WorldWideScience

Sample records for volcanic center based

  1. Determination of ancient volcanic eruption center based on gravity methods (3D) in Gunungkidul area Yogyakarta, Indonesia

    Science.gov (United States)

    Santoso, Agus; Sismanto, Setiawan, Ary; Pramumijoyo, Subagyo

    2016-05-01

    Ancient eruption centers can be determined by detecting the position of the ancient volcanic material, it is important to understand the elements of ancient volcanic material by studying the area geologically and prove the existence of an ancient volcanic eruption centers using geophysics gravity method. The measuring instrument is Lacoste & Romberg gravimeter type 1115, the number of data are 900 points. The area 60×40 kilometers, the modeling 3D software is reaching depth of 15 km at the south of the island of Java subduction zone. It is suported by geological data in the field that are found as the following: 1. Pyroclastic Fall which is a product of volcanic eruptions, and lapilli tuff with felsic mineral. 2. Pyroclastic flow with Breccia, tuffaceous sandstone and tuff breccia. 3. Hot springs near Parangwedang Parangtritis. 4. Igneous rock with scoria structure in Parang Kusumo, structured amigdaloida which is the result of the eruption of lava/volcanic eruptions, and Pillow lava in the shows the flowing lava into the sea. Base on gravity anomaly shows that there are strong correlationship between those geological data to the gravity anomaly. The gravblox modeling (3D) shows the position of ancient of volcanic eruption in this area clearly.

  2. Geology and geothermal potential of Alid Volcanic Center, Eritrea, Africa

    Energy Technology Data Exchange (ETDEWEB)

    Clynne, M.A.; Duffield, W.A.; Fournier, R.O.; Janik, C.J. [and others

    1996-12-31

    Alid volcanic center is a 700-meter-tall mountain in Eritrea, northeast Africa. This mountain straddles the axis of an active crustal-spreading center called the Danakil Depression. Though volcanism associated with this crustal spreading is predominantly basaltic, centers of silicic volcanism, including Alid, are present locally. Silicic centers imply a magma reservoir in the crust and thus a possible potent shallow heat source for a hydrothermal-convection system. Boiling-temperature fumaroles are common on Alid, and their gas compositions indicate a reservoir temperature of at least 250{degrees}C. Alid is a 7-km x 5-km structural dome. The domed rocks, in decreasing age, are Precambrian schist and granite, a sequence of intercalated sedimentary rocks and basaltic lavas, and a sequence of basaltic and rhyolitic lava flows. Though isotopic ages are not yet determined, the domed volcanic rocks of Alid appear to be late Tertiary and/or Quaternary. Doming was likely caused by intrusion of relatively low density silicic magma into the upper crust. Subsequent to dome formation, a substantial volume of this magma was erupted from a vent near the west end of the summit area of the dome. This eruption produced a blanket of plinian rhyolite pumice over most, if not all, of the dome and fed pyroclastic flows that covered the part of the Danakil Depression around the base of the dome. The pumice deposits contain abundant inclusions of granophyric, miarolitic pyroxene granite, chemically indistinguishable from the pumice. This granite likely represents the uppermost part of the magma reservoir, which crystallized just prior to the pumice eruption.

  3. Geochemistry of the Lathrop Wells volcanic center

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F.V.; Straub, K.T.

    1996-03-01

    Over 100 samples have been gathered from the Lathrop Wells volcanic center to assess different models of basalt petrogenesis and constrain the physical mechanisms of magma ascent in the Yucca Mountain region. Samples have been analyzed for major and trace-element chemistry, Nd, Sr and Ph isotopes, and mineral chemistry. All eruptive units contain olivine phenocrysts, but only the oldest eruptive units contain plagioclase phenocrysts. Compositions of minerals vary little between eruptive units. Geochemical data show that most of the eruptive units at Lathrop Wells defined by field criteria can be distinguished by major and trace-element chemistry. Normative compositions of basalts at Lathrop Wells correlate with stratigraphic position. The oldest basalts are primarily nepheline normative and the youngest basalts are exclusively hypersthene normative, indicating increasing silica saturation with time. Trace-element and major-element variations among eruptive units are statistically significant and support the conclusion that eruptive units at Lathrop Wells represent separate and independent magma batches. This conclusion indicates that magmas in the Yucca Mountain region ascend at preferred eruption sites rather than randomly.

  4. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    Science.gov (United States)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2013-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  5. Geology and geothermal potential of Alid volcanic center, Eritrea, Africa

    Science.gov (United States)

    Clynne, Michael A.; Duffield, Wendell A.; Fournier, Robert O.; Giorgis, Leake W.; Janik, Cathy J.; Kahsai, Gabreab; Lowenstern, Jacob; Mariam, Kidane W.; Smith, James G.; Tesfai, Theoderos; ,

    1996-01-01

    Alid volcanic center, a 700-meter-tall mountain in Eritrea, northeast Africa, straddles the axis of an active crustal-spreading center called the Danakil Depression. Boiling-temperature fumaroles are common on Alid, and their gas compositions indicate a reservoir temperature of at least 250 ??C. The history of volcanism and the high reservoir temperature indicated by the Alid fumarole gases suggest that a geothermal resource of electrical grade lies beneath the mountain. Though drilling is needed to determine subsurface conditions, the process of dome formation and the ongoing crustal spreading can create and maintain fracture permeability in the hydrothermal system that feeds the Alid fumaroles.

  6. Deep structure of the Pyatigorsk volcanic center (Northern Caucasus)

    Science.gov (United States)

    Zhostkow, R. A.; Masurenkov, Yu. P.; Dudarov, Z. I.; Shevchenko, A. V.; Dolov, S. M.; Danilov, K. B.

    2012-04-01

    Pyatigorsk laccoliths show a perceptible circular arrangement of tectonic and petro-geochemical features that also manifested in specific properties of a hydrothermal system of the Caucasian Mineral Waters and can be described as direct and natural elements of a higher order system, namely, the fluid-magmatic system of the Pyatigorsk volcanic center. It has been shown that mentioned arrangement may be approximated by a system of concentric isolines forming an isometric shape with the center located approximately 10 km west from the top of the Mount Beshtau positioned over the crust-mantle boundary inflection zone, and concentration of hydro-carbonates in the center of the anomalous area is six times more than this concentration at the periphery. On the basis of petro-geochemical and geological studies the hydrothermal system with obvious features of juvenile origin has been outlined. An average lifespan of this system is estimated to be at least several millions of years. The results of geophysical studies at the Beshtau laccolith (Pyatigorsk volcanic center) which were carried out in 2011 using the method of low-frequency microseismic sounding are presented. Vertical geophysical profile down to a depth of 30 km using a modified algorithm for processing the original data that improved the results of the transcripts and outlines the deep geological structure in more detail in the subsequent interpretation are presented and discussed. Thus, relationship of hydro-chemical properties of the Caucasian Mineral Waters with respect to structural and petro-geochemical features of Pyatigorsk volcanic center and its fluid-magmatic system structure has been discovered. Affiliation of the Caucasian Mineral Waters with a hydrothermal element of this system has been proved to be correct. New data on the deep structure of the Beshtau laccolith were obtained, and their combined interpretation with previous results obtained in geological, geophysical and petro-geochemical studies

  7. Geology and geochemistry of volcanic centers within the eastern half of the Sonoma volcanic field, northern San Francisco Bay region, California

    Science.gov (United States)

    Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.

    2011-01-01

    Volcanic rocks in the Sonoma volcanic field in the northern California Coast Ranges contain heterogeneous assemblages of a variety of compositionally diverse volcanic rocks. We have used field mapping, new and existing age determinations, and 343 new major and trace element analyses of whole-rock samples from lavas and tuff to define for the first time volcanic source areas for many parts of the Sonoma volcanic field. Geophysical data and models have helped to define the thickness of the volcanic pile and the location of caldera structures. Volcanic rocks of the Sonoma volcanic field show a broad range in eruptive style that is spatially variable and specific to an individual eruptive center. Major, minor, and trace-element geochemical data for intracaldera and outflow tuffs and their distal fall equivalents suggest caldera-related sources for the Pinole and Lawlor Tuffs in southern Napa Valley and for the tuff of Franz Valley in northern Napa Valley. Stratigraphic correlations based on similarity in eruptive sequence and style coupled with geochemical data allow an estimate of 30 km of right-lateral offset across the West Napa-Carneros fault zones since ~5 Ma.

  8. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    Science.gov (United States)

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  9. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    Science.gov (United States)

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be

  10. Magnetic anomalies on Io and their relationship to the spatial distribution of volcanic centers

    Science.gov (United States)

    Knicely, Joshua; Everett, Mark E.; Sparks, David W.

    2017-08-01

    Forward modeling of planetary-scale magnetic anomalies due to induced crustal magnetization of Io is developed. The approach involves finite difference modeling of a temporally- and spatially-averaged steady state geotherm superimposed by the thermal evolution of an instantaneously emplaced volcanic pipe with and without an underlying magma chamber. A slight adjustment to previous studies results in a preferred steady state geotherm. The crustal magnetization is based on the calculated distribution of temperature, the strength of an idealized Jovian magnetic field, and a temperature-dependent susceptibility. Magnetite is assumed to be the dominant magnetic mineral. Synthetic satellite flyby data are generated along selected meridional swaths of Io's surface, based on observed locations of volcanic centers, hotspots, and accumulations of ejected volcanic material. This work produces a 1-D geotherm which remains at approximately the surface temperature to within a few kilometers of the thermal lithosphere/mantle boundary. This solution shows little dependence on porosity due to the depth at which rapid temperature change occurs. These conclusions hold for largely varying mantle temperatures. Silicate volcanic centers cool to the temperature of sulfur eruptions rapidly and become indistinguishable from sulfur volcanism within 10,000 years. The magnetic anomaly due to temperature variation is smaller than detectable for nominal conditions. The modeling herein requires a flyby altitude of ∼25 km and a pipe radius of ∼640 m for detection, or, for a more reasonable flyby altitude of 100 km, a pipe radius of ∼6000 m. If a crustal anomaly is detected by future satellite missions, it would suggest different conditions at Io than modeled here.

  11. FIERCE: FInding volcanic ERuptive CEnters by a grid-searching algorithm in R

    Science.gov (United States)

    Carniel, Roberto; Guzmán, Silvina; Neri, Marco

    2017-02-01

    Most eruptions are fed by dikes whose spatial distribution can provide important insights into the positions of possible old eruptive centers that are no longer clearly identifiable in the field. Locating these centers can in turn have further applications, e.g., in hazard assessment. We propose a purely geometrical algorithm—implemented as an R open-source script—named FIERCE (FInding volcanic ERuptive CEnters) based on the number of intersections of dikes identified within a grid of rectangular cells overlain onto a given search region. The algorithm recognizes radial distributions, tangential distributions, or combinations of both. We applied FIERCE to both well-known and less-studied volcanic edifices, in different tectonic settings and having different evolution histories, ages, and compositions. At Summer Coon volcano, FIERCE demonstrated that a radial dike distribution clearly indicates the position of the central vent. On Etna, it confirmed the position of the most important ancient eruptive centers and allowed us to study effects of the structural alignments and topography. On Stromboli, FIERCE not only enabled confirmation of some published locations of older vents but also identified possible vent areas not previously suggested. It also highlighted the influence of the regional structural trend and the collapse scars. FIERCE demonstrated that the dikes at the Somma-Vesuvius were emplaced before formation of Mt. Somma's caldera and indicated a plausible location for the old volcanic crater of Mt. Somma which is compatible with previous studies. At the Vicuña Pampa Volcanic Complex, FIERCE highlights the position of two different vents of a highly degraded volcano.

  12. Geochemistry of high-potassium rocks from the mid-Tertiary Guffey volcanic center, Thirtynine Mile volcanic field, central Colorado

    Science.gov (United States)

    Wobus, Reinhard A.; Mochel, David W.; Mertzman, Stanley A.; Eide, Elizabeth A.; Rothwarf, Miriam T.; Loeffler, Bruce M.; Johnson, David A.; Keating, Gordon N.; Sultze, Kimberly; Benjamin, Anne E.; Venzke, Edward A.; Filson, Tammy

    1990-07-01

    The Guffey volcanic center is the largest within the 2000 km2 mid-Tertiary Thirtynine Mile volcanic field of central Colorado. This study is the first to provide extensive chemical data for these alkalic volcanic and subvolcanic rocks, which represent the eroded remnants of a large stratovolcano of Oligocene age. Formation of early domes and flows of latite and trachyte within the Guffey center was followed by extrusion of a thick series of basalt, trachybasalt, and shoshonite flows and lahars. Plugs, dikes, and vents ranging from basalt to rhyolite cut the thick mafic deposits, and felsic tuffs and tuff breccias chemically identical to the small rhyolitic plutons are locally preserved. Whole-rock major and trace element analyses of 80 samples, ranging almost continuously from 47% to 78%SiO2, indicate that the rocks of the Guffey center are among the most highly enriched in K2O (up to 6%) and rare earth elements (typically 200-300 ppm) of any volcanic rocks in Colorado. These observations, along with the relatively high concentrations of Ba and Rb and the depletion of Cr and Ni, suggest an appreciable contribution of lower crustal material to the magmas that produced the Thirtynine Mile volcanic rocks.

  13. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  14. Thermal regimes of major volcanic centers: Magnetotelluric constraints

    Energy Technology Data Exchange (ETDEWEB)

    Hermance, J.F.

    1989-10-02

    The interpretation of geophysical/electromagnetic field data has been used to study dynamical processes in the crust beneath three of the major tectono-volcanic features in North America: the Long Valley/Mono Craters Volcanic Complex in eastern California, the Cascades Volcanic Belt in Oregon, and the Rio Grande Rift in the area of Socorro, New Mexico. Primary accomplishments have been in the area of creating and implementing a variety of 2-D generalized inverse computer codes, and the application of these codes to fields studies on the basin structures and he deep thermal regimes of the above areas. In order to more fully explore the space of allowable models (i.e. those inverse solutions that fit the data equally well), several distinctly different approaches to the 2-D inverse problem have been developed: (1) an overdetermined block inversion; (2) an overdetermined spline inverstion; (3) a generalized underdetermined total inverse which allows one to tradeoff certain attributes of their model, such as minimum structure (flat models), roughness (smooth models), or length (small models). Moreover, we are exploring various approaches for evaluating the resolution model parameters for the above algorithms. 33 refs.

  15. Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hegre, J.A.; Nelson, S.A.

    1985-01-01

    Volcan Las Navajas, located in the northwestern portion of the Mexican Volcanic Belt has produced a sequence of volcanic rocks with compositions in marked contrast to the predominantly calc-alkaline volcanoes which predominate in this part of Mexico. The oldest exposed lavas consist of trachytes with 63% SiO/sub 2/, 6% FeO*, and 500 ppm Zr along with comenditic rhyolites with 68% SiO/sub 2/, 5% FeO*, 800 ppm Zr, and an agpaitic index of 1.0. These lavas were followed by the eruption of a comenditic ash-flow tuff and the formation of a caldera 2.7 km in diameter. This caldera was subsequently filled by eruptions of pantelleritic rhyolite obsidian lava flows with 72% SiO/sub 2/, 8% FeO*, 1100 ppm Zr, and an agpaitic index of 1.5 to 1.9. A second caldera was then formed which is offset to the south of the main eruptive vents for previous eruptions. This younger caldera has a diameter of about 4.8 km and its southern walls have been covered by calc-alkaline andesitic lavas erupted from nearby Sanganguey volcano. Volcanoclastic sediments in the floor of the younger caldera have been tilted and faulted in a manner suggestive of late stage resurgence. Subsequent eruptions within the caldera, however, have been restricted to calc-alkaline andesites. Tectonically, the area in which this volcano occurs appears to have been undergoing a crustal rifting event since the Pliocene. The occurrence of these peralkaline rocks lends further support to such a hypothesis.

  16. Characteristics of Mineralized Volcanic Centers in Javanese Sunda Island Arc, Indonesia

    Science.gov (United States)

    Setijadji, L. D.; Imai, A.; Watanabe, K.

    2007-05-01

    The subduction-related arc magmatism in Java island, Sunda Arc, Indonesia might have started in earliest Tertiary period, but the distinctively recognizable volcanic belts related with Java trench subduction occurred since the Oligocene. We compiled geoinformation on volcanic centers of different epochs, distribution of metallic mineral deposits, petrochemistry of volcanic rocks, geologic structures, and regional gravity image in order to elucidate characteristics of the known mineralized volcanic centers. Metallic deposits are present in various styles from porphyry-related, high-sulfidation, and low-sulfidation epithermal systems; all related with subaerial volcanism and subvolcanic plutonism. Only few and small occurrences of volcanigenic massive sulfides deposits suggest that some mineralization also occurred in a submarine environment. Most locations of mineral deposits can be related with location of Tertiary volcanic centers along the volcanic arcs (i.e. volcanoes whose genetic link with subduction is clear). On the other side there is no mineralization has been identified to occur associated with backarc magmatism whose genetic link with subduction is under debate. There is strong evidence that major metallic deposit districts are located within compressive tectonic regime and bound by coupling major, deep, and old crustal structures (strike-slip faults) that are recognizable from regional gravity anomaly map. So far the most economical deposits and the only existing mines at major industry scale are high-grade epithermal gold deposits which are young (Upper Miocene to Upper Pliocene), concentrated in Bayah dome complex in west Java, and are associated with alkalic magmatism-volcanism. On the other hand, known porphyry Cu-Au deposits are associated with old (Oligocene to Upper Miocene) stocks, and except for one case, all deposits are located in east Java. Petrochemical data suggest a genetic relationship between porphyry mineralization with low- to

  17. The Albano multiple-maar center (Rome, Italy): an active volcanic area since 70 ka

    Science.gov (United States)

    Freda, C.; Gaeta, M.; Karner, D. B.; Marra, F.; Renne, P. R.; Scarlato, P.; Taddeucci, J.

    2003-04-01

    The Albano multiple-maar center hosted the most recent activity of the Alban Hills Volcanic District. The determination of its petrochemical characteristics and its geochronology is therefore of great importance in order to evaluate the status of this volcanic area and to assess the possible volcanic hazard for Rome. Despite the detailed 40Ar/39Ar geochronologic history of the products of its activity, relatively poor information on the stratigraphy and the petrology of this volcanic center exists. In order to develop a detailed chronostratigraphy, petrology, and a more thorough knowledge of the eruptive mechanisms that characterized the recent activity of the Albano center, a joint research project is being conducted by scientists from the Istituto Nazionale di Geofisica e Vulcanologia, the University of California at Berkeley, and the Berkeley Geochronology Center. Here we have studied the most complete stratigraphic section located within the northern crater rim of Albano, where most of the products are exposed. We have investigated proximal and distal outcrops, in order to correlate them to the units identified in the northern crater rim section. We will present our recently acquired geochronologic and petrochemical data, which indicates magma chamber recharge associated with this <70 ka volcanism.

  18. Center for Volcanic and Tectonic Studies: 1992--1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings.

  19. Eruption rates and compositional trends at Los Humeros Volcanic Center, Puebla, Mexico

    Science.gov (United States)

    Ferriz, H.; Mahood, G. A.

    1984-09-01

    The present investigation has the objective to relate chemical trends in the products of the Los Humeros volcanic center to the center's physical evolution. Eruptive products of this young volcanic system span the range basalt through high-silica rhyolite, but show an overall trend with time toward increasingly mafic compositions. It is pointed out that this pattern is most likely a product of an increasing volumetric rate of eruption which exceeded the rate of regeneration of differentiated magma. Representative analytical and petrographic data in the context of establishing petrological trends are presented.

  20. U-series disequilibria of trachyandesites from minor volcanic centers in the Central Andes

    Science.gov (United States)

    Huang, Fang; Sørensen, Erik V.; Holm, Paul M.; Zhang, Zhao-Feng; Lundstrom, Craig C.

    2017-10-01

    Young trachyandesite lavas from minor volcanic centers in the Central Andes record the magma differentiation processes at the base of the lower continental crust. Here we report U-series disequilibrium data for the historical lavas from the Andagua Valley in Southern Peru to define the time-scale and processes of magmatism from melting in the mantle wedge to differentiation in the crust. The Andagua lavas show (230Th)/(238U), (231Pa)/(235U), and (226Ra)/(230Th) above unity except for one more evolved lava with 230Th depletion likely owing to fractional crystallization of accessory minerals. The 226Ra excess indicates that the time elapsed since magma emplacement and differentiation in the deep crust is within 8000 years. Based on the correlations of U-series disequilibria with SiO2 content and ratios of incompatible elements, we argue that the Andagua lavas were produced by mixing of fresh mantle-derived magma with felsic melt of earlier emplaced basalts in the deep crust. Because of the lack of sediment in the Chile-Peru trench, there is no direct link of recycled slabs with 230Th and 231Pa excesses in the Andagua lavas. Instead, 230Th and 231Pa excesses are better explained by in-growth melting in the upper mantle followed by magma differentiation in the crust. Such processes also produced the 226Ra excess and the positive correlations among (226Ra)/(230Th), Sr/Th, and Ba/Th in the Andagua lavas. The time-scale of mantle wedge melting should be close to the half-life of 231Pa (ca. 33 ka), while it takes less than a few thousand years for magma differentiation to form intermediate volcanic rocks at a convergent margin.

  1. Rifting, volcanism, and magma genesis at the northern end of the Danakil Depression: The Alid volcanic center of Eritrea (Invited)

    Science.gov (United States)

    Lowenstern, J. B.; Clynne, M. A.; Duffield, W. A.; Smith, J. G.; Woldegiorgis, L.

    2009-12-01

    The Alid volcanic center, Eritrea, is a structural dome formed by subvolcanic intrusion of pyroxene-bearing rhyolite, subsequently erupted as pumice and lava, during the period 40,000 to 15,000 years ago. The northern Danakil Depression is thought to be the most recently developed part of the Afar, and represents an active continental rift subparallel to the Red Sea spreading center. The location of Alid may be controlled by the intersection of the structural grain of the NE trending Senafe-Alid lineament with the NW trending Danakil Depression. Our work began as a geothermal assessment (Duffield et al., 1997, USGS Open-file 97-291) that found evidence for 300 meters of vertical offset of early Pleistocene basalt flows over the past 1.1 million years. Structural uplift at Alid reveals Proterozoic metamorphic basement rocks overlain by Quaternary marine sediments including siltstone, and sandstones interbedded with pillow lavas and hyaloclastites. These units are overlain by subaerial amphibole-bearing rhyolites (dated at ~200 ka), basalts, and andesites that were deposited on a relatively flat surface and before significant growth of a large volcanic edifice. About 1 km of structural uplift of the marine sediments began 40 ka when pyroxene-bearing rhyolitic magma intruded close to the surface. Uplift was accompanied by contemporaneous eruptions of pumice falls and more common obsidian domes and lava flows over the next 20,000 years. Uplift apparently ceased after eruption of pyroclastic flows and vent-clogging lava about 15 ka. The pumice deposits contain cognate xenoliths of granophyric pyroxene-granite (Lowenstern et al., 1997, J. Petrol. 38:1707). Our geochronology of the uplift is consistent with the idea that growth of the Alid volcanic center played a role in isolating the southern Danakil Depression from the Red Sea, helping to initiate dessication of the rift and producing the young evaporites found today at Baddha and further south at Dallol. U

  2. School Based Health Centers

    Science.gov (United States)

    Children's Aid Society, 2012

    2012-01-01

    School Based Health Centers (SBHC) are considered by experts as one of the most effective and efficient ways to provide preventive health care to children. Few programs are as successful in delivering health care to children at no cost to the patient, and where they are: in school. For many underserved children, The Children's Aid Society's…

  3. Global correlation of volcanic centers on Venus with uplands and with extension: Influence of mantle convection and altitude

    Science.gov (United States)

    Crumpler, L. S.; Head, James W., III; Aubele, J. C.

    1992-01-01

    The observed distribution of volcanism on Venus and its associations with geologic and tectonic characteristics are examined for significant global-scale tectonic, mantle, and volcanic influences. We find that volcanic centers are correlated geologically with zones of extension, infrequent in lowland regions, and infrequent in regions with evidence for tectonic shortening. In addition, volcanic centers are significantly concentrated in a broad region at least 10,000 km in diameter between Beta, Alta, and Themis Regiones. This area is nearly hemispheric in scale and coincides spatially with the area of greatest concentration of extensional characteristics. Our analysis suggests that the observed distribution patterns of volcanic centers reflect the regional patterns of extension, the origin of the extension and volcanism are closely related, and the hemispheric scale of both patterns implies a deep-seated origin such as large-scale interior mantle dynamic patterns. However, altitude-dependent effects on both the formation and preservation of volcanic centers could also strongly influence the observed distribution pattern.

  4. Volcanic hazard assessment in the Phlegraean Fields: A contribution based on stratigraphic and historical data

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, M.; Santacroce, R. (Universita di Pisa (Italy) Gruppo Nazionale per la Vulcanologia, Roma (Italy))

    1984-01-01

    Phenomena occurring since 1982 in the Phlegraean fields, interpreted as precursors of a potential renewal of volcanic activity, have forced the authors to anticipate some conclusions of a volcanic-hazard study based on the reconstruction of past eruptions in the area, to serve as basis for civil defense preparedness plans. The eruptive history of the Phlegraean Fields suggests a progressive decrease with time in the strength of eruptive phenomena paralleling a migration of vents towards the center of the Phlegraean caldera. Studies concerning the volcanic risk zonation were therefore concentrated on activities during the last 4,500 years and two eruptions (Monte Nuovo and Agnano Monte Spina), that occurred in 1538 and 4,400 years B.P., respectively were selected as the reference eruptions from which possible eruption scenarios were drawn.

  5. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the southern Andes

    Energy Technology Data Exchange (ETDEWEB)

    Futa, Kiyoto; Stern, C.R.

    1988-05-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46/sup 0/S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54/sup 0/S) range for /sup 87/Sr//sup 86/Sr from 0.70280 to 0.70591 and for /sup 143/Nd//sup 144/Nd from 0.51314 to 0.51255. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have /sup 87/Sr//sup 86/Sr, /sup 143/Nd//sup 144/Nd, La/Yb, Ba/La and Hf/Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35/sup 0/S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33/sup 0/ and 34/sup 0/S, basaltic andesites and andesites have higher /sup 87/Sr//sup 86/Sr, Rb/Cs, and Hf/Lu, and lower /sup 143/Nd//sup 144/Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54/sup 0/S) has Sr and Nd isotopic compositions and K/Rb and Ba/La similar to MORB. The high La/Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO/sub 2/, K/sub 2/O, Rb, Ba, Ba/La, and /sup 87/Sr//sup 86/Sr and decrease in MgO, Sr, K/Rb, Rb/Cs, and /sup 143/Nd//sup 144/Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra-crustal contamination. (orig./SHOE).

  6. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    Science.gov (United States)

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  7. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  8. AATSR Based Volcanic Ash Plume Top Height Estimation

    Science.gov (United States)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-11-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55◦ forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  9. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    Science.gov (United States)

    Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.

    1999-01-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely

  10. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    Energy Technology Data Exchange (ETDEWEB)

    Lowenstern, J.B.; Janik, C.J.; Fournier, R.O. [U.S. Geological Survey, Menlo Park, CA (US)] [and others

    1999-04-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of {approx} 10 km{sup 2} on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures > 225{sup o}C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO{sub 2}, H{sub 2}S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression. (author)

  11. Negative Magnetic Anomalies Observed in the Central West Antarctica (CWA) Aerogeophysical Survey Over the West Antarctic Ice Sheet (WAIS), Whose Sources are Volcanic Centers (e.g. Mt Resnik) at the Base of the ice >780 Ka

    Science.gov (United States)

    Behrendt, J. C.; Finn, C. A.; Morse, D. L.; Blankenship, D. D.

    2005-12-01

    Analysis of a block of coincident aeromagnetic and radar ice-sounding data (from the CWA aerogeophysical survey) over the WAIS reveals ~1000 50->1000-nT, shallow -source, ``volcanic" magnetic anomalies, interpreted as caused by late Cenozoic alkaline magmatism associated with the West Antarctic rift system (WR). About 400 of these anomalies (conservatively selected) have topographic expression at the bed of the WAIS; >80% of these topographic features have Resnik, marked by a complex negative anomaly, is a conical peak 300 m below the surface of the WAIS, and has ~2 km topographic relief. We interpret a magnetic model fit to this anomaly as comprising reversely magnetized (in the present field direction), 0.5-2.5-km thick volcanic flows at the summit overlying normally magnetized flows. Published models (1996) reported for the Hut Point anomaly, at Ross Island, Antarctica, a similar anomaly to Mt. Resnik, also required both normal and reversed magnetizations correlated with drill holes into dated volcanic flows (also part of the late Cenozoic WR) crossing the Brunhes-Matuyama boundary (780 Ka). Because of their form similar to exposed volcanoes in the WAIS area with edifices primarily comprising subaerially-erupted, very magnetic volcanic flows, which have resisted glacial erosion, Behrendt et al. (2004) interpreted that these 18 high-topograpy, high-relief sources are subglacial volcanoes (including the five >780 Ka) erupted subaerially during a period when the WAIS was absent.

  12. 40Ar/39Ar Age of the Lathrop Wells Volcanic Center, Yucca Mountain, Nevada.

    Science.gov (United States)

    Turrin, B D; Champion, D; Fleck, R J

    1991-08-09

    Paleomagnetic and (40)Ar/(39)Ar analyses from the Lathrop Wells volcanic center, Nevada, indicate that two eruptive events have occurred there. The ages (136 +/- 8 and 141 +/- 9 thousand years ago) for these two events are analytically indistinguishable. The small angular difference (4.7 degrees ) between the paleomagnetic directions from these two events suggests they differ in age by only about 100 years. These ages are consistent with the chronology of the surficial geological units in the Yucca Mountain area. These results contradict earlier interpretations of the cinder-cone geomorphology and soil-profile data that suggest that at least five temporally discrete eruptive events occurred at Lathrop Wells approximately 20,000 years ago.

  13. Structure and petrology of newly discovered volcanic centers in the northern Kermadec-southern Tofua arc, South Pacific Ocean

    Science.gov (United States)

    Graham, Ian J.; Reyes, Agnes G.; Wright, Ian C.; Peckett, Kimberley M.; Smith, Ian E. M.; Arculus, Richard J.

    2008-08-01

    The NZAPLUME III expedition of September-October 2004 to the northern Kermadec-southern Tofua (NKST) arc, between 28°52'S and 25°07'S, resulted in the discovery of at least seven new submarine volcanic centers and a substantial caldera complex adjacent to the previously known Monowai Seamount. The volcanic centers form a sublinear chain that coincides with the Kermadec Ridge crest in the south (Hinetapeka) and diverges ˜45 km westward of the ridge crest in the north ("V") just to the south of where the Louisville Ridge intersects with the arc. All of the centers contain calderas or caldera-like structures, as well as multiple cones, domes, fissure ridges, and vent fields. All show signs of recent eruptive and current hydrothermal activity. There are strong structural controls on edifice location, with cones and fissure ridges typically associated with faulting parallel to the regional ˜12° strike of the arc front. Several of the calderas are ellipsoidal, orientated northwest-southeast in the general direction of least compressive stress. Sampled volcanic rocks, representing the most recently erupted lavas, are all low-K tholeiites. Two of the centers, Gamble and Rakahore, yielded only high-silica dacite to rhyolite (69-74 wt% silica), whereas two others, Monowai and "V," yielded only basalt to andesite (48-63 wt% silica). Mineral assemblages are plagioclase-pyroxene dominated, with accessory Fe-Ti oxides, apatite, olivine, and quartz/tridymite/cristobalite, typical of dry volcanic arc systems. Hornblende occurs only in a felsitic rhyolite from Hinepuia volcanic center, and zircon is absent. Glass contents range to 57% in basalts-andesites (mean 20%), and 97% in andesites-rhyolites (mean 59%) and other quench textures, including swallow-tailed, plumose, or dendritic crystal forms and crystallites, are common. Most lavas are highly vesicular (≤63%; mean 28%) and have low volatile contents (mostly cristobalite, indicates explosive eruption and rapid cooling

  14. DEM-based model for reconstructing volcano's morphology from primary volcanic landforms

    Science.gov (United States)

    Gayer, Eric; Lopez, Philippe; Michon, Laurent

    2014-05-01

    Volumes of magma intruded in and emitted by volcanoes through time can be estimated by reconstruction of volcano's morphology and time sequence. Classical approaches for quantifying magma volumes on active volcanoes are based on the difference between pre- and post-eruption digital elevation models (DEM), but this kind of approach needs the pre-eruptive surfaces to be available. For old and eroded volcanoes these surfaces are poorly constrained. However, because the geometrical form of many volcanic edifices exhibits a remarkable symmetry we propose, here, a new approach using primary volcanic landforms in order to estimate the amount of the both erupted and eroded material and to locate eruptive centers. A large fraction of composite volcanoes have near constant slope on their flanks and a form that is concave upwards near their summits. But many phenomena can lead to non-symetrical edifices and complex morphologies can result, for example from parasitic centers of volcanism on the flanks, from alternation of short effusive and explosive construction phases, from flank or caldera collapses, or from glacial and other types of erosion. In this study we propose that, on the first order approximation, complex morphologies can be modeled by piling regular cones. In this model, cones centers and slopes are derived by fitting primary volcanic landform with a linear function :elevation=f(distance from center). Such an approach allows to estimate both errors on location of the eruptive center and on the volume of the resulting cones. This model can then be used for quantifying volume of erupted and eroded material, and for quantifying catastrophic events as giant landslides or flank collapse. This approach is tested on four different active volcanoes : Mount Mayon (Philippines), Mount Fuji (Japan), Mount Etna (Sicily) and Mount Teide (Canary Island) to estimate errors in volume between modeled and actual edifices. It is then used on volcanoes of La Réunion hotspot to

  15. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia

    Science.gov (United States)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.

    2008-06-01

    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  16. Potential Applications of JNPP to Infrared-Based Remote Sensing of Volcanic Emissions

    Science.gov (United States)

    Realmuto, V. J.

    2016-12-01

    The simultaneous collection of VIIRS, CrIS, and OMPS data will make JNPP an ideal platform for monitoring volcanic emissions. For daytime overpasses we will obtain three contemporaneous, but independent, estimates of SO2 column density, as well as information on the quantity and composition of aerosols and volcanic ash. We will use the independent measurements to validate individual retrieval techniques, and exploit the synergy between UV and TIR remote sensing. The finer spatial resolution of VIIRS (750 m at nadir), relative to OMPS (50 km) and CrIS (14 km), will allow us to characterize variations in surface conditions, plume composition, and the distribution of clouds within an IFOV of CrIS or OMPS, and assess the impact of these variations on the SO2retrievals. Atmospheric profiles are an essential input to the retrieval procedures, and the profiles derived from CrIS soundings will provide us with an accurate description of atmospheric conditions local to the plumes. In addition, the fine spectral resolution of CrIS will enable us to identify and quantify the components of heterogeneous (gas + particulate) plumes. We will demonstrate the potential use of JPSS to map volcanic planes through the analyses of TIR data acquired by EOS (ASTER, MODIS, and AIRS) and SNPP (VIIRS and CrIS) instruments over the plumes generated by recent eruptions of Eyjafallajökull, Bardarbunga (Iceland), Calbuco (Chile), and Ontake (Japan) Volcanoes. We will present comparisons of the TIR-based retrievals to OMI and SNPP-OMPS data products. Finally, we will outline a path to operations through collaboration with the Alaska Volcano Observatory (USGS), Anchorage Volcanic Ash Advisory Center (NWS + FAA), NASA-GSFC Direct Readout Lab, and University of Alaska-Fairbanks. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to National Atmospheric and Space Administration.

  17. 2003-2004 Campaign GPS Geodetic Monitoring of Surface Deformation Proximal to Volcanic Centers, Commonwealth of Dominica, Lesser Antilles.

    Science.gov (United States)

    Davidson, R. T.; Turner, H. L.; Blessing, B. C.; Parra, J.; Fitzgibbon, K.; Jansma, P.; Mattioli, G.

    2004-12-01

    The Commonwealth of Dominica, located midway along the Lesser Antilles island arc, is home to several (at least eight) potentially active volcanic centers. Spurred by recent seismic crises on the island - in the south from 1998-2000 and in the north in 2003 - twelve GPS monuments were installed in two field campaigns in 2001 and 2003. All twelve sites, along with five of six newly installed sites, were occupied continuously for ~2.5 or more UTC days in 2004 using Ashtech Z-12 dual-frequency, code-phase receivers and choke ring antenna to assess the highly complex and possibly interconnected volcanic systems of Dominica. We examine data from the 2003-2004 epochs because of the highly variable, shallow seismicity preceding this period. This way one can potentially isolate the changes that occurred without the data from previous observations influencing the results. Although only two epochs have been included, data quality and reliability can be established from sites distant from volcanic centers, as such sites show consistent velocities from all three epochs of observation over the 2001-2004 period. Between 2003 and 2004, multiple sites show velocities that are inconsistent with a simple tectonic interpretation of elastic strain accumulation along the plate interface. Sites located in the vicinity of the volcanic centers in the south central part of the island are moving faster than the 3 epoch 2001-2004 average of the velocities, which is approximately 7mm/year. The four sites at which greater movement has been noted have velocities ranging from approximately 10 to 27 mm/year. We note that the largest surface deformation signal is seen in the south during the same period when the shallow seismicity was at a maximum in the north of the island. While the spatial distribution of sites remains sparse and the velocities relatively imprecise, the preliminary results may indicate shallow magmatic emplacement, geothermal fluctuations, or structural instability in that part

  18. Can satellite-based monitoring techniques be used to quantify volcanic CO2 emissions?

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kuze, Akihiko; Kataoka, Fumie; Shiomi, Kei; Goto, Naoki; Popp, Christoph; Ajiro, Masataka; Suto, Hiroshi; Takeda, Toru; Kanekon, Sayaka; Sealing, Christine; Flower, Verity

    2014-05-01

    Since 2010, we investigate and improve possible methods to regularly target volcanic centers from space in order to detect volcanic carbon dioxide (CO2) point source anomalies, using the Japanese Greenhouse gas Observing SATellite (GOSAT). Our long-term goals are: (a) better spatial and temporal coverage of volcano monitoring techniques; (b) improvement of the currently highly uncertain global CO2 emission inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude, strong point source emission and dispersion studies in atmospheric science. The difficulties posed by strong relief, orogenic clouds, and aerosols are minimized by a small field of view, enhanced spectral resolving power, by employing repeat target mode observation strategies, and by comparison to continuous ground based sensor network validation data. GOSAT is a single-instrument Earth observing greenhouse gas mission aboard JAXA's IBUKI satellite in sun-synchronous polar orbit. GOSAT's Fourier-Transform Spectrometer (TANSO-FTS) has been producing total column XCO2 data since January 2009, at a repeat cycle of 3 days, offering great opportunities for temporal monitoring of point sources. GOSAT's 10 km field of view can spatially integrate entire volcanic edifices within one 'shot' in precise target mode. While it doesn't have any spatial scanning or mapping capability, it does have strong spectral resolving power and agile pointing capability to focus on several targets of interest per orbit. Sufficient uncertainty reduction is achieved through comprehensive in-flight vicarious calibration, in close collaboration between NASA and JAXA. Challenges with the on-board pointing mirror system have been compensated for employing custom observation planning strategies, including repeat sacrificial upstream reference points to control pointing mirror motion, empirical individualized target offset compensation, observation pattern simulations to minimize view angle azimuth. Since summer 2010

  19. Hydrogen isotope investigation of amphibole and biotite phenocrysts in silicic magmas erupted at Lassen Volcanic Center, California

    Science.gov (United States)

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2012-01-01

    Hydrogen isotope ratio, water content and Fe3 +/Fe2 + in coexisting amphibole and biotite phenocrysts in volcanic rocks can provide insight into shallow pre- and syn-eruptive magmatic processes such as vesiculation, and lava drainback with mixing into less devolatilized magma that erupts later in a volcanic sequence. We studied four ~ 35 ka and younger eruption sequences (i.e. Kings Creek, Lassen Peak, Chaos Crags, and 1915) at the Lassen Volcanic Center (LVC), California, where intrusion of crystal-rich silicic magma mushes by mafic magmas is inferred from the varying abundances of mafic magmatic inclusions (MMIs) in the silicic volcanic rocks. Types and relative proportions of reacted and unreacted hydrous phenocryst populations are evaluated with accompanying chemical and H isotope changes. Biotite phenocrysts were more susceptible to rehydration in older vesicular glassy volcanic rocks than coexisting amphibole phenocrysts. Biotite and magnesiohornblende phenocrysts toward the core of the Lassen Peak dome are extensively dehydroxylated and reacted from prolonged exposure to high temperature, low pressure, and higher fO2 conditions from post-emplacement cooling. In silicic volcanic rocks not affected by alteration, biotite phenocrysts are often relatively more dehydroxylated than are magnesiohornblende phenocrysts of similar size; this is likely due to the ca 10 times larger overall bulk H diffusion coefficient in biotite. A simplified model of dehydrogenation in hydrous phenocrysts above reaction closure temperature suggests that eruption and quench of magma ascended to the surface in a few hours is too short a time for substantial H loss from amphibole. In contrast, slowly ascended magma can have extremely dehydrogenated and possibly dehydrated biotite, relatively less dehydrogenated magnesiohornblende and reaction rims on both phases. Eruptive products containing the highest proportions of mottled dehydrogenated crystals could indicate that within a few days

  20. Application of K-Ar Dating to the Chronology of Young Volcanic Centers

    Science.gov (United States)

    Lanphere, M. A.

    2003-12-01

    K-Ar dating and a derivative technique, 40Ar/39Ar dating, are methods of high-precision chronology applicable to young volcanic centers. Cascade volcanoes studied in detail by several USGS volcanologists, Duane Champion paleomagetist, and me include Mt. Baker, WA; Mt. Rainier, WA; Mt. Adams, WA; Mt. Hood, OR; Crater Lake, OR; and Medicine Lake, CA. For Mt. Adams using detailed geologic mapping by Hildreth and Fierstein and 74 K-Ar ages for 63 mapped units, Hildreth and Lanphere established a detailed chronology for the stratovolcano. Good agreement has been achieved for K-Ar ages and 40Ar/39Ar ages of rocks from Mt. Adams as young as 36 ka. A similar detailed chronology has been established for other Cascade volcanoes using andesites, in particular. These chronologies often take 10 years or more to develop. Major advantages of the 40Ar/39Ar technique are the ability to work with small sample sizes and the possibility to push the technique to very young ages. The Campanian Ignimbrite erupted from the Campi Flegrei crater near Naples, Italy is an example of the use of small samples. Nine incremental-heating ages were determined on samples of sanidine ranging in size from 47 mg to 67 mg. These samples yielded ages for the Campanian Ignimbrite ranging from 37.1 +/- 0.75 ka to 39.5 +/- 0.62 ka and averaging 38.1 +/- 0.8 ka. Other workers have proposed 40Ar/39Ar ages for the Campanian Ignimbrite of 37.1 +/- 0.4 ka and 39.3 +/- 0.1 ka. An example of the use of 40Ar/39Ar dating of very young samples is the Christian Era (CE) age of the Vesuvius eruption of year 79. Eight packets of sanidine weighing 213-296 mg from two localities, Casti Amanti in Pompeii and Villa Poppea in nearby Oplontis, yielded a weighted-mean incremental-heating age of 1924 +/- 66 years. The known age for the CE 79 eruption of Vesuvius is 1924 years. Earlier studies of Vesuvius by other workers yielded an 40Ar/39Ar age for the Villa Poppea locality of 1922 +/- 72 years.

  1. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Science.gov (United States)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  2. Space-based observation of volcanic iodine monoxide

    Science.gov (United States)

    Schönhardt, Anja; Richter, Andreas; Theys, Nicolas; Burrows, John P.

    2017-04-01

    Volcanic eruptions inject substantial amounts of halogens into the atmosphere. Chlorine and bromine oxides have frequently been observed in volcanic plumes from different instrumental platforms such as from ground, aircraft and satellites. The present study is the first observational evidence that iodine oxides are also emitted into the atmosphere during volcanic eruptions. Large column amounts of iodine monoxide, IO, are observed in satellite measurements following the major eruption of the Kasatochi volcano, Alaska, in 2008. The IO signal is detected in measurements made both by SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) on ENVISAT (Environmental Satellite) and GOME-2 (Global Ozone Monitoring Experiment-2) on MetOp-A (Meteorological Operational Satellite A). Following the eruption on 7 August 2008, strongly elevated levels of IO slant columns of more than 4 × 1013 molec cm-2 are retrieved along the volcanic plume trajectories for several days. The retrieved IO columns from the different instruments are consistent, and the spatial distribution of the IO plume is similar to that of bromine monoxide, BrO. Details in the spatial distribution, however, differ between IO, BrO and sulfur dioxide, SO2. The column amounts of IO are approximately 1 order of magnitude smaller than those of BrO. Using the GOME-2A observations, the total mass of IO in the volcanic plume injected into the atmosphere from the eruption of Kasatochi on 7 August 2008, is determined to be on the order of 10 Mg.

  3. Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California

    Science.gov (United States)

    Klemetti, Erik W.; Clynne, Michael A.

    2014-01-01

    Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC) allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals) within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak) and rhyodacite (1.1 ka eruption of Chaos Crags). These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ~17 ka to secular equilibrium (>350 ka), with most zircon crystallizing during a period between ~60–200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ~190 ka. Most zircon are thought to have been captured from “cold storage” in the crystal mush (670–725°C, Hf >10,000 ppm, Eu/Eu* 0.25–0.4) locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf 0.4) grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s–1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.

  4. Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California.

    Directory of Open Access Journals (Sweden)

    Erik W Klemetti

    Full Text Available Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak and rhyodacite (1.1 ka eruption of Chaos Crags. These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ∼17 ka to secular equilibrium (>350 ka, with most zircon crystallizing during a period between ∼60-200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ∼190 ka. Most zircon are thought to have been captured from "cold storage" in the crystal mush (670-725°C, Hf >10,000 ppm, Eu/Eu* 0.25-0.4 locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf 0.4 grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s-1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.

  5. Age of Volcanism of the Wolverine Volcanic Center, West-Central Yukon Territory, Canada and its Implications for the History of Yukon River

    Science.gov (United States)

    Jackson, L. E.; Huscroft, C. A.; Ward, B. C.; Villeneuve, M.

    2008-12-01

    New Ar-Ar ages determined on the Wolverine Creek volcanic center (WC) establishes a middle Pliocene initiation of volcanism for the Fort Selkirk Volcanic Group (FSVG), Fort Selkirk area, west-central Yukon, Canada. WC was active between 4.34±0.06 and 2.98±0.05 Ma. Lava flows repeatedly descended Wolverine Creek valley and flowed into the Yukon River Valley (YRV) during the eruptive life of WC. The total thickness of WC lava flows in YRV decreases in a northward direction and the overall elevation of the surface of the highest flow at any point descends northward as well. Total thickness is up to 100 m in the canyon of Wolverine Creek with a surface elevation of approximately 550 m a.s.l. WC lava flows extend to the confluence of Yukon River with Pelly River 7 km north of the Wolverine Creek confluence with YRV. The lava fill has a total thickness of about 80 m at this northern limit with a surface elevation of 520 m a.s.l. The youngest flow there is dated at 3.05±0.07 Ma. The flows in this area show a general upward compositional change from basanite to alkali olivine basalt which is characteristic of WC. The thinning of the flows and decrease in elevation in a northward direction in YRV is consistent with the contemporary flow direction of Yukon River. Furthermore, the WC flows presumably extended farther down YRV (north and west) prior to erosional truncation. In contrast, lava flows are absent south (up contemporary flow of Yukon River) from the confluence of Wolverine Creek with YRV. This is consistent with the pattern of quenching that would be expected for any lava flow that enters YRV from Wolverine Creek and encounters a north-flowing Yukon River. This pattern is similar to those of lava flows from the younger Pelly and Black Creek FSVG eruptive centers immediately downstream of the Yukon River-Pelly River confluence. Similar asymmetries in lava flows that entered river canyons have been reported by others in the western Grand Canyon and for the 200 year

  6. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic

  7. Nature of orogenesis and volcanism in the Caucasus region based on results of regional tomography

    Directory of Open Access Journals (Sweden)

    I. Koulakov

    2012-06-01

    Full Text Available In the paper we discuss the problem of continental collision and related volcanism in the Caucasus and surrounding areas based on analysis of the upper mantle seismic structure in a recently derived model by Koulakov (2011. This model, which includes P- and S-velocity anomalies down to 1000 km depth, was obtained from tomographic inversion of worldwide travel time data from the catalogue of the International Seismological Center. It can be seen that the Caucasus region is squeezed between two continental plates, Arabian to the south and European to the north, which are displayed in the tomographic model as high-velocity bodies down to about 200–250 km depth. On the contrary, a very bright low-velocity anomaly beneath the collision area implies that the lithosphere in this zone is very thin, which is also supported by strong deformations indicating weak properties of the lithosphere. In the contact between stable continental and collision zones we observe a rather complex alternation of seismic anomalies having the shapes of sinking drops. We propose that the convergence process causes crustal thickening and transformation of the lower crust material into the dense eclogite. When achieving a critical mass, the dense eclogitic drops trigger detachment of the mantle lithosphere and its delamination. The observed high-velocity bodies in the upper mantle may indicate the parts of the descending mantle lithosphere which were detached from the edges of the continental lithosphere plates. Very thin or even absent mantle part of the lithosphere leads to the presence of hot asthenosphere just below the crust. The crustal shortening and eclogitization of the lower crustal layer leads to the dominantly felsic composition of the crust which is favorable for the upward heat transport from the mantle. This, and also the factor of frictional heating, may cause to the origin of volcanic centers in the Caucasus and surrounding collisional areas.

  8. Volcanic ash cloud detection from MODIS image based on CPIWS method

    Science.gov (United States)

    Liu, Lan; Li, Chengfan; Lei, Yongmei; Yin, Jingyuan; Zhao, Junjuan

    2017-02-01

    Volcanic ash cloud detection has been a difficult problem in moderate-resolution imaging spectroradiometer (MODIS) multispectral remote sensing application. Principal component analysis (PCA) and independent component analysis (ICA) are effective feature extraction methods based on second-order and higher order statistical analysis, and the support vector machine (SVM) can realize the nonlinear classification in low-dimensional space. Based on the characteristics of MODIS multispectral remote sensing image, via presenting a new volcanic ash cloud detection method, named combined PCA-ICA-weighted and SVM (CPIWS), the current study tested the real volcanic ash cloud detection cases, i.e., Sangeang Api volcanic ash cloud of 30 May 2014. Our experiments suggest that the overall accuracy and Kappa coefficient of the proposed CPIWS method reach 87.20 and 0.7958%, respectively, under certain conditions with the suitable weighted values; this has certain feasibility and practical significance.

  9. The nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain and Kane Springs Wash volcanic centers in southern Nevada

    Science.gov (United States)

    Taranik, J. V.; Noble, D. D.; Hsu, L. C.; Hutsinpiller, A.

    1986-01-01

    Four LANDSAT thematic mapping scenes in southern Nevada were requested at two different acquisition times in order to assess the effect of vegetation on the signature of the volcanic units. The remote sensing data acquisition and analysis portion are nearly completed. The LANDSAT thematic mapping data is of good quality, and image analysis techniques are so far successful in delineating areas with distinct spectral characteristics. Spectrally distinct areas were correlated with variations in surface coating and lithologies of the volcanic rocks.

  10. Response of hydrothermal system to stress transients at Lassen Volcanic Center, California, inferred from seismic interferometry with ambient noise

    Science.gov (United States)

    Taira, Taka'aki; Brenguier, Florent

    2016-10-01

    Time-lapse monitoring of seismic velocity at volcanic areas can provide unique insight into the property of hydrothermal and magmatic fluids and their temporal variability. We established a quasi real-time velocity monitoring system by using seismic interferometry with ambient noise to explore the temporal evolution of velocity in the Lassen Volcanic Center, Northern California. Our monitoring system finds temporal variability of seismic velocity in response to stress changes imparted by an earthquake and by seasonal environmental changes. Dynamic stress changes from a magnitude 5.7 local earthquake induced a 0.1 % velocity reduction at a depth of about 1 km. The seismic velocity susceptibility defined as ratio of seismic velocity change to dynamic stress change is estimated to be about 0.006 MPa-1, which suggests the Lassen hydrothermal system is marked by high-pressurized hydrothermal fluid. By combining geodetic measurements, our observation shows that the long-term seismic velocity fluctuation closely tracks snow-induced vertical deformation without time delay, which is most consistent with an hydrological load model (either elastic or poroelastic response) in which surface loading drives hydrothermal fluid diffusion that leads to an increase of opening of cracks and subsequently reductions of seismic velocity. We infer that heated-hydrothermal fluid in a vapor-dominated zone at a depth of 2-4 km range is responsible for the long-term variation in seismic velocity[Figure not available: see fulltext.

  11. Age and location of volcanic centers less than or equal to 3. 0 Myr old in Arizona, New Mexico and the Trans-Pecos Area of West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, M.J.; Laughlin, A.W.

    1981-04-01

    This map is one of a series of maps designed for hot dry rock geothermal assessment in Arizona, New Mexico, and the Trans-Pecos area of west Texas. The 3.0 m.y. cutoff age was selected because original heat has probably largely dissipated in older rocks. The location of volcanic centers is more important to geothermal resource assessment than the location of their associated volcanic rocks; however, ages have been determined for numerous flows far from their source. Therefore, the distribution of all volcanic rocks less than or equal to 3.0 m.y. old, for which there is at least one determined age, are shown. Location of the volcanic vents and rocks were taken from Luedke and Smith (1978).

  12. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  13. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    Science.gov (United States)

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  14. Nature of orogenesis and volcanism in the Caucasus region based on results of regional tomography

    Directory of Open Access Journals (Sweden)

    I. Koulakov

    2012-10-01

    Full Text Available In the paper, we discuss the problem of continental collision and related volcanism in the Caucasus and surrounding areas based on the analysis of the upper mantle seismic structure in a recently derived model by Koulakov (2011. This model, which includes P and S-velocity anomalies down to 1000 km depth, was obtained from tomographic inversion of worldwide travel time data from the catalogue of the International Seismological Center. It can be seen that the Caucasus region is squeezed between two continental plates, Arabian to the south and European to the north, which are displayed in the tomographic model as high-velocity bodies down to about 200–250 km depth. On the contrary, a very bright low-velocity anomaly beneath the collision area implies that the lithosphere in this zone is very thin, which is also supported by strong horizontal deformations and crustal thickening indicating weak properties of the lithosphere. In the contact between stable continental and collision zones, we observe a rather complex alternation of seismic anomalies having the shapes of sinking drops. We propose that the convergence process causes crustal thickening and transformation of the lower crust material into the dense eclogite. When achieving a critical mass, the dense eclogitic drops trigger detachment of the mantle lithosphere and its delamination. The observed high-velocity bodies in the upper mantle may indicate the parts of the descending mantle lithosphere which were detached from the edges of the continental lithosphere plates. Very thin, or even absent, mantle parts of the lithosphere leads to the presence of hot asthenosphere just below the crust. The crustal shortening and eclogitisation of the lower crustal layer leads to the dominantly felsic composition of the crust which is favourable for the upward heat transport from the mantle. This, and also the factors of frictional heating and the radioactivity of felsic rocks, may be the origin of

  15. Ground Based Ultraviolet Remote Sensing of Volcanic Gas Plumes

    Science.gov (United States)

    Kantzas, Euripides P.; McGonigle, Andrew J. S.

    2008-01-01

    Ultraviolet spectroscopy has been implemented for over thirty years to monitor volcanic SO2 emissions. These data have provided valuable information concerning underground magmatic conditions, which have been of utility in eruption forecasting efforts. During the last decade the traditionally used correlation spectrometers have been upgraded with miniature USB coupled UV spectrometers, opening a series of exciting new empirical possibilities for understanding volcanoes and their impacts upon the atmosphere. Here we review these technological developments, in addition to the scientific insights they have precipitated, covering the strengths and current limitations of this approach.

  16. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, Lisa [ATLAS Geosciences, Inc., Reno, NV (United States); Coolbaugh, Mark [ATLAS Geosciences, Inc., Reno, NV (United States); Hinz, Nick [Univ. of Nevada, Reno, NV (United States); Stelling, Pete [Western Washington Univ., Bellingham, WA (United States); Melosh, Glenn [GEODE, Santa Rosa, CA (United States); Cumming, William [Cumming Geoscience, Santa Rosa, CA (United States)

    2015-10-16

    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production. To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.

  17. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  18. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network

    Science.gov (United States)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.

    2009-02-01

    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  19. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    Science.gov (United States)

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  20. Signs of Recent Volcanism and Hydrothermal Activity Along the Eastern Segment of the Galapagos Spreading Center

    Science.gov (United States)

    Raineault, N.; Smart, C.; Mayer, L. A.; Ballard, R. D.; Fisher, C. R.; Marsh, L.; Shank, T. M.

    2016-12-01

    Since the initial discovery of the Galápagos Spreading Center (GSC) vents in 1977, large-scale disturbances resulting from eruptive and tectonic activity have both destroyed and created vent habitats along the GSC. In 2015, the E/V Nautilus returned to the GSC with remotely operated vehicles (ROVs) to explore 17 kilometers of the rift valley from the Rosebud site in the west, to a previously unexplored temperature anomaly east of the Tempus Fugit vent site. In the years to over a decade since scientists last visited the Rosebud, Rose Garden, and Tempus Fugit sites, there were many changes. Most notably, the Rosebud site, where scientists found a nascent vent community and left site markers in 2002, was apparently covered with glassy basaltic sheet flows. In addition to visual exploration, oceanographic sensor measurements and direct sampling, we used the ROV Hercules imaging suite, comprised of stereo cameras and a structured light laser sensor to map an area of diffuse flow in the Tempus Fugit field (100 m x 150 m). The centimeter-level photographic and bathymetric maps created with this system, along with ROV HD video, samples, and environmental sensors, documented hydrothermal activity and changes in biological community structure (e.g., Riftia tubeworms observed in nascent stages of community development in 2011 were now, in 2015, in greater abundance (with tubes almost 4 m in length). The detection of active venting and associated faunal assemblages will provide insight into the temporal and spatial variability of venting activity at the Tempus Fugit site. On a visual survey of the Rift east of the Tempus Fugit site, extinct sulfide chimney structures were discovered and sampled. There were several chimneys and sulfide deposits in a span of over 8 km that ranged in height from over a half meter to 1.5 m tall. Diffuse flow hosting white and blue bacterial mats was observed near the chimneys complexes. The base of a large chimney structure, venting white fluids

  1. GRID based Thermal Images Processing for volcanic activity monitoring

    Science.gov (United States)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  2. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  3. Timing and nature of volcanic particle clusters based on field and numerical investigations

    Science.gov (United States)

    Bagheri, Gholamhossein; Rossi, Eduardo; Biass, Sébastien; Bonadonna, Costanza

    2016-11-01

    Aggregation processes are known to play an important role in volcanic particle dispersal and sedimentation. They are also a primary source of uncertainty in ash dispersal forecasting since fundamental questions, such as the timing and deposition dynamics of volcanic aggregates, still remain unanswered. Here, we applied a state-of-the-art combination of field and numerical strategies to characterize volcanic aggregates. We introduce a new category of aggregates observed with high-speed-high-resolution videos, namely cored clusters. Cored clusters are mostly sub-spherical fragile aggregates that have never been observed in the deposits nor on adhesive tape as they typically break at impact with the ground. They consist of a core particle (200-500μm) fully covered by a thick shell of particles field-based evidence of the so-called rafting effect, in which the sedimentation of coarse ash in cored clusters is delayed due to aggregation.

  4. NASA(Field Center Based) Technology Commercialization Centers

    Science.gov (United States)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  5. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, Southern Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David

    1988-01-01

    Comparative lab spectra and Thematic Mapper imagery investigations at 3 Tertiary calderas in southern Nevada indicate that desert varnish is absorbant relative to underlying host rocks below about 0.7 to 1.3 microns, depending on mafic affinity of the sample, but less absorbant than mafic host rocks at higher wavelengths. Desert varnish occurs chiefly as thin impregnating films. Distribution of significant varnish accumulations is sparse and localized, occurring chiefly in surface recesses. These relationships result in the longer wavelength bands and high 5/2 values over felsic units with extensive desert varnish coatings. These lithologic, petrochemical, and desert varnish controlled spectral responses lead to characteristic TM band relationships which tend to correlate with conventionally mappable geologic formations. The concept of a Rock-Varnish Index (RVI) is introduced to help distinguish rocks with a potentially detectable varnish. Felsic rocks have a high RVI, and those with extensive desert varnish behave differently, spectrally, from those without extensive varnish. The spectrally distinctive volcanic formations at Stonewall Mountain provide excellent statistical class segregation on supervised classification images. A binary decision rule flow-diagram is presented to aid TM imagery analysis over volcanic terrane in semi-arid environments.

  6. Late Cenozoic volcanism in the western Woodlark Basin area, SW Pacific: the sources of marine volcanic ash layers based on their elemental and Sr-Nd isotope compositions

    Science.gov (United States)

    Lackschewitz, K. S.; Mertz, D. F.; Devey, C. W.; Garbe-Schönberg, C.-D.

    2002-12-01

    Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga-Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages

  7. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong

    2000-01-01

    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  8. Economic impact of explosive volcanic eruptions: A simulation-based assessment model applied to Campania region volcanoes

    Science.gov (United States)

    Zuccaro, Giulio; Leone, Mattia Federico; Del Cogliano, Davide; Sgroi, Angelo

    2013-10-01

    PLINIVS Study Centre of University of Naples Federico II has developed a methodology that aims to estimate, in probabilistic terms, the direct and the indirect economic impacts of a Sub-Plinian I or Strombolian type eruption of Vesuvius. The economic model has been implemented as a complementary tool of the Volcanic Impact Simulation Model, a tool developed at PLINIVS Center available to the Italian Civil Protection Department (DPC) decision makers to quantify the potential losses consequent to a possible eruption of Vesuvius or Campi Flegrei. Along the expected time history of the eruptive event all the possible "direct costs" and the "factors" (indirect costs) impacting the economic growth in the event area have been identified. Each cost factor is built up through a specific algorithm that is fed by various providers, in order to run software that will estimate the global amount of economic damage from a volcanic event. The model does not include the economic evaluation of intangibles (e.g. human casualties), while the evaluation of damage to the local cultural heritage (historical buildings, archeological sites, monuments, etc.), is linked to the economic impact on tourism, estimated into indirect costs. The architecture of the model is based on a simulation logic, which allows an evaluation of different economic impact scenarios through input changes, allowing the model to be used as a tool to support the decision making process.

  9. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Harrington, C. [Los Alamos National Lab., NM (USA); Turrin, B.; Champion, D. [US Geological Survey (US); Wells, S.; Perry, F.; McFadden, L.; Renault, C. [New Mexico Univ., Albuquerque, NM (USA)

    1989-12-31

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located between 8 and 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10-8 to 10-10 yr-1. These bounds are currently being reexamined based on new developments in the understanding of the evolution of small volume, basaltic volcanic centers including: Many of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity, The centers may be active for time spans exceeding 105 yrs, There is a decline in the volume of eruptions of the centers through time, and Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene. The authors classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 103 to 105 yrs. magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes.

  10. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-05-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1}. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10{sup 5} yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10{sup 3} to 10{sup 5} yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs.

  11. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-01-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures. PMID:27265878

  12. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  13. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process.

    Science.gov (United States)

    Galindo, I; Romero, M C; Sánchez, N; Morales, J M

    2016-06-06

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  14. Optical OFDM-based Data Center Networks

    Directory of Open Access Journals (Sweden)

    Christoforos Kachris

    2013-07-01

    Full Text Available Cloud computing and web emerging application has created the need for more powerful data centers with high performance interconnection networks.Current data center networks,based on electronic packet switches,will not be able to satisfy the required communication bandwidth of emerging applications without consuming excessive power.Optical interconnercts have gained attention recently as a promising solution offering high throughput,low latency and reduced energy cosumption compared to current networks based in commidity switches.This paper presents a novel architecture for data center networks based on optical OFDM using Wavelength Selective Swithces(WSS. The OFDM-based solution provides high throughput,reduced latency and fine grain bandwidth allocation. A heuristic algorithm for the bandwidth allocation is presented and evaluated in terms of utilization. The power analysis shows that the proposed scheme is almost 60% more energy efficient compared to the current networks based on eommodity switches.

  15. Retrieval and intercomparison of volcanic SO2 injection height and eruption time from satellite maps and ground-based observations

    Science.gov (United States)

    Pardini, Federica; Burton, Mike; de'Michieli Vitturi, Mattia; Corradini, Stefano; Salerno, Giuseppe; Merucci, Luca; Di Grazia, Giuseppe

    2017-02-01

    Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.

  16. Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA

    Science.gov (United States)

    Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.; Poland, Michael P.; Endo, Elliot T.

    2006-01-01

    Tumescence at the Three Sisters volcanic center began sometime between summer 1996 and summer 1998 and was discovered in April 2001 using interferometric synthetic aperture radar (InSAR). Swelling is centered about 5 km west of the summit of South Sister, a composite basaltic-andesite to rhyolite volcano that last erupted between 2200 and 2000 yr ago, and it affects an area ∼20 km in diameter within the Three Sisters Wilderness. Yearly InSAR observations show that the average maximum displacement rate was 3–5 cm/yr through summer 2001, and the velocity of a continuous GPS station within the deforming area was essentially constant from June 2001 to June 2004. The background level of seismic activity has been low, suggesting that temperatures in the source region are high enough or the strain rate has been low enough to favor plastic deformation over brittle failure. A swarm of about 300 small earthquakes (Mmax = 1.9) in the northeast quadrant of the deforming area on March 23–26, 2004, was the first notable seismicity in the area for at least two decades. The U.S. Geological Survey (USGS) established tilt-leveling and EDM networks at South Sister in 1985–1986, resurveyed them in 2001, the latter with GPS, and extended them to cover more of the deforming area. The 2001 tilt-leveling results are consistent with the inference drawn from InSAR that the current deformation episode did not start before 1996, i.e., the amount of deformation during 1995–2001 from InSAR fully accounts for the net tilt at South Sister during 1985–2001 from tilt-leveling. Subsequent InSAR, GPS, and leveling observations constrain the source location, geometry, and inflation rate as a function of time. A best-fit source model derived from simultaneous inversion of all three datasets is a dipping sill located 6.5 ± 2.5 km below the surface with a volume increase of 5.0 × 106 ± 1.5 × 106m3/yr (95% confidence limits). The most likely cause of tumescence is a pulse of

  17. Synthetic aperture radar (SAR-based mapping of volcanic flows: Manam Island, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    J. K. Weissel

    2004-01-01

    Full Text Available We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.

  18. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    Science.gov (United States)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava

  19. Petrological insights on the effusive-explosive transitions of the Nisyros-Yali Volcanic Center, South Aegean Sea

    Science.gov (United States)

    Popa, Razvan-Gabriel; Bachmann, Olivier; Ellis, Ben; Degruyter, Wim; Kyriakopoulos, Konstantinos

    2017-04-01

    Volcanoes erupting silicic, volatile-rich magmas can exhibit both effusive and explosive eruptions, even during closely spaced eruptive episodes. Understanding the effusive-explosive transition is fundamental in order to assess the hazards involved. Magma properties strongly influence the processes during magma ascent that determine the eruptive style. Here, we investigate the link between changing conditions in the magma reservoir and the eruptive style. The Quaternary Nisyros-Yali volcanic center, from the South Aegean Sea, provides an excellent natural laboratory to study this process. Over the last 60-100 kyrs, it produced a series of dacitic to rhyolitic eruptions that emplaced alternating effusive and explosive deposits (with explosive eruptions likely shortly following effusive ones). For this study, nine fresh and well-preserved units (five effusive and four explosive) were sampled and analyzed for whole-rock, groundmass glass and mineral compositions, in order to draw insights into the magma chamber processes and thermodynamic conditions that preceded both types of eruptions. Silicic magmas in Nisyros-Yali record a complex, open-system evolution, dominated by fractionation in mushy reservoirs at mid to upper crustal depths, frequently recharged by warmer input from below. Storage temperatures recorded by the amphibole-plagioclase thermometer span a wide range, and they are always cooler than the pre-eruptive temperatures yielded by Fe-Ti oxide thermometry for the same unit, whether it is effusive or explosive. However, magmas feeding effusive eruptions typically reached cooler conditions (expressed by the presence of low-Al, low-Ti amphiboles) than in the explosive cases. The difference between the pre-eruptive and the lowest storing temperatures in the Nisyros series are in the order of 10-30°C for explosive units, while the difference is of about 40-110°C for the effusive units. The Yali series does not perfectly fit this pattern, where explosive units

  20. eVolv2k: A new ice core-based volcanic forcing reconstruction for the past 2000 years

    Science.gov (United States)

    Toohey, Matthew; Sigl, Michael

    2016-04-01

    Radiative forcing resulting from stratospheric aerosols produced by major volcanic eruptions is a dominant driver of climate variability in the Earth's past. The ability of climate model simulations to accurately recreate past climate is tied directly to the accuracy of the volcanic forcing timeseries used in the simulations. We present here a new volcanic forcing reconstruction, based on newly updated ice core composites from Antarctica and Greenland. Ice core records are translated into stratospheric aerosol properties for use in climate models through the Easy Volcanic Aerosol (EVA) module, which provides an analytic representation of volcanic stratospheric aerosol forcing based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. The evolv2k volcanic forcing dataset covers the past 2000 years, and has been provided for use in the Paleo-Modeling Intercomparison Project (PMIP), and VolMIP experiments within CMIP6. Here, we describe the construction of the eVolv2k data set, compare with prior forcing sets, and show initial simulation results.

  1. Monitoring of the volcanic plume based on the post-fit phase residual of PPP analysis and SNR data

    Science.gov (United States)

    Ohta, Yusaku; Iguchi, Masato

    2016-04-01

    A volcanic explosion is one of the largest energy-release phenomena on earth. For example, vulcanian eruptions usually eject large amounts of rock mass, tephra, and volcanic ash. Ash fall from such events can seriously affect the structural integrity of buildings, in addition to disrupting land and air traffic. Therefore, the monitoring and prediction of ash fall is very important. In this study, using data from a dense GNSS network, we investigated the spatiotemporal development of the volcanic plume ejected by the vulcanian eruption in Sakurajima, southwestern Japan on July 24, 2012. We extracted the post-fit phase residuals (PPR) of ionosphere-free linear combinations for each satellite based on the precise point positioning approach. Temporal and spatial PPR anomalies clearly detected the movement of the volcanic plume. The maximum height of the crossing points of anomalous PPR paths was determined to be approximately 4000 m. We then compared the PPR with the signal-to-noise ratio (SNR) anomalies. Only the path passing just above the crater showed significant change in the SNR value, suggesting that the volcanic ash and the water vapor within the volcanic plume became separated after reaching a high altitude because of ash fall during the plume's lateral movement. In the presentation, we will introduce the eruption in Shin-dake (Kuchinoerabu island, southwestern Japan) on May 29, 2015 based on the SNR data.

  2. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NARCIS (Netherlands)

    Fu, G.; Lin, H.X.; Heemink, A.W.; Segers, A.J.; Lu, S.; Palsson, T.

    2015-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs

  3. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NARCIS (Netherlands)

    Fu, G.; Lin, H.X.; Heemink, A.W.; Segers, A.J.; Lu, S.; Palsson, T.

    2015-01-01

    The 2010 Eyjafjallajokull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs

  4. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  5. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption

  6. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption

  7. Ground-based and airborne measurements of volcanic gas emissions at White Island in New Zealand

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Poehler, Denis; Bobrowski, Nicole; Christenson, Bruce; Platt, Ulrich

    2017-04-01

    Quantitative understanding of volcanic gas emissions has twofold relevance for nature and society: 1) Variation in gas emission and/or in emitted gas ratios are tracers of the dynamic processes in the volcano interior indicating its activity. 2) Volcanic degassing plays an important role for the Earth's climate, for local sometimes even regional air quality and atmospheric chemistry. In autumn 2015, a campaign to White Island Volcano in New Zealand was organized to perform ground-based as well as airborne in-situ and remote sensing gas measurements of sulfur dioxide (SO2), carbon dioxide (CO2) and bromine monoxide (BrO). For all three gases the ratios and total emission rates were determined in different plume types and ages. An overview over the data will be presented with focus on the two most notable outcomes: 1) The first determination of the BrO/SO2 ratio in the White Island plume and a minimum estimate of the volcano's bromine emission rate; two of many parameters, which are important to assess the impact of volcanic degassing on the atmospheric halogen chemistry. 2) In-situ SO2 data was very successfully recorded with the PITSA, a prototype of a portable and cost-effective optical instrument. It is based on the principle of non-dispersive UV absorption spectroscopy and features different advantages over the customary electrochemical sensors, including a sub second response time, negligible cross sensitivities to other gases, and inherent calibration. The campaign data demonstrates the capabilities and limitations of the PITSA and shows, that it can be well applied as substitute for conventional electrochemical systems.

  8. Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile

    Science.gov (United States)

    Morgado, E.; Parada, M. A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L. E.

    2015-11-01

    Most of the small eruptive centers of the Andean Southern Volcanic Zone are built over the Liquiñe-Ofqui Fault Zone (LOFZ), a NS strike-slip (> 1000 km length) major structure, and close to large stratovolcanoes. This contribution compares textural features, compositional parameters, and pre- and syn-eruptive P,T conditions, between basaltic lavas of the Caburgua-Huelemolle Small Eruptive Centers (CHSEC) and the 1971 basaltic andesite lava of the Villarrica Volcano located 10 km south of the CHSEC. Olivines and clinopyroxenes occur as phenocrysts and forming crystal clots of the studied lavas. They do not markedly show compositional differences, except for the more scattered composition of the CHSEC clinopyroxenes. Plagioclase in CHSEC lavas mainly occur as phenocrysts or as microlites in a glass-free matrix. Two groups of plagioclase phenocrysts were identified in the 1971 Villarrica lava based on crystal size, disequilibrium features and zonation patterns. Most of the CHSEC samples exhibit higher LaN/YbN and more scattered Sr-Nd values than 1971 Villarrica lava samples, which are clustered at higher 143Nd/144Nd values. Pre-eruptive temperatures of the CHSEC-type reservoir between 1162 and 1165 ± 6 °C and pressures between 10.8 and 11.4 ± 1.7 kb consistent with a deep-seated reservoir were obtained from olivine-augite phenocrysts. Conversely, olivine-augite phenocrysts of 1971 Villarrica lava samples record pre-eruptive conditions of two stages or pauses in the magma ascent to the surface: 1208 ± 6 °C and 6.3-8.1 kb ± 1.7 kb (deep-seated reservoir) and 1164-1175 ± 6 °C and ≤ 1.4 kb (shallow reservoir). At shallow reservoir conditions a magma heating prior to the 1971 Villarrica eruption is recorded in plagioclase phenocrysts. Syn-eruptive temperatures of 1081-1133 ± 6 °C and 1123-1148 ± 6 °C were obtained in CHSEC and 1971 Villarrica lava, respectively using equilibrium olivine-augite microlite pairs. The LOFZ could facilitate a direct transport to

  9. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    Science.gov (United States)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  10. A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain

    Science.gov (United States)

    Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.

    2014-05-01

    This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.

  11. The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna

    Science.gov (United States)

    Maro, Guadalupe; Caffe, Pablo J.

    2016-07-01

    The Cerro Bitiche Andesitic Field (CBAF) is one of the two largest mafic volcanic fields in northern Puna (22-24° S) and is spatially and temporally associated with ignimbrites erupted from some central Andean Altiplano-Puna Volcanic Complex calderas. The CBAF comprises seven scoria cones and widespread high-K calcalkaline lava flows that cover an area of 200 km2. Although all erupted rocks have a relatively narrow chemical range (56-62 % SiO2, 3-6 % MgO), there is a broad diversity of mineral compositions and textures. The least evolved lavas (˜58-61 % SiO2) are high-Mg andesites with scarce (andesites (˜62 wt% SiO2), on the other hand, are porphyritic rocks with plagioclase + orthopyroxene + biotite and ubiquitous phenocryst disequilibrium textures. These magmas were likely stored in crustal reservoirs, where they experienced convection caused by mafic magma underplating, magma mixing, and/or assimilation. Trace element and mineral compositions of CBAF lavas provide evidence for complex evolution of distinct magma batches.

  12. Volcanic forcing for climate modeling: a new microphysics-based dataset covering years 1600–present

    Directory of Open Access Journals (Sweden)

    T. Peter

    2013-02-01

    Full Text Available As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now not only linked to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for General-Circulation-Model (GCM and Chemistry-Climate-Model (CCM simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions are in good agreement with observations. By providing accurate amplitude and spatial distributions of shortwave and longwave radiative perturbations by volcanic sulfate aerosols, we argue that this volcanic forcing may help refine the climate model responses to the large volcanic eruptions since 1600. The final dataset consists of 3-D values (with constant longitude of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

  13. A Low-Cost Smartphone Sensor-Based UV Camera for Volcanic SO2 Emission Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Charles Wilkes

    2017-01-01

    Full Text Available Recently, we reported on the development of low-cost ultraviolet (UV cameras, based on the modification of sensors designed for the smartphone market. These units are built around modified Raspberry Pi cameras (PiCams; ≈USD 25, and usable system sensitivity was demonstrated in the UVA and UVB spectral regions, of relevance to a number of application areas. Here, we report on the first deployment of PiCam devices in one such field: UV remote sensing of sulphur dioxide emissions from volcanoes; such data provide important insights into magmatic processes and are applied in hazard assessments. In particular, we report on field trials on Mt. Etna, where the utility of these devices in quantifying volcanic sulphur dioxide (SO2 emissions was validated. We furthermore performed side-by-side trials of these units against scientific grade cameras, which are currently used in this application, finding that the two systems gave virtually identical flux time series outputs, and that signal-to-noise characteristics of the PiCam units appeared to be more than adequate for volcanological applications. Given the low cost of these sensors, allowing two-filter SO2 camera systems to be assembled for ≈USD 500, they could be suitable for widespread dissemination in volcanic SO2 monitoring internationally.

  14. Assessing the likelihood and magnitude of volcanic explosions based on seismic quiescence

    Science.gov (United States)

    Roman, Diana C.; Rodgers, Mel; Geirsson, Halldor; LaFemina, Peter C.; Tenorio, Virginia

    2016-09-01

    Volcanic eruptions are generally forecast based on strong increases in monitoring parameters such as seismicity or gas emissions above a relatively low background level (e.g., Voight, 1988; Sparks, 2003). Because of this, forecasting individual explosions during an ongoing eruption, or at persistently restless volcanoes, is difficult as seismicity, gas emissions, and other indicators of unrest are already in a heightened state. Therefore, identification of short-term precursors to individual explosions at volcanoes already in heightened states of unrest, and an understanding of explosion trigger mechanisms, is important for the reduction of volcanic risk worldwide. Seismic and visual observations at Telica Volcano, Nicaragua, demonstrate that a) episodes of seismic quiescence reliably preceded explosions during an eruption in May 2011 and b) the duration of precursory quiescence and the energy released in the ensuing explosion were strongly correlated. Precursory seismic quiescence is interpreted as the result of sealing of shallow gas pathways, leading to pressure accumulation and eventual catastrophic failure of the system, culminating in an explosion. Longer periods of sealing and pressurization lead to greater energy release in the ensuing explosion. Near-real-time observations of seismic quiescence at restless or erupting volcanoes can thus be useful for both timely eruption warnings and for forecasting the energy of impending explosions.

  15. Assimilating Aircraft-based measurements to improve the State of Distal Volcanic Ash Cloud

    Science.gov (United States)

    Fu, Guangliang; Lin, Hai Xiang; Heemink, Arnold; Segers, Arjo; Lu, Sha; Palsson, Thorgeir

    2015-04-01

    The sudden eruption at the 1666 m high, ice-capped Eyjafjallajökull volcano, in south Iceland during 14 April to 23 May 2010, had caused an unprecedented closure of the European and North Atlantic airspace resulting in global economic losses of US5 billion. This has initiated a lot of research on how to improve aviation advice after eruption onset. Good estimation of both the state of volcanic ash cloud and the emission of volcano are crucial for providing a successful aviation advice. Currently most of the approaches, employing satellite-based and ground-based measurements, are in the focus of improving the definition of Eruption Source Parameters (ESPs) such as plume height and mass eruption rate, which are certainly very important for estimating volcano emission and state of volcanic ash cloud near to the volcano. However, for ash cloud state in a far field, these approaches can hardly make improvements. This is mainly because the influence of ESPs on the ash plume becomes weaker as the distance to the volcano is getting farther, thus for a distal plume the information of ESPs will have little influence. This study aims to find an efficient way to improve the state of distal volcanic ash cloud. We use real-life aircraft-based observations, measured along Dutch border between Borken and Twist during the 2010 Eyjafjallajökull eruption, in an data assimilation system combining with a transport model to identify the potential benefit of this kind of observations and the influence on the ash state around Dutch border. We show that assimilating aircraft-based measurements can significantly improve the state of distal ash clouds, and further provide an improved aviation advice on distal ash plume. We compare the performances of different sequential data assimilation methods. The results show standard Ensemble Kalman Filter (EnKF) works better than others, which is because of the strong nonlinearity of the dynamics and the EnKF's resampling Gaussianity nature

  16. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  17. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  18. Center for Volcanic and Tectonic Studies, Department of Geoscience annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.I. [Nevada Univ., Las Vegas, NV (United States). Center for Volcanic and Tectonic Studies

    1990-11-01

    This report summarizes our activities during the period October 1, 1989 to September 30, 1990. Our goal was to develop an understanding of late-Miocene and Pliocene volcanism in the Great Basin by studying Pliocene volcanoes in the vicinity of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Field studies during this period concentrated on the Quaternary volcanoes in Crater Flat, Yucca Mountain, Fortification Hill, at Buckboard Mesa and Sleeping Butte, and in the Reveille Range. Also, a study was initiated on structurally disrupted basaltic rocks in the northern White Hills of Mohave County, Arizona. As well as progress reports of our work in Crater Flat, Fortification Hill and the Reveille Range, this paper also includes a summary of model that relates changing styles of Tertiary extension to changing magmatic compositions, and a summary of work being done in the White Hills, Arizona. In the Appendix, we include copies of published papers not previously incorporated in our monthly reports.

  19. The Hospital-Based Drug Information Center.

    Science.gov (United States)

    Hopkins, Leigh

    1982-01-01

    Discusses the rise of drug information centers in hospitals and medical centers, highlighting staffing, functions, typical categories of questions received by centers, and sources used. An appendix of drug information sources included in texts, updated services, journals, and computer databases is provided. Thirteen references are listed. (EJS)

  20. New ground-based lidar enables volcanic CO2 flux measurements.

    Science.gov (United States)

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-09-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

  1. Tracking the Tristan-Gough Mantle Plume Using Discrete Chains of Intraplate Volcanic Centers Buried in the Walvis Ridge

    Science.gov (United States)

    O'Connor, John; Jokat, Wilfried; Wijbrans, Jan

    2016-04-01

    Explanations for hotspot trails range from deep mantle plumes rising from the core-mantle boundary (CMB) to shallow plate cracking. Such mechanisms cannot explain uniquely the scattered hotspot trails distributed across a 2,000-km-wide swell in the sea floor of the southeast Atlantic Ocean. While these hotspot trails formed synchronously, in a pattern consistent with movement of the African Plate over plumes rising from the edge of the African LLSVP, their distribution is controlled by the interplay between plumes and the motion and structure of the African Plate (O'Connor et al. 2012). A significant challenge is to establish how the vigor and flow of hotspot material to the mid-ocean ridge constructed the Walvis Ridge. 40Ar/39Ar stratigraphy for three sites across the central Walvis Ridge sampled by Ocean Drilling (DSDP Leg 74) (Rohde et al., 2013; O'Connor & Jokat 2015a) indicates an apparent inverse relation between the volume flux of hotspot volcanism and the distance between the mid-ocean ridge and the Tristan-Gough hotspot. Moreover, since ˜93 Ma the geometry and motion of the mid-ocean ridge determined where hotspot material was channeled to the plate surface to build the Walvis Ridge. Interplay between hotspot flow, and the changing geometry of the mid-ocean ridge as it migrated relative to the Tristan-Gough hotspot, might explain much of the age and morphology of the Walvis Ridge. Thus, tracking the location of the Tristan-Gough plume might not be practicable if most of the complex morphology of the massive Walvis Ridge is related to the proximity of the South Atlantic mid-ocean ridge. But 40Ar/39Ar basement ages for the Tristan-Gough hotspot track (Rohde et al., 2013; O'Connor & Jokat 2015b), together with information about morphology and crustal structure from new swath maps and seismic profiles, suggest that separated age-progressive intraplate segments track the location of the Tristan-Gough mantle plume. The apparent continuity of the inferred age

  2. Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Directory of Open Access Journals (Sweden)

    Euripides P. Kantzas

    2011-06-01

    Full Text Available Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere.

  3. An Ebola virus-centered knowledge base.

    Science.gov (United States)

    Kamdar, Maulik R; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. © The Author(s) 2015. Published by Oxford University Press.

  4. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  5. Isotopic Constraints (U, Th, Pb, Sr, Ar) on the Timing of Magma Generation, Storage and Eruption of a Late-Pleistocene Subvolcanic Granite, Alid Volcanic Center, Eritrea

    Science.gov (United States)

    Lowenstern, J. B.; Charlier, B. L.; Wooden, J. L.; Lanphere, M. A.; Clynne, M. A.; Bullen, T. D.

    2001-12-01

    Isotopic analyses demonstrate that a shallow granophyric intrusion from the Alid volcanic center (AVC) was generated, intruded and crystallized over a 20,000-year period in the latest Pleistocene. The granophyre is not exposed, but was ejected as unmelted blocks within a ~1 km3 pyroclastic flow deposit around 15 ka and is a subvolcanic equivalent of the erupted rhyolitic pumice (Lowenstern et al., 1997: J Petrol 12, p. 1707-1721). The rock contains 2.59) is 15.2+/- 5.8 ka (all errors are 2 σ ). Two other splits with lower density (thus higher in Na) yielded ages older than 24 ka, and may retain some excess Ar. Thus, the time between intrusion and complete crystallization for the granophyre was Danakil Depression and are found as unmelted lithic xenoliths in lavas and tuffs of the AVC. Pb isotopes also rule out significant assimilation of Precambrian basement during genesis of the young granophyre. Similarly zircon grains, analyzed with the Stanford-USGS SHRIMP-RG, show little evidence for inheritance, with only a single 760 Ma zircon (U-Pb age) that was also petrographically different from the 130 other zircons in the mount. The other zircons yielded SHRIMP 238U230Th disequilibrium ages of http://wrgis.wr.usgs.gov/docs/geologic/jlwnstrn/alid/ Alidpage.html

  6. Comments on "Failures in detecting volcanic ash from a satellite-based technique"

    Science.gov (United States)

    Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.

    2001-01-01

    The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.

  7. GIS-Based emergency and evacuation planning for volcanic hazards in New Zealand

    DEFF Research Database (Denmark)

    Cole, J. W.; Sabel, C. E.; Blumenthal, E.

    2005-01-01

    in New Zealand is high, with 10 volcanoes or volcanic centres (Auckland, Bay of Islands, Haroharo, Mayor Island, Ruapehu, Taranaki, Tarawera, Taupo, Tongariro (including Ngauruhoe) and White Island) recognised as active or potentially active. In addition there are many active and potentially active...... (reduction, readiness, response and recovery) can benefit from CIS, including applications related to transportation systems, a critical element in managing effective lifelines in an emergency. This is particularly true immediately before and during a volcanic eruption. The potential for volcanic activity...... volcanoes along the Kermadec Island chain. There is a great deal of background information on all of these volcanoes, and GIS is currently being used for some aspects of monitoring (e.g. ERS and Envisat radar interferometry for observing deformation prior to eruptions). If an eruption is considered imminent...

  8. A Mars Analog for Wet-Based Glacial Alteration of Volcanic Terrains: Thermal Infrared Remote Sensing at Three Sisters, Oregon, U.S.A.

    Science.gov (United States)

    Rutledge, A. M.; Scudder, N. A.; Horgan, B.; Rampe, E. B.

    2016-09-01

    This study characterizes wet-based glacial weathering products at a volcanic Mars analog site using thermal infrared remote sensing. Decorrelation stretches are used to examine the geographic relationships between compositional units.

  9. Space-borne detection of volcanic carbon dioxide anomalies: The importance of ground-based validation networks

    Science.gov (United States)

    Schwandner, F. M.; Carn, S. A.; Corradini, S.; Merucci, L.; Salerno, G.; La Spina, A.

    2012-04-01

    We have investigated the feasibility of space-borne detection of volcanic carbon dioxide (CO2) anomalies, and their integration with ground-based observations. Three goals provide motivation to their integration: (a) development of new volcano monitoring techniques, with better spatial and temporal coverage, because pre-eruptive volcanic CO2 emissions are potentially the earliest available indicators of volcanic unrest; (b) improvement the currently very poor global CO2 source strength inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude strong point source emission and dispersion studies. (1) Feasibility of space-borne detection of volcanic CO2 anomalies. Volcanoes are highly variable but continuous CO2 emitters, distributed globally, and emissions often occur at high altitudes. To detect strong point sources of CO2 from space, several hurdles have to be overcome: orographic clouds, unknown dispersion behavior, a high CO2 background in the troposphere, and sparse data coverage from existing satellite sensors. These obstacles can be overcome by a small field of view, enhanced spectral resolving power, and by employing repeat target mode observation strategies. The Japanese GOSAT instrument has been operational since January 2009, producing CO2 total column measurements with a repeat cycle of 3 days and a field of view of 10km. GOSAT thus has the potential to provide spatially integrated data for entire volcanic edifices, especially in target mode. Since summer 2010 we have conducted repeated target mode observations of over 20 persistently active global volcanoes including Etna (Italy), Erta Ale (Ethiopia), and Ambrym (Vanuatu), using L2 GOSAT FTS SWIR data. One of our best-studied test cases is Mt. Etna on Sicily (Italy), which reawakened in 2011 after a period of quiescence and produced a sequence of eruptive activities including lava fountaining events, coinciding with target-mode GOSAT observations conducted there since 2010. For the

  10. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    of the subducting slab at ca. 20 Ma is inferred. The eruption of 24-20 Ma alkali olivine basalt up to 500 km east of the trench marks the beginning of a long-lasting magmatic episode with widespread volcanism north of the Cortaderas lineament following a regional magmatic hiatus lasting from 39 Ma to 26 Ma...

  11. Structure of magma reservoirs beneath Merapi and surrounding volcanic centers of Central Java modeled from ambient noise tomography

    Science.gov (United States)

    Koulakov, Ivan; Maksotova, Gulzhamal; Jaxybulatov, Kayrly; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Luehr, Birger-G.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-10-01

    We present a three-dimensional model of the distribution of S-wave velocity in the upper crust to a depth of 20 km beneath Central Java based on the analysis of seismic ambient noise data recorded by more than 100 seismic stations in 2004 associated with the MERAMEX project. To invert the Rayleigh wave dispersion curves to construct 2-D group-velocity maps and 3-D distributions of S-wave velocity, we have used a new tomographic algorithm based on iterative linearized inversion. We have performed a series of synthetic tests that demonstrate significantly higher resolution in the upper crust with this model compared to the local earthquake travel-time tomography (LET) model previously applied for the same station network. Beneath the southern flank of Merapi, we identify a large low-velocity anomaly that can be split into two layers. The upper layer reflects the ˜1 km thick sedimentary cover of volcanoclastic deposits. The deeper anomaly at depths of ˜4-8 km may represent a magma reservoir with partially molten rock that feeds several volcanoes in Central Java. Beneath the Merapi summit, we observe another low-velocity anomaly as deep as 8 km that may be associated with the active magma reservoir that feeds the eruptive activity of Merapi. In the southern portion of the study area, in the lower crust, we identify a low-velocity anomaly that may represent the top of the pathways of volatiles and melts ascending from the slab that was previously inferred from the LET model results. We observe that this anomaly is clearly separate from the felsic magma reservoirs in the upper crust.

  12. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    Science.gov (United States)

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  13. National Agricultural-Based Lubricants (NABL) Center

    Energy Technology Data Exchange (ETDEWEB)

    Honary, Lou

    2013-09-30

    This project, while defined as a one year project from September 30, 2012 – September 30, 2013, was a continuation of a number of tasks that were defined in previous years. Those tasks were performed and were finalized in this period. The UNI-NABL Center, which has been in operation in various forms since 1991, has closed its facilities since September 2013 and will be phasing out in June 2014. This report covers the individual tasks that were identified in the previous reports and provides closure to each task in its final stage.

  14. Age and location of volcanic centers less than or equal to 3. 0 m. y. old in Arizona, New Mexico, and the Trans-Peco area of West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, M.J.; Laughlin, A.W.

    1981-12-01

    This map is one of a series of maps designed for hot dry rock geothermal assessment in Arizona, New Mexico, and the Trans-Peco area of the west Texas. The 3.0 m.y. cutoff age was selected because original heat has probably largely dissipated in older rocks. The location of volcanic centers is more important to geothermal resource assessment than the location of their associated volcanic rocks; however, ages have been determined for numerous flows far from their source. Therefore, the distribution of all volcanic rocks less than or equal to 3.0 m.y. old, for which there is at least one determined age, are shown. Location of the volcanic vents and rocks were taken from Luedke and Smith (1978). Ages were obtained from the original literature in all cases except for McKee and others (1974), Silberman and others (1976), Ulrich and McKee (1976), and Wolfe and McKee (1976). The abstract by McKee and others (1974) lists only the ages of various rocks they dated, so locations were taken from Luedke and Smith (1978). The dates of Silberman and others (1976), Ulrich and McKee (1976), and Wolfe and McKee (1976) are taken from written communications cited by Luedke and Smith (1978); therefore, both references are shown on the map for those ages.

  15. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    New 40Ar/39Ar, major and trace element, and Sr, Nd and Pb isotopic data for the c. 24-7 Ma volcanic rocks from the Andean back-arc (35°S – 38°S) in the Mendoza and Neuquén (Argentina) regions shed light on the Miocene evolution of the back-arc of the Southern Volcanic Zone. Incipient shallowing...... lasting from ~17 to ~9 Ma. The reoccurrence of extensive magmatism in the Sierra de Palaoco provides evidence for a retreat of the shallow subduction zone towards the west during the Late Miocene. Evidence for the ending of the time of flat subduction comes from major- and trace element chemistry and Nd...

  16. Paleosecular variation during the PCRS based on a new database of sedimentary and volcanic records

    Science.gov (United States)

    Haldan, M. M.; Langereis, C. G.; Evans, M. E.

    2007-12-01

    We present a paleosecular variation study using a generalised global paleomagnetic sedimentary and volcanic database. We made use of all available (and suitable) - published and some new- sedimentary and volcanic paleomagnetic records corresponding to the Permo-Carboniferous Reversed Superchron (PCRS) interval to reanalyse all data. We focused on records with a sufficient number of samples, and acquired - whenever possible - the original data, or - as a second choice - parametrised published site means. Analysis of these paleomagnetic data in terms of latitude variation of the scatter of the virtual geomagnetic poles (VGPs) suggests that careful data selection is required and that some of the older studies may need to be redone using more modern methods, both in terms of sampling and laboratory treatment. In addition, high (southern and especially northern hemisphere) latitudes are notably lacking in published records. The transitional data is removed using a variable VGP cut-off angle which varies with latitude. We use also our extended sedimentary records from Permian red beds from the Lodève and Dôme de Barrot basins (S. France), a new detailed paleomagnetic study of the Permian volcanics in the Oslo graben (Norway), as well as new data from Carboniferous-Permian sediments from the Donbas basin (Ukraine). We compare our results with those from published paleosecular variation models and with recent (re)analyses of VGP scatter during different periods of the geological archive.

  17. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  18. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and

  19. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and

  20. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  1. A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico

    Science.gov (United States)

    Alcorn, Rebecca; Panter, Kurt S.; Gorsevski, Pece V.

    2013-11-01

    The objective of this study is to evaluate the spatial extent of a possible future eruption using a GIS-based volcanic hazard tool designed to simulate pyroclastic fallout and density currents (PDCs) as well as lava flows and to assess the social and economic vulnerabilities of the area at risk. Simulated pyroclastic fallout deposits originating from the El Cajete crater within the Valles Caldera, Jemez Mountains volcanic field, New Mexico, are calibrated to isopach and lithic isopleth maps of the Lower and Upper El Cajete as constructed by Wolff et al. (2011). The change in the axial orientation of fallout deposits between the Lower and Upper El Cajete is best matched using seasonal variations in wind speed and direction based on modern atmospheric records. The calibration of PDCs is based on the distribution and run-out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at a second vent location determined from probability distributions of structural features. The resulting hazard simulation maps show the potential distribution of pyroclastic fallout, PDCs and lava flows, indicating areas to the S/SE of Valles Caldera to be at greatest risk.

  2. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  3. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  4. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    Science.gov (United States)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  5. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  6. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    , Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries - USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom - have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators. ?? Springer Science+Business Media B.V. 2008.

  7. Evidence-based guidelines for teaching patient-centered interviewing.

    Science.gov (United States)

    Smith, R C; Marshall-Dorsey, A A; Osborn, G G; Shebroe, V; Lyles, J S; Stoffelmayr, B E; Van Egeren, L F; Mettler, J; Maduschke, K; Stanley, J M; Gardiner, J C

    2000-01-01

    In a rare study of effectiveness of an interviewing method, we previously reported a randomized controlled trial demonstrating that training in a step-by-step patient-centered interviewing method improved residents' knowledge, attitudes, and skills and had a consistently positive effect on trained residents' patients. For those who wish to use this evidence-based patient-centered method as a template for their own teaching, we describe here for the first time our training program--and propose that the training can be adapted for students, physicians, nurse practitioners, physician assistants, and other new learners as well. Training was skills-oriented and experiential, fostered positive attitudes towards patient-centered interviewing, and used a learner-centered approach which paid special attention to the teacher-resident relationship and to the resident's self-awareness. Skills training was guided by a newly identified patient-centered interviewing method that described the step-by-step use of specific behaviors.

  8. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  9. A quantitative model for volcanic hazard assessment

    OpenAIRE

    W. Marzocchi; Sandri, L.; Furlan, C

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  10. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements

    Science.gov (United States)

    Gasteiger, J.; Gro{ß}, S.; Freudenthaler, V.; Wiegner, M.

    2011-03-01

    Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e.~extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m-2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm-3. The uncertainty range for this ratio is from 0.87 g m-2 to 2.32 g m-2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km-1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m-3 (0.65 to 1.8 mg m-3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic

  11. Volcanic and impact deposits of the Moon's Aristarchus Plateau: A new view from Earth-based radar images

    Science.gov (United States)

    Campbell, Bruce A.; Carter, Lynn M.; Hawke, B. Ray; Campbell, Donald B.; Ghent, Rebecca R.

    2008-02-01

    Lunar pyroclastic deposits reflect an explosive stage of thebasaltic volcanism that filled impact basins across the nearside.These fine-grained mantling layers are of interest for theirassociation with early mare volcanic processes, and as possiblesources of volatiles and other species for lunar outposts. Wepresent Earth-based radar images, at 12.6 and 70 cm wavelengths,of the pyroclastic deposit that blankets the Aristarchus Plateau.The 70 cm data reveal the outlines of a lava-flow complex thatcovers a significant portion of the plateau and appears to haveformed by spillover of magma from the large sinuous rille VallisSchröteri. The pyroclastics mantling these flows are heavilycontaminated with rocks 10 cm and larger in diameter. The 12.6cm data confirm that other areas are mantled by 20 m or lessof material, and that there are numerous patches of 2 cm andlarger rocks associated with ejecta from Aristarchus crater.Some of the radar-detected rocky debris is within the mantlingmaterial and is not evident in visible-wavelength images. Theradar data identify thick, rock-poor areas of the pyroclasticdeposit best suited for resource exploitation.

  12. Multiclass Classification Based on the Analytical Center of Version Space

    Institute of Scientific and Technical Information of China (English)

    ZENGFanzi; QIUZhengding; YUEJianhai; LIXiangqian

    2005-01-01

    Analytical center machine, based on the analytical center of version space, outperforms support vector machine, especially when the version space is elongated or asymmetric. While analytical center machine for binary classification is well understood, little is known about corresponding multiclass classification.Moreover, considering that the current multiclass classification method: “one versus all” needs repeatedly constructing classifiers to separate a single class from all the others, which leads to daunting computation and low efficiency of classification, and that though multiclass support vector machine corresponds to a simple quadratic optimization, it is not very effective when the version spaceis asymmetric or elongated, Thus, the multiclass classification approach based on the analytical center of version space is proposed to address the above problems. Experiments on wine recognition and glass identification dataset demonstrate validity of the approach proposed.

  13. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  14. A GIS based hydrogeomorphic approach for identification of site-specific artificial-recharge techniques in the Deccan Volcanic Province

    Indian Academy of Sciences (India)

    M N Ravi Shankar; G Mohan

    2005-10-01

    The Deccan Volcanic Province (DVP)of India,as a whole,faces a severe shortage of water despite receiving a high annual rainfall,this is primarily due to excess runoff and lack of water conservation practices.In this study,an attempt is made to identify zones favourable for the application and adaptation of site-specific artificial-recharge techniques for augmentation of groundwater through a Geographical Information System (GIS)based hydrogeomorphic approach in the Bhatsa and Kalu river basins of Thane district,in western DVP.The criteria adopted for the GIS analysis were based on the hydrogeomorphological characteristics of both basins extracted from the IRS- 1C LISS-III data supported by information on drainage pattern,DEM derived slope,lineament density,drainage density,and groundwater condition.The integrated study helps design a suitable groundwater management plan for a basaltic terrain.

  15. Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series

    Science.gov (United States)

    Dzierma, Y.; Wehrmann, H.

    2010-03-01

    Forecasting volcanic activity has long been an aim of applied volcanology with regard to mitigating consequences of volcanic eruptions. Effective disaster management requires both information on expected physical eruption behaviour such as types and magnitudes of eruptions as typical for the individual volcano, usually reconstructed from deposits of past eruptions, and the likelihood that a new eruption will occur within a given time. Here we apply a statistical procedure to provide a probability estimate for future eruptions based on eruption time series, and discuss the limitations of this approach. The statistical investigation encompasses a series of young volcanoes of the Chilean Southern Volcanic Zone. Most of the volcanoes considered have been active in historical times, in addition to several volcanoes with a longer eruption record from Late-Pleistocene to Holocene. Furthermore, eruption rates of neighbouring volcanoes are compared with the aim to reveal possible regional relations, potentially resulting from local to medium-scale tectonic dynamics. One special focus is directed to the two currently most active volcanoes of South America, Llaima and Villarrica, whose eruption records comprise about 50 historical eruptions over the past centuries. These two front volcanoes are considered together with Lanín Volcano, situated in the back-arc of Villarrica, for which the analysis is based on eight eruptions in the past 10 ka. For Llaima and Villarrica, affirmed tests for independence of the repose times between successive eruptions permit to assume Poisson processes; which is hampered for Lanín because of the more limited availability of documented eruptions. The assumption of stationarity reaches varying degrees of confidence depending on the time interval considered, ameliorating towards the more recent and hence probably more complete eruption record. With these pre-requisites of the time series, several distribution functions are fit and the goodness of

  16. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  17. A new global geomagnetic model based on archeomagnetic, volcanic and historical records

    Science.gov (United States)

    Arneitz, Patrick; Leonhardt, Roman; Fabian, Karl

    2016-04-01

    The major challenge of geomagnetic field reconstruction lies in the inhomogeneous spatio-temporal distribution of the available data and their highly variable quality. Paleo- and archeomagnetic records provide information about the ancient geomagnetic field beyond the historical period. Typically these data types have larger errors than their historical counterparts, and investigated materials and applied experimental methods potentially bias field readings. Input data for the modelling approach were extracted from available collections of archeomagnetic, volcanic and historical records, which were integrated into a single database along with associated meta-data. The used iterative Bayesian inversion scheme targets the implementation of reliable error treatments, which allows to combine the different data types. The proposed model is scrutinized by carrying out tests with artificial records. Records are synthesized using a known field evolution generated by a geodynamo model showing realistic energy characteristics. Using the artificial field, a synthetic data set is generated that exactly mirrors the existing measured records in all meta-data, but provides data that would have been observed if the artificial field would have been real. After inversion of the synthetic data, the comparison of known artificial Gauss coefficients and modelled ones allows for the verification of the applied modelling strategy as well as for the examination of the potential and limits of the current data compilation.

  18. Segmentation of the Cascade Arc Based on Compositional and Sr and Nd Isotopic Variations in Primitive Volcanic Rocks

    Science.gov (United States)

    Schmidt, M. E.; Grunder, A. L.

    2006-12-01

    We define four segments in the Cascade Volcanic Arc based on 87Sr/86Sr and 143Nd/144Nd of primitive volcanic rocks: 1) The North segment extends 450 km from Mt. Meager to Glacier Peak; 2) the 350-km Columbia segment includes volcanoes from Mt. Rainier to Mt. Jefferson; 3) the 250 km Central segment comprises the portion of the arc between the Three Sisters and Crater Lake; and 4) the 350-km South segment includes Mt. Shasta to Mt. Lassen. Isotopic data were compiled for primitive bulk composition (MgO concentrations >8 wt.% MgO) as a fingerprint mantle sources. The North segment has a range in 87Sr/86Sr of 0.7030-0.7037 and is distinguished by the predominance of calcalkaline basalts (CAB) and few low K tholeiites (LKT). The North segment lies on the North Cascade craton where convergence is near orthogonal. Oblique subduction occurs beneath the Columbia, Central, and South segments. The Columbia segment (87Sr/86Sr of 0.7028-0.7037) has both LKT and CABs as well as enriched ocean island-like basalts (OIB) that are found both on the arc axis and, especially at the Simcoe Volcanic Field, behind the arc. This segment lies primarily on the accreted Tertiary oceanic plateau terrane of the Columbia Embayment. The Central segment is dominated by LKT with lesser CAB and has the most restricted Sr isotopic range (0.7034- 0.7038). Like the South segment, the Central segment mainly overlies accreted terranes stitched by Mesozoic plutons and has Basin and Range (B&R) extension behind as well as locally within the arc. Medicine Lake Volcano, on the margin of the B&R behind Mt. Shasta is also dominated by LKT and has a narrow isotopic range like the Central segment. This suggests that the LKT's are related to extension in the arc. The South segment is distinguished by the widest Sr isotopic range (0.7028-0.7042) and the presence of high Mg basaltic andesite and andesite compositions in addition to LKT and CABs. These arc segments broadly correspond to physical segments that were

  19. Timing and sources of neogene and quaternary volcanism in South-Central Guatemala

    Science.gov (United States)

    Reynolds, James H.

    1987-08-01

    Five new and six existing radiometric age dates place constraints on the timing of volcanic episodes in a 1400-km 2 area east of Guatemala City. The source of the voluminous Miocene rhyolitic welded tuffs was the newly discovered Santa Rosa de Lima caldera, in the northern part of the area, not fissure eruptions as was previously believed. Resurgence during the Pliocene included the eruption of more silicic tuffs, followed by post-collapse volcanism around the perimeter. Volcanism in the southern part of the area occurred along the Neogene volcanic front. The sources for these Late Miocene and Pliocene andesitic lavas were not fissure eruptions, as was once believed, but were four large volcanic centers, Cerro Pinula, Ixhuatán, Teanzul, and Cerro La Gabia. The Santa Rosa de Lima caldera structure deflects the Jalpatagua Fault forming tensional fractures along which eruptions in the Quaternary Cuilapa-Barbarena cinder cone field took place. Pleistocene ash flows were erupted from Ixhuatán and Tecuamburro volcanoes in the southern part of the area. Tephras from Ayarza, Amatitlán, and Atitlán blanket the northern and central portions. Present-day activity is restricted to hot springs around the northern and eastern base of Tecuamburro volcano. Based on the work in this area it is proposed that rocks of the Miocene Chalatenango Formation throughout northern Central America were erupted from calderas behind the Neogene volcanic front. Rocks of the Mio-Pliocene Bálsamo Formation in Guatemala and El Salvador were erupted from discrete volcanic centers along the Neogene volcanic front. Pliocene rocks of the Cuscatlán Formation probably represent post-collapse volcanism around earlier caldera structures.

  20. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  1. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  2. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite

  3. A New Geomagnetic Field Model for the last 2k years based on high quality archaeomagnetic and volcanic data

    Science.gov (United States)

    Campuzano, Saioa A.; Gómez-Paccard, Miriam; Pavón-Carrasco, Francisco Javier; Osete, María Luisa

    2016-04-01

    The knowledge of the ancient Earth's magnetic field is crucial to understand its origin and future evolution. In this context, the palaeomagnetic studies provide useful information about the past geomagnetic field registered in rocks, lava flows, sediments or archaeological materials. The continuous upgrade of the palaeomagnetic database during the last decade has allowed the generation of global geomagnetic field models based on different palaeomagnetic data and techniques (such as the SHA.DIF.14K, ARCH3K.1, CALS3K.4b, pfm9k.1a models, among others). Some recent studies have pointed out that the archaeointensity database might not be reliable enough, by observing high scatter in the records. Here, we present a new global geomagnetic model for the last 2000 years, SHAQ2K, based on high quality archaeomagnetic and volcanic intensity data. For this purpose we classify the palaeointensity data in two quality categories following widely accepted palaeomagnetic criteria based on the methodology used during the laboratory treatment of the samples and on the number of specimens finally used to calculate the mean intensities. Respect to the modelling process, we use the spherical harmonic analysis in space and cubic b-splines in time, also applying a spatial and temporal regularization which minimizes the energy of the geomagnetic field at the core-mantle boundary. The implications of the differences between this new model and other previously published global geomagnetic models are discussed.

  4. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  5. Geochemical Patterns Classification of recent Mt. Etna Volcanic Products based on a synopsis of Kohonen Maps and Fuzzy Clustering.

    Science.gov (United States)

    Corsaro, Rosa Anna; Falsaperla, Susanna; Langer, Horst

    2010-05-01

    During the last two decades Mt. Etna experienced many summit and flank eruptions with different styles of activity, ranging from quiet lava effusion to explosive activity consisting of Strombolian explosions and/or spectacular fire fountains. This complex picture entails the presence of a complex plumbing system where magma dynamics strongly controls both the eruptive style and magma differentiation. All these eruptive events have furnished volcanic products on which systematic petrographic and geochemical analyses have been carried out since the mid 1990s. In particular, the content of major and trace elements of lavas is a key-point to characterize the composition of a magma emitted during an eruption. Petrologic investigations are traditionally based on the interpretation of compositional patterns described by selected oxides and/or elements in binary and ternary petrologic systems. This kind of analysis provides useful information about the magmatic processes occurring in the plumbing system. In this presentation we investigate whether the quality of petrologic investigations is improved by the application of more sophisticated analytical techniques based on the use of a relatively large number of parameters. To this purpose, we selected 13 components, i.e., SiO2, K2O, CaO/Al2O3, Mg#, Th, La, Nb, Nd, Sr, Tb, Cr, Ni and Rb/Nb. This choice brings along the problem of designing a suitable statistics and a convenient visualization of the results. As a way out, we propose advanced concepts of multivariate classification based on a synopsis of Kohonen Maps and Fuzzy Clustering, and apply them to the study of volcanics erupted from Mt. Etna between 1995 and 2005. Lavas erupted during the fire fountains (in 2000) and during the flank eruptions (2001, 2002-03) represent the most primitive products erupted from Mt. Etna in the investigated period. The literature data suggest that during the 2001 and 2002-03 eruptions two magmas with different geochemical characteristics

  6. A 3D geological model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of geological uncertainty using a stochastic approach based on Bézier curve design

    Science.gov (United States)

    González-Garcia, Javier; Jessell, Mark

    2016-09-01

    The Ruiz-Tolima Volcanic Massif (RTVM) is an active volcanic complex in the Northern Andes, and understanding its geological structure is critical for hazard mitigation and guiding future geothermal exploration. However, the sparsity of data available to constrain the interpretation of this volcanic system hinders the application of standard 3D modelling techniques. Furthermore, some features related to the volcanic system are not entirely understood, such as the connectivity between the plutons present in its basement (i.e. Manizales Stock, El Bosque Batholith). We have developed a methodology where two independent working hypotheses were formulated and modelled independently (i.e. a case where both plutons constitute distinct bodies, and an alternative case where they form one single batholith). A Monte Carlo approach was used to characterise the geological uncertainty in each case. Bézier curve design was used to represent geological contacts on input cross sections. Systematic variations in the control points of these curves allows us to generate multiple realisations of geological interfaces, resulting in stochastic models that were grouped into suites used to apply quantitative estimators of uncertainty. This process results in a geological representation based on fuzzy logic and in maps of model uncertainty distribution. The results are consistent with expected regions of high uncertainty near under-constrained geological contacts, while the non-unique nature of the conceptual model indicates that the dominant source of uncertainty in the area is the nature of the batholith structure.

  7. Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience

    Science.gov (United States)

    García, Alicia; De la Cruz-Reyna, Servando; Marrero, José M.; Ortiz, Ramón

    2016-05-01

    Under certain conditions, volcano-tectonic (VT) earthquakes may pose significant hazards to people living in or near active volcanic regions, especially on volcanic islands; however, hazard arising from VT activity caused by localized volcanic sources is rarely addressed in the literature. The evolution of VT earthquakes resulting from a magmatic intrusion shows some orderly behaviour that may allow the occurrence and magnitude of major events to be forecast. Thus governmental decision makers can be supplied with warnings of the increased probability of larger-magnitude earthquakes on the short-term timescale. We present here a methodology for forecasting the occurrence of large-magnitude VT events during volcanic crises; it is based on a mean recurrence time (MRT) algorithm that translates the Gutenberg-Richter distribution parameter fluctuations into time windows of increased probability of a major VT earthquake. The MRT forecasting algorithm was developed after observing a repetitive pattern in the seismic swarm episodes occurring between July and November 2011 at El Hierro (Canary Islands). From then on, this methodology has been applied to the consecutive seismic crises registered at El Hierro, achieving a high success rate in the real-time forecasting, within 10-day time windows, of volcano-tectonic earthquakes.

  8. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  9. Spatial Compilation of Holocene Volcanic Vents in the Western Conterminous United States

    Science.gov (United States)

    Ramsey, D. W.; Siebert, L.

    2015-12-01

    A spatial compilation of all known Holocene volcanic vents in the western conterminous United States has been assembled. This compilation records volcanic vent location (latitude/longitude coordinates), vent type (cinder cone, dome, etc.), geologic map unit description, rock type, age, numeric age and reference (if dated), geographic feature name, mapping source, and, where available, spatial database source. Primary data sources include: USGS geologic maps, USGS Data Series, the Smithsonian Global Volcanism Program (GVP) catalog, and published journal articles. A total of 726 volcanic vents have been identified from 45 volcanoes or volcanic fields spanning ten states. These vents are found along the length of the Cascade arc in the Pacific Northwest, widely around the Basin and Range province, and at the southern margin of the Colorado Plateau into New Mexico. The U.S. Geological Survey (USGS) National Volcano Early Warning System (NVEWS) identifies 28 volcanoes and volcanic centers in the western conterminous U.S. that pose moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. This compilation enhances the understanding of volcano hazards that could threaten people and property by providing the context of where Holocene eruptions have occurred and where future eruptions may occur. Locations in this compilation can be spatially compared to located earthquakes, used as generation points for numerical hazard models or hazard zonation buffering, and analyzed for recent trends in regional volcanism and localized eruptive activity.

  10. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  11. Role of exchange interaction in nitrogen vacancy center based magnetometry

    Science.gov (United States)

    Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.; Chen, Zilong; Krivitsky, Leonid A.

    2016-12-01

    We propose a multilayer device comprising a thin-film-based ferromagnetic heterostructure (FMH) deposited on a diamond layer doped with nitrogen vacancy centers (NVC's). We find that when the NVC's are in close proximity (1-2 nm) to the FMH, the exchange energy is comparable to, and may even surpass, the magnetostatic interaction energy. This calls forth the need to consider and utilize both effects in magnetometry based on NVC's in diamond. As the distance between the FMH and NVC is decreased to the subnanometer scale, the exponential increase in the exchange energy suggests spintronic applications of NVC's beyond magnetometry, such as detection of spin Hall effect or spin currents.

  12. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  13. A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico

    Science.gov (United States)

    Alcorn, R.; Panter, K. S.; Gorsevski, P.; Ye, X.

    2013-05-01

    The Jemez Volcanic field in New Mexico is best known for the two cataclysmic eruptions that formed the Valles Caldera and deposited the Bandelier tuff at 1.61 and 1.25 Ma. This was followed by a period of small-scale activity limited to within the moat until ~ 55 ka when plinian eruptions sourced from the El Cajete crater dispersed tephra well beyond the caldera wall. These deposits include the El Cajete pyroclastic beds and the Battleship Rock Ignimbrite. Following the eruption of the Banco Bonito lava flow at ~40 ka, the Valles caldera has lain dormant. However, there is potential for future activity and it is prudent to assess the risk to the surrounding area and consider possible mitigation strategies well before a disaster strikes. The objective of this study is to evaluate the spatial extent of a possible future eruption using a GIS-based volcanic hazards tool designed to simulate pyroclastic fallout and density currents (PDCs) as well as lava flows [1] and to assess the social and economic vulnerability of the area at risk. Simulated pyroclastic fall deposits originating from the El Cajete crater are calibrated to isopach and lithic isopleth maps of the Lower and Upper El Cajete as constructed by [2]. The change in the axial orientation of fall deposits between the Lower and Upper El Cajete is best matched using seasonal variations in wind speed and direction based on modern atmospheric records. The calibration of PDCs is based on the distribution and run-out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at two other vent locations determined from probability distributions of structural features. The resulting hazard maps show the potential distribution of pyroclastic fall, PDCs and lava flows, indicating areas to the S/SE of Valles Caldera to be at greatest risk. To assess hazard preparedness, social vulnerability is evaluated for all census-designated places (CDP) within the study site. Based on methods by [3], twenty

  14. Customer-centered careflow modeling based on guidelines.

    Science.gov (United States)

    Huang, Biqing; Zhu, Peng; Wu, Cheng

    2012-10-01

    In contemporary society, customer-centered health care, which stresses customer participation and long-term tailored care, is inevitably becoming a trend. Compared with the hospital or physician-centered healthcare process, the customer-centered healthcare process requires more knowledge and modeling such a process is extremely complex. Thus, building a care process model for a special customer is cost prohibitive. In addition, during the execution of a care process model, the information system should have flexibility to modify the model so that it adapts to changes in the healthcare process. Therefore, supporting the process in a flexible, cost-effective way is a key challenge for information technology. To meet this challenge, first, we analyze various kinds of knowledge used in process modeling, illustrate their characteristics, and detail their roles and effects in careflow modeling. Secondly, we propose a methodology to manage a lifecycle of the healthcare process modeling, with which models could be built gradually with convenience and efficiency. In this lifecycle, different levels of process models are established based on the kinds of knowledge involved, and the diffusion strategy of these process models is designed. Thirdly, architecture and prototype of the system supporting the process modeling and its lifecycle are given. This careflow system also considers the compatibility of legacy systems and authority problems. Finally, an example is provided to demonstrate implementation of the careflow system.

  15. Airborne and land-based controlled-source electromagnetic surveying in challenging electromagnetic environments – application to geothermal exploration in a volcanic island

    OpenAIRE

    Darnet, Mathieu; Coppo, Nicolas; Reninger, Pierre,; Wawrzyniak, Pierre; Girard, Jean-François; Bourgeois, Bernard

    2017-01-01

    International audience; Exploring for underground resources using land-based electromagnetic methods can be very challenging due to the presence of strong human-generated and " geological " noise. In such context, some passive EM techniques like the Magneto-Telluric method may not be applicable at all and a dedicated toolbox of EM techniques capable of dealing with these issues is required. We focus here on the challenges encountered while exploring for geothermal resources in volcanic island...

  16. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  17. In situ and space-based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere

    Science.gov (United States)

    Vernier, Jean-Paul; Fairlie, T. Duncan; Deshler, Terry; Natarajan, Murali; Knepp, Travis; Foster, Katie; Wienhold, Frank G.; Bedka, Kristopher M.; Thomason, Larry; Trepte, Charles

    2016-09-01

    Volcanic eruptions are important causes of natural variability in the climate system at all time scales. Assessments of the climate impact of volcanic eruptions by climate models almost universally assume that sulfate aerosol is the only radiatively active volcanic material. We report satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite after the eruption of Mount Kelud (Indonesia) on 13 February 2014 of volcanic materials in the lower stratosphere. Using these observations along with in situ measurements with the Compact Optical Backscatter AerosoL Detector (COBALD) backscatter sondes and optical particle counters (OPCs) made during a balloon field campaign in northern Australia, we find that fine ash particles with a radius below 0.3 µm likely represented between 20 and 28% of the total volcanic cloud aerosol optical depth 3 months after the eruption. A separation of 1.5-2 km between the ash and sulfate plumes is observed in the CALIOP extinction profiles as well as in the aerosol number concentration measurements of the OPC after 3 months. The settling velocity of fine ash with a radius of 0.3 µm in the tropical lower stratosphere is reduced by 50% due to the upward motion of the Brewer-Dobson circulation resulting a doubling of its lifetime. Three months after the eruption, we find a mean tropical clear-sky radiative forcing at the top of the atmosphere from the Kelud plume near -0.08 W/m2 after including the presence of ash; a value 20% higher than if sulfate alone is considered. Thus, surface cooling following volcanic eruptions could be affected by the persistence of ash and should be considered in climate simulations.

  18. Development of Bioavailable Pools of Base Cations and P after Afforestation of Volcanic Soils in Iceland

    DEFF Research Database (Denmark)

    Ritter, Eva

    2009-01-01

    Few long-term studies have been conducted on changes in soil nutrients after afforestation in Iceland, a country with a young history of forest management. While fertilization was shown to improve survival of seedlings in the first years after planting on the nutrient limited soils, knowledge about...... sodium (Na) decreased only in the upper soil layer. Only Olsen-P and K concentrations were higher in the upper soil layer as compared to 10–20 cm depth. This indicates a higher biotic control as opposed to the geochemical control of the other base cations....

  19. Strontium isotopes provide clues for a process shift in base cation dynamics in young volcanic soils

    Science.gov (United States)

    Bingham, N.; Jackson, M. G.; Bookhagen, B.; Maher, K.; Chadwick, O.

    2015-12-01

    Despite advances in soil development theory based on studies of old soils or over long timescales, little is known about soil thresholds (dramatic changes in soil properties associated with only small shifts in external forcing factors) that might be expressed in young soils (less than 10 kyr). Therefore, we seek to understand infant soil development in a tropical environment through the sourcing of plant available base cations by measuring the strontium (Sr) isotopic composition of the soil exchange complex. Our sampling strategy spans soils in three different precipitation ranges (950-1060 mm, 1180-1210 mm, and 1450-1500) and an array of soil ages from 500 to 7500 years in the Kona region on the island of Hawaii. In Hawaiian soils, 87Sr/86Sr values are determined by a mixture of three components: a mantle-derived component from the lava (0.7034), a rainfall component (0.7093) and a component from continental dust (0.720). Elevation-controlled leaching intensity in the wettest localities produces a decline in the concentration of base cations supplied by basalt and a dilute resupply by rainfall. In the driest sites, where leaching intensity is dramatically reduced, there is a buildup of rainfall-derived extractable Sr in the soil over time. Slow rock weathering rates produce a small rock-derived cation input to the soil. Thus, Sr isotope signatures reflect both the input of rainfall-derived cations and rock-derived cations with values that fall between rainfall and basaltic signatures. Soils in the intermediate precipitation range have Sr isotopic signatures consistent with both the wet and dry trends; suggesting that they lie close to the critical precipitation amount that marks a shift between these two processes. For the Kona region, this transition seems to occur at 1200 mm /yr. In contrast to the clear-cut differentiation in strontium isotopes with precipitation shifts observed in older soils, patterns on these young soils in Kona are complicated by low soil

  20. Center of Mass-Based Adaptive Fast Block Motion Estimation

    Directory of Open Access Journals (Sweden)

    Yeh Kuo-Liang

    2007-01-01

    Full Text Available This work presents an efficient adaptive algorithm based on center of mass (CEM for fast block motion estimation. Binary transform, subsampling, and horizontal/vertical projection techniques are also proposed. As the conventional CEM calculation is computationally intensive, binary transform and subsampling approaches are proposed to simplify CEM calculation; the binary transform center of mass (BITCEM is then derived. The BITCEM motion types are classified by percentage of (0,0 BITCEM motion vectors. Adaptive search patterns are allocated according to the BITCEM moving direction and the BITCEM motion type. Moreover, the BITCEM motion vector is utilized as the initial search point for near-still or slow BITCEM motion types. To support the variable block sizes, the horizontal/vertical projections of a binary transformed macroblock are utilized to determine whether the block requires segmentation. Experimental results indicate that the proposed algorithm is better than the five conventional algorithms, that is, three-step search (TSS, new three-step search (N3SS, four three-step search (4SS, block-based gradient decent search (BBGDS, and diamond search (DS, in terms of speed or picture quality for eight benchmark sequences.

  1. Center of Mass-Based Adaptive Fast Block Motion Estimation

    Directory of Open Access Journals (Sweden)

    Po-Hung Chen

    2007-03-01

    Full Text Available This work presents an efficient adaptive algorithm based on center of mass (CEM for fast block motion estimation. Binary transform, subsampling, and horizontal/vertical projection techniques are also proposed. As the conventional CEM calculation is computationally intensive, binary transform and subsampling approaches are proposed to simplify CEM calculation; the binary transform center of mass (BITCEM is then derived. The BITCEM motion types are classified by percentage of (0,0 BITCEM motion vectors. Adaptive search patterns are allocated according to the BITCEM moving direction and the BITCEM motion type. Moreover, the BITCEM motion vector is utilized as the initial search point for near-still or slow BITCEM motion types. To support the variable block sizes, the horizontal/vertical projections of a binary transformed macroblock are utilized to determine whether the block requires segmentation. Experimental results indicate that the proposed algorithm is better than the five conventional algorithms, that is, three-step search (TSS, new three-step search (N3SS, four three-step search (4SS, block-based gradient decent search (BBGDS, and diamond search (DS, in terms of speed or picture quality for eight benchmark sequences.

  2. ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi

    Science.gov (United States)

    Jumadi, Carver, Steve; Quincey, Duncan

    2016-05-01

    Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.

  3. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004--2008

    Science.gov (United States)

    Anderson, Kyle; Segall, Paul

    2013-01-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.

  4. Ground based measurements of the gas emission from the Holuhraun volcanic fissure eruption on Iceland 2014/2015

    Science.gov (United States)

    Galle, Bo; Arellano, Santiago; Conde, Vladimir; Pfeffer, Melissa; Barsotti, Sara; Stefansdottir, Gerður; Bergsson, Baldur; Bergsson, Bergur; Ingvarsson, Thorgils; Weber, Konradin

    2015-04-01

    The since 31 August 2014 ongoing volcanic eruption at Holuhraun on Iceland is by far the strongest source of sulfur dioxide in Europe over the last 230 years with sustained emission rates exceeding 100 000 ton/day. This gas emission severely affects local population and has become a concern also for air traffic. The eruption has in December continued at constant pace for 3.5 months. Three scenarios are envisaged for the future; (1) the eruption stops, (2) the fissure extends under the Vattnajökul glacier and (3) Bardarbunga volcano erupts. The two later scenarios will cause increased gas emission, severe ash emissions and extended flooding. Under the scope of the EU-project FUTUREVOLC, a project with 3.5 years duration, aiming at making Iceland a supersite for volcanological research as a European contribution to GEO, we are developing a version of the Scanning DOAS instrument that is adapted to high latitudes with low UV radiation and severe meteorological conditions. Since the first day of the eruption several of these novel instruments has been monitoring the SO2 emission from the eruption. Data from our instruments are still after 3.5 months the only sustained ground-based monitoring of this gas emission. A lot of work is however needed to sustain this operation at a very remote site and under severe field conditions. At the same time the very high concentrations in the gas plume, in combination with bad meteorological conditions require the development of novel methods to derive reliable flux estimates. In this presentation we will discuss the instrumental issues and present the latest version of the emission estimates made from our measurements.

  5. MCPB.py: A Python Based Metal Center Parameter Builder.

    Science.gov (United States)

    Li, Pengfei; Merz, Kenneth M

    2016-04-25

    MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling.

  6. Mapping the topography and cone morphology of the Dalinor volcanic swarm in Inner Mongolia with remote sensing and DEM data

    Science.gov (United States)

    Gong, Liwen; Li, Ni; Fan, Qicheng; Zhao, Yongwei; Zhang, Liuyi; Zhang, Chuanjie

    2016-09-01

    The Dalinor volcanic swarm, located south of Xilinhot, Inner Mongolia of China, was a result of multistage eruptions that occurred since the Neogene period. This swarm is mainly composed of volcanic cones and lava tablelands. The objective of this study is to map the topography and morphology of this volcanic swarm. It is based on a variety of data collected from various sources, such as the digital elevation model (DEM), Landsat images, and a 1:50,000 topographic map, in addition to various software platforms, including ArcGIS, Envi4.8, Global Mapper, and Google Earth for data processing and interpretation. The results show that the overall topography of the volcanic swarm is a platform with a central swell having great undulation, sizable gradient variations, a rough surface, and small terrain relief. According to the undulating characteristics of the line profile, the volcanic swarm can be divided into four stairs with heights of 1,280 m, 1,360 m, 1,440 m, and 1,500 m. The analysis of the swath profile characterizes the two clusters of volcanoes with different height ranges and evolution. The lava tablelands and volcanic cones are distributed in nearly EW-trending belts, where tableland coverage was delineated with superposed layers of gradients and degrees of relief. According to the morphology, the volcanic cones were classified into four types: conical, composite, dome, and shield. The formation causes and classification basis for each type of volcanic cone were analyzed and their parameters were extracted. The H/D ratios of all types of volcanic cones were then statistically determined and projected to create a map of volcanic density distribution. Based on the relationship between distribution and time sequence of the formation of different volcanic cones, it can be inferred that the volcanic eruptions migrated from the margins to the center of the lava plateau. The central area was formed through superposition of multi-stage eruptive materials. In addition

  7. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    Science.gov (United States)

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  8. Volcanic geology of Admiralty Bay, King George Island, Antarctica

    Institute of Scientific and Technical Information of China (English)

    邢光福; 王德滋; 金庆民; 沈渭洲; 陶奎元

    2002-01-01

    At Admiralty Bay of central King George Island, Keller Peninsula, Ullman Spur and Point Hennequin are main Tertiary volcanic terranes. Field investigation and isotopic datings indicate that, there occurred three periods of eruptions ( three volcanic cycles) and accompanying N-toward migration of the volcanic center on Keller Peninsula. After the second period of eruptions, the crater collapsed and a caldera was formed, then later eruptions were limited at the northern end of the peninsula and finally migrated to Ullman Spur. Thus Keller Peninsula is a revived caldera, and its volcanism migrated toward E with time. Point Hennequin volcanism happened more or less simultaneously with the above two areas, but has no clear relation in chemical evolution with them, frequently it belongs to another independent volcanic center.

  9. Automatic landslides detection on Stromboli volcanic Island

    Science.gov (United States)

    Silengo, Maria Cristina; Delle Donne, Dario; Ulivieri, Giacomo; Cigolini, Corrado; Ripepe, Maurizio

    2016-04-01

    Landslides occurring in active volcanic islands play a key role in triggering tsunami and other related risks. Therefore, it becomes vital for a correct and prompt risk assessment to monitor landslides activity and to have an automatic system for a robust early-warning. We then developed a system based on a multi-frequency analysis of seismic signals for automatic landslides detection occurring at Stromboli volcano. We used a network of 4 seismic 3 components stations located along the unstable flank of the Sciara del Fuoco. Our method is able to recognize and separate the different sources of seismic signals related to volcanic and tectonic activity (e.g. tremor, explosions, earthquake) from landslides. This is done using a multi-frequency analysis combined with a waveform patter recognition. We applied the method to one year of seismic activity of Stromboli volcano centered during the last 2007 effusive eruption. This eruption was characterized by a pre-eruptive landslide activity reflecting the slow deformation of the volcano edifice. The algorithm is at the moment running off-line but has proved to be robust and efficient in picking automatically landslide. The method provides also real-time statistics on the landslide occurrence, which could be used as a proxy for the volcano deformation during the pre-eruptive phases. This method is very promising since the number of false detections is quite small (landslide increases. The final aim will be to apply this method on-line and for a real-time automatic detection as an improving tool for early warnings of tsunami-genic landslide activity. We suggest that a similar approach could be also applied to other unstable non-volcanic also slopes.

  10. Pattern of geochemical variations within the volcanic system of Mt Etna, Italy, from 1995 to 2013

    Science.gov (United States)

    Corsaro, Rosa Anna; Falsaperla, Susanna; Langer, Horst

    2016-04-01

    Dynamic and evolution of magma in the plumbing system are key aspects in the evaluation of volcanic hazard. Eruptive phenomena involve indeed processes of magma upraise and storage, which may change in time and space, and mirror in the composition of volcanic products. In this study, we analyze the pattern of geochemical variations at Etna, Italy, from 1995 to 2013. In this time span, volcanic activity affected all the four craters close to the summit of the volcano (located at about 3300 m above the sea level), and fed eruptive fissures along its upper flanks. In addition, a new crater formed and rapidly built up, giving rise to spectacular lava fountains from 2011 on. Based on a dataset containing the geochemical composition of volcanic products collected over 18 years, we explored the application of data mining methods in the framework of the European MEDiterrranean Supersite Volcanoes (MED­-SUV) project. In the present application, we discuss the relationships among the composition of volcanic products sampled from all the afore-mentioned eruptive centers. Our results highlight differences in magma evolution, dynamic and eruptive style even within a single eruptive center.

  11. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    OpenAIRE

    2004-01-01

    Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the over...

  12. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  13. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  14. The Plant Information Center (PIC): A Web-Based Learning Center for Botanical Study.

    Science.gov (United States)

    Greenberg, J.; Daniel, E.; Massey, J.; White, P.

    The Plant Information Center (PIC) is a project funded under the Institute of Museum and Library Studies that aims to provide global access to both primary and secondary botanical resources via the World Wide Web. Central to the project is the development and employment of a series of applications that facilitate resource discovery, interactive…

  15. Resource-Based Intervention: Success with Community-Centered Practices

    Science.gov (United States)

    Torrey, Michelle Kerber; Leginus, Mary Anne; Cecere, Susan

    2011-01-01

    In this commentary the authors share their experiences on the design and implementation of community-centered early intervention programs in Prince George's County, MD. Their aim in designing community-centered programs was to provide infants and toddlers opportunities for learning, language, and motor development in natural environments with…

  16. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  17. Evaluation of Ski Center Services in Greece based on the Multiattribute Measurement Model of Attitudes

    Directory of Open Access Journals (Sweden)

    Theophilos Masmanidis

    2006-01-01

    Full Text Available The scope of this study was to evaluate ski center services in Greece. Our research sample consists of n=1,614 visitors in 11 of the largest ski centers in Greece. The 22-item SERVQUAL standard questionnaire has been used, with each item classified based on five quality-assessment dimensions. In order to assess ski center offered services, the Multiattribute Attitude Measurement Model has been used. The values gathered by applying this model were used as reference values for ski center evaluation. Ski centers have then been ranked based on their total attitude score. The paper provides administrative suggestions on improving center offered services.

  18. Aurorae and Volcanic Eruptions

    Science.gov (United States)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  19. Estimation of Volcanic Ash Plume Top Height using AATSR

    Science.gov (United States)

    Virtanen, Timo; Kolmonen, Pekka; Sogacheva, Larisa; Sundström, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-04-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's 55° forward and nadir views, and thus the corresponding height. Besides the stereo view, AATSR provides another advantage compared to other satellite based instruments. With AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 µm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. In addition, it is possible to study the effect of using different wavelengths in the height estimate, ranging from visible (555 nm) to thermal infrared (12 µm). The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with existing volcanic ash dispersion models and retrieval methods. We present ACM plume top height estimate results for the Eyjafjallajökull eruption, and comparisons against available ground based and satellite observations.

  20. Pliocene Basaltic Volcanism in The East Anatolia Region (EAR), Turkey

    Science.gov (United States)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet

    2016-04-01

    East Anatolia Region (EAR) is one of the high Plateau which is occurred with north-south compressional regime formed depending on continent-continent collision between Eurasia and Arabia plates (Şengör and Kidd, 1979). Recent studies have revealed that last oceanic lithosphere in the EAR have completely depleted to 20 million years ago based on fission track ages (Okay et al. 2010). Our initial studies suggest that extensively volcanic activity in the EAR peaked in the Pliocene and continued in the same productivity throughout Quaternary. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. In order to better understand the spatial and temporal variations in Pliocene basaltic volcanism and to reveal isotopic composition, age and petrologic evolution of the basaltic volcanism, we have started to study basaltic volcanism in the East Anatolia within the framework of a TUBITAK project (project number:113Y406). Petrologic and geochemical studies carried out on the Pliocene basaltic lavas indicate the presence of subduction component in the mantle source, changing the character of basaltic volcanism from alkaline to subalkaline and increasing the amount of spinel peridotitic melts (contributions of lithospheric mantle?) in the mantle source between 5.5-3.5 Ma. FC, AFC and EC-AFC modelings reveal that the while basaltic lavas were no or slightly influenced by crustal contamination and fractional crystallization, to more evolved lavas such as bazaltictrachyandesite, basalticandesite, trachybasalt might have been important processes. Results of our melting models and isotopic analysis data (Sr, Nd, Pb, Hf, 18O) indicate that the Pliocene basaltic rocks were derived from both shallow and deep mantle sources with different melting degrees ranging between 0.1 - 4 %. The percentage of spinel seems to have increased in the mantle source of the basaltic

  1. Venus volcanism - Classification of volcanic features and structures, associations, and global distribution from Magellan data

    Science.gov (United States)

    Head, James W.; Crumpler, L. S.; Aubele, Jayne C.; Guest, John E.; Saunders, R. S.

    1992-01-01

    A classification and documentation of the range of morphologic features and structures of volcanic origin on Venus, their size distribution, and their global distribution and associations are presented based on a preliminary analysis of Magellan data. Some of the major questions about volcanism on Venus are addressed.

  2. Depositional model of Permian Luodianian volcanic island and its impact on the distribution of fusulinid assemblage in southern Qinghai, Northwest China

    Institute of Scientific and Technical Information of China (English)

    NIU ZhiJun; XU AnWu; WANG JianXiong; DUAN QiFa; ZHAO XiaoMing; YAO HuaZhou

    2008-01-01

    Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain,Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, deposited between volcanic islands (platform facies volcanic-limestone type). Based on the field mapping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depositional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal,platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina- Schwagerina assemblage occurred above or on edge of volcanic island, (2) Parafusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate conglomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary sequence

  3. Depositional model of Permian Luodianian volcanic island and its impact on the distribution of fusulinid assemblage in southern Qinghai,Northwest China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain, Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, de-posited between volcanic islands (platform facies volcanic-limestone type). Based on the field map-ping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depo-sitional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal, platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina-Schwagerina assemblage occurred above or on edge of volcanic island, (2) Para-fusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate con-glomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary

  4. Volcanic forcing in decadal forecasts

    Science.gov (United States)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe

    2016-04-01

    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  5. Nature, Source and Composition of Volcanic Ash in Surficial Sediments Around the Zhongsha Islands

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; WANG Xinyu

    2008-01-01

    Volcanic detrital sediments are a unique indicator for reconstructing the petrogenetie evolution of submarine volcanic terrains. Volcanic ash in surficial sediments around the Zhongsha Islands includes three kinds of volcanogenic detritus, i.e., brown volcanic glass, colorless volcanic glass and volcanic scoria. The major element characteristics show that bimodal volcanic activity may have taken place in the northern margin of the South China Sea, with brown volcanic glass and colorless volcanic glass repre-senting the maric end-member and felsie end-member, respectively. Fractional crystallization is the main process for magma evolu-tion. The nature of the volcanic activity implies that the origin of volcanic activity was related to extensional tectonic settings, which is corresponding to an extensional geodynamie setting in the Xisha Trench, and supports the notion, which is based on geophysical data and petrology, that there may exist a mantle plume around the Hainan Island.

  6. Alternative paradigms of volcanic risk perception: The case of Mt. Pinatubo in the Philippines

    Science.gov (United States)

    Gaillard, Jean-Christophe

    2008-05-01

    The literature on people's response to volcanic hazards tends to be split between two paradigms. The first argues that the choice of adjustment depends on how people perceive rare and extreme volcanic phenomena and the associated risk. The second considers that people's behavior in the face of natural hazards is constrained by social, economic and political forces beyond their control. The present paper addresses both paradigms and demonstrates that, in order to understand people's behavior in the face of volcanic threats, volcanic risk perception has to be balanced with non-hazard related factors and structural constraints. These conclusions are based on a case study of Mt. Pinatubo and the lingering threat of lahars from the 1991 eruption. Drawing on the results of a questionnaire-based survey and additional interviews with key informants, it is shown that a high perception of risk does not stop people from choosing to forms of living that put them at high threat from lahars. Furthermore, the paper argues that insufficient opportunity for making a livelihood in resettlement centers and strong attachment to native villages push people back to the banks of lahar channels. Everyday hazards of poverty and the threat to cultural heritage weighed heavier than this seasonal natural hazard. In other words, in a context of economic and social hardship, risk perception of volcanic hazards is necessarily balanced with other risk perceptions. This study does not argue that risk perception is unimportant for understanding people's adjustment to volcanic environments but rather stresses the need for placing it in its larger and daily contexts which are independent of volcanic hazards.

  7. Orion Entry Performance-Based Center-of-Gravity Box

    Science.gov (United States)

    Rea, Jeremy R.

    2010-01-01

    The Orion capsule has many performance requirements for its atmospheric entry trajectory. Requirements on landing accuracy, maximum heating rate, total heat load, propellant usage, and sensed acceleration must all be satised. It is desired to define a methodology to translate the many performance requirements for an atmospheric entry trajectory into language easily understood by vehicle designers in terms of an allowable center-of-gravity box. This is possible by noting that most entry performance parameters for a capsule vehicle are mainly determined by the lift-to-drag ratio of the vehicle. However, the lift-to- drag ratio should be considered a probabilistic quantity rather than deterministic, where variations in the lift-to-drag are caused by both aerodynamic and center-of-gravity un- certainties. This paper discusses the technique used by the Orion program to define the allowable dispersions in center-of-gravity to achieve the desired entry performance while accounting for aerodynamic uncertainty.

  8. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    Science.gov (United States)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and

  9. Subpixel accuracy for extracting groove center based on corner detection

    Institute of Scientific and Technical Information of China (English)

    Liu Suyi; Wang Guorong; Shi Yonghua

    2006-01-01

    Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented.LOG( Laplacian of Gaussian ) operator is adopted to detect image edge.Vgroove center is extracted by corner detection of extremum curvature.Subpixel position is obtained by Lagarange polynomial interpolation algorithm.Experiment results show that the method is brief and applied, and is sufficient for the real time of robot welding by laser sensors.

  10. The Application of Carl Rogers' Person-Centered Learning Theory to Web-Based Instruction.

    Science.gov (United States)

    Miller, Christopher T.

    This paper provides a review of literature that relates research on Carl Rogers' person-centered learning theory to Web-based learning. Based on the review of the literature, a set of criteria is described that can be used to determine how closely a Web-based course matches the different components of Rogers' person-centered learning theory. Using…

  11. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  12. User-Centered Design of GPU-Based Shader Programs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2012-01-01

    to explore and exploit the full potential of shader programs. To this end, we develop principles and guidelines for the design of usercentered graphical interfaces for shaders. With the help of several examples, we show how the requirements of a user-centered interface design influence the choice of widgets...

  13. Design of Over Center Valves Based on Predictable Performance

    DEFF Research Database (Denmark)

    Hansen, M.R.; Andersen, T.O.; Pedersen, P.

    2004-01-01

    A typical oil hydraulic over center valve system and a time domain simulation model is introduced together with a hypothesis that flow force compensation should reduce the inherent oscillatory behavior of such hydraulic systems. A few results are shown from a parameter study that confirms this as...

  14. Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera

    Science.gov (United States)

    Prata, A. J.; Bernardo, C.

    2009-09-01

    Volcanoes can emit fine-sized ash particles (1-10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7-14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1-10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight.

  15. The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences

    Science.gov (United States)

    Tassi, F.; Liccioli, C.; Agusto, M.; Chiodini, G.; Vaselli, O.; Calabrese, S.; Pecoraino, G.; Tempesti, L.; Caponi, C.; Fiebig, J.; Caliro, S.; Caselli, A.

    2016-12-01

    The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl--rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a hydrothermal reservoir located at relative shallow depth (400-600 m) possibly connected to a second deeper (2-3 km) reservoir. Reactive magmatic gases are completely scrubbed by the hydrothermal aquifer(s), whereas interaction of meteoric waters at the surface causes a significant air contamination and dilution of the fluid discharges located along the creeks at the foothill of the Cerro Domuyo edifice. Thermal discharges located at relatively high altitude ( 3150 m a.s.l.), namely Bramadora, are less affected by this process, as also shown by their relatively high R/Ra values (up to 6.91) pointing to the occurrence of an actively degassing magma batch located at an unknown depth. Gas and solute geothermometry suggests equilibrium temperatures up to 220-240 °C likely referred to the shallower hydrothermal reservoir. These results, confirming the promising indications of the preliminary surveys carried out in the 1980‧s, provide useful information for a reliable estimation of the geothermal potential of this extinct volcanic system, although a detailed geophysical measurements is required for the correct estimation of depth and dimensions of the fluid reservoir(s).

  16. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide

    Science.gov (United States)

    Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W.

    2016-09-01

    This paper brings a global perspective to volcanic arc geothermal assessments by evaluating trends and correlations of volcanic characteristic and surface manifestation data from world power production sites in subduction zone volcanic settings. The focus of the work was to evaluate volcanic centers individually and as a group in these arcs by correlating various geologic characteristics with known potential to host electricity grade geothermal systems at the volcanic centers. A database was developed that describes key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes all 74 subduction zone volcanic centers world-wide with current or proven power production capability. Importantly, this data set only contains data from subduction zone volcanoes and contains no negative cases, limiting the populations of any statistical groups. Regardless, this is the most robust geothermal benchmark training set for magmatic-heated systems to date that has been made public. The work reported here is part of a larger project that included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. This first paper describes volcano characteristics, compositions and eruption ages and trends along with surface manifestation observations and temperatures as they relate to known power producing systems. Our findings show a strong correlation between the presence and size of active flank fumarole areas and installed power production. Additionally, the majority of volcanic characteristics, including long-held anecdotal correlations related to magmatic composition or size, have limited to no correlation with power production potential. Notable exceptions are correlations between greater power yield from geothermal systems associated with older (Pleistocene) caldera systems

  17. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  18. Business and faith: key community partnerships for school-based health centers.

    Science.gov (United States)

    Juszczak, L; Moody, J K; Vega-Matos, C

    1998-12-01

    School-based health centers need to form partnerships with organizations in the community. These relationships are essential to the viability of the centers because they can provide support and resources. However, benefits should be accrued by all partners, not just the health centers. Although there are many communities for school-based health centers to connect to, this article focuses on two integral ones--communities of business and faith. Key findings from a project formed to develop communication strategies and to generate support from the business community are reviewed. Recommendations for school-based health centers in approaching the business community are provided. Similarities and differences between communities of faith and strategies of develop relationships with these communities are presented. School-based health centers are encouraged to understand the characteristics and priorities of their partners in communities of business and faith, and to pursue strong relationships with both communities.

  19. About the Mechanism of Volcanic Eruptions

    CERN Document Server

    Nechayev, Andrei

    2012-01-01

    A new approach to the volcanic eruption theory is proposed. It is based on a simple physical mechanism of the imbalance in the system "magma-crust-fluid". This mechanism helps to explain from unified positions the different types of volcanic eruptions. A criterion of imbalance and magma eruption is derived. Stratovolcano and caldera formation is analyzed. High explosive eruptions of the silicic magma is discussed

  20. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the

  1. Volcanic Plume Above Mount St. Helens Detected with GPS

    Science.gov (United States)

    Houlié, N.; Briole, P.; Nercessian, A.; Murakami, M.

    2005-07-01

    Eruptions can produce not only flows of incandescent material along the slopes of a volcano but also ash plumes in the troposphere [Sparks et al., 1997] that can threaten aircraft flying in the vicinity [Fisher et al., 1997]. To protect aircraft, passengers, and crews, the International Civil Aviation Organization and the World Meteorological Organization created eight Volcanic Ash Advisory Centers (VAAC, http://www.ssd.noaa.gov/VAAC/vaac.html) around the globe with the goal of tracking volcanic plumes and releasing eruption alerts to airports, pilots, and companies. Currently, the VAAC monitoring system is based mostly on the monitoring systems of any local volcano observatories and on real-time monitoring of data acquired by meteorological satellites. In the case of the 18 August 2000 eruption of the Miyakejima volcano in Japan, Houlié et al. [2005] showed that the Global Positioning System(GPS) might be used as an additional tool for monitoring volcanic plumes. The present article indicates that the 9 March 2005 eruption of Mount St. Helens, Washington, also produced detectable anomalies in GPS data.>

  2. High-resolution AUV-based near bottom magnetic surveys at Palinuro volcanic complex (Southern Tyrrhenian Sea)

    Science.gov (United States)

    Cocchi, L.; Plunkett, S.; Augustin, N.; Petersen, S.

    2013-12-01

    In this paper we present the preliminary results of new near bottom magnetic datasets collected during the recent POS442 cruise using the autonomous underwater vehicle (AUV) Abyss. The Southern Tyrrhenian basin is characterized by deep seafloor interspersed with huge volcanic seamounts (e.g Vavilov and Marsili and those associated to the Aeolian volcanic arc), which were formed during eastward roll back of the Apennine subduction system. These submarine edifices often are affected by significant hydrothermal activity and associated mineral deposits such as those observed at Marsili, Palinuro and Panarea. The western part of the Palinuro volcanic complex is characterized by a half rim of a caldera-like structure and hosts hydrothermal barite-pyrite deposits. Until recently, the full extent of the hydrothermal system remained poorly defined, as exploration has been limited to a few specific sites. In November 2012, a set of high resolution near seafloor geophysical surveys were carried out using GEOMAR's AUV Abyss to attempt to better define the hydrothermal mineralization at Palinuro. Five AUV dives were performed, mapping a total area of 3.7 km2 over the western part of Palinuro. Geomar's Abyss AUV (a Remus6000 class vehicle) was equipped with an Applied Physics Systems flux gate magnetometer, writing to a stand alone data logger, powered by the AUV's main batteries. The 5 dives were performed within the same area but with different primary geophysical sensors (multibeam, sidescan sonar, subbottom profiler), survey altitudes above seafloor (100m, 40m) and line spacing (150m, 100m, 20m). Magnetic data was collect on all five dives. At the beginning of each dive, the AUV performed a set of calibration manoeuvres, involving a 360 degree heading variation, a set of three upwards/downwards pitches, and three port and starboard yaws. This magnetic data reveals the magnetization features of the seafloor in unprecedented detail, highlighting a complex pattern mostly due to

  3. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    Science.gov (United States)

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the

  4. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  5. Anomalous diffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2015-01-01

    Volcanic seismicity at Mt. Etna is studied. It is found that the associated stochastic process exhibits a subdiffusive phenomenon. The jump probability distribution well obeys an exponential law, whereas the waiting-time distribution follows a power law in a wide range. Although these results would seem to suggest that the phenomenon could be described by temporally-fractional kinetic theory based on the viewpoint of continuous-time random walks, the exponent of the power-law waiting-time distribution actually lies outside of the range allowed in the theory. In addition, there exists the aging phenomenon in the event-time averaged mean squared displacement, in contrast to the picture of fractional Brownian motion. Comments are also made on possible relevances of random walks on fractals as well as nonlinear kinetics. Thus, problems of volcanic seismicity are highly challenging for science of complex systems.

  6. Building A Cloud Based Distributed Active Data Archive Center

    Science.gov (United States)

    Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin

    2017-01-01

    NASA's Earth Science Data System (ESDS) Program facilitates the implementation of NASA's Earth Science strategic plan, which is committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. The Earth Science Data information System (ESDIS) project manages the Earth Observing System Data and Information System (EOSDIS). Data within EOSDIS are held at Distributed Active Archive Centers (DAACs). One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data.

  7. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    Science.gov (United States)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  8. Study on load forecasting to data centers of high power density based on power usage effectiveness

    Science.gov (United States)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  9. Volcanic rock properties control sector collapse events

    Science.gov (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio

    2017-04-01

    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  10. Explosive and Phreatomagmatic Activity from San Salvador Volcanic Complex (El Salvador) and Their Effects on El Cambio Archaeological Site: a Review of the Last 3000 yrs. Based on Volcanic Stratigraphy Data

    Science.gov (United States)

    Ferrés, D.; Delgado, H.; Pullinger, C.; Castillo, R.; Chávez, H. I.

    2007-05-01

    El Cambio archeological site (ECAS; Zapotitán Valley), 4 km NW from the San Salvador Volcanic Complex comprises 3000 yrs. of pyroclastic record. Sheets (1983) identified different levels rich in cultural remains intercalated within the volcanic deposits, indicating that different prehistoric settings were affected by San Salvador volcano eruptions, and giving information on the reoccupation frequency in the area. Accordingly, ECAS was occupied since the Late Pre-Classic period until before the last plinian eruption of Ilopango Caldera (425AD) reference, that originated the Tierra Blanca Joven (TBJ), pyroclastic deposits generally used as key-layer in stratigraphic reconstructions. Within the next two centuries, there is no evidence of human occupation at ECAS until the end of Late Classic which was a period of maximum splendor in the valley. During this time the area was affected by at least 3 eruptions from the San Salvador volcanic complex that produced the: Laguna Caldera volcanic fall deposits (which affected Joya de Cerén archeological site in 625AD), "Talpetate" surge deposits or Toba de San Andrés (600-900AD), and fall deposits of El Playón volcano (1658). We report new data on volcanic stratigraphy and archeological history including the following: a) the phreatomagmatic nature of eruptions that affected the area, the new excavations allowed the detailed study of surge deposits indicating magma-water interaction at Laguna Caldera and El Playón, previously considered strombolian eruptions; b)document the occupation of ECAS during Middle Pre-Classic period, new surge deposits below TBJ have been identified (with Middle Pre-Classic artifacts and pottery), that had not been documented before, extending the historic record up to 3000 yrs. BP. and c) detailed study of the "Talpetate" deposits, this sequence consists of fall, pyroclastic flow and surge deposits, present in the rim and slopes of San Salvador Volcano, which can be correlated with surge deposits

  11. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities.

  12. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Directory of Open Access Journals (Sweden)

    M. Hervo

    2012-02-01

    Full Text Available During the Eyjafjallajökull eruption (14 April to 24 May 2010, the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles were detected in the free troposphere above the Puy de Dôme station, (PdD, France with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL. Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD. In agreement with the FLEXPART simulation, up to 65 μg m−3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm−3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98, showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m−2 as opposed to 0.33 ± 0.03 g m−2. Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23

  13. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Science.gov (United States)

    Hervo, M.; Quennehen, B.; Kristiansen, N. I.; Boulon, J.; Stohl, A.; Fréville, P.; Pichon, J.-M.; Picard, D.; Labazuy, P.; Gouhier, M.; Roger, J.-C.; Colomb, A.; Schwarzenboeck, A.; Sellegri, K.

    2012-02-01

    During the Eyjafjallajökull eruption (14 April to 24 May 2010), the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles) were detected in the free troposphere above the Puy de Dôme station, (PdD, France) with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT) were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL). Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD). In agreement with the FLEXPART simulation, up to 65 μg m-3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm-3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98), showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η) with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m-2 as opposed to 0.33 ± 0.03 g m-2). Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23 μg m-3 when the plume was located in the FT (3000 m above the sea level

  14. Multistation alarm system for eruptive activity based on the automatic classification of volcanic tremor: specifications and performance

    Science.gov (United States)

    Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore

    2015-04-01

    With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The

  15. Human-Centered Object-Based Image Retrieval

    NARCIS (Netherlands)

    Broek, E.L. van den; Rikxoort, E.M. van; Schouten, T.E.

    2005-01-01

    A new object-based image retrieval (OBIR) scheme is introduced. The images are analyzed using the recently developed, human-based 11 colors quantization scheme and the color correlogram. Their output served as input for the image segmentation algorithm: agglomerative merging, which is extended to co

  16. Curriculum-Based Learning Communities Centered within a Discipline

    Science.gov (United States)

    Zrull, Mark C.; Rocheleau, Courtney A.; Smith, M. Corinne; Bergman, Shawn M.

    2012-01-01

    This article focuses on curriculum-based learning communities (LCs). In these LCs, manipulation of the curriculum is intentional and often innovative, with the overarching goals of developing meaningful connections among students, between students and faculty, and between students and their coursework. The variety of curriculum-based models…

  17. Episodic Volcanism and Geochemistry in Western Nicaragua

    Science.gov (United States)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.

    2007-12-01

    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  18. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  19. Distinguishing volcanic lithology using Self-Organizing Map

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Self-Organizing Map is an unsupervised learning algorithm. It has the ability of self-organization,self-learning and side associative thinking. Based on the principle it can identified the complex volcanic lithology. According to the logging data of the volcanic rock samples, the SOM will be trained, The SOM training results were analyzed in order to choose optimally parameters of the network. Through identifying the logging data of volcanic formations, the result shows that the map can achieve good application effects.

  20. Technology-Based Biliteracy Centers for the 21st Century Learner

    Science.gov (United States)

    Mercuri, Sandra; Ramos, Laura

    2014-01-01

    The purpose of this reflective article is to present an alternative that incorporates the four language skills in all content areas through technology-based dual-language centers for emergent bilinguals at the elementary level. The authors propose a matrix to plan the centers and include three examples to facilitate language transfer in English…

  1. Intention and Usage of Computer Based Information Systems in Primary Health Centers

    Science.gov (United States)

    Hosizah; Kuntoro; Basuki N., Hari

    2016-01-01

    The computer-based information system (CBIS) is adopted by almost all of in health care setting, including the primary health center in East Java Province Indonesia. Some of softwares available were SIMPUS, SIMPUSTRONIK, SIKDA Generik, e-puskesmas. Unfortunately they were most of the primary health center did not successfully implemented. This…

  2. Perceptions of Discipline-Based Art Education and the Getty Center for Education in the Arts.

    Science.gov (United States)

    Dobbs, Stephen Mark

    This position paper clarifies the goals of the Getty Center for Education in the Arts and its views on discipline-based art education (DBAE). The paper addresses and refutes misconceptions inherent in the following perceptions: (1) The Getty Center invented DBAE; (2) DBAE is a Specific Curriculum; (3) DBAE requires equal time and attention for…

  3. Center-Based Early Head Start and Children Exposed to Family Conflict

    Science.gov (United States)

    Whiteside-Mansell, Leanne; Bradley, Robert; McKelvey, Lorraine; Lopez, Maya

    2009-01-01

    Research Findings: Family conflict is known to be associated with poor development for young children, but many children appear resilient. This study examined the extent to which high-quality center care during early childhood protects children from these negative consequences. Children participating in center-based sites of the Early Head Start…

  4. Operating Analysis of the Closed Supply Chain of Green Agricultural Products Based on Logistics Center

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This thesis gives the overview of concept and constitution of the closed supply chain of green agricultural products based on logistics center,and the necessity of regarding logistics center as core enterprise.Meanwhile,it analyzes the function of logistics center of agricultural products,namely functions of exchange,collection,distribution,storage and transportation.It also poses the prerequisites of logistics center.The logistics center of agricultural products must have stable profit expectancy,prominent scale,strong appealing power,capacity of bearing market risk and basic thoughts of supply chain management.The functional design of the closed supply chain of green agricultural products has been discussed in 5 aspects,namely logistics center,production base,providers of means of production,retailer and consumer.The operating thoughts of the closed supply chain of green agricultural products based on logistics center are put forward on the basis of the research of operating objective and service target of supply chain as follows:first,based on local principal agricultural products,the logistics center mainly distributes the massed agricultural products;second,it is necessary to choose appropriate strategic cooperative partners to sign contract;third,the operating procedure of supply chain entails bringing in professional managerial talents of supply chain;finally,the relationships of supply chain should be maintained.

  5. The ESRC: A Web-based Environmental Satellite Resource Center

    Science.gov (United States)

    Abshire, W. E.; Guarente, B.; Dills, P. N.

    2009-12-01

    The COMET® Program has developed an Environmental Satellite Resource Center (known as the ESRC), a searchable, database-driven Website that provides easy access to a wide range of useful information training materials on polar-orbiting and geostationary satellites. Primarily sponsored by the NPOESS Program and NOAA, the ESRC is a tool for users seeking reliable sources of satellite information, training, and data. First published in September 2008, and upgraded in April 2009, the site is freely available at: http://www.meted.ucar.edu/esrc. Additional contributions to the ESRC are sought and made on an ongoing basis. The ESRC was created in response to a broad community request first made in May 2006. The COMET Program was asked to develop the site to consolidate and simplify access to reliable, current, and diverse information, training materials, and data associated with environmental satellites. The ESRC currently includes over 400 significant resources from NRL, CIMSS, CIRA, NASA, VISIT, NESDIS, and EUMETSAT, and improves access to the numerous satellite resources available from COMET’s MetEd Website. The ESRC is designed as a community site where organizations and individuals around the globe can easily submit their resources via online forms by providing a small set of metadata. The ESRC supports languages other than English and multi-lingual character sets have been tested. COMET’s role is threefold: 1) maintain the site, 2) populate it with our own materials, including smaller, focused learning objects derived from our larger training modules, and 3) provide the necessary quality assurance and monitoring to ensure that all resources are appropriate and well described before being made available. Our presentation will demonstrate many of the features and functionality of searching for resources using the ESRC, and will outline the steps for users to make their own submissions. For the site to reach its full potential, submissions representing diverse

  6. Ground-based remote sensing of volcanic CO2 and correlated SO2, HF, HCl, and BrO, in safe-distance from the crater

    Science.gov (United States)

    Butz, Andre; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi

    2017-04-01

    Remote sensing of CO2 enhancements in volcanic plumes can be a tool to estimate volcanic CO2 emissions and thereby, to gain insight into the geological carbon cycle and into volcano interior processes. However, remote sensing of the volcanic CO2 is challenged by the large atmospheric background concentrations masking the minute volcanic signal. Here, we report on a demonstrator study conducted in September 2015 at Mt. Etna on Sicily, where we deployed an EM27/SUN Fourier Transform Spectrometer together with a UV spectrometer on a mobile remote sensing platform. The spectrometers were operated in direct-sun viewing geometry collecting cross-sectional scans of solar absorption spectra through the volcanic plume by operating the platform in stop-and-go patterns in 5 to 10 kilometers distance from the crater region. We successfully detected correlated intra-plume enhancements of CO2 and volcanic SO2, HF, HCl, and BrO. The path-integrated volcanic CO2 enhancements amounted to about 0.5 ppm (on top of the ˜400 ppm background). Key to successful detection of volcanic CO2 was A) the simultaneous observation of the O2 total column which allowed for correcting changes in the CO2 column caused by changes in observer altitude and B) the simultaneous measurement of volcanic species co-emitted with CO2 which allowed for discriminating intra-plume and extra-plume observations. The latter were used for subtracting the atmospheric CO2 background. The field study suggests that our remote sensing observatory is a candidate technique for volcano monitoring in safe distance from the crater region.

  7. Implementing an Evidence Based Preceptorship Program in a Military Center

    Science.gov (United States)

    2014-11-05

    want to act in good conscience, always trying to reach their goals without compromising their personal code of ethics . As Concrete Utilitarians ...Translate research into practice/evidence-based practice Clinical excellence Knowledge management Education and training Leadership, Ethics ...management Education and training Leadership, Ethics , and Mentoring: Health policy Recruitment and retention Preparing tomorrow’s leaders Care of

  8. Human-Centered Content-Based Image Retrieval

    NARCIS (Netherlands)

    van den Broek, Egon

    2005-01-01

    Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image

  9. Personalized Recommendations Based on Users' Information-Centered Social Networks

    Science.gov (United States)

    Lee, Danielle

    2013-01-01

    The overwhelming amount of information available today makes it difficult for users to find useful information and as the solution to this information glut problem, recommendation technologies emerged. Among the several streams of related research, one important evolution in technology is to generate recommendations based on users' own social…

  10. Location-based solutions in the experience center

    DEFF Research Database (Denmark)

    Witzner Hansen, Dan; Alapetite, Alexandre; Holdgaard, Nanna

    2009-01-01

    In this paper we present a prototype system for location-based guiding. A user survey has been conducted and the observations are used to support design choices. The prototype allows for both indoor and outdoor navigation at and in the vicinity of the NaturBornholm [1] experience centre in Denmark...

  11. Human-Centered Content-Based Image Retrieval

    NARCIS (Netherlands)

    Broek, van den Egon L.

    2005-01-01

    Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image Retrie

  12. College for America: Student-Centered, Competency-Based Education

    Science.gov (United States)

    Clerkin, Kris; Simon, Yvonne

    2014-01-01

    This article presents a new model of education that works with employers to help their employees gain the skills and credentials needed for promotions and career mobility. Southern New Hampshire University's College for America, a competency-based education model for working adults, increases their access to, and the convenience of higher…

  13. College for America: Student-Centered, Competency-Based Education

    Science.gov (United States)

    Clerkin, Kris; Simon, Yvonne

    2014-01-01

    This article presents a new model of education that works with employers to help their employees gain the skills and credentials needed for promotions and career mobility. Southern New Hampshire University's College for America, a competency-based education model for working adults, increases their access to, and the convenience of higher…

  14. Personalized Recommendations Based on Users' Information-Centered Social Networks

    Science.gov (United States)

    Lee, Danielle

    2013-01-01

    The overwhelming amount of information available today makes it difficult for users to find useful information and as the solution to this information glut problem, recommendation technologies emerged. Among the several streams of related research, one important evolution in technology is to generate recommendations based on users' own social…

  15. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems

    Science.gov (United States)

    Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda

    2014-05-01

    Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.

  16. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  17. Velocity structure of the crust and upper mantle at the northern group of Kamchatka volcanoes (Based on the travel time of P-waves from volcanic earthquakes)

    Science.gov (United States)

    Slavina, L. B.; Pivovarova, N. B.; Senyukov, S. L.

    2012-12-01

    The results of a calculation of the P-wave ( V P ) velocity fields are presented on the basis of the method of the reversible wave and the TAU parameter characterizing the V P / V S ratio of seismic waves from the local volcanic earthquakes that occurred at the northern group of Kamchatka volcanoes in 2005-2007. The 3D velocity cross sections were constructed along the SW-NE-trending volcanic group from the Ploskii Tolbachik volcano in the southwest up to the Shiveluch volcano in the northeast. The change of velocity field in time and depth is found. The problems of relating these changes to volcanic activity is reviewed.

  18. Age, distance, and geochemical evolution within a monogenetic volcanic field: Analyzing patterns in the Auckland Volcanic Field eruption sequence

    Science.gov (United States)

    Corvec, Nicolas Le; Bebbington, Mark S.; Lindsay, Jan M.; McGee, Lucy E.

    2013-09-01

    The Auckland Volcanic Field (AVF) is a young active monogenetic basaltic field, which contains ˜50 volcanoes scattered across the Auckland metropolitan area. Understanding the temporal, spatial, and chemical evolution of the AVF during the last c.a. 250 ka is crucial in order to forecast a future eruption. Recent studies have provided new age constraints and potential temporal sequences of the past eruptions within the AVF. We use this information to study how the spatial distribution of the volcanic centers evolves with time, and how the chemical composition of the erupted magmas evolves with time and space. We seek to develop a methodology which compares successive eruptions to describe the link between geochemical and spatiotemporal evolution of volcanic centers within a monogenetic volcanic field. This methodology is tested with the present day data of the AVF. The Poisson nearest neighbor analysis shows that the spatial behavior of the field has been constant overtime, with the spatial distribution of the volcanic centers fitting the Poisson model within the significance levels. The results of the meta-analysis show the existence of correlations between the chemical composition of the erupted magmas and distance, volume, and time. The apparent randomness of the spatiotemporal evolution of the volcanic centers observed at the surface is probably influenced by the activity of the source. The methodology developed in this study can be used to identify possible relationships between composition trends and volume, time and/or distance to the behavior of the source, for successive eruptions of the AVF.

  19. Massive information sharing among global data centers based on satellite laser communication

    Science.gov (United States)

    Yi, Longteng; Li, Cong; Liu, Naijin

    2015-10-01

    With the development of big data and information globalization, the requirements of massive information transmitting and sharing among data centers are expanding, especially among those data centers which are extremely far away from each other. In the above field, conventional optical fiber transmission faces many problems such as complex networking, poor security, long node switching delay, high lease and maintain cost and low migration flexibility. Besides, in the near future, data centers may tend to be built in the remote Polar Regions or on the sea for natural cooling. For the above situation, sharing the massive information among global data centers based on satellite laser communication is proposed in this paper. This proposal includes advantage analysis, research of restraining atmosphere interference, etc. At last, by comparison with conventional technology, the research result shows that massive information transmitting and sharing among global data centers based on satellite laser communication has far reaching application potential.

  20. GA based CNC turning center exploitation process parameters optimization

    Directory of Open Access Journals (Sweden)

    Z. Car

    2009-01-01

    Full Text Available This paper presents machining parameters (turning process optimization based on the use of artificial intelligence. To obtain greater efficiency and productivity of the machine tool, optimal cutting parameters have to be obtained. In order to find optimal cutting parameters, the genetic algorithm (GA has been used as an optimal solution finder. Optimization has to yield minimum machining time and minimum production cost, while considering technological and material constrains.

  1. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2009-06-01

    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  2. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    Science.gov (United States)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  3. Lung problems and volcanic smog

    Science.gov (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  4. The Properties and Distribution of Eyjafjallajökull Volcanic Ash, as Observed with MISR Space-based Multi-angle Imaging, April-May 2010 (Invited)

    Science.gov (United States)

    Kahn, R. A.; Gaitley, B. J.; Nelson, D. L.; Garay, M. J.; Misr Team

    2010-12-01

    Although volcanic eruptions occur about once per week globally, on average, relatively few of them affect the daily lives of millions of people. Significant exceptions were two eruptions of the Eyjafjallajökull volcano in southern Iceland, which produced ash clouds lasting several weeks during each of April and May 2010. During the first eruption, air traffic over most of Europe was halted, severely affecting international transportation, trade, and economics. For the second ash cloud, space-based and suborbital observations, together with aerosol transport modeling, were used to predict ash plume distribution, making it possible to selectively close only the limited airspace in which there was actual risk of significant ash exposure. These events highlight the immense value of aerosol measurement and modeling capabilities when integrated and applied in emergency response situations. Geosynchronous satellite and continuous, ground-based observations played the most immediate roles in constraining model ash-cloud-extent predictions. However, the rich information content of large-scale though less frequent observations from instruments such as the NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) are key to improving the underlying representations of processes upon which the plume transport models rely. MISR contributes to this pool of information by providing maps of plume height derived from stereo imaging that are independent of knowledge of the temperature structure of the atmosphere or assumptions that the ash cloud is in thermal equilibrium with the environment. Such maps are obtained primarily near-source, where features of the ash cloud can be observed and co-registered in the multi-angle views. A distribution of heights is produced, making it possible to report all-important layer extent rather than just a characteristic plume elevation. Results are derived at 1.1 km horizontal and about 0.5 km vertical resolution. In addition

  5. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    Science.gov (United States)

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  6. Modification of the Continental Crust by Subduction Zone Magmatism and Vice-Versa: Across-Strike Geochemical Variations of Silicic Lavas from Individual Eruptive Centers in the Andean Central Volcanic Zone

    Directory of Open Access Journals (Sweden)

    Gary S. Michelfelder

    2013-11-01

    Full Text Available To better understand the origin of across-strike K2O enrichments in silicic volcanic rocks from the Andean Central Volcanic Zone, we compare geochemical data for Quaternary volcanic rocks erupted from three well-characterized composite volcanoes situated along a southeast striking transect between 21° and 22° S latitude (Aucanquilcha, Ollagüe, and Uturuncu. At a given SiO2 content, lavas erupted with increasing distance from the arc front display systematically higher K2O, Rb, Th, Y, REE and HFSE contents; Rb/Sr ratios; and Sr isotopic ratios. In contrast, the lavas display systematically lower Al2O3, Na2O, Sr, and Ba contents; Ba/La, Ba/Zr, K/Rb, and Sr/Y ratios; Nd isotopic ratios; and more negative Eu anomalies toward the east. We suggest that silicic magmas along the arc front reflect melting of relatively young, mafic composition amphibolitic source rocks and that the mid- to deep-crust becomes increasingly older with a more felsic bulk composition in which residual mineralogies are progressively more feldspar-rich toward the east. Collectively, these data suggest the continental crust becomes strongly hybridized beneath frontal arc localities due to protracted intrusion of primary, mantle-derived basaltic magmas with a diminishing effect behind the arc front because of smaller degrees of mantle partial melting and primary melt generation.

  7. The Development of a Robot-Based Learning Companion: A User-Centered Design Approach

    Science.gov (United States)

    Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong

    2015-01-01

    A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…

  8. Comparison of CDE data in phacoemulsification between an open hospital-based ambulatory surgical center and a free-standing ambulatory surgical center

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2010-11-01

    Full Text Available Ming Chen1, Mindy Chen21University of Hawaii, Honolulu, HI, USA; 2University of California, Irvine, CA, USAAbstract: Mean CDE (cumulative dissipated energy values were compared for an open hospital-based surgical center and a free-standing surgical center. The same model of phacoemulsifier (Alcon Infiniti Ozil was used. Mean CDE values showed that surgeons (individual private practice at the free-standing surgical center were more efficient than surgeons (individual private practice at the open hospital-based surgical center (mean CDE at the hospital-based surgical center 18.96 seconds [SD = 12.51]; mean CDE at the free-standing surgical center 13.2 seconds [SD = 9.5]. CDE can be used to monitor the efficiency of a cataract surgeon and surgical center in phacoemulsification. The CDE value may be used by institutions as one of the indicators for quality control and audit in phacoemulsification.Keywords: CDE (cumulative dissipated energy, open hospital-based ambulatory surgical center, free-standing surgical center, phacoemulsification 

  9. Differentiating the Bishop ash bed and related tephra layers by elemental-based similarity coefficients of volcanic glass shards using solution inductively coupled plasma-mass spectrometry (S-ICP-MS)

    Science.gov (United States)

    Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.

    2007-01-01

    Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.

  10. Building a cloud based distributed active archive data center

    Science.gov (United States)

    Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin

    2017-04-01

    NASA's Earth Science Data System (ESDS) Program serves as a central cog in facilitating the implementation of NASA's Earth Science strategic plan. Since 1994, the ESDS Program has committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data. An independent review was conducted in 2015 to holistically review the EOSDIS in order to identify gaps. The review recommendations were to investigate two areas: one, whether commercial cloud providers offer potential for storage, processing, and operational efficiencies, and two, the potential development of new data access and analysis paradigms. In response, ESDS has initiated several prototypes investigating the advantages and risks of leveraging cloud computing. This poster will provide an overview of one such prototyping activity, "Cumulus". Cumulus is being designed and developed as a "native" cloud-based data ingest, archive and management system that can be used for all future NASA Earth science data streams. The long term vision for Cumulus, its requirements, overall architecture, and implementation details, as well as lessons learned from the completion of the first phase of this prototype will be covered. We envision Cumulus will foster design of new analysis/visualization tools to leverage collocated data from all of the distributed DAACs as well as elastic cloud computing resources to open new research opportunities.

  11. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  12. The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: tectonically anomalous forearc volcanism in an urban setting

    Science.gov (United States)

    Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.

  13. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data

    Indian Academy of Sciences (India)

    Surendra P Verma; Mirna Guevara; Salil Agrawal

    2006-10-01

    We present five new discriminant function diagrams based on an extensive database representative of basic and ultrabasic rocks from four tectonic settings of island arc, continental rift, ocean-island, and mid-ocean ridge. These diagrams were obtained after loge-transformation of concentration ratios of major-elements – a technique recommended for a correct statistical treatment of compositional data. Higher % success rates (overall values from ∼83 to 97%) were obtained for proposing these new diagrams as compared to those (∼82 to 94%) obtained from the discriminant analysis of the raw major-element concentration data (i.e., without the loge-transformation and without taking ratios of the compositional data, but using exactly the same database to provide an unbiased comparison), suggesting that such a data transformation constitutes a statistically correct and recommended technique. The new diagrams also resulted in less mis-classification of basic and ultrabasic rocks from known tectonic settings than the diagrams obtained from the raw data. The use of these highly successful new discriminant function diagrams is illustrated using Miocene to Recent basic and ultrabasic rocks from three areas of Mexico with complex or controversial tectonic settings (Mexican Volcanic Belt, Los Tuxtlas volcanic field, and Eastern Alkaline Province), as well as older rocks from three areas (Deccan, Malani, and Bastar) of India. Additionally, the major-element data from two ‘known’ continental arc settings are used to show that they are similar to those from the island arc setting. Continental rift setting is inferred for all Mexican cases and for one cratonic area of India (Malani) and an IAB setting for the Bastar craton. The Deccan flood basalt province of India is used to warn against an indiscriminate use of those discrimination diagrams that do not explicitly include the likely setting of the area under evaluation. An Excel template is also provided for an easy

  14. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  15. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  16. UPDATE TO THE PROBABILISTIC VOLCANIC HAZARD ANALYSIS, YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Coppersmith

    2005-09-14

    A probabilistic volcanic hazard analysis (PVHA) was conducted in 1996 for the proposed repository at Yucca Mountain, Nevada. Based on data gathered by the Yucca Mountain Project over the course of about 15 years, the analysis integrated the judgments of a panel of ten volcanic experts using methods of formal expert elicitation. PVHA resulted in a probability distribution of the annual frequency of a dike intersecting the repository, which ranges from 10E-7 to 10E-10 (mean 1.6 x 10E-8). The analysis incorporates assessments of the future locations, rates, and types of volcanic dikes that could intersect the repository, which lies about 300 m below the surface. A particular focus of the analysis is the quantification of uncertainties. Since the 1996 PVHA, additional aeromagnetic data have been collected in the Yucca Mountain region, including a high-resolution low-altitude survey. A number of anomalies have been identified within alluvial areas and modeling suggests that some of these may represent buried eruptive centers (basaltic cinder cones). A program is currently underway to drill several of the anomalies to gain information on their origin and, if basalt, their age and composition. To update the PVHA in light of the new aeromagnetic and drilling data as well as other advancements in volcanic hazard modeling over the past decade, the expert panel has been reconvened and the expert elicitation process has been fully restarted. The analysis requires assessments of the spatial distribution of igneous events, temporal distributions, and geometries and characteristics of future events (both intrusive and extrusive). The assessments are for future time periods of 10,000 years and 1,000,000 years. Uncertainties are being quantified in both the conceptual models that define these elements as well as in the parameters for the models. The expert elicitation process is centered around a series of workshops that focus on the available data; alternative approaches to

  17. Based on Intelligent Robot of E-business Distribution Center Operation Mode Research

    OpenAIRE

    2016-01-01

    According to E-business distribution center operation mode in domestic and advanced experience drawing lessons at home and abroad, this paper based on intelligent robot researches E-business distribution center operation mode. And it proposes the innovation logistics storage in E-business and sorting integration system, and elaborates its principle, characteristics, as well as studies its business mode and logistics process, and its parameters and working mode of AGV equipment.

  18. The geochemistry and petrogenesis of volcanics and sheeted dikes from the Hatay (Kizildag) Ophiolite, southern Turkey: Possible formation with the Troodos Ophiolite, Cyprus, along fore-arc spreading centers

    Science.gov (United States)

    Lytwyn, J. N.; Casey, J. F.

    1993-08-01

    Geochemical and petrological investigations of the Hatay (Kizildag) Ophiolite, southern Turkey, indicate that the volcanics and sheeted dikes compositionally range from island-arc tholeiites and basaltic andesites to transitional boninitictype lavas formed within a supra-subduction zone environment. Geochemical modeling indicates that the compositional trends within both the sheeted dike and pillow basalt sections of Hatay cannot be related through fractional crystallization alone but require multiple parental magmas of differing compositions within each unit. The more refractory liquids (higher MgO, Ni and Cr coupled with lower concentrations of Ti, Zr, Y and REE) formed at lower pressures (shallower depths) through greater degrees of partial melting of a more depleted mantle source relative to less-refractory magmas which formed at higher pressures and possibly lower degrees of melting. The Hatay volcanics and dikes span the compositional range of Lower Pillow Lavas (LPLs) and Upper Pillow Lavas (UPLs) from the Troodos Complex, Cyprus, suggesting, along with other evidence, that the two ophiolites may be petrogenetically and tectonically related. Formation of the Hatay and Troodos ophiolites was possibly associated with extension within a fore-arc environment following compression and detachment along an intra-oceanic ridge system and development of a subduction zone. The range of parental liquid compositions for volcanics and dikes may reflect variable mixing of geochemically diverse melt increments generated within a polybaric melting column in the mantle wedge. The melting column may have additionally received contributions of LREE-enriched melts from deeper, more juvenile (fertile) sources. Formation of parental liquids through variable mixing of melt increments appears to be common to both the Hatay and Troodos ophiolites.

  19. Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic

    Science.gov (United States)

    Gjerløw, Eirik; Haflidason, H.; Pedersen, R. B.

    2016-07-01

    The volcanic island Jan Mayen, located in the Norwegian-Greenland Sea, hosts the active stratovolcano of Beerenberg, the northernmost active subaerial volcano in the world. At least five eruptions are known from the island following its discovery in the 17th century, but its eruptive history prior to this is basically unknown. In this paper two sediment cores retrieved close to Jan Mayen have been studied in detail to shed light on the Holocene history of explosive volcanism from the Jan Mayen volcanic province. Horizons with elevated tephra concentrations were identified and tephra from these was analysed to determine major element chemistry of the tephra. The tephra chemistry was used to provide a link between the two cores and the land based tephra records from Jan Mayen Island. We managed to link two well-developed tephra peaks in the cores by their geochemical composition and age to Jan Mayen. One of these peaks represents the 1732 AD eruption of Eggøya while the other peak represents a previously undescribed eruption dated to around 10.3 ka BP. Two less prominent tephra peaks, one in each core, dated to approximately 2.3 and 3.0 ka BP, also have a distinct geochemical character linking them to Jan Mayen volcanism. However, the most prominent tephra layer in the cores located close to Jan Mayen and numerous other cores along the Jan Mayen ridge is the 12.1 ka BP Vedde Ash originating from the Iceland volcanic province. We find that the Holocene volcanism on Jan Mayen is much less explosive than volcanism in Iceland, and propose that either low amounts of explosive volcanic activity from the summit region of Beerenberg or small to absent glacier cover on Beerenberg is responsible for this.

  20. Design experience of a base-isolation system applied to a computer center building

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Akiyoshi; Kojima, Hideo; Tamura, Kazuo (Tohoku Electric Power Co., Sendai (Japan))

    1991-06-01

    Design experience of the base-isolated new computer center of the Tohoku Electric Power Co. is described. This building after completion will be the largest isolated building in Japan with a total floor space of {proportional to} 10,000 m{sup 2}. High-damping laminated rubber bearings are used as base-isolation devices. (orig.).

  1. A Place of Her Own: The Case for University-Based Centers for Women Entrepreneurs

    Science.gov (United States)

    Riebe, Mary

    2012-01-01

    The author describes the benefits of university-based women entrepreneur centers as an educational and outreach strategy and argues for their establishment and support by universities interested in educating women entrepreneurs and advancing women-owned businesses. Based on extensive research on women business owners and firsthand experience with…

  2. The confirmation of a work hypothesis: a new caldera in the center of the Mexican Volcanic Belt; La confirmacion de una hipotesis de trabajo: una nueva caldera en el centro del Cinturon Volcanico Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Anguita Virella, Francisco; Pal Verma, Surendra; Milan, Marcos; Garcia Cacho, Luis; Samaniego M, Daniel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most relevant aspects of the current volcanology and the genesis process of the collapse calderas, a process is described on the location and confirmation of a new caldera (the Mazahua) in the central part of the Mexican Volcanic Belt (MVB). [Espanol] Tras sintetizar los aspectos mas destacados de la vulcanologia actual y el proceso de genesis de las calderas de colapso, se describe el proceso de localizacion y confirmacion de una nueva caldera (la Mazahua) en la parte central del Cinturon Volcanico Mexicano (CVM).

  3. Water in volcanic glass: From volcanic degassing to secondary hydration

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  4. piscope - A Python based software package for the analysis of volcanic SO2 emissions using UV SO2 cameras

    Science.gov (United States)

    Gliss, Jonas; Stebel, Kerstin; Kylling, Arve; Solvejg Dinger, Anna; Sihler, Holger; Sudbø, Aasmund

    2017-04-01

    UV SO2 cameras have become a common method for monitoring SO2 emission rates from volcanoes. Scattered solar UV radiation is measured in two wavelength windows, typically around 310 nm and 330 nm (distinct / weak SO2 absorption) using interference filters. The data analysis comprises the retrieval of plume background intensities (to calculate plume optical densities), the camera calibration (to convert optical densities into SO2 column densities) and the retrieval of gas velocities within the plume as well as the retrieval of plume distances. SO2 emission rates are then typically retrieved along a projected plume cross section, for instance a straight line perpendicular to the plume propagation direction. Today, for most of the required analysis steps, several alternatives exist due to ongoing developments and improvements related to the measurement technique. We present piscope, a cross platform, open source software toolbox for the analysis of UV SO2 camera data. The code is written in the Python programming language and emerged from the idea of a common analysis platform incorporating a selection of the most prevalent methods found in literature. piscope includes several routines for plume background retrievals, routines for cell and DOAS based camera calibration including two individual methods to identify the DOAS field of view (shape and position) within the camera images. Gas velocities can be retrieved either based on an optical flow analysis or using signal cross correlation. A correction for signal dilution (due to atmospheric scattering) can be performed based on topographic features in the images. The latter requires distance retrievals to the topographic features used for the correction. These distances can be retrieved automatically on a pixel base using intersections of individual pixel viewing directions with the local topography. The main features of piscope are presented based on dataset recorded at Mt. Etna, Italy in September 2015.

  5. Exploring Hawaiian Volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  6. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  7. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    Science.gov (United States)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  8. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  9. Thermography of volcanic areas on Piton de la Fournaise, Reunion Island : Mapping surface properties and possible detection of convective air flow within volcanic debris

    Science.gov (United States)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Saracco, G.; Bachelery, P.; Staudacher, T.; Fontaine, F.

    2007-12-01

    We report on the detection of air convection in a couple of quasi circular cavities forming the 300 years old volcanically inactive cone of Formica Leo (Piton de la Fournaise, Reunion Island) [1]. Infrared thermal images of the cone have been acquired in 2006 from a hand held camera at regular time interval during a complete diurnal cycle. During night and dawn, the data display hot rims and cold centers. Both the conductivity contrasts of the highly porous soils filling the cavities and their 30° slopes are unable to explain the systematic rim to center temperature drop. Accordingly, this signal could be attributed to an air convection dipping inside the highly porous material at the center of each cavity, then flowing upslope along the base of the soil layer, before exiting it along the rims. Anemometrical and electrical data acquired in 2007 allow for the first time the direct detection of this air flow on the field: dipping gas velocities are measured at the center of the cone and self-potentials anomalies [2] generated by the humid air flow in the porous medium are detected. To quantify this process, we present 2D/3D numerical models of air convection in a sloped volcanic soil with a surface temperature evolving between day and night and taking into account electrical phenomena created by the air flow. At this present stage, this work constitutes a first step to investigate the deep structure of the active caldera of Bory-Dolomieu. The detection of the air flow at the surface could be of paramount importance for the understanding of volcanic hazards of the Reunion volcano. [1] Antoine et. al, submitted to G-Cubed [2] Darnet, PhD, Université Louis Pasteur (2003)

  10. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  11. Multidistribution Center Location Based on Real-Parameter Quantum Evolutionary Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Huaixiao Wang

    2014-01-01

    Full Text Available To determine the multidistribution center location and the distribution scope of the distribution center with high efficiency, the real-parameter quantum-inspired evolutionary clustering algorithm (RQECA is proposed. RQECA is applied to choose multidistribution center location on the basis of the conventional fuzzy C-means clustering algorithm (FCM. The combination of the real-parameter quantum-inspired evolutionary algorithm (RQIEA and FCM can overcome the local search defect of FCM and make the optimization result independent of the choice of initial values. The comparison of FCM, clustering based on simulated annealing genetic algorithm (CSAGA, and RQECA indicates that RQECA has the same good convergence as CSAGA, but the search efficiency of RQECA is better than that of CSAGA. Therefore, RQECA is more efficient to solve the multidistribution center location problem.

  12. Interface between problem-based learning and a learner-centered paradigm.

    Science.gov (United States)

    Karimi, Reza

    2011-01-01

    Problem-based learning (PBL) has made a major shift in support of student learning for many medical school curricula around the world. Since curricular development of PBL in the early 1970s and its growth in the 1980s and 1990s, there have been growing numbers of publications providing positive and negative data in regard to the curricular effectiveness of PBL. The purpose of this study was to explore supportive data for the four core objectives of PBL and to identify an interface between the objectives of PBL and a learner-centered paradigm. The four core PBL objectives, ie, structuring of knowledge and clinical context, clinical reasoning, self-directed learning, and intrinsic motivation, were used to search MEDLINE, the Education Resources Information Center, the Educator's Reference Complete, and PsycINFO from January 1969 to January 2011. The literature search was facilitated and narrowed if the published study included the following terms: "problem-based learning", "medical education", "traditional curriculum", and one of the above four PBL objectives. Through a comprehensive search analysis, one can find supportive data for the effectiveness of a PBL curriculum in achieving the four core objectives of PBL. A further analysis of these four objectives suggests that there is an interface between PBL objectives and criteria from a learner-centered paradigm. In addition, this review indicates that promotion of teamwork among students is another interface that exists between PBL and a learner-centered paradigm. The desire of medical schools to enhance student learning and a need to provide an environment where students construct knowledge rather than receive knowledge have encouraged many medical schools to move into a learner-centered paradigm. Implementation of a PBL curriculum can be used as a prevailing starting point to develop not only a learner-centered paradigm, but also to facilitate a smooth curricular transition from a teacher-centered paradigm to a

  13. Improved Discrimination of Volcanic Complexes, Tectonic Features, and Regolith Properties in Mare Serenitatis from Earth-Based Radar Mapping

    Science.gov (United States)

    Campbell, Bruce A.; Hawke, B. Ray; Morgan, Gareth A.; Carter, Lynn M.; Campbell, Donald B.; Nolan, Michael

    2014-01-01

    Radar images at 70 cm wavelength show 4-5 dB variations in backscatter strength within regions of relatively uniform spectral reflectance properties in central and northern Mare Serenitatis, delineating features suggesting lava flow margins, channels, and superposition relationships. These backscatter differences are much less pronounced at 12.6 cm wavelength, consistent with a large component of the 70 cm echo arising from the rough or blocky transition zone between the mare regolith and the intact bedrock. Such deep probing is possible because the ilmenite content, which modulates microwave losses, of central Mare Serenitatis is generally low (2-3% by weight). Modeling of the radar returns from a buried interface shows that an average regolith thickness of 10m could lead to the observed shifts in 70 cm echo power with a change in TiO2 content from 2% to 3%. This thickness is consistent with estimates of regolith depth (10-15m) based on the smallest diameter for which fresh craters have obvious blocky ejecta. The 70 cm backscatter differences provide a view of mare flow-unit boundaries, channels, and lobes unseen by other remote sensing methods. A localized pyroclastic deposit associated with Rima Calippus is identified based on its low radar echo strength. Radar mapping also improves delineation of units for crater age dating and highlights a 250 km long, east-west trending feature in northern Mare Serenitatis that we suggest is a large graben flooded by late-stage mare flows.

  14. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data

    Science.gov (United States)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.

    2010-12-01

    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion

  15. A multidisciplinary study on the crustal nature of volcanic conduits and magma reservoirs

    Science.gov (United States)

    Flinders, Ashton F.

    Volcanic settings vary widely not only in their eruptive style and products, but in the manner magma travels from deep sources to individual eruptive centers. Imaging these pathways, and their associated crustal reservoirs, provides unique and unprecedented views into these environments. Imaging techniques are varied with the strength of the technique often based on data availability. As such, we focus on two methods---gravity and seismic---in two different settings, each with its own unique volcanic environments, crustal structures, and associated data resources. The first, the Hawaiian Islands, are the most geologically studied hot-spot islands in the world, yet the only large-scale compilation of marine and land gravity data is more than 45 years old. We present a new chain-wide gravity compilation allowing us to locate current and former volcanic centers, major rift zones, a previously suggested volcano, and show that volcanoes along the chain are composed of a small proportion of intrusive material (sourced melt to the surface. We image two zones of reduced velocity, one of which correlates with a proposed extensive zone of mid-crustal partial melt which likely supplies evolved magmas to the surrounding volcanoes and vents, including Mounts St. Helens and Adams.

  16. Coherent-subspace array processing based on wavelet covariance: an application to broad-band, seismo-volcanic signals

    Science.gov (United States)

    Saccorotti, G.; Nisii, V.; Del Pezzo, E.

    2008-07-01

    Long-Period (LP) and Very-Long-Period (VLP) signals are the most characteristic seismic signature of volcano dynamics, and provide important information about the physical processes occurring in magmatic and hydrothermal systems. These events are usually characterized by sharp spectral peaks, which may span several frequency decades, by emergent onsets, and by a lack of clear S-wave arrivals. These two latter features make both signal detection and location a challenging task. In this paper, we propose a processing procedure based on Continuous Wavelet Transform of multichannel, broad-band data to simultaneously solve the signal detection and location problems. Our method consists of two steps. First, we apply a frequency-dependent threshold to the estimates of the array-averaged WCO in order to locate the time-frequency regions spanned by coherent arrivals. For these data, we then use the time-series of the complex wavelet coefficients for deriving the elements of the spatial Cross-Spectral Matrix. From the eigenstructure of this matrix, we eventually estimate the kinematic signals' parameters using the MUltiple SIgnal Characterization (MUSIC) algorithm. The whole procedure greatly facilitates the detection and location of weak, broad-band signals, in turn avoiding the time-frequency resolution trade-off and frequency leakage effects which affect conventional covariance estimates based upon Windowed Fourier Transform. The method is applied to explosion signals recorded at Stromboli volcano by either a short-period, small aperture antenna, or a large-aperture, broad-band network. The LP (0.2 2s) of the explosion recordings from the broad-band network. Source locations obtained this way are fully compatible with those retrieved from application of more traditional (and computationally expensive) time-domain techniques, such as the Radial Semblance method.

  17. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (Ga - 2.9 Ga). Our results indicate that Late Amazonian volcanism is more widespread in Tharsis than previously recognized. Based on our results it appears possible that Mars is volcanologically not dead yet. Ongoing work investigates the volumes of erupted products and implications for the outgassing history and atmospheric evolution of Mars. [1] Greeley R. (1982) JGR 87, 2705-2712. [2] Plescia J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  18. Situation analysis of trauma based on Arizona trauma center standards in university hospitals of Tehran, Iran

    Institute of Scientific and Technical Information of China (English)

    Mahdi Sharif-Alhoseini; Aliashraf Eghbali; Vafa Rahimi-Movaghar; Soheil Saadat

    2009-01-01

    Objective: Injuries are common and important problem in Tehran, capital of Iran. Although therapeutic centers are not essentially established following the constructional principles of developed countries, the present opportunities and equipments have to be used properly. We should recognize and reduce the deficits based on the global standards.This study deliberates the trauma resources and capacities in university hospitals of Tehran based on Arizona trauma center standards, which are suitable for the assessment of trauma centers.Methods: Forty-one university hospitals in Tehran were evaluated for their conformity with "Arizona trauma center standards" in 2008. A structured interview was arranged with the "Educational Supervisor" of all hospitals regarding their institutional organization, departments, clini-cal capabilities, clinical qualifications, facilities and resources, rehabilitation services, performance improvement, continuing education, prevention, research and additional requirements for pediatric trauma patients. Relative frequencies and percentages were calculated and Student's t test was used to compare the mean values.Results: Forty-one hospitals had the average of 77.7 (50.7%) standards from 153 Arizona trauma center standards and these standards were present in 97.5 out of 153 (63.7%) in 17 general hospitals. Based on the subgroups of the standards, 64.8% items of hospital resources and capabilities were considered as a subgroup with the maximum criteria, and 17.7% items of research section as another subgroup with the minimum standards.Conclusions: On the basis of our findings, no hospital meet all the Arizona trauma center standards completely. The hospitals as trauma centers at different levels must be promoted to manage trauma patients desirably.

  19. California's Vulnerability to Volcanic Hazards: What's at Risk?

    Science.gov (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.

    2015-12-01

    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  20. The excitation and characteristic frequency of the long-period volcanic event: An approach based on an inhomogeneous autoregressive model of a linear dynamic system

    Science.gov (United States)

    Nakano, M.; Kumagai, H.; Kumazawa, M.; Yamaoka, K.; Chouet, B.A.

    1998-01-01

    We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles

  1. Feasibility of an acceptance and commitment therapy adjunctive web-based program for counseling centers.

    Science.gov (United States)

    Levin, Michael E; Pistorello, Jacqueline; Hayes, Steven C; Seeley, John R; Levin, Crissa

    2015-07-01

    Web-based adjunctive tools provide a promising method for addressing the challenges college counseling centers face in meeting the mental health needs of students. The current study tested an initial adjunctive prototype based on acceptance and commitment therapy (ACT) in a pre-post open trial with 30 counselors and 82 student clients across 4 counseling centers. Results indicated high ratings of program satisfaction and usability with counselors and students. The majority of students completed at least part of the program. Significant improvements were found across almost all outcome and ACT process measures with student clients. Improvements in student outcomes were predicted by both changes in psychological inflexibility and how often counselors discussed the program with students. Results are discussed in relation to support for and future development of a flexible, adjunctive ACT program for counseling centers.

  2. Calibration and adjustment of center of mass (COM) based on EKF during in-flight phase

    Institute of Scientific and Technical Information of China (English)

    DONG Feng; LIAO He; JIA ChengLong; XIA XiaoJing

    2009-01-01

    The electrostatic accelerometer, assembled on gravity satellite, serves to measure all non-gravitational accelerations caused by atmosphere drag or solar radiation pressure, etc. The proof-mass center of the accelerometer needs to be precisely positioned at the center of gravity satellite, otherwise, the offset between them will bring measurement disturbance due to angular acceleration of satellite and gradient.Because of installation and measurement errors on the ground, fuel consumption during the in-flight phase and other adverse factors, the offset between the proof-mass center and the satellite center of mass is usually large enough to affect the measurement accuracy of the accelerometer, even beyond its range. Therefore, the offset needs to be measured or estimated, and then be controlled within the measurement requirement of the accelerometer by the center of mass (COM) adjustment mechanism during the life of the satellite. The estimation algorithm based on EKF, which uses the measurement of accelerometer, gyro and magnetometer, is put forward to estimate the offset, and the COM adjustment mechanism then adjusts the satellite center of mass in order to make the offset meet the requirement.With the special configuration layout, the COM adjustment mechanism driven by the stepper motors can separately regulate X, Y and Z axes. The associated simulation shows that the offset can be con-trolled better than 0.03 mm for all the axes with the method mentioned above.

  3. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  4. Possible Late Pleistocene volcanic activity on Nightingale Island, South Atlantic Ocean, based on geoelectrical resistivity measurements, sediment corings and 14C dating

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Björck, Svante; Cronholm, Anders

    2011-01-01

    Tristan da Cunha is a volcanic island group situated in the central South Atlantic. The oldest of these islands, Nightingale Island, has an age of about 18Ma. In the interior of the island, there are several wetlands situated in topographic depressions. The ages of these basins have been unknown,...

  5. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  6. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  7. Effect of Pozzolanic Reaction of Volcanic Rocks in Cement-based Material%水泥基材料中火山岩火山灰反应的效益

    Institute of Scientific and Technical Information of China (English)

    喻乐华; 李琳国; 管亮亮; 何兵兵; 廖妙星

    2015-01-01

    Based on the concept that strength of cement-based material results from hydration of cement and pozzolanic reaction of pozzolans (secondary-hydration reaction), the mechanical strength of cement mortar blend-ed with volcanic rock powder was tested, and effect of pozzolanic reaction of volcanic rock was calculated by us-ing the strength values. The results show that the effect of pozzolanic reaction for volcanic rocks in cement-base material decreases as the dosage of volcanic rock increases and the hydration time prolongs. The relationships a-mong them are expressed quantitatively by using fitting regression equation. It finds out that from the effect val-ues of pozzolanic reaction, in most cases, replacement of cement by volcanic rocks results in reducing impacts on strength of cement-based material, and the higher the replacement volume is, the greater the strength decreases.%基于水泥基材料强度由水泥的水化反应和火山灰质材料的火山灰反应(二次水化反应)共同构成之概念,测试掺火山岩粉末的水泥砂浆力学强度计算,表征单位火山岩的火山灰反应之效益。结果表明火山岩火山灰反应的效益随着水泥基材料中掺量增大而减小,同掺量情况下随着水化时间延长而减小。这些关系可用拟合回归方程量化表达。研究的火山岩火山灰反应效益可知大多数情况下火山岩替代水泥会对水泥基材料强度有降低影响,掺量越大强度降低幅度也越大。研究成果有助于工程上优化选择火山灰质材料在水泥基材料中的应用。

  8. The Israeli Rett Syndrome Center. Evaluation and Transdisciplinary Play-Based Assessment

    Directory of Open Access Journals (Sweden)

    Meir Lotan

    2006-01-01

    Full Text Available Rett syndrome (RS is a neuro-developmental syndrome of genetic origin, which mainly affects women. Individuals diagnosed with RS exhibit a variety of functional difficulties, which impair their quality of life. The variety of impairments and the differences between each child makes it necessary to administer skilled treatment, individually tailored to each client. Since the foundation of proper treatment is based on a structured, well administered, insightful assessment, the individual with RS with her complex array of difficulties should benefit from such a procedure. This notion has led to the establishment of the Israel Rett Syndrome Center. The center includes a medical branch located at the Safra Shildren's Medical Center at Tel Hashomer and an education/rehabilitation team, who performs assessments in special education facilities and residential settings throughout Israel. The assessment team works by means of arena assessment according to the concept of play-based assessment. This article presents the working model used by the education/rehabilitation team at the Israeli Rett Syndrome Center. The principles and working characteristics of the Israel Rett Syndrome Center team are suggested here as a potential model for establishing additional teams, presenting similar evaluation services for other individuals with RS as well as for analogous populations.

  9. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  10. Florida Public Health Training Center: Evidence-Based Online Mentor Program

    Science.gov (United States)

    Frahm, Kathryn A.; Alsac-Seitz, Biray; Mescia, Nadine; Brown, Lisa M.; Hyer, Kathy; Liburd, Desiree; Rogoff, David P.; Troutman, Adewale

    2013-01-01

    This article describes an Online Mentor Program (OMP) designed to support and facilitate mentorships among and between Florida Department of Health (FDOH) employees and USF College of Public Health students using a Web-based portal. The Florida Public Health Training Center (FPHTC) at the University of South Florida (USF) College of Public Health…

  11. School-Based Health Centers: On the Front Line for Mental Health

    Science.gov (United States)

    National Assembly on School-Based Health Care, 2011

    2011-01-01

    School-based health centers (SBHCs) are the "ideal location" for primary care and mental health staff to "collaboratively address students' physical and mental health needs"--leading to greater success in school and in life. This brief document provides key facts that support this argument.

  12. The Role of Attending Center-Based Care for Kindergarten-Aged Children with Disabilities

    Science.gov (United States)

    Gottfried, Michael A.

    2017-01-01

    Background/Context: Families have been increasingly utilizing center-based care both during prekindergarten as well as before/after school during kindergarten (CBC-K), and the literature has addressed the relative effectiveness of attending the former on early schooling outcomes. However, missing in the field is an analysis of the efficacy of…

  13. Mental Health Services in School-Based Health Centers: Systematic Review

    Science.gov (United States)

    Bains, Ranbir Mangat; Diallo, Ana F.

    2016-01-01

    Mental health issues affect 20-25% of children and adolescents, of which few receive services. School-based health centers (SBHCs) provide access to mental health services to children and adolescents within their schools. A systematic review of literature was undertaken to review evidence on the effectiveness of delivery of mental health services…

  14. Modular Psychotherapy for Youth with Internalizing Problems: Implementation with Therapists in School-Based Health Centers

    Science.gov (United States)

    Lyon, Aaron R.; Charlesworth-Attie, Sarah; Vander Stoep, Ann; McCauley, Elizabeth

    2011-01-01

    This article describes the training and consultation procedures implemented to adapt and pilot modular psychotherapy for use by therapists treating youth with depression and anxiety in school-based health centers (SBHCs). Module selection and adaptation decisions were data driven and intended to increase compatibility with the school context.…

  15. Authority in an Agency-Centered, Inquiry-Based University Calculus Classroom

    Science.gov (United States)

    Gerson, Hope; Bateman, Elizabeth

    2010-01-01

    Authority roles among teachers and students have traditionally been hierarchal and centered with the expertise and power of the teacher limiting opportunities for students to act with autonomy to build and justify mathematics. In this paper we discuss authority roles for teachers and students that have been realized in an inquiry-based university,…

  16. Quality Improvement Initiative in School-Based Health Centers across New Mexico

    Science.gov (United States)

    Booker, John M.; Schluter, Janette A.; Carrillo, Kris; McGrath, Jane

    2011-01-01

    Background: Quality improvement principles have been applied extensively to health care organizations, but implementation of quality improvement methods in school-based health centers (SBHCs) remains in a developmental stage with demonstration projects under way in individual states and nationally. Rural areas, such as New Mexico, benefit from the…

  17. Authority in an Agency-Centered, Inquiry-Based University Calculus Classroom

    Science.gov (United States)

    Gerson, Hope; Bateman, Elizabeth

    2010-01-01

    Authority roles among teachers and students have traditionally been hierarchal and centered with the expertise and power of the teacher limiting opportunities for students to act with autonomy to build and justify mathematics. In this paper we discuss authority roles for teachers and students that have been realized in an inquiry-based university,…

  18. Performance Evaluation of Extension Education Centers in Universities Based on the Balanced Scorecard

    Science.gov (United States)

    Wu, Hung-Yi; Lin, Yi-Kuei; Chang, Chi-Hsiang

    2011-01-01

    This study aims at developing a set of appropriate performance evaluation indices mainly based on balanced scorecard (BSC) for extension education centers in universities by utilizing multiple criteria decision making (MCDM). Through literature reviews and experts who have real practical experiences in extension education, adequate performance…

  19. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…

  20. The Role of the School Nurse and School Based Health Centers. Position Statement. Revised

    Science.gov (United States)

    Bannister, Ann; Kelts, Susan

    2011-01-01

    The National Association of School Nurses holds the position that a combination of school nursing services and school-based health centers (SBHCs) can facilitate positive health outcomes for students. SBHC services complement the work of the school nurses, who are responsible for the entire population of students, by providing a referral site for…

  1. Thermal effects of massive CO2 emissions associated with subduction volcanism

    NARCIS (Netherlands)

    Schuiling, R.D.

    2004-01-01

    Large volumes of CO₂ are emitted during volcanic activity at convergent plate boundaries, not only from volcanic centers. Their C isotopic signature indicates that this CO₂ is mainly derived from the decarbonation of subducted limestones or carbonated metabasalts, not as often admitted from magma

  2. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  3. Geomagnetic imprint of the Persani volcanism

    Science.gov (United States)

    Besutiu, Lucian; Seghedi, Ioan; Zlagnean, Luminita; Atanasiu, Ligia; Popa, Razvan-Gabriel; Pomeran, Mihai; Visan, Madalina

    2016-04-01

    The Persani small volume volcanism is located in the SE corner of the Transylvanian Depression, at the north-western edge of the intra-mountainous Brasov basin. It represents the south-easternmost segment of the Neogene-Quaternary volcanic chain of the East Carpathians. The alkaline basalt monogenetic volcanic field is partly coeval with the high-K calc-alkaline magmatism south of Harghita Mountains (1-1.6 Ma). Its eruptions post-dated the calc-alkaline volcanism in the Harghita Mountains (5.3-1.6 Ma), but pre-dated the high-K calc-alkaline emissions of Ciomadul volcano (1.0-0.03 Ma). The major volcanic forms have been mapped in previous geological surveys. Still, due to the small size of the volcanoes and large extent of tephra deposits and recent sediments, the location of some vents or other volcanic structures has been incompletely revealed. To overcome this problem, the area was subject to several near-surface geophysical investigations, including paleomagnetic research. However, due to their large-scale features, the previous geophysical surveys proved to be an inappropriate approach to the volcanological issues. Therefore, during the summers of 2014 and 2015, based on the high magnetic contrast between the volcanic rocks and the hosting sedimentary formations, a detailed ground geomagnetic survey has been designed and conducted, within central Persani volcanism area, in order to outline the presence of volcanic structures hidden beneath the overlying deposits. Additionally, information on the rock magnetic properties was also targeted by sampling and analysing several outcrops in the area. Based on the acquired data, a detailed total intensity scalar geomagnetic anomaly map was constructed by using the recent IGRF12 model. The revealed pattern of the geomagnetic field proved to be fully consistent with the direction of magnetisation previously determined on rock samples. In order to enhance the signal/noise ratio, the results were further processed by

  4. Interface between problem-based learning and a learner-centered paradigm

    Directory of Open Access Journals (Sweden)

    Karimi R

    2011-05-01

    Full Text Available Reza KarimiPacific University School of Pharmacy, Hillsboro, OR, USABackground: Problem-based learning (PBL has made a major shift in support of student learning for many medical school curricula around the world. Since curricular development of PBL in the early 1970s and its growth in the 1980s and 1990s, there have been growing numbers of publications providing positive and negative data in regard to the curricular effectiveness of PBL. The purpose of this study was to explore supportive data for the four core objectives of PBL and to identify an interface between the objectives of PBL and a learner-centered paradigm.Methods: The four core PBL objectives, ie, structuring of knowledge and clinical context, clinical reasoning, self-directed learning, and intrinsic motivation, were used to search MEDLINE, the Education Resources Information Center, the Educator’s Reference Complete, and PsycINFO from January 1969 to January 2011. The literature search was facilitated and narrowed if the published study included the following terms: “problem-based learning”, “medical education”, “traditional curriculum”, and one of the above four PBL objectives.Results: Through a comprehensive search analysis, one can find supportive data for the effectiveness of a PBL curriculum in achieving the four core objectives of PBL. A further analysis of these four objectives suggests that there is an interface between PBL objectives and criteria from a learner-centered paradigm. In addition, this review indicates that promotion of teamwork among students is another interface that exists between PBL and a learner-centered paradigm.Conclusion: The desire of medical schools to enhance student learning and a need to provide an environment where students construct knowledge rather than receive knowledge have encouraged many medical schools to move into a learner-centered paradigm. Implementation of a PBL curriculum can be used as a prevailing starting point to

  5. System of Volcanic activity

    Directory of Open Access Journals (Sweden)

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  6. Prototype VOEvent Network Systems based on VTP and XMPP for the SVOM Chinese Science Center

    CERN Document Server

    Zhang, Mo; Wu, Chao

    2016-01-01

    We present the current progress of design and build of two prototype VOEvent network systems for the SVOM Chinese Science Center. One is based on VTP which is compatible with the global VOEvent network, the other is based on XMPP which enables cross-platform messaging and information sharing among human users. We also present a demonstration of VOEvent controlled follow-up observation, including triggering, observational data transferring, as well as other procedures.

  7. Virtual Center for Renal Support: Definition of a Novel Knowledge-Based Telemedicine System

    Science.gov (United States)

    2007-11-02

    second part, the formal definition of the novel Virtual Center for Renal Support (VCRS) is done. Design of VCRS relies on a model- based system...supervision of therapies. Keywords – Remote healthcare, telemedicine, ESRD, peritoneal dialysis, hemodialysis , ESRD costs, knowledge-based assistance...patients was 25.689 (745 pmp) [3], but 40% of prevalent ESRD patients had a functioning graft, 55% were in hemodialysis therapy and the rest were

  8. Connecting teens to caring adults in a school-based health center: a case study.

    Science.gov (United States)

    Blacksin, Beth A; Kelly, Patricia J

    2015-01-01

    The traditional medical care system is generally unable to provide the broad health and wellness services needed by many adolescents, especially those from low-income and racial/ethnic minority communities. Using a theoretical framework adapted from Bronfenbrenner's ecological model of multiple influencers, this case study examined how a school-based health center was able to provide a network of connections for adolescents to caring adults within the school and the local community. Contributors to this network were the creation of a student-centered community with access to adolescent-friendly services, providers acting as connectors, and care of the whole adolescent.

  9. Super-resolution quantum sensing using NV centers based on rotating linear polarized light and Monte-Carlo method

    CERN Document Server

    Zhang, Hua-Yu; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    The nitrogen vacancy (NV) center in diamond has been widely applied for quantum information and sensing in last decade. Based on the laser polarization dependent excitation of fluorescence emission, we propose a super-resolution microscopy of NV center. A series of wide field images of NV centers are taken with different polarizations of the linear polarized excitation laser. The fluorescence intensity of NV center is changed with the relative angle between excitation laser polarization and the orientation of NV center dipole. The images pumped by different excitation laser polarizations are analyzed with Monte Carlo method. Then the symmetry axis and position of NV center are obtained with sub-diffraction resolution.

  10. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    Science.gov (United States)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  11. Monitoring volcanic threats using ASTER satellite data

    Science.gov (United States)

    Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.

    2008-01-01

    This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.

  12. Basement faults and volcanic rock distributions in the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Volcanic rocks in the Ordos Basin are of mainly two types: one in the basin and the other along the margin of the basin. Besides those along the margin, the marginal volcanic rocks also include the volcanic rocks in the Yinshanian orogenic belt north of the basin. Based on the latest collection of gravitational and aeromagnetic data, here we interpret basement faults in the Ordos Basin and its peripheral region, compare the faults derived from aeromagnetic data with those from seismic data, and identify the geological ages of the fault development. Two aeromagnetic anomaly zones exist in the NE-trending faults of the southern basin, and they are in the volcanic basement formed in pre-Paleozoic. These NE-trending faults are the channel of volcanic material upwelling in the early age (Archean-Neoproterozoic), where igneous rocks and sedimentary rocks stack successively on both sides of the continental nucleus. In the Cambrian, the basin interior is relatively stable, but in the Late Paleozoic and Mesozoic, the basin margin underwent a number of volcanic activities, accompanied by the formation of nearly north-south and east-west basement faults in the basin periphery and resulting in accumulation of great amount of volcanic materials. Volcanic tuff from the basin periphery is discovered in the central basin and volcanic materials are exposed in the margins of the basin. According to the source-reservoir-cap rock configuration, the basin peripheral igneous traps formed in the Indosinian-Early Yanshanian and Late Hercynian are favorable exploration objectives, and the volcanic rocks in the central basin are the future target of exploration.

  13. Reconstructing Volcanic Forcing of Climate: Past, Present and Future

    Science.gov (United States)

    Toohey, M.; Timmreck, C.; Sigl, M.

    2015-12-01

    Radiative forcing resulting from major volcanic eruptions has been a dominant driver of climate variability during Earth's history. Including volcanic forcing in climate model simulations is therefore essential to recreate past climate variability, and provides the opportunity to test the ability of models to respond accurately to external forcing. Ice cores provide estimates of the volcanic sulfate loadings from past eruptions, from which radiative forcing can be reconstructed, with associated uncertainties. Using prior reconstructions, climate models have reproduced the gross features of global mean temperature variability reconstructed from climate proxies, although some significant differences between model results and reconstructions remain. There is much less confidence in the accuracy of the dynamical responses to volcanic forcing produced by climate models, and thus the regional aspects of post-volcanic climate anomalies are much more uncertain—a result which mirrors uncertainties in the dynamical responses to future climate change. Improvements in model's response to volcanic forcing may be possible through improving the accuracy of the forcing data. Recent advances on multiple fronts have motivated the development of a next-generation volcanic forcing timeseries for use in climate models, based on (1) improved dating and precision of ice core records, (2) better understanding of the atmospheric transport and microphysical evolution of volcanic aerosol, including its size distribution, and (3) improved representations of the spatiotemporal structure of volcanic radiative forcing. A new volcanic forcing data set, covering the past 2500 years, will be introduced and compared with prior reconstructions. Preliminary results of climate model simulations using the new forcing will also be shown, and current and future applications of the forcing set discussed.

  14. Population-based geographic access to parent and satellite National Cancer Institute Cancer Center Facilities.

    Science.gov (United States)

    Onega, Tracy; Alford-Teaster, Jennifer; Wang, Fahui

    2017-09-01

    Satellite facilities of National Cancer Institute (NCI) cancer centers have expanded their regional footprints. This study characterized geographic access to parent and satellite NCI cancer center facilities nationally overall and by sociodemographics. Parent and satellite NCI cancer center facilities, which were geocoded in ArcGIS, were ascertained. Travel times from every census tract in the continental United States and Hawaii to the nearest parent and satellite facilities were calculated. Census-based population attributes were used to characterize measures of geographic access for sociodemographic groups. From the 62 NCI cancer centers providing clinical care in 2014, 76 unique parent locations and 211 satellite locations were mapped. The overall proportion of the population within 60 minutes of a facility was 22% for parent facilities and 32.7% for satellite facilities. When satellites were included for potential access, the proportion of some racial groups for which a satellite was the closest NCI cancer center facility increased notably (Native Americans, 22.6% with parent facilities and 39.7% with satellite facilities; whites, 34.8% with parent facilities and 50.3% with satellite facilities; and Asians, 40.0% with parent facilities and 54.0% with satellite facilities), with less marked increases for Hispanic and black populations. Rural populations of all categories had dramatically low proportions living within 60 minutes of an NCI cancer center facility of any type (1.0%-6.6%). Approximately 14% of the population (n = 43,033,310) lived more than 180 minutes from a parent or satellite facility, and most of these individuals were Native Americans and/or rural residents (37% of Native Americans and 41.7% of isolated rural residents). Racial/ethnic and rural populations showed markedly improved geographic access to NCI cancer center care when satellite facilities were included. Cancer 2017;123:3305-11. © 2017 American Cancer Society. © 2017 American

  15. Energy Efficient Multiresource Allocation of Virtual Machine Based on PSO in Cloud Data Center

    Directory of Open Access Journals (Sweden)

    An-ping Xiong

    2014-01-01

    Full Text Available Presently, massive energy consumption in cloud data center tends to be an escalating threat to the environment. To reduce energy consumption in cloud data center, an energy efficient virtual machine allocation algorithm is proposed in this paper based on a proposed energy efficient multiresource allocation model and the particle swarm optimization (PSO method. In this algorithm, the fitness function of PSO is defined as the total Euclidean distance to determine the optimal point between resource utilization and energy consumption. This algorithm can avoid falling into local optima which is common in traditional heuristic algorithms. Compared to traditional heuristic algorithms MBFD and MBFH, our algorithm shows significantly energy savings in cloud data center and also makes the utilization of system resources reasonable at the same time.

  16. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  17. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  18. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  19. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  20. Evidence for volcanism in NW Ishtar Terra, Venus

    Science.gov (United States)

    Gaddis, L.; Greeley, Ronald

    Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred large/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas.

  1. Volcanic hazard assessment at the Campi Flegrei caldera

    OpenAIRE

    Mastrolorenzo, G.; Pappalardo, L; C. Troise; S. Rossano; Panizza, A; G. De Natale

    2006-01-01

    Previous and new results from probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei, are assembled in a comprehensive assessment of volcanic hazards at the Campi Flegrei caldera, in order to compare the volcanic hazards related to the different types of events. Hazard maps based on a very wide set of numerical simulations, produced using field and laboratory data as input parameters relative to the whole range of fallout and pyrocl...

  2. Researching children's health experiences: The place for participatory, child-centered, arts-based approaches.

    Science.gov (United States)

    Carter, Bernie; Ford, Karen

    2013-02-01

    A central concern when conducting qualitative health research with children is eliciting data that genuinely reflect their perspectives. Invariably, this involves being child-centered and participatory. Drawing and photography increasingly accompany dialogic methods to facilitate children's communication through arts-based and verbal modes of expression. However, little literature is available on how arts-based tools shape data. We suggest that researchers need to be attentive to how such tools can liberate, constrain and frame data generated by children, drawing attention to the promises of such approaches as well as the conundrums that can arise from their use. We explore the place for participatory, child-centered, arts-based approaches using examples of the use of drawing and photography in our own studies.

  3. An internet-based simulation system for training and development of regional-healthcare-centers managers.

    Science.gov (United States)

    Bregman, David; Korman, Arik; Shetach, Ana; Shalom, Nira

    2009-01-01

    RHCMS (Regional Healthcare Center Management System) is an Internet-based simulation training system for Regional Healthcare-Centers (RHCs) managers. The system is based on an integrative model, designed and developed by an interdisciplinary team of experts, for the purpose of training and developing RHCs' managers. This model involves the study of the following fields: healthcare management, business administration, organizational behavior, health economics, management science, and information technologies. The simulation system enables the operation of a management decision-making game. In the game, teams of trainees, playing management teams of RHCs, within one specific community, compete among themselves. The simulation focuses on managerial performance, based on periodic team-decisions, within the internal and external environmental context. The simulation game has a major potential contribution in enabling management trainees to transfer theoretical knowledge into managerial practical tools, capabilities and skills.

  4. Efficacy of a Web-Based, Center-Based or Combined Physical Activity Intervention among Older Adults

    Science.gov (United States)

    Mouton, Alexandre; Cloes, Marc

    2015-01-01

    With more social support and environment-centered interventions being recommended in web-based interventions, this study examined the efficacy of three intervention conditions aimed at promoting physical activity (PA) in older adults. The efficacy analyses included the self-reported PA level, stage of change for PA and awareness about PA among…

  5. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Science.gov (United States)

    2010-04-01

    ... programs for students through center program activities, including vocational skills training, and through... to enhance the employability, responsibility, and confidence of the students. Work-based learning...

  6. Caregivers' Cortisol Levels and Perceived Stress in Home-Based and Center-Based Childcare

    Science.gov (United States)

    Groeneveld, Marleen G.; Vermeer, Harriet J.; van IJzendoorn, Marinus H.; Linting, Marielle

    2012-01-01

    The current study examined professional caregivers' perceived and physiological stress, and associations with the quality of care they provide. Participants were 55 female caregivers from childcare homes and 46 female caregivers from childcare centers in the Netherlands. In both types of settings, equivalent measures and procedures were used. On…

  7. Caregivers' Cortisol Levels and Perceived Stress in Home-Based and Center-Based Childcare

    Science.gov (United States)

    Groeneveld, Marleen G.; Vermeer, Harriet J.; van IJzendoorn, Marinus H.; Linting, Marielle

    2012-01-01

    The current study examined professional caregivers' perceived and physiological stress, and associations with the quality of care they provide. Participants were 55 female caregivers from childcare homes and 46 female caregivers from childcare centers in the Netherlands. In both types of settings, equivalent measures and procedures were used. On…

  8. Probabilities of future VEI ≥ 2 eruptions at the Central American Volcanic Arc: a statistical perspective based on the past centuries' eruption record

    Science.gov (United States)

    Dzierma, Yvonne; Wehrmann, Heidi

    2014-10-01

    A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan-Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70-85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).

  9. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    Science.gov (United States)

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  10. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

    OpenAIRE

    Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young

    2015-01-01

    Purpose The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and ...

  11. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches.

    Science.gov (United States)

    Kurtz, Ira; Kraut, Jeffrey; Ornekian, Vahram; Nguyen, Minhtri K

    2008-05-01

    When approaching the analysis of disorders of acid-base balance, physical chemists, physiologists, and clinicians, tend to focus on different aspects of the relevant phenomenology. The physical chemist focuses on a quantitative understanding of proton hydration and aqueous proton transfer reactions that alter the acidity of a given solution. The physiologist focuses on molecular, cellular, and whole organ transport processes that modulate the acidity of a given body fluid compartment. The clinician emphasizes the diagnosis, clinical causes, and most appropriate treatment of acid-base disturbances. Historically, two different conceptual frameworks have evolved among clinicians and physiologists for interpreting acid-base phenomena. The traditional or bicarbonate-centered framework relies quantitatively on the Henderson-Hasselbalch equation, whereas the Stewart or strong ion approach utilizes either the original Stewart equation or its simplified version derived by Constable. In this review, the concepts underlying the bicarbonate-centered and Stewart formulations are analyzed in detail, emphasizing the differences in how each approach characterizes acid-base phenomenology at the molecular level, tissue level, and in the clinical realm. A quantitative comparison of the equations that are currently used in the literature to calculate H(+) concentration ([H(+)]) is included to clear up some of the misconceptions that currently exist in this area. Our analysis demonstrates that while the principle of electroneutrality plays a central role in the strong ion formulation, electroneutrality mechanistically does not dictate a specific [H(+)], and the strong ion and bicarbonate-centered approaches are quantitatively identical even in the presence of nonbicarbonate buffers. Finally, our analysis indicates that the bicarbonate-centered approach utilizing the Henderson-Hasselbalch equation is a mechanistic formulation that reflects the underlying acid-base phenomenology.

  12. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  13. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  14. Volcanic lake systematics II. Chemical constraints

    Science.gov (United States)

    Varekamp, J.C.; Pasternack, G.B.; Rowe, G.L.

    2000-01-01

    A database of 373 lake water analyses from the published literature was compiled and used to explore the geochemical systematics of volcanic lakes. Binary correlations and principal component analysis indicate strong internal coherence among most chemical parameters. Compositional variations are influenced by the flux of magmatic volatiles and/or deep hydrothermal fluids. The chemistry of the fluid entering a lake may be dominated by a high-temperature volcanic gas component or by a lower-temperature fluid that has interacted extensively with volcanic rocks. Precipitation of minerals like gypsum and silica can strongly affect the concentrations of Ca and Si in some lakes. A much less concentrated geothermal input fluid provides the mineralized components of some more dilute lakes. Temporal variations in dilution and evaporation rates ultimately control absolute concentrations of dissolved constituents, but not conservative element ratios. Most volcanic lake waters, and presumably their deep hydrothermal fluid inputs, classify as immature acid fluids that have not equilibrated with common secondary silicates such as clays or zeolites. Many such fluids may have equilibrated with secondary minerals earlier in their history but were re-acidified by mixing with fresh volcanic fluids. We use the concept of 'degree of neutralization' as a new parameter to characterize these acid fluids. This leads to a classification of gas-dominated versus rock-dominated lake waters. A further classification is based on a cluster analysis and a hydrothermal speedometer concept which uses the degree of silica equilibration of a fluid during cooling and dilution to evaluate the rate of fluid equilibration in volcano-hydrothermal systems.

  15. Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the determination of composition of volcanic volatiles and petrologic estimation of the total mass of volatiles erupted,we showed important advances in the study of the impact of Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China.The volcanic activities include western Liaoning and Zhangjiakou Mesozoic intermediate-acidic explosive eruptions,southern Tibet and Shanwang Cenozoic volcanism,and Mt.Changbai volcanic eruption around one thousand years ago.The paper predominantly discusses the earth's surface temperature changes,ozone depletion,acidic rain formation and mass mortalities of vertebrate induced by the Mesozoic and Cenozoic volcanism in China.

  16. 6-DOF MOTION AND CENTER OF ROTATION ESTIMATION BASED ON STEREO VISION

    Institute of Scientific and Technical Information of China (English)

    CAO Wanpeng; BI Wei; CHE Rensheng; GUO Wenbo; YE Dong

    2008-01-01

    A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed from the rigid object's motion character under the two defined reference frames. According to the rigid object's motion model and motion dynamics knowledge, the corresponding motion algorithm to compute the 6-DOF motion parameters is worked out. By the rigid object pure rotation motion model and space sphere geometry knowledge, the center of rotation may be calculated after eliminating the translation motion out of the 6-DOF motion. The motion equations are educed based on the motion model and the closed-form solutions are figured out. To heighten the motion estimation algorithm's robust, RANSAC algorithm is applied to delete the outliers. Simulation and real experiments are conducted and the experiment results are analyzed. The results prove the motion model's correction and algorithm's validity.

  17. The ice-core record of volcanism: Status and future directions

    Science.gov (United States)

    Sigl, Michael; McConnell, Joseph R.; Chellman, Nathan; Ludlow, Francis; Curran, Mark; Plunkett, Gill; Büntgen, Ulf; Toohey, Matthew; Burke, Andrea; Grieman, Mackenzie

    2016-04-01

    Radiative forcing resulting from stratospheric aerosols produced by major volcanic eruptions is a dominant driver of climate variability in the Earth's past. Accurate knowledge of the climate anomalies resulting from volcanic eruptions provides important information for understanding the global and regional responses of the Earth system to external forcing agents. Based on a unique compilation of newly obtained, high-resolution, ice-core measurements, as well as palaeo-climatic evidence inferred from existing tree-ring records and historical documentary sources, we revised the dating of ice-core based reconstructions of past volcanic eruptions and confirmed the dominant role of explosive volcanism on short-term summer temperature variability throughout the past 2,500 years. Continuous weekly surface snow measurements obtained from Summit, Greenland (2005-2014) further allow placing volcanic sulphate emissions arising from a series of moderate volcanic eruptions during the last decade into a multi-millennial context. While these updated ice core records provide a more accurate constraint on the timing and magnitude of volcanic eruptions, there is also new data emerging on the geographic locations of past eruptions, atmospheric transport of volcanic fallout and climatic consequences (e.g. sea-ice; hydro-climate) from studying volcanic deposits (e.g. extent of volcanic ash deposition), proxy data and historical records. On the basis of selected case studies we will discuss the role volcanic eruptions have played in the Earth's climate system during the past and identify potential additional constraints provided by ice cores.

  18. Formation of volcanic edifices in response to changes in magma budget at intermediate spreading rate ridges

    Science.gov (United States)

    Howell, J.; White, S. M.; Bohnenstiehl, D. R.; Bizimis, M.

    2010-12-01

    The spatial and abundance distributions of volcanic edifices along mid-ocean ridges have a well known correlation with spreading rate. Along slow spreading centers, volcanic edifices are normally distributed about the segment center. Volcanic edifices along fast spreading centers have the opposing trend, i.e. edifices form primarily at the ends of segments. However, in ridges affected by plumes and at back arc basins, the spatial and abundance distributions of volcanic edifices differ from that observed at normal ridges of the same spreading rate. This suggests that magma supply rate may control the spatial and abundance distribution of volcanic edifices. Recent geophysical and geochemical studies along the Galapagos Spreading Centers (GSC), Juan de Fuca Ridge (JdFR), Southeast Indian Ridge (SEIR) and the Valu Fa (VF) and Eastern Lau Spreading Centers (ELSC) put tight constraints on crustal thickness, making it possible investigate the effect of magma budget and axial morphology on the formation of volcanic edifices. Volcanic edifices are described according to their volume, shape (their height to basal radius ratio) and their location relative to the end or center of a segment (abundance distribution). For the GSC, the shape and distribution of volcanic edifices correlate with changes in crustal thickness and axial morphology, consistent with a magma supply control on their formation in this region. This relationship is not apparent along the SEIR or JdFR, where edifices show little variation with changes in axial morphology at relatively constant spreading rates. Results for VF and ELSC are what we expect for changes in spreading rate, not axial morphology. Our study suggests that the formation of volcanic edifices at intermediate spreading rate ridges are influenced by magma budget but only when it is above a certain threshold.

  19. Volcanic studies at Katmai

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  20. Toxicological consultation data management system based on experience of Pomeranian Center of Toxicology

    Directory of Open Access Journals (Sweden)

    Piotr Maciej Kabata

    2015-10-01

    Full Text Available Background: In this paper the structure of poisonings is described, based on the material collected from tele-toxicology consults by the Pomeranian Center of Toxicology in Gdańsk and harvested from its Electronic Poison Information Management System. In addition, we analyzed conclusions drawn from a 27-month operation of the system. Material and Methods: Data were harvested from the Electronic Poison Information Management System developed in 2012 and used by the Pomeranian Center of Toxicology since then. The research was based on 2550 tele-toxicology consults between January 1 and December 31, 2014. Subsequently the data were electronically cleaned and presented using R programming language. Results: The Pomeranian voivodeship was the prevalent localisation of calls (N = 1879; 73.7%. Most of the calls came from emergency rooms (N = 1495; 58.63%. In the case of 1396 (54.7% patients the time-lag between intoxication and the consult was less than 6 h. There were no differences in the age distribution between genders. Mean age was 26.3 years. Young people predominated among intoxicated individuals. The majority of intoxications were incidental (N = 888; 34.8% or suicidal (N = 814; 31.9% and the most of them took place in the patient’s home. Conclusions: Information about Poison Control Center consultations access should be better spread among medical service providers. The extent of poison information collected by Polish Poison Control Centers should be limited and unified. This should contribute to the increased percentage of properly documented consultations. Additional duties stemming from the need of digital archiving of consults provided, require the involvement of additional staff, leading to the increased operation costs incurred by Poison Control Centers. Med Pr 2015;66(5:635–644

  1. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    The extensive Quaternary volcanism in the Payenia volcanic province, Mendoza, Argentina, is investigated in this study by major and trace element analyses, Sr, Nd, Hf and Pb-isotopic analyses and Zr-Hf isotope dilution data on samples from almost the entire province. The samples are mainly...... in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...

  2. Fast Training of Support Vector Machines Using Error-Center-Based Optimization

    Institute of Scientific and Technical Information of China (English)

    L. Meng; Q. H. Wu

    2005-01-01

    This paper presents a new algorithm for Support Vector Machine (SVM) training, which trains a machine based on the cluster centers of errors caused by the current machine. Experiments withvarious training sets show that the computation time of this new algorithm scales almost linear with training set size and thus may be applied to much larger training sets, in comparison to standard quadratic programming (QP) techniques.

  3. Development of a low cost and low power consumption system for monitoring CO_{2} soil concentration in volcanic areas.

    Science.gov (United States)

    Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza

    2017-04-01

    Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.

  4. A Novel Cloud-Based Service Robotics Application to Data Center Environmental Monitoring.

    Science.gov (United States)

    Russo, Ludovico Orlando; Rosa, Stefano; Maggiora, Marcello; Bona, Basilio

    2016-08-08

    This work presents a robotic application aimed at performing environmental monitoring in data centers. Due to the high energy density managed in data centers, environmental monitoring is crucial for controlling air temperature and humidity throughout the whole environment, in order to improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of the art solutions for data center monitoring are nowadays based on environmental sensor networks, which continuously collect temperature and humidity data. These solutions are still expensive and do not scale well in large environments. This paper presents an alternative to environmental sensor networks that relies on autonomous mobile robots equipped with environmental sensors. The robots are controlled by a centralized cloud robotics platform that enables autonomous navigation and provides a remote client user interface for system management. From the user point of view, our solution simulates an environmental sensor network. The system can easily be reconfigured in order to adapt to management requirements and changes in the layout of the data center. For this reason, it is called the virtual sensor network. This paper discusses the implementation choices with regards to the particular requirements of the application and presents and discusses data collected during a long-term experiment in a real scenario.

  5. A Novel Cloud-Based Service Robotics Application to Data Center Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Ludovico Orlando Russo

    2016-08-01

    Full Text Available This work presents a robotic application aimed at performing environmental monitoring in data centers. Due to the high energy density managed in data centers, environmental monitoring is crucial for controlling air temperature and humidity throughout the whole environment, in order to improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of the art solutions for data center monitoring are nowadays based on environmental sensor networks, which continuously collect temperature and humidity data. These solutions are still expensive and do not scale well in large environments. This paper presents an alternative to environmental sensor networks that relies on autonomous mobile robots equipped with environmental sensors. The robots are controlled by a centralized cloud robotics platform that enables autonomous navigation and provides a remote client user interface for system management. From the user point of view, our solution simulates an environmental sensor network. The system can easily be reconfigured in order to adapt to management requirements and changes in the layout of the data center. For this reason, it is called the virtual sensor network. This paper discusses the implementation choices with regards to the particular requirements of the application and presents and discusses data collected during a long-term experiment in a real scenario.

  6. A Novel Cloud-Based Service Robotics Application to Data Center Environmental Monitoring

    Science.gov (United States)

    Russo, Ludovico Orlando; Rosa, Stefano; Maggiora, Marcello; Bona, Basilio

    2016-01-01

    This work presents a robotic application aimed at performing environmental monitoring in data centers. Due to the high energy density managed in data centers, environmental monitoring is crucial for controlling air temperature and humidity throughout the whole environment, in order to improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of the art solutions for data center monitoring are nowadays based on environmental sensor networks, which continuously collect temperature and humidity data. These solutions are still expensive and do not scale well in large environments. This paper presents an alternative to environmental sensor networks that relies on autonomous mobile robots equipped with environmental sensors. The robots are controlled by a centralized cloud robotics platform that enables autonomous navigation and provides a remote client user interface for system management. From the user point of view, our solution simulates an environmental sensor network. The system can easily be reconfigured in order to adapt to management requirements and changes in the layout of the data center. For this reason, it is called the virtual sensor network. This paper discusses the implementation choices with regards to the particular requirements of the application and presents and discusses data collected during a long-term experiment in a real scenario. PMID:27509505

  7. Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center

    Science.gov (United States)

    Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott

    2016-05-01

    When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.

  8. Buried volcanic structures in the Gulf of Naples (Southern Tyrrhenian Sea, Italy resulting from high resolution magnetic survey and seismic profiling

    Directory of Open Access Journals (Sweden)

    S. Ruggieri

    2005-06-01

    Full Text Available In this paper we present a correlation between volcanic structures and magnetic anomalies in the Gulf of Naples (Southern Tyrrhenian Sea based on high resolution magnetic profiling. A densely spaced grid of magnetic profiles coupled with multichannel seismics (seismic source Watergun 15 cubic inch was recorded in the Gulf of Naples, representing an active volcanic area during the Late Quaternary (volcanic centers of Somma-Vesuvius, Phlegraean Fields and Ischia and Procida islands. The dataset was collected during the oceanographic cruise GMS00-05 which took place during October-November 2000 in the South Tyrrhenian Sea onboard of the R/V Urania (National Research Council, Italy. Shallow volcanic structures in the subsurface of the gulf were recognized by seismo-stratigraphic analysis of high resolution profiles; the volcanic nature of some of these structures was inferred identifying the magnetic anomalies on a high resolution magnetic anomaly map of the gulf. Even if qualitative, the correlations between seismic and magnetic profiles allow us to better assess the geological structure of the Gulf of Naples.

  9. Decision-Making in Audiology: Balancing Evidence-Based Practice and Patient-Centered Care

    Science.gov (United States)

    Clemesha, Jennifer; Lundmark, Erik; Crome, Erica; Barr, Caitlin; McMahon, Catherine M.

    2017-01-01

    Health-care service delivery models have evolved from a practitioner-centered approach toward a patient-centered ideal. Concurrently, increasing emphasis has been placed on the use of empirical evidence in decision-making to increase clinical accountability. The way in which clinicians use empirical evidence and client preferences to inform decision-making provides an insight into health-care delivery models utilized in clinical practice. The present study aimed to investigate the sources of information audiologists use when discussing rehabilitation choices with clients, and discuss the findings within the context of evidence-based practice and patient-centered care. To assess the changes that may have occurred over time, this study uses a questionnaire based on one of the few studies of decision-making behavior in audiologists, published in 1989. The present questionnaire was completed by 96 audiologists who attended the World Congress of Audiology in 2014. The responses were analyzed using qualitative and quantitative approaches. Results suggest that audiologists rank clinical test results and client preferences as the most important factors for decision-making. Discussion with colleagues or experts was also frequently reported as an important source influencing decision-making. Approximately 20% of audiologists mentioned utilizing research evidence to inform decision-making when no clear solution was available. Information shared at conferences was ranked low in terms of importance and reliability. This study highlights an increase in awareness of concepts associated with evidence-based practice and patient-centered care within audiology settings, consistent with current research-to-practice dissemination pathways. It also highlights that these pathways may not be sufficient for an effective clinical implementation of these practices. PMID:28752808

  10. Volcanic hazard assessment for disposal of high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1986-12-31

    Volcanic hazards are evaluated through risk assessment, which is a product of probability and consequences. These studies have been completed for a potential waste disposal site in the Nevada Test Site (NTS). Cenozoic volcanism of the NTS region is divided into three distinct episodes. The youngest episode, 3.7 to 0.3 m.y., comprises scattered, monogenetic Strombolian centers of small volume (<1 km{sup 3}). Rates of volcanic activity for the NTS region are estimated to be about 10{sup -6} event/yr, based on vent counts through time and calculation of rates of magma production. The conditional probability of disruption of the possible waste disposal site at the NTS by basaltic volcanism is bounded by the range of 10{sup -8} to 10{sup -10} yr{sup -1}. Consequences, expressed as radiological release levels, were evaluated by assuming disruption of a repository by basaltic magmas fed along narrow dikes. Limits are placed on the volume of waste material incorporated in magma by analogy to the abundance of lithic fragments in basalt scoria and lava. These consequences would be increased if rising magma encountered water and produced magma/water vapor explosions, which can eject large volumes of country rock. Such a mechanism would be important only if the vapor explosions excavated a crater to repository depths (380 m) - an unlikely event, based on the dimensions of hydrovolcanic craters. The total expected release from disruption of a repository by basaltic magma for a 10{sup 4}-yr period is 1.8 Ci for spent fuel and 1.3 Ci for high-level waste. 34 references.

  11. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    Science.gov (United States)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  12. A University-based Forensics Training Center as a Regional Outreach, Education, and Research activity

    Directory of Open Access Journals (Sweden)

    Rayford B. Vaughn

    2009-04-01

    Full Text Available This paper describes a university-based Forensics Training Center (FTC established by a Department of Justice grant for the purpose of improving the ability of state and local law enforcement in the Southeastern part of the United States to address the rising incidence of computer based crime. The FTC effort is described along with supporting evidence of its need. The program is not only a service activity, but also contributes to the Mississippi State University (MSU security program pedagogy, and research effort.

  13. Science Letters: Human-centered modeling for style-based adaptive games

    Institute of Scientific and Technical Information of China (English)

    Chee-onn WONG; Jon-gin KIM; Eun-jung HAN; Kee-chui JUNG

    2009-01-01

    This letter proposes a categorization matrix to analyze the playing style of a computer game player for a shooting game genre. Our aim is to use human-centered modeling as a strategy for adaptive games based on entertainment measure to evaluate the playing experience. We utilized a self-organizing map (SOM) to cluster the player's style with the data obtained while playing the game. We further argued that style-based adaptation contributes to higher enjoyment, and this is reflected in our experiment using a supervised multilayered perceptron (MLP) network.

  14. A radial distribution function-based open boundary force model for multi-centered molecules

    KAUST Repository

    Neumann, Philipp

    2014-06-01

    We derive an expression for radial distribution function (RDF)-based open boundary forcing for molecules with multiple interaction sites. Due to the high-dimensionality of the molecule configuration space and missing rotational invariance, a computationally cheap, 1D approximation of the arising integral expressions as in the single-centered case is not possible anymore. We propose a simple, yet accurate model invoking standard molecule- and site-based RDFs to approximate the respective integral equation. The new open boundary force model is validated for ethane in different scenarios and shows very good agreement with data from periodic simulations. © World Scientific Publishing Company.

  15. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    Science.gov (United States)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10-2 g. Some volcanic implications of this study are discussed.

  16. Io. [theories concerning volcanic activity

    Science.gov (United States)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  17. Volcanic flood simulation of magma effusion using FLO-2D for drainage of a caldera lake at the Mt. Baekdusan

    Science.gov (United States)

    Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun

    2014-05-01

    Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. Sudden release of huge volume of water stored in temporarily elevated caldera lakes are a recurrent feature of volcanic environments, due to the case with which outlet channels are blocked by and re-cut through, unwelded pyroclastic deposits. The volcano is showing signs of waking from a century-long slumber recently. Volcanic floods, including breakouts from volcanic lakes, can affect communities beyond the areas immediately affected by a volcanic eruption and cause significant hydrological hazards because floods from lake-filled calderas may be particularly large and high. Although a number of case studies have been presented in the literature, investigation of the underlying physical processes is required as well as a method for interpreting the process of the rapid release of water stored in a caldera lake. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. This study focuses on constructing a flood hazard map triggered by the magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by examples at other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic

  18. Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode

    Science.gov (United States)

    He, Shiwei; Song, Rui

    2016-01-01

    Service routes optimization (SRO) of pallet service center should meet customers' demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP) and Chinese postman problem (CPP), but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling) operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case. PMID:27528865

  19. Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode

    Directory of Open Access Journals (Sweden)

    Kang Zhou

    2016-01-01

    Full Text Available Service routes optimization (SRO of pallet service center should meet customers’ demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP and Chinese postman problem (CPP, but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case.

  20. Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode.

    Science.gov (United States)

    Zhou, Kang; He, Shiwei; Song, Rui

    2016-01-01

    Service routes optimization (SRO) of pallet service center should meet customers' demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP) and Chinese postman problem (CPP), but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling) operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case.

  1. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  2. The Resource Configuration Method with Lower Energy Consumption Based on Prediction in Cloud Data Center

    Directory of Open Access Journals (Sweden)

    Quan Liang

    2014-07-01

    Full Text Available The cloud computing data center have numerous hosts as well as application requests. In future, the short response time and user Qos are required, and the lower electricity power consumption to build the low-carbon green network is an irrevocable trend. The paper first puts forward a reconfiguration framework based on the request prediction of Double Exponential Smoothing, On the basis, work out in advance the allocation scheme which can improve the resource utilization ratio as well as lower energy consumption. The paper also present a concept of Utility Ratio Matrix (URM to represent allocations of hosts and Virtual Machines (VMs and a reconfiguration algorithm. The algorithm can separate the reconfiguration computing from the real allocation so that it can avoid a time delay, and can also reduce the energy consumption in data center. The corresponding analysis and experimental results show the feasibility of the reconfiguration algorithm in this paper.

  3. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  4. Learning to recognize volcanic non-eruptions

    Science.gov (United States)

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  5. Fluid evolution in a volcanic-hosted epithermal carbonate-base metal-gold vein system: Alto de la Blenda, Farallón Negro, Argentina

    Science.gov (United States)

    Márquez-Zavalía, M. Florencia; Heinrich, Christoph A.

    2016-10-01

    Alto de la Blenda is a ˜6.6-Ma intermediate-sulphidation epithermal vein system in the Farallón Negro Volcanic Complex, which also hosts the 7.1-Ma porphyry-Cu-Au deposit of Bajo de la Alumbrera. The epithermal vein system is characterised by a large extent and continuity (2 km × 400 m open to depth × 6 m maximum width) and an average gold grade of ˜8 g/t. The vein is best developed within an intrusion of a fine-grained equigranular monzonite, interpreted as the central conduit of a stratovolcano whose extrusive activity ended prior to porphyry-Cu-Au emplacement at Bajo de la Alumbrera, which is in turn cut by minor epithermal veins. The Alto de la Blenda vein consists predominantly of variably Mn-rich carbonates and quartz, with a few percent of pyrite, sphalerite, galena and other sulphide and sulphosalt minerals. Four phases of vein opening, hydrothermal mineralisation and repeated brecciation can be correlated between different vein segments. Stages 2 and 3 contain the greatest fraction of sulphide and gold. They are separated by the emplacement of a polymictic breccia containing clasts of quartz feldspar porphyry as well as basement rocks. Fluid inclusions in quartz related to stages 2 to 4 are liquid rich with 2-4 wt% NaCl(eq). They homogenise between 160 and 300 °C, with very consistent values within each assemblage. Vapour inclusions are practically absent in the epithermal vein. Quartz fragments in the polymictic breccia contain inclusions of intermediate to vapour-like density and similar low salinity (˜3 wt% NaCl(eq)), besides rare brine inclusions containing halite. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of epithermal inclusions indicate high concentrations of K, Fe, As, Sb, Cs, and Pb that significantly vary within and through subsequent vein stages. Careful consideration of detection limits for individual inclusions shows high gold concentrations of ˜0.5 to 3 ppm dissolved in the ore fluid, which

  6. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  7. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  8. Los volcanes y los hombres

    OpenAIRE

    García, Carmen

    2007-01-01

    Desde las entrañas de la tierra, los volcanes han creado la atmósfera, el agua de los océanos, y esculpido los relieves del planeta: son, pues, los zahoríes de la vida. Existen volcanes que los hombres explotan o cultivan, y otros sobre los cuales se han construido observatorios en los que se llevan a cabo avanzadas investigaciones científicas.

  9. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  10. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  11. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  12. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center.

    Science.gov (United States)

    Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho

    2015-12-01

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

  13. The first private-hospital based proton therapy center in Korea; Status of the proton therapy center at Samsung Medical Center

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kwang Zoo; Han, Young Yih; Kim, Jin Sung [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); and others

    2015-12-15

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

  14. Volcanic hazard on Deception Island (South Shetland Islands, Antarctica)

    Science.gov (United States)

    Bartolini, S.; Geyer, A.; Martí, J.; Pedrazzi, D.; Aguirre-Díaz, G.

    2014-09-01

    Deception Island is the most active volcano in the South Shetland Islands and has been the scene of more than twenty identified eruptions over the past two centuries. In this contribution we present the first comprehensive long-term volcanic hazard assessment for this volcanic island. The research is based on the use of probabilistic methods and statistical techniques to estimate volcanic susceptibility, eruption recurrence and the most likely future eruptive scenarios. We perform a statistical analysis of the time series of past eruptions and the spatial extent of their products, including lava flows, fallout, pyroclastic density currents and lahars. The Bayesian event tree statistical method HASSET is applied to calculate eruption recurrence, while the QVAST tool is used in an analysis of past activity to calculate the possibility that new vents will open (volcanic susceptibility). On the basis of these calculations, we identify a number of significant scenarios using the GIS-based VORIS 2.0.1 and LAHARZ software and evaluate the potential extent of the main volcanic hazards to be expected on the island. This study represents a step forward in the evaluation of volcanic hazard on Deception Island and the results obtained are potentially useful for long-term emergency planning.

  15. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    Science.gov (United States)

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme

  16. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding—new evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    Science.gov (United States)

    Behrendt, John C.; Blankenship, Donald D.; Morse, David L.; Bell, Robin E.

    2004-07-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%WAIS >10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other

  17. Deformation of a Volcanic Edifice by Pore Pressurization: An Analog Approach

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.

    2015-12-01

    Volcanic flank destabilization, preceded by pressurization-induced surface deformation or weakening, presents a significant hazard at stratovolcanoes with ample supply of magmatic volatiles or preexisting hydrothermal systems as in Bezymianny- and Bandai-type eruptions, respectively. Deformation is also an important sign of the nature of unrest at large calderas such as Long Valley, USA. Previous studies of volcanic inflation have focused primarily on the role of ascending magma. Relatively few studies have centered on surface deformation caused by pressurization from other volcanic fluids, including exsolved volatiles and pressurized hydrothermal systems. Most investigations of pore-pressurization have focused on numerical modelling of pore pressure transients. In analog experiments presented here, pore-filling fluids are injected into the base of a damp sand medium without exceeding dike propagating pressures, simulating the pressurization and bulk-permeable flow of volatile fluids through volcanic systems. The experiments examine surface deformation from a range of source depths and pressures as well as edifice geometries. 3D imaging is possible through use of the Microsoft® Kinect™ sensor, which allows for the generation of high-resolution, high frame rate, lab-scale Digital Elevation Models (DEMs). After initial processing to increase signal-to-noise ratio, surface deformation is measured using the DEM time-series generated by the Kinect™. Analysis of preliminary experiments suggests that inflation is possible up to approx. 10 % of pressure source depth. We also show that the Kinect™ sensor is useful in analog volcanological studies, an environment to which it is well-suited.

  18. GTAW penetration based on electrode tip location versus weld joint center line

    Science.gov (United States)

    Daumeyer, G. J., III

    1992-11-01

    Gas Tungsten Arc Welding (GTAW) is often the chosen process for final enclosure welds of heat sensitive electrical and electronic product. GTAW is used to produce welds that satisfy design requirements (usually a penetration requirement) and not expose the product to such high heat that would cause unwanted damage. An important variable in the GTAW process is the location of the Electrode tip over the weld joint center line. This study shows the tolerance of positional location over a narrow scope. Using coupons which represent the W88 container weld joint geometry, penetration vs. electrode tip positional location (offset) is investigated. Results indicate a positional location tolerance of +/- 0.008 in. is acceptable. Several different major components (MC's) supporting various weapons programs require low heat input GTA welds. The electrode tip positional location tolerance is determined by each MC's weld joint tolerances and heat sensitivity. For this short study, the weld joint geometry of a container weld was used. These coupons were welded with the specified weld schedule and one additional weld schedule in order to show the relationship based on both travel speed and gap. Multiple coupon welds were made to eliminate error in the results. Within the scope of this research, a positional tolerance of +/- 0.008 in. of the electrode center over the weld joint center is required. For other MC's this tolerance may be tighter or more relaxed depending upon the specific considerations.

  19. LORIS: A web-based data management system for multi-center studies.

    Directory of Open Access Journals (Sweden)

    Samir eDas

    2012-01-01

    Full Text Available LORIS (Longitudinal Online Research and Imaging System is a modular and extensible web-based data management system that integrates all aspects of a multi-center study: from heterogeneous data acquisition (imaging, clinical, behavior, genetics to storage, processing and ultimately dissemination. It provides a secure, user-friendly, and streamlined platform to automate the flow of clinical trials and complex multi-center studies. A subject-centric internal organization allows researchers to capture and subsequently extract all information, longitudinal or cross-sectional, from any subset of the study cohort. Extensive error-checking and quality control procedures, security, data management, data querying and administrative functions provide LORIS with a triple capability (i continuous project coordination and monitoring of data acquisition (ii data storage/cleaning/querying, (iii interface with arbitrary external data processing pipelines. LORIS is a complete solution that has been thoroughly tested through the full life cycle of a multi-center longitudinal project# and is now supporting numerous neurodevelopment and neurodegeneration research projects internationally.

  20. LORIS: a web-based data management system for multi-center studies.

    Science.gov (United States)

    Das, Samir; Zijdenbos, Alex P; Harlap, Jonathan; Vins, Dario; Evans, Alan C

    2011-01-01

    Longitudinal Online Research and Imaging System (LORIS) is a modular and extensible web-based data management system that integrates all aspects of a multi-center study: from heterogeneous data acquisition (imaging, clinical, behavior, and genetics) to storage, processing, and ultimately dissemination. It provides a secure, user-friendly, and streamlined platform to automate the flow of clinical trials and complex multi-center studies. A subject-centric internal organization allows researchers to capture and subsequently extract all information, longitudinal or cross-sectional, from any subset of the study cohort. Extensive error-checking and quality control procedures, security, data management, data querying, and administrative functions provide LORIS with a triple capability (1) continuous project coordination and monitoring of data acquisition (2) data storage/cleaning/querying, (3) interface with arbitrary external data processing "pipelines." LORIS is a complete solution that has been thoroughly tested through a full 10 year life cycle of a multi-center longitudinal project and is now supporting numerous international neurodevelopment and neurodegeneration research projects.

  1. Inferred paleotectonic settings and paleogeography at 500-450 Ma based on geochemical evaluation of Ordovician volcanics and gabbros of the Upper Allochthon, Mid Norway

    Science.gov (United States)

    Hollocher, K.; Roberts, D.; Robinson, P.; Walsh, E.

    2012-04-01

    Evaluation of major- and trace-element analyses of Ordovician volcanics and gabbros from the Støren Nappe of the Upper Allochthon, Mid Norway, including 87 new analyses, covers the Late Cambrian-earliest Ordovician ophiolite complexes and overlying Ordovician volcanics. The older rocks have mainly MORB-like compositions likely formed in a back-arc basin, plus less abundant oceanic-arc basalts and andesites. Compositions characteristic of fore-arc environments are absent. The Upper Allochthon has three elements: A) The Gula Nappe of probable Cambrian and Tremadocian, epicontinental sedimentary rocks, B) The Støren and Meråker nappes with their basal suprasubduction-zone ophiolitic volcanics and intrusions plus younger Ordovician successions, C) In northwestern parts of the Støren Nappe, a complex of predominantly calc-alkaline arc intrusive rocks 482 to 441 Ma. The structural and stratigraphic history indicates obduction of ophiolites occurred at 480-475 Ma soon after formation, followed by uplift, erosion, and deposition of conglomerates incorporating ophiolite debris. The overlying sequence includes shelly Toquima-Table Head faunas of Laurentian affinity and younger strata into Upper Ordovician. Field relations suggest that the ophiolites were obducted onto rocks of the Gula Complex. A Tremadocian, graptolite-bearing black shale/phyllite in the eastern part of the Gula has close geochemical affinities with the reducing V- and U-enriched Alum shale of the Baltoscandian margin, black shales in the lower Köli nappes of the Upper Allochthon in Sweden, and similar shales in the Gander and Avalon zones of Maritime Canada. Such shales originated in high-latitude (40-50° south) cool-water environments, as existed in Late Cambrian-earliest Ordovician Baltica, Avalonia, and Ganderia, and have not been recorded in equatorial paleolatitudes, such as the earliest Ordovician margin of Laurentia. Our paleotectonic account for these features is in three time slices: 1) A

  2. Enacting sustainable school-based health initiatives: a communication-centered approach to policy and practice.

    Science.gov (United States)

    LeGreco, Marianne; Canary, Heather E

    2011-03-01

    Communication plays an important role in all aspects of the development and use of policy. We present a communication-centered perspective on the processes of enacting public health policies. Our proposed conceptual framework comprises 4 communication frames: orientation, amplification, implementation, and integration. Empirical examples from 2 longitudinal studies of school-based health policies show how each frame includes different communication processes that enable sustainable public health policy practices in school-based health initiatives. These 4 frames provide unique insight into the capacity of school-based public health policy to engage youths, parents, and a broader community of stakeholders. Communication is often included as an element of health policy; however, our framework demonstrates the importance of communication as a pivotal resource in sustaining changes in public health practices.

  3. Teaching scientific principles through a computer-based, design-centered learning environment

    Science.gov (United States)

    Wolfe, Michael Brian

    Research on science instruction indicates that the traditional science classroom is not always effective in improving students' scientific understanding. Physics courses, in particular, do not promote the ability to apply scientific principles for many reasons, based on their focus on procedural problem-solving and lab exercises. In this dissertation, I propose the Designing-to-Learn Architecture (DTLA), a design-centered goal-based scenario (GBS) architecture, theoretically grounded in the literature on design-centered learning environments, goal-based scenarios, intelligent tutoring systems and simulations. The DTLA offers an alternative approach to addressing the issues encountered in the traditional science classroom. The architecture consists of an artifact with associated design goals; components with component options; a simulation; a reference database; and guided tutorials. I describe the design of Goin' Up?, the prototype DTL application, serving as the basis for evaluating the effectiveness of the DTLA. I present results of interview and testing protocols from the formative evaluation of Goin' Up?, suggesting that learning outcomes, though not statistically significant, could be improved through DTLA enhancements informed by usage patterns in software sessions. I conclude with an analysis of the results and suggestions for improvements to the DTLA, including additional components to address reflection, provide support for novice designers, and offer tutorial guidance on the analysis of the artifact.

  4. Market-Based Health Care in Specialty Surgery: Finding Patient-Centered Shared Value.

    Science.gov (United States)

    Smith, Timothy R; Rambachan, Aksharananda; Cote, David; Cybulski, George; Laws, Edward R

    2015-10-01

    : The US health care system is struggling with rising costs, poor outcomes, waste, and inefficiency. The Patient Protection and Affordable Care Act represents a substantial effort to improve access and emphasizes value-based care. Value in health care has been defined as health outcomes for the patient per dollar spent. However, given the opacity of health outcomes and cost, the identification and quantification of patient-centered value is problematic. These problems are magnified by highly technical, specialized care (eg, neurosurgery). This is further complicated by potentially competing interests of the 5 major stakeholders in health care: patients, doctors, payers, hospitals, and manufacturers. These stakeholders are watching with great interest as health care in the United States moves toward a value-based system. Market principles can be harnessed to drive costs down, improve outcomes, and improve overall value to patients. However, there are many caveats to a market-based, value-driven system that must be identified and addressed. Many excellent neurosurgical efforts are already underway to nudge health care toward increased efficiency, decreased costs, and improved quality. Patient-centered shared value can provide a philosophical mooring for the development of health care policies that utilize market principles without losing sight of the ultimate goals of health care, to care for patients.

  5. An image-tracking algorithm based on object center distance-weighting and image feature recognition

    Institute of Scientific and Technical Information of China (English)

    JIANG Shuhong; WANG Qin; ZHANG Jianqiu; HU Bo

    2007-01-01

    Areal-time image-tracking algorithm is proposed.which gives small weights to pixels farther from the object center and uses the quantized image gray scales as a template.It identifies the target's location by the mean-shift iteration method and arrives at the target's scale by using image feature recognition.It improves the kernel-based algorithm in tracking scale-changing targets.A decimation mcthod is proposed to track large-sized targets and real-time experimental results verify the effectiveness of the proposed algorithm.

  6. Calibration of line structured light vision system based on camera's projective center

    Institute of Scientific and Technical Information of China (English)

    ZHU Ji-gui; LI Yan-jun; YE Sheng-hua

    2005-01-01

    Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera's projective center and the light's information in the camera's image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.

  7. Identification of Calderas Associated With The Acidic Jurassic Volcanism of Southern Patagonia, Argentina

    Science.gov (United States)

    Chernicoff, C. J.; Salani, F. M.

    During the Jurassic, the Patagonian region was subject to a predominantly acidic volcanism locally known as the Chon Aike Volcanic Province, related to the breakup of Gondwana. It comprises ignimbrites, breccias and agglomerates, and a minor component of rhyolitic and dacitic lava domes. In the study area (Río Seco region, Santa Cruz Province), the Jurassic volcanics are largely overlain by Neogene and Quaternary sediments. However, the aeromagnetic survey of this region has unravelled the magnetic pattern of the volcanics, notably two conspicuous calderas, since the young cover sediments are non-magnetic. The magnetic susceptibility of the volcanic rocks ranges 50 to 80 x 10-5 S.I., as oppossed to the nearly null values of the overlying sediments. The geological interpretation of the aeromagnetic survey is mostly based on the analytic signal of the total magnetic intensity, where two distinct sub-circular magnetic lineaments have been recognized and regarded as calderic structures. The eastern caldera, 30 km wide, is centered at 48º 52' S.L./ 68º 02' W.L., and the western caldera, 23 km wide, is centered at 48º 53' S.L. / 68º 29' W.L.. In addition, a number of smaller, high gradient magnetic anomalies have been identified and interpreted as intra- and extracaldera domes. In the eastern caldera, a number of domes follow an anular pattern of fractures regarded as the boundary of an older, outer caldera. A magnetic circular lineament located within the latter structure has been interpreted as a younger, inner caldera which presents a number of small domes in its central depression; additional domes are also located in between the two calderic structures. The western caldera is less complex since it comprises a single structure with intra-caldera domes. The total magnetic gradient (analytic signal) associated with the domes is one order of magnitude higher (0.1 to 0.2) than the mean value of the region (0.03). In addition to the anular fractures and domes, a

  8. 77 FR 9665 - Submission for OMB Emergency Review; Comment Request: A Multi-Center International Hospital-Based...

    Science.gov (United States)

    2012-02-17

    ... Multi- Center International Hospital-Based Case-Control Study of Lymphoma in Asia (AsiaLymph) (NCI... Institute (NCI), the National Institutes of Health (NIH), has submitted to the Office of Management and... currently valid OMB control number. Proposed Collection: Title: A Multi-Center International Hospital-...

  9. The Emergence of University-Based Education Policy Centers. ERIC/CEM Trends and Issues Series, Number 2.

    Science.gov (United States)

    McCarthy, Martha M.; Hall, Gayle C.

    A closeup look is provided of a trend in the field of educational policy in the 1980's: the establishment of university-based centers that have a mission of providing state policymakers with nonpartisan, reliable data on education policy options. The development and characteristics of education policy centers are examined. The first section…

  10. Detection and Classification of Volcanic Earthquakes/Tremors in Central Anatolian Volcanic Province

    Science.gov (United States)

    Kahraman, Metin; Arda Özacar, A.; Bülent Tank, S.; Uslular, Göksu; Kuşcu, Gonca; Türkelli, Niyazi

    2017-04-01

    Central Anatolia has been characterized by active volcanism since 10 Ma which created the so called Central Anatolia Volcanic Province (CAVP) where a series of volcanoes are located along the NE-SW trend. The petrological investigations reveal that the magma source in the CAVP has both subduction and asthenospheric signature possibly due to tearing of ongoing northward subduction of African plate along Aegean and Cyprus arcs. Recently, a temporary seismic array was deployed within the scope of Continental Dynamics: Central Anatolian Tectonics (CD-CAT) project and provided a unique opportunity to study the deep seismic signature of the CAVP. Passive seismic imaging efforts and magnetotellurics (MT) observations revealed low velocity and high conductivity zones supporting the presence of localized partial melt bodies beneath the CAVP at varying depths, especially around Mt. Hasan which exhibits both geological and archeological evidences for its eruption around 7500 B.C. In Central Anatolia, local seismicity detected by the CD-CAT array coincides well with the active faults zones. However, active or potentially active volcanoes within CAVP are characterized by the lack of seismic activity. In this study, seismic data recorded by permanent stations of Regional Earthquake-Tsunami Monitoring Center were combined with temporary seismic data collected by the CD-CAT array to improve sampling density across the CAVP. Later, the continuous seismic waveforms of randomly selected time intervals were manually analyzed to identify initially undetected seismic sources which have signal characters matching to volcanic earthquakes/tremors. For candidate events, frequency spectrums are constructed to classify the sources according to their physical mechanisms. Preliminary results support the presence of both volcano-tectonic (VT) and low-period (LT) events within the CAVP. In the next stage, the spectral and polarization analyses techniques will be utilized to the entire seismic

  11. Environmental Assessment: Armed Forces Reserve Center Fairchild Air Force Base, Washington

    Science.gov (United States)

    2007-01-01

    area is represented by varying depths of groundwater perched by hard basalt bedrock or lenses of clay in surficial glacial melt water deposits...volcanic ash influenced loess on the surface. Deeper soils occur associated with glacial flood and melt water deposits of sand, silts, and clays ...northeast at less than 1%. Geology. The Columbia Plateau was formed by Miocene age flood basalt flows and sculpted by subsequent glacial floodwaters

  12. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia: preventing the danger of volcanic eruptions to aviation.

    Science.gov (United States)

    Girina, O.; Neal, Ch.

    2012-04-01

    The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the

  13. Study on Multi-objective Location of Distribution Center Based on Covering

    Directory of Open Access Journals (Sweden)

    QU Hui

    2013-01-01

    Full Text Available Distribution center is an important part of modern logistics system. In the process of designing distribution center, running expense can be greatly reduced by selecting appropriate location of distribution center. In this paper, the covering method was used twice to choose the distribution center and minimize the total cost. At last, a case was given to test the model.

  14. Active-learning versus teacher-centered instruction for learning acids and bases

    Science.gov (United States)

    Acar Sesen, Burcin; Tarhan, Leman

    2011-07-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of 'acids and bases'. Sample The sample of this study was 45 high-school students (average age 17 years) from two different classes, which were randomly assigned to the experimental (n = 21) and control groups (n = 25), in a high school in Turkey. Design and methods A pre-test consisting of 25 items was applied to both experimental and control groups before the treatment in order to identify student prerequisite knowledge about their proficiency for learning 'acids and bases'. A one-way analysis of variance (ANOVA) was conducted to compare the pre-test scores for groups and no significant difference was found between experimental (ME = 40.14) and control groups (MC = 41.92) in terms of mean scores (F 1,43 = 2.66, p > 0.05). The experimental group was taught using an active-learning curriculum developed by the authors and the control group was taught using traditional course content based on teacher-centered instruction. After the implementation, 'Acids and Bases Achievement Test' scores were collected for both groups. Results ANOVA results showed that students' 'Acids and Bases Achievement Test' post-test scores differed significantly in terms of groups (F 1,43 = 102.53; p test and individual interview results, it was found that high-school students in the experimental group had fewer misconceptions and understood the concepts more meaningfully than students in control group. Conclusion The study revealed that active-learning implementation is more effective at improving students' learning achievement and preventing misconceptions.

  15. Volcanic jet noise: infrasonic source processes and atmospheric propagation

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; Ogden, D. E.

    2011-12-01

    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  16. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  17. Interactive breast cancer segmentation based on relevance feedback: from user-centered design to evaluation

    Science.gov (United States)

    Gouze, A.; Kieffer, S.; Van Brussel, C.; Moncarey, R.; Grivegnée, A.; Macq, B.

    2009-02-01

    Computer systems play an important role in medical imaging industry since radiologists depend on it for visualization, interpretation, communication and archiving. In particular, computer-aided diagnosis (CAD) systems help in lesion detection tasks. This paper presents the design and the development of an interactive segmentation tool for breast cancer screening and diagnosis. The tool conception is based upon a user-centered approach in order to ensure that the application is of real benefit to radiologists. The analysis of user expectations, workflow and decision-making practices give rise to the need for an interactive reporting system based on the BIRADS, that would not only include the numerical features extracted from the segmentation of the findings in a structured manner, but also support human relevance feedback as well. This way, the numerical results from segmentation can be either validated by end-users or enhanced thanks to domain-experts subjective interpretation. Such a domain-expert centered system requires the segmentation to be sufficiently accurate and locally adapted, and the features to be carefully selected in order to best suit user's knowledge and to be of use in enhancing segmentation. Improving segmentation accuracy with relevance feedback and providing radiologists with a user-friendly interface to support image analysis are the contributions of this work. The preliminary result is first the tool conception, and second the improvement of the segmentation precision.

  18. Centering prayer as an alternative to mindfulness-based cognitive therapy for depression relapse prevention.

    Science.gov (United States)

    Knabb, Joshua J

    2012-09-01

    In the last two decades, mindfulness has made a significant impact on Western secular psychology, as evidenced by several new treatment approaches that utilize mindfulness practices to ameliorate mental illness. Based on Buddhist teachings, mindfulness offers individuals the ability to, among other things, decenter from their thoughts and live in the present moment. As an example, mindfulness-based cognitive therapy (MBCT) teaches decentering and mindfulness techniques to adults in an eight-session group therapy format so as to reduce the likelihood of depression relapse. Yet, some Christian adults may prefer to turn to their own religious heritage, rather than the Buddhist tradition, in order to stave off depression relapse. Thus, the purpose of this article is to present centering prayer, a form of Christian meditation that is rooted in Catholic mysticism, as an alternative treatment for preventing depression relapse in adults. I argue that centering prayer overlaps considerably with MBCT, which makes it a suitable treatment alternative for many Christians in remission from depressive episodes.

  19. The symptom cluster-based approach to individualize patient-centered treatment for major depression.

    Science.gov (United States)

    Lin, Steven Y; Stevens, Michael B

    2014-01-01

    Unipolar major depressive disorder is a common, disabling, and costly disease that is the leading cause of ill health, early death, and suicide in the United States. Primary care doctors, in particular family physicians, are the first responders in this silent epidemic. Although more than a dozen different antidepressants in 7 distinct classes are widely used to treat depression in primary care, there is no evidence that one drug is superior to another. Comparative effectiveness studies have produced mixed results, and no specialty organization has published recommendations on how to choose antidepressants in a rational, evidence-based manner. In this article we present the theory and evidence for an individualized, patient-centered treatment model for major depression designed around a targeted symptom cluster-based approach to antidepressant selection. When using this model for healthy adults with major depressive disorder, the choice of antidepressants should be guided by the presence of 1 of 4 common symptom clusters: anxiety, fatigue, insomnia, and pain. This model was built to foster future research, provide a logical framework for teaching residents how to select antidepressants, and equip primary care doctors with a structured treatment strategy to deliver optimal patient-centered care in the management of a debilitating disease: major depressive disorder.

  20. Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images

    Science.gov (United States)

    Zhai, Han; Zhang, Hongyan; Zhang, Liangpei; Li, Pingxiang

    2016-10-01

    Considering the inevitable obstacles faced by the pixel-based clustering methods, such as salt-and-pepper noise, high computational complexity, and the lack of spatial information, a reweighted mass center based object-oriented sparse subspace clustering (RMC-OOSSC) algorithm for hyperspectral images (HSIs) is proposed. First, the mean-shift segmentation method is utilized to oversegment the HSI to obtain meaningful objects. Second, a distance reweighted mass center learning model is presented to extract the representative and discriminative features for each object. Third, assuming that all the objects are sampled from a union of subspaces, it is natural to apply the SSC algorithm to the HSI. Faced with the high correlation among the hyperspectral objects, a weighting scheme is adopted to ensure that the highly correlated objects are preferred in the procedure of sparse representation, to reduce the representation errors. Two widely used hyperspectral datasets were utilized to test the performance of the proposed RMC-OOSSC algorithm, obtaining high clustering accuracies (overall accuracy) of 71.98% and 89.57%, respectively. The experimental results show that the proposed method clearly improves the clustering performance with respect to the other state-of-the-art clustering methods, and it significantly reduces the computational time.

  1. Johnson Space Center's Solar and Wind-Based Renewable Energy System

    Science.gov (United States)

    Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.

    2009-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.

  2. Clinical process analysis and activity-based costing at a heart center.

    Science.gov (United States)

    Ridderstolpe, Lisa; Johansson, Andreas; Skau, Tommy; Rutberg, Hans; Ahlfeldt, Hans

    2002-08-01

    Cost studies, productivity, efficiency, and quality of care measures, the links between resources and patient outcomes, are fundamental issues for hospital management today. This paper describes the implementation of a model for process analysis and activity-based costing (ABC)/management at a Heart Center in Sweden as a tool for administrative cost information, strategic decision-making, quality improvement, and cost reduction. A commercial software package (QPR) containing two interrelated parts, "ProcessGuide and CostControl," was used. All processes at the Heart Center were mapped and graphically outlined. Processes and activities such as health care procedures, research, and education were identified together with their causal relationship to costs and products/services. The construction of the ABC model in CostControl was time-consuming. However, after the ABC/management system was created, it opened the way for new possibilities including process and activity analysis, simulation, and price calculations. Cost analysis showed large variations in the cost obtained for individual patients undergoing coronary artery bypass grafting (CABG) surgery. We conclude that a process-based costing system is applicable and has the potential to be useful in hospital management.

  3. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology

    Indian Academy of Sciences (India)

    Dimitrios Oikonomidis; Konstantinos Albanakis; Spyridon Pavlides; Michael Fytikas

    2016-02-01

    A catastrophic volcanic explosion took place in Thera/Santorini island around 1613 BC, known as the `Minoan' eruption. Many papers have dealt with the shape of the shoreline of the island before the eruption, but none with the shape of the shoreline exactly after it, assuming that it would be the same with the contemporary one. However, this is not correct due to the wave erosion. In this paper, a new DEM was constructed, covering both land and submarine morphology, then topographic sections were drawn around the island. Using these sections, the `missing parts' (sea-wave erosion) were calculated, the shoreline was reconstructed as it was one day after the eruption and finally the erosion rate was calculated.

  4. One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012

    Science.gov (United States)

    Fey, Petra; Dodson, Robert J.; Basu, Siddhartha; Chisholm, Rex L.

    2013-01-01

    dictyBase (http:// dictybase.org), the model organism database for Dictyostelium discoideum, includes the complete genome sequence and expression data for this organism. Relevant literature is integrated into the database, and gene models and functional annotation are manually curated from experimental results and comparative multigenome analyses. dictyBase has recently expanded to include the genome sequences of three additional Dictyostelids, and has added new software tools to facilitate multigenome comparisons. The Dicty Stock Center, a strain and plasmid repository for Dictyostelium research has relocated to Northwestern University in 2009. This allowed us integrating all Dictyostelium resources to better serve the research community. In this chapter, we will describe how to navigate the website and highlight some of our newer improvements. PMID:23494302

  5. Comparison of LHC collimator beam-based alignment to BPM-Interpolated centers

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Muller, G J; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam LossMonitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would compromise the performance of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 and 2012 LHC proton runs.

  6. Activity-based costing via an information system: an application created for a breast imaging center.

    Science.gov (United States)

    Hawkins, H; Langer, J; Padua, E; Reaves, J

    2001-06-01

    Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis.

  7. Student-centered Role-based Case Study Model to Improve Learning in Decision Support Systems

    Directory of Open Access Journals (Sweden)

    Farrukh Nadeem

    2014-10-01

    Full Text Available One of the important learning objectives of our bachelor course on "Techniques in Decision Support Systems" is to develop understanding of core decision making process in real-life business situations. The conventional teaching methods are unable to explain complexities of real-life business. Although the classroom discussions can be effective to understand general factors, such as opportunity cost, return on investment, etc. affecting business decisions, the effects of factors like dynamic business environment, incomplete information, time pressure etc. can not be truly explained through such simple discussions. In this paper, we describe our experience of adopting student-centered, role-based, case study to deal with this situation. The interactive case-based study not only provided students with experiential learning, but also gave them liberty to test their thoughts. As a result, we observed improved students' learning as well as improved grades. In addition, this approach made classes more dynamic and interesting.

  8. Nuclear counting filter based on a centered Skellam test and a double exponential smoothing

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan; Rohee, Emmanuel; Normand Stephane [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette, (France)

    2015-07-01

    Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activity occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)

  9. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  10. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment

    Science.gov (United States)

    Qu, Jianliang; Chen, Weihai; Zhang, Jianbin

    2014-09-01

    Parallel alignment stage with remote-center-of-motion (RCM) is of key importance in precision out-of-plane aligning since it can eliminate the harmful lateral displacement generated at the output platform. This paper presents the development of a parallelogram-based compliant RCM stage for active parallel alignment. Different from conventional parallelogram-based RCM mechanism, the proposed stage is designed with compliant mechanisms, which endows the stage with many attractive merits when used in precision micro-/nanomanipulations. A symmetric double-parallelogram mechanism (SDPM) based on flexure hinges is developed as the rotary guiding component to realize desired RCM function. Due to the geometrical constraint of the SDPM, the operating space of the stage can be easily adjusted by bending the input links without loss of rotational precision. The stage is driven by a piezoelectric actuator and its output motion is measured by non-contact displacement sensors. Based on pseudo-rigid-body simplification method, the analytical models predicting kinematics, statics, and dynamics of the RCM stage have been established. Besides, the dimensional optimization is conducted in order to maximize the first resonance frequency of the stage. After that, finite element analysis is conducted to validate the established models and the prototype of the stage is fabricated for performance tests. The experimental results show that the developed RCM stage has a rotational range of 1.45 mrad while the maximum center shift of the RCM point is as low as 1 μm, which validate the effectiveness of the proposed scheme.

  11. Routing and spectrum allocation in multi-ring based data center networks

    Science.gov (United States)

    Zhang, Zitian; Hu, Weisheng; Ye, Tong; Sun, Weiqiang; Zhao, Li; Zhang, Kuo

    2016-02-01

    Recently, we proposed a multi-ring based optical circuit switching (OCS) network following the principle of a Clos network. The network can provide connectivity to a large number of racks which may be distributed across a relatively large geographical space in a data center. However, property of the ring based switch in the central stage of the multi-ring based OCS network introduces a unique routing and spectrum allocation (RSA) problem which is more complex than the routing problem in a classical Clos switching network. In this paper, we extend our work to investigate the RSA problem. For a given set of inter-rack traffic requests, we consider two spectrum allocation schemes, namely fixed spectrum allocation and flexible spectrum allocation. For the fixed case, we show that the RSA problem degenerates into the traditional routing problem of the Clos network. As for the flexible case, property of spectrum division multiplexing technology and bandwidth limitation of the ring based switches should be taken into consideration during allocation of the central module, such that the system throughput can be maximized. This paper presents an integer linear program (ILP) formulation as well as a heuristic algorithm we developed to solve the flexible RSA problem. We evaluate the performance of both the two spectrum allocation schemes under different traffic patterns. Our results demonstrate that, to handle uneven inter-rack traffic pattern in general data center networks, flexible spectrum allocation can lead to an increase of about 120% in system throughput, although its computational complexity is slightly higher than that of the fixed spectrum allocation scheme.

  12. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  13. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  14. Negative magnetic anomaly over Mt. Resnik, a subaerially erupted volcanic peak beneath the West Antarctic Ice Sheet

    Science.gov (United States)

    Behrendt, John C.; Finn, C.; Morse, D.L.; Blankenship, D.D.

    2006-01-01

    Mt. Resnik is one of the previously reported 18 subaerially erupted volcanoes (in the West Antarctic rift system), which have high elevation and high bed relief beneath the WAIS in the Central West Antarctica (CWA) aerogeophysical survey. Mt. Resnik lies 300 m below the surface of the West Antarctic Ice Sheet (WAIS); it has 1.6 km topographic relief, and a conical form defined by radar ice-sounding of bed topography. It has an associated complex negative magnetic anomaly revealed by the CWA survey. We calculated and interpreted magnetic models fit to the Mt. Resnik anomaly as a volcanic source comprising both reversely and normally magnetized (in the present field direction) volcanic flows, 0.5-2.5-km thick, erupted subaerially during a time of magnetic field reversal. The Mt. Resnik 305-nT anomaly is part of an approximately 50- by 40-km positive anomaly complex extending about 30 km to the west of the Mt. Resnik peak, associated with an underlying source complex of about the same area, whose top is at the bed of the WAIS. The bed relief of this shallow source complex has a maximum of only about 400 m, whereas the modeled source is >3 km thick. From the spatial relationship we interpret that this source and Mt Resnik are approximately contemporaneous. Any subglacially (older?) erupted edifices comprising hyaloclastite or other volcanic debris, which formerly overlaid the source to the west, were removed by the moving WAIS into which they were injected as is the general case for the ???1000 volcanic centers at the base of the WAIS. The presence of the magnetic field reversal modeled for Mt. Resnik may represent the Bruhnes-Matayama reversal at 780 ka (or an earlier reversal). There are ???100 short-wavelength, steep-gradient, negative magnetic anomalies observed over the West Antarctic Ice Sheet (WAIS), or about 10% of the approximately 1000 short-wavelength, shallow-source, high-amplitude (50- >1000 nT) "volcanic" magnetic anomalies in the CWA survey. These

  15. Laboratory simulations of volcanic ash charging and conditions for volcanic lightning on Venus

    Science.gov (United States)

    Airey, Martin; Warriner-Bacon, Elliot; Aplin, Karen

    2017-04-01

    Lightning may be important in the emergence of life on Earth and elsewhere, as significant chemical reactions occur in the superheated region around the lightning channel. This, combined with the availability of phosphates in volcanic clouds, suggests that volcanic lightning could have been the catalyst for the formation of biological compounds on the early Earth [1]. In addition to meteorological lightning, volcanic activity also generates electrical discharges within charged ash plumes, which can be a significant contributor to atmospheric electricity on geologically active planets. The physical properties of other planetary atmospheres, such as that of Venus, have an effect on the processes that lead to the generation of volcanic lightning. Volcanism is known to have occurred on Venus in the past, and recent observations made by ESA's Venus Express satellite have provided evidence for currently active volcanism [2-4], and lightning discharges [e.g. 5]. Venusian lightning could potentially be volcanic in origin, since no meteorological mechanisms are known to separate charge effectively in its clouds [6]. The hunt for further evidence for lightning at Venus is ongoing, for example by means of the Lightning and Airglow Camera (LAC) [7] on Akatsuki, the current JAXA mission at Venus. Our laboratory experiments simulate ash generation and measure electrical charging of the ash under typical atmospheric conditions on Earth and Venus. The study uses a 1 litre chamber, which, when pressurised and heated, can simulate the high-pressure, high-temperature, carbon dioxide-dominated atmosphere of Venus at 10 km altitude ( 5 MPa, 650 K). A key finding of previous work [8] is that ash plume-forming eruptions are more likely to occur at higher altitudes such as these on Venus. The chamber contains temperature/pressure monitoring and logging equipment, a rock collision apparatus (based on [9]) to generate the charged rock fragments, and charge measurement electrodes connected

  16. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    Science.gov (United States)

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  17. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  18. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  19. Geochemical study for volcanic surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Panichi, C.; La Ruffa, G. [Consiglio Nazionale delle Ricerche, International Institute for Geothermal Research Ghezzano, PI (Italy)

    2000-07-01

    For years, geologists have been striving to reconstruct volcanic eruptions from the analysis of pyroclastic deposits and lava flows on the surface of the earth and in the oceans. This effort has produced valuable information on volcanic petrology and magma generation, separation, mixing, crystallisation, and interaction with water in phreatomagmatic and submarine eruptions. The volcanological process are tied to the dynamics of the earth's crust and lithosphere. The mantle, subducted oceanic crust, and continental crust contain different rock types and are sources of different magmas. Magmas consist primarily of completely or partially molten silicates containing volatile materials either dissolved in the melt or as bubbles of gas. The silicate and volatile portions affect the physical properties of magma and, therefore, the nature of a volcanic eruption.

  20. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  1. A New Nearest Neighbor Classification Algorithm Based on Local Probability Centers

    Directory of Open Access Journals (Sweden)

    I-Jing Li

    2014-01-01

    Full Text Available The nearest neighbor is one of the most popular classifiers, and it has been successfully used in pattern recognition and machine learning. One drawback of kNN is that it performs poorly when class distributions are overlapping. Recently, local probability center (LPC algorithm is proposed to solve this problem; its main idea is giving weight to samples according to their posterior probability. However, LPC performs poorly when the value of k is very small and the higher-dimensional datasets are used. To deal with this problem, this paper suggests that the gradient of the posterior probability function can be estimated under sufficient assumption. The theoretic property is beneficial to faithfully calculate the inner product of two vectors. To increase the performance in high-dimensional datasets, the multidimensional Parzen window and Euler-Richardson method are utilized, and a new classifier based on local probability centers is developed in this paper. Experimental results show that the proposed method yields stable performance with a wide range of k for usage, robust performance to overlapping issue, and good performance to dimensionality. The proposed theorem can be applied to mathematical problems and other applications. Furthermore, the proposed method is an attractive classifier because of its simplicity.

  2. Planning the loading of data centers' resources based on download statistics

    Directory of Open Access Journals (Sweden)

    L. S. Hloba

    2016-06-01

    Full Text Available The customer service quality depends on the procedure of the application maintenance in data center of the communication provider. In the article the control approach of dynamic resource involvement has been suggested in order to ensure the input flow maintenance that takes into account the random nature of applications’ inflow and utilizes both short-term and long-term load statistics. The proposed approach consists of two methods that manage the number of the implicated serving nodes. The first one verifies the resource amount adequacy, provides the evaluation of input load’s dynamics based on the short-term statistics as well as the current state of the technical facilities. The second one accounts for the long-term statistics according to which the implication of additional resources can be scheduled during the load peaks. The simulation results of technical resources management have been presented for the data center infrastructure of the communication provider, that prove the effectiveness of the proposed methods.

  3. Distributed Scheduling Architecture for Multi-Center Time-Based Metering

    Science.gov (United States)

    Landry, Steven; Farley, Todd; Foster, John; Green, Steve; Hoang, Ty; Wong, Gregory L.

    2003-01-01

    The Traffic Management Advisor (TMA) is an air traffic control automation system currently in use in seven Air Route Traffic Control Centers (ARTCCs) to enable time based metering to busy airports within their airspace. However, this system is limited to operation within a single ARTCC, within about a 200 nautical mile radius of the airport, and on relatively simple streams of traffic. The need for coordinated metering within a greater (300+ nautical mile) radius of an airport, on streams of traffic with significant branching, and across ARTCC boundaries, has been identified. Early tests revealed that TMA could not simply be scaled up to handle such a problem. Instead, a loosely coupled hierarchy of schedules, in which constraints from downstream schedules are passed upstream, is required. Such an architecture reduces the reliance on distant projections of arrival times, making schedules robust to changes in sequence and to additions of aircraft (such as aircraft departing inside the system s scheduling horizon). This architecture is also scaleable, easily reconfigurable, and can be networked together. As such, it can be adapted for use in any size or configuration of airspace and with any number of airports delivering restrictions. An implementation of this distributed scheduling architecture is currently undergoing testing in the TMA-Multi Center system. This paper describes the architecture and its motivation.

  4. A Prediction of Increase in Subglacial Volcanism Beneath the West Antarctic Ice Sheet (WAIS) as Future Deglaciation Caused by Ocean Circulation Proceeds

    Science.gov (United States)

    Behrendt, J. C.; LeMasurier, W. E.

    2015-12-01

    Many decades of aeromagnetic surveying (e.g. Behrendt, 1964; 2013; and others) over the West Antarctic Ice sheet (WAIS) have shown >1000 high amplitude, shallow source magnetic anomalies interpreted as as indicating subglacial volcanic centers of late Cenozoic age to presently active. Similar anomalies exist over exposed volcanic rocks bordering the WAIS in places.Recent papers (e.g. Wouters et al., 2015; Paolo, et al.; 2015 and others) based on satellite altimetry have shown dramatic thinning and retreat of ice shelves, particularly those bordering the Amundsen and Bellingshausen Seas, caused by melting from circulation of warming sea water. Previous workers have shown that when ice shelves collapse, the ice streams previously dammed by them accelerate an order of magnitude higher velocity, and surface elevation decreases. GRACE satellite interpretations (e.g. Velicogna et al., and others) indicate mass loss of WAIS in recent years.The bed elevation beneath the WAIS deepens inland from the Amundsen and Bellingshausen coasts, although high relief volcanic topography is present in a number of areas beneath the ice.Crowley et a. (2015) have shown that glacial cycles may drive production of oceanic crust by lowering pressure in the mantle resulting in increased melting and magma production. Increased volcanism due to deglaciation in Iceland has apparently produced increased in volcanic activity there. Deglaciation of the Norwegian continental shelf has resulted in faulting of the sea floor and similar faulting has been reported of the Ross Sea shelf following deglaciation there.I suggest here that as the WAIS collapses in the future resulting from climate change, an increase in volcanic activity beneath the ice might be expected. This may provide a feedback mechanism for increase in ice melting.

  5. The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG Spinning Enhanced Visible and Infra-Red Imager (SEVIRI

    Directory of Open Access Journals (Sweden)

    A. R. Naeger

    2013-06-01

    Full Text Available In this paper, we develop an algorithm based on combining spectral, spatial, and temporal thresholds from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI daytime measurements to identify and track different aerosol types, primarily volcanic ash. Contemporary methods typically do not use temporal information to identify ash. We focus not only on the identification and tracking of volcanic ash during the Eyjafjallajökull volcanic eruption period beginning 14 April 2010 to May but a pixel level classification method for separating various classes in the SEVIRI images. Three case studies on 19 April, 16 May, and 17 May are analyzed in extensive detail with other satellite data including the Moderate Resolution Imaging Spectroradiometer (MODIS, Multi-angle Imaging Spectroradiometer (MISR, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO, and Facility for Airborne Atmospheric Measurements (FAAM BAe146 aircraft data to verify the aerosol spatial distribution maps generated by the SEVIRI algorithm. Our results indicate that the SEVIRI algorithm is able to track volcanic ash even at these high latitudes. Furthermore, the BAe146 aircraft data shows that the SEVIRI algorithm detects nearly all ash regions when AOD > 0.2. However, the algorithm has higher uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land. The ash spatial distributions provided by this algorithm can be used as a critical input and validation for atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs. Identifying volcanic ash is an important first step before quantitative retrievals of ash concentration can be made.

  6. Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy)

    Science.gov (United States)

    Esposito, R.; Bodnar, R. J.; de Vivo, B.; Lima, A.; Fedele, L.; Shimizu, N.; Hunter, J.

    2009-12-01

    The Phlegrean volcanic district (PVD) in southern Italy is one of the best known volcanic hazard areas in the world. More than 1.5 million people live in close proximity to the volcanic centers. The PVD comprises three volcanic fields: the Campi Flegrei caldera and the islands of Ischia and Procida. We studied volatiles plus major and trace elements in the magma associated with the Solchiaro eruption on the Island of Procida, Italy, to gain a better understanding of the relationship between pre-eruptive volatiles and magmatic evolution. The Solchiaro eruption is one of the more primitive products erupted in the PVD and provides information on the source of later more evolved magmas associated with this volcanic system. The composition of the magma before eruption was determined by analyzing 104 melt inclusions (MIs) in forsteritic olivine, glass embayment plus rim glasses, and high vesciculated glasses selected from 4 representative samples. The composition of MIs was recalculated and ranges from basaltic to trachy-basaltic. Among major elements potassium shows the highest variability, from 0.5 to 6 wt%. MI define a continuous trend based on major and minor element compositions. Embayments matrix glass and high vesciculated glasses define a field that suggests a discontinuous process. Compatible to incompatible trace element ratios in early melts are highly variable and represent the melt phase before or at the very beginning of assimilation-fractional crystallization (FCA) processes. Intermediate melt compositions reflect continuing FCA processes, late melt compositions suggest that the FCA process was aborted before eruption. Volatile contents of early melt are highly variable and reflect source heterogeneities, and the melts are interpreted to be undersaturated. Intermediate melts were volatile saturated and H2O-CO2 contents define a degassing path. Depths of trapping of MI range from 4.4 to 2.2 km, and are calculated based on Newman and Lowenstern (2002) and

  7. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  8. Statewide CBT Training for Clinicians and Supervisors Treating Youth: The New York State Evidence Based Treatment Dissemination Center

    Science.gov (United States)

    Gleacher, Alissa A.; Nadeem, Erum; Moy, Amanda J.; Whited, Andria L.; Albano, Anne Marie; Radigan, Marleen; Wang, Rui; Chassman, Janet; Myrhol-Clarke, Britt; Hoagwood, Kimberly Eaton

    2011-01-01

    In recent years, several states have undertaken efforts to disseminate evidence-based treatments to agencies and clinicians in their children's service system. In New York, the Evidence Based Treatment Dissemination Center adopted a unique translation-based training and consultation model in which an initial 3-day training was combined with a year…

  9. Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway)

    Science.gov (United States)

    Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include < or equal 5 cm thick magnesite deposits protruding downwards into clear blue ice within volcanic vents and carbonate cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.

  10. 78 FR 28214 - Gainesville Renewable Energy Center, LLC; Supplemental Notice That Initial Market-Based Rate...

    Science.gov (United States)

    2013-05-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Gainesville Renewable Energy Center, LLC; Supplemental Notice That Initial... notice in the above-referenced proceeding, of Gainesville Renewable Energy Center, LLC's application...

  11. Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia

    Science.gov (United States)

    Blaikie, T. N.; Ailleres, L.; Betts, P. G.; Cas, R. A. F.

    2014-04-01

    We present results and a method to geophysically image the subsurface structures of maar volcanoes to better understand eruption mechanisms and risks associated with maar-forming eruptions. High-resolution ground gravity and magnetic data were acquired across several maar volcanoes within the Newer Volcanics Province of southeastern Australia, including the Ecklin maar, Red Rock Volcanic Complex, and Mount Leura Volcanic Complex. The depth and geometry of subsurface volcanic structures were determined by interpretation of gridded geophysical data and constrained 2.5-D forward and 3-D inverse modeling techniques. Bouguer gravity lows identified across the volcanic craters reflect lower density lake sediments and pyroclastic debris infilling the underlying maar-diatremes. These anomalies were reproduced during modeling by shallow coalesced diatremes. Short-wavelength positive gravity and magnetic anomalies identified within the center of the craters suggest complex internal structures. Modeling identified feeder vents, consisting of higher proportions of volcanic debris, intrusive dikes, and ponded magma. Because potential field models are nonunique, sensitivity analyses were undertaken to understand where uncertainty lies in the interpretations, and how the models may vary between the bounds of the constraints. Rather than producing a single "ideal" model, multiple models consistent with available geologic information are created using different inversion techniques. The modeling technique we present focuses on maar volcanoes, but there are wider implications for imaging the subsurface of other volcanic systems such as kimberlite pipes, scoria cones, tuff rings, and calderas.

  12. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  13. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  14. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  15. TCP INCAST AVOIDANCE BASED ON CONNECTION SERIALIZATION IN DATA CENTER NETWORKS

    Directory of Open Access Journals (Sweden)

    Shigeyuki Osada

    2016-07-01

    Full Text Available In distributed file systems, a well-known congestion collapse called TCP incast (Incast briefly occurs because many servers almost simultaneously send data to the same client and then many packets overflow the port buffer of the link connecting to the client. Incast leads to throughput degradation in the network. In this paper, we propose three methods to avoid Incast based on the fact that the bandwidth-delay product is small in current data center networks. The first method is a method which completely serializes connection establishments. By the serialization, the number of packets in the port buffer becomes very small, which leads to Incast avoidance. The second and third methods are methods which overlap the slow start period of the next connection with the current established connection to improve throughput in the first method. Numerical results from extensive simulation runs show the effectiveness of our three proposed methods.

  16. Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond

    Science.gov (United States)

    Benedikter, Julia; Kaupp, Hanno; Hümmer, Thomas; Liang, Yuejiang; Bommer, Alexander; Becher, Christoph; Krueger, Anke; Smith, Jason M.; Hänsch, Theodor W.; Hunger, David

    2017-02-01

    Single-photon sources are an integral part of various quantum technologies, and solid-state quantum emitters at room temperature appear to be a promising implementation. We couple the fluorescence of individual silicon-vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single-photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as 3.4 λ3 and a quality factor of 1.9 ×1 04 and observe an effective Purcell factor of up to 9.2. Furthermore, we study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single-photon rates beyond 1 GHz.

  17. ELECTRE I Based Relevance Decision-Makers Feedback to the Location Selection of Distribution Centers

    Directory of Open Access Journals (Sweden)

    Maroi Agrebi

    2017-01-01

    Full Text Available The location selection of distribution centers is one of the important strategies to optimize the logistics system. To solve this problem, under certain environment, this paper presents a new multicriteria decision-making method based on ELECTRE I. The proposed method helps decision-makers to select the best location from a given set of locations for implementing. After having identified decision-makers, the criteria, and the set of locations, the factors influencing the selection are analyzed in order to identify the best location. A sensitivity analysis is then performed to determine the influence of criteria weights on the selection decision. The strength of the proposed method is to incorporate decision-makers’ preferences into the decision-making process. In addition, the proposed method considers both quantitative and qualitative criteria. Finally, the selected solution is validated by both tests of concordance and discordance simultaneously. A case study is provided to illustrate the proposed method.

  18. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  19. Paleomagnetic evidence for an episodic eruptive history of the Cerros del Rio volcanic field, New Mexico

    Science.gov (United States)

    Hudson, M. R.; Thompson, R. A.

    2011-12-01

    The Pliocene to Quaternary (~2.6-1.14 Ma) Cerros del Rio volcanic field of northern New Mexico forms a dissected basaltic plateau sourced by multiple eruptive centers. Paleomagnetic data compliment geologic mapping, geochronologic and geochemical data to define the spatial and temporal eruptive history of Cerros del Rio volcanic deposits. The preserved stratigraphic sequence reflects three principal phases of volcanism; 1) 2.7-2.6 Ma, 2) 2.5-2.2 Ma, and 3) 1.5-1.1 Ma. Paleomagnetic data collected from 85 sites that span the area of the volcanic field largely sample phase-1 deposits that record the Guass normal-polarity chron or phase-2 deposits that record the Matuyama reversed-polarity chron. A grand mean of individual sites (excluding transitional directions) is D = 352.8°, I = 49.7°, k= 14, a95 = 3.9. However, normal- and reversed-polarity group means are not statistically antipodal, with the normal-polarity inclination being significantly shallower than an expected (55°) dipole inclination. This failed reversal test suggests that paleosecular variation has not be fully averaged within both polarity groups, despite a basis on abundant data from multiple eruptive centers. Compared to variation recorded by the full volcanic field, site directions from individual eruptive centers have restricted dispersion, indicating that the centers formed quickly relative to paleosecular variation. Grouping data within individual eruptive centers to calculate eruptive-group means (EGM), directions of the normal- and reversed-polarity EGM remain skewed from antipodal. Modal analysis demonstrates the presence of multiple directional clusters among the normal-polarity EGM whereas the frequency distribution of reversed polarity EGM are symmetrical about their maximum. These paleomagnetic directional characteristics indicate that voluminous phase-1 deposits of the Cerros del Rio volcanic field probably erupted episodically during short time intervals and that several individual

  20. EURISWEB – Web-based epidemiological surveillance of antibiotic-resistant pneumococci in Day Care Centers

    Directory of Open Access Journals (Sweden)

    Sanches Ilda Santos

    2003-07-01

    Full Text Available Abstract Background EURIS (European Resistance Intervention Study was launched as a multinational study in September of 2000 to identify the multitude of complex risk factors that contribute to the high carriage rate of drug resistant Streptococcus pneumoniae strains in children attending Day Care Centers in several European countries. Access to the very large number of data required the development of a web-based infrastructure – EURISWEB – that includes a relational online database, coupled with a query system for data retrieval, and allows integrative storage of demographic, clinical and molecular biology data generated in EURIS. Methods All components of the system were developed using open source programming tools: data storage management was supported by PostgreSQL, and the hypertext preprocessor to generate the web pages was implemented using PHP. The query system is based on a software agent running in the background specifically developed for EURIS. Results The website currently contains data related to 13,500 nasopharyngeal samples and over one million measures taken from 5,250 individual children, as well as over one thousand pre-made and user-made queries aggregated into several reports, approximately. It is presently in use by participating researchers from three countries (Iceland, Portugal and Sweden. Conclusion An operational model centered on a PHP engine builds the interface between the user and the database automatically, allowing an easy maintenance of the system. The query system is also sufficiently adaptable to allow the integration of several advanced data analysis procedures far more demanding than simple queries, eventually including artificial intelligence predictive models.

  1. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  2. Geophysical surveys of the Joya Honda maar (México) and surroundings; volcanic implications

    Science.gov (United States)

    López Loera, Héctor; Aranda-Gómez, José Jorge; Arzate, Jorge A.; Molina-Garza, Roberto Stanley

    2008-03-01

    Joya Honda (JH) is a Quaternary maar excavated in Mesozoic limestone. It is located in central Mexico and belongs to the Ventura volcanic field (VVF), which is composed by cinder cones and maars made of intraplate-type mafic alkalic rocks. Volcanoes in the region form ˜ N20W lineaments, roughly parallel to a regional set of normal faults, but there is no obvious relation between these faults and vent distribution in the exposed geology around the maar. The volcanic rock volume is small in the VVF, and most volcanoes and their products are scattered in a region where outcrops are dominated by limestone. The near-vent tephra associated to the JH maar lies north of the crater. This relation suggests that the crater was formed by directed hydromagmatic explosions and may indicate an inclined volcanic conduit near the surface. The tephra stratigraphy suggests that the initial explosions were relatively dry and the amount of water increased during the maar forming eruption. Therefore, the existing model of the maar-diatreme formation may not be applicable to Joya Honda as it requires the formation of a cone of depression in the aquifer and deepening of the focii of the explosions as the crater and underlying diatreme grew. Thus, it is unlikely that there is a diatreme below Joya Honda. Aeromagnetic data shows a boundary between two regional magnetic domains near the elongated volcanic cluster of the VVF. The boundary is straight, with a distinct kink, from NE- to NW-trend, near JH. The limit between the domains is interpreted as fault contacts between mid-Tertiary volcanic rocks and marine Mesozoic sedimentary rocks. Hence, magma ascent in the area may have been facilitated by fractures near the surface. Magnetic and gravimetric ground surveys show that the anomalies associated with the maar are not centered in the crater, which could be consistent with an inclined volcanic conduit. A magnetic profile measured on exposed limestone across the volcanic lineament failed to

  3. Late Pleistocene to Holocene Volcanism in the Lassen Domefield and Surrounding Region, California

    Science.gov (United States)

    Clynne, M. A.; Robinson, J. E.; Nathenson, M.; Muffler, L. J.

    2013-12-01

    The Lassen Volcanic Center (LVC) marks the southernmost limit of active volcanism in the Cascade Range. Prior to the 1980 eruption of Mount St. Helens, Lassen Peak was the last volcano in the conterminous U.S. to erupt. Three eruptions in the last 1,100 years, (Chaos Crags, 1,103 × 13 years B.P.; Cinder Cone, 1666; and Lassen Peak 1914-1917) plus the most vigorous hydrothermal system in the Cascades, attest to an active magmatic system beneath LVC. We recently completed a modern volcano-hazards assessment of the Lassen segment of the Cascade arc that is based primarily on the recently published geologic map of Lassen Volcanic National Park (Clynne and Muffler, 2010; available at http://pubs.er.usgs.gov/publication/sim2899). The Lassen segment covers 75 linear km of arc from near the southern boundary of Lassen Volcanic National Park north to the Pit River. We define hazard zones for mafic and silicic tephra fall, mafic and silicic lava flows, pyroclastic flows and surges, and lahars and associated floods (Clynne et. al., 2012; available at http://pubs.usgs.gov/sir/2012/5176/a/). In the Lassen segment, volcanism occurs on two scales. Distributed mafic to intermediate calc-alkaline volcanism builds cinder cones and small shield volcanoes with intervening tholeiitic lava flows. Over time, these deposits coalesce to form a broad platform of volcanic material. In the last 100,000 years, at least 58 eruptions of regional volcanoes took place, and at least 40 more eruptions are only slightly older. Most are located in a few zones associated with regional faulting. The annual probability of eruption of a regional volcano is 0.00065 (0.065%), which corresponds to an average recurrence interval of 1,550 years. Although several eruptions occurred around the Pleistocene-Holocene boundary, none are demonstrably Holocene (pyroclastic flows and/or domes, and 7 hybrid andesite lava flows and tephra. Their volumes range from very small (0.0006 km3) to significant (4.7 km3). The

  4. Volcanic rock-hosted gold and base-metal mineralization associated with neoproterozoic-early Paleozoic back-arc extension in the Carolina terrane, southern Appalachian Piedmont

    Energy Technology Data Exchange (ETDEWEB)

    Feiss, P.G. (Univ. of North Carolina, Chapel Hill (United States)); Vance, R.K. (Georgia Southern Univ., Statesboro (United States)); Wesolowski, D.J. (Oak Ridge National Lab., TN (United States))

    1993-05-01

    Volcanogenic mineral deposits in the Carolina terrane, southern Appalachian Piedmont, include Kuroko-type polymetallic massive sulfide deposits and disseminated gold-pyrite deposits associated with propylitic, silicic, argillic, and advanced argillic alteration. Host rocks are metavolcaniclastic and metaepiclastic rocks of a Neoproterozoic-Early Cambrian magmatic arc. The favorable gold horizon is the transition from a lower succession of andesitic and rhyolitic pyroelastic rocks with basal mafic lavas to an upper sequence of epiclastic sedimentary units and minor lava and ash flows. Kuroko-type deposits are associated with mafic to bimodal volcanic rocks in the upper sequence. Whole-rock oxygen isotope analyses indicate that gold mineralization is associated with a transition from hydrothermal systems dominated by isotopically relatively light ([delta][sup 18]O = -6% to -10%) waters, typical of high-latitude subaerial systems, to seawater ([delta][sup 18]O = 0%). Plots of [delta][sup 18]O vs. SiO[sub 2] of the host rocks show a compositional gap associated with mineralization at the subaerial to submarine transition. Values of [delta][sup 18]O for the hydrothermal waters, lithostratigraphic analyses, and tectonic models of the Carolina terrane demonstrate that mineralization coincided with extension in a rifted arc. 34 refs., 3 figs.

  5. Electron attachment to solvated dGpdG: effects of stacking on base-centered and phosphate-centered valence-bound radical anions.

    Science.gov (United States)

    Gu, Jiande; Liang, Guoming; Xie, Yaoming; Schaefer, Henry F

    2012-04-23

    To explore the nature of electron attachment to guanine-centered DNA single strands in the presence of a polarizable medium, a theoretical investigation of the DNA oligomer dinucleoside phosphate deoxyguanylyl-3',5'-deoxyguanosine (dGpdG) was performed by using density functional theory. Four different electron-distribution patterns for the radical anions of dGpdG in aqueous solution have been located as local minima on the potential energy surface. The excess electron is found to reside on the proton of the phosphate group (dGp(H-)dG), or on the phosphate group (dGp(.-)dG), or on the nucleobase at the 5' position (dG(.-)pdG), or on the nucleobase at the 3' position (dGpdG(.-)), respectively. These four radical anions are all expected to be electronically viable species under the influence of the polarizable medium. The predicted energetics of the radical anions follows the order dGp(.-)dG>dG(.-)pdG>dGpdG(.-)>dGp(H-)dG. The base-base stacking pattern in DNA single strands seems unaffected by electron attachment. On the contrary, intrastrand H-bonding is greatly influenced by electron attachment, especially in the formation of base-centered radical anions. The intrastrand H-bonding patterns revealed in this study also suggest that intrastrand proton transfer might be possible between successive guanines due to electron attachment to DNA single strands.

  6. Alkali and Halogen Chemistry in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  7. Experimental generation of volcanic lightning

    Science.gov (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  8. Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance

    Science.gov (United States)

    Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra

    2017-06-01

    In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.

  9. Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance

    Science.gov (United States)

    Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra

    2016-03-01

    In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.

  10. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  11. Transitioning to Intel-based Linux Servers in the Payload Operations Integration Center

    Science.gov (United States)

    Guillebeau, P. L.

    2004-01-01

    The MSFC Payload Operations Integration Center (POIC) is the focal point for International Space Station (ISS) payload operations. The POIC contains the facilities, hardware, software and communication interface necessary to support payload operations. ISS ground system support for processing and display of real-time spacecraft and telemetry and command data has been operational for several years. The hardware components were reaching end of life and vendor costs were increasing while ISS budgets were becoming severely constrained. Therefore it has been necessary to migrate the Unix portions of our ground systems to commodity priced Intel-based Linux servers. hardware architecture including networks, data storage, and highly available resources. This paper will concentrate on the Linux migration implementation for the software portion of our ground system. The migration began with 3.5 million lines of code running on Unix platforms with separate servers for telemetry, command, Payload information management systems, web, system control, remote server interface and databases. The Intel-based system is scheduled to be available for initial operational use by August 2004 The overall migration to Intel-based Linux servers in the control center involves changes to the This paper will address the Linux migration study approach including the proof of concept, criticality of customer buy-in and importance of beginning with POSlX compliant code. It will focus on the development approach explaining the software lifecycle. Other aspects of development will be covered including phased implementation, interim milestones and metrics measurements and reporting mechanisms. This paper will also address the testing approach covering all levels of testing including development, development integration, IV&V, user beta testing and acceptance testing. Test results including performance numbers compared with Unix servers will be included. need for a smooth transition while maintaining

  12. Transitioning to Intel-based Linux Servers in the Payload Operations Integration Center

    Science.gov (United States)

    Guillebeau, P. L.

    2004-01-01

    The MSFC Payload Operations Integration Center (POIC) is the focal point for International Space Station (ISS) payload operations. The POIC contains the facilities, hardware, software and communication interface necessary to support payload operations. ISS ground system support for processing and display of real-time spacecraft and telemetry and command data has been operational for several years. The hardware components were reaching end of life and vendor costs were increasing while ISS budgets were becoming severely constrained. Therefore it has been necessary to migrate the Unix portions of our ground systems to commodity priced Intel-based Linux servers. hardware architecture including networks, data storage, and highly available resources. This paper will concentrate on the Linux migration implementation for the software portion of our ground system. The migration began with 3.5 million lines of code running on Unix platforms with separate servers for telemetry, command, Payload information management systems, web, system control, remote server interface and databases. The Intel-based system is scheduled to be available for initial operational use by August 2004 The overall migration to Intel-based Linux servers in the control center involves changes to the This paper will address the Linux migration study approach including the proof of concept, criticality of customer buy-in and importance of beginning with POSlX compliant code. It will focus on the development approach explaining the software lifecycle. Other aspects of development will be covered including phased implementation, interim milestones and metrics measurements and reporting mechanisms. This paper will also address the testing approach covering all levels of testing including development, development integration, IV&V, user beta testing and acceptance testing. Test results including performance numbers compared with Unix servers will be included. need for a smooth transition while maintaining

  13. Estimation of volcanic ash refractive index from satellite infrared sounder data

    Science.gov (United States)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  14. Exploring student learning profiles in algebra-based studio physics: A person-centered approach

    Science.gov (United States)

    Pond, Jarrad W. T.; Chini, Jacquelyn J.

    2017-06-01

    In this study, we explore the strategic self-regulatory and motivational characteristics of students in studio-mode physics courses at three universities with varying student populations and varying levels of success in their studio-mode courses. We survey students using questions compiled from several existing questionnaires designed to measure students' study strategies, attitudes toward and motivations for learning physics, organization of scientific knowledge, experiences outside the classroom, and demographics. Using a person-centered approach, we utilize cluster analysis methods to group students into learning profiles based on their individual responses to better understand the strategies and motives of algebra-based studio physics students. Previous studies have identified five distinct learning profiles across several student populations using similar methods. We present results from first-semester and second-semester studio-mode introductory physics courses across three universities. We identify these five distinct learning profiles found in previous studies to be present within our population of introductory physics students. In addition, we investigate interactions between these learning profiles and student demographics. We find significant interactions between a student's learning profile and their experience with high school physics, major, gender, grade expectation, and institution. Ultimately, we aim to use this method of analysis to take the characteristics of students into account in the investigation of successful strategies for using studio methods of physics instruction within and across institutions.

  15. Mindfulness based stress reduction adapted for depressed disadvantaged women in an urban Federally Qualified Health Center.

    Science.gov (United States)

    Burnett-Zeigler, Inger E; Satyshur, Maureen D; Hong, Sunghyun; Yang, Amy; T Moskowitz, Judith; Wisner, Katherine L

    2016-11-01

    In this study we examine the feasibility and preliminary effectiveness of mindfulness based stress reduction adapted for delivery in an urban Federally Qualified Health Center (FQHC). Thirty-one African- American adult women ages 18-65 with depressive symptoms enrolled to participate in an 8-week mindfulness group intervention. The primary outcome (depression) and secondary outcomes (stress, mindfulness, functioning, well-being, and depression stigma) were assessed at baseline, 8 and 16-weeks. Depressive symptoms significantly decreased from baseline to 16 weeks. A significant decrease in stress and significant increase in mindfulness was found from baseline to 8 weeks and baseline to 16 weeks. Additionally, aspects of well-being-self-acceptance and growth-significantly increased from baseline to 8-weeks. Stigma significantly increased from baseline to 8 weeks and significantly decreased from 8 to 16 weeks (all p's Mindfulness-based interventions implemented in FQHCs may increase access to effective treatments for mental health symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multimedia-based courseware in the Virtual Learning Center at the Hannover Medical School.

    Science.gov (United States)

    Matthies, H K; von Jan, U; Porth, A J; Tatagiba, M; Stan, A C; Walter, G F

    2000-01-01

    The commercial use of the World Wide Web causes an extensive change in information technology. Web browser are becoming the universal front-end for all kinds of client-server applications. The possibilities of telematics offer a base for multimedia applications, for instance telelearning. Learning is not limited by geography and does not cause pressure of time by the user. The development of such multimedia information and communication systems demands cooperative working teams of authors, who are able to master several areas of medical knowledge as well as the presentation of these using different multimedia facilities. A very important part of graphic design in the context of multimedia applications is the creation and interactive use of images (still, moving). The growth and the complexity of medical knowledge as well as the need for continuous, fast, and economically feasible maintenance impose requirements on the media used for medical education and training. Web-based courseware in the Virtual Learning Center at the Hannover Medical School is an innovative education resource for medical students and professionals.

  17. Delimitation of volcanic edifices for landscape characterization and planning

    Science.gov (United States)

    Melis, Maria Teresa; Mundula, Filippo; Dessì, Francesco; Danila Patta, Elisabetta; Funedda, Antonio; Cioni, Raffaello

    2014-05-01

    The European Landscape Convention, recently adopted in Italy, indicates specific landforms to be selected as special protected sites. Active and inactive volcanic edifices, defined as the products of evolution of aggradational (lava effusion, pyroclastic deposition, magma intrusion) and degradational processes (erosion, deformation, gravitative phenomena), are one of the specific landforms to be protected. In order to protect these sites, management and planning measures are to be defined and shared with the local communities. In the framework of the Regional Landscape Management Plan of Sardinia (Italy), a detailed study aimed at identifying and delimiting Cenozoic volcanic edifices was performed. The large geological and morphological variability of the volcanic edifices of Sardinia in terms of type, dimension, age, integrity (a measure of the wholeness and intactnes of the volcanic edifice), geology and paleomorphology of the substrate, does not allow the definition of an automatic procedure for extracting the boundaries to delimit the volcanic edifices. In addition, quantitative geomorphological studies in the field of volcanology are confined to specific volcano types, and landscape literature does not suggest any universal criteria for delimiting volcanic edifices, except for the use of the concave breaks in slope at their base (Euillades et al., Computers and Geosciences, 2013). As this simple criterion can be unequivocally applied only in the ideal case of symmetric cones or domes built up on a planar surface, we developed a multidisciplinary methodology based on the integrated analysis of geological, geomorphological and morphometrical data of each edifice. The process of selection and delimitation of the volcanic edifices is the result of the following steps: i) a literature based delimitation of the volcanic edifice; ii) a preliminary delimitation through photo-interpretation and the use of geological criteria; and iii) a final refinement based on the

  18. 77 FR 11136 - Proposed Collection; Comment Request; a Multi-Center International Hospital-Based Case-Control...

    Science.gov (United States)

    2012-02-24

    ... International Hospital-Based Case-Control Study of Lymphoma in Asia (AsiaLymph) (NCI) SUMMARY: In compliance... the Office of Management and Budget (OMB) for review and approval. Proposed Collection: Title: A Multi-Center International Hospital- Based Case-Control Study of Lymphoma in Asia (AsiaLymph) (NCI). Type...

  19. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Madankan, R. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pouget, S. [Department of Geology, University at Buffalo (United States); Singla, P., E-mail: psingla@buffalo.edu [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Bursik, M. [Department of Geology, University at Buffalo (United States); Dehn, J. [Geophysical Institute, University of Alaska, Fairbanks (United States); Jones, M. [Center for Computational Research, University at Buffalo (United States); Patra, A. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pavolonis, M. [NOAA-NESDIS, Center for Satellite Applications and Research (United States); Pitman, E.B. [Department of Mathematics, University at Buffalo (United States); Singh, T. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Webley, P. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  20. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  1. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  2. Long-lived volcanism within Argyre basin, Mars

    Science.gov (United States)

    Williams, Jean-Pierre; Dohm, James M.; Soare, Richard J.; Flahaut, Jessica; Lopes, Rosaly M. C.; Pathare, Asmin V.; Fairén, Alberto G.; Schulze-Makuch, Dirk; Buczkowski, Debra L.

    2017-09-01

    The Argyre basin, one of the largest impact structures on Mars with a diameter >1200 km, formed in the Early Noachian ∼3.93 Ga. The basin has collected volatiles and other material through time, and experienced partial infilling with water evident from stratigraphic sequences, crater statistics, topography, and geomorphology. Although volcanism has not been previously associated with the Argyre basin, our study of the northwest portion of the basin floor has revealed landforms suggesting volcanic and tectonic activity occurred including Argyre Mons, a ∼50 km wide volcanic-structure formed ∼3 Ga. Giant polygons with a similar surface age are also identified on terrain adjacent to the base of Argyre Mons, indicating the structure may have formed in a water-rich environment. In addition to Argyre Mons, cones, vents, mounds, dikes, and cavi or hollows, many of which are associated with extensional tectonics, are observed in the region. Multiple features appear to disrupt icy (and largely uncratered) terrain indicating a relatively young, Late Amazonian, formation age for at least some of the volcanic and tectonic features. The discovery of Argyre Mons, along with additional endogenic modification of the basin floor, suggests that the region has experienced episodes of volcanism over a protracted period of time. This has implications for habitability as the basin floor has been a region of elevated heat flow coupled with liquid water, water ice, and accumulation of sediments of diverse provenance with ranging geochemistry, along with magma-water interactions.

  3. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  4. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    Large explosive volcanoes eject megatons of sulfur dioxide into the lower stratosphere where it spreads around the world within months and is oxidized slowly to form a sulfuric-acid aerosol with particle sizes that grow large enough to reflect and scatter solar radiation, cooling Earth ~0.5C for up to 3 years. Explosive eruptions also deplete total column ozone ~6% causing up to 3C winter warming at mid-latitudes over continents. Global cooling predominates. Extrusive, basaltic volcanoes deplete ozone ~6% but do not eject much sulfur dioxide into the lower stratosphere, causing net global warming. Anthropogenic chlorofluorocarbons (CFCs) deplete ozone ~3% for up to a century while each volcanic eruption, even small ones, depletes ozone twice as much but for less than a decade through eruption of halogens and ensuing photochemical processes. The 2010 eruption of Eyjafjallajökull, the 2011 eruption of Grímsvötn, plus anthropogenic CFCs depleted ozone over Toronto Canada 14% in 2012, causing an unusually warm winter and drought. Total column ozone determines how much solar ultraviolet energy with wavelengths between 290 and 340 nanometers reaches Earth where it is absorbed most efficiently by the ocean. A 25% depletion of ozone increases the amount of this radiation reaching Earth by 1 W m-2 for overhead sun and 0.25 W m-2 for a solar zenith angle of 70 degrees. The tropopause is the boundary between the troposphere heated from below by a sun-warmed Earth and the stratosphere heated from above by the Sun through photodissociation primarily of oxygen and ozone. The mean annual height of the tropopause increased ~160 m between 1980 and 2004 at the same time that northern mid-latitude total column ozone was depleted by ~4%, the lower stratosphere cooled ~2C, the upper troposphere warmed ~0.1C, and mean surface temperatures in the northern hemisphere rose ~0.5C. Regional total ozone columns are observed to increase as rapidly as 20% within 5 hours with an associated 5

  5. Volcanic Stratigraphy and Potential Hazards of the Chihsingshan Volcano Subgroup in the Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Wei Tsai

    2010-01-01

    Full Text Available The Chihsingshan Volcano Subgroup (CVSG is one of the most important landforms located within the Tatun Volcano Group in northern Taiwan. Based on a Digital Terrain Model, contour maps and field investigations, the CVSG can be divided into four types of volcanic landforms: (1 a strato- or composite volcano, Chihsingshan; (2 domes, the Shamaoshan and a hidden unit; (3 lava cones, the Baiyunshan and the Hsiaotsaoshan; and (4 a scoria cone, the Chikushan. Meanwhile, many small craters are distributed linearly along two northeast trending normal-fault systems. The occurrences are predominantly lava flows with subsidiary fall deposits, pyroclastic flows, and lahars in which at least twenty layers of lava flow in the CVSG can be recognized. Among them, 16 layers in the Chihsingshan volcano, named as C1 - C16, two in the Baiyunshan, B1 - B2, and two in the Hsiaotsaoshan, H1 - H2. Our study suggests that the potential volcanic hazards include lava and pyroclastic flows and simultaneous or subsequent lahars, if the Chihsingshan erupts in a similar manner as in the past. A volcanic hazard zonation map can be constructed for the purpose of mitigation assuming the future eruptive center and eruptive volume.

  6. Integrating Field-Centered, Project Based Activities with Academic Year Coursework: A Curriculum Wide Approach

    Science.gov (United States)

    Kelso, P. R.; Brown, L. M.

    2015-12-01

    Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."

  7. Volcanic hazard assessment at Deception Island

    Science.gov (United States)

    Bartolini, S.; Sobradelo, R.; Geyer, A.; Martí, J.

    2012-04-01

    Deception Island is the most active volcano of the South Shetland Islands (Antarctica) with more than twenty eruptions recognised over the past two centuries. The island was formed on the expansion axis of the Central Bransfield Strait and its evolution consists of constructive and destructive phases. A first a shield phase was followed by the construction of a central edifice and formation of the caldera with a final monogenetic volcanism along the caldera rim. The post-caldera magma composition varies from andesitic-basaltic to dacitic. The activity is characterised by monogenetic eruptions of low volume and short duration. The eruptions show a variable degree of explosivity, strombolian or phreatomagmatic, with a VEI 2 to 4, which have generated a wide variety of pyroclastic deposits and lavas. It is remarkable how many phases of phreatic explosive eruptions are associated to the emission of large ballistic blocks. Tephra record preserved in the glacier ice of Livingston Island or in marine sediments show the explosive power of the phreatomagmatic phases and the wide dispersal of its finest products in a great variety of directions of the prevailing winds. Also it is important to highlight the presence of different lahar deposits associated with some of these eruptions. In this contribution we present the guidelines to conduct a short-term and long-term volcanic hazard assessment at Deception Island. We apply probabilistic methods to estimate the susceptibility, statistical techniques to determine the eruption recurrence and eruptive scenario, and reproduce the effects of historical eruptions too. Volcanic hazard maps and scenarios are obtained using a Voris-based model tool (Felpeto et al., 2007) in a free Geographical Information System (GIS), a Quantum GIS.

  8. Python-Based Scientific Analysis and Visualization of Precipitation Systems at NASA Marshall Space Flight Center

    Science.gov (United States)

    Lang, Timothy J.

    2015-01-01

    At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a

  9. B3: Fuzzy-Based Data Center Load Optimization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    M. Jaiganesh

    2013-01-01

    Full Text Available Cloud computing started a new era in getting variety of information puddles through various internet connections by any connective devices. It provides pay and use method for grasping the services by the clients. Data center is a sophisticated high definition server, which runs applications virtually in cloud computing. It moves the application, services, and data to a large data center. Data center provides more service level, which covers maximum of users. In order to find the overall load efficiency, the utilization service in data center is a definite task. Hence, we propose a novel method to find the efficiency of the data center in cloud computing. The goal is to optimize date center utilization in terms of three big factors—Bandwidth, Memory, and Central Processing Unit (CPU cycle. We constructed a fuzzy expert system model to obtain maximum Data Center Load Efficiency (DCLE in cloud computing environments. The advantage of the proposed system lies in DCLE computing. While computing, it allows regular evaluation of services to any number of clients. This approach indicates that the current cloud needs an order of magnitude in data center management to be used in next generation computing.

  10. Learner-Centered Environments: Creating Effective Strategies Based on Student Attitudes and Faculty Reflection

    Science.gov (United States)

    Bishop, Catharine F.; Caston, Michael I.; King, Cheryl A.

    2014-01-01

    Learner-centered environments effectively implement multiple teaching techniques to enhance students' higher education experience and provide them with greater control over their academic learning. This qualitative study involves an exploration of the eight reasons for learner-centered teaching found in Terry Doyle's 2008 book,…

  11. A new approach for laboratory exercise of pathophysiology in China based on student-centered learning.

    Science.gov (United States)

    Chen, Jian; Zhou, Junhai; Sun, Li; Wu, Qiuhui; Lu, Huiling; Tian, Jing

    2015-06-01

    Student-centered learning is generally defined as any instructional method that purportedly engages students in active learning and critical thinking. The student-centered method of teaching moves the focus from teaching to learning, from the teachers' conveying course concepts via lecture to the understanding of concepts by students. The student-centered method has been used extensively in lecture courses in China; however, there is little evidence of its use in laboratory courses. The purpose of the present study was to describe the implementation of a student-centered method in a pathophysiology laboratory course. The use of student-centered learning strategies in an undergraduate laboratory course was well received by both students and teachers. Here, students had to take on responsibility for their own learning and, thus, became more accountable. Moreover, they reported increased active learning, skill development, information collection, and retention. In addition, mean scores for the quiz were significantly higher in the student-centered method compared with the traditional teaching method. The shift from teacher-centered delivery to a student-centered model led to a positive change, in which the learners drove the process and were guided, not directed, by the teacher.

  12. Volcanism and soil mercury on Mars - Consequences for terrestrial microorganisms

    Science.gov (United States)

    Siegel, B. Z.; Siegel, S. M.

    1978-01-01

    An earth-Mars depletion formula proposed by Anders and Owen for volatiles is used to calculate a range of putative Hg levels for Martian volcanic soils based upon analyzed samples from Hawaii. The range is about 50-150 microgram per kg. When applied either in conventional or special media (e.g., basalt powder), these levels of Hg are effective inhibitors of the growth of earth microorganisms. Taken together with other hostile chemical and physical factors, volcanic toxicants would appear to provide a further deterrent to the accidental establishment of terrestrial microbiota on Mars.

  13. School-Based Health Center Intervention Improves Body Mass Index in Overweight and Obese Adolescents

    Directory of Open Access Journals (Sweden)

    Alberta S. Kong

    2013-01-01

    Full Text Available Adolescents Committed to Improvement of Nutrition and Physical Activity (ACTION was undertaken to determine feasibility of a school-based health center (SBHC weight management program. Two urban New Mexico SBHCs were randomized to deliver ACTION or standard care. ACTION consisted of eight visits using motivational interviewing to improve eating and physical activity behavior. An educational nutrition and physical activity DVD for students and a clinician toolkit were created for use as menu of options. Standard care consisted of one visit with the SBHC provider who prescribed recommendations for healthy weight. Sixty nondiabetic overweight/obese adolescents were enrolled. Measures included BMI percentile, waist circumference, insulin resistance by homeostasis model assessment (HOMA-IR, blood pressure, triglycerides, and HDL-C levels. Pre- to postchanges for participants were compared between groups. Fifty-one students (mean age 15 years, 62% female, 75% Hispanic completed pre- and postmeasures. ACTION students (n=28 had improvements in BMI percentile (P=0.04 and waist circumference (P=0.04 as compared with students receiving standard care (n=23. No differences were found between the two groups in blood pressure, HOMA-IR, triglycerides, and HDL-C. The ACTION SBHC weight management program was feasible and demonstrated improved outcomes in BMI percentile and waist circumference.