WorldWideScience

Sample records for volcanic centers southern

  1. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  2. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    Science.gov (United States)

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  3. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.

    1992-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  4. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  5. Holocene tephrostratigraphy of southern Chiloé Continental (Andean southern volcanic zone; ~43°S), Chile

    Science.gov (United States)

    Lachowycz, S.; Smith, V. C.; Pyle, D. M.; Mather, T. A.

    2012-12-01

    The eruptive history of the volcanoes in the southern part of the Andean Southern Volcanic Zone (42.5-45°S) is very poorly constrained: only several late Quaternary eruptions have been identified, mostly from study of sparse roadcuts [1]. In this study, we further constrain the Holocene explosive eruption history around 43°S by identifying and analysing tephra layers preserved in a ~3.25m long peat core from Cuesta Moraga [2], ~35km east of Yanteles volcano. Cryptotephra was extracted following the method of [3], in addition to macrotephra; owing to the vicinity of the sampling site to the tephra sources, cryptotephra was found throughout the core stratigraphy, but was sufficiently variable in concentration that discrete layers were identifiable and attributed to specific eruptions. Chemical analysis of the glass by electron microprobe shows that the tephra layers originate from a number of volcanoes in the region. This new tephrostratigraphy improves our knowledge of the important history of explosive volcanism in this area, potentially tying the tephrostratigraphies of surrounding areas (e.g., [4]) and allowing improved evaluation of regional volcanic risk. [1] Naranjo, J.A.., and C. R. Stern, 2004. Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Revista geológica de Chile, 31, pp. 225-240. [2] Heusser, C.J., et al., 1992. Paleoecology of late Quaterary deposits in Chiloé Continental, Chile. Revista Chilena de Historia Natural, 65, pp. 235-245. [3] Blockley, S.P.E., et al., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews, 24, pp. 1952-1960. [4] Watt, S.F.L., et al., 2011. Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ~42°S), southern Chile. Quaternary International, 246, pp. 324-343.

  6. Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.

    2012-01-01

    The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime

  7. Radon in active volcanic areas of Southern Italy

    International Nuclear Information System (INIS)

    Avino, R.; Capaldi, G.; Pece, R.

    1999-01-01

    The paper presents the preliminary data dealing with the variations in time of the radiogenic gas radon in soils and waters of many active volcanic areas of Southern Italy. The greatest differences in Rn content of the investigated volcanic areas are: Ischia and Campi Flegrei, which have more Rn than Vesuvio and Volcano, both in soils and in waters. The thermalized waters of Ischia are enriched in Rn 15 times with respect to soils, while in the other areas soils and underground waters have comparable Rn contents

  8. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    Science.gov (United States)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  9. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores

    Science.gov (United States)

    Cole-Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G.

    1997-07-01

    The continuous sulfate analysis of two Antarctic ice cores, one from the Antarctic Peninsula region and one from West Antarctica, provides an annually resolved proxy history of southern semisphere volcanism since early in the 15th century. The dating is accurate within ±3 years due to the high rate of snow accumulation at both core sites and the small sample sizes used for analysis. The two sulfate records are consistent with each other. A systematic and objective method of separating outstanding sulfate events from the background sulfate flux is proposed and used to identify all volcanic signals. The resulting volcanic chronology covering 1417-1989 A.D. resolves temporal ambiguities about several recently discovered events. A number of previously unknown, moderate eruptions during late 1600s are uncovered in this chronology. The eruption of Tambora (1815) and the recently discovered eruption of Kuwae (1453) in the tropical South Pacific injected the greatest amount of sulfur dioxide into the southern hemisphere stratosphere during the last half millennium. A technique for comparing the magnitude of volcanic events preserved within different ice cores is developed using normalized sulfate flux. For the same eruptions the variability of the volcanic sulfate flux between the cores is within ±20% of the sulfate flux from the Tambora eruption.

  10. Sr isotopes at Copahue Volcanic Center, Neuquen, Argentina: Preliminary report

    International Nuclear Information System (INIS)

    Linares, E.; Ostera, H.A.; Cagnoni, M.C

    2001-01-01

    The Copahue Volcanic Center is located in the Cordillera Principal, at 38 L.S., in the Argentina- Chilean border. Detailed geological, geochronological and structural studies were carried out during the last decade (Pesce, 1989; Delpino y Bermudez, 1993; Linares et al., 1995, 1999; Folguera y Ramos, 2000; among others). We present Sr isotopes data on the main units of the Volcanic Center, coupled with a major element geochemistry, to constrain the evolution of the volcanic center (au)

  11. Assessing volcanic hazard at the most populated caldera in the world: Campi Flegrei, Southern Italy

    Science.gov (United States)

    Somma, R.; de Natale, G.; Troise, C.; Kilburn, C.; Moretti, R.

    2017-12-01

    Naples and its hinterland in Southern Italy are one of the most urbanized areas in the world under threat from volcanic activity. The region lies within range of three active volcanic centers: Vesuvius, Campi Flegrei, and Ischia. The Campi Flegrei caldera, in particular, has been in unrest for six decades. The unrest followed four centuries of quiescence and has heightened concern about an increased potential for eruption. Innovative geochemical and geophysical analysis, combined with scientific drilling, are being used to investigate Campi Flegrei. Results highlight key directions for better understanding the mechanisms of caldera formation and the respective roles of magma intrusion and hydrothermal activity in determining the volcano's behavior. They also provide a framework for evaluating and mitigating the risk from this caldera and other large ones worldwide.

  12. Birth of two volcanic islands in the southern Red Sea

    KAUST Repository

    Xu, Wenbin; Ruch, Joel; Jonsson, Sigurjon

    2015-01-01

    on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal

  13. Birth of two volcanic islands in the southern Red Sea

    KAUST Repository

    Xu, Wenbin

    2015-05-26

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north–south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice.

  14. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  15. Preliminary geologic map of the Sleeping Butte volcanic centers

    International Nuclear Information System (INIS)

    Crowe, B.M.; Perry, F.V.

    1991-07-01

    The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume ( 3 ) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikes at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs

  16. U–Pb geochronology and geochemistry of late Palaeozoic volcanism in Sardinia (southern Variscides

    Directory of Open Access Journals (Sweden)

    L. Gaggero

    2017-11-01

    Full Text Available The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime. Volcanism produced a wide range of intermediate–silicic magmas including medium- to high-K calc-alkaline andesites, dacites, and rhyolites. A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins (Nurra, Perdasdefogu, Escalaplano, and Seui–Seulo, and contains substantial stratigraphic, geochemical, and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic. Based on major and trace element data and LA-ICP-MS U–Pb zircon dating, it is possible to reconstruct the timing of post-Variscan volcanism. This volcanism records active tectonism between the latest Carboniferous and Permian, and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides. In particular, igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between 299 ± 1 and 288 ± 3 Ma, thereby constraining the development of continental strike-slip faulting from south (Escalaplano Basin to north (Nurra Basin. Notably, andesites emplaced in medium-grade metamorphic basement (Mt. Cobingius, Ogliastra show a cluster of older ages at 332 ± 12 Ma. Despite the large uncertainty, this age constrains the onset of igneous activity in the mid-crust. These new radiometric ages constitute: (1 a consistent dataset for different volcanic events; (2 a precise chronostratigraphic constraint which fits well with the biostratigraphic data and (3 insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.

  17. Relation of major volcanic center concentration on Venus to global tectonic patterns

    Science.gov (United States)

    Crumpler, L. S.; Head, James W.; Aubele, Jayne C.

    1993-01-01

    Global analysis of Magellan image data indicates that a major concentration of volcanic centers covering about 40 percent of the surface of Venus occurs between the Beta, Atla, and Themis regions. Associated with this enhanced concentration are geological characteristics commonly interpreted as rifting and mantle upwelling. Interconnected low plains in an annulus around this concentration are characterized by crustal shortening and infrequent volcanic centers that may represent sites of mantle return flow and net downwelling. Together, these observations suggest the existence of relatively simple, large-scale patterns of mantle circulation similar to those associated with concentrations of intraplate volcanism on earth.

  18. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon; Xu, Wenbin

    2015-01-01

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  19. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon

    2015-04-03

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  20. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  1. Holocene tephra-fall deposits of southern and austral Andes volcanic zones (33-54oS): eruption recurrence

    International Nuclear Information System (INIS)

    Naranjo, J.A.; Polanco, E.; Lara, L; Moreno, H; Stern, C.R

    2001-01-01

    Radiometric 14 C dating is a very useful tool to study the chronostratigraphy of pyroclastic deposits. In addition, 14 C ages are essential parameters for the estimation of the recurrence time of the explosive volcanic activity. The origin, distribution and relative age of mappable Holocene tephra-fall deposits of the Southern Andes Volcanic Zone (SVZ) and Austral Andes Volcanic Zone (AVZ) from 33 o S-54 o S, were studied and their recurrence period is analysed (au)

  2. K-Ar ages of the Nyuto-Takakura volcanic products, southern part of the Sengan geothermal area, northeast Japan

    International Nuclear Information System (INIS)

    Suto, Shigeru; Uto, Kozo; Uchiumi, Shigeru

    1990-01-01

    The K-Ar age determination of the volcanic rocks from the Nyuto-Takakura volcano group, northeast Japan, was carried out. Nyuto-Takakura volcanoes are situated in the southern part of the Sengan geothermal area. And the Young Volcanic Rocks in the area were already divided into the Early stage volcanics (erupted in Matsuyama reversed epoch or more older epoch) and the Later stage volcanics (erupted in Brunhes normal epoch) by accumulated paleomagnetic and K-Ar age data. The results in this study are as follows; Nyuto Volcano: 0.63±0.06, 0.36±0.07 Ma, Sasamoriyama Volcano: 0.09±0.07, 0.3±0.3 Ma, Marumori Lava Dome: 0.4±0.3, 0.31±0.12 Ma, Mikadoyama Lava Dome: <1 Ma, Takakurayama-Kotakakurayama volcano: 1.4±0.5, 1.0±0.4, <0.4 Ma. The determinated ages are concordant with the volcanic stratigraphy and the paleomagnetic data. Nyuto Volcano, Sasamoriyama Volcano, Marumori Lava Dome, Mikadoyama Lava Dome and upper part of the Takakurayama-Kotakakurayama Volcano are interpreted to be erupted in Brunhes normal epoch. The volcanic rocks from the lower part of the Takakurayama-Kotakakurayama volcano show normal magnetic polarity, so they are interpreted to be erupted in Jaramillo normal polarity event. The Early stage volcanics and the Later stage volcanics in the studied area are tend to be distributed in the central part and the outer part of the area, respectively. But the determinated ages in this study show that there is no simple migration of the eruption center of the volcanic rocks from the central part to the peripheral part. There is no geothermal manifestation or alteration area around the Sasamoriyama Volcano and the Marumori Lava Dome, which are the youngest volcanoes in the studied area. So it is concluded that there is no direct correlation between the eruption age of the nearest volcano and the geothermal activity. (author)

  3. Sr–Nd isotopic compositions of Paleoproterozoic metavolcanic rocks from the southern Ashanti volcanic belt, Ghana

    OpenAIRE

    Dampare, Samuel; Shibata, Tsugio; Asiedu, Daniel; Okano, Osamu; Manu, Johnson; Sakyi, Patrick

    2009-01-01

    Neodymium (Nd) and strontium (Sr) isotopic data are presented for Paleoproterozoic metavolcanic rocks in the southern part of the Ashanti volcanic belt of Ghana. The metavolcanic rocks are predominantly basalts/basaltic andesites and andesites with minor dacites. Two types of basalts/basaltic andesites (B/A), Type I and Type II, have been identified. The Type I B/A are stratigraphically overlain by the Type II B/A, followed by the andesites and the dacites. The analyzed volcanic rocks commonl...

  4. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1992-01-01

    The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed

  5. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)

    Science.gov (United States)

    Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent

    2016-09-01

    We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong

  6. Center for Volcanic and Tectonic Studies: 1992--1993 annual report

    International Nuclear Information System (INIS)

    1994-01-01

    The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings

  7. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust

    DEFF Research Database (Denmark)

    Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup

    2014-01-01

    Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr–Nd-high-precision Pb isotope data from the Quat......Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr–Nd-high-precision Pb isotope data from...... mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb–Sr–Nd isotopes indicate a major...

  8. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2014-06-01

    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  9. Dispersion of the Volcanic Sulfate Cloud from the Mount Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.

    2012-01-01

    We simulate the transport of the volcanic cloud from the 1991 eruption of Mount Pinatubo with the GEOS-5 general circulation model. Our simulations are in good agreement with observational data. We tested the importance of initial condition corresponding to the specific meteorological situation at the time of the eruption by employing reanalysis from MERRA. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of the volcanic cloud up to the middle stratosphere, combined with divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses to the northern hemisphere through a lower stratospheric pathway, and to mid- and high latitudes of the southern hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season. We did not detect any significant change of the mixing between tropics and mid- and high latitudes in the southern hemisphere.

  10. Widespread Neogene and Quaternary Volcanism on Central Kerguelen Plateau, Southern Indian Ocean

    Science.gov (United States)

    Duncan, R. A.; Falloon, T.; Quilty, P. G.; Coffin, M. F.

    2016-12-01

    We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a 125,000 km2 region that includes Heard and McDonald islands. Large early Miocene (16-22 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW-SSE line of volcanic centers that lie between Îles Kerguelen and Heard and McDonald islands. A second group of large sea knolls is aligned E-W across the center of this region. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of Heard Island. Compositions include basanite, basalt, and trachybasalt, that are broadly similar to plateau lava flows from nearby Ocean Drilling Program (ODP) Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. The western line of sea knolls has been related to hotspot activity now underlying the Heard Island area. In view of the now recognized much larger area of young volcanic activity, we propose that a broad region of CKP became volcanically active in Neogene time due to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults promotes access for melts from the Heard mantle plume to rise to the surface.

  11. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  12. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  13. Evolution of volcaniclastic apron during initiation of Cascade volcanism in southern Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bestland, E.A.

    1986-05-01

    The Oligocene Colestin Formation consists of volcaniclastic apron sequence that records the initiation of Cascade volcanism in the western Cascade Range of southern Oregon. The formation in the type area is largely confined to an east-west-trending graben approximately 8 km wide. This graben and other smaller grabens within it developed to the west of and perpendicular to the axis of the Oligocene Cascade arc. The apron, which fills and locally overflows the graben, consists of coalesced lobes of volcaniclastic and pyroclastic deposits and lesser amounts of lava flows. Abrupt lateral facies changes on a scale of tens to hundreds of meters were produced by the lobe style of deposition and contemporaneous basin faulting. Interstratified with the discontinuous apron sediments are marker units that consist of pyroclastic flows, paleosols, and lava-flow sequences. In the upper half of the formation, the apron can be subdivided into informal members (lobes and sequences of lobes), which can be mapped according to their composition and stratigraphic position. Each member formed during a distinct interval of volcanism. An epiclastic lobe in the upper part of the formation, containing debris-flow and hyperconcentrated flood-flow deposits, represents a period of effusive or mildly explosive andesitic and basaltic volcanism. This epiclastic lobe pinches out to the south under a member that consists of tuffaceous sandstones and interbedded welded and nonwelded pyroclastic flows. The pulselike style of apron growth was produced by the episodic shifting of volcanism along the arc.

  14. Geology and petrology of the Woods Mountains Volcanic Center, southeastern California: Implications for the genesis of peralkaline rhyolite ash flow tuffs

    Science.gov (United States)

    McCurry, Michael

    1988-12-01

    The Woods Mountains Volcanic Center is a middle Miocene silicic caldera complex located at the transition from the northern to the southern Basin and Range provinces of the western United States. It consists of a trachyte-trachydacite-rhyolite-peralkaline rhyolite association of lava flows, domes, plugs, pyroclastic rocks, and epiclastic breccia. Volcanism began at about 16.4 Ma, near the end of a local resurgence of felsic to intermediate magmatism and associated crustal extension. Numerous metaluminous high-K trachyte, trachydacite, and rhyolite lava flows, domes, and pyroclastic deposits accumulated from vents scattered over an area of 200 km2 forming a broad volcanic field with an initial volume of about 10 km3. At 15.8 Ma, about 80 km3 of metaluminous to mildly peralkaline high-K rhyolite ash flows were erupted from vents in the western part of fhe field in three closely spaced pulses, resulting in the formation of a trap door caldera 10 km in diameter. The ash flows formed the Wild Horse Mesa Tuff, a compositionally zoned ash flow sheet that originally covered an area of about 600 km2 to a maximum thickness of at least 320 m. High-K trachyte pumice lapilli, some of which are intimately banded with rhyolite, were produced late in the two later eruptions, Intracaldera volcanism from widely distributed vents rapidly filled the caldera with about 10 km3 of high-K, mildly peralkaline, high-silica rhyolite lava flows and pyroclastic deposits. These are interlayered with breccia derived from the caldera scarp. They are intruded by numerous compositionally similar plugs, some of which structurally uplifted and fractured the center of the caldera. The center evolved above a high-K trachyte magma chamber about 10 km in diameter that had developed and differentiated within the upper crust at about 15.8 Ma. Petrological, geochemical, and geophysical data are consistent with the idea that a cap of peralkaline rhyolite magma formed within the trachyte chamber as a result

  15. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    Science.gov (United States)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  16. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption

  17. Isotopic dating of the post-Alpine Neogene volcanism in the Betic Cordilleras, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, F A; Rondeel, H E [Amsterdam Univ. (Netherlands). Geologisch Inst.; Andriessen, P A.M.; Hebeda, E H; Priem, H N.A. [Laboratorium voor Isotopen-Geologie, Amsterdam (Netherlands)

    1981-06-01

    The post-Alpine lamproitic volcanism in the Prebetic of the External Zone of the Betic Cordilleras of southern Spain is dated at 7.6-7.2 Ma by the K-Ar data from two richterites, two sanidines, a phlogopite and a whole-rock, and the fission-track analysis of an apatite. Biotite from a lava of the rhyolitic-dacitic suite in the post-orogenic Vera basin of the Internal Zone produces the same age. Phlogopite from a lamproitic (veritic) subvolcanic body in the Vera basin yields an age of about 8.6 Ma; as lavas belonging to the veritic suite reportedly overlie Late Messinian sediments, pointing to an age of less than about 5 Ma, this type of volcanism in the Vera basin must have been active over several million years.

  18. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    Science.gov (United States)

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  19. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    International Nuclear Information System (INIS)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-01-01

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma)

  20. The SHRIMP zircon U-Pb dating of felsic volcanic rocks and its geological significance from yutian group in southern jiangxi

    International Nuclear Information System (INIS)

    Ji Chunyu; Wu Jianhua

    2010-01-01

    Past researches have showed that the Rb-Sr isochron ages of felsic end member for r hyolite-basalt b imodal volcanic rocks of Yutian Group in the Changpu and Longnan Basin in Southern Jiangxi Province are 175 ∼ 148 Ma, not only does its amplitude change more significantly, but it does not match with the Rb-Sr isochron ages (179 ∼ 173 Ma) of basic end member. As a result, I choose a method of zircon U-Pb dating with a higher accuracy, to obtain the rhyolite in the bottom of bimodal volcanic rocks in the Changpu Basin and the dacite in the top of of bimodal volcanic rocks in the Longnan Basin, whose zircon SHIRMP U-Pb age are respectively (195.2 ± 2.8) Ma and (191 ± 1.7) Ma. What's more, they are both almost the same in the error limit. It shows that the bimodal volcanic rocks in these both two basins are the product of the same session of magma movement. Simultaneously, it explains they form in a flash during the eruption intervals. According to the the newest International Stratigraphic Chart (Gradsrein et al. , 2004), in terms of geological age, the bimodal volcanic rocks in Changpu Basin and Longnan Basin, belonging to the early Early Jurassic. The zircon SHIRMP U-Pb age are distinctly older than the whole-rock Rb-Sr isochron age, it is probably because of the deviation of the dating method for the wholerock Rb-Sr isochron age. The zircon SHIRMP U-Pb age of bimodal volcanic rocks are 191 ∼ 195 Ma in Southern Jiangxi Province, which indicates that there had been an extensional environment. And after the bimodal volcanic activity, The zircon SHIRMP U-Pb age of felsic volcanic rocks are 145 ∼ 130 Ma. Both of the ages shows a as long as 45 Ma quiet period between 190 Ma and 145 Ma. It is unreasonable possible to interpreted by the single pattern of pacific plate subducting to eurasian plate. (authors)

  1. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    Science.gov (United States)

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  2. Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet

    Science.gov (United States)

    Liu, An-Lin; Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Wang, Rui; Dai, Jin-Gen; Zheng, Yuan-Chuan; Zhang, Liang-Liang

    2018-04-01

    The origin of the Eocene shoshonitic rocks within the upper part of the extensive Linzizong volcanic succession (i.e., the Pana Formation) in the Gangdese arc, southern Tibet remains unclear, inhibiting the detailed investigations on the crust-mantle interaction and mantle dynamics that operate the generation of the coeval magmatic flare-up in the arc. We report mineral composition, zircon U-Pb age and zircon Hf isotope, whole-rock element and Sr-Nd-Hf isotope data for the Pana Formation volcanic rocks from Pangduo, eastern Gangdese arc in southern Tibet. The Pana volcanic rocks from Pangduo include basalts, basaltic andesites, and dacites. SIMS and LA-ICPMS zircon U-Pb dating indicates that the Pangduo dacites were erupted at 50 ± 1 Ma, representing the volcanic equivalent of the coeval Gangdese Batholith that define a magmatic flare-up at 51 ± 1 Ma. The Pangduo volcanic rocks are exclusively shoshonitic, differing from typical subduction-related calc-alkaline volcanic rocks. The basalts have positive whole-rock ƐNd(t) (+1.7) and ƐHf(t) (+3.8) with high Zr abundances (121-169 ppm) and Zr/Y ratios (4.3-5.2), most likely derived from the partial melting of an enriched garnet-bearing lithospheric mantle that was metasomatized by subduction-related components with input from asthenosphere. Compared to the basalts, similar trace elemental patterns and decreased whole-rock ƐNd(t) (-3.5 to -3.3) and ƐHf(t) (-2.5 to -1.6) of the basaltic andesites can be attributed to the input of the ancient basement-derived material of the central Lhasa subterrane into the basaltic magmas. The coherent whole-rock Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i = 0.7064-0.7069, ƐNd(t) = -6.0 to -5.2, ƐHf(t) = -5.6 to -5.0) and varying zircon ƐHf(t) (-6.0 to +4.1) of the dacites can be interpreted by the partial melting of a hybrid lower crust source (juvenile and ancient lower crust) with incorporation of basement-derived components. Calculations of zircon-Ti temperature and whole

  3. Geophysical techniques for detecting magmas and high-temperature fluids. Their application to the Onikobe-Narugo volcanic region and the southern Kii Peninsula

    International Nuclear Information System (INIS)

    Asamori, Koichi; Umeda, Koji

    2005-01-01

    The effects of volcanism on the geological environments include a dynamic destruction and subsidence of basement rocks, caused by the intrusion and eruption of magma. To ensure the long-term stability of geological disposal system, a possibility of renewed volcanism at the site might be examined based on the geotectonic data of the deep underground using geophysical and geochemical approaches. This paper describes an overview of geophysical approaches for detecting magmas and/or high temperature fluids related to volcanism within the crust and uppermost mantle. Moreover, we present the images of the seismic velocity and electrical resistivity structure beneath the Onikobe-Narugo volcanic region and the southern Kii Peninsula, carried out in JNC's R and D program. (author)

  4. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    Science.gov (United States)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  5. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    Science.gov (United States)

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years

  6. Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA

    Science.gov (United States)

    Wicks, Charles W.; Dzurisin, Daniel; Ingebritsen, Steven; Thatcher, Wayne; Lu, Zhong; Iverson, Justin

    2002-04-01

    Images from satellite interferometric synthetic aperture radar (InSAR) reveal uplift of a broad ~10 km by 20 km area in the Three Sisters volcanic center of the central Oregon Cascade Range, ~130 km south of Mt. St. Helens. The last eruption in the volcanic center occurred ~1500 years ago. Multiple satellite images from 1992 through 2000 indicate that most if not all of ~100 mm of observed uplift occurred between September 1998 and October 2000. Geochemical (water chemistry) anomalies, first noted during 1990, coincide with the area of uplift and suggest the existence of a crustal magma reservoir prior to the uplift. We interpret the uplift as inflation caused by an ongoing episode of magma intrusion at a depth of ~6.5 km.

  7. Building the Southern California Earthquake Center

    Science.gov (United States)

    Jordan, T. H.; Henyey, T.; McRaney, J. K.

    2004-12-01

    Kei Aki was the founding director of the Southern California Earthquake Center (SCEC), a multi-institutional collaboration formed in 1991 as a Science and Technology Center (STC) under the National Science Foundation (NSF) and the U. S. Geological Survey (USGS). Aki and his colleagues articulated a system-level vision for the Center: investigations by disciplinary working groups would be woven together into a "Master Model" for Southern California. In this presentation, we will outline how the Master-Model concept has evolved and how SCEC's structure has adapted to meet scientific challenges of system-level earthquake science. In its first decade, SCEC conducted two regional imaging experiments (LARSE I & II); published the "Phase-N" reports on (1) the Landers earthquake, (2) a new earthquake rupture forecast for Southern California, and (3) new models for seismic attenuation and site effects; it developed two prototype "Community Models" (the Crustal Motion Map and Community Velocity Model) and, perhaps most important, sustained a long-term, multi-institutional, interdisciplinary collaboration. The latter fostered pioneering numerical simulations of earthquake ruptures, fault interactions, and wave propagation. These accomplishments provided the impetus for a successful proposal in 2000 to reestablish SCEC as a "stand alone" center under NSF/USGS auspices. SCEC remains consistent with the founders' vision: it continues to advance seismic hazard analysis through a system-level synthesis that is based on community models and an ever expanding array of information technology. SCEC now represents a fully articulated "collaboratory" for earthquake science, and many of its features are extensible to other active-fault systems and other system-level collaborations. We will discuss the implications of the SCEC experience for EarthScope, the USGS's program in seismic hazard analysis, NSF's nascent Cyberinfrastructure Initiative, and other large collaboratory programs.

  8. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  9. Paleoproterozoic volcanism in the southern Amazon Craton (Brazil): insight into its origin and deposit textures

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano

    2014-05-01

    style that produced them. The aim of this work is to provide a preliminary detailed description of the textural facies of this old volcanic units that outcrop in the southern region of Tapajós to better understand its origins, mechanisms of genesis, and, even possible, stratigraphic relationships. Acknowledgments: we acknowledge the CNPq/CT-Mineral (Proc. 550.342/2011-7) and the INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS).

  10. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Tectonics, seismicity, volcanism, and erosion rates in the southern Great Basin

    International Nuclear Information System (INIS)

    Carr, W.J.; Rogers, A.M.

    1982-01-01

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. The following approaches are being used: (1) investigating the rate, intensity, and distribution of faulting during approximately the last 25 m.y., with emphasis on the last 10 m.y.; (2) monitoring and interpreting present seismicity; (3) studying the history of volcanism; and (4) evaluating past rates of erosion and deposition. Progress is reported

  11. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    Science.gov (United States)

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  12. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) measured by satellite radar interferometry

    Science.gov (United States)

    Feigl, K.; Ali, T.; Singer, B. S.; Pesicek, J. D.; Thurber, C. H.; Jicha, B. R.; Lara, L. E.; Hildreth, E. W.; Fierstein, J.; Williams-Jones, G.; Unsworth, M. J.; Keranen, K. M.

    2011-12-01

    The Laguna del Maule (LdM) volcanic field of the Andean Southern Volcanic Zone extends over 500 square kilometers and comprises more than 130 individual vents. As described by Hildreth et al. (2010), the history has been defined from sixty-eight Ar/Ar and K-Ar dates. Silicic eruptions have occurred throughout the past 3.7 Ma, including welded ignimbrite associated with caldera formation at 950 ka, small rhyolitic eruptions between 336 and 38 ka, and a culminating ring of 36 post-glacial rhyodacite and rhyolite coulees and domes that encircle the lake. Dating of five post-glacial flows implies that these silicic eruptions occurred within the last 25 kyr. Field relations indicate that initial eruptions comprised modest volumes of mafic rhyodacite magma that were followed by larger volumes of high silica rhyolite. The post-glacial flare-up of silicic magmatism from vents distributed around the lake, is unprecedented in the history of this volcanic field. Using satellite radar interferometry (InSAR), Fournier et al. (2010) measured uplift at a rate of more than 180 mm/year between 2007 and 2008 in a round pattern centered on the west side of LdM. More recent InSAR observations suggest that rapid uplift has continued from 2008 through early 2011. In contrast, Fournier et al. found no measurable deformation in an interferogram spanning 2003 through 2004. In this study, we model the deformation field using the General Inversion of Phase Technique (GIPhT), as described by Feigl and Thurber (2009). Two different models fit the data. The first model assumes a sill at ~5 km depth has been inflating at a rate of more than 20 million cubic meters per year since 2007. The second model assumes that the water level in the lake dropped at a rate of 20 m/yr from January 2007 through February 2010, thus reducing the load on an elastic simulation of the crust. The rate of intrusion inferred from InSAR is an order of magnitude higher than the average rate derived from well-dated arc

  13. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1993-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results

  14. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    Science.gov (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  15. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  16. Center for volcanic and tectonic studies, Department of Geoscience, Univ. of Nevada, Las Vegas, NV. Annual report No. 69, October 1, 1991--September 30, 1992

    International Nuclear Information System (INIS)

    Smith, E.I.

    1992-01-01

    The annual report of the Center for Volcanic and Tectonic Studies (CVTS) contains a series of papers, maps, and reprints that review the progress made by the CVTS between October 1, 1991 and December 31, 1992. During this period CVTS staff focused on several topics that had direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics included: (1) The role of the mantle during regional extension. (2) The structural controls and emplacement mechanisms of Pliocene/Quaternary basaltic centers and dikes. (3) The detailed geochemistry of individual volcanic centers in Crater Flat, Nevada. (4) Estimating the probability of disruption of the proposed repository by volcanic eruption (this topic is being studied by Dr. C-H. Ho at UNLV)

  17. Magmatic activity stages of the El'brus volcanic center (Great Caucasus): isotope geochronological data

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Lebedev, V.A.; Bubnov, S.N.; Arakelyants, M.M.; Gol'tsman, Yu.V.

    2001-01-01

    The age of volcanites in the Elbrus volcanic center was determined by the methods of K-Ar- and Rb-Sr-dating to ascertain stages of magmatic activity in the area. The data obtained suggest existence of at least two stages of magmatic activity: Middle Neopleistocene (225-180 thous. years) and Late Neopleistocene-Holocene ( [ru

  18. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  19. Constraining the India-Asia collision by retrieving the paleolatitude from partially remagnetized Paleogene volcanics in the Nanmulin Basin (southern Tibet)

    Science.gov (United States)

    Huang, Wentao; Dupont-Nivet, Guillaume; van Hinsbergen, Douwe; Lippert, Peter; Dekkers, Mark; Guo, Zhaojie; Li, Xiaochun; Zhang, Xiaoran

    2014-05-01

    Determining paleolatitudes of the Lhasa terrane (southern Tibet) using paleomagnetic inclinations is key to constraining the paleogeography and timing of the collision between India and Asia. However, paleolatitude estimates vary widely from 5°N to 30°N due to unrecognized rock magnetic biases such as inclination shallowing in sedimentary rocks or poor averaging of secular variation in volcanic rocks. Here, we investigated Paleogene volcanics of the Linzizong Group from southern Tibet in the Nanmulin Basin that had previously yielded low paleomagnetic inclinations ca. 10°N. Using proper paleomagnetic sampling and measurement protocols we observe similar shallow inclinations. However, sampled sections with different bedding attitudes yield a negative fold test indicating that the isolated remanent magnetizations do not have a primary origin. Detailed rock magnetic analysis, end-member modeling, and petrographic investigation reveal that most of the section has been variably remagnetized due to low-temperature alteration of magmatic titanomagnetite and formation of secondary hematite, which occurred after tilting of the strata. We show that the observed paleomagnetic inclinations vary according to a linear trend with the degree of remagnetization. Accordingly, we can estimate that the primary pre-tilting thermoremanent magnetization has an inclination of 38.1° ([35.7°, 40.5°] within 95% confidence limit), corresponding to a paleolatitude of 21.4° ([19.8°, 23.1°] within 95% confidence limit). This is consistent with results from pristine volcanic units and inclination-shallowing corrected sediments of the upper Linzizong Group ~200 km to the east [Dupont-Nivet et al., Geophysical Journal International, 182, 1189-1198; Huang et al., Geophysical Journal International, 194, 1390-1411]. Our results demonstrate that previously reported low paleolatitudes of the Lhasa terrane can be an artifact of unrecognized remagnetization. Furthermore, we show that original

  20. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, Lisa [ATLAS Geosciences, Inc., Reno, NV (United States); Coolbaugh, Mark [ATLAS Geosciences, Inc., Reno, NV (United States); Hinz, Nick [Univ. of Nevada, Reno, NV (United States); Stelling, Pete [Western Washington Univ., Bellingham, WA (United States); Melosh, Glenn [GEODE, Santa Rosa, CA (United States); Cumming, William [Cumming Geoscience, Santa Rosa, CA (United States)

    2015-10-16

    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production. To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.

  1. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  2. Acidic volcanic rock and its potential as an objective for uranium prospecting

    International Nuclear Information System (INIS)

    Rodriguez Torres, R.; Yza Dominguez, R.; Chavez Aguirre, R.; Constantino, H.E.S.E.

    1976-01-01

    The geographical distribution of recent Mexican volcanic rocks is continuous; the older formations are dispersed in isolated outcrops. Continental volcanic events, acidic and basal, took place in the Caenozoic, Mesozoic and Palaeozoic; basic submarine volcanism predominated in the Mesozoic, Palaeozoic and late Precambrian. Access to the Sierra Madre Occidental, a circum-Pacific mountain range covered by rhyolitic rocks, is limited, which restricts the sections studied. Calderas, sources of volcanic emission and preliminary litho-stratigraphic sections have been delimited on the eastern edge of the range. Subduction by the ocean magmatized the continent from the Permian onwards, extravasating and depositing cyclically various magmata through inverted and normal cortical throws. The Sierra Pena Blanca (Chihuahua) section consists of epiclastic and pyroclastic rocks. A calcareous conglomerate is overburdened by alternate basal tuffs and imbricates, forming five units. In the uraniferous district of the Sierra Pena Blanca the hydrothermal alteration argillitized both components of the ''Nopal'' formation. Primary minerals (pitchblende) are found together with silicification. Leaching favours secondary mineralization (uranium silicates) associated with opals. After extrapolation of the features, the following are considered worth-while objectives: the faces, offsets and prolongations of the Sierra Madre Occidental and the southern volcanic mesetas south of the Mexican Transcontinental Rift. Similar objectives of Mesozoic or Palaeozoic age exist in central and southern Mexico. Possible objectives for uranium are: the acidic volcanic rock of the southern and south-western United States of America, the circum-Pacific acidic volcanic rocks of North America and the acidic volcanic mesetas of Central America and in the Andes. (author)

  3. Was there a volcanic eruption off Vietnam in AD 608?

    Science.gov (United States)

    Khoo, T. T.

    In the Sui-shu (Annals of the Sui Dynasty, 581-618), there is a record that returning envoys of the Chinese court to a state in northeastern Malay peninsula had in April-June AD 608 reached the state of Lin-i where for a whole day's sail the air around the vessel was yellowish and fetid. Lin-i was located at the southern end of the Annam Highlands chain and it is interpreted here that the phenominon reported could be due to a volcanic eruption in the Poulo Cecir-Ile des Cendres-Veteran volcanic islands group near the area. During the months of May to June the winds of the southwest monsoon, too, blow from the volcanic area toward the southern end of the Annam Highlands.

  4. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  5. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  6. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.

    2013-01-01

    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and P...

  7. Pucarilla-Cerro Tipillas volcanic complex: the oldest recognized caldera in the southeastern portion of central volcanic zone of Central Andes?

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Silvina; Petrinovic, Ivan [CONICET -IBIGEO. Museo de Cs. Naturales, Universidad de Salta, Mendoza 2 (4400), Salta (Argentina)], E-mail: guzmansilvina@gmail.com

    2008-10-01

    We recognize the most eastern and oldest collapse caldera structure in the southern portion of the Central Volcanic Zone of the Andes. A description of Middle-Upper Miocene successions related to explosive- effusive events is presented. The location of this centre close to Cerro Galn Caldera attests a recurrence in the volcanism between 12 and 2 Ma in this portion of the Altiplano - Puna Plateau.

  8. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  9. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    Science.gov (United States)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  10. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Science.gov (United States)

    2012-08-24

    ... Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho, Twin Falls, ID AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Herrett Center for Arts and Science, College... associated funerary object may contact the Herrett Center for Arts and Science, College of Southern Idaho...

  11. Using faults for PSHA in a volcanic context: the Etna case (Southern Italy)

    Science.gov (United States)

    Azzaro, Raffaele; D'Amico, Salvatore; Gee, Robin; Pace, Bruno; Peruzza, Laura

    2016-04-01

    At Mt. Etna volcano (Southern Italy), recurrent volcano-tectonic earthquakes affect the urbanised areas, with an overall population of about 400,000 and with important infrastructures and lifelines. For this reason, seismic hazard analyses have been undertaken in the last decade focusing on the capability of local faults to generate damaging earthquakes especially in the short-term (30-5 yrs); these results have to be intended as complementary to the regulatory seismic hazard maps, and devoted to establish priority in the seismic retrofitting of the exposed municipalities. Starting from past experience, in the framework of the V3 Project funded by the Italian Department of Civil Defense we performed a fully probabilistic seismic hazard assessment by using an original definition of seismic sources and ground-motion prediction equations specifically derived for this volcanic area; calculations are referred to a new brand topographic surface (Mt. Etna reaches more than 3,000 m in elevation, in less than 20 km from the coast), and to both Poissonian and time-dependent occurrence models. We present at first the process of defining seismic sources that includes individual faults, seismic zones and gridded seismicity; they are obtained by integrating geological field data with long-term (the historical macroseismic catalogue) and short-term earthquake data (the instrumental catalogue). The analysis of the Frequency Magnitude Distribution identifies areas in the volcanic complex, with a- and b-values of the Gutenberg-Richter relationship representative of different dynamic processes. Then, we discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults estimated by using a purely geologic approach. This analysis has been carried out through the software code FISH, a Matlab® tool developed to turn fault data representative of the seismogenic process into hazard models. The utilization of a magnitude-size scaling relationship

  12. Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanic arc

    Science.gov (United States)

    Samuel, Vinod O.; Kwon, Sanghoon; Santosh, M.; Sajeev, K.

    2018-06-01

    Southern peninsular India preserves records of Late Neoarchean-Early Paleoproterozoic continental building and cratonization. A transect from the Paleoarchean Dharwar Craton to the Neoarchean arc magmatic complex in the Nilgiri Block across the intervening Moyar Suture Zone reveals an arc-accretionary complex composed of banded iron formation (BIF), amphibolite, metatuff, garnet-kyanite schist, metagabbro, pyroxenite and charnockite. Here we investigate the petrology, geochronology and petrogenesis of the pyroxenite and garnet-clinopyroxenite. The pyroxenite is mainly composed of orthopyroxene and clinopyroxene with local domains/pockets enriched in a clinopyroxene-garnet assemblage. Thermobarometric calculations and phase equilibria modeling suggest that the orthopyroxene- and clinopyroxene-rich domains formed at 900-1000 °C, 1-1.2 GPa whereas the garnet- and clinopyroxene-rich domains record higher pressure of about 1.8-2 GPa at similar temperature conditions (900-1000 °C). Zircon U-Pb SHRIMP dating show weighted mean 207Pb-206Pb age of 2532 ± 22 Ma, with metamorphic overgrowth at 2520 ± 27 Ma and 2478 ± 27 Ma. We propose a tectonic model involving decoupling and break-off of the oceanic plate along the southern flanks of the Dharwar Craton, which initiated oceanic plate subduction. Slab melting eventually built the Nilgiri volcanic arc on top of the over-riding plate along the flanks of the Dharwar Craton. Our study supports an active plate tectonic regime at the end of the Archean Era, aiding in the growth of paleo-continents and their assembly into stable cratons.

  13. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  14. Volcanic risk and tourism in southern Iceland: Implications for hazard, risk and emergency response education and training

    Science.gov (United States)

    Bird, Deanne K.; Gisladottir, Gudrun; Dominey-Howes, Dale

    2010-01-01

    This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education. Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified. In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns

  15. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-01-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  16. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  17. 76 FR 71604 - Kamal Tiwari, M.D.; Pain Management and Surgery Center of Southern Indiana; Decision and Order

    Science.gov (United States)

    2011-11-18

    ..., and his principal place of business, the Pain Management and Surgery Center (Respondent PMSC), holder... Certificate of Registration, BP4917413, issued to Respondent Pain Management and Surgery Center of Southern..., M.D. and Pain Management and Surgery Center of Southern Indiana, to renew or modify such...

  18. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Thirlwall, Matthew F.

    2015-01-01

    The presented Sr, Nd, Hf and double-spike Pb-isotopic analyses of Quaternary basalts from the Payenia volcanic province in southern Mendoza, Argentina, confirm the presence of two distinct mantle types feeding the Payenia volcanism. The southern Payenia mantle source feeding the intraplate-type Río...

  19. Sedimentary response to volcanic activity in the Okinawa Trough since the last deglaciation

    Institute of Scientific and Technical Information of China (English)

    蒋富清; 李安春; 李铁刚

    2010-01-01

    To investigate the relationship between volcanic activity and sediment record on regional and temporal scales,158 surface sediment samples were collected from the East China Sea Shelf to the northern Okinawa Trough (OT),and two cores recovered in the northern and southern OT,respectively.Mineralogy,grain-size,and geochemical analyses of those samples show that:1) volcanic glass,volcanic-type pyroxene,hypersthenes,and magnetite increase in sediment influenced by volcanic activity;2) sediment grain sizes (and...

  20. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  1. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile

    Science.gov (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.

    2017-11-01

    The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the

  2. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    New 40Ar/39Ar, major and trace element, and Sr, Nd and Pb isotopic data for the c. 24-7 Ma volcanic rocks from the Andean back-arc (35°S – 38°S) in the Mendoza and Neuquén (Argentina) regions shed light on the Miocene evolution of the back-arc of the Southern Volcanic Zone. Incipient shallowing......-Sr-Pb isotopic compositions. The arc-like component that dominates the geochemistry of the Palaoco rocks is absent in both the Early Miocene and the Pliocene-Pleistocene in the same area. Young volcanic Provinces in the main arc, retro-arc and back-arc are further investigated by U-series analyses which confirm...... the fluid-enriched nature of arc-related rocks (U-excess are found in most rocks) and the more OIB-like nature of the Payún Matrú complex (Th-exsess is observed in all rocks). The fluid addition to the mantle source is modeled revealing timescales of 10 – 100 ka for the fluid enrichment. For the back...

  3. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  4. Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping

    OpenAIRE

    Leat, Philip T.; Tate, Alex J.; Tappin, David R.; Day, Simon J.; Owen, Matthew J.

    2010-01-01

    New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55° 45′S and 57° 20′S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. T...

  5. Venus - Volcanic features in Atla Region

    Science.gov (United States)

    1991-01-01

    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  6. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  7. Monitoring the Sumatra volcanic arc with InSAR

    Science.gov (United States)

    Chaussard, E.; Hong, S.; Amelung, F.

    2009-12-01

    The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.

  8. Evidence for volcanism in NW Ishtar Terra, Venus

    International Nuclear Information System (INIS)

    Gaddis, L.; Greeley, R.

    1989-01-01

    Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred larg/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas

  9. Critical review of a new volcanic eruption chronology

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    Sigl. et al. (2015, Nature) present historical evidence for 32 volcanic eruptions to evaluate their new polar ice core 10-Be chronology - 24 are dated within three years of sulfur layers in polar ice. Most of them can be interpreted as weather phenomena (Babylonia: disk of sun like moon, reported for only one day, e.g. extinction due to clouds), Chinese sunspot reports (pellet, black vapor, etc.), solar eclipses, normal ice-halos and coronae (ring, bow, etc.), one aurora (redness), red suns due to mist drops in wet fog or fire-smoke, etc. Volcanic dust may facilitate detections of sunspots and formation of Bishop's ring, but tend to inhibit ice-halos, which are otherwise often reported in chronicles. We are left with three reports possibly indicating volcanic eruptions, namely fulfilling genuine criteria for atmospheric disturbances due to volcanic dust, e.g. bluish or faint sun, orange sky, or fainting of stars for months (BCE 208, 44-42, and 32). Among the volcanic eruptions used to fix the chronology (CE 536, 626, 939, 1257), the reports cited for the 930s deal only with 1-2 days, at least one reports an eclipse. In the new chronology, there is a sulfur detection eight years after the Vesuvius eruption, but none in CE 79. It may appear surprising that, from BCE 500 to 1, all five northern sulfur peaks labeled in figure 2 in Sigl et al. are systematically later by 2-4 years than the (corresponding?) southern peaks, while all five southern peaks from CE 100 to 600 labeled in figure 2 are systematically later by 1-4 years than the (corresponding?) northern peaks. Furthermore, in most of their six strongest volcanic eruptions, temperatures decreased years before their sulfur dating - correlated with weak solar activity as seen in radiocarbon, so that volcanic climate forcing appears dubious here. Also, their 10-Be peaks at CE 775 and 994 are neither significant nor certain in dating.

  10. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  11. Volcanism, Iron, and Phytoplankton in the Heard and McDonald Islands Region, Southern Indian Ocean

    Science.gov (United States)

    Coffin, M. F.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Trull, T. W.; Heobi in2016 v01 Shipboard Party, T.

    2016-12-01

    Phytoplankton supply approximately half of the oxygen in Earth's atmosphere, and iron supply limits the growth of phytoplankton in the anemic Southern Ocean. Situated entirely within the Indian Ocean sector of the Southern Ocean are Australia's only active subaerial volcanoes, Heard and McDonald islands (HIMI) on the central Kerguelen Plateau, a large igneous province. Widespread fields of submarine volcanoes, some of which may be active, extend for distances of up to several hundred kilometers from the islands. The predominantly eastward-flowing Antarctic Circumpolar Current sweeps across the central Kerguelen Plateau, and extensive blooms of phytoplankton are observed on the Plateau down-current of HIMI. The goal of RV Investigator voyage IN2016_V01, conducted in January/February 2016, is to test the hypothesis that hydrothermal fluids, which cool active submarine volcanoes in the HIMI region, ascend from the seafloor and fertilise surface waters with iron, thereby enhancing biological productivity beginning with phytoplankton. Significant initial shipboard results include: Documentation, for the first time, of the role of active HIMI and nearby submarine volcanoes in supplying iron to the Southern Ocean. Nearshore waters had elevated dissolved iron levels. Although biomass was not correspondingly elevated, fluorescence induction data indicated highly productive resident phytoplankton. Discovery of >200 acoustic plumes emanating from the seafloor and ascending up to tens of meters into the water column near HIMI. Deep tow camera footage shows bubbles rising from the seafloor in an acoustic plume field north of Heard Island. Mapping 1,000 km2 of uncharted seafloor around HIMI. Submarine volcanic edifices punctuate the adjacent seafloor, and yielded iron-rich rocks similar to those found on HIMI, respectively. Acoustic plumes emanating from some of these features suggest active seafloor hydrothermal systems.

  12. Magmatic Activity Beneath the Quiescent Three Sisters Volcanic Center, Central Oregon Cascade Range, USA, Inferred from Satellite InSAR

    Science.gov (United States)

    Wicks, C. W.; Dzurisin, D.; Ingebritsen, S.; Thatcher, W.; Lu, Z.; Iverson, J.

    2001-12-01

    Images from satellite interferometric synthetic aperture radar (InSAR) reveal uplift of a broad ~10 km by 20 km area in the Three Sisters volcanic center of the central Oregon Cascade Range, ~130 km south of Mt. St. Helens. The uplift is centered ~5 km west of South Sister volcano, the youngest stratovolcano in the volcanic center. The center has been volcanically inactive since the last eruption ~1500 years ago. Multiple European Space Agency ERS-1 and 2 satellite images from 1992 through 2000, used in this study, were selected based on orbital separation and time of year. Summer and early autumn scenes were necessary to avoid decorrelation from snow cover. Interferograms generated from these images indicate that most if not all of ~100 mm of observed uplift occurred between September 1998 and October 2000. We interpret the uplift as inflation caused by an apparently ongoing episode of magma intrusion at a depth of ~6.5 km. Geochemical (water chemistry) anomalies, first noted ~1990, coincide with the area of uplift and suggest the existence of a magma reservoir prior to the uplift. High chloride and sulfate concentrations, and a positive correlation between chloride concentration and spring temperature were found within the uplift area, with larger SO4/Cl ratios in springs at higher elevations. These findings are indicative of a high-temperature hydrothermal system driven by magma intrusions. The current inflation episode observed with InSAR may lead to an eruption, but the more persistent geochemical evidence suggests that the episode is likely the latest in a series of hitherto undetected magma intrusions. We do not yet know if the inflation has abated, is continuing, or has accelerated since October 2000--we only know that the highest rate of uplift occurred in the last year for which ERS-2 data was available (1999- 2000). In May of 2001, a continuous GPS receiver and seismometer were installed by the USGS within the Three Sisters Wilderness to monitor the

  13. The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica): local Pleistocene volcanic sources, paleoenvironmental implications and subsidence in the southern Victoria Land Basin

    Science.gov (United States)

    Del Carlo, P.; Panter, K. S.; Bassett, K. N.; Bracciali, L.; di Vincenzo, G.; Rocchi, S.

    2009-12-01

    We report results from the study of the uppermost 37 meters of the Southern McMurdo Sound (SMS) AND-2A drillcore, corresponding to the lithostratigraphic unit 1 (LSU 1), the most volcanogenic unit within the core. Nearly all of LSU 1 consists of volcanic breccia and sandstone that is a mixture of near primary volcanic material dominated by lava and vitric clasts with minor exotic material derived from distal basement sources. Lava clasts and glass are mafic and range from strongly alkaline (basanite, tephrite) to moderately alkaline (alkali basalt, hawaiite) compositions that are similar to nearby land deposits. 40Ar-39Ar laser step-heating analyses on groundmass separated from lava clasts yield Pleistocene ages (692±38 and 793±63, ±2σ internal errors). Volcanoes of the Dailey Island group, located ~13 km SW of the drillsite, are a possible source for the volcanic materials based on their close proximity, similar composition and age. A basanite lava flow on Juergens Island yields a comparable Pleistocene age of 775±22 ka. Yet there is evidence to suggest that the volcanic source is much closer to the drillsite and that the sediments were deposited in much shallower water relative to the present-day water depth of 384 mbsl. Evidence for local volcanic activity is based in part on the common occurrence of delicate vitriclasts (e.g. glass shards and Pele’s hair) and a minimally reworked ~2 meter thick monomict breccia that is interpreted to have formed by autobrecciating lava. In addition, conical-shaped seamounts and high frequency magnetic anomalies encompass the drillsite and extend south including the volcanoes of the Dailey Islands. Sedimentary features and structures indicate shallow water sedimentation for the whole of LSU 1. Rippled asymmetric cross-laminated sands and hummocky cross-stratification occur intermittently throughout LSU 1 and indicate water depths shallower than 100 meters. The occurrence of ooliths and layers containing siderite and Fe

  14. The Riscos Bayos Ignimbrites of the Caviahue-Copahue volcanic caldera complex, southern Andes, Argentina

    Science.gov (United States)

    Colvin, A.; Merrill, M.; Demoor, M.; Goss, A.; Varekamp, J. C.

    2004-05-01

    The Caviahue-Copahue volcanic complex (38 S, 70 W) is located on the eastern margin of the active arc in the southern Andes, Argentina. Volcán Copahue, an active stratovolcano which hosts an active hydrothermal system, sits on the southwestern rim of the elliptical Caviahue megacaldera (17 x 15 km). The caldera wall sequences are up to 0.6 km thick and consist of lavas with 51 -69 percent SiO2 and 0.2 - 5 percent MgO as well as breccias, dikes, sills, domes and minor ignimbrites. Andesitic lava flows also occur within the caldera, and are overlain by a chaotic complex of silicic lava and intracaldera pyroclastic flow deposits. The eastern wall sequence is capped by several extracaldera ignimbrites (Riscos Bayos formation) of about 50 m maximum thickness which extend 30 km east-southeast of the caldera. Young back-arc alkali basalt scoria cones occur east of the Caviahue-Copahue volcanic complex. The eruption of the Riscos Bayos formation at about 1.1 Ma (12 km cubed) may be related to the Caviahue caldera formation, though the Riscos Bayos account for only about 7 percent of the caldera volume. The Riscos Bayos consists of three lithic-bearing flow units: a grey basal flow, a tan middle flow and a bright-white, highly indurated uppermost flow. The basal unit consists of white and grey pumice fragments, black scoria clasts, black obsidian clasts (which give it the grey color), and accidental volcanic lithics set in a matrix of ash and crystals. The middle unit is composed of large mauve pumice fragments and accidental lithics set in a fine tan ash groundmass. The uppermost unit is composed of small pink and white pumice fragments set in a matrix of fine white ash. These pumices carry quartz and biotite crystals, whereas the lower two units are orthopyroxene-bearing trachy-dacites. The Caviahue-Copahue magmas all bear arc signatures, but possibly some magma mixing between the andesitic arc magmas and basaltic back-arc magmas may have occurred. The evolved top layer

  15. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  16. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  17. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  18. Recent progress in volcanism studies: Site characterization activities for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Crowe, B.M.; Valentine, G.; Morley, R.; Perry, F.V.

    1992-01-01

    Significant progress has been made on volcanism studies over the past calendar year. There are a number of major highlights from this work. Geochronology data have been obtained for the Lathrop Wells center using a range of isotopic, radiogenic, and age-calibrated methods. Initial work is encouraging but still insufficient to resolve the age of the center with confidence. Geologic mapping of the Sleeping Butte volcanic centers was completed and a report issued on the geology and chronology data. Twenty shallow trenches have been constructed in volcanic units of the Lathrop Wells volcanic center. Results of detailed studies of the trenches support a polycyclic eruptive history. New soil data from the trenches continue to support a late Pleistocene or Holocene age for many of the volcanic units at the center. Geochemical data (trace element and isotopic analysis) show that the volcanic units of the Lathrop Wells center cannot be related to one another by fractional crystallization of a single magma batch, supporting a polycyclic model of volcanism. Structural models using existing data are used to evaluate the probability of magmatic disruption of a potential repository. Several permissive models have been developed but none lead to significant differences in calculating the disruption ratio. Work was initiated on the eruptive and subsurface effects of magmatic activity on a repository. (author)

  19. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  20. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    Science.gov (United States)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  1. Building the oceanic crust: Insights on volcanic emplacement processes at the hotspot-influenced Galápagos Spreading Center, 92°W

    Science.gov (United States)

    McClinton, J. T.; White, S. M.; Colman, A.; Sinton, J. M.

    2011-12-01

    The Galápagos Spreading Center (GSC) displays a range of axial morphology due to increased magma supply from the adjacent Galápagos mantle plume. Over 30 years of scientific exploration has also documented the associated variations in volcanic terrain, crustal thickness, and geochemistry of erupted basalts, but until recently the fine-scale ("lava flow scale") volcanic features of the GSC had not been investigated. Using the Alvin submersible and aided by near-bottom photographic surveys by TowCam and sub-meter-scale sonar surveys by AUV Sentry, we mapped and sampled 12 individual eruptive units covering ~16km2 of seafloor on the ridge axis of the GSC at 92°W. Variations in AUV Sentry bathymetry and DSL-120A backscatter enabled us to characterize the fine-scale surface morphology within each eruptive unit. Lava flow morphologies within each unit were identified using a neuro-fuzzy classifier which assigns pixels as pillows, lobates, sheets, or fissures by using attributes derived from high-resolution sonar bathymetry and backscatter (McClinton et al., submitted PE&RS). An accuracy assessment indicates approximately 90% agreement between the lava morphology map and an independent set of visual observations. The result of this classification effort is that we are able to quantitatively examine the spatial distribution of lava flow morphology as it relates to the emplacement of lava flows within each eruptive unit at a mid-ocean ridge. Preliminary analyses show that a large, segment-centered volcanic cone which straddles the axial summit graben (the "Empanada") is constructed mostly of pillow lavas, while volcanism in the rifted center of the cone consists of lobate and sheet flows. Conversely, along the rest of the segment, on-axis eruptions consist mainly of pillow lava with most sheet and lobate flows found outside of a small axial summit graben. At least some of these sheet flows are fed by lava channels, suggesting emplacement over distances up to 1km, while

  2. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  3. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  4. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  5. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities

  6. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  7. Non-volcanic CO2 Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy

    Science.gov (United States)

    Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Minopoli, C.; Vilardo, G.

    2010-06-01

    Mefite d'Ansanto, southern Apennines, Italy is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth. The emission is fed by a buried reservoir, made up of permeable limestones and covered by clayey sediments. We estimated a total gas flux of ˜2000 tons per day. Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time people and animals. The application of a physical numerical model allowed us to define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. The geometry of the Mefite gas reservoir is similar to those designed for sequestering CO2 in geological storage projects where huge amounts of CO2 should be injected in order to reduce atmospheric CO2 concentration. The approach which we have used at Mefite to define hazardous zones for the human health can be applied also in case of large CO2 leakages from storage sites, a phenomena which, even if improbable, can not be ruled out.

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  9. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  10. Polychronous Zirconology of Navysh Volcanics of the Ai Formation (Southern Urals)

    Science.gov (United States)

    Krasnobaev, A. A.; Puchkov, V. N.; Sergeeva, N. D.

    2018-01-01

    In order to resolve the age of Navysh volcanics (NV), which is usually attributed to the Lower Riphean of the Ai Formation, we have used geochronological, petrologic, and mineralogical methods of zirconology, apart from the SHRIMP isotopic data of single zircon grains. Moreover, TIMS isotope age analyses have been conducted, the results of which can be regarded as both controlling and providing the most correct information. The TIMS and SHRIMP data make it possible to suggest a polychronous character of the NV, which include not only Riphean, but also Paleozoic groups of volcanics. In this situation, an assessment of the scales of such polychroneity of NV and, correspondingly, of the Ai Formation as a whole becomes urgent.

  11. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    vicinity of the southern margin. As a result, some of the cGPS stations in the vicinity of the OVC are more important for measuring deformation related to volcanic processes than others. The results have important implications for how any future observed deformation at the OVC is observed and interpreted.

  12. Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt

    Science.gov (United States)

    Gonzalez, T.

    2011-12-01

    The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by

  13. Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico

    Science.gov (United States)

    Jaimes-Viera, M. C.; Martin Del Pozzo, A. L.; Layer, P. W.; Benowitz, J. A.; Nieto-Torres, A.

    2018-05-01

    The unique nature of monogenetic volcanism has always raised questions about its origin, longevity and spatial distribution. Detailed temporal and spatial boundaries resulted from a morphometric study, mapping, relative dating, twenty-four new 40Ar/39Ar dates, and chemical analyses for the Sierra Chichinautzin, Central Mexico. Based on these results the monogenetic cones were divided into four groups: (1) Peñón Monogenetic Volcanic Group (PMVG); (2) Older Chichinautzin Monogenetic Volcanic Group (Older CMVG); (3) Younger Chichinautzin Monogenetic Volcanic Group (Younger CMVG) and (4) Sierra Santa Catarina Monogenetic Volcanic Group (SSC). The PMVG cover the largest area and marks the northern and southern boundaries of this field. The oldest monogenetic volcanism (PMVG; 1294 ± 36 to 765 ± 30 ka) started in the northern part of the area and the last eruption of this group occurred in the south. These basaltic-andesite cones are widely spaced and are aligned NE-SW (N60°E). After this activity, monogenetic volcanism stopped for 527 ka. Monogenetic volcanism was reactivated with the birth of the Tezoyuca 1 Volcano, marking the beginning of the second volcanic group (Older CMVG; 238 ± 51 to 95 ± 12 ka) in the southern part of the area. These andesitic to basaltic andesite cones plot into two groups, one with high MgO and Nb, and the other with low MgO and Nb, suggesting diverse magma sources. The eruption of the Older CMVG ended with the eruption of Malacatepec volcano and then monogenetic volcanism stopped again for 60 ka. At 35 ka, monogenetic volcanism started again, this time in the eastern part of the area, close to Popocatépetl volcano, forming the Younger CMVG (<35 ± 4 ka). These cones are aligned in an E-W direction. Geochemical composition of eruptive products of measured samples varies from basalts to dacites with low and high MgO. The Younger CMVG is considered still active since the last eruptions took place <2 ka. The SSC (132 ± 70 to 2 ± 56 ka

  14. Northern hemispheric response to large volcanic eruptions in relation to El Nino - winter case studies

    International Nuclear Information System (INIS)

    Kirchner, I.

    1994-01-01

    A large part of the global climate variability is attributed to variations of the Indian Monsoon and of El Nino/Southern Oscillation. Facing the recent violent volcanic eruption of Mount Pinatubo in June 1991, and searching for the climate signal of the increased greenhouse effect, the climate impact of volcanic aerosols becomes more and more interesting

  15. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  16. Global monsoon precipitation responses to large volcanic eruptions

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  17. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    Science.gov (United States)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  18. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  19. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints

    Science.gov (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan

    2017-05-01

    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  20. Areal and time distributions of volcanic formations on Mars

    International Nuclear Information System (INIS)

    Katterfeld, G.N.; Vityaz, V.I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations

  1. Areal and time distributions of volcanic formations on Mars

    Science.gov (United States)

    Katterfeld, G. N.; Vityaz, V. I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations.

  2. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia

    Science.gov (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.

    2017-12-01

    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  3. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  4. Geology of the Nevada Test Site and nearby areas, southern Nevada

    International Nuclear Information System (INIS)

    Sinnock, S.

    1982-10-01

    The Department of Energy's Nevada Test Site (NTS) lies in the southern part of the Great Basin Section of the Basin and Range Physiographic Province. This report addresses the geological setting of the NTS in the context of the current waste isolation policy. The intent is to provide a synthesis of geological conditions at the NTS and nearby areas so that a general background of information is available for assessing the possible role of geology in providing protections for humans from buried radioactive wastes. The NTS is characterized by alluvium-filled, topgraphically closed valleys surrounded by ranges composed of Paleozoic sedimentary rocks and Tertiary volcanic tuffs and lavas. The Paleozoic rocks are a miogeosynclinal sequence of about 13,000 ft of pre-Cambrian to Cambrian clastic deposits (predominantly quartzites) overlain by about 14,000 ft of Cambrian through Devonian carbonates, 8000 ft of Mississippian argillites and quartzites, and 3000 ft of Pennsylvanian to Permian limestones. Tertiary volcanic rocks are predominatly silicic composition and were extruded from numerous eruptive centers during Miocene and Pliocene epochs. Within eruptive caldera depressions, volcanic deposits accumulated to perhaps 10,000 ft in total thickness, thinning to extinction outward from the calderas. Extrusion of minor amounts of basalts accompanied Pliocene and Pleistocene filling of structural basins with detritus from the ranges. Regional compressional and extensional structures as well as local volcanic structures occur in the NTS region. Normal extensional faulting coincided with the outbreak of volcanism during the Miocene and was superimposed on existing Mesozoic structures. Continued extensional deformation may be occurring at the present time

  5. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  6. K-Ar chronological study of the quaternary volcanic activity in Shin-etsu Highland

    International Nuclear Information System (INIS)

    Kaneko, Takayuki; Shimizu, Satoshi; Itaya, Tetsumaru.

    1989-01-01

    In order to clarify the temporal and spatial patterns in arc volcanism, 55 K-Ar ages of volcanic rocks from 17 volcanoes in Shin-etsu Highland, central Japan were determined. In addition, life spans, volume of erupted materials and eruption rates of each volcano were estimated. Graphical analysis demonstrates that volume of ejecta varies proportionately with both life span and eruption rate, and that there is no significant correlation between eruption rate and distance from the volcanic front. The life span of each volcano in this Highland is less than 0.6 m.y. In the central Shiga and southern Asama area, the volcanism started at 1 Ma and is still active. However the former had a peak in the activity at around 0.5 Ma, while the latter is apparently most intense at present. Northern Kenashi area has the volcanism without peak in 1.7 - 0.2 Ma, though the activity within a volcanic cluster or chain in central Japan lasts generally for 1 m.y. or less with a peak. (author)

  7. Thermal effects of massive CO2 emissions associated with subduction volcanism

    NARCIS (Netherlands)

    Schuiling, R.D.

    2004-01-01

    Large volumes of CO₂ are emitted during volcanic activity at convergent plate boundaries, not only from volcanic centers. Their C isotopic signature indicates that this CO₂ is mainly derived from the decarbonation of subducted limestones or carbonated metabasalts, not as often admitted from magma

  8. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt ( - 8 to 10 - 10 as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes

  9. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    Science.gov (United States)

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  10. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development

    Science.gov (United States)

    Korteniemi, J.; Kukkonen, S.

    2018-04-01

    Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.

  11. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  12. Systematic change in global patterns of streamflow following volcanic eruptions.

    Science.gov (United States)

    Iles, Carley E; Hegerl, Gabriele C

    2015-11-01

    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  13. Stratigraphical sequence and geochronology of the volcanic rock series in caifang basin, south jiangxi

    International Nuclear Information System (INIS)

    Xu Xunsheng; Wu Jianhua

    2010-01-01

    The late Mesozoic volcanic rocks in Jiangxi constitute two volcanic belts: the northern is Xiajiang-Guangfeng volcanic belt, the volcanic rocks series belong to one volcano cycle and named Wuyi group which is subdivided into three formations (Shuangfengling formation, Ehuling formation and Shixi formation); the southern is Sannan-Xunwu volcanic belt, the volcanic rocks series in Caifang basin which locates on Sannan-Xunwu volcanic belt also belong to only one volcano cycle. It can be subdivided into two lithology and lithofacies units (upper and lower): the lower unit consists of sedimentary rocks and associated with a subordinate amount of volcanic rocks, it belongs to erupt-deposit facies which is the product of early volcanic stage; the upper unit is mostly composed of volcanic rocks, it belongs to erupt facies that is the volcanic eruption product. SHRIMP zircon U-Pb age of rhyolite? which locates at the top of the upper unit is 130.79 ± 0.73) Ma. According to the new International Stratigraphic Chart, the boundary of Jurassic and Cretaceous is (145.4 ± 4.0) Ma, so the age shows that the geologic period of Caifang volcanic rocks series is early Early Cretaceous epoch. On the basis of lithological correlation, lithofacies and stratigraphic horizon analysis, the volcanic rock series in Caifang basin fall under Wuyi group, and the lower unit could be incorporated into Shuangfengling formation, the upper unit could be incorporated into Ehuling formation. The subdivision of sequence and the determination of geochronology of the volcanic rock series in Caifang basin provide some references for the study of the late Mesozoic volcanic rocks series of the Sannan-Xunwu volcanic belt. (authors)

  14. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  15. Temporal evolution of the Western and Central volcanism of the Aeolian Island Arc (Italy, southern Tyrhhenian Sea)

    Science.gov (United States)

    Leocat, E.; Gillot, P.-Y.; Peccerillo, A.

    2009-04-01

    The Aeolian Archipelago is a volcanic arc in the Southern Tyrrhenian Sea located on the continental margin of the Calabro-Peloritan basement. The Aeolian volcanism occurs in a very complex geodynamic setting linked to the convergence of the European and African plates. For that reason, it is strongly related to regional tectonic lineaments, such as the NW-SE trending Tindari-Letojani (TL) fault. The archipelago consists of seven main islands and several seamounts, which extend around the Marsili Basin, forming a ring-like shape, typical for an island arc. While the seamounts began their activities around 1 Ma , the emerged part is active since about 400 ka. The magmatic products of the whole arc range from typical island arc calc-alkaline (CA) and shoshonitic series, to slightly silica undersaturated potassic alkaline series that are typical of post-collisional settings. Furthermore, the TL fault, along which the Lipari and Vulcano islands are developed, separates a calc-alkaline western sector (Alicudi, Filicudi and Salina islands) from the calc-alkaline to potassic eastern system (Panarea and Stromboli islands) (Peccerillo,1999). This makes of the Aeolian Islands a complex volcanism, with a still controversial origin. In this context, the aim of this work is to constrain the sources and spatio-temporal evolution of this magmatism. We present here new K-Ar ages based on the accurate Cassignol-Gillot technique devoted to the dating of very young rocks (Gillot et Cornette, 1986). These geochronological data were used together with new geochemical data on the same samples. In this study, we attempt to understand the origin of those magmatic events and the relationship between the deep processes and the shallow structures. Our results allow us to define specific periods of very quick geomechemical changes. In the case of Filicudi island, the first rocks range in composition from CA basalts to andesites. This period ended with the edification of the Mte Guardia at 189

  16. Cryptic crustal events during the Taconic Orogeny elucidated through LA-ICPMS studies of volcanic zircons, southern Appalachians, Alabama

    Science.gov (United States)

    Herrmann, A. D.; Leslie, S.; Haynes, J.

    2017-12-01

    Despite a long history of stratigraphic work, many questions remain about the tectonic setting of the Taconic orogeny during the early late Ordovician. Several different global paleogeographic hypotheses exist about the driving force that led to this orogeny. While some studies suggest that the closing of the Iapetus ocean was caused by the collision of the North American and South American plates, most studies suggest that island arc systems collided with the passive continental margin of North America. Nevertheless, disagreement exists on how to explain the stratigraphic architecture of the siliciclastic sequences representing the erosion of the Taconic Highlands in an island arc setting. Some studies suggest the collision was analogous to the modern Banda Arc system with the development of a foreland basin and a sedimentary wedge, while other studies call for the presence of a back arc basin. Here we present U-Pb results of volcanic zircons that are associated with the magmatic activity during this time. Previous studies focused on slender zircons for age dating. However, in this study we analyzed several large zircons from close to the volcanic center in Alabama that have inherited cores in order to test for the presence of geochemical evidence for multiple crustal events. While the rims have ages consistent with the Taconic Orogeny ( 450 my), the cores have much older ages ( 1000 my). Our results support the hypothesis that during the closing of the Iapetus ocean, Precambrian and Cambrian sediments from the passive continental margin were subducted and incorporated into the volcanic system. This led to the inclusion of Precambrian zircons into melts associated with the Taconic Orogeny. Overall, our study supports the presence of subduction of preexisting sedimentary rocks and potentially the presence of a sedimentary wedge.

  17. Evolution of silicic magmas in the Kos-Nisyros volcanic center: cycles associated with caldera collapse

    Science.gov (United States)

    Ruprecht, J. S.; Bachmann, O.; Deering, C. D.; Huber, C.; Skopelitis, A.; Schnyder, C.

    2010-12-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~ 3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). Over the course of this period, magmas have changed from hornblende-biotite rich units with low eruption temperatures (≤750-800 °C; Kefalos and Kos units) to hotter (>800-850 °C), pyroxene-bearing units (Nisyros units) and are transitioning back to colder magmas (Yali units). Using bulk-rock compositions, mineral chemistry, and zircon Hf isotopes, we show that the two different types of silicic magmas followed the same differentiation trend; they all evolved by crystal fractionation (and minor assimilation) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ky Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew most of the eruptible magma out and partly froze the silicic magma source zone in the upper crust due to rapid unloading, decompression and resulting crystallization. Therefore, the system had to reinstate a shallow silicic production zone from more mafic parents, recharged at temperatures typically around 850-900 °C from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were thus slightly hotter and less evolved than the Kefalos-Kos package. However, with time, the upper crustal intermediate mush grew and cooled, leading to interstitial melt compositions reaching again the highly-evolved, cold state that prevailed prior to the Kefalos-Kos. The recent (albeit not precisely dated) eruption of the high-SiO2 rhyolite of Yali suggests that another large, potentially explosive magma chamber is presently building

  18. The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting

    Science.gov (United States)

    Stockli, D. F.; Bosworth, W.

    2017-12-01

    The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no

  19. Isotopic feature and uranium dating of the volcanic rocks in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.

  20. Holocene evolution of the Tabasco delta – Mexico : impact of climate, volcanism and humans

    NARCIS (Netherlands)

    Nooren, C.A.M.

    2017-01-01

    This research revealed the impact of climate, volcanism and humans on the late Holocene evolution of a tropical delta in southern Mexico. Palynological, tephrochronological, limnological, geomorphological and sedimentological techniques have been applied to reconstruct the evolution of the

  1. A five million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago

    DEFF Research Database (Denmark)

    Barker, Abigail K.; Holm, Paul Martin; Peate, David W.

    2010-01-01

    High-precision Pb isotope data and Sr-Nd-Hf isotope data are presented together with major and trace element data for samples spanning the 4.6 Ma history of volcanism at Santiago, in the southern Cape Verde islands. Pb isotope data confirm the positive ¿8/4 signature of the southern islands...... indicating that the north-south compositional heterogeneity in the Cape Verde archipelago has persisted for at least 4.6 Ma. The Santiago volcanics show distinct compositional differences between the old, intermediate and young volcanics, and suggest greater involvement of an enriched mantle (EM1)-like...

  2. A 150-ka-long record for the volcano-tectonic deformation of Central Anatolian Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Tonguç Uysal, I.; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin

    2017-04-01

    The Anatolian Block represents one of the most outstanding examples of intra-plate deformation related to continental collision. Deformation related to the convergence of the Afro-Arabian continent toward north gives rise to widespread and intense arc volcanism in the Central Anatolia. All the usual studies on dating the volcano-tectonic deformation of the region are performed entirely on volcanic events of the geological record resulted in eruptions. However, without volcanic eruption, magma migration and related fluid pressurization also generate crustal deformation. In the current study has been funded by the Scientific and Technological Research Council of Turkey with the project no. 115Y497, we focused on fracture systems and their carbonate veins around the Ihlara Valley (Cappadocia) surrounded by well-known volcanic centers with latest activities of the southern Central Anatolian Volcanic Province. We dated 37 samples using the Uranium-series technique and analyzed their isotope systematics from fissure veins, which are thought to be controlled by the young volcanism in the region. Our detailed fracture analyses in the field show that there is a regional dilatation as a result of a NW-SE striking extension which is consistent with the results of recent GPS studies. The Uranium-series results indicate that fracture development and associated carbonate vein deposition occurred in the last 150 ka. Carbon and oxygen isotope systematics have almost remained unchanged in the studied time interval. Although veins in the region were precipitated from fluids primarily of meteoric origin, fluids originating from water-rock interaction also contribute for the deposition of carbonate veins. The age distribution indicates that the crustal deformation intensified during 7 different period at about 4.7, 34, 44, 52, 83, 91, 149 ka BP. Four of these periods (4.7, 34, 91, 149 ka BP) correspond to the volcanic activities suggested in the previous studies. The three crustal

  3. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    Science.gov (United States)

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Atla Regio, Venus: Geology and origin of a major equatorial volcanic rise

    Science.gov (United States)

    Senske, D. A.; Head, James W., III

    1992-01-01

    Regional volcanic rises form a major part of the highlands in the equatorial region of Venus. These broad domical uplands, 1000 to 3000 km across, contain centers of volcanism forming large edifices and are associated with extension and rifting. Two classes of rises are observed: (1) those that are dominated by tectonism, acting as major centers for converging rifts such as Beta Regio and Alta Regio, and are termed tectonic junctions; and (2) those forming uplands characterized primarily by large-scale volcanism forming edifices. Western Eistla Regio and Bell Regio, where zones of extension and rifting are less developed. Within this second class of features the edifices are typically found at the end of a single rift, or are associated with a linear belt of deformation. We examine the geologic characteristics of the tectonic junction at Alta Regio, concentrating on documenting the styles of volcanism and assessing mechanisms for the formation of regional topography.

  5. Hippotherapy: Remuneration issues impair the offering of this therapeutic strategy at Southern California rehabilitation centers.

    Science.gov (United States)

    Pham, Christine; Bitonte, Robert

    2016-04-06

    Hippotherapy is the use of equine movement in physical, occupational, or speech therapy in order to obtain functional improvements in patients. Studies show improvement in motor function and sensory processing for patients with a variety of neuromuscular disabilities, developmental disorders, or skeletal impairments as a result of using hippotherapy. The primary objective of this study is to identify the pervasiveness of hippotherapy in Southern California, and any factors that impair its utilization. One hundred and fifty-two rehabilitation centers in the Southern California counties of Los Angeles, San Diego, Orange, Riverside, San Bernardino, San Diego, San Luis Obispo, Santa Barbara, Ventura, and Kern County were identified, and surveyed to ascertain if hippotherapy is utilized, and if not, why not. Through a review of forty facilities that responded to our inquiry, our study indicates that the majority of rehabilitation centers are familiar with hippotherapy, however, only seven have reported that hippotherapy is indeed available as an option in therapy at their centers. It is concluded that hippotherapy, used in a broad based array of physical and sensory disorders, is limited in its ability to be utilized, primarily due to remuneration issues.

  6. [Physical activity in staff workers at Centers for Psychosocial Care in southern Brazil: temporal trends].

    Science.gov (United States)

    Jerônimo, Jeferson Santos; Jardim, Vanda Maria da Rosa; Kantorski, Luciane Prado; Domingues, Marlos Rodrigues

    2014-12-01

    The aim of the study was to analyze temporal trends of physical activity among staff workers in Centers for Psychosocial Care and associated factors in southern Brazil from 2006 to 2011. This cross-sectional study was part of the Evaluation of Centers for Psychosocial Care in Southern Brazil/CAPSUL. Physical and mental health variables were collected using the Self-Report Questionnaire (SRQ-20), and physical activity was measured with the International Physical Activity Questionnaire (IPAQ). Participation included 435 staff workers in 2006 and 546 in 2011. Total prevalence rates were: physical activity (≥ 150 minutes/week) 23.2% in 2006 and 17.6% in 2011 and minor psychiatric disorders 11% and 8.4%. There was no statistically significant difference in physical activity between men and women. In 2006, individuals with less schooling (p = 0.03) and lower income (p = 0.01) showed higher levels of physical activity. In 2011, staff workers in larger cities showed higher levels of physical activity (p = 0.02). Interventions are needed to promote physical activity in this population, especially among staff workers at Centers for Psychosocial Care in smaller municipalities.

  7. Volcanic history and petrography of the Pliocene Etrüsk Stratovolcano, E Turkey

    Science.gov (United States)

    Oyan, Vural; Keskin, Mehmet; Lebedev, Vladimir; Sharkov, Evgenii; Lustrino, Michele; Mattioli, Michele

    2010-05-01

    The Pliocene Etrusk volcano, with its 3100 m elevation and ~500 km2 area, is one of the major centers of the collision-related volcanism in E Anatolia. It is located in the northeast of Lake Van, sitting almost on the culmination of the "Lake Van dome" structure forming the vertex of the eastern Turkish high plateau (Sengor et al., 2008). A ~5-km-wide horseshoe-shaped caldera, open to the south, is located in the center of the volcano. Apart from two trace element analyses and two K/Ar dates, there are virtually no data available in the literature on this major eruption center. Our study intends to fill this gap with a detailed petrographical, geochemical and geochronological study. Our new K/Ar age determinations indicate that the main volcanic edifice of the Etrusk volcano was formed in period between 4.3 and 3.9 Ma, with the eruption of several intermediate to acid lavas from a central vent. This phase ended up with the formation of a small collapse caldera that produced pyroclastic material emplaced on the earlier lavas. The final impulse of the volcano activity from the Etrusk volcanic center was the eruption of a post-caldera rhyolitic lava flow from the southern flank of the volcano (~3.8-3.7 Ma). After about 2.7 Myr of magmatic quiescence, during the Quaternary time between ~1 and 0.43 Ma, basalts erupted from the SW flank of the Etrusk volcano. They were generated predominantly from a ~N-S extending fissure, as well as from a scoria cone (Karniyarik hill) and a maar-shaped volcanic center (i.e. Düzgeyikçukuru). Edifice-forming products of the Etrüsk stratovolcano are represented by sanidine-plagioclase-biotite-clinopyroxene-phyric trachytes and plagioclase-clinopyroxene-orthopyroxene-phyric trachyandesites containing sporadic olivine phenocrysts. K-feldspar is the most abundant mineral phase in trachitic lavas of the Etrüsk volcanic system. Post caldera lavas, on the other hand, have relatively more evolved compositions ranging from trachydacite to

  8. Park Volcanics, Murihiku Terrane, New Zealand : petrology, petrochemistry, and tectonic significance

    International Nuclear Information System (INIS)

    Coombs, D.S.; Cook, N.D.J.; Kawachi, Y.; Johnstone, R.D.; Gibson, I.L.

    1996-01-01

    The Late Triassic to Early Jurassic Park Volcanics Group comprises minor shallow intrusive and extrusive bodies emplaced during mainly marine sedimentation of the Murihiku Terrane, southern New Zealand. Gowan Andesite in western Southland and Glenham Porphyry andesites in eastern Southland are high-K andesites. Glassy examples have commonly lost K during alteration. Orthoclase contents of Or 3.6-3.7 in plagioclase phenocrysts at An 50 confirm the high-K nature of the melts at the time of phenocryst crystallisation. The Gowan andesites have higher Fe/Mg than the Glenham and related differences in minor element chemistry suggesting lower ∫O 2 during fractionation of the parent magma. Pinney Volcanics in western Southland are mostly high-K trachydacites but, like Glenham Porphyry, include minor rhyolite. Barnicoat Andesite in the Nelson area is medium-K olivine andesite, marginally tholeiitic in terms of its FeO*/MgO versus SiO 2 behaviour, but otherwise is typically calc-alkaline, as are the Gowan, Glenham, and Pinney. Analyses of pyroxenes (augites, orthopyroxenes, reaction rim and groundmass pigeonites) reveal xenocrysts recording an early stage of magma fractionation, slight iron enrichment in the andesite stage, and lowered Fe/Mg and increased Ca contents in augites of the most felsic rocks. Titanian tschermakite and titanian magnesio-tschermakite of deep-seated origin participated in fractionation leading to the Pinney Volcanics, and magnesio-hornblende, edenite, and biotite crystallised as minor late stage minerals following high-level emplacement of Gowan Andesite and siliceous Glenham Porphyry members. Low 87 Sr/ 86 Sr ratios (c. 0.7034-0.7037), REE and multi-element distribution patterns, and the mineralogical features collectively suggest fractionation of the andesites from parental basalt originating in an enriched mantle wedge above a subduction zone, with minimal contamination by continental crust. High-K andesites appear to be unknown in clearly

  9. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    Science.gov (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  10. Volcanoes of México: An Interactive CD-ROM From the Smithsonian's Global Volcanism Program

    Science.gov (United States)

    Siebert, L.; Kimberly, P.; Calvin, C.; Luhr, J. F.; Kysar, G.

    2002-12-01

    The Smithsonian Institution's Global Volcanism Program is nearing completion of an interactive CD-ROM, the Volcanoes of México. This CD is the second in a series sponsored by the U.S. Department of Energy Office of Geothermal Technologies to collate Smithsonian data on Quaternary volcanism as a resource for the geothermal community. It also has utility for those concerned with volcanic hazard and risk mitgation as well as an educational tool for those interested in Mexican volcanism. We acknowledge the significant contributions of many Mexican volcanologists to the eruption reports, data, and images contained in this CD, in particular those contributions of the Centro Nacional de Prevencion de Desastres (CENAPRED), the Colima Volcano Observatory of the University of Colima, and the Universidad Nacional Autónoma de México (UNAM). The Volcanoes of México CD has a format similar to that of an earlier Smithsonian CD, the Volcanoes of Indonesia, but also shows Pleistocene volcanic centers and additional data on geothermal sites. A clickable map of México shows both Holocene and Pleistocene volcanic centers and provides access to individual pages on 67 volcanoes ranging from Cerro Prieto in Baja California to Tacaná on the Guatemalan border. These include geographic and geologic data on individual volcanoes (as well as a brief paragraph summarizing the geologic history) along with tabular eruption chronologies, eruptive characteristics, and eruptive volumes, when known. Volcano data are accessible from both geographical and alphabetical searches. A major component of the CD is more than 400 digitized images illustrating the morphology of volcanic centers and eruption processes and deposits, providing a dramatic visual primer to the country's volcanoes. Images of specific eruptions can be directly linked to from the eruption chronology tables. The Volcanoes of México CD includes monthly reports and associated figures and tables cataloging volcanic activity in M

  11. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu

    2001-01-01

    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  12. Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000-2011

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Mares, P. J.; Mnich, M. E.; Welch, M. D.; Melkonian, A. K.; Aguilera, F.; Naranjo, J.; Sunagua, M.; Clavero, J. E.

    2011-12-01

    We examine 153 volcanoes and geothermal areas in the central, southern, and austral Andes for temperature anomalies between 2000-2011 from two different spacebourne sensors: 1) those automatically detected by the MODVOLC algorithm (Wright et al., 2004) from MODIS and 2) manually identified hotspots in nighttime images from ASTER. Based on previous work, we expected to find 8 thermal anomalies (volcanoes: Ubinas, Villarrica, Copahue, Láscar, Llaima, Chaitén, Puyehue-Cordón Caulle, Chiliques). We document 31 volcanic areas with pixel integrated temperatures of 4 to more than 100 K above background in at least two images, and another 29 areas that have questionable hotspots with either smaller anomalies or a hotspot in only one image. Most of the thermal anomalies are related to known activity (lava and pyroclastic flows, growing lava domes, fumaroles, and lakes) while others are of unknown origin or reflect activity at volcanoes that were not thought to be active. A handful of volcanoes exhibit temporal variations in the magnitude and location of their temperature anomaly that can be related to both documented and undocumented pulses of activity. Our survey reveals that low amplitude volcanic hotspots detectable from space are more common than expected (based on lower resolution data) and that these features could be more widely used to monitor changes in the activity of remote volcanoes. We find that the shape, size, magnitude, and location on the volcano of the thermal anomaly vary significantly from volcano to volcano, and these variations should be considered when developing algorithms for hotspot identification and detection. We compare our thermal results to satellite InSAR measurements of volcanic deformation and find that there is no simple relationship between deformation and thermal anomalies - while 31 volcanoes have continuous hotspots, at least 17 volcanoes in the same area have exhibited deformation, and these lists do not completely overlap. In

  13. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  14. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  15. Petrology and oxygen isotope geochemistry of the Pucon ignimbrite - Southern Andean volcanic zone, Chile: Implications for genesis of mafic ignimbrites

    International Nuclear Information System (INIS)

    McCurry, Michael; Schmidt, Keegan

    2001-01-01

    Although mafic components of dominantly intermediate to silicic ignimbrites are rather common, voluminous, dominantly mafic ignimbrites are rare (e.g., Smith, 1979; cf. Freundt and Schmincke, 1995). Volcan Villarrica, the most active composite volcano in South America, located in the Southern Andean Volcanic Zone (SAVZ, Lopez-Escobar and Moreno, 1994a), has produced two such ignimbrites, respectively the Lican and Pucon Ignimbrites, in the last 14,000 years (Clavero, 1996). The two ignimbrites are low-Si andesite and basaltic-andesite to low-Si andesite, respectively, the former about twice as voluminous as the later (10 and 5 km 3 ). Eruption of the ignimbrites produced calderas respectively 5 and 2 km in diameter (Moreno, 1995; Clavero, 1996). In addition to its mafic bulk composition, the Pucon Ignimbrite (PI) is also distinguished by numerous xenolithic fragments among and also within magmatic pyroclasts. Many of these are fragments of granitoid rocks. Volcan Villarrica has also produced numerous smaller mafic ignimbrites and pyroclastic surge deposits, as well as dominantly basaltic fallout and lava flows (Lopez-Escobar and Moreno, 1994; Moreno, 1995; Clavero, 1996; Hickey-Vargas et al., 1989; Tormey et al., 1991). Reasons for the unusual style of mafic explosive activity at Volcan Villarrica are unclear. Clavero (1996), based upon an exemplary thesis-study of the physical volcanology and petrology of the PI, suggests it formed in response to a sequence of events beginning with injection of a shallow basaltic andesite magma chamber by hotter basaltic magma. In his model mixing and heat transfer between the two magmas initiated a violent Strombolian eruption that destabilized the chamber causing infiltration of large amounts of meteoric-water saturated country rocks. The Pucon Ignimbrite formed in response to subsequent phreatomagmatic interactions. In contrast, Lopez-Escobar and Moreno (1994) infer on geochemical grounds that volatiles leading to the explosive

  16. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma

    2010-10-01

    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  17. Annual Progress Report, 1976. Southern Rural Development Center, Mississippi State University. SRDC Series Publication No. 15.

    Science.gov (United States)

    Southern Rural Development Center, State College, MS.

    Covering the 1976 activities of the Southern Rural Development Center (SRDC), this third annual report describes SRDC's: history; organization; regional workshops; functional networks; network bibliographies and other publications; Title V reports; grant received for training in rural development; orientation visits; consultants; information…

  18. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo Esteves

    2006-01-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  19. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes

    Science.gov (United States)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun

    2018-03-01

    To understand the behaviors of tropical cyclones (TCs), it is very important to explore how TCs respond to anthropogenic greenhouse gases and natural forcings. Volcanic eruptions are a major natural forcing mechanism because they inject sulphate aerosols into the stratosphere, which modulate the global climate by absorbing and scattering solar radiation. The number of Atlantic hurricanes is thought to be reduced following strong tropical eruptions, but whether the response of TCs varies with the locations of the volcanoes and the different ocean basins remains unknown. Here, we use the Community Earth System Model-Last Millennium Ensemble to investigate the response of the large-scale environmental factors that spawn TCs to strong volcanic eruptions at different latitudes. A composite analysis indicates that tropical and northern hemisphere volcanic eruptions lead to significantly unfavorable conditions for TC genesis over the whole Pacific basin and the North Atlantic during the 3 years post-eruption, relative to the preceding 3 years. Southern hemisphere volcanic eruptions result in obviously unfavorable conditions for TC formation over the southwestern Pacific, but more favorable conditions over the North Atlantic. The mean response over the Indian Ocean is generally muted and insignificant. It should be noted that volcanic eruptions impact on environmental conditions through both the direct effect (i.e. on radiative forcing) and the indirect effect (i.e. on El Niño-Southern Oscillation), which is not differentiated in this study. In addition, the spread of the TC genesis response is considerably large for each category of eruptions over each ocean basin, which is also seen in the observational/proxy-based records. This large spread is attributed to the differences in stratospheric aerosol distributions, initial states and eruption intensities, and makes the short-term forecast of TC activity following the next large eruption challenging.

  20. Origin of Holocene trachyte lavas of the Quetrupillán volcanic complex, Chile: Examples of residual melts in a rejuvenated crystalline mush reservoir

    Science.gov (United States)

    Brahm, Raimundo; Parada, Miguel Angel; Morgado, Eduardo; Contreras, Claudio; McGee, Lucy Emma

    2018-05-01

    The Quetrupillán Volcanic Complex (QVC) is a stratovolcano placed in the center of a NW-SE volcanic chain, between Villarrica volcano and Lanín volcano, in the Central Southern Volcanic Zone of the Andes. Its youngest effusive products are dominated by crystal-poor (most samples with differentiation at shallow depth (<1 kbar) and NNO-QFM oxidation conditions were obtained from initial melt compositions equivalent to the Huililco basalts, a small eruptive centre located ca. 12 km NE of the QVC main vent. Pyroxene-bearing crystal clots, locally abundant in the trachytes, were formed at 900-960 °C (±55 °C) and represent a dismembered crystal mush from which interstitial trachytic melts were extracted and transported upward before eruption. Heating of the crystal mush by a hotter magma recharge is inferred from complex zoned plagioclases formed at higher crystallization temperatures (50-90 °C) than those obtained from pyroxene. Ca-rich plagioclase overgrowths around more albitic cores, followed by an external rim of similar composition to the core are interpreted as restoration to the initial conditions of plagioclase crystallization after the mentioned heating event. Additionally, a late heating of up to 150 °C just prior to eruption is recorded by Fe-Ti oxide thermometry.

  1. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  2. Annual Progress Report, 1975. Southern Rural Development Center, Mississippi State University. SRDC Series Publication No. 10.

    Science.gov (United States)

    Southern Rural Development Center, State College, MS.

    Included in this second annual report on the Southern Rural Development Center's (SRDC) 1974-75 plan of work are data re: orientation visits; regional workshops; technical consultants; liaison with regional agencies and organizations; information dissemination; annual evaluation; functional networks in the areas of land use issues, citizen…

  3. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; Sentelhas, Paulo César; Stape, José Luiz

    2017-09-01

    Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p Brazilian region are the first zoning of these variables for the country.

  4. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy

    Science.gov (United States)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer

    2018-05-01

    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  5. Southern Regional Center for Lightweight Innovative Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Paul T. [Mississippi State Univ., Mississippi State, MS (United States)

    2012-12-01

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

  6. 40Ar/39Ar laster fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California: The age of the latest volcanic activity in the Yucca Mountain area

    International Nuclear Information System (INIS)

    Turrin, B.D.; Champion, D.E.

    1991-01-01

    K-Ar and 40 Ar/ 39 Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead, an age of 119 ± 11 to 141 ± 10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported. 32 refs., 2 figs., 2 tabs

  7. Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR

    Science.gov (United States)

    Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong

    2018-02-01

    Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.

  8. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    Science.gov (United States)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  9. Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision

    Science.gov (United States)

    Motuza, Gediminas; Šliaupa, Saulius

    2017-10-01

    A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.

  10. Contrasting origin of two A-type rhyolite series from the Early Permian Nomgon bimodal volcanic association (Southern Mongolia)

    Science.gov (United States)

    Kozlovsky, A. M.; Yarmolyuk, V. V.; Savatenkov, V. M.; Kudryashova, E. A.

    2017-08-01

    A-type rhyolites of contrasting compositions and eruption characters were revealed among two volcanic series of the Early Permian bimodal association in the Nomgon graben. Rhyolites of the lower volcanic series formed extrusions, lava domes, and tuff horizons. They had low FeOt, Zr, Hf, Nb, Ta, Y, and REE concentrations and also a moderately depleted Nd isotope composition (ɛNd( T) = 6.7-7.1). Their formation was related to anatexis of the juvenile continental crust, triggered by the thermal effect of mafic magmas. Rhyolites of the upper volcanic series formed extensive lava flows and dikes. Their composition was characterized by high FeOt, Zr, Hf, Nb, Ta, Y, and REE concentrations, and also depleted Nd isotope characteristics (ɛNd( T) = 7.7-9.0). These rhyolite melts formed under long-term crystallizational differentiation of basaltoids in the intracrustal magmatic chambers, with limited participation of crustal contamination. The source of magmas for the upper volcanic series was the sublithospheric mantle.

  11. Archiving and Distributing Seismic Data at the Southern California Earthquake Data Center (SCEDC)

    Science.gov (United States)

    Appel, V. L.

    2002-12-01

    The Southern California Earthquake Data Center (SCEDC) archives and provides public access to earthquake parametric and waveform data gathered by the Southern California Seismic Network and since January 1, 2001, the TriNet seismic network, southern California's earthquake monitoring network. The parametric data in the archive includes earthquake locations, magnitudes, moment-tensor solutions and phase picks. The SCEDC waveform archive prior to TriNet consists primarily of short-period, 100-samples-per-second waveforms from the SCSN. The addition of the TriNet array added continuous recordings of 155 broadband stations (20 samples per second or less), and triggered seismograms from 200 accelerometers and 200 short-period instruments. Since the Data Center and TriNet use the same Oracle database system, new earthquake data are available to the seismological community in near real-time. Primary access to the database and waveforms is through the Seismogram Transfer Program (STP) interface. The interface enables users to search the database for earthquake information, phase picks, and continuous and triggered waveform data. Output is available in SAC, miniSEED, and other formats. Both the raw counts format (V0) and the gain-corrected format (V1) of COSMOS (Consortium of Organizations for Strong-Motion Observation Systems) are now supported by STP. EQQuest is an interface to prepackaged waveform data sets for select earthquakes in Southern California stored at the SCEDC. Waveform data for large-magnitude events have been prepared and new data sets will be available for download in near real-time following major events. The parametric data from 1981 to present has been loaded into the Oracle 9.2.0.1 database system and the waveforms for that time period have been converted to mSEED format and are accessible through the STP interface. The DISC optical-disk system (the "jukebox") that currently serves as the mass-storage for the SCEDC is in the process of being replaced

  12. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  13. Remote Sensing and GIS as Tools for Identifying Risk for Phreatomagmatic Eruptions in the Bishoftu Volcanic Field, Ethiopia

    Science.gov (United States)

    Pennington, H. G.; Graettinger, A.

    2017-12-01

    Bishoftu is a fast-growing town in the Oromia region of Ethiopia, located 47 km southeast of the nation's capital, Addis Ababa. It is situated atop a monogenetic basaltic volcanic field, called the Bishoftu Volcanic Field (BVF), which is composed of maar craters, scoria cones, lava flows, and rhyolite domes. Although not well dated, the morphology and archeological evidence have been used to infer a Holocene age, indicating that the community is exposed to continued volcanic risk. The presence of phreatomagmatic constructs in particular indicates that the hazards are not only vent-localized, but may have far reaching impacts. Hazard mapping is an essential tool for evaluating and communicating risks. This study presents the results of GIS analyses of proximal and distal syn-eruptive hazards associated with phreatomagmatic eruptions in the BVF. A digitized infrastructure map based on a SPOT 6 satellite image is used to identify the areas at risk from eruption scenarios. Parameters such as wind direction, vent location, and explosion energy are varied for hazard simulations to quantify the area impacted by different eruption scenarios. Proximal syn-eruptive hazards include tephra fall, base pyroclastic surges, and ballistic bombs. Distal hazards include predominantly ash fall. Eruption scenarios are simulated using Eject and Plumeria models as well as similar case studies from other urban volcanic fields. Within 5 km of the volcanic field center, more than 30 km2 of residential and commercial/industrial infrastructure will be damaged by proximal syn-eruptive hazards, in addition to 34 km2 of agricultural land, 291 km of roads, more than 10 km of railway, an airport, and two health centers. Within 100 km of the volcanic field center, ash fall will affect 3946 km2 of agricultural land, 179 km2 of residential land, and 28 km2 of commercial/industrial land. Approximately 2700 km of roads and railways, 553 km of waterways, an airport, and 14 health centers are located

  14. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust

    Science.gov (United States)

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.

    1996-01-01

    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply

  15. Impact of volcanic eruptions on the marine carbon cycle

    Science.gov (United States)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck

    2010-05-01

    The impact of volcanic eruptions on the marine carbon cycle is investigated for the example of the Pinatubo eruption with model simulations of the distribution of the ash cloud and deposition on the ocean surface and the impact of the nutrient addition from ash leachates on the oceanic biological production and hence biological carbon pump. Natural variations of aerosols, especially due to large-magnitude volcanic eruptions, are recognized as a significant climate forcing, altering the Earth's radiation balance and thus tending to cause global temperature changes. While the impact of such events on climate and the terrestrial biosphere is relatively well documented, scientific knowledge of their effects on marine ecosystems and consequent feedbacks to the atmosphere is still very limited. In the deep sea, subaerial eruptive events of global significance are commonly recorded as widespread ash layers, which were often found to be associated with increased abundances of planktic organisms. This has led to the hypothesis that the influx of volcanic ash may provide an external nutrient source for primary production (in particular through iron fertilization) in ocean surface waters. Recent laboratory experiments have demonstrated that pristine volcanic ash indeed releases significant amounts of macronutrients and bioactive trace metals (including phosphate, iron and silica) adsorbed to the surface of the ash particles. The release of these components most likely has its largest impact in ocean regions where their availability is crucial for the growth of oceanic biomass, which are the high-nutrient but low-productivity (low-iron) areas in the Pacific and the Southern Ocean. These in turn are neighbored by most of those subaerially active volcanoes that are capable of ejecting huge amounts of aerosols into the high-velocity stratospheric wind fields. The dispersal and fallout of ash thus has a high potential to induce globally significant, transient net CO2 removal from

  16. Volcanic rises on Venus: Geology, formation, and sequence of evolution

    Science.gov (United States)

    Senske, D. A.; Stofan, E. R.; Bindschadler, D. L.; Smrekar, S. E.

    1993-01-01

    Large centers of volcanism on Venus are concentrated primarily in the equatorial region of the planet and are associated with regional topographic rises. Analysis of both radar images and geophysical data suggest that these uplands are sites of mantle upwelling. Magellan radar imaging provides a globally contiguous data set from which the geology of these regions is evaluated and compared. In addition, high resolution gravity data currently being collected provide a basis to assess the relationship between these uplands and processes in the planet's interior. Studies of the geology of the three largest volcanic highlands (Beta Regio, Atla Regio, Western Eistla Regio) show them to be distinct, having a range of volcanic and tectonic characteristics. In addition to these large areas, a number of smaller uplands are identified and are being analyzed (Bell Regio, Imdr Regio, Dione Regio (Ushas, Innini, and Hathor Montes), and Themis Regio). To understand better the mechanisms by which these volcanic rises form and evolve, we assess their geologic and geophysical characteristics.

  17. Miocene volcanism in the Oaş-Gutâi Volcanic Zone, Eastern Carpathians, Romania: Relationship to geodynamic processes in the Transcarpathian Basin

    Science.gov (United States)

    Kovacs, Marinel; Seghedi, Ioan; Yamamoto, Masatsugu; Fülöp, Alexandrina; Pécskay, Zoltán; Jurje, Maria

    2017-12-01

    We present the first comprehensive study of Miocene volcanic rocks of the Oaş-Gutâi Volcanic Zone (OGVZ), Romania, which are exposed in the eastern Transcarpathian Basin (TB), within the Eastern Alpine-Western Carpathian-Northern Pannonian (ALCAPA) block. Collision between the ALCAPA block and Europe at 18-16 Ma produced the Carpathian fold-and-thrust belt. This was followed by clockwise rotation and an extensional regime forming core complexes of the separated TB fragment. Based on petrographic and geochemical data, including Srsbnd Nd isotopic compositions and Ksbnd Ar ages, we distinguish three types of volcanic activity in the OGVZ: (1) early Miocene felsic volcanism that produced caldera-related ignimbrites in the Gutâi Mountains (15.4-14.8 Ma); (2) widespread middle-late Miocene intermediate/andesitic volcanism (13.4-7.0 Ma); and (3) minor late Miocene andesitic/rhyolitic volcanism comprising the Oraşu Nou rhyolitic volcano and several andesitic-dacitic domes in the Oaş Mountains (11.3-9.5 Ma). We show that magma evolution in the OGVZ was controlled by assimilation-fractional crystallization and magma-mixing processes within an interconnected multi-level crustal magmatic reservoir. The evolution of volcanic activity within the OGVZ was controlled by the geodynamics of the Transcarpathian Basin. The early felsic and late intermediate Miocene magmas were emplaced in a post-collisional setting and were derived from a mantle source region that was modified by subduction components (dominantly sediment melts) and lower crust. The style of volcanism within the eastern TB system exhibits spatial variations, with andesitic composite volcanoes (Gutâi Mountains) observed at the margins, and isolated andesitic-rhyolitic monogenetic volcanoes (Oaş Mountains) in the center of the basin.

  18. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  19. Borehole Array Observations of Non-Volcanic Tremor at SAFOD

    Science.gov (United States)

    Ellsworth, W. L.; Luetgert, J. H.; Oppenheimer, D. H.

    2005-12-01

    We report on the observation of non-volcanic tremor made in the San Andreas Fault Observatory at Depth in May, 2005 during the deployment of a multi-level borehole seismic array in the SAFOD main hole. The seismic array consisted of 80 levels of hydraulically-clamped 3-component, 15 Hz omni-directional geophones spaced 15.24 m apart along a 1200 m section of the inclined borehole between 1538 and 2363 m below the ground surface. The array was provided by Paulsson Geophysical Services, Inc. (P/GSI), and recorded at a sample rate of 4000 sps on 24-bit Geode digital recorders provided by Geometrics, Inc. More than 2 TB of continuous data were recorded during the 2-week deployment. Selected local earthquakes and explosions recorded by the array are available at the Northern California Earthquake Data Center, and the entire unedited data set is available as assembled data at the IRIS Data Management Center. Both data sets are currently in the industry standard SEG2 format. Episodes of non-volcanic tremor are common along this reach of the San Andreas Fault according to Nadeau and Dolenc [2004, DOI: 10.1126/science.1107142], with many originating about 30 km southeast of SAFOD beneath the southern end of the Parkfield segment and northern end of the Simmler segment of the fault. We identified tremor episodes using spectrograms routinely produced by the Northern California Seismic Network (http://quake.usgs.gov/cgi-bin/sgrampark.pl) on which they appear as periods of elevated noise relative to the background. A particularly strong tremor episode occurred on May 10, 2005 between 19:39 and 20:00 UTC. In SAFOD, tremor spectral levels exceed the instrumental noise floor to at least 40 Hz. The spatially unaliased recording of the tremor wavefield on the P/GSI array reveal individual phases that can be tracked continuously across the array. The wavefield is composed of both up- and down-going shear waves that form quasi-stationary interference patterns in which areas of

  20. Study on fractal characteristics of remote sensing image in the typical volcanic uranium metallogenic areas

    International Nuclear Information System (INIS)

    Pan Wei; Ni Guoqiang; Li Hanbo

    2010-01-01

    Computing Methods of fractal dimension and multifractal spectrum about the remote sensing image are briefly introduced. The fractal method is used to study the characteristics of remote sensing images in Xiangshan and Yuhuashan volcanic uranium metallogenic areas in southern China. The research results indicate that the Xiangshan basin in which lots of volcanic uranium deposits occur,is of bigger fractal dimension based on remote sensing image texture than that of the Yuhuashan basin in which two uranium ore occurrences exist, and the multifractal spectrum in the Xiangshan basin obviously leans to less singularity index than in the Yuhuashan basin. The relation of the fractal dimension and multifractal singularity of remote sensing image to uranium metallogeny are discussed. The fractal dimension and multifractal singularity index of remote sensing image may be used to predict the volcanic uranium metallogenic areas. (authors)

  1. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins

    Science.gov (United States)

    Buck, W. Roger

    2017-05-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including most that border the Atlantic Ocean. Whether their formation requires large magnitude (i.e. 10 s of km) of normal fault slip or results from the deflection of the lithosphere by the weight of volcanic flows is controversial. Though there is evidence for faulting associated with some SDRs, this paper considers the range of structures that can be produced by magmatic and volcanic loading alone. To do this an idealized mechanical model for the construction of rift-related volcanic flow structures is developed. Dikes open as plates move away from the center of a model rift and volcanic flows fill the depression produced by the load caused by dike solidification. The thin elastic plate flexure approximation allows a closed form description of the shape of both the contacts between flows and between the flows and underlying dikes. The model depends on two independent parameters: the flexure parameter, α, and the maximum isostatically supported extrusive layer thickness, w0. For reasonable values of these parameters the model reproduces the observed down-dip thickening of flows and the range of reflector dip angles. A numerical scheme using the analytic results allows simulation of the effect of temporal changes in the locus of magmatic spreading as well as changes in the amount of volcanic infill. Either jumps in the location of the center of diking or periods with no volcanism result in separate units or "packages" of model SDRs, in which the flow-dike contact dips landward, consistent with observations previously attributed only to listric normal fault offset. When jumps in the spreading center are small (i.e. less than α) they result in thicker, narrower volcanic units on one side of a rift compared to those on the other side. This is similar to the asymmetric distributions of volcanic packages seen

  2. Climate Prediction Center Southern Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and Sea Surface Temperature (SST)Indices. It contains Southern Oscillation Index which is standardized sea level...

  3. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    Science.gov (United States)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  4. Global Volcanism on Mercury at About 3.8 Ga

    Science.gov (United States)

    Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.

    2014-12-01

    Smooth plains occupy c. 27% of the surface of Mercury. Embayment relations, spectral contrast with surroundings, and morphologic characteristics indicate that the majority of these plains are volcanic. The largest deposits are located in Mercury's northern hemisphere and include the extensive northern plains (NP) and the Caloris interior and exterior plains (with the latter likely including basin material). Both the NP and Caloris deposits are, within statistical error, the same age (~3.8-3.9 Ga). To test whether this age reflects a period of global volcanism on Mercury, we determined crater size-frequency distributions for four smooth plains units in the planet's southern hemisphere interpreted to be volcanic. Two deposits are situated within the Beethoven and Tolstoj impact basins; two are located close to the Debussy and the Alver and Disney basins, respectively. Each deposit hosts two populations of craters, one that postdates plains emplacement and one that consists of partially to nearly filled craters that predate the plains. This latter population indicates that some time elapsed between formation of the underlying basement and plains volcanism, though we cannot statistically resolve this interval at any of the four sites. Nonetheless, we find that the age given by the superposed crater population in each case is ~3.8 Ga, and crater density values are consistent with those for the NP and Caloris plains. This finding supports a global phase of volcanism near the end of the late heavy bombardment of Mercury and may indicate a period of widespread partial melting of Mercury's mantle. Notably, superposition relations between smooth plains, degraded impact structures, and contractional landforms suggest that by this time interior cooling had already placed Mercury's lithosphere in horizontal compression, tending to inhibit voluminous dike-fed volcanism such as that inferred responsible for the NP. Most smooth plains units, including the Caloris plains and our

  5. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling

    Science.gov (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis

    2009-11-01

    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ɛNd = +1.5 to +6, 87Sr/86Sr = 0

  6. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    Science.gov (United States)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  7. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  8. Multivariate statistical tools for the radiometric features of volcanic islands

    International Nuclear Information System (INIS)

    Basile, S.; Brai, M.; Marrale, M.; Micciche, S.; Lanzo, G.; Rizzo, S.

    2009-01-01

    The Aeolian Islands represents a Quaternary volcanic arc related to the subduction of the Ionian plate beneath the Calabrian Arc. The geochemical variability of the islands has led to a broad spectrum of magma rocks. Volcanic products from calc-alkaline (CA) to calc-alkaline high in potassium (HKCA) are present throughout the Archipelago, but products belonging to shoshonitic (SHO) and potassium (KS) series characterize the southern portion of Lipari, Vulcano and Stromboli. Tectonics also plays an important role in the process of the islands differentiation. In this work, we want to review and cross-analyze the data on Lipari, Stromboli and Vulcano, collected in measurement and sampling campaigns over the last years. Chemical data were obtained by X-ray fluorescence. High resolution gamma-ray spectrometry with germanium detectors was used to measure primordial radionuclide activities. The activity of primordial radionuclides in the volcanic products of these three islands is strongly dependent on their chemism. The highest contents are found in more differentiated products (rhyolites). The CA products have lower concentrations, while the HKCA and Shoshonitic product concentrations are in between. Calculated dose rates have been correlated with the petrochemical features in order to gain further insight in evolution and differentiation of volcanic products. Ratio matching technique and multivariate statistical analyses, such as Principal Component Analysis and Minimum Spanning Tree, have been applied as an additional tool helpful to better describe the lithological affinities of the samples. (Author)

  9. Regional analysis of tertiary volcanic Calderas (western U.S.) using Landsat Thematic Mapper imagery

    Science.gov (United States)

    Spatz, David M.; Taranik, James V.

    1989-01-01

    The Landsat Thematic Mapper (TM) imagery of the Basin and Range province of southern Nevada was analyzed to identify and map volcanic rock assemblages at three Tertiary calderas. It was found that the longer-wavelength visible and the NIR TM Bands 3, 5, and 7 provide more effective lithologic discrimination than the shorter-wavelength bands, due partly to deeper penetration of the longer-wavelength bands, resulting in more lithologically driven radiances. Shorter-wavelength TM Bands 1 and 2 are affected more by surficial weathering products including desert varnish which may or may not provide an indirect link to lithologic identity. Guidelines for lithologic analysis of volcanic terrains using Landsat TM imagery are outlined.

  10. Neogene stratigraphy and Andean geodynamics of southern Ecuador

    Science.gov (United States)

    Hungerbühler, Dominik; Steinmann, Michael; Winkler, Wilfried; Seward, Diane; Egüez, Arturo; Peterson, Dawn E.; Helg, Urs; Hammer, Cliff

    2002-01-01

    The present paper reviews Tertiary volcanic and sedimentary formations in the Inter-Andean region of southern Ecuador (between 2°S and 4°20'S) in order to develop a geodynamic model of the region. The formations occur in the southern shallow prolongation of the Inter-Andean Valley between the Cordillera Real to the east, and the Cordillera Occidental and Amotape-Tahuín Provinces to the west. One hundred fifty zircon fission-track analyses has established a detailed chronostratigraphy for the sedimentary and volcanic formations and several small intrusions. The Paleogene to early Miocene formations are dominated by intermediate and acidic volcanic and pyroclastic rocks. In addition, relics of Eocene continental sedimentary series have been identified. The Neogene sedimentary series lie unconformably on deformed and eroded metamorphic, sedimentary and volcanic formations. They were deposited in two stages, which are separated by a major unconformity dated at ≈10-9 Ma. (1) During the middle and early late Miocene (≈15-10 Ma) marginal marine deltaic, lagoonal, lacustrine and fluvial environments prevailed, which we group under the heading "Pacific Coastal sequences". They presumably covered a greater surface area in southern Ecuador than their present occurrence in small topographic depressions. We suggest that they were deposited in the shallow marine Cuenca and Loja Embayments. Deposition in a marginal marine environment is also supported by the occurrence of brackish water ostracods and other fauna. (2) Above the regional (angular) unconformity, the coastal facies are overlain by late Miocene (≈9-5 Ma) continental alluvial fan and fluvial facies which are in turn covered by mainly airborne volcanic material. They represent the "Intermontane sequences" of the basins of Cuenca, Girón-Santa Isabel, Nabón, Loja and Malacatos-Vilcabamba. Sedimentologic and stratigraphic results are used to discuss the tectonic setting of Neogene sedimentation in the forearc

  11. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  12. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  13. Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal

    Science.gov (United States)

    Lara, Luis E.; Cordova, Loreto

    2017-04-01

    Southern Andes are a young and active mountain belt where volcanism and tectonic processes (and those related to the hydrometeorological conditions controlled by this geological setting) pose a significant threat to the growing communities nearby. This proposal focus on a ca. 200 km long segment of the Southern Andes where 9 stratovolcanoes and 2 distributed volcanic fields are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Faul System (LOFS), a long-lived active strike-slip fault running for 1200 km. Volcanoes in this area take part of the central province of the Andean Southern Volcanic Zone (37-41°S), particularly the northermost portion that is limited at the south by an Andean tranverse fault (Lanalhue Fault, which define the Villarrica-Lanin volcanic chain) and run along the horse-tail array of the LOFS to the north. Most of the stravolcanoes are atop of the LOFS main branch with only 3 exceptions (Callaqui, Tolhuaca and Lanín) 15-20 km away, but related to transverse faults. Hazards in the segment derive from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting weak activity (e.g., Copahue) or some volcanoes with low frequency but high magnitude eruptions in the geological record. Only since the beggining of the 20th century 80 eruptions have been recorded in this area. In addition, activity of the LOFS has been detected prior to some eruptions and coeval with some others (e.g., Lonquimay 1989). A strong two-way coupling between tectonics and volcanism has been proposed for the segment but only recently detected by geophysical techniques or numerical modelling. Tectonic triggered landslides are frequent in this region together with debris flows at erupting ice-covered volcanoes or stream headed at high altitude basins. The latter scenario seems to be worst at present because of global climate change. Ground-based monitoring networks for both

  14. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province

    Science.gov (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.

    2005-12-01

    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  15. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation

    Science.gov (United States)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan

    2018-04-01

    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the

  16. Seismological Imaging of Melt Production Regions Beneath the Backarc Spreading Center and Volcanic Arc, Mariana Islands

    Science.gov (United States)

    Wiens, Douglas; Pozgay, Sara; Barklage, Mitchell; Pyle, Moira; Shiobara, Hajime; Sugioka, Hiroko

    2010-05-01

    We image the seismic velocity and attenuation structure of the mantle melt production regions associated with the Mariana Backarc Spreading Center and Mariana Volcanic Arc using data from the Mariana Subduction Factory Imaging Experiment. The passive component of this experiment consisted of 20 broadband seismographs deployed on the island chain and 58 ocean-bottom seismographs from June, 2003 until April, 2004. We obtained the 3D P and S wave velocity structure of the Mariana mantle wedge from a tomographic inversion of body wave arrivals from local earthquakes as well as P and S arrival times from large teleseismic earthquakes determined by multi-channel cross correlation. We also determine the 2-D attenuation structure of the mantle wedge using attenuation tomography based on local and regional earthquake spectra, and a broader-scale, lower resolution 3-D shear velocity structure from inversion of Rayleigh wave phase velocities using a two plane wave array analysis approach. We observe low velocity, high attenuation anomalies in the upper mantle beneath both the arc and backarc spreading center. These anomalies are separated by a higher velocity, lower attenuation region at shallow depths (< 80 km), implying distinct magma production regions for the arc and backarc in the uppermost mantle. The largest magnitude anomaly beneath the backarc spreading center is found at shallower depth (25-50 km) compared to the arc (50-100 km), consistent with melting depths estimated from the geochemistry of arc and backarc basalts (K. Kelley, pers. communication). The velocity and attenuation signature of the backarc spreading center is narrower than the corresponding anomaly found beneath the East Pacific Rise by the MELT experiment, perhaps implying a component of focused upwelling beneath the spreading center. The strong velocity and attenuation anomaly beneath the spreading center contrasts strongly with preliminary MT inversion results showing no conductivity anomaly in the

  17. STABILIZATION OF GRANULAR VOLCANIC ASH IN SANA'A AREA

    Directory of Open Access Journals (Sweden)

    SUBHI A. ALI

    2014-02-01

    Full Text Available This paper presents the findings of compaction and strength characteristics of a Granular Volcanic Ash from Sana'a city center, which was mixed with various percentages of two binders to form a stabilized material namely; fine soil and Portland cement. The study showed a significant improvement of the Volcanic Ash properties. The maximum dry density and California bearing ration (CBR were considerably increased by addition of stabilizers at different rates for different binder contents. Optimum fine soil content for the maximum dry density and CBR is determined. A relationship between the optimum moisture content and the binder combination content for different fine soil percentages was established.

  18. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  19. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  20. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    Science.gov (United States)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  1. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  2. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Black, P M [Department of Geology, Auckland University, Auckland (New Zealand); Briggs, R M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Itaya, T [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Dewes, E R [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Dunbar, H M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Kawasaki, K [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Kuschel, E [Department of Geology, Auckland University, Auckland (New Zealand); Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand)

    1992-07-01

    The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine

  3. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    International Nuclear Information System (INIS)

    Black, P.M.; Briggs, R.M.; Itaya, T.; Dewes, E.R.; Dunbar, H.M.; Kawasaki, K.; Kuschel, E.; Smith, I.E.M.

    1992-01-01

    The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine

  4. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  5. Crustal seismicity associated to rpid surface uplift at Laguna del Maule Volcanic Complex, Southern Volcanic Zone of the Andes

    Science.gov (United States)

    Cardona, Carlos; Tassara, Andrés; Gil-Cruz, Fernando; Lara, Luis; Morales, Sergio; Kohler, Paulina; Franco, Luis

    2018-03-01

    Laguna del Maule Volcanic Complex (LMVC, Southern Andes of Chile) has been experiencing large rates (ca. 30 cm/yr) of surface uplift as detected since 2008 by satellite geodetic measurements. Previous works have modeled the source of this deformation as an inflating rectangular sub-horizontal sill underlying LMVC at 5 km depth, which is supposedly related to an active process of magmatic replenishment of a shallow silicic reservoir. However little is known about the tectonic context on which this activity is taking place, particularly its relation with crustal seismicity that could help understanding and monitoring the current deformation process. Here we present the first detailed characterization of the seismic activity taking place at LMVC and integrate it with structural data acquired in the field in order to illuminate the possible connection between the ongoing process of surface uplift and the activation of crustal faults. Our main finding is the recognition of repetitive volcano-tectonic (VT) seismic swarms that occur periodically between 2011 and 2014 near the SW corner of the sill modeled by InSAR studies. A cross-correlation analysis of the waveforms recorded for these VT events allows identifying three different seismic families. Families F1 and F3 share some common features in the stacked waveform and its locations, which markedly differ from those of family F2. Swarms belonging to this later family are more energetic and its energy was increasing since 2011 to a peak in January 2013, which coincide with maximum vertical velocities detected by local GPS stations. This points to a common process relating both phenomena. The location of VT seismic swarms roughly coincides with the intersection of a NE-SW lineament with a WNW-ESE lineament. The former shows clear field evidences of dextral strike-slip that are fully consistent with one nodal plane of focal mechanism for well-recorded F2 events. The conjugate nodal plane of these focal mechanisms could

  6. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  7. PROPERTIES OF DENIZLI VOLCANICS AND POTENTIAL USING FOR CONCRETE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Barış SEMİZ

    2005-01-01

    Full Text Available In this study, mineralogical, petrographical and chemical properties of volcanic rocks (Denizli Volcanics with basaltic trachyandesite composition which are located in southern of Denizli province have been investigated. Their physical and mechanical tests have been carried out on the samples to find out their performance both as an aggregate in concrete and as building stone in the construction sector. Unit weights, water absorption, porosity and uniaxial compressive strength of the tested samples are between 2250-2960 kg/m3, % 0.06-0.4, % 0.15-10.22 and 52.4-170.2 MPa, respectively. Average 28-day compressive strengths of the concrete are 94.44 MPa and the results fit the mineralogical and petrographical characteristics. There is a total of 2750 million ton probable reserve and it is an alternative aggregate to limestone which has already been produced in the region. High strength concrete production is vital for high quality construction especially in earthquake zones.

  8. A New Sulfur and Carbon Degassing Inventory for the Southern Central American Volcanic Arc: The Importance of Accurate Time-Series Data Sets and Possible Tectonic Processes Responsible for Temporal Variations in Arc-Scale Volatile Emissions

    Science.gov (United States)

    de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.

    2017-12-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  9. Olivine Major and Trace Element Compositions in Southern Payenia Basalts, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj

    2015-01-01

    Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of t...

  10. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone

    2007-09-01

    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  11. Charter Schools Indicators: A Report from the Center on Educational Governance, University of Southern California. CSI-USC 2008

    Science.gov (United States)

    Center on Educational Governance, 2008

    2008-01-01

    This report, which is the second annual report on charter schools in California by the University of Southern California's (USC's) Center on Educational Governance, offers a unique view of charter school performance. Using both financial and academic data submitted by school districts to the state of California, this report looks well beyond test…

  12. Volcanism and hydrothermalism on a hotspot-influenced ridge: Comparing Reykjanes Peninsula and Reykjanes Ridge, Iceland

    Science.gov (United States)

    Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.

    2017-12-01

    Current estimates indicate that the number of high-temperature vents (one of the primary pathways for the heat extraction from the Earth's mantle) - at least 1 per 100 km of axial length - scales with spreading rate and should scale with crustal thickness. But up to present, shallow ridge axes underlain by thick crust show anomalously low incidences of high-temperature activity. Here we compare the Reykjanes Ridge, an abnormally shallow ridge with thick crust and only one high-temperature vent known over 900 km axial length, to the adjacent subaerial Reykjanes Peninsula (RP), which is characterized by high-temperature geothermal sites confined to four volcanic systems transected by fissure swarms with young (Holocene) volcanic activity, multiple faults, cracks and fissures, and continuous seismic activity. New high-resolution bathymetry (gridded at 60 m) of the Reykjanes Ridge between 62°30‧N and 63°30‧N shows seven Axial Volcanic Ridges (AVR) that, based on their morphology, geometry and tectonic regime, are analogues for the volcanic systems and fissure swarms on land. We investigate in detail the volcano-tectonic features of all mapped AVRs and show that they do not fit with the previously suggested 4-stage evolution model for AVR construction. Instead, we suggest that AVR morphology reflects the robust or weak melt supply to the system and two (or more) eruption mechanisms may co-exist on one AVR (in contrast to 4-stage evolution model). Our interpretations indicate that, unlike on the Reykjanes Peninsula, faults on and around AVRs do not cluster in orientation domains but all are subparallel to the overall strike of AVRs (orthogonal to spreading direction). High abundance of seamounts shows that the region centered at 62°47‧N and 25°04‧W (between AVR-5 and -6) is volcanically robust while the highest fault density implies that AVR-1 and southern part of AVR-6 rather undergo period of melt starvation. Based on our observations and interpretations we

  13. Geology and Geochemistry of Magmatic Rocks from the Southern Part of the Kyushu-Palau Ridge in the Philippine Sea

    Science.gov (United States)

    Lelikov, E. P.; Sedin, V. T.; Pugachev, A. A.

    2018-03-01

    The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu-Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu-Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene-Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene-Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth's crust beneath the Kyushu-Palau Ridge was the major factor in the formation this ridge.

  14. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  15. Migration in relation to possible tectonic and regional controls in eastern Australian volcanism

    International Nuclear Information System (INIS)

    Sutherland, F.L.

    1981-01-01

    The Wellman-McDougall model for southward migration of central volcano activity in eastern Australia is extended to the basaltic lava provinces. Latitude-age plots of volcanic episodes are related to trails initiated from regions of active volcanism at the commencement of northward drift of Australia (53 m.y. B.P.), from Southern Ocean spreading. These trails intersect at least 75%, and possibly up to 95%, of basaltic episodes and suggest a migratory control. The migration of central volcano felsic activity, however, consistently exceeds sea-floor spreading rates with a relative southward motion of 4-10 mm/yr. The trails give a mean migration direction of 24 PM 9 0 W of S before 29-30 m.y., but 8-12 0 W of S after 29 m.y. (orig./ME)

  16. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    International Nuclear Information System (INIS)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10 -9 /km 2 /y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10 -7 /y

  17. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10

    Science.gov (United States)

    Patrick, Matthew R.; Smellie, John L.

    2015-01-01

    Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.

  18. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    Science.gov (United States)

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  19. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse

    Science.gov (United States)

    Bachmann, Olivier; Deering, Chad D.; Ruprecht, Janina S.; Huber, Christian; Skopelitis, Alexandra; Schnyder, Cedric

    2012-01-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750-800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800-850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos

  20. A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico

    Science.gov (United States)

    García-Abdeslem, Juan; Calmus, Thierry

    2015-08-01

    The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.

  1. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population

  2. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: The importance of accurate time-series datasets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions

    Science.gov (United States)

    de Moor, Maarten; Kern, Christoph; Avard, Geoffroy; Muller, Cyril; Aiuppa, Sandro; Saballos, Armando; Ibarra, Martha; LaFemina, Peter; Protti, Mario; Fischer, Tobias

    2017-01-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015–2016. We report ∼300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ∼500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972–2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015–2016 than in any period since ∼1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time‐series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short‐lived degassing events and arc systems likely display significant short‐term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  3. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    Science.gov (United States)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava

  4. Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic.

    Science.gov (United States)

    Gunther, Tobias; Schulze, Maik; Friederici, Anke; Theisel, Holger

    2016-01-01

    Volcanic eruptions are not only hazardous in the direct vicinity of a volcano, but they also affect the climate and air travel for great distances. This article sheds light on the Grímsvötn, Puyehue-Cordón Caulle, and Nabro eruptions in 2011. The authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of Nabro's sulfate aerosol into the stratosphere. The results here were developed for the 2014 IEEE Scientific Visualization Contest, which centers around the fusion of multiple satellite data modalities to reconstruct and assess the movement of volcanic ash and sulfate aerosol emissions. Using data from three volcanic eruptions that occurred in the span of approximately three weeks, the authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of sulfate aerosol into the stratosphere. This video provides animations of the reconstructed ash clouds. https://youtu.be/D9DvJ5AvZAs.

  5. Mio Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes: A case of volcanic controls on sedimentation in broken foreland basins

    Science.gov (United States)

    Martina, Federico; Dávila, Federico M.; Astini, Ricardo A.

    2006-04-01

    A well-constrained record of Miocene-Pliocene explosive volcanism is preserved within the broken foreland of Western Argentina along the Famatina Ranges. This paper focuses on the volcaniclastic record known as the Río Blanco member of the El Durazno Formation. Three facies can be recognized in the study area: (1) massive tuffs; (2) volcaniclastic conglomerates and (3) pumiceous sandstones. These facies are interpreted as primary pyroclastic flow deposits (ignimbrites) and reworked volcanogenic deposits within interacting volcanic-fluvial depositional systems. Alternation between ignimbrites and volcanogenic sandstones and conglomerates suggest a recurrent pattern of sedimentation related to recurrent volcanic activity. Considering the facies mosaic and relative thicknesses of facies, short periods of syn-eruption sedimentation (volcaniclastic deposits) seem to have been separated by longer inter-eruption periods, where normal stream-flow processes were dominant. The volcaniclastic component decreases up-section, suggesting a gradual reduction in volcanic activity. The mean sedimentation rate of the Río Blanco member is higher (0.44 mm/year) than those obtained for the underlying and overlying units. This increase cannot be fully explained by foreland basement deformation and tectonic loading. Hence, we propose subsidence associated with volcanic activity as the causal mechanism. Volcanism would have triggered additional accommodation space through coeval pyroclastic deposition, modification of the stream equilibrium profile, flexural loading of volcanoes, and thermal processes. These mechanisms may have favored the preservation of volcaniclastic beds in the high-gradient foreland system of Famatina during the Mio-Pliocene. Thus, the Río Blanco member records the response of fluvial systems to large, volcanism-induced sediment loads.

  6. Aeromagnetic anomaly images of Vulcano and Southern Lipari Islands (Aeolian Archipelago, Italy

    Directory of Open Access Journals (Sweden)

    M. Chiappini

    2004-06-01

    Full Text Available Newly acquired high-resolution, low-altitude aeromagnetic data over Vulcano Island and Southwestern Lipari in the Southern Tyrrhenian Sea resolve the major volcanic features in the area associated with the past and present activity. The magnetic character changes in amplitude and frequency from south-east to north-west. The Primordial Vulcano, the Lentia Complex, the Piano Caldera units, the Fossa Caldera deposits, and the currently active La Fossa cone and Vulcanello represent the main volcanic phases on Vulcano Island. They show a distinct magnetic anomaly pattern, whereas prior to this survey, no magnetic signatures of these features were found.

  7. Acoustic waves in the atmosphere and ground generated by volcanic activity

    International Nuclear Information System (INIS)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-01-01

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  8. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  9. Evolution of the Southern Margin of the Donbas (Ukraine) from Devonian to early Carboniferous Times.

    NARCIS (Netherlands)

    McCann, T.; Saintot, A.N.

    2003-01-01

    A Devonian-Early Carboniferous succession comprising thick clastic and carbonate sediments with interbedded volcanics was examined along the southern margin of the Donbas fold belt. Ukraine. Following initial rifting and subsidence, a continental (fluvial, lacustrine) succession was established.

  10. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    Science.gov (United States)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  11. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    We present new major and trace element and Sr, Nd, Pb and Os isotope data for Quaternary basaltic lavas and tephra from the Itasy and Ankaratra volcanic fields, representing the most recent volcanism in Madagascar. Mafic magmas from Itasy and Ankaratra exhibit significant inter- and intra-volcanic field geochemical heterogeneity. The Itasy eruptive products range in composition from foidite to phonotephrite whereas Ankaratra lavas range from basanite to trachybasalts. Trace element signatures of samples from both volcanic fields are very similar to those of ocean island basalts (OIB), with significant enrichment in Nb and Ta, depletion in Rb, Cs, and K, and relatively high Nb/U and Ce/Pb. However, the Itasy volcanic rocks show enrichment relative to those of Ankaratra in most incompatible elements, indicative of a more enriched source and/or lower degrees of partial melting. Significant inter- and intra-volcanic field heterogeneity is also observed in Sr, Nd, Pb and Os isotope signatures. The Itasy volcanic rocks generally have less radiogenic Sr and Nd isotopic ratios but more radiogenic Pb isotopic signatures than the Ankaratra volcanic field. Together, the Itasy and Ankaratra volcanic rocks form a well-defined negative correlation in Sr vs. Pb isotopes that could be attributed to lithospheric contamination or variable degrees of mixing between distinct mantle sources. However, the lack of correlation between isotopes and indices of crustal contamination (e.g. MgO and Nb/U) are inconsistent with shallow lithospheric contamination, and instead suggest mixing between compositionally distinct mantle sources. Furthermore, although Sr-Pb isotope systematics are apparently consistent with mixing between two different sources, distinct trends in Sr vs. Nd isotopes displayed by samples from Itasy and Ankaratra, respectively, argue for more complex source mixing involving three or more sources. The current data demonstrate that although the Itasy and Ankaratra volcanic

  12. Surface heat flow density at the Phlegrean Fields caldera (southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Corrado, Gennardo [Naples Univ., Dept. of Geophysics and Volcanology, Naples (Italy); De Lorenzo, Salvatore; Mongelli, Francesco; Tramacere, Antonio; Zito, Gianmaria [Bari Univ., Dept. of Geology and Geophysics, Bari (Italy)

    1998-08-01

    The Phlegrean Fields areas is a Holocene caldera located west of Naples, southern Italy. The recent post caldera activity is characterised by several eruptive centers inside the collapsed areas. In order to investigate the still active volcanic processes, surface heat flow measurement were carried out in 1995 in 30 sites of the Phlegrean Fields and a heat flow map compiled. Filtering of the map reveals some well-defined anomalies superimposed on a general southward-increasing trend. Local anomalies are related to small magma bodies, whereas the observed general trend has been attributed to the effect of ground-water flow. This effect was calculated and removed. The undisturbed mean value of the surface heat flow density in the eastern sector is 149mW/m{sup 2}, which is above the regional value of 85mW/m{sup 2} assigned to the eastern part of the Tyrrhenian Sea, and which is probably influenced by a very large, deep magmatic body. (Author)

  13. A field trip guide to the petrology of Quaternary volcanism on the Yellowstone Plateau

    Science.gov (United States)

    Vazquez, Jorge A.; Stelten, Mark; Bindeman, Ilya N.; Cooper, Kari

    2017-12-19

    The Yellowstone Plateau is one of the largest manifestations of silicic volcanism on Earth, and marks the youngest focus of magmatism associated with the Yellowstone Hot Spot. The earliest products of Yellowstone Hot Spot volcanism are from ~17 million years ago, but may be as old as ~32 Ma, and include contemporaneous eruption of voluminous mafic and silicic magmas, which are mostly located in the region of northwestern Nevada and southeastern Oregon. Since 17 Ma, the main locus of Yellowstone Hot Spot volcanism has migrated northeastward producing numerous silicic caldera complexes that generally remain active for ~2–4 million years, with the present-day focus being the Yellowstone Plateau. Northeastward migration of volcanism associated with the Yellowstone Hot Spot resulted in the formation of the Snake River Plain, a low relief physiographic feature extending ~750 kilometers from northern Nevada to eastern Idaho. Most of the silicic volcanic centers along the Snake River Plain have been inundated by younger basalt volcanism, but many of their ignimbrites and lava flows are exposed in the extended regions at the margins of the Snake River Plain. 

  14. The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME

    Science.gov (United States)

    Man, W.; Zuo, M.

    2017-12-01

    The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.

  15. Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan

    Directory of Open Access Journals (Sweden)

    Mahshid Malekian Dastjerdi

    2017-02-01

    Full Text Available Introduction The study area is located 12km away from the north east of Sarbisheh at the eastern border of the Lut block (Karimpour et al., 2011; Richards et al., 2012. The magmatic activity in the Lut blockhas begun in the middle Jurassic (165-162 Ma and reached its peak in the Tertiary age (Jung et al., 1983; Karimpour et al., 2011. Volcanic and subvolcanic rocks in the Tertiary age cover over half of the Lut block with up to 2000 m thickness and they were formed due to subduction prior to the collision of the Arabian and Asian plates (Jung et al., 1983; Karimpour et al., 2011. In the Kangan area, the basaltic lavas cropped out beyond the above intermediate to acid volcanic rocks. In this area, bentonite and perlite deposits have an economic importance. The main purpose of this paper is to present a better understanding of the tectono-magmatic settings of volcanic rocks in the northeast of Sarbisheh, east of Iran based on their geochemical characteristics. Materials and methods Fifteen samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements by using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the Acme laboratories, Vancouver, Canada. Results The Kangan area is located at the northeast of Sarbishe, Southern Khorasan and the eastern border of the Lut block. In this area, basaltic lavas have cropped out above intermediate to acid lavas such as andesite, dacite, rhyolite (sometimes perlitic .The main minerals in the basalt are plagioclase, olivine and pyroxene, in andesite contain plagioclase, pyroxene, biotite and amphibole and in acid rocks include plagioclase, quartz, sanidine, biotite and amphibole. Intermediate to acid rocks have medium to high-K calc-alkaline nature and basalt is alkaline. Enrichment in LREE relative to HREE (Ce/Yb= 21.14-28.7, high ratio of Zr/Y(4.79- 10.81, enrichment in LILE

  16. Permian to recent volcanism in northern sumatra, indonesia: a preliminary study of its distribution, chemistry, and peculiarities

    Science.gov (United States)

    Rock, N. M. S.; Syah, H. H.; Davis, A. E.; Hutchison, D.; Styles, M. T.; Lena, Rahayu

    1982-06-01

    Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary. Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites. Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent. Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. Possible Palaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW. Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites. Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160-210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in

  17. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan

    Science.gov (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi

    2017-07-01

    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  18. Timing of the volcanism of the southern Kivu province: Implications for the evolution of the western branch of the East African rift system

    International Nuclear Information System (INIS)

    Pasteels, P.

    1989-01-01

    New K-Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural eruptions; from 7.5 to 5 Ma alkali basalts and their differentiates are mainly erupted in localized rifts. A culmination of activity occurs between 6.0 and 5.5 Ma ago. Pleistocene alkalic volcanism is restricted to localized areas. The transition from tholeiites to alkali-basaltic volcanism dated around 7.5 Ma would correspond to a major rifting phase which corresponds with the initiation of Lake Kivu Basin formation. The distribution of tholeiitic rocks in the central part of the rift, and predominantly alkalic rocks along the western active border fault, strengthens the idea that the former are associated with tension, the latter with vertical, possibly also strike-slip movements. Volcanism in the Western Rift is restricted to areas where tension occurs in a zone which is located between two zones of strike-slip. In the South Kivu area normal faults intersect strike-slip faults and this seems to have determined the location of volcanic activity. Magma formation is considered to be related with shear heating combined with adiabatic decompression in ascending diapirs. This implies heating at the lithosphere-asthenosphere boundary as a result of extension. Generation of tholeiitic or alkalic magmas is connected with the variable ascent velocity of mantle diapirs or with variable shear heating along the shear zone. Changes in both magma composition and intensity of volcanic activity with time are considered to be related to major phases of rift evolution. (orig.)

  19. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  20. Is the onset of the 6th century 'dark age' in Maya history related to explosive volcanism?

    Science.gov (United States)

    Nooren, Kees; Hoek, Wim Z.; Van der Plicht, Hans; Sigl, Michael; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans; Van Bergen, Manfred

    2016-04-01

    Maya societies in Southern Mexico, Guatemala and Belize experienced a 'dark age' during the second half of the 6th century. This period, also known as the 'Maya Hiatus', is characterized by cultural downturn, political instability and abandonment of many sites in the Central Maya Lowlands. Many theories have been postulated to explain the occurrence of this 'dark age' in Maya history. A possible key role of a large volcanic eruption in the onset of this 'dark age' will be discussed. Volcanic deposits recovered from the sedimentary archive of lake Tuspán and the Usumacinta-Grijalva delta were studied in detail and the combination of multiple dating techniques allowed the reconstruction of the timing of a large 6th century eruption. Volcanic glass shards were fingerprinted to indicate the source volcano and high resolution pollen records were constructed to indicate the environmental impact of the eruption. Results are compared with available archaeological data and causality with the disruption of Maya civilization will be evaluated.

  1. Methodology for the study of the Mexican Volcanic Belt; Metodologia para el estudio del Cinturon Volcanico Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Pal Verma, Surendra [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    The Mexican Volcanic Belt (MVB) is an structure 20 to 150 kilometers wide an {approx}1000 km long, oriented approximately east-west, from nearby Puerto Vallarta up until Veracruz; it contains a great number ({approx}7000) of volcanic apparatus or volcanic centers (Verma, 1987a, and the cited references in this paper). Fig. 1 represents the location of some of its main volcanic centers. The MVB forms part of the ring of fire that extends all along the circumpacific region (see Fig. 2) named this way because it refers to a very high volcanoes population (many of them active volcanoes), to its seismic activity and to the large geothermal manifestations. [Espanol] El Cinturon Volcanico Mexicano (CVM) es una estructura de 20 a 150 kilometros de ancho, {approx}1,000 km de largo, orientada aproximadamente este-oeste desde cerca de Puerto Vallarta hasta Veracruz; contiene gran numero ({approx}7,000) de aparatos o centros volcanicos (Verma, 1987a, y las referencias citadas en este trabajo). La figura 1 presenta la localizacion de algunos de sus principales centros volcanicos. El CVM forma parte del llamado anillo del fuego, que se extiende a todo lo largo de la region circumpacifica (vease la Fig. 2), denominada asi porque se trata de una poblacion muy alta de volcanes (mucho de ellos activos), de la actividad sismica y de grandes manifestaciones geotermicas.

  2. Methodology for the study of the Mexican Volcanic Belt; Metodologia para el estudio del Cinturon Volcanico Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Pal Verma, Surendra [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The Mexican Volcanic Belt (MVB) is an structure 20 to 150 kilometers wide an {approx}1000 km long, oriented approximately east-west, from nearby Puerto Vallarta up until Veracruz; it contains a great number ({approx}7000) of volcanic apparatus or volcanic centers (Verma, 1987a, and the cited references in this paper). Fig. 1 represents the location of some of its main volcanic centers. The MVB forms part of the ring of fire that extends all along the circumpacific region (see Fig. 2) named this way because it refers to a very high volcanoes population (many of them active volcanoes), to its seismic activity and to the large geothermal manifestations. [Espanol] El Cinturon Volcanico Mexicano (CVM) es una estructura de 20 a 150 kilometros de ancho, {approx}1,000 km de largo, orientada aproximadamente este-oeste desde cerca de Puerto Vallarta hasta Veracruz; contiene gran numero ({approx}7,000) de aparatos o centros volcanicos (Verma, 1987a, y las referencias citadas en este trabajo). La figura 1 presenta la localizacion de algunos de sus principales centros volcanicos. El CVM forma parte del llamado anillo del fuego, que se extiende a todo lo largo de la region circumpacifica (vease la Fig. 2), denominada asi porque se trata de una poblacion muy alta de volcanes (mucho de ellos activos), de la actividad sismica y de grandes manifestaciones geotermicas.

  3. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  4. Characteristics and management of the 2006-2008 volcanic crisis at the Ubinas volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Mariño, Jersy; Berolatti, Rossemary; Fuentes, José

    2010-12-01

    Ubinas volcano is located 75 km East of Arequipa and ca. 5000 people are living within 12 km from the summit. This composite cone is considered the most active volcano in southern Peru owing to its 24 low to moderate magnitude (VEI 1-3) eruptions in the past 500 years. The onset of the most recent eruptive episode occurred on 27 March 2006, following 8 months of heightened fumarolic activity. Vulcanian explosions occurred between 14 April 2006 and September 2007, at a time ejecting blocks up to 40 cm in diameter to distances of 2 km. Ash columns commonly rose to 3.5 km above the caldera rim and dispersed fine ash and aerosols to distances of 80 km between April 2006 and April 2007. Until April 2007, the total volume of ash was estimated at 0.004 km 3, suggesting that the volume of fresh magma was small. Ash fallout has affected residents, livestock, water supplies, and crop cultivation within an area of ca. 100 km 2 around the volcano. Continuous degassing and intermittent mild vulcanian explosions lasted until the end of 2008. Shortly after the initial explosions on mid April 2006 that spread ash fallout within 7 km of the volcano, an integrated Scientific Committee including three Peruvian institutes affiliated to the Regional Committee of Civil Defense for Moquegua, aided by members of the international cooperation, worked together to: i) elaborate and publish volcanic hazard maps; ii) inform and educate the population; and iii) advise regional authorities in regard to the management of the volcanic crisis and the preparation of contingency plans. Although the 2006-2008 volcanic crisis has been moderate, its management has been a difficult task even though less than 5000 people now live around the Ubinas volcano. However, the successful management has provided experience and skills to the scientific community. This volcanic crisis was not the first one that Peru has experienced but the 2006-2008 experience is the first long-lasting crisis that the Peruvian civil

  5. Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand

    Science.gov (United States)

    Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.

    2017-12-01

    Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in

  6. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Directory of Open Access Journals (Sweden)

    G. Pappalardo

    2013-04-01

    Full Text Available The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET. Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010. All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL. After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May, material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on

  7. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    Science.gov (United States)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  8. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    Science.gov (United States)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with cessation of subduction. The Bodie Hills are flanked to the east, north, and west by sedimentary basins that began to form in the late Miocene (locally >11 Ma). Fine to coarse sedimentary deposits within the BHVF include stream deposits in channels that cut across the hills and were partly filled by ~9.4 Ma Eureka Valley Tuff erupted 20 km to the northwest. Shallow dips and preservation of

  9. Southern Pine Based on Biorefinery Center

    Energy Technology Data Exchange (ETDEWEB)

    Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Singh, Preet [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-12-20

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; The conversion of extracted woodchips to linerboard and bleach grade pulps; and the efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  10. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  11. The evolution of Neoproterozoic magmatism in Southernmost Brazil: shoshonitic, high-K tholeiitic and silica-saturated, sodic alkaline volcanism in post-collisional basins

    Directory of Open Access Journals (Sweden)

    Sommer Carlos A.

    2006-01-01

    Full Text Available The Neoproterozoic shoshonitic and mildly alkaline bimodal volcanism of Southernmost Brazil is represented by rock assemblages associated to sedimentary successions, deposited in strike-slip basins formed at the post-collisional stages of the Brasilian/Pan-African orogenic cycle. The best-preserved volcano sedimentary associations occur in the Camaquã and Campo Alegre Basins, respectively in the Sul-riograndense and Catarinense Shields and are outside the main shear belts or overlying the unaffected basement areas. These basins are characterized by alternation of volcanic cycles and siliciclastic sedimentation developed dominantly on a continental setting under subaerial conditions. This volcanism and the coeval plutonism evolved from high-K tholeiitic and calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, and its evolution were developed during at least 60 Ma. The compositional variation and evolution of post-collisional magmatism in southern Brazil are interpreted as the result mainly of melting of a heterogeneous mantle source, which includes garnet-phlogopite-bearing peridotites, veined-peridotites with abundant hydrated phases, such as amphibole, apatite and phlogopite, and eventually with the addition of an asthenospheric component. The subduction-related metasomatic character of post-collisional magmatism mantle sources in southern Brazil is put in evidence by Nb-negative anomalies and isotope features typical of EM1 sources.

  12. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?

    Science.gov (United States)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Guo, Zhaojie; Waldrip, Ross; Li, Xiaochun; Zhang, Xiaoran; Liu, Dongdong; Kapp, Paul

    2015-01-01

    Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previously yielded data suggesting a low paleolatitude ( 10°N). New zircon U-Pb dates indicate an age of 52 Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1° (35.7°, 40.5°) (95% significance) and a secondary remanence with inclination of 42.9° (41.5°,44.4°) (95% significance). The paleolatitude defined by the modeled primary remanence—21°N (19.8°N, 23.1°N)—is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at 20°N and took place by 50 Ma.

  13. Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption

    Science.gov (United States)

    Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong

    2014-05-01

    We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  14. Influences of volcanism on coal quality - Examples from the western United States

    International Nuclear Information System (INIS)

    Hildebrand, R.T.; Affolter, R.H.

    1986-01-01

    Several small Tertiary coal deposits in Idaho, Nevada, and Washington formed in fresh-water basins located near active continental (salic) volcanic centers. Metastable glassy material (tephra) ejected during volcanic eruptions was introduced into the coal-forming environment of these basins as ash falls. This tephra contributed to the high ash content of many of the coal beds, formed laterally persistent partings (''tonsteins'') in the coal, and constitutes a large part of the strata enclosing the deposits. In order to study the possible relationships between the presence of tephra and coal quality, chemical data for 65 coal samples from 12 of these deposits were compiled and statistically analyzed. The results indicate that, in addition to the high ash content, coal from Tertiary deposits containing appreciable amounts of tephra generally is enriched in many elements compared to 460 coal samples from 11 deposits of similar ages remote from volcanic activity

  15. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Nevado de Toluca volcano (~6 km) some 50 km to the southwest.

  16. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  17. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  18. A "La Niña-like" state occurring in the second year after large tropical volcanic eruptions during the past 1500 years

    Science.gov (United States)

    Sun, Weiyi; Liu, Jian; Wang, Bin; Chen, Deliang; Liu, Fei; Wang, Zhiyuan; Ning, Liang; Chen, Mingcheng

    2018-04-01

    Using an ensemble of nine El Niño/Southern Oscillation (ENSO) reconstructed proxies and volcano eruption proxies for the past 1500 years, this study shows that a significant La Niña state emerges in the second year (year (2) hereafter) after large tropical volcanic eruptions. The reasons for the development of La Niña are investigated using the Community Earth System Model (CESM). In the volcanic eruption experiment (Vol), a robust La Niña signal occurs in year (2), resembling the proxy records. The eastward positioning of the western North Pacific anomalous anticyclone (WNPAC) in Vol plays a critical role in the advanced decay of year (2) warming and the strong intensification of cooling in the equatorial eastern Pacific. The enhanced easterlies located on the southern edge of the WNPAC can stimulate consecutive oceanic upwelling Kelvin waves, shallowing the thermocline in the eastern Pacific, thereby resulting in a greater cooling rate by the enhanced thermocline feedback and cold zonal advection. Over the equatorial eastern Pacific, the reduced shortwave radiation contributes to the advanced decay of warming, while the upward latent heat flux augments the strong intensification of the cooling. Essentially, the eastward positioning of the WNPAC is a result of the volcanic forcing. The volcanic effect cools the maritime continent more than its adjacent oceans, thus pushing convective anomalies eastward during year (1). This induces vertical thermal advection and upward surface latent heat flux, thereby suppressing the development of warm Sea Surface Temperature over the central-western Pacific and causing the eastward positioning of the WNPAC in Vol.

  19. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  20. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  1. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy L.; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-01-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  2. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-07-27

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory\\'s High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  3. Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2011-12-01

    Full Text Available The volcanic eruption of Grimsvötn in Iceland in May 2011 affected surface-layer air quality at several locations in Northern Europe. In Helsinki, Finland, the main pollution episode lasted for more than 8 h around the noon of 25 May. We characterized this episode by relying on detailed physical, chemical and optical aerosol measurements. The analysis was aided by air mass trajectory calculations, satellite measurements, and dispersion model simulations. During the episode, volcanic ash particles were present at sizes from less than 0.5 μm up to sizes >10 μm. The mass mean diameter of ash particles was a few μm in the Helsinki area, and the ash enhanced PM10 mass concentrations up to several tens of μg m−3. Individual particle analysis showed that some ash particles appeared almost non-reacted during the atmospheric transportation, while most of them were mixed with sea salt or other type of particulate matter. Also sulfate of volcanic origin appeared to have been transported to our measurement site, but its contribution to the aerosol mass was minor due the separation of ash-particle and sulfur dioxide plumes shortly after the eruption. The volcanic material had very little effect on PM1 mass concentrations or sub-micron particle number size distributions in the Helsinki area. The aerosol scattering coefficient was increased and visibility was slightly decreased during the episode, but in general changes in aerosol optical properties due to volcanic aerosols seem to be difficult to be distinguished from those induced by other pollutants present in a continental boundary layer. The case investigated here demonstrates clearly the power of combining surface aerosol measurements, dispersion model simulations and satellite measurements in analyzing surface air pollution episodes caused by volcanic eruptions. None of these three approaches alone would be sufficient to forecast, or even to unambiguously identify

  4. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA)

    Science.gov (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.

    2017-12-01

    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  5. Freeze dried samples of volcanic gases - a new method for the determination of trace elements by NAA

    International Nuclear Information System (INIS)

    Bichler, M.; Sortino, F.

    1997-01-01

    A new routine technique for the determination of trace elements in volcanic gases by NAA is presented. For time and money saving reasons this method is applicable to samples, collected by the conventional method. This technique uses evacuated glass bottles, partly filled with NaOH solution to absorb acidic gas components and CO 2 , which is the main constituent of the incondensable gas fraction at ambient conditions. The application of NAA to samples collected by this method shows two main sources of difficulties: drying of NaOH without loosing volatile elements of interest (in particular Hg and Se) and the high activities of 24 Na after neutron irradiation. The first can be avoided by liquid irradiation, thereby limiting the irradiation time, the second excludes the determination of short and medium lived nuclides because of the high γ-background due to 24 Na. A new freeze drying technique enables the application of long irradiation times and therefore the use of long-lived activation products for analysis. The samples of volcanic gases were collected at the fumarole fields of La Fossa volcano on the island Vulcano. Southern Italy. This technique allows very sensitive determinations of trace elements in volcanic gases and adds highly valuable information to the understanding and modeling of volcanic gas sources. (orig.)

  6. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  7. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (˜45°S, Chile)

    Science.gov (United States)

    D'Orazio, M.; Innocenti, F.; Manetti, P.; Tamponi, M.; Tonarini, S.; González-Ferrán, O.; Lahsen, A.; Omarini, R.

    2003-08-01

    Major- and trace-element, Sr-Nd isotopes, and mineral chemistry data were obtained for a collection of volcanic rock samples erupted by the Cay and Maca Quaternary volcanoes, Patagonian Andes (˜45°S, Chile). Cay and Maca are two large, adjacent stratovolcanoes that rise from the Chiloe block at the southern end of the southern volcanic zone (SVZ) of the Andes. Samples from the two volcanoes are typical medium-K, calc-alkaline rocks that form two roughly continuous, largely overlapping series from subalkaline basalt to dacite. The overall geochemistry of the samples studied is very similar to that observed for most volcanoes from the southern SVZ. The narrow range of Sr-Nd isotope compositions ( 87Sr/ 86Sr=0.70389-0.70431 and 143Nd/ 144Nd=0.51277-0.51284) and the major- and trace-element distributions indicate that the Cay and Maca magmas differentiated by crystal fractionation without significant contribution by crustal contamination. This is in accordance with the thin (Maca magmas is investigated by means of the relative concentration of fluid mobile (e.g. Ba) and fluid immobile (e.g. Nb, Ta, Zr, Y) elements and other relevant trace-element ratios (e.g. Sr/Y). The results indicate that small amounts (Maca volcanoes and that, despite the very young age (Maca magma sources to the northern edge of the slab window generated by the subduction of the Chile ridge under the South American plate, we did not find any geochemical evidence for a contribution of a subslab asthenospheric mantle. However, this mantle has been used to explain the peculiar geochemical features (e.g. the mild alkalinity and relatively low ratios between large ion lithophile and high field strength elements) of the Hudson volcano, which is located even closer to the slab window than the Cay and Maca volcanoes are.

  8. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  9. Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block.

    Science.gov (United States)

    Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio

    2017-04-01

    The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit

  10. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  11. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  12. The January 2006 Volcanic-Tectonic Earthquake Swarm at Mount Martin, Alaska

    Science.gov (United States)

    Dixon, James P.; Power, John A.

    2009-01-01

    On January 8, 2006, a swarm of volcanic-tectonic earthquakes began beneath Mount Martin at the southern end of the Katmai volcanic cluster. This was the first recorded swarm at Mount Martin since continuous seismic monitoring began in 1996. The number of located earthquakes increased during the next four days, reaching a peak on January 11. For the next two days, the seismic activity decreased, and on January 14, the number of events increased to twice the previous day's total. Following this increase in activity, seismicity declined, returning to background levels by the end of the month. The Alaska Volcano Observatory located 860 earthquakes near Mount Martin during January 2006. No additional signs of volcanic unrest were noted in association with this earthquake swarm. The earthquakes in the Mount Martin swarm, relocated using the double difference technique, formed an elongated cluster dipping to the southwest. Focal mechanisms beneath Mount Martin show a mix of normal, thrust, and strike-slip solutions, with normal focal mechanisms dominating. For earthquakes more than 1 km from Mount Martin, all focal mechanisms showed normal faulting. The calculated b-value for the Mount Martin swarm is 0.98 and showed no significant change before, during, or after the swarm. The triggering mechanism for the Mount Martin swarm is unknown. The time-history of earthquake occurrence is indicative of a volcanic cause; however, there were no low-frequency events or observations, such as increased steaming associated with the swarm. During the swarm, there was no change in the b-value, and the distribution and type of focal mechanisms were similar to those in the period before the anomalous activity. The short duration of the swarm, the similarity in observed focal mechanisms, and the lack of additional signs of unrest suggest this swarm did not result from a large influx of magma within the shallow crust beneath Mount Martin.

  13. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism

    Science.gov (United States)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Klaver, Gerard Th.; Saunders, Andrew D.

    1996-03-01

    Late Cretaceous mafic volcanic sequences in Western Colombia and in the southern Caribbean have a striking coherence in their chemistry and compositional range which suggests they are part of the same magmatic province. The chemical characteristics of the majority of the mafic lavas are totally unlike those of island arc or marginal basin basalts, so the sequences cannot represent accreted arc terranes. On the other hand their trace element characteristics closely resemble those of Icelandic/Reykjanes Ridge basalts that represent an oceanic plateau formed by extensive decompression melting of an uprising deep mantle plume. The occurrence of komatiites on Gorgona and high-MgO picritic lavas in S.E. Colombia and on Curaçao, representing high temperature melts of the plume tail, confirms this analogy. Likewise, late stage rhyolites within the Colombian mafic volcanics may well be the equivalent of the extensive silicic magmas on Iceland and at Galapagos, possibly formed by remelting of the deep parts of the overthickened basaltic crust above the plume head. These volcanics, plus others around the Caribbean, including the floor of the Central Caribbean, probably all represent part of an oceanic plateau that formed rapidly at the Galapagos hotspot at 88 Ma, and that was too hot and buoyant to subduct beneath the margin of S. America as it migrated westwards with the opening of the South Atlantic, and so was imbricated along the continental margin. Minor arc-like volcanics, tonalites and hornblende leucogabbro veins may represent the products of subduction-flip of normal ocean crust against the buoyant plateau, or hydrous melts developed during imbrication/obduction.

  14. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    Science.gov (United States)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of

  15. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 years after volcanic eruption, while the solar signal and the different

  16. Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2013-11-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780-1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2-3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 yr after volcanic eruption, while the solar signal and the different

  17. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  18. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    Directory of Open Access Journals (Sweden)

    M. Fujiwara

    2015-12-01

    Full Text Available The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR. Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis data sets and 1958–2001 (for four reanalysis data sets, by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2–3 K for 1-year average in the tropical lower stratosphere and weak cooling signals (down to −1 K in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed

  19. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  20. Hierarchical probabilistic regionalization of volcanism for Sengan region in Japan using multivariate statistical techniques and geostatistical interpolation techniques

    International Nuclear Information System (INIS)

    Park, Jinyong; Balasingham, P.; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2004-01-01

    pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate values for each variable at 23949 centers of the chosen 1 km cell grid system that represents the Sengan region. These values formed complete geologic variable vectors at each of the 23,949 one km cell centers

  1. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    Science.gov (United States)

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  2. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    Science.gov (United States)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  3. Seismic reflection data processing in active volcanic areas: an application to Campi Flegrei and Somma Vesuvius offshore (Southern Italy

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2002-06-01

    Full Text Available The Campanian volcanism develops near the sea. Therefore, the geophysical study of the marine environment is a key to a better understanding of the tectonic evolution and the origin of volcanism in the area. An abundance of high quality seismic data in the marine sector, where little direct information is available, is critical to the study of Campanian volcanism. This paper concerns the reprocessing of a seismic reflection dataset acquired in Naples Bay and processed during 1973. Even though the overall data quality was high for that time, of course their acquisition technological limits have been overcome by the new processing. Our reprocessing aimed at: 1 reduction of random noise in the data; 2 removal of unwanted coherent events; 3 reduction of spatial aliasing by means of trace interpolation on Commod Shot Point (CSP gathering; 4 improvement of resolution of the seismic wavelet with spiking deconvolution algorithms and finally 5 reposition of reflectors in their correct locations in the space-TWT domain by means of dip moveout and post-stack time migration. A comparison between the new and old data shows that the new sections are characterized by a much higher S/N ratio. Diffraction hyperbole has been collapsed. Reverberations, ghosts and multiples have been removed or greatly attenuated, especially between the reflectors of interest, allowing us to follow them with more detail and with greater continuity. Furthermore, data resolution has been boosted by the reprocessing, allowing the interpreter to evaluate reflector position and continuity in greater detail. The reinterpretation phase of such lines, that is already in an advanced stage, will therefore allow us to gain new insights into the structural setting of the bay, with the aim of exploring the connection between tectonics and volcanism.

  4. Volcanic Eruptions as the Cause of the Little Ice Age

    Science.gov (United States)

    Zambri, B.; Robock, A.

    2017-12-01

    Both external forcing (solar radiation, volcanic eruptions) and internal fluctuations have been proposed to explain such multi-centennial perturbations as the Little Ice Age. Confidence in these hypotheses is limited due to the limited number of proxies, as well as only one observed realization of the Last Millennium. Here, we evaluate different hypotheses on the origin of Little Ice Age-like anomalies, focusing in particular on the long-term response of North Atlantic and Arctic climate perturbations to solar and volcanic perturbations. For that, we conduct a range of sensitivity tests carried out with the Community Earth System Model (CESM) at the National Center for Atmospheric Research, focusing in particular on the sensitivity to initial conditions and the strength of solar and volcanic forcing. By comparing the climate response to various combinations of external perturbations, we demonstrate nonlinear interactions that are necessary to explain trends observed in the fully coupled system and discuss physical mechanisms through which these external forcings can trigger multidecadal modes of the Atlantic Multidecadal Oscillation and subsequently lead to a Little-Ice-Age-like regime. For that, we capture and compare patterns of the coupled atmosphere-sea-ice-ocean response as revealed through a range of data analysis techniques. We show that the large 1257 Samalas, 1452 Kuwae, and 1600 Huaynaputina volcanic eruptions were the main causes of the multi-centennial glaciation associated with the Little Ice Age.

  5. University of Southern California

    Data.gov (United States)

    Federal Laboratory Consortium — The focus of the University of Southern California (USC) Children''s Environmental Health Center is to develop a better understanding of how host susceptibility and...

  6. Combining Geological and Geophysical Data in Volcanic Hazard Estimation for Dominica, Lesser Antilles

    Science.gov (United States)

    George, O.; Latchman, J. L.; Connor, C.; Malservisi, R.; Connor, L.

    2014-12-01

    Risk posed by volcanic eruptions are generally quantified in a few ways; in the short term geophysical data such as seismic activity or ground deformation are used to assess the state of volcanic unrest while statistical approaches such as spatial density estimates are used for long term hazard assessment. Spatial density estimates have been used in a number of monogenetic volcanic fields for hazard map generation and utilize the age, location and volumes of previous eruptions to calculate the probability of a new event occurring at a given location within this field. In a previously unpublished study, spatial density estimates of the Lesser Antilles volcanic arc showed the island of Dominica to have the highest likelihood of future vent formation. In this current study, this technique was used in combination with relocated seismic events occurring beneath Dominica within the last ~ 20 years as well as InSAR images of ground deformation to generate a hazard map which not only takes into consideration the past events but also the current state of unrest. Here, geophysical data serve as a weighting factor in the estimates with those centers showing more vigorous activity receiving stronger favorability in the assessment for future activity. In addition to this weighting, the bandwidth utilized in the 2D-radially symmetric kernel density function was optimized using the SAMSE method so as to find the value which best minimizes the error in the estimate. The end results of this study are dynamic volcanic hazards maps which will be readily updatable as changes in volcanic unrest occurs within the system.

  7. New evidence for the asthenospheric origin of the Cameroon Volcanic Line from 1D shear wave velocities

    CSIR Research Space (South Africa)

    Tokam, AP

    2013-10-01

    Full Text Available the mantle composition beneath Ethiopia and southern Brazil (Keranen et al., 2009; Julia et al., 2008). Many petrological studies of ultramafic orogenic massifs and ultramafic xenoliths along the CVL (mainly around Mount Cameroon and the Adamawa....N. and Oya, M. 2010. Petrological and chemical variability of peridotite xenoliths from the Cameroon Volcanic Line, West Africa: an evidence from Plume emplacement. Journal of Mineralogical and Petrological Sciences, 107, 57-69. McKenzie, D...

  8. Candidate constructional volcanic edifices on Mercury

    OpenAIRE

    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-01-01

    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  9. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  10. Seismological and Geodynamic Monitoring Network in the "javakheti" Test Zone in the Southern Caucasus

    Science.gov (United States)

    Arakelyan, A.; Babayan, H.; Karakhanyan, A.; Durgaryan, R.; Basilaia, G.; Sokhadze, G.; Bidzinashvili, G.

    2012-12-01

    The Javakheti Highland located in the border region between Armenia and Georgia (sharing a border with Turkey) is an area in the Southern Caucasus of young Holocene-Quaternary volcanism and a region with convergence of a number of active faults. Issues related to the geometry, kinematics and slip-rate of these faults and assessment of their seismic hazard remain unclear in part due to the fragmentary nature of the studies carried out soley within the borders of each of the countries as opposed to region wide. In the frame of the ISTC A-1418 Project "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" the Javakheti Highland was selected as a trans-border test-zone. This designation allowed for the expansion and upgrading of the seismological and geodynamic monitoring networks under the auspices of several international projects (ISTC CSP-053 Project "Development of Communication System for seismic hazard situations in the Southern Caucasus and Central Asia", NATO SfP- 983284 Project "Caucasus Seismic Emergency Response") as well as through joint research programs with the National Taiwan University and Institute of Earth Sciences (IES, Taiwan), Universite Montpellier II (France) and Ecole et Observatoire des Sciences de la Terre-Université de Strasbourg (France). Studies of geodynamic processes, and seismicity of the region and their interaction have been carried out utilizing the newly established seismological and geodynamic monitoring networks and have served as a basis for the study of the geologic and tectonic structure . Upgrading and expansion of seismological and geodynamic networks required urgent solutions to the following tasks: Introduction of efficient online systems for information acquisition, accumulation and transmission (including sattelite systems) from permanent and temporary installed stations, Adoption of international standards for organization and management of databases in GIS

  11. Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura

    Science.gov (United States)

    Ancochea, E.; Brändle, J. L.; Cubas, C. R.; Hernán, F.; Huertas, M. J.

    1996-03-01

    Fuerteventura has been since early stages of its growth the result of three different adjacent large volcanic complexes: Southern, Central and Northern. The definition of these volcanic complexes and their respective growing episodes is based on volcano-stratigraphic, morphological and structural criteria, particularly radial dyke swarms. Each complex has its own prolonged history that might be longer than 10 m.y. During that time, several periods of activity alternating with gaps accompanied by important erosion took place. The evolution of each volcanic complex has been partially independent but all the three are affected by at least three Miocene tectonic phases that controlled considerably their activity. The volcanic complexes are deeply eroded and partially submerged. In the core of the Northern and the Central volcanic complexes there is a set of submarine and plutonic rocks intensely traversed by a dyke swarm, known as the Basal Complex. The Basal Complex has been interpreted in different ways but all previous authors have considered it to be prior to the subaerial shield stage of the island. Here we advance the idea that the Basal Complex represent the submarine growing stage of the volcanic complexes and the hypabyssal roots (plutons and dykes) of their successive subaerial growing episodes. Two seamounts situated nearby, southwest of the island, might be interpreted as remains of two other major volcanoes. These two volcanoes, together with those forming the present emerged island of Fuerteventura, and finally those of Famara and Los Ajaches situated further north on Lanzarote constitute a chain of volcanoes located along a lineation which is subparallel to the northwestern African coastline and which may relate to early Atlantic spreading trends in the area.

  12. Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche

    Science.gov (United States)

    Luhr, James F.; Prestegaard, Karen L.

    1988-12-01

    About 4,300 years ago, 10 km 3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km 2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40-75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km 3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude. Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de

  13. Late Miocene ignimbrites at the southern Puna-northern Sierras Pampeanas border (˜27°S): Stratigraphic correlation

    Science.gov (United States)

    Montero-López, Carolina; Guzmán, Silvina; Barrios, Fabiola

    2015-10-01

    New field observations and petrographic and geochemical data of pyroclastic deposits exposed along the Las Papas valley (border between southern Puna and northern Sierras Pampeanas, Argentina) and further north, lead us to propose a new stratigraphic correlation and classification of the late Miocene volcanism in this area. We redefine the Las Papas, Las Juntas, Aguada Alumbrera and Rosada ignimbrites and define the Agua Caliente and Del Medio ignimbrites. The whole set of ignimbrites are rhyolites and less frequently dacites of calc-alkaline affinity. In the present contribution we divide ignimbrites into the Agua Negra and Rincón groups, based mainly on their geochemical signature. The Agua Negra Group is formed by the Las Papas and Las Juntas ignimbrites, indurated and welded, lithic-rich, with crystal-poor pumices and crystal-rich matrix. The Rincón Group comprises the Agua Caliente, Aguada Alumbrera, Rosada and Del Medio ignimbrites, with variable welding degrees, lithic and crystal content. The greater enrichment of crystals in the matrix in comparison with the crystal content in pumices indicates significant elutriation during flow transport and thus volume estimations are to be considered lower bounds for the actual erupted volume. The total minimum estimated volume for the ignimbrites of the Agua Negra and Rincón groups is 2.8 km3 (2.3 km3 DRE). Field relationships and new analytical data indicate that the different acid ignimbrites that crop out in this small area are related to at least two different magma chambers. The widespread Quaternary volcanism in this area covers the older deposits, thus making it difficult to recognize the volcanic centers that produced these late Miocene ignimbrites.

  14. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  15. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N

    Science.gov (United States)

    Anderson, Melissa O.; Chadwick, William W.; Hannington, Mark D.; Merle, Susan G.; Resing, Joseph A.; Baker, Edward T.; Butterfield, David A.; Walker, Sharon L.; Augustin, Nico

    2017-06-01

    The relationships between tectonic processes, magmatism, and hydrothermal venting along ˜600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.

  16. Monitoring diffuse degassing in monogentic volcanic field during magmatic reactivation: the case of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Morales-Ocaña, C.; Feldman, R. C.; Pointer, Z. R.; Rodríguez, F.; Asensio-Ramos, M.; Melián, G.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    El Hierro (278 km2), the younger, smallest and westernmost island of the Canarian archipelago, is a 5-km-high edifice constructed by rapid constructive and destructive processes in 1.12 Ma, with a truncated trihedron shape and three convergent ridges of volcanic cones. It experienced a submarine eruption from 12 October, 2011 and 5 March 2012, off its southern coast that was the first one to be monitored from the beginning in the Canary Islands. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become a useful geochemical tool to monitor the volcanic activity in this volcanic island. Diffuse CO2 emission has been monitored at El Hierro Island since 1998 in a yearly basis, with much higher frequency in the period 2011-2012. At each survey, about 600 sampling sites were selected to obtain a homogeneous distribution. Measurements of soil CO2 efflux were performed in situ following the accumulation chamber method. During pre-eruptive and eruptive periods, the diffuse CO2 emission released by the whole island experienced significant increases before the onset of the submarine eruption and the most energetic seismic events of the volcanic-seismic unrest (Melián et al., 2014. J. Geophys. Res. Solid Earth, 119, 6976-6991). The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 53.1 g m-2 d-1. Statistical-graphical analysis of the data show two different geochemical populations; background (B) and peak (P) represented by 77.6% and 22.4% of the total data, respectively, with geometric means of 1.8 and 9.2 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the interception center of the three convergent ridges and the north of the island. To estimate the diffuse CO2 emission for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by El Hierro was at 1,150 ± 42 t d-1, value higher than the

  17. A remote sensing assessment of the impact of the 2010 Maule, Chile earthquake (Mw 8.8) on the volcanoes of the southern Andes

    Science.gov (United States)

    Pritchard, M. E.; Welch, M.; Jay, J.; Button, N.

    2011-12-01

    There are tantalizing, but controversial, indications that great earthquakes affect arc-wide volcanic activity. For example, analysis of historic eruptions at volcanoes of the southern Andes has shown that 3-4 eruptions were likely seismically triggered by Mw > 8 earthquakes in the Chile subduction zone -- particularly the 1906 and 1960 earthquakes (e.g., Watt et al., 2009). However, the 27 February 2010 Mw 8.8 Maule, Chile earthquake that ruptured the subduction zone between the 1960 and 1906 earthquakes does not appear to have triggered 3-4 volcanic eruptions in the same area in the 12 months after the event. In an effort to understand the relation between a large earthquake and volcanic unrest, we use a variety of satellite instruments to look for more subtle (i.e., not leading to eruption), but detectable change in thermal or deformation activity at the volcanoes of the southern Andes after the Maule earthquake and its aftershocks. For all of the volcanoes in the catalog of the Smithsonian Institution (approximately 80), we use nighttime MODIS and ASTER data to assess the thermal activity and ALOS InSAR data to characterize the surface deformation before and after the earthquake. The ALOS InSAR data are not ideal for detecting changes in deformation before and after the earthquake because of the small number of acquisitions in austral summer as well as ionospheric and tropospheric artifacts. We estimate that we could detect deformation > 5 cm/year. Similarly, the ASTER and MODIS data suffer respectively from poor temporal and spatial resolution of thermal anomalies. We update previous InSAR work that identified at least 8 areas of volcanic deformation in the southern Andes related to eruptive processes, subsidence of past lava flows, or surface uplift not associated with an eruption (Fournier et al., 2010). Of greatest interest are the two volcanic areas with the largest deformation signals between 2007-2008 (both > 15 cm/yr in the radar line of sight): Laguna

  18. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    Science.gov (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  19. Compositional variation through time and space in Quaternary magmas of the Chyulu Hills Volcanic Province, Kenya

    Science.gov (United States)

    Widom, E.; Kuentz, D. C.

    2017-12-01

    The Chyulu Hills Volcanic Province, located in southern Kenya >100 km east of the Kenya Rift Valley, has produced mafic, monogenetic eruptions throughout the Quaternary. The volcanic field is considered to be an off-rift manifestation of the East African Rift System, and is known for the significant compositional variability of its eruptive products, which range from nephelinites to basanites, alkali basalts, hawaiites, and orthopyroxene-normative subalkaline basalts [1]. Notably, erupted compositions vary systematically in time and space: Pleistocene volcanism, occurring in the northern Chyulu Hills, was characterized by highly silica-undersaturated magmas, whereas Holocene volcanism, restricted to the southern Chyulu Hills, is less silica-understaturated, consistent with a progressive decrease in depth and increase in degree of melting with time, from north to south [1]. Pronounced negative K anomalies, and enriched trace element and Sr-Nd-Pb isotope signatures have been attributed to a metasomatized, amphibole-bearing, sub-continental lithospheric mantle (SCLM) source [2]. Seismic evidence for a partially molten zone in the SCLM beneath this region [3] may be consistent with such an interpretation. We have analyzed Chyulu Hills samples for Os, Hf and high precision Pb isotopes to further evaluate the magma sources and petrogenetic processes leading to systematic compositional variation in time and space. Sr-Nd-Pb-Hf isotope systematics and strong negative correlations of 206Pb/204Pb and highly incompatible trace element ratios with SiO2 are consistent with the progression from a deeper, HIMU-type source to a shallower, EM-type source. Os isotope systematics, however, suggest a more complex relationship; although all samples are more radiogenic than primitive mantle, the least radiogenic values (similar to primitive OIB) are found in magmas with intermediate SiO2, and those with lower or higher SiO2 are more radiogenic. This may be explained by interaction

  20. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    Science.gov (United States)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  1. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  2. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    Science.gov (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  3. Geologic map of the Sunshine 7.5' quadrangle, Taos County, New Mexico

    Science.gov (United States)

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Sunshine 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Sunshine Valley, named for the small locale of Sunshine, is incised by a series of northeast-trending drainages cut into Tertiary and Quaternary alluvial deposits forming an extensive alluvial apron between the east flank of the Sangre de Cristo Mountains and the Rio Grande. These deposits predominantly overlie gently eastward-dipping lava flows of Pliocene Servilleta Basalt erupted from centers west of the map area. Servilleta Basalt lava flows terminate to the south against the elevated topography of three volcanic centers of the Taos Plateau volcanic field. From west to east these are Cerro de la Olla, Cerro Chiflo, and Guadalupe Mountain that are exposed in the southern part of the map area. Remnants of Miocene volcanic rocks are exposed near the southwestern edge of the map area and record evidence of an eroded volcanic terrain underlying deposits of the Taos Plateau volcanic field. These deposits are likely fault bounded to the east, roughly coincident with north to northwest trending, down-to-east faults in the southwestern quarter of the map area. The down-to-east normal faults reflect the basinward migration of the western margin of the Sunshine Valley sub-basin of the southern San Luis Basin.

  4. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

    Science.gov (United States)

    Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan

    2017-04-01

    The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian

  5. Glacial recession in the Tropical Andes from the Little Ice Age: the case of Ampato Volcanic Complex (Southern Peru

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.

    2010-03-01

    Data published over the last decade reveal substantial glacial recession in the tropical Andes since the Little Ice Age (LIA), (Ramirez, et al., 2001; Rabatel, et al., 2005; Rabatel, et al., 2008; Vuille, et al., 2008; Hastenrath, 2009; Jomelli, et al., 2009), and a growing rate of recession since the 1980’s caused by global warming (Ramirez, et al., 2001; Vuille, et al., 2008). Today there is great interest in the evolution of these ice masses due to heightened awareness of climate change and of the strategic importance that glaciers have as a hydrologic resource for communities in arid climate zones in the tropical Andes (Mark, 2008; Vuille et al., 2008). Cordillera Blanca forms part of the Andes Mountains of northern Peru, and is a chosen site for many studies on glacier evolution. Vuille et al. 2008 determined that a considerable area of ice mass was lost at Huascarán-Chopicalqui glacier (18% from 1920-1970) and Astesonraju glacier (20% from 1962-2003). Studies at Coropuna volcano, which has the most extensive glacier field in the western range of southern Peru, also report a strong melting trend that began with only minimal recession from 1955-1986 (4%), but increased to 14% from 1986-2007 (Úbeda et al., 2009). Only a few of the Andes glaciers are consistently monitored, and the most comprehensive data are for Chacaltaya and Zongo glaciers (16º S) in Bolivia. Since the maximum LIA, Chacaltaya has lost 89% of its surface area, particularly in recent years. By 1983, the totaled loss was five times the shrinkage for the period 1940-1963 (Ramirez, et al., 2001). Zongo glacier maintained equilibrium from 1956-1975, but later experienced a period dominated by continuous recession (Soruco, et al., 2009). This study expands current knowledge of glacier evolution since the LIA in the Central Volcanic Zone (CVZ; 14º - 27º S) (Stern, 2004) of the Andes. The study site was chosen in an area that had never been used for preliminary research of this type, concretely

  6. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Science.gov (United States)

    Ruppert, L.F.; Moore, T.A.

    1993-01-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.

  7. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  8. Stratigraphy and structural evolution of southern Mare Serenitatis - A reinterpretation based on Apollo Lunar Sounder Experiment data

    Science.gov (United States)

    Sharpton, V. L.; Head, J. W., III

    1983-01-01

    Two subsurface reflecting horizons have been detected by the Apollo Lunar Sounder Experiment (ALSE) in the southern Mare Serenitatis which appear to be regolith layers more than 2 m thick, and are correlated with major stratigraphic boundaries in the southeastern Mare Serenitatis. The present stratigraphic boundaries in the southeastern Mare Serenitatis. The present analysis implies that the lower horizon represents the interface between the earliest mare unit and the modified Serenitatis basin material below. The depth of volcanic fill within Serenitatis is highly variable, with an average thickness of mare basalts under the ALSE ground track of 1.6 km. Comparisons with the Orientale basin topography suggests that a major increaae in load thickness could occur a few km basinward of the innermost extent of the traverse. The history of volcanic infilling of Mare Serenitatis was characterized by three major episodes of volcanism.

  9. Monitoring of fumarole discharge during the 1975-1982 rifting in Krafla volcanic center, North Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Oskarsson, N.

    1984-09-01

    Fumarole discharge chemistry in the Krafla geothermal field changed regionally during the 1975-1982 rifting activity. The discharge chemistry previously encountered in the Krafla fumarole grounds was masked by a carbon dioxide-rich gas during the first weeks of rifting. The new discharge composition remained unchanged until 1983 when the first signs of recovery of the previous equilibrium composition appeared at the margins of the area. The outgassing carbon dioxide is released from the deep aquifers beneath the area by the interaction of magmatic gas with the hydrothermal system. In addition to juvenile magmatic carbon the outgassing contains carbon released from the hydrothermal system upon reaction with acid magmatic gases. Increased boiling of the hydrothermal fumaroles was induced by the lowering of the partial pressure of steam due to increased gas content in the fumarole conduits. At the center of rifting activity above the magma chamber the fumarole discharge was temporarily mixed with magmatic gases during local effusive activity. Hydrogen was the dominating magmatic gas in that discharge due to the preferred degassing of hydrogen from magma at shallow levels. These ''hydrogen pulses'' increased in magnitude and duration towards the end of rifting in 1982. The discharge chemistry correlates with the expansion of the magma reservoir of the volcano (regional change of long duration) and local volcanism (short-lived change, hydrogen pulses). The chemical monitoring of fumaroles in Krafla shows that the chemical surveillance of volcanos needs rapid methods for sampling and complete chemical analysis which can be interpreted in terms of reactions and magmatic processes.

  10. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    Science.gov (United States)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  11. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    Science.gov (United States)

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  12. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  13. Geochemical features of the Cretaceous alkaline volcanics in the area of Morado hill, Jachal town, San Juan, Argentina

    International Nuclear Information System (INIS)

    Perez, L.

    2010-01-01

    This paper is about the alkaline volcanic rocks that crop out at the Morado hill located in the southern end of the Mogna ranges, which are part of the Eastern border of the pre mountain in the San Juan province, Argentina.The petrography and geochemistry study of the alkaline volcanics has allowed to classify them as tephrite basanite or basanite nephelinite, with strong alkaline chemical affinity, showing a characteristic composition of within plate geochemistry environment. The radimetric analysis, K-Ar data, has shown an average 90 ∓ 8 m.y. age for this rocks, (Cingolani et al. 1984) pointing out the Upper Cretaceous (lower section) stratigraphical position for the suite. The discussion of the results makes conspicuous the relationships of these alkaline rocks with others of the central and northwestern regions of the country that allowed to establish an alkaline petrographic province

  14. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  15. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  16. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry

    Science.gov (United States)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.

    2014-12-01

    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  17. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

    Science.gov (United States)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.

    2014-01-01

    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  18. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  19. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands

    Science.gov (United States)

    Ford, Anabel; Rose, William I.

    1995-07-01

    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  20. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  1. Active Volcanism on Io as Seen by Galileo SSI

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    -150 km high, long-lived, associated with high-temperature hot spots) may result from silicate lava flows or shallow intrusions interacting with near-surface SO2. A major and surprising result is that ~30 of Io's volcanic vents glow in the dark at the short wavelengths of SSI. These are probably due to thermal emission from surfaces hotter than 700 K (with most hotter than 1000 K), well above the temperature of pure sulfur volcanism. Active silicate volcanism appears ubiquitous. There are also widespread diffuse glows seen in eclipse, related to the interaction of energetic particles with the atmosphere. These diffuse glows are closely associated with the most active volcanic vents, supporting suggestions that Io's atmopshere is dominated by volcanic outgassing. Globally, volcanic centers are rather evenly distributed. However, 14 of the 15 active plumes seen by Voyager and/or Galileo are within 30?? of the equator, and there are concentrations of glows seen in eclipse at both the sub- and antijovian points. These patterns might be related to asthenospheric tidal heating or tidal stresses. Io will continue to be observed during the Galileo Europa Mission, which will climax with two close flybys of Io in late 1999. ?? 1998 Academic Press.

  2. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu

    Directory of Open Access Journals (Sweden)

    C. T. Plummer

    2012-11-01

    Full Text Available Volcanic eruptions are an important cause of natural climate variability. In order to improve the accuracy of climate models, precise dating and magnitude of the climatic effects of past volcanism are necessary. Here we present a 2000-yr record of Southern Hemisphere volcanism recorded in ice cores from the high accumulation Law Dome site, East Antarctica. The ice cores were analysed for a suite of chemistry signals and are independently dated via annual layer counting, with 11 ambiguous years at 23 BCE, which has presently the lowest error of all published long Antarctic ice cores. Independently dated records are important to avoid circular dating where volcanic signatures are assigned a date from some external information rather than using the date it is found in the ice core. Forty-five volcanic events have been identified using the sulphate chemistry of the Law Dome record. The low dating error and comparison with the NGRIP (North Greenland Ice Core Project volcanic records (on the GICC05 timescale suggest Law Dome is the most accurately dated Antarctic volcanic dataset, which will improve the dating of individual volcanic events and potentially allow better correlation between ice core records, leading to improvements in global volcanic forcing datasets. One of the most important volcanic events of the last two millennia is the large 1450s CE event, usually assigned to the eruption of Kuwae, Vanuatu. In this study, we review the evidence surrounding the presently accepted date for this event, and make the case that two separate eruptions have caused confusion in the assignment of this event. Volcanic sulphate deposition estimates are important for modelling the climatic response to eruptions. The largest volcanic sulphate events in our record are dated at 1458 CE (Kuwae?, Vanuatu, 1257 and 422 CE (unidentified.

  3. Volcanic impediments in the progressive development of pre-Columbian civilizations in the Ecuadorian Andes

    Science.gov (United States)

    Hall, Minard L.; Mothes, Patricia A.

    2008-10-01

    Archaeological investigations in Ecuador have proposed that there appear to be hiatus or anomalous jumps in the progressive development of pre-Columbian indigenous cultures, based upon the fact that their ceramics and tools demonstrate abrupt advances in their sophistication at several horizons in the soil profile. Because some of these horizons are clearly associated with volcanic ash layers, archaeologists have sought a causal relation with volcanism, that is, the eruptive events or their products severely interfered with the early inhabitants, resulting in their abandonment of certain areas. Geological studies of the young volcanoes in the Ecuadorian Andes carried out during the past two decades now allow us to make a more thorough evaluation of the role of volcanism during the Holocene. This contribution briefly describes the principal Holocene volcanic events and the distribution of the corresponding eruptive products found along the InterAndean Valley, from southern Colombia to central Ecuador. Only those events that were sufficiently large that they could have had a detrimental effect on the valley's early residents are discussed. Dacitic and rhyolitic ash flows, as well as numerous debris flows (lahars) have occurred frequently and their deposits cover many valleys and floodplains, where early inhabitants probably settled. The enormous Chillos Valley lahar, associated with the 4500 yBP eruption of Cotopaxi volcano, buried soils containing ceramics of the early Formative Period. However, the greatest impact upon mankind was probably not these short-lived violent events, but rather the burying of settlements and agricultural fields by ash fallout, the effect of which may have lasted hundreds of years. Ash fall layers are observed in pre-Columbian cultural horizons in the soil profile, occurring in the InterAndean Valley, the lower flanks of the Andes, and along Ecuador's Pacific coast, the oldest corresponding to the 5800 yBP eruption of Cotopaxi. This brief

  4. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications

    Science.gov (United States)

    He, Haiyang; Li, Yalin; Wang, Chengshan; Zhou, Aorigele; Qian, Xinyu; Zhang, Jiawei; Du, Lintao; Bi, Wenjun

    2018-03-01

    The tectonic evolutionary history of the Lhasa and Qiangtang collision zones remains hotly debated because of the lack of pivotal magmatic records in the southern Qiangtang subterrane, central Tibet. We present zircon U-Pb dating, whole-rock major and trace-element geochemical analyses, and Sr-Nd isotopic data for the newly discovered Biluoco volcanic rocks from the southern Qiangtang subterrane, central Tibet. Zircon U-Pb dating reveals that the Biluoco volcanic rocks were crystallized at ca. 95 Ma. The samples are characterized by low SiO2 (50.26-54.53 wt%), high Cr (109.7-125.92 ppm) and Ni (57.4-71.58 ppm), and a high Mg# value (39-56), which plot in the magnesian andesites field on the rock classification diagram. They display highly fractionated rare earth element patterns with light rare earth element enrichment ([La/Yb]N = 21.04-25.24), high Sr/Y (63.97-78.79) and no negative Eu anomalies (Eu/Eu* = 0.98-1.04). The Biluoco volcanic rocks are depleted in Nb, Ta and Ti and enriched in Ba, Th, U and Pb. Moreover, the eight samples of Biluoco volcanic rocks display constant (87Sr/86Sr)i ratios (0.70514-0.70527), a positive εNd(t) value (2.16-2.68) and younger Nd model ages (0.56-0.62 Ga). These geochemical signatures indicate that the Biluoco volcanic rocks were most likely derived from partial melting of the mantle wedge peridotite metasomatized by melts of subducted slab and sediment in the subducted slab, invoked by asthenospheric upwelling resulting from the slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere. Identification of ca. 95 Ma Biluoco magnesian andesites suggests they were a delayed response of slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere at ca. 100 Ma.

  5. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    Science.gov (United States)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  6. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  7. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  8. Geologic structure and volcanic history of the Yanaizu-Nishiyama (Okuaizu) geothermal field, Northeast Japan

    Energy Technology Data Exchange (ETDEWEB)

    Mizugaki, Keiko [Geological Survey of Japan, Geothermal Research Dept., Higashi Tsukuba (Japan)

    2000-04-01

    The Yanaizu-Nishiyama geothermal field, also known as Okuaizu, supports a 65 MWe geothermal power station. It is located in the western part of Fukushima Prefecture, northeast Japan. This field is characterised by rhyolitic volcanism of about 0.3-0.2 Ma that formed Sunagohara volcano. Drillcore geology indicates that volcanism began with a caldera-forming eruption in the center of this field, creating a 2-km-diameter funnel-shaped caldera. Subsequently, a fault-bounded block including this caldera subsided to form a 5-km-wide lake that accumulated lake sediments. Post-caldera volcanism formed lava domes and intrusions within the lake, and deposited ash-flow tuffs in and around the lake. The hydrothermal system of this field is strongly controlled by subvertical faults that have no relation to the volcanism. The principal production zone occurs at a depth of 1.0-2.6 km within fractured Neogene formations along two northwest-trending faults to the southeast of the caldera. These faults also formed fracture zones in the lake sediments, but there was no apparent offset of the sediments. Stratigraphic studies suggest that post-caldera activities of Sunagohara volcano have migrated southeastward to the present high-temperature zone. The source magma of Sunagohara volcano may contribute to the thermal potential of this field. (Author)

  9. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  10. Deformation of a Volcanic Edifice by Pore Pressurization: An Analog Approach

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.

    2015-12-01

    Volcanic flank destabilization, preceded by pressurization-induced surface deformation or weakening, presents a significant hazard at stratovolcanoes with ample supply of magmatic volatiles or preexisting hydrothermal systems as in Bezymianny- and Bandai-type eruptions, respectively. Deformation is also an important sign of the nature of unrest at large calderas such as Long Valley, USA. Previous studies of volcanic inflation have focused primarily on the role of ascending magma. Relatively few studies have centered on surface deformation caused by pressurization from other volcanic fluids, including exsolved volatiles and pressurized hydrothermal systems. Most investigations of pore-pressurization have focused on numerical modelling of pore pressure transients. In analog experiments presented here, pore-filling fluids are injected into the base of a damp sand medium without exceeding dike propagating pressures, simulating the pressurization and bulk-permeable flow of volatile fluids through volcanic systems. The experiments examine surface deformation from a range of source depths and pressures as well as edifice geometries. 3D imaging is possible through use of the Microsoft® Kinect™ sensor, which allows for the generation of high-resolution, high frame rate, lab-scale Digital Elevation Models (DEMs). After initial processing to increase signal-to-noise ratio, surface deformation is measured using the DEM time-series generated by the Kinect™. Analysis of preliminary experiments suggests that inflation is possible up to approx. 10 % of pressure source depth. We also show that the Kinect™ sensor is useful in analog volcanological studies, an environment to which it is well-suited.

  11. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, L F; Moore, T A [US Geological Survey, Reston, VA (USA). National Center

    1993-02-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ([lt] 5 cm) and high in ash ([gt] 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and Al phosphates, quartz that luminesces in the blue colour range, and euhedral to subhedral pyrooxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in the organic colour range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. 29 refs., 8 figs., 3 tabs.

  12. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2011-07-01

    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  13. Volcanism on Jupiter's moon Io and its relation to interior processes

    Science.gov (United States)

    Hamilton, Christopher

    2013-04-01

    Jupiter's moon Io is the most volcanically active body in the Solar System and offers insight into processes of tidal heating, melt generation, and magma ascent. Investigating these processes contributes to a better understanding of Io's geologic history, internal structure, and tidal dissipation mechanisms, as well as to understanding similar processes operating on other tidally-heated worlds (e.g., Europa, Enceladus, and some exoplanets). Four recent developments provide new observational constraints that prompt re-examination of the relationships between Io's surficial geology and interior structure. These developments include: (1) completion of the first 1:15,000,000 scale geologic map of Io based on a synthesis of Voyager and Galileo data; (2) re-interpretation of Galileo magnetometer data, which suggests that Io has a globally continuous subsurface magma ocean; (3) new global surveys of the power output from volcanic centers on Io; and (4) identification of an offset between volcano concentrations and surface heat flux maxima predicted by solid body tidal heating models. In this study, the spatial distributions of volcanic hotspots and paterae on Io are characterized using distance-based clustering techniques and nearest neighbor statistics. Distance-based clustering results support a dominant role for asthenospheric heating within Io, but show a 30-60° eastward offset in volcano concentrations relative to locations of predicted surface heat flux maxima. The observed asymmetry in volcano concentrations, with respect to the tidal axis, cannot be explained by existing solid body tidal heating models. However, identification of a global magma ocean within Io raises the intriguing possibility that a fluid tidal response—analogous to the heating of icy satellites by fluid tidal dissipation in their liquid oceans—may modify Io's thermal budget and locations of enhanced volcanism. The population density of volcanoes is greatest near the equator, which also

  14. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    impact of volcanic emissions on health have been almost exclusively focused on acute responses, or the effects of one-off eruptions (Horwell and Baxter, 2006). However, little attention has been paid to any long-term impacts on human health in the population centers around volcanoes as a result of exposure to passive emissions from active geothermal systems. The role of volcano tourism is also recognized as an important contributor to the economy of volcanic islands in the Lesser Antilles. However, if it is to be promoted as a sustainable sector of the tourism industry tourists, tour guides, and vendors must be made aware of the potential health hazards facing them in volcanic environments.

  15. Dynamics of a "low-enrichment high-retention" upwelling center over the southern Senegal shelf

    Science.gov (United States)

    Ndoye, Siny; Capet, Xavier; Estrade, Philippe; Sow, Bamol; Machu, Eric; Brochier, Timothée.; Döring, Julian; Brehmer, Patrice

    2017-05-01

    Senegal is the southern tip of the Canary upwelling system. Its coastal ocean hosts an upwelling center which shapes sea surface temperatures between latitudes 12° and 15°N. Near this latter latitude, the Cape Verde headland and a sudden change in shelf cross-shore profile are major sources of heterogeneity in the southern Senegal upwelling sector (SSUS). SSUS dynamics is investigated by means of Regional Ocean Modeling System simulations. Configuration realism and resolution (Δx≈ 2 km) are sufficient to reproduce the SSUS frontal system. Our main focus is on the 3-D upwelling circulation which turns out to be profoundly different from 2-D theory: cold water injection onto the shelf and upwelling are strongly concentrated within a few tens of kilometers south of Cape Verde and largely arise from flow divergence in the alongshore direction; a significant fraction of the upwelled waters are retained nearshore over long distances while travelling southward under the influence of northerly winds. Another source of complexity, regional-scale alongshore pressure gradients, also contributes to the overall retention of upwelled waters over the shelf. Varying the degree of realism of atmospheric and oceanic forcings does not appreciably change these conclusions. This study sheds light on the dynamics and circulation underlying the recurrent sea surface temperature pattern observed during the upwelling season and offers new perspectives on the connections between the SSUS physical environment and its ecosystems. It also casts doubt on the validity of upwelling intensity estimations based on simple Ekman upwelling indices at such local scales.

  16. NOVAC - Network for Observation of Volcanic and Atmospheric Change: Data archiving and management

    Science.gov (United States)

    Lehmann, T.; Kern, C.; Vogel, L.; Platt, U.; Johansson, M.; Galle, B.

    2009-12-01

    The potential for volcanic risk assessment using real-time gas emissions data and the recognized power of sharing data from multiple eruptive centers were the motivation for a European Union FP6 Research Program project entitled NOVAC: Network for Observation of Volcanic and Atmospheric Change. Starting in 2005, a worldwide network of permanent scanning Differential Optical Absorption Spectroscopy (DOAS) instruments was installed at 26 volcanoes around the world. These ground-based remote sensing instruments record the characteristic absorption of volcanic gas emissions (e.g. SO2, BrO) in the ultra-violet wavelength region. A real-time DOAS retrieval was implemented to evaluate the measured spectra, thus providing the respective observatories with gas emission data which can be used for volcanic risk assessment and hazard prediction. Observatory personnel at each partner institution were trained on technical and scientific aspects of the DOAS technique, and a central database was created to allow the exchange of data and ideas between all partners. A bilateral benefit for volcano observatories as well as scientific institutions (e.g. universities and research centers) resulted. Volcano observatories were provided with leading edge technology for measuring volcanic SO2 emission fluxes, and now use this technology for monitoring and risk assessment, while the involved universities and research centers are working on global studies and characterizing the atmospheric impact of the observed gas emissions. The NOVAC database takes into account that project members use the database in a variety of different ways. Therefore, the data is structured in layers, the top of which contains basic information about each instrument. The second layer contains evaluated emission data such as SO2 column densities, SO2 emission fluxes, and BrO/SO2 ratios. The lowest layer contains all spectra measured by the individual instruments. Online since the middle of 2006, the NOVAC database

  17. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  18. A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri

    2015-10-01

    Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.

  19. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the beginning of the 20th century, geologist Thomas A. Jaggar, Jr., argued that, to fully understand volcanic and associated hazards, the expeditionary mode of studying eruptions only after they occurred was inadequate. Instead, he fervently advocated the use of permanent observatories to record and measure volcanic phenomena—at and below the surface—before, during, and after eruptions to obtain the basic scientific information needed to protect people and property from volcanic hazards. With the crucial early help of American volcanologist Frank Alvord Perret and the Hawaiian business community, the Hawaiian Volcano Observatory (HVO) was established in 1912, and Jaggar’s vision became reality. From its inception, HVO’s mission has centered on several goals: (1) measuring and documenting the seismic, eruptive, and geodetic processes of active Hawaiian volcanoes (principally Kīlauea and Mauna Loa); (2) geological mapping and dating of deposits to reconstruct volcanic histories, understand island evolution, and determine eruptive frequencies and volcanic hazards; (3) systematically collecting eruptive products, including gases, for laboratory analysis; and (4) widely disseminating observatory-acquired data and analysis, reports, and hazard warnings to the global scientific community, emergency-management authorities, news media, and the public. The long-term focus on these goals by HVO scientists, in collaboration with investigators from many other organizations, continues to fulfill Jaggar’s career-long vision of reducing risks from volcanic and earthquake hazards across the globe.

  20. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  1. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  2. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  3. The unzipping of Africa and South America; New insights from the Etendeka and younger volcanic events along the Angola/Namibia margin.

    Science.gov (United States)

    Jerram, D. A.

    2015-12-01

    The volcanic margin along Angola is relatively poorly constrained. This study uses new petrographic, geochronological and geochemical observations on a new sample set collected along the margin to help understand the various types and relative timings of volcanic events along the margin. This new study has identified 3 main volcanic events that occur at ~100Ma (Sumbe event 1), 90-92Ma (Serra de Neve (SDN)-Elefantes event 2) and 80-81Ma (Namibe event 3), with the oldest event in the north of the margin and younging southwards. This is contrasting with the main Etendeka pulse in Namibia at around 130 Ma. There is a marked variety of igneous rocks along the margin with a grouping of evolved alkaline rocks in the central SDN-Elefantes section, basic submarine volcanics in the north, and basanite eruptions in the southern section. There is some overlap with geochemical types along the margin. The Sumbe event contains predominantly submarine volcanics and shallow Intrusions. SDN-Elefantes rocks have a mixed type but with a distinctive feldspar rich evolved alkali suite of rocks (nepheline syenites and variations around this composition) which occur as lava flows and shallow intrusions as well as making up the core of the SDN complex. The SDN complex itself is analogous in size to the main volcanic centres in Namibia (such as Messum, Brandberg etc.) and suggests that large volcanic feeding centres are still active along the margin as young as 90ma. These in turn will form large volcano-topographic features. In the south the Ponta Negra and Canico sites mainly contain basanites in the form of lava flows, invasive flows and shallow intrusions. At Canico one intrusive plug was sampled with a similar composition to the evolved SDN-Elefantes suite. In all three events it is clear that the volcanic systems have interacted with the sedimentary systems, in some cases dynamically, in others with regional implications for volcano-tectonic uplift. Specific thanks is given for

  4. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  5. Late Paleozoic to Jurassic chronostratigraphy of coastal southern Peru: Temporal evolution of sedimentation along an active margin

    Science.gov (United States)

    Boekhout, F.; Sempere, T.; Spikings, R.; Schaltegger, U.

    2013-11-01

    We present an integrated geochronological and sedimentological study that significantly revises the basin and magmatic history associated with lithospheric thinning in southern coastal Peru (15-18°S) since the onset of subduction at ˜530 Ma. Until now, estimating the age of the sedimentary and volcanic rocks has heavily relied on paleontologic determinations. Our new geochronological data, combined with numerous field observations, provide the first robust constraints on their chronostratigraphy, which is discussed in the light of biostratigraphical attributions. A detailed review of the existing local units simplifies the current stratigraphic nomenclature and clarifies its absolute chronology using zircon U-Pb ages. We observe that the Late Paleozoic to Jurassic stratigraphy of coastal southern Peru consists of two first-order units, namely (1) the Yamayo Group, a sedimentary succession of variable (0-2 km) thickness, with apparently no nearby volcanic lateral equivalent, and (2) the overlying Yura Group, consisting of a lower, 1-6 km-thick volcanic and volcaniclastic unit, the Chocolate Formation, and an upper, 1-2 km-thick sedimentary succession that are in markedly diachronous contact across the coeval arc and back-arc. We date the local base of the Chocolate Formation, and thus of the Yura Group, to 216 Ma, and show that the underlying Yamayo Group spans a >110 Myr-long time interval, from at least the Late Visean to the Late Triassic, and is apparently devoid of significant internal discontinuities. The age of the top of the Chocolate Formation, i.e. of the volcanic arc pile, varies from ˜194 Ma to less than ˜135 Ma across the study area. We suggest that this simplified and updated stratigraphic framework can be reliably used as a reference for future studies.

  6. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic

  7. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    Science.gov (United States)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  8. Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor

    Science.gov (United States)

    Delph, J. R.; Levander, A.; Niu, F.

    2017-12-01

    The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc

  9. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    Science.gov (United States)

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  10. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  11. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  12. Zooming into the Paraná-Etendeka silicic volcanics, southern Brasil: a physical volcanological approach

    Science.gov (United States)

    Gualda, G. A. R.; Gravley, D. M.; Harmon, L. J.; Tramontano, S.; Luchetti, A. C. F.; Nardy, A.

    2015-12-01

    Paraná-Etendeka volcanism led to the opening of the Atlantic Ocean during the early Cretaceous. Most Paraná research has focused on the regional scale geochemistry and geochronology. Complementarily, we have taken a physical volcanological approach to elucidate the styles and locations of silicic eruptions with a focus on extrusive vs. explosive varieties, and an ultimate goal to characterise the crustal magmatic conditions. Through satellite to microscopic observations we can zoom from volcanic edifice and deposit morphologies, remarkably preserved in the Mesozoic landscape, to primary microscopic textures. Lava domes appear in clusters with high relief and are surrounded by lower flat-topped terraces comprised of multiple tabular-shaped packages with conspicuous horizontal jointing. Joint thickness coincides with layering from mm-scale laminations to larger lens-shaped blobs up to 20 cm thick and more than a metre long. These layered deposits appear to be compressed and/or stretched into the finer laminations and grade up into the fatter lens-shaped blobs. In other regions, extensive plateaus dominate the landscape with flat-lying flow packages continuous over 10's of kilometres and possibly further. Rheomorphism is evident in places with sub-parallel joints that grade up into a zone of deformation where curvilinear to overturned joint patterns reflect lateral forcing in a more ductile flow regime. Microscopically the blobs and surrounding matrix are almost indistinguishable except for subtle differences in spherulite textures, zonal alteration and distribution of crystal sizes. Although our research is relatively nascent, our observations suggest eruptions may have ranged from edifice building effusive ones to more explosive ones, albeit possibly relatively low fire fountains feeding hybridised lava/pyroclastic flows. Some of these flows are extensive, tens to possibly hundreds of kilometres long, consistent with high eruption rates of hot magma. These

  13. Computer analysis to the geochemical interpretation of soil and stream sediment data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2010-01-01

    In southern Uruguay there are several known occurrences of base metal sulphide mineralization within an area of Precambrian volcanic sedimentary rocks. Regional geochemical stream sediment reconnaissance surveys revealed new polymetallic anomalies in the same stratigraphic zone. Geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in one of these anomalous areas is presented.

  14. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    KAUST Repository

    Predybaylo, Evgeniya; Wittenberg, Andrew; Stenchikov, Georgiy L.

    2015-01-01

    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth's radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  15. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    KAUST Repository

    Predybaylo, Evgeniya

    2015-04-01

    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth\\'s radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  16. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  17. Magnetic minerals from volcanic Ultisols as heterogeneous Fenton catalysts

    International Nuclear Information System (INIS)

    Aravena, S.; Pizarro, C.; Rubio, M. A.; Cavalcante, L. C. D.; Garg, V. K.; Pereira, M. C.; Fabris, J. D.

    2010-01-01

    This study was devoted to the evaluation of the effectiveness of Fenton catalysts, based on magnetically-concentrated portions of iron oxide-rich sand fractions from two magnetic Ultisols, derived from volcanic materials of southern Chile. The samples were labeled according to the municipality where the sample sites are geographically located, namely Metrenco and Collipulli, and were characterized with Moessbauer spectroscopy at 298 K and saturation magnetization (σ) measurements. Moessbauer data revealed a complex magnetic hyperfine structure for these magnetic portions from both soil-sand materials, suggesting relatively complex mineral assemblages. The monitored rate of H 2 O 2 decomposition via heterogeneous Fenton reaction revealed that materials from the Collipulli soil are more efficient Fenton catalyst than are those from the Metrenco soil. The reasons for these differences are from now on being explored on basis of a more detailed chemical investigation of these samples.

  18. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  19. Partial delamination of continental mantle lithosphere, uplift-related crust mantle decoupling, volcanism and basin formation: a new model for the Pliocene Quaternary evolution of the southern East-Carpathians, Romania

    Science.gov (United States)

    Chalot-Prat, F.; Girbacea, R.

    2000-11-01

    A geodynamic model is proposed for the Mid-Miocene to Quaternary evolution of the southern East-Carpathians in order to explain the relationships between shallow and deep geological phenomena that occurred synchronously during late-collision tectonics. In this area, an active volcanic zone cross-cuts since 2 My the suture between the overriding Tisza-Dacia and subducting European continental plates. Mafic calc-alkaline and alkaline magmas (south Harghita and Persani volcanoes) erupted contemporaneously. These magmas were supplied by partial melting of the mantle lithosphere of the subducting, and not of the overriding, plate. In an effort to decipher this geodynamically a-typical setting of magma generation, the spatial and temporal distribution of shallow and deep phenomena was successively examined in order to establish the degree of their interdependence. Our model indicates that intra-mantle delamination of the subducting European plate is the principal cause of a succession of events. It caused upwelling of the hot asthenosphere below a thinned continental lithosphere of the Carpathians, inducing the uplift of the lithosphere and its internal decoupling at the Moho level by isostatic and mostly thermal effects. During this uplift, the crust deformed flexurally whilst the mantle deformed in a ductile way. This triggered decompressional partial melting of the uppermost mantle lithosphere. Flexural deformation of the crust induced its fracturing, allowing for the rapid ascent of magmas to the surface, as well as reactivation of an older detachment horizon at the base of the Carpathian nappe stack above which the Brasov, Ciuc and Gheorghieni hinterland basins formed by extension and gravity spreading. The rapid subsidence of the Focsani foreland basin is controlled by the load exerted on the lithosphere by the delaminated mantle slab that is still attached to it. In this model, crust-mantle decoupling, magma genesis and volcanism, local near-surface hinterland

  20. Continental breakup of the Central Atlantic and the initiation of the southern Central Atlantic Magmatic Province: revisiting the role of a mantle plume

    Science.gov (United States)

    Rohrman, M.

    2017-12-01

    Central Atlantic breakup is strongly associated with magmatism of the Central Atlantic Magmatic Province (CAMP), although the exact mechanism, as well as the temporal and spatial relations, have so far been poorly constrained. Here, I propose a mantle plume origin for the 200 Ma southern Central Atlantic Province (CAMP), based on an original plume conduit location off southeastern Florida, linking Early Jurassic rift systems: One rift arm is defined by the Takutu rift in present-day Guyana and Brazil, extending all the way past the Demerara Rise. This rift is linking up with a second arm from the Bahamas basin to the Blake Plateau basin. Finally, there is the third, failed rift between the Demerara Rise and the Guinea Plateau. This rift system post-dates earlier Triassic rift systems along the US eastcoast and in the subsurface of Arkansas, Texas, the Gulf of Mexico and northern South America. Chronostratigraphic analysis of outcrop, wells and seismic data near the proposed conduit, suggest initial Rhaetian uplift, followed by dike/sill intrusions feeding flood basalts and the initiation of igneous centers at the triple point. The latter resulted in various subsequent uplift and subsidence events, as a result of volcanic construction and erosion. The load of the volcanic edifice generated a point of weakness, allowing favorable plate stresses to generate rift systems, propagating away from the rift junction and eventually break up Pangea. The breakup is marked by the magmatic breakup (un)conformity on seismic data, separating hotspot/plume sourced Seaward Dipping reflectors (SDRs) within the continental rift system, from early ocean spreading sourced SDRs. As ocean spreading continued, the volcanic construction evolved into a hotspot track, now recognized as the Bahamas island trail. Time progression of this hotspot track resembles the present-day Iceland hotspot track, as suggested by plate reconstructions (Figure 1). Based on melting depth estimates from Sm

  1. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  2. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  3. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  4. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    Directory of Open Access Journals (Sweden)

    Paterno R Castillo

    2014-09-01

    Full Text Available The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS has a deep mantle contribution (Hilton et al., 2011. New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014.

  5. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  6. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  7. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    least 1.3-1.5 Tg of SO2 (Krotkov et al 2011, Clarisse et al 2012). This was probably the largest sulfur yield from an explosive eruption since Pinatubo and Hudson in 1991 (Deshler et al 2006, Krotkov et al 2010). Within two weeks, volcanic aerosol had been detected at elevations of 15-20 km within the upper troposphere/lower stratosphere above north Africa and southern Eurasia; and within a month, the aerosol had been detected by lidar instruments on every continent in the northern hemisphere, from 20°-45°N. The aerosol, presumed to be dominated by sulfate, persisted for the period of observation (June-September 2011), and led to a small but significant stratospheric aerosol optical depth (AOD) perturbation (average ~0.02). While this is an order of magnitude lower than global AOD perturbations following the most significant eruptions of the 20th century (e.g. Stothers 1996), it is nonetheless substantially larger than estimates of the typical 'nonvolcanic' stratospheric aerosol background ( Bali, Indonesia) Bull. Volcanol. 74 1521-36 Smithsonian Institution 2011 Nabro. First historically observed eruption began 13 June 2011 Bull. Glob. Volcanism Netw. 36 (9) (www.volcano.si.edu/reports/bulletin/contents.cfm?issue=3609) Stohl A et al 2011 Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption Atmos. Chem. Phys. 11 4333-51 Stothers R B 1996 Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period 1881-1960 J. Geophys. Res. 101 3901-20 Symons G J (ed) 1888 The Eruption of Krakatoa and Subsequent Phenomena (London: Trubner and Co) Thomas H E and Prata A J 2011 Sulphur dioxide as a volcanic ash proxy during the April-May 2010 eruption of Eyjafjallajökull Atmos. Chem. Phys. 11 6871-80 Walker J C, Carboni E, Dudhia A and Grainger R G 2012 Improved detection of sulphur dioxide in volcanic plumes using satellite

  8. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  9. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  10. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  11. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  12. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  13. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  14. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  15. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    Science.gov (United States)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo

  16. Geochemical characteristics of late Quaternary sediments from the southern Aegean Sea (Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    A. SIOULAS

    2000-12-01

    Full Text Available Ten cores from the southern Aegean Sea have been logged for their lithological composition and seventy-three sub-samples were analysed for the determination of major and trace elements concentrations. Four lithological units were identified, namely, mud, volcanic, turbidite and sapropel. On the basis of the “Z-2” Minoan ash layer radiocarbon age sedimentation rates for the southern Aegean Sea were estimated at 3.26 to 4.15 cm kyr -1. Simple correlation analysis revealed three groups of elements associated with: (1 biogenic carbonates; (2 terrigenous alumino-silicates and (3 sapropelic layers. R-mode factor analysis applied on the carbonate-free corrected data-set defined four significant factors: (1 the “detrital alumino-silicate factor” represented by Si, Al, Na, K, Rb, Zr, Pb and inversely related to Ca, Mg, and Sr; (2 a “hydrothermal factor” loaded with Cr, Ni, Co, Cu, Fe; (3 the “volcanic ash factor” with high loadings for Ti, Al, Fe, Na and (4 a “sapropel factor” represented by Ba, Mo, and Zn. High factor scores for the “hydrothermal factor” were observed in sediment samples proximal to Nisyros Isl., suggesting a potential hydrothermal influence. Red-brown oxides and crusts dredged from this area support further this possibility. The use of factor analysis enabled for a better understanding of the chemical elements associations that remained obscured by correlation analysis.

  17. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  18. Amphibole Thermometry and a Comparison of Results from Plutonic and Volcanic Systems

    Science.gov (United States)

    Sherman, T. M.; Putirka, K. D.; De Los Reyes, A. M. A.; Ratschbacher, B. C.

    2015-12-01

    Recent work (Ridolfi and Renzulli 2014) shows that amphiboles can be used to infer magmatic temperatures, even without knowledge of co-existing liquids. Here, we apply this approach, using new calibrations, to investigate felsic-mafic magma interactions, in a volcanic (Lassen Volcanic Center, a Cascade volcano) and plutonic (the Jurassic Guadalupe Igneous Complex) system. Preliminary data suggest that volcanic processes, as might be expected, preserve higher temperatures than plutonic materials (on average, volcanic amphiboles recorded 907±57.3°C while plutonic amphiboles recorded 764±59.7°C). We also find that the average T of a given mineral grain decreases with increased mineral size such that those crystallized below 800°C sometimes reach sizes beyond ~1mm, while those near 900°C appear truncated to ~0.3mm. It is not clear if T is the only control on amphibole crystal growth; however, our results would imply that larger grains not only require more time to grow but require continued undercooling. Significant cooling or heating is also recorded in many volcanically- and plutonically-grown grains, which may reflect transitioning between magmas of different T and composition. Core-to-rim cooling trends (with a common T of drop of 80oC) likely represent mafic-to-felsic magma transitions, whereas core-to-rim heating of similar magnitudes indicate a felsic-mafic transition. Some grains, though, exhibit a constant T (in the range 700-900°C) from core to rim, which perhaps indicates some shielding from magma mixing processes. Amphiboles might thus provide a reliable record of the intensity of magma mingling and mixing experienced by any particular enclave. Interestingly, volcanically-derived amphiboles appear to mostly record cooling towards the rims, while their plutonic counterparts tend to experience heating. It would thus appear that at Lassen, amphiboles are unaffected by later mafic magma recharge, but at the GIC, the plutonic amphiboles are more likely to

  19. Mainshock-Aftershocks Clustering Detection in Volcanic Regions

    Science.gov (United States)

    Garza Giron, R.; Brodsky, E. E.; Prejean, S. G.

    2017-12-01

    Crustal earthquakes tend to break their general Poissonean process behavior by gathering into two main kinds of seismic bursts: swarms and mainshock-aftershocks sequences. The former is commonly related to volcanic or geothermal processes whereas the latter is a characteristic feature of tectonically driven seismicity. We explore the mainshock-aftershock clustering behavior of different active volcanic regions in Japan and its comparison to non-volcanic regions. We find that aftershock production in volcanoes shows mainshock-aftershocks clustering similar to what is observed in non-volcanic areas. The ratio of volanic areas that cluster in mainshock-aftershocks sequences vs the areas that do not is comparable to the ratio of non-volcanic regions that show clustering vs the ones that do not. Furthermore, the level of production of aftershocks for most volcanic areas where clustering is present seems to be of the same order of magnitude, or slightly higher, as the median of the non-volcanic regions. An interesting example of highly aftershock-productive volcanoes emerges from the 2000 Miyakejima dike intrusion. A big seismic cluster started to build up rapidly in the south-west flank of Miyakejima to later propagate to the north-west towards the Kozushima and Niijima volcanoes. In Miyakejima the seismicity showed a swarm-like signature with a constant earthquake rate, whereas Kozushima and Niijima both had expressions of highly productive mainshock-aftershocks sequences. These findings are surprising given the alternative mechanisms available in volcanic systems for releasing deviatoric strain. We speculate that aftershock behavior might hold a relationship with the rheological properties of the rocks of each system and with the capacity of a system to accumulate or release the internal pressures caused by magmatic or hydrothermal systems.

  20. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  1. Transition from phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano (Kamchatka) in 2013-2016 due to volcanic cone collapse

    Science.gov (United States)

    Gorbach, Natalia; Plechova, Anastasiya; Portnyagin, Maxim

    2017-04-01

    Zhupanovsky volcano, situated 70 km north from Petropavlovsk-Kamchatsky city, resumed its activity in October 2013 [3]. In 2014 and in the first half of 2015, episodic explosions with ash plumes rising up to 6-8 km above sea level occurred on Priemish cone - one of four cones on the Zhupanovsky volcanic edifice [1]. In July 2015 after a series of seismic and explosive events, the southern sector of the active cone collapsed. The landslide and lahar deposits resulted from the collapse formed a large field on the volcano slopes [2]. In November 2015 and January-March 2016, a series of powerful explosions took place sending ash up to 8-10 km above sea level. No pure magmatic, effusive or extrusive, activity has been observed on Zhupanovsky in 2013-2016. We have studied the composition, morphology and textural features of ash particles produced by the largest explosive events of Zhupanovsky in the period from October 2013 to March 2016. The main components of the ash were found to be hydrothermally altered particles and lithics, likely originated by the defragmentation of rocks composing the volcanic edifice. Juvenile glass fragments occur in very subordinate quantities. The maximum amount of glass particles (up to 7%) was found in the ash erupted in January-March 2016, after the cone collapse. We suggest that the phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano in 2013-2016 was initially caused by the intrusion of a new magma batch under the volcano. The intrusion and associated degassing of magma led to heating, overpressure and instability in the hydrothermal system of the volcano, causing episodic, predominantly phreatic explosions. Decompression of the shallow magmatic and hydrothermal system of the volcano due to the cone collapse in July 2015 facilitated a larger involvement of the magmatic component in the eruption and more powerful explosions. [1] Girina O.A. et al., 2016 Geophysical Research Abstracts Vol. 18, EGU2016-2101, doi: 10

  2. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  3. Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Byers, F.M. Jr.; Warner, J.B.

    1981-01-01

    Detailed subsurface studies in connection with the Nevada Nuclear Waste Storage Investigations program are being conducted to investigate the stratigraphic and structural features of volcanic rocks underlying Yucca Mountain, a volcanic highland situated along the western boundary of the Nevada Test Site in southern Nevada. As part of this continuing effort, drill hole USW-G1 was cored from 292 ft to a depth of 6000 ft from March to August 1980. The stratigraphic section is composed of thick sequences of ash-flow tuff and volcanic breccia interbedded with subordinate amounts of fine- to coarse-grained volcaniclastic rocks. All rocks are of Tertiary age and vary in composition from rhyolite to dacite. The 3005-ft level in the drill hole represents a significant demarcation between unaltered and altered volcanic rocks. For the most part, tuff units above 3005 ft appear devitrified and show little secondary alteration except within tuffaceous beds of Calico Hills, where the rock contains 60 to 80% zeolites. Below 3005 ft, most rocks show intermittent to pervasive alteration to clay minerals and zeolites. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the Topopah Spring Member of the Paintbrush Tuff, flow breccia, and near fault zones. Nearly 88% of shear and joint surfaces show evidence of coatings. Approximately 40% of the fractures were categorized as completely healed. Rock quality characteristics as defined by the core index indicate that greater amounts of broken and lost core are commonly associated with (1) the densely welded zone of the Topopah Spring, (2) highly silicified zones, and (3) fault zones

  4. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?

    Science.gov (United States)

    Baldini, James U L; Brown, Richard J; McElwaine, Jim N

    2015-11-30

    The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.

  5. Assessment of the atmospheric impact of volcanic eruptions

    Science.gov (United States)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  6. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  7. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  8. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  9. Modeling of hydrothermal circulation applied to active volcanic areas. The case of Vulcano (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, M. [Dip. Scienze della Terra, Posa (Italy)

    1995-03-01

    Modeling of fluid and heat flows through porous media has been diffusely applied up to date to the study of geothermal reservoirs. Much less has been done to apply the same methodology to the study of active volcanoes and of the associated volcanic hazard. Hydrothermal systems provide direct information on dormant eruptive centers and significant insights on their state of activity and current evolution. For this reason, the evaluation of volcanic hazard is also based on monitoring of hydrothermal activity. Such monitoring, however, provides measurements of surface parameters, such as fluid temperature or composition, that often are only representative of the shallower portion of the system. The interpretation of these data in terms of global functioning of the hydrothermal circulation can therefore be highly misleading. Numerical modeling of hydrothermal activity provides a physical approach to the description of fluid circulation and can contribute to its understanding and to the interpretation of monitoring data. In this work, the TOUGH2 simulator has been applied to study the hydrothermal activity at Vulcano (Italy). Simulations involved an axisymmetric domain heated from below, and focused on the effects of permeability distribution and carbon dioxide. Results are consistent with the present knowledge of the volcanic system and suggest that permeability distribution plays a major role in the evolution of fluid circulation. This parameter should be considered in the interpretation of monitoring data and in the evaluation of volcanic hazard at Vulcano.

  10. Crustal structure, evolution, and volcanic unrest of the Alban Hills, Central Italy

    Science.gov (United States)

    Chiarabba, C.; Amato, A.; Delaney, P.T.

    1997-01-01

    The Alban Hills, a Quaternary volcanic center lying west of the central Apennines, 15-25 km southeast of Rome, last erupted 19ka and has produced approximately 290 km3 of eruptive deposits since the inception of volcanism at 580 ka. Earthquakes of moderate intensity have been generated there at least since the Roman age. Modern observations show that intermittent periods of swarm activity originate primarily beneath the youngest features, the phreatomagmatic craters on the west side of the volcano. Results from seismic tomography allow identification of a low-velocity region, perhaps still hot or partially molten, more than 6 km beneath the youngest craters and a high-velocity region, probably a solidified magma body, beneath the older central volcanic construct. Thirty centimeters of uplift measured by releveling supports the contention that high levels of seismicity during the 1980s and 1990s resulted from accumulation of magma beneath these craters. The volume of magma accumulation and the amount of maximum uplift was probably at least 40 ?? 106 m3 and 40 cm, respectively. Comparison of newer levelings with those completed in 1891 and 1927 suggests earlier episodes of uplift. The magma chamber beneath the western Alban Hills is probably responsible for much of the past 200 ka of eruptive activity, is still receiving intermittent batches of magma, and is, therefore, continuing to generate modest levels of volcanic unrest. Bending of overburden is the most likely cause of the persistent earthquakes, which generally have hypocenters above the 6-km-deep top of the magma reservoir. In this view, the most recent uplift and seismicity are probably characteristic and not precursors of more intense activity.

  11. Submarine Volcanic Eruptions and Potential Analogs for Venus

    Science.gov (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  12. Ciclos tectónicos, volcánicos y sedimentarios del Cenozoico del sur de Mendoza-Argentina (35°-37°S y 69°30'W Cenozoic tectonic, volcanic and sedimentary cycles in southern Mendoza Province, Argentina (35°-37°S y 69°30'W

    Directory of Open Access Journals (Sweden)

    Ana María Combina

    2011-01-01

    Full Text Available En este trabajo se describe la estratigrafía sedimentaria y volcánica asociada a los procesos de deformación de las unidades con edades del Cretácico Tardío al Plioceno Tardío aflorantes en el sur de Mendoza, Argentina, entre los ríos Atuel y Barrancas en el ámbito de la Cordillera Principal. Se proponen tres ciclos tectovolcano-sedimentarios, limitados por discordancias regionales generadas por la acción de las Fases Incaica, Quechua, Pehuenche y Diaguita. El primer ciclo comprende las unidades volcánicas y sedimentarias del Cretácico Superior hasta el Oligoceno Superior (Formaciones Roca y Pircala-Coihueco y el Ciclo Eruptivo Molle. El segundo abarca desde el Oligoceno Tardío al Mioceno Tardío (Formación Agua de la Piedra y las Andesitas Huincán. Por último, el tercer ciclo comprende desde el Mioceno Tardío al Plioceno (Formaciones Butaló, Pincheiras, Loma Fiera, Río Diamante y las Andesitas La Brea.This article describes the volcanic and sedimentary stratigraphy and their associated proces-ses with the Andean deformation during the Late Cretaceous to Late Pliocene. The studied área is located between the Atuel and Barrancas rivers and the Main Cordillera, in southern Mendoza, Argentina. Three tectovolcano-sedimentary cycles limited by regional discordances (Inca, Quechua, Pehuenche and Diaguita are proposed. The first comprises Upper Oligocene to Upper Miocene volcanic and sedimentary units (Roca and Pircala-Coihueco formations and the Volcanic Cycle Molle. The second extends from the Late Oligocene to Late Miocene (Agua de la Piedra Formation and the Huincán Andesites volcanic cycle. Finally, the third cycle ranges from the Late Miocene to Pliocene (Butaló, Pincheiras, Loma Fiera and Rio Diamante formations and La Brea Andesites.

  13. The Teles Pires volcanic province: A paleogeoproterozoic silicic-dominated large igneous province in southwest Amazon craton and tectonic implications

    International Nuclear Information System (INIS)

    Leite, Jayme Alfredo Dexheimer; Saes, Gerson Souza; Macambira, Moacir Jose Buenano

    2001-01-01

    Large Igneous Provinces (LIPs) are important features of the Earth history especially recognized during Paleo to Mezosoic times when they are related to the break up of supercontinents (Coffin and Eldhom, 1994). These provinces occur in several different tectonic settings such as volcanic passive margins, submarine ridges and continental and oceanic plateaux. Mafic-dominanted provinces are the most well known among the LIPs and the best examples are the Karoo, Kerguelem and Ontong-Java. LIPs including an important silicic component have been described in some basaltic provinces of southern Africa (Milner et al. 1992). More recently, silicic-dominated LIPs have been recognized in eastern Australia (Bryan et al., 2000), in southern South America (Pankhurst et al. 1998) and in Antartica Penninsula (Riley and Leat, 1999). The common characteristics of this kind of LIP include: 1) large volume of silicic rocks with dominance of ignimbrites, 2) active over 40 to 50 m.y.; and 3) spatially and temporally associated with plate break up. In this paper we present the main geologic and geochronologic characteristics of the Teles Pires volcanic province from southwest Amazon Craton, which allow its classification as a Paleoprotorozoic silicic-dominated LIP. Geologic implications of this suggestion includes the existence of a large cratonic plate as old as 1.81Ga for the Amazon Craton, therefore the proposed 1.85-1.55 Ga magmatic arc of Rio Negro-Juruena Province should be reviewed (au)

  14. Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation

    Science.gov (United States)

    Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.

    2018-04-01

    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.

  15. Age of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Lindsay, J.; Leonard, G.S.

    2009-01-01

    In 2008 a multi-disciplinary research programme was launched, a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland (DEVORA). A major aspiration of DEVORA is development of a probabilistic hazard model for the Auckland Volcanic Field (AVF). This will be achieved by investigating past eruption magnitude-frequency relationships and comparing these with similar data from analogous volcanic fields. A key data set underpinning this is an age database for the AVF. To this end a comprehensive dating campaign is planned as part of DEVORA. This report, Age of the Auckland Volcanic Field, is a synthesis of all currently available age data for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from all previous work is collated and summarised, so that gaps in current knowledge can be identified and addressed. (author). 60 refs., 7 figs., 31 tabs.

  16. The Cambrian-Ordovician rocks of Sonora, Mexico, and southern Arizona, southwestern margin of North America (Laurentia): chapter 35

    Science.gov (United States)

    Page, William R.; Harris, Alta C.; Repetski, John E.; Derby, James R.; Fritz, R.D.; Longacre, S.A.; Morgan, W.A.; Sternbach, C.A.

    2013-01-01

    Cambrian and Ordovician shelf, platform, and basin rocks are present in Sonora, Mexico, and southern Arizona and were deposited on the southwestern continental margin of North America (Laurentia). Cambrian and Ordovician rocks in Sonora, Mexico, are mostly exposed in scattered outcrops in the northern half of the state. Their discontinuous nature results from extensive Quaternary and Tertiary surficial cover, from Tertiary and Mesozoic granitic batholiths in western Sonora, and from widespread Tertiary volcanic deposits in the Sierra Madre Occidental in eastern Sonora. Cambrian and Ordovician shelf rocks were deposited as part of the the southern miogeocline on the southwestern continental margin of North America.

  17. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin

    Science.gov (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  18. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  19. New 40Ar / 39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: Support for the mantle plume hypothesis

    Science.gov (United States)

    Geldmacher, J.; Hoernle, K.; Bogaard, P. v. d.; Duggen, S.; Werner, R.

    2005-08-01

    The role of mantle plumes in the formation of intraplate volcanic islands and seamount chains is being increasingly questioned. Particular examples are the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. New 40Ar / 39Ar ages and Sr-Nd-Pb isotope geochemistry of volcanic rocks from seamounts northeast of the Madeira Islands (Seine and Unicorn) and northeast of the Canary Islands (Dacia and Anika), however, provide support for the plume hypothesis. The oldest ages of shield stage volcanism from Canary and Madeira volcanic provinces confirm progressions of increasing age to the northeast. Average volcanic age progression of ∼1.2 cm/a is consistent with rotation of the African plate at an angular velocity of ∼0.20° ± 0.05 /Ma around a common Euler pole at approximately 56° N, 45° W computed for the period of 0-35 Ma. A Euler pole at 35° N, 45° W is calculated for the time interval of 35-64 Ma. The isotope geochemistry further confirms that the Madeira and Canary provinces are derived from different sources, consistent with distinct plumes having formed each volcanic group. Conventional hotspot models, however, cannot easily explain the up to 40 m.y. long volcanic history at single volcanic centers, long gaps in volcanic activity, and the irregular distribution of islands and seamounts in the Canary province. A possible explanation could involve interaction of the Canary mantle plume with small-scale upper mantle processes such as edge-driven convection. Juxtaposition of plume and non-plume volcanism could also account for observed inconsistencies of the classical hotspot concept in other volcanic areas.

  20. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  1. Ammonia emission from a permanent grassland on volcanic soil after the treatment with dairy slurry and urea

    Science.gov (United States)

    Salazar, F.; Martínez-Lagos, J.; Alfaro, M.; Misselbrook, T.

    2014-10-01

    Ammonia (NH3) is an air pollutant largely emitted from agricultural activities including the application of livestock manures and fertilizers to grassland. This gas has been linked with important negative impacts on natural ecosystems. In southern Chile, the use of inorganic and organic fertilizers (e.g. slurries) has increased in cattle production systems over recent years, heightening the risk of N losses to the wider environment. The objectives of this study were to evaluate on permanent grasslands on a volcanic ash soil in southern Chile: 1) the N loss due to NH3 volatilization following surface application of dairy slurry and urea fertilizer; and 2) the effect of a urease inhibitor on NH3 emissions from urea fertilizer application. Small plot field experiments were conducted over spring, fall, winter and summer seasons, using a system of wind tunnels to measure ammonia emissions. Ammonia losses ranged from 1.8 (winter) to 26.0% (fall) and 3.1 (winter) to 20.5% (summer) of total N applied for urea and slurry, respectively. Based on the readily available N applied (ammoniacal N for dairy slurry and urea N for urea fertilizer), losses from dairy slurry were much greater, at 16.1 and 82.0%, for winter and summer, respectively. The use of a urease inhibitor proved to be an effective option to minimize the N loss due NH3 volatilization from urea fertilizer, with an average reduction of 71% across all seasons. The results of this and other recent studies regarding N losses suggest that ammonia volatilization is the main pathway of N loss from grassland systems in southern Chile on volcanic ash soils when urea and slurry are used as an N source. The use of good management practices, such as the inclusion of a urease inhibitor with urea fertilizer could have a beneficial impact on reducing N losses due NH3 volatilization and the environmental and economic impact of these emissions.

  2. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  3. Lahar—River of volcanic mud and debris

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Vallance, James W.

    2018-05-09

    Lahar, an Indonesian word for volcanic mudflow, is a mixture of water, mud, and volcanic rock flowing swiftly along a channel draining a volcano. Lahars can form during or after eruptions, or even during periods of inactivity. They are among the greatest threats volcanoes pose to people and property. Lahars can occur with little to no warning, and may travel great distances at high speeds, destroying or burying everything in their paths.Lahars form in many ways. They commonly occur when eruptions melt snow and ice on snow-clad volcanoes; when rains fall on steep slopes covered with fresh volcanic ash; when crater lakes, volcano glaciers or lakes dammed by volcanic debris suddenly release water; and when volcanic landslides evolve into flowing debris. Lahars are especially likely to occur at erupting or recently active volcanoes.Because lahars are so hazardous, U.S. Geological Survey scientists pay them close attention. They study lahar deposits and limits of inundation, model flow behavior, develop lahar-hazard maps, and work with community leaders and governmental authorities to help them understand and minimize the risks of devastating lahars.

  4. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  5. Improved Near Real Time WRF-Chem Volcanic Emission Prediction and Impacts of Ash Aerosol on Weather.

    Science.gov (United States)

    Stuefer, M.; Webley, P. W.; Hirtl, M.

    2017-12-01

    We use the numerical Weather Research Forecasting (WRF) model with online Chemistry (WRF-Chem) to investigate the regional effects of volcanic aerosol on weather. A lot of observational data have become available since the Icelandic eruption of Eyjafjallajökull in spring 2010. The observed plume characteristics and meteorological data have been exploited for volcanic WRF-Chem case studies. We concluded that the Eyjafjallajökull ash plume resulted in significant direct aerosol effects altering the state of the atmosphere over large parts of Europe. The WRF-Chem model runs show near surface temperature differences up to 3ºC, altered vertical stability, changed pressure- and wind fields within the atmosphere loaded with ash aerosol. The modeled results have been evaluated with lidar network data, and ground and balloon based observations all over Europe. Besides case studies, we use WRF-Chem to build an improved volcanic ash decision support system that NOAA can use within the Volcanic Ash Advisory Center (VAAC) system. Realistic eruption source parameter (ESP) estimates are a main challenge in predicting volcanic emission dispersion in near real time. We implemented historic ESP into the WRF-Chem preprocessing routine, which can be used as a first estimate to assess a volcanic plume once eruption activity is reported. In a second step, a range of varying plume heights has been associated with the different ash variables within WRF-Chem, resulting in an assembly of different plume scenarios within one WRF-Chem model run. Once there is plume information available from ground or satellite observations, the forecaster has the option to select the corresponding ash variable that best matches the observations. In addition we added an automatic domain generation tool to create near real time WRF-Chem model runs anywhere on the globe by reducing computing expenses at the same time.

  6. Volcanic styles at Alba Patera, Mars: implications of lava flow morphology to the volcanic history

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process

  7. Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Giggenbach, W.F. (Department of Scientific and Industrial Research, Petone (New Zealand). Chemistry Div.); Soto, R.C. (Instituto Costarricense de Electricidad, San Jose (Costa Rica))

    1992-07-01

    The Guanacaste Geothermal Province encompasses three major geothermal systems, each centered on its respective volcanic structure: Rincon de la Vieja to the NW, Miravalles in the center and Tenorio to the SE. Each shows corresponding sets of surface manifestations: vapor discharges from fumaroles and steam-heated pools at altitudes >500 m; lower temperature SO{sub 4}-Cl springs on the lower slopes of the respective volcano; and cooler neutral Cl springs to the S of the volcanic chain, at altitudes <500 m. The production of HCO{sub 3}-rich waters is limited to a narrow belt stretching to the S of Miravalles volcano. Chemical and isotopic evidence suggests that the neutral Cl waters, also discharged from deep wells, are derived from a more primitive Cl-SO{sub 4} water formed by transfer of readily mobilised, originally magmatic constituents to deeply circulating groundwater. (author).

  8. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  9. Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium

    Science.gov (United States)

    Liu, Fei; Li, Jinbao; Wang, Bin; Liu, Jian; Li, Tim; Huang, Gang; Wang, Zhiyuan

    2017-08-01

    Detection and attribution of El Niño-Southern Oscillation (ENSO) responses to radiative forcing perturbation are critical for predicting the future change of ENSO under global warming. One of such forcing perturbation is the volcanic eruption. Our understanding of the responses of ENSO system to explosive tropical volcanic eruptions remains controversial, and we know little about the responses to high-latitude eruptions. Here, we synthesize proxy-based ENSO reconstructions, to show that there exist an El Niño-like response to the Northern Hemisphere (NH) and tropical eruptions and a La Niña-like response to the Southern Hemisphere (SH) eruptions over the past millennium. Our climate model simulation results show good agreement with the proxy records. The simulation reveals that due to different meridional thermal contrasts, the westerly wind anomalies can be excited over the tropical Pacific to the south of, at, or to the north of the equator in the first boreal winter after the NH, tropical, or SH eruptions, respectively. Thus, the eastern-Pacific El Niño can develop and peak in the second winter after the NH and tropical eruptions via the Bjerknes feedback. The model simulation only shows a central-Pacific El Niño-like response to the SH eruptions. The reason is that the anticyclonic wind anomaly associated with the SH eruption-induced southeast Pacific cooling will excite westward current anomalies and prevent the development of eastern-Pacific El Niño-like anomaly. These divergent responses to eruptions at different latitudes and in different hemispheres underline the sensitivity of the ENSO system to the spatial structure of radiative disturbances in the atmosphere.

  10. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  11. Effects of volcanic eruptions on China's monsoon precipitation over the past 700 years

    Science.gov (United States)

    Zhuo, Z.; Gao, C.

    2013-12-01

    Tropical volcanic eruptions were found to affect precipitation especially in Asia and Africa monsoon region. However, studies with different types of eruptions suggested different impacts as well as the spatial patterns. In this study, we combined the Monsoon Asia Drought Atlas (MADA, [Cook et al., 2010]) and the Chinese Historical Drought Disaster Index (CHDDI) compiled from the historic meteorological records to study the effect of volcanic eruptions on China's monsoon precipitation over the past 700 years. Histories of past volcanism were compiled from the IVI2[Gao et al., 2008] and Crowley2013[Crowley and Unterman, 2013] reconstructions. Volcanic events were classified into 2×Pinatubo, 1×Pinatubo , ≥5 Tg sulfate aerosols injection in the northern hemisphere (NH) stratosphere for IVI2; and NH sulfate flux more than 20/15/10/5 kg km-2 for Crowley2013. In both cases, average MADA show a drying trend over mainland China from year zero(0) to year three(+3) after the eruption; and the more sulfate aerosol injected into the NH stratosphere or the larger the sulfate flux, the more severe this drying trend seem to reveal. In comparison, a wetting trend was found in the eruption year with Southern Hemisphere (SH) only injections. Superposed epoch analysis with a 10,000 Monte Carlo resampling procedure showed that 97.9% (96.9%) of the observed MADA values are statistically significant at the 95% (99%) confidence level. The drying is probably caused by a reduction of the latent heat flux due to volcanic aerosol' cooling effect, leading to the weakening of south Asian monsoon and decrease of moisture vapor over tropical oceans, which contribute to a reduced moisture flux over china. Spatial distribution of the average MADA show a southward movement of the driest areas in eastern China from year zero to year three after the 1×Pinatubo and 2×Pinatubo eruptions, whereas part of north china experienced unusual wetting condition. This is in good agreement with CHDDI, which

  12. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall

    Science.gov (United States)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo

    2016-04-01

    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  13. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  14. Inside the volcanic boiler room: knowledge exchange among stakeholders of volcanic unrest

    Science.gov (United States)

    Gottsmann, Joachim; Christie, Ryerson; Bretton, Richard

    2014-05-01

    The knowledge of the causative links between subsurface processes, resulting monitoring signals and imminent eruption is incomplete. As a consequence, hazard assessment and risk mitigation strategies are subject to uncertainty. Discussion of unrest and pre-eruptive scenarios with uncertain outcomes are central during the discourse between a variety of stakeholders in volcanic unrest including scientists, emergency managers, policy makers and the public. Drawing from research within the EC FP7 VUELCO project, we argue that knowledge exchange amongst the different stakeholders of volcanic unrest evolves along three dimensions: 1) the identification of knowledge holders (including local communities) and their needs and expectations, 2) vehicles of communication and 3) trust. In preparing products that feed into risk assessment and management, scientists need to ensure that their deliverables are timely, accurate, clear, understandable and cater to the expectations of emergency managers. The means and content of communication amongst stakeholders need to be defined and adhered to. Finally, efficient and effective interaction between stakeholders is ideally based on mutual trust between those that generate knowledge and those that receive knowledge. For scientists, this entails contextualising volcanic hazard and risk in the framework of environmental and social values. Periods of volcanic quiescence are ideally suited to test established protocols of engagement between stakeholders in preparation for crises situations. The different roles of stakeholders and associated rules of engagement can be scrutinised and reviewed in antecessum rather than ad-hoc during a crisis situation to avoid issues related to distrust, loss of credibility and overall poor risk management. We will discuss these themes drawing from exploitation of research results from Mexico and Ecuador.

  15. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  16. Volcanic risk perception in rural communities along the slopes of mount Cameroon, West-Central Africa

    Science.gov (United States)

    Njome, Manga S.; Suh, Cheo E.; Chuyong, George; de Wit, Maarten J.

    2010-11-01

    A study of volcanic risk perception was carried out in rural communities around the Mount Cameroon volcano between August and December 2008. The results indicate that risk perception reflects the levels of threat to which a resident population has been exposed to previously. Results of 70 responses to questionnaires show that local knowledge of hazards is high. Most respondents correctly indicated that earthquake and lava flow activities would affect resident population most in the future. By contrast, respondent's ability to adapt and protect themselves from the effects of future eruptions is poor, and inhabitants would likely shift responsibility for their protection to the requisite experts. This study confirms that there is little knowledge of any existing emergency plan, little or no educational outreach activities, but a high perceived need for information about and implementation of such actions. Knowledge about natural threats is found to be directly related to past exposure to volcanic hazard, and is significantly higher for people living along the southern than those along the northern slopes of Mt. Cameroon. The data also show that the media remains the most accessible channel for hazard communication, and that the internet is a growing information source that should be used to reach out to the younger generation. It is clear from the results of this study that major education and information efforts are required to improve the public's knowledge, confidence in the government, and growing self-reliance, in order to improve both collective and individual capacity to face future volcanic emergencies.

  17. Focused volcanism and growth of a slow spreading segment (Mid-Atlantic Ridge, 35°N)

    Science.gov (United States)

    Rabain, Aline; Cannat, Mathilde; Escartín, Javier; Pouliquen, Gaud; Deplus, Christine; Rommevaux-Jestin, Céline

    2001-02-01

    Using off axis bathymetry, gravity and magnetic data, we studied the formation of a prominent seamount chain across segment OH1 (Mid-Atlantic Ridge, 35°N), and its relation to the past segmentation of the area. We also studied the size and shape of the seamounts to understand the processes leading to their formation. The chain is elongated in the spreading direction, and extends from the present day segment center to ˜6 Ma on both flanks. It coincides with a pronounced low in the residual mantle Bouguer gravity anomaly, suggesting thicker crust and thus more abundant magmatism than in surrounding areas. Magnetic anomalies are well defined over the seamount chain, consistent with formation on or near the axis. The seamounts within the chain are larger on average than those from other areas of the Mid-Atlantic Ridge, reflecting higher magma volumes and fluxes during eruptions. The distribution of seamounts suggests a focused magmatic source, located beneath the eastern side of the ridge axis, at a constant distance (˜45 km) from the Oceanographer transform fault. A V-shaped trend defines the southern end of OH1 and indicates that the segment propagated rapidly southwards, increasing in length from 50 to 90 km. The onset of propagation at ˜6 Ma coincided with the initiation of the volcanic chain, suggesting that magma supply at that time was focused at the end of the segment rather than at its center, as is typical for Mid-Atlantic Ridge segments. We propose that this unusual configuration is a consequence of the cold edge effect of the Oceanographer fracture zone. We also propose that enhanced and focused magmatism beneath the seamount chain may have caused the rapid southward propagation of OH1 over the past ˜6 Ma.

  18. A revised Lithostratigraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-01-01

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain

  19. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  20. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  1. Investigating the Deep Seismic Structure of Volcan de Colima, Mexico

    Science.gov (United States)

    Gardine, M. D.; Reyes, T. D.; West, M. E.

    2006-12-01

    We present early-stage results from a novel seismic investigation at Volcan de Colima. The project is a collaboration between the Observatorio Vulcanologico de la Universidad de Colima and the University of Alaska Fairbanks. In January 2006, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL-supported Colima Volcano Deep Seismic Experiment (CODEX). They are scheduled to be in the field for eighteen months. Data from the first several months of the deployment have been used to characterize both the regional seismicity and the seismicity of the volcano, as recorded by the temporary array. Colima volcano has an unusually well-distributed suite of earthquakes on the local, regional and teleseismic scale. Data recorded close to the edifice provide an opportunity to explore the daily explosive activity exhibited by the volcano. The diversity of regional and teleseismic earthquake source regions make Colima an ideal place to probe the deep magmatic structure of a prodigous volcanic center. Results will be interpreted in the context of pre-existing petrologic models to address the relative role of crust and mantle in governing the evolution of an andesitic arc volcano.

  2. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  3. The management of abandoned sites at the basin collieries of center and southern France and the procedure of stoppage of mining works

    International Nuclear Information System (INIS)

    Barriere, J.P.

    2003-01-01

    The basin collieries of center and southern France (HBCM) have launched since 1993 the procedures of stoppage of mining works as foreseen by the mining rights and which will lead to the renunciation of their 148 concessions once the remediation of the sites has been completed. In order to cope with the enormous work of file and work follow up, a rigorous procedure and organization has been implemented in order to obtain all necessary prefecture by-laws by the end of 2005. (J.S.)

  4. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  5. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  6. Principal geological characteristics of the volcanic-type uranium deposits in China

    International Nuclear Information System (INIS)

    Fang Xiheng

    2009-01-01

    The volcanic-type uranium deposits in China distribute in two gigantic active belts, that is, circum-Pacific belt and latitudinal structure belt crossing Europe-Asia. The volcanic-type uranium deposits occur in continental volcanics,which are mainly composed of acid or alkali volcanics. Based on the study of 87 Sr/ 86 Sr initial ratio, REE distribution pattern and melt inclusion thermometry of volcanics, it is found that volcanic magma originated mainly from high-temperature melt of sialsphere and they were propably contaiminated partially by mantle materials. The volcanic eruption was controlled by regional fault and formed eruption belt, the beld can be divided into several sub-belt which was comprised by a serial eruption centres. The volcanic-type uranium deposits occur by the side of down-faulted red basin or associated with basic swarm. This means that the uranium mineralization is related to deep tectonics-magmatism. The paper proposes that the moderate erosion of volcanic belt is an important precondition to find uranium deposits. (authors)

  7. Preliminary review and summary of the potential for tectonic, seismic, and volcanic activity at the Nevada Test Site defense waste disposal site

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1983-03-01

    A change from compressional to extensional tectonics, which occurred about 17 m.y. ago, marks the emergence of the present tectonic regime in the southern Great Basin. Crustal extension is continuing at the present time, oriented in a NW-SE direction in the NTS region. Concurrently with the onset of crustal extension a system of NW- and NE-trending shear zones developed, along which mutual offset has occurred. Present seismic and tectonic activity in the NTS region is concentrated along the intersections of the shear zones and in areas of deep basin formation. Natural historic seismicity of the NTS region has been low to moderate. Seismic hazard assessments suggest a maximum magnitude 6-7 earthquake, associated with a maximum peak acceleration of 0.7 to 0.9 g, is probable for the NTS. A return period of 12,700 to 15,000 y for the maximum peak acceleration indicates a relatively low seismic hazard. Silicic volcanism in the NTS region was active from 16 to 6 m.y. ago, followed by a transition to basaltic volcanism. The tectonic settings most favorable for Quaternary basaltic activity are areas of young basin-range extension, caldera ring fracture zones, and intersections of conjugate shear zones. Probability calculations for the Yucca Mountain waste repository result in a volcanic disruption hazard of 10 - 8 to 10 - 9 /y. This value is extremely low and is probably representative of the hazard at Frenchman Flat. However, due to its tectonic setting, Frenchman Flat may be an area conducive to future basaltic volcanism; further investigation is needed to properly assess volcanic hazard

  8. Eocene volcanism and the origin of horizon A

    Science.gov (United States)

    Gibson, T.G.; Towe, K.M.

    1971-01-01

    A series of closely time-equivalent deposits that correlate with seismic reflector horizon A exists along the coast of eastern North America. These sediments of Late-Early to Early-Middle Eocene age contain an authigenic mineral suite indicative of the alteration of volcanic glass. A volcanic origin for these siliceous deposits onshore is consistent with a volcanic origin for the cherts of horizon A offshore.

  9. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  10. Comets, volcanism, the salt-rich regolith, and cycling of volatiles on Mars

    International Nuclear Information System (INIS)

    Clark, B.C.

    1987-01-01

    The composition of the Martian surface and its evolution are examined, reviewing the results of recent theoretical models and composition estimates based on Viking-lander analyses. The data are compiled in tables and characterized in detail, and a high degree of variation among the predictions is noted. The discussion centers on the possible roles of comets (as sources of volatiles), the salt-rich regolith (as an important water sink), and volcanic activity (interfering with volatile-recycling processes and eventually producing a volatile-depleted surface layer). 45 references

  11. The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy

    International Nuclear Information System (INIS)

    Aiuppa, Alessandro; D'Alessandro, Walter; Federico, Cinzia; Palumbo, Barbara; Valenza, Mariano

    2003-01-01

    This paper discusses the abundance, speciation and mobility of As in groundwater systems from active volcanic areas in Italy. Using literature data and new additional determinations, the main geochemical processes controlling the fate of As during gas-water-rock interaction in these systems are examined. Arsenic concentrations in the fluids range from 0.1 to 6940 μg/l, with wide differences observed among the different volcanoes and within each area. The dependence of As content on water temperature, pH, redox potential and major ions is investigated. Results demonstrate that As concentrations are highest where active hydrothermal circulation takes place at shallow levels, i.e. at Vulcano Island and the Phlegrean Fields. In both areas the dissolution of As-bearing sulphides is likely to be the main source of As. Mature Cl-rich groundwaters, representative of the discharge from the deep thermal reservoirs, are typically enriched in As with respect to SO 4 -rich ''steam heated groundwaters''. In the HCO 3 - groundwaters recovered at Vesuvius and Etna, aqueous As cycling is limited by the absence of high-temperature interactions and by high-Fe content of the host rocks, resulting in oxidative As adsorption. Thermodynamic modelling suggests that reducing H 2 S-rich groundwaters are in equilibrium with realgar, whereas in oxidising environments over-saturation with respect to Fe oxy-hydroxides is indicated. Under these oxidising conditions, As solubility decreases controlled by As co-precipitation with, or adsorption on, Fe oxy-hydroxides. Consistent with thermodynamic considerations, As mobility in the studied areas is enhanced in intermediate redox environments, where both sulphides and Fe hydroxides are unstable

  12. Geochronology of the Turkana depression of northern Kenya and southern Ethiopia.

    Science.gov (United States)

    Brown, Francis H; McDougall, Ian

    2011-01-01

    Mesozoic and Cenozoic sedimentary rocks in the Turkana Depression of northern Kenya and southern Ethiopia rest on basement rocks that yield K/Ar cooling ages between 433 and 522 Ma. Proven Cretaceous strata are exposed in Lokitaung Gorge in northwest Kenya. Eocene basalts and rhyolites in Lokitaung Gorge, the Nabwal Hills, and at Kangamajoj, date between 34 and 36 Ma, recording the earliest volcanism in the region. Oligocene volcanic rocks, with associated fossiliferous sedimentary strata at Eragaleit, Nakwai, and Lokone, all west of Lake Turkana, are 23 to 28 Ma old, as is the Langaria Formation east of Lake Turkana. Lower and Middle Miocene volcanic and sedimentary sequences are present both east and west of Lake Turkana, where ages from 17.9 to 9.1 Ma have been measured at many levels. Upper Miocene strata are presently known only at Lothagam, with ages ranging from 7.4 to 6.5 Ma. Deposition of Pliocene strata of the Omo Group begins in the Omo-Turkana, Kerio, and South Turkana basins -4.3 Ma ago and continues in parts of those basins until nearly the present time, but with some gaps. These strata are linked through volcanic ash correlations at many levels, as are Pleistocene strata of the Omo Group (principally the Shungura, Koobi Fora, and Nachukui formations). (40) Ar/(39) Ar dates on many volcanic ash layers within the Omo Group, supplemented by K/Ar ages on intercalated basalts and paleomagnetic polarity stratigraphy, provide excellent age control from 4.2 to 0.75 Ma, although there is a gap in the record between -1 Ma and 0.8 Ma. Members I to III of the Kibish Formation in the lower Omo Valley record deposition between 0.2 and 0.1 Ma ago; Member IV, correlative with the Galana Boi Formation, was deposited principally between 12 and 7 ka BP. Copyright © 2011 Wiley Periodicals, Inc.

  13. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  14. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  15. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  16. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  17. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  18. Identifying earthworms (Oligochaeta, Megadrili of the Southern Kuril Islands using DNA barcodes

    Directory of Open Access Journals (Sweden)

    Shekhovtsov, S. V.

    2018-01-01

    Full Text Available he Kuril Islands are a volcanic archipelago located between Hokkaido and Kamchatka. In this study we investigated earthworm fauna of three of the Southern Kuril Islands, Kunashir, Shikotan, and Yuri, using both morphological analysis and DNA barcoding. Our results highlight the potential of DNA barcoding for studying earthworm fauna: while previous studies reported only six earthworm species and subspecies on the Southern Kurils, we detected 15 genetic clusters. Six of them correspond to European cosmopolites; six, to Asian species, and three, to unidentified species. While no European earthworms were found on Yuri that is uninhabited since WWII, they dominated on larger and inhabited Kunashir and Shikotan, suggesting that they are recent invaders. Of the six Asian species, five had cox1 sequences identical or very closely related to published sequences from the mainland or the Japanese islands and thus are recent invaders.

  19. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)

    OpenAIRE

    Angelo Algieri

    2018-01-01

    This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs) for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca). The investigation illustrates the significant effect of the temperature at the entrance...

  20. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  1. Stress- and Structure-Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements

    Science.gov (United States)

    Li, Zefeng; Peng, Zhigang

    2017-10-01

    We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σHmax. However, several regions show clear deviations from the σHmax directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles.

  2. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  3. Classifcation of volcanic structure in mesozoic era in the Fuzhou-Shaoxing area

    International Nuclear Information System (INIS)

    Zhang Fengqi.

    1989-01-01

    The volcanic structure in the Fuzhou-Shaoxing area can be classified into IV grades: the grade I be the zone of volcanic activity; the grade II be the second zone of volcanic activity; the grade III be the positive, negative volcanic structure; the grade IV be volcanic conduit, volcanic crater, concealed eruption breccia pipe. Based on the geological situation in this area, the different types of volcanic structure are also dealt with. In the mean time, both the embossed type in the depression area and the depressed type in the embossed area in the volcanic basin are pointed out. It is of great advantage to Uranium mineralization

  4. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  5. Improving communication during volcanic crises on small, vulnerable islands

    Science.gov (United States)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.

    2009-05-01

    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  6. Tectonic implications of the contrasting geochemistry of Damaran mafic volcanic rocks, South West Africa

    International Nuclear Information System (INIS)

    Miller, R.McG.

    1983-01-01

    Ortho-amphibolites occur in the southern and central parts of the north-east-trending branch of the Damara Orogen. The Matchless Member amphibolites are interbedded with quartzose mica schist. Mobility of Si, ΣFe, Mn, Mg, Ca, Na, K, P, CO 2 , H 2 O, Rb, Ba, Sr and possibly LREE and immobility of Co, V, Sc, Ga, Zr, Nb, Y and HREE are indicated during metamorphism and reaction with country rock. Central Zone amphibolites are alkaline. The stratigraphically lower amphibolites have a within-plate chemistry; their distribution and associated rock types indicate a continental origin. The Matchless amphibolites have an ocean-floor chemistry. The Damaran sedimentary and orogenic cycle was initiated by continental rifting in three parallel zones in which alkaline acid volcanics occur locally. Widespread subsidence of the rift zones and the intervening areas followed and led to deposition of carbonate and clastic rocks under shallow marine conditions. During renewed rifting, submarine, alkaline basic lavas were extruded. The Southern Margin Zone amphibolites are interbedded with continental slope mixtites and continental rise deep-water fans. Spreading led to continental breakup and the formation of oceanic crust

  7. Self-potential anomalies in some Italian volcanic areas

    Directory of Open Access Journals (Sweden)

    C. Silenziario

    1996-06-01

    Full Text Available The study of Self-Potential (SP space and time variations in volcanic areas may provide useful information on both the geometrical structure of the volcanic apparatuses and the dynamical behaviour of the feeding and uprising systems. In this paper, the results obtained on the islands of Vulcano (Eolian arc and Ponza (Pontine archipelago and on the Mt. Somma-Vesuvius complex are shown. On the island of Vulcano and on the Mt. Somma-Vesuvius apparatus areal SP surveys were performed with the aim of evidencing anomalies closely associated to the zones of major volcanic activity. On the island of Vulcano a profile across the fumaroles along the crater rim of the Fossa Cone was also carried out in order to have a direct relationship between fumarolic fracture migration and flow rate and SP anomaly space and time variations. The areal survey on the island of Ponza, which is considered an inactive area, is assumed as a reference test with which to compare the amplitude and pattern of the anomalies in the active areas. A tentative interpretation of the SP anomalies in volcanic areas is suggested in terms of electrokinetic phenomena, related to the movement of fluids of both volcanic and non-volcanic origin.

  8. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan

    2013-01-01

    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  9. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  10. Geologic and geophysical maps and volcanic history of the Kelton Pass SE and Monument Peak SW Quadrangles, Box Elder County, Utah

    Science.gov (United States)

    Felger, Tracey J.; Miller, David; Langenheim, Victoria; Fleck, Robert J.

    2016-01-01

    The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located in Box Elder County, northwestern Utah (figure 1; plate 1). The northern boundary of the map area is 8.5 miles (13.7 km) south of the Utah-Idaho border, and the southern boundary reaches the edge of mud flats at the north end of Great Salt Lake. Elevations range from 4218 feet (1286 m) along the mud flats to 5078 feet (1548 m) in the Wildcat Hills. Deep Creek forms a prominent drainage between the Wildcat Hills and Cedar Hill. The closest towns are the ranching communities of Snowville, Utah (10 miles [16 km] to the northeast) (figure 1), and Park Valley, Utah (10 miles [16 km] to the west).The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located entirely within southern Curlew Valley, which drains south into Great Salt Lake, and extends north of the area shown on figure 1 into Idaho. Curlew Valley is bounded on the west by the Raft River Mountains and on the east by the Hansel Mountains (figure 1). Sedimentary and volcanic bedrock exposures within the quadrangles form the Wildcat Hills, Cedar Hill, and informally named Middle Shield (figure 1). Exposed rocks and deposits are Permian to Holocene in age, and include the Permian quartz sandstone and orthoquartzite of the Oquirrh Formation (Pos), tuffaceous sedimentary rocks of the Miocene Salt Lake Formation (Ts), Pliocene basaltic lava flows (Tb) and dacite (Tdw), Pleistocene rhyolite (Qrw) and basalt (Qb), and Pleistocene and Holocene surficial deposits of alluvial, lacustrine, and eolian origin. Structurally, the map area is situated in the northeastern Basin and Range Province, and is inferred to lie within the hanging wall of the late Miocene detachment faults exposed in the Raft River Mountains to the northwest (e.g., Wells, 1992, 2009; figure 1).This mapping project was undertaken to produce a comprehensive, large-scale geologic map of the Wildcat Hills, as well as to improve understanding of the volcanic and tectonic evolution of

  11. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  12. Variational data assimilation of satellite observations to estimate volcanic ash emissions

    NARCIS (Netherlands)

    Lu, S.

    2017-01-01

    Volcanic eruptions release a large amount of volcanic ash, which can pose hazard to human and animal health, land transportation, and aviation safety. Volcanic Ash Transport and Dispersion (VATD) models are critical tools to provide advisory information and timely volcanic ash forecasts. Due to the

  13. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau

    Science.gov (United States)

    Hanyu, Takeshi; Tejada, Maria Luisa G.; Shimizu, Kenji; Ishizuka, Osamu; Fujii, Toshiyuki; Kimura, Jun-Ichi; Chang, Qing; Senda, Ryoko; Miyazaki, Takashi; Hirahara, Yuka; Vaglarov, Bogdan S.; Goto, Kosuke T.; Ishikawa, Akira

    2017-12-01

    Many seamounts on the Ontong Java Plateau (OJP) occur near the Stewart Arch, a topographic high that extends parallel to the North Solomon Trench along the southern margins of the plateau. Despite the thick sediment cover, several volcanic cones with strong acoustic reflection were discovered on the submarine flank of the Nuugurigia Seamount. From such volcanic cones, basalts were successfully sampled by dredging. Radiometric dating of basalts and ferromanganese encrustation indicate eruption age of 20-25 Ma, significantly younger than the 122 Ma main OJP plateau and post-plateau basalts. The age range coincides with the collision of the OJP with the Solomon Arc. The Nuugurigia basalts geochemically differ from any other rocks sampled on the OJP so far. They are alkali basalts with elevated Sr, low Zr and Hf, and Enriched Mantle-I (EMI)-like isotopic composition. Parental magmas of these alkali basalts may have formed by small-degree melting of peridotitic mantle impregnated with recycled pyroxenite material having enriched geochemical composition in the OJP's mantle root. We conclude that small-volume alkali basalts from the enriched mantle root migrated through faults or fractures caused by the collision along the Stewart Arch to form the seamount. Our results suggest that the collision of the OJP with the Solomon arc played an important role in the origin of similar post-plateau seamounts along the Stewart Arch.

  14. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  15. New Age and Geochemical Data From Seamounts in the Canary and Madeira Volcanic Provinces: A Contribution to the "Great Plume Debate"

    Science.gov (United States)

    Geldmacher, J.; Hoernle, K.; van den Bogaard, P.; Duggen, S.; Werner, R.

    2004-12-01

    The role of hotspots (mantle plumes) in the formation of intraplate volcanic island and seamount groups is being increasingly questioned, in particular concerning the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. However, new 40Ar/39Ar ages and Sr-Nd-Pb isotope geochemistry of volcanic rocks from two seamounts northeast of the Canary Islands and two northeast of the Madeira Islands provide new support for the plume hypothesis. The oldest ages of shield stage volcanism from seamounts and islands northeast of the Canary and Madeira Islands confirm progressions of increasing age to the northeast for both island/seamount chains consistent with northeast directed plate motion. Calculated angular velocities for the average movement of the African plate in both regions gave similar values of about 0.45\\deg plus/minus 0.05\\deg/Ma around a rotation pole located north of the Azores Islands. Furthermore, the curvature of the chains clearly deviates from the E-W orientation of fracture zones in the East Atlantic. A local control of surface volcanism by lithospheric zones of weakness, however, is likely for some E-W elongated seamounts and islands. The isotope geochemistry additionally confirms that the two volcanic provinces are derived from distinct sources, consistent with distinct mantle plumes having formed both volcanic groups. Conventional hotspot models, however, cannot easily explain the wide distribution of seamounts in the Canary region and the long history of volcanic activity at single volcanic centers (e.g. Dacia seamount, 47-4 Ma; Selvagen Islands, 30-3 Ma). A possible explanation could involve interaction of a Canary mantle plume with small-scale upper mantle processes such as edge driven convection at the edge of the NW African craton (e.g. King and Ritsema, 2000, Science 290, 1137-1140).

  16. Groundwater characteristics and problems in volcanic rock terrains

    International Nuclear Information System (INIS)

    Custodio, E.

    1989-01-01

    Volcanic rock formations, each with their own particular hydrogeological characteristics, occur in circumstances that cover a multiplicity of situations. These range from permeable porous rock formations to permeable fissured formations and include all types of intermediate situation between the two. The type of volcanism, distance from the source of emission, age, alteration processes and tectonics are all factors which determine their behaviour. Volcanic formations usually constitute a single aquifer system, even though this may be very heterogeneous and may locally be separated into clearly defined subunits. At times, formations may be hundreds of metres thick and are fairly permeable almost throughout. As a rule, volcanic material does not yield directly soluble salts to the water that flows through it. Mineralization of the water is due to the concentration of rainfall and the hydrolysis of silicates as a result of CO 2 being absorbed from the atmosphere and the ground, or as a result of volcanism itself. Cationic grouping is usually closely correlated to that of the rock formation in which the chemical composition is formed. Most environmental isotope and radioisotope techniques may be used, and at times are of unquestionable value. However, the existence of evaporation in the soil with possible isotopic fractionation, the effects of marked relief, the dilution of dissolved carbon by volcanic carbon and isotopic exchange brought about by volcanic carbon, etc., should be taken into account before valid conclusions are drawn. The paper uses examples taken from existing studies, mainly those being carried out in the Canary Islands (Spain). (author). 98 refs, 18 figs, 4 tabs

  17. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil; Evolucao geologica da porcao centro-sul do escudo das Guianas com base no estudo geoquimico, geocronologico e isotopico dos granitoides paleoproterozoicos do sudeste de Roraima, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcelo Esteves

    2006-07-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  18. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  19. Formation and evolution of mesozoic volcanic basins in Gan-Hang tectonic belt

    International Nuclear Information System (INIS)

    Zhang Xingpu

    1999-01-01

    The author mainly discusses the principle model for the formation and the evolution of Mesozoic volcanic basins in the Gan-Hang Tectonic Belt, and describes the distinct evolution features between the internal and external sites of volcanic basins, the natural relation between the down-warped, down-faulted, collapse volcanic basins and volcanic domes, the relationship between the formation of inter layered fractured zones of the volcanic cover and the evolution of volcanic basins

  20. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng

    2009-01-01

    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  1. VT Green Mountain National Forest Map - Southern Section

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The BasemapOther_GMNFMAPS is a cartographic map product depicting the southern half of the Green Mountain National Forest (GMNF). The paper map...

  2. Major and micro seismo-volcanic crises in the Asal Rift, Djibouti

    Science.gov (United States)

    Peltzer, G.; Doubre, C.; Tomic, J.

    2009-05-01

    The Asal-Ghoubbet Rift is located on the eastern branch of the Afar triple junction between the Arabia, Somalia, and Nubia tectonic plates. The last major seismo-volcanic crisis on this segment occurred in November 1978, involving two earthquakes of mb=5+, a basaltic fissure eruption, the development of many open fissures across the rift and up to 80 cm of vertical slip on the bordering faults. Geodetic leveling revealed ~2 m of horizontal opening of the rift accompanied by ~70 cm of subsidence of the inner-floor, consistent with models of the elastic deformation produced by the injection of magma in a system of two dykes. InSAR data acquired at 24-day intervals during the last 12 years by the Canadian Radarsat satellite over the Asal Rift show that the two main faults activated in 1978 continue to slip with periods of steady creep at rates of 0.3-1.3 mm/yr, interrupted by sudden slip events of a few millimeters, in 2000 and 2003. Slip events are coincident with bursts of micro earthquakes distributed around and over the Fieale volcanic center in the eastern part of the Asal Rift. In both cases (the 1978 crisis and micro-slip events), the observed geodetic moment released by fault slip exceeds by a few orders of magnitude the total seismic moment released by earthquakes over the same period. Aseismic fault slip is likely to be the faults response to a changing stress field associated with a volcanic process and not due to dry friction on faults. Sustained injection of magma (1978 crisis) and/or crustal fluids (micro-slip events) in dykes and fissures is a plausible mechanism to control fluid pressure in the basal parts of faults and trigger aseismic slip. In this respect, the micro-events observed by InSAR during a 12-year period of low activity in the rift and the 1978 seismo-volcanic episode are of same nature.

  3. The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna

    Science.gov (United States)

    Chester, David K.; Duncan, Angus M.; Dibben, Christopher J. L.

    2008-05-01

    With the exception of societies that are relatively untouched by modernism, the academic consensus holds that since the Eighteenth Century Enlightenment popular perception of divine responsibility for disasters has been progressively replaced by a perspective that views losses as resulting from the effects of extreme natural events upon vulnerable human populations. Nature is considered to be de-moralised. By means of examples of volcanic eruptions that have occurred over the past one hundred and fifty years and which transcend place, culture and faith tradition, the present authors have maintained a contrasting position, by arguing that religious perspectives are still important features of the ways in which people in many societies perceive volcanic eruptions. In the present paper it is argued that religious terms of reference have been and remain vital elements in the perceptions held by a significant proportion of the population in southern Italy when confronted by volcanic eruptions, particularly those that have occurred on Vesuvius and Etna. Within the context of what is termed popular Catholicism, the development of distinctive religious responses in pre-industrial times is first described. Next, through bibliographic research and social surveys, it is argued that the idiosyncratic religious character of disaster responses has been maintained following eruptions that have occurred during the past one hundred years, including the small number of eruptions of Etna that have taken place in the early years of the twenty-first century. The implications of these religious perceptions and behaviours are discussed within the context of emergency planning and the suggestion is made that they form part of a 'parallel practice' in response to volcanic threat, where actions to encourage the miraculous take place at the same time as more 'rationally' grounded protective measures such as evacuation.

  4. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  5. Determining Volcanic Deformation at San Miguel Volcano, El Salvador by Integrating Radar Interferometry and Seismic Analyses

    Science.gov (United States)

    Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.

    2008-12-01

    From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.

  6. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  7. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  8. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    Science.gov (United States)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  9. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics

    Directory of Open Access Journals (Sweden)

    E. Sharkov

    2015-07-01

    Full Text Available The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains: the Caucasian-Arabian Syntaxis (CAS in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate; it was tectonically uplifted along the Main Caucasian Fault (MCF, which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1 plume-type intraplate basaltic plateaus and (2 suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50–60 km, we suggest that the “suprasubduction-type” magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  10. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  11. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  12. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  13. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  14. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  15. Real-time Volcanic Cloud Products and Predictions for Aviation Alerts

    Science.gov (United States)

    Krotkov, N. A.; Hughes, E. J.; da Silva, A. M., Jr.; Seftor, C. J.; Brentzel, K. W.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.; Hoffman, R.; Myers, T.; Flynn, L. E.; Niu, J.; Theys, N.; Brenot, H. H.

    2016-12-01

    We will discuss progress of the NASA ASP project, which promotes the use of satellite volcanic SO2 (VSO2) and Ash (VA) data, and forecasting tools that enhance VA Decision Support Systems (DSS) at the VA Advisory Centers (VAACs) for prompt aviation warnings. The goals are: (1) transition NASA algorithms to NOAA for global NRT processing and integration into DSS at Washington VAAC for operational users and public dissemination; (2) Utilize Direct Broadcast capability of the Aura and SNPP satellites to process Direct Readout (DR) data at two high latitude locations in Finland and Fairbanks, Alaska to enhance VA DSS in Europe and at USGS's Alaska Volcano Observatory (AVO) and Alaska-VAAC; (3) Improve global Eulerian model-based VA/VSO2 forecasting and risk/cost assessments with Metron Aviation. Our global NRT OMI and OMPS data have been fully integrated into European Support to Aviation Control Service and NOAA operational web sites. We are transitioning OMPS processing to our partners at NOAA/NESDIS to integrate into operational processing environment. NASA's Suomi NPP Ozone Science Team, in conjunction with GSFC's Direct Readout Laboratory (DRL), have implemented Version 2 of the OMPS real-time DR processing package to generate VSO2 and VA products at the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI). The system provides real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world. The OMPS real time capability is now publicly available via DRL's IPOPP package. We use satellite observations to define volcanic source term estimates in the NASA GOES-5 model, which was updated allowing for the simulation of VA and VSO2 clouds. Column SO2 observations from SNPP/OMPS provide an initial estimate of the total cloud SO2 mass, and are used with backward transport analysis to make an initial cloud height estimate. Later VSO2 observations are used to "nudge" the SO2 mass

  16. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  17. Aeromagnetic survey of the Somma-Vesuvius volcanic area

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2005-06-01

    Full Text Available In this paper we present and discuss the results of a geophysical airborne survey carried out in the Somma-Vesuvius volcanic area, Southern Italy, in 1999. The helicopter-borne survey was aimed at giving new detailed insights into the distribution of the magnetization of the area and, therefore, into the volcanological characteristics of the region, enhancing the knowledge given by a previous low resolution survey carried out at a regional scale by Agip. The new survey was carried out by flying on a surface parallel to the topography of the area, along flight lines spaced 600 m apart. The obtained total field map is dominated by a large anomaly related to the Mt. Somma-Vesuvius complex itself and characterized by a roughly elliptical shape. High-frequency anomalies occur in the edifice and in the area east of it, partly produced by cultural noise due to the densely inhabited area. The compilation of the maps of the analytic signal and of the horizontal derivative of the field allowed the location of the lateral boundaries of the magnetic sources of the area and represents a first step toward the interpretation of the maps in terms of geological structures.

  18. Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands

    Science.gov (United States)

    Houk, P.; Starmer, J.

    2010-03-01

    A central problem for jurisdictional scientists and managers is to reconcile how multiple environmental regimes, encompassing continuous, intermittent and human disturbances, influence pertinent ecological management targets. The presence of heterogeneous environments throughout the volcanic Northern Mariana Islands (NMI), coupled with the availability of descriptive physical data, form the basis examining environmental-ecological relationships. Since 2003, coral abundances and macrobiota (all visibly recognizable taxa greater than 2 cm) occurrences have been estimated at 42 reef slopes along the volcanic archipelago. Analyses showed that reef types acted as surrogates of coral growth capacity and the modern assemblages residing upon them, being highest and most favorable, respectively, where relatively high salinity levels, low-to-moderate wave exposure, and an absence of volcanic activity for ~90 years existed. However, island size was the greatest constraint on species richness overall, but relations with corals were dampened by volcanic activity and increased for sponges and algae where greater connection with the island aquifer existed (i.e., relatively low salinity levels). The number of years since volcanic activity has occurred was positively related to the residuals of species-area relationships and coral cover, with a ~90-year time frame predicted for recovery. Notably, no relationships with watershed characteristics or distance from CNMI’s main fishing port and coral-reef assemblages or species richness were found. Further examination of specific management concerns, such as fisheries and feral animal populations, should be designed to account for the inherent differences in driving environmental regimes. Management strategies focused upon conserving biodiversity and ecosystem function should be centered at the island level, matching the operational scale of dominant environmental-ecological relationships. Marine reserves represent a strategy pertinent

  19. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  20. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India-Asia collision

    Science.gov (United States)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Hallot, Erwan

    2013-09-01

    A systematic bias towards low palaeomagnetic inclination recorded in clastic sediments, that is, inclination shallowing, has been recognized and studied for decades. Identification, understanding and correction of this inclination shallowing are critical for palaeogeographic reconstructions, particularly those used in climate models and to date collisional events in convergent orogenic systems, such as those surrounding the Neotethys. Here we report palaeomagnetic inclinations from the sedimentary Eocene upper Linzizong Group of Southern Tibet that are ˜20° lower than conformable underlying volcanic units. At face value, the palaeomagnetic results from these sedimentary rocks suggest the southern margin of Asia was located ˜10°N, which is inconsistent with recent reviews of the palaeolatitude of Southern Tibet. We apply two different correction methods to estimate the magnitude of inclination shallowing independently from the volcanics. The mean inclination is corrected from 20.5° to 40.0° within 95 per cent confidence limits between 33.1° and 49.5° by the elongation/inclination (E/I) correction method; an anisotropy-based inclination correction method steepens the mean inclination to 41.3 ± 3.3° after a curve fitting- determined particle anisotropy of 1.39 is applied. These corrected inclinations are statistically indistinguishable from the well-determined 40.3 ± 4.5º mean inclination of the underlying volcanic rocks that provides an independent check on the validity of these correction methods. Our results show that inclination shallowing in sedimentary rocks can be corrected. Careful inspection of stratigraphic variations of rock magnetic properties and remanence anisotropy suggests shallowing was caused mainly by a combination of syn- and post-depositional processes such as particle imbrication and sedimentary compaction that vary in importance throughout the section. Palaeolatitudes calculated from palaeomagnetic directions from Eocene sedimentary

  1. High burden of hepatocellular carcinoma and viral hepatitis in Southern and Central Vietnam: Experience of a large tertiary referral center, 2010 to 2016.

    Science.gov (United States)

    Nguyen-Dinh, Song-Huy; Do, Albert; Pham, Trang Ngoc Doan; Dao, Doan Y; Nguy, Trinh Nhu; Chen, Moon S

    2018-01-27

    To examine the largest tertiary referral center in southern and central Vietnam from 2010 to 2016, evaluating epidemiological trends of hepatocellular carcinoma (HCC) and viral hepatitis B-C in this resource-limited setting. We extracted data of patients receiving care from Cho Ray Hospital (Ho Chi Minh City), the largest oncology referral center in southern and central Vietnam, from 2010 to 2016. We collected information on patient age, gender, geographic distribution, and disease characteristics including disease stage, tumor biomarker levels [serum alpha-fetoprotein (AFP), AFP-L3 isoform percentage, and prothrombin induced by induced by vitamin K absence-II], and serological testing for hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Data from 24091 HCC patients were extracted, with sample demographics comprising mostly male (81.8%) and older age (however with 8.5% younger than 40 years old). This patient sample included a geographic catchment population of 56 million people (60% of the country's total population of 92.7 million), derived from 38 provinces and municipalities in Vietnam. Chronic HBV infection was found in 62.3% of cases, and chronic HCV infection in 26.0%. HBV and HCV co-infection was seen in 2.7%. Cirrhosis was found in an estimated 30% to 40% of cases. Nine percent of patients were not found to have chronic viral hepatitis. Twenty three point two percent of the patients had a normal AFP level. A total of 2199 patients were tested with AFP-L3 and PIVKA II over two years, with 57.7% having elevated AFP-L3%, and 88.5% with elevated PIVKA II levels. Over this 7-year period, the incidence of HCC increased, with a large proportion of cases (overall 40.8%) presenting initially an advanced stage, not amendable to surgical or locoregional therapy. HCC contributes significant health care burden in southern and central Vietnam, with increasing case volume over this seven-year period. Viral hepatitis likely explains this high HCC prevalence.

  2. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints

    Science.gov (United States)

    Murray, Natalie A.; McManus, James; Palmer, Martin R.; Haley, Brian; Manners, Hayley

    2018-05-01

    We present sediment pore fluid and sediment solid phase results obtained during IODP Expedition 340 from seven sites located within the Grenada Basin of the southern Lesser Antilles Volcanic Arc region. These sites are generally characterized as being low in organic carbon content and rich in calcium carbonate and volcanogenic material. In addition to the typical reactions related to organic matter diagenesis, pore fluid chemistry indicates that the diagenetic reactions fall within two broad categories; (1) reactions related to chemical exchange with volcanogenic material and (2) reactions related to carbonate dissolution, precipitation, or recrystallization. For locations dominated by reaction with volcanogenic material, these sites exhibit increases in dissolved Ca with coeval decreases in Mg. We interpret this behavior as being driven by sediment-water exchange reactions from the alteration of volcanic material that is dispersed throughout the sediment package, which likely result in formation of Mg-rich secondary authigenic clays. In contrast to this behavior, sediment sequences that exhibit decreases in Ca, Mg, Mn, and Sr with depth suggest that carbonate precipitation is an active diagenetic process affecting solute distributions. The distributions of pore fluid 87Sr/86Sr reflect these competitive diagenetic reactions between volcanic material and carbonate, which are inferred by the major cation distributions. From one site where we have solid phase 87Sr/86Sr (site U1396), the carbonate fraction is found to be generally consistent with the contemporaneous seawater isotope values. However, the 87Sr/86Sr of the non-carbonate fraction ranges from 0.7074 to 0.7052, and these values likely represent a mixture of local arc volcanic sources and trans-Atlantic eolian sources. Even at this site where there is clear evidence for diagenesis of volcanogenic material, carbonate diagenesis appears to buffer pore fluid 87Sr/86Sr from the larger changes that might be

  3. The thermoluminescence as tool in the reconstruction of volcanic events

    International Nuclear Information System (INIS)

    Ramirez L, A.; Schaaf, P.; Martin del Pozzo, A.L.; Gonzalez M, P.

    2000-01-01

    Within the Mexican land a great number of volcanoes are situated which a considerable part of them are still active. The relevance of dating pomex deposits, ash or lava of these poly genetic volcanoes is to determine the periodicity and magnitude of the volcanic events happened. In this work is presented the preliminary result of the dating by thermoluminescence in a pomex of a pyroclastic flux coming from a volcano in the state of Puebla with the purpose of providing elements to the knowledge which describe the eruptive history of the explosive volcanism at center of Mexico. For the sample dating the volcanic glasses of pomex were separated and it was applied the fine grain technique with a grain size between 4-11 μ m. In order to calculate the rate of annual dose it was carried out the following: in the determination of 238 U and 232 Th radioisotope concentration was used the neutron activation technique in a nuclear reactor, in the determination of the K 40 radioisotope was used a scanning electron microscope, the rate of environmental and cosmic dose was measured arranging Tl dosemeters of CaSO 4 : Dy in the sampling place. In order to calculate the paleodoses it was carried out the following: the equivalent dose (Q) was determined starting form the additive method and the supra linearity factor (I) starting from regenerative method and in both methods the irradiated process was realized with a 90 Sr beta source. With the above determinations it was calculated a paleodoses of 231 Gy and a rate of annual dose of 6.074 x 10 -3 Gy/year, estimating an age of: Age pomez = 231 Gy / 6.074 Gy x 10 -3 Gy /year = 38030 ± 4000 years. (Author)

  4. Origin and Development of El Bajío Basin in the Central Sector of Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Botero, P. A.; Alaniz Álvarez, S. A.; Nieto Samaniego, Á. F.; Lopez-Martinez, M.; Levresse, G.; Xu, S.; Ortega Obregón, C.

    2015-12-01

    Volcanism of the Trans-Mexican Volcanic Belt has been placed on pre-existing tectonic basins; one of them is El Bajío Basin. We present the origin and evolution of this basin through the study of its deformation events occurring mainly on the El Bajío fault, at the boundary between the Trans-Mexican Volcanic Belt and the Mesa Central. Detailed stratigraphy, and structural analysis suggest 4 deformation events in the northwest of the Sierra de Guanajuato. The first event (D1) with E-W shortening is characterized by the development of axial plane foliation (S1) with N-S direction, this event occurred between the Tithonian and Aptian age. In the second event (D2), occurred between the Albian and the early Eocene, foliations NW-SE (S2) were generated with a NE-SW shortening trend dated between the Albian and early Eocene, this deformation is related to the Laramide Orogeny. The Granito Comanja was emplaced during the third event (D3) and generated foliation (S3) in sediments of the complejo vulcanosedimentario Sierra de Guanajuato that circumscribes the Granito Comanja in response to its intrusion. After its emplacement, NW-SE normal faults were generated along the S-SE contact of the Granito Comanja, at that time El Bajío fault began. The fourth event (D4) has three phases that affected the sedimentary and volcanic Cenozoic rocks. D4F1 is marked by continental conglomerates deposition with variable thickness along of the main trace of the El Bajío fault. D4F2 affected the Oligocene volcanic rocks showing an important fault activity at that time, as evidenced the tilting above 45o in the Oligocene rocks, temporarily coincides with the triaxial extension to the Mesa Central. The direction of elongation of D4F3 is ESE-WNW, El Bajío fault had little movement. Since the Miocene the deformation was concentrated along the southern central sector of the Trans-mexican Volcanic Belt and there were few deformation in the Mesa central. During the three phases of deformation

  5. The Southern Tyrrhenian subduction system: recent evolution and neotectonic implications

    Directory of Open Access Journals (Sweden)

    A. Argnani

    2000-06-01

    Full Text Available Geological and geophysical data have been integrated with the aim of presenting a new evolutionary model for the Southern Tyrrhenian and adjacent regions. The Southern Tyrrhenian backarc basin opened within a plate convergence regime because of sinking and rollback of the oceanic Ionian lithosphere. On the basis of seismological observations, I infer that the sinking slab was torn apart on either side in the last 2 Ma and this process controlled the neotectonics of the Southern Apennines - Tyrrhenian region. On the north-eastern side the slab broke off from NW to SE and this process triggered volcanism and NW-SE extension along the Eastern Tyrrhenian margin, and strike-slip tectonics along NW-SE trending faults in Northern Calabria. On the south-western side the slab broke off from W to E along the Aeolian Island alignment, although the tear has currently been reoriented along the NNW-SSE Malta escarpment. During its sinking the subducted slab also detached from the overriding plate, favouring the wedging of the asthenosphere between the two plates and the regional uplift of the Calabrian arc and surroundings. This regional uplift promoted gravitational instability within the orogenic wedge, particularly towards low topography areas; the large-scale sliding of the Calabrian arc towards the Ionian basin can be the cause of CW rotation and graben formation in Calabria. Also the E-dipping extensional faults of the Southern Apennines can be related to accommodation of vertical motions within the fold-and-thrust belt. The pattern of recent seismicity reflects this neotectonics where crustal-scale gravity deformation within the orogenic wedge is responsible for extensional earthquakes in Calabria and the Southern Apennines, whereas Africa plate convergence can account for compressional earthquakes in Sicily.

  6. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    Science.gov (United States)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  7. River basin affected by rare perturbation events: the Chaiten volcanic eruption.

    Science.gov (United States)

    Picco, Lorenzo; Iroumé, Andrés; Oss-Cazzador, Daniele; Ulloa, Hector

    2017-04-01

    Natural disasters can strongly and rapidly affect a wide array of environments. Among these, volcanic eruptions can exert severe impacts on the dynamic equilibrium of riverine environment. The production and subsequent mobilization of large amounts of sediment all over the river basin, can strongly affect both hydrology and sediment and large wood transport dynamics. The aim of this research is to quantify the impact of a volcanic eruption along the Blanco River basin (Southern Chile), considering the geomorphic settings, the sediment dynamics and wood transport. Moreover, an overview on the possible management strategies to reduce the risks will be proposed. The research was carried out mainly along a 2.2 km-long reach of the fourth-order Blanco stream. Almost the entire river basin was affected by the volcanic eruption, several meters of tephra (up to 8 m) were deposited, affecting the evergreen forest and the fluvial corridor. Field surveys and remote sense analysis were carried out to investigate the effect of such extreme event. A Terrestrial Laser Scanner (TLS) was used to detect the morphological changes by computing Difference of Dems (DoDs), while field surveys were carried out to detect the amount of in-channel wood; moreover aerial photos have been analyzed to detect the extension of the impact of volcanic eruption over the river basin. As expected, the DoDs analysis permitted to detect predominant erosional processes along the channel network. In fact, over 190569 m2 there was erosion that produced about 362999 m3 of sediment mobilized, while the deposition happened just over 58715 m2 for a total amount of 23957 m3. Looking then to the LW recruited and transported downstream, was possible to detect as along the active channel corridor a total amount of 113 m3/ha of wood was present. Moreover, analyzing aerial photographs taken before and after the volcanic eruption was possible to define as a total area of about 2.19 km2 was affected by tephra

  8. The Influence of Volcanic Eruptions on the Climate of Tropical South America During the Last Millennium in an Isotope-Enabled General Circulation Model

    Science.gov (United States)

    Colose, Christopher M.; LeGrande, Allegra N.; Vuille, Mathias

    2016-01-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El Niño-Southern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850 CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium. An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records. Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the "amount effect". During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is

  9. Emergency Operations Center ribbon cutting

    Science.gov (United States)

    2009-01-01

    Center Director Gene Goldman and special guests celebrate the opening of the site's new Emergency Operations Center on June 2. Participants included (l t r): Steven Cooper, deputy director of the National Weather Service Southern Region; Tom Luedtke, NASA associate administrator for institutions and management; Charles Scales, NASA associate deputy administrator; Mississippi Gov. Haley Barbour; Gene Goldman, director of Stennis Space Center; Jack Forsythe, NASA assistant administrator for the Office of Security and Program Protection; Dr. Richard Williams, NASA chief health and medical officer; and Weldon Starks, president of Starks Contracting Company Inc. of Biloxi.

  10. Eruptive and environmental processes recorded by diatoms in volcanically-dispersed lake sediments from the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Harper, Margaret A.; Pledger, Shirley A.; Smith, Euan G. C.; Van Eaton, Alexa; Wilson, Colin J. N.

    2015-01-01

    Late Pleistocene diatomaceous sediment was widely dispersed along with volcanic ash (tephra) across and beyond New Zealand by the 25.4 ka Oruanui supereruption from Taupo volcano. We present a detailed analysis of the diatom populations in the Oruanui tephra and the newly discovered floras in two other eruptions from the same volcano: the 28.6 ka Okaia and 1.8 ka Taupo eruptions. For comparison, the diatoms were also examined in Late Pleistocene and Holocene lake sediments from the Taupo Volcanic Zone (TVZ). Our study demonstrates how these microfossils provide insights into the lake history of the TVZ since the Last Glacial Maximum. Morphometric analysis of Aulacoseira valve dimensions provides a useful quantitative tool to distinguish environmental and eruptive processes within and between individual tephras. The Oruanui and Okaia diatom species and valve dimensions are highly consistent with a shared volcanic source, paleolake and eruption style (involving large-scale magma-water interaction). They are distinct from lacustrine sediments sourced elsewhere in the TVZ. Correspondence analysis shows that small, intact samples of erupted lake sediment (i.e., lithic clasts in ignimbrite) contain heterogeneous diatom populations, reflecting local variability in species composition of the paleolake and its shallowly-buried sediments. Our analysis also shows a dramatic post-Oruanui supereruption decline in Cyclostephanos novaezelandiae, which likely reflects a combination of (1) reorganisation of the watershed in the aftermath of the eruption, and (2) overall climate warming following the Last Glacial Maximum. This decline is reflected in substantially lower proportions of C. novaezelandiae in the 1.8 ka Taupo eruption deposits, and even fewer in post-1.8 ka sediments from modern (Holocene) Lake Taupo. Our analysis highlights how the excellent preservation of siliceous microfossils in volcanic tephra may fingerprint the volcanic source region and retain a valuable record

  11. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    Science.gov (United States)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  12. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  13. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  14. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  15. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    Science.gov (United States)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  16. Neotectonic movement and its relation to uranium metallogenesis in central-southern Songliao basin and its adjacent areas

    International Nuclear Information System (INIS)

    Sang Jisheng; Zhang Yongbao; Chen Weiyi

    2004-01-01

    The central-southern Songliao basin and its adjacent area ar located in the south of Inner Mongolian-Northeastern China neotectonic region of the circum-pacific neotectonic domain. Since Late Tertiary the neotectonic movement in the region has been being more intense, and the most obvious feature of the neotectonic movement was characterized by large-amplitude block-faulting and strong volcanic activity. The mega-scale basin-and-range tectonics and other micro-geomorphology created favourable tectonic and geomorphologic conditions for the ore-formation of in-situ leachable sandstone-type uranium deposits. Neotectonic movement played both positive and negative roles in uranium ore-formation. Neotectonics are well developed at the eastern and the southern margins of the Songliao basin, and these areas are favourable for locating in-situ leachable sandstone-type uranium deposits

  17. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene

    International Nuclear Information System (INIS)

    Leroy, L.; Jimenez, N.

    1996-01-01

    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs

  18. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.

    2012-01-01

    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  19. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  20. Radon gas as a tracer for volcanic processes

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    Radon emissions from volcanic systems have been under investigation for several decades. Soil gas and groundwater radon activities have been used to map faults and to characterize geothermal systems, and measurements of atmospheric radon and radon daughter concentrations have been used to estimate the volume of magma chambers feeding active eruptions. Several studies have also shown that temporal variations in radon concentration have been associated with the onset of volcanic eruptions or changes in the rates or character of an eruption. Some of these studies have been able to clearly define the cause of the radon anomalies but others have proposed models of radon emission and transport that are not well supported by the known physical and chemical processes that occur in a volcanic system. In order to better characterize the processes that control radon activities in volcanic systems, it is recommended that future radon monitoring programs attempt to maintain continuous recording of radon activities; individual radon measurements should be made over the shortest time intervals possible that are consistent with acceptable counting statistics and geophysical, meteorological, and hydrological parameters should be measured in order to better define the physical processes that affect radon activities in volcanic systems. (author). 63 refs