trigger or reason. What are the Signs of Depression? You may notice some or all of the ...

  4. Signs of Depression

    Science.gov (United States)

    Everyone has down days and times when they feel sad. But depression is more than feeling sad or having a bad day. You may have depression if you feel sad every day (or most days) for at least two weeks.

  5. Men and Depression

    Science.gov (United States)

    ... crisis? For More Information Reprints Share Men and Depression Download PDF Download ePub Order a free hardcopy ... affects a large number of men. What is depression? Everyone feels sad or irritable and has trouble ...

  6. Heart disease and depression

    Science.gov (United States)

    ... gov/ency/patientinstructions/000790.htm Heart disease and depression To use the sharing features on this page, ... a heart attack or heart surgery Signs of Depression It is pretty common to feel down or ...

  7. Depression - stopping your medicines

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000570.htm Depression - stopping your medicines To use the sharing features ... prescription medicines you may take to help with depression, anxiety, or pain. Like any medicine, there are ...

  8. Depression Disturbs Germany

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The suicide of Robert Enke,the goalkeeper of the Germany national football team who had battled depression for years,stunned the country and cast depression into the national spotlight as a disturbing disease.

  9. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with ma